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[1] Streamflow disaggregation techniques are used to distribute a single aggregate flow
value to multiple sites in both space and time while preserving distributional statistics
(i.e., mean, variance, skewness, and maximum and minimum values) from observed data.
A number of techniques exist for accomplishing this task through a variety of parametric
and nonparametric approaches. However, most of these methods do not perform well
for disaggregation to daily time scales. This is generally due to a mismatch between the
parametric distributions appropriate for daily flows versus monthly or annual flows, the
high dimension of the disaggregation problem, compounded uncertainty in parameter
estimation for multistage approaches, and the inability to maintain flow continuity
across disaggregation time period boundaries. We present a method that directly simulates
daily data at multiple locations from a single annual flow value via K‐nearest neighbor
(K‐NN) resampling of daily flow proportion vectors. The procedure is simple and data
driven and captures observed statistics quite well. Furthermore, the generated daily
data are continuous and display lag correlation structure consistent with that of the
observed data. The utility and effectiveness of this approach is demonstrated for selected
sites in the San Juan River Basin, located in southwestern Colorado, and later compared
with the disaggregation technique of Prairie et al. (2007) for several locations in the
Colorado River Basin.
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1. Introduction

[2] As the demand and use of water continues to increase,
water management has become a complex task requiring
detailed models and planning in order to effectively manage
this valuable resource. Seasonal diversions, irrigation needs,
instream flow requirements and hydropower all contribute to
the challenge of present‐day water administration. In order
to maximize the utility of models with a high level of
physical system detail, flow inputs need to be rich in variety
and of an appropriate time step. These data should represent
a range of hydrologic scenarios and be temporally consistent
with the system obligations (e.g., daily hydropower demands,
seasonal irrigation, etc.). Historic flows are not always
available such that the data needs of a model are appropriately
met. This highlights the utility of synthetic data techniques.
Methods for generating synthetic streamflows provide the
data needed for operations models. These methods are

capable of producing extreme events (drought/surplus) that
are greater in magnitude and/or duration compared to those
of the observed record, thus further exploring operations
beyond the historic streamflows.
[3] Methods to generate flows usually begin at the annual

time step for a location of particular significance, (i.e., due
to interstate compacts, physical location, etc.) in order to
ensure statistical properties are effectively preserved at this
location. However, as eluded earlier, single‐site, annual
flow values may not be sufficient for detailed models. Thus,
the need to disaggregate flow values to multiple sites and
finer time scales arises. The task of appropriately distribut-
ing flow in space and time requires that distributional sta-
tistics (i.e., mean, variance, skewness, and maximum and
minimum values) are reproduced for all sites, while also
preserving summability, cross correlations, and continuity.
Parametric approaches [Grygier and Stedinger, 1988;
Stedinger and Vogel, 1984; Valencia and Schaake, 1973]
for addressing disaggregation have traditionally been framed
on a linear approach, similar in structure to an auto-
regressive (AR) model. This approach is represented by
equation (1),

Xt ¼ Azt þ Bvt ; ð1Þ

where Xt is the disaggregate variables (e.g., monthly flows)
at time t, zt is the aggregate variable (e.g., annual flow), and
vt is a vector of random values from a normal distribution.
The elements of Xt sum to zt, also known as the summability
criteria, which is an important element for generating space‐
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time streamflows on a river network. Model parameters
contained in matrix A and B are estimated such that the
simulations preserve the cross correlation between and
among the variables in addition to the summability property.
[4] Main drawbacks to this general class of models are

that (1) the data are assumed to be normally distributed and
(2) the A and B matrices used can quickly become unwieldy
as the dimensions of the disaggregation increase (e.g., dis-
aggregating to daily time scale and/or many spatial loca-
tions). Often the data at each time scale and location needs
to be transformed to normality using a log or power trans-
form. However, this does not ensure that summability or the
observed statistics are preserved when the results are
returned to the original space. Efforts to reduce the com-
putational intensity associated with large A and B matrices
suggest a stepwise disaggregation approach [Santos and
Salas, 1992] (i.e., annual to seasonal to monthly, etc.)
which results in additional challenges of continuity across
the generated flows at the finer time scale. In summary, this
class of methods is inadequate for disaggregation finer than
the monthly time scale.
[5] Recently, several nonparametric techniques have been

put forth that offer improvements, such as the ability to
capture non‐Gaussian distributions [Prairie et al., 2007;
Tarboton et al., 1998]. The nonparametric methods cast the
problem as simulating from the conditional probability
density function (PDF) f(Xt∣zt). Tarboton et al. employ a
kernel density estimation‐based approach to simulating
from the conditional PDF. While this approach is effective
at ameliorating the issues associated with non‐normal dis-
tributions, it remains computationally intensive at even the
annual to monthly scale disaggregation. Furthermore, kernel
methods suffer from boundary biases that worsen with
dimension. Prairie et al. [2007] circumvent this issue by
replacing the kernel density estimation with a computa-
tionally faster K‐nearest neighbor (K‐NN)‐based time
resampling approach [Lall and Sharma, 1996]. This retains
the ability to preserve non‐Gaussian distributions while
significantly reducing computing demands and also alle-
viates the boundary issue associated with kernel methods.
However, both struggle with regard to basins with sites that
vary significantly in flow magnitude and furthermore, these
methods have only been shown effective for the disaggre-
gation of annual to monthly flows.
[6] Very few techniques have proven useful for disag-

gregation to daily values. This is generally due to a mis-
match between the parametric distributions appropriate for
daily flows versus monthly or annual flows, the high
dimension of the disaggregation problem, compounded
uncertainty in parameter estimation for multistage approaches,
and the inability to maintain flow continuity across disag-
gregation time period boundaries. In the realm of precipi-
tation generation, there has been considerably more success
in producing daily precipitation values from a wet spell
total, which is largely attributed to the lack of a continuity
requirement [Bogardi et al., 1993; Chang et al., 1984; Chin,
1977; Lall et al., 1996; Srikanthan and McMahon, 2001].
Kumar et al. [2000] have put forth an effective approach for
disaggregating monthly to daily streamflow by casting the
task as a linear programming problem, which is then opti-
mized in adherence to a number of constraints that preserve

statistical relationships and continuity [Kumar et al., 2000].
However, the method is very computationally intensive; for
a five site, single month to daily disaggregation, there are
more than 1500 decision variables which must be solved for
in order to reach a solution. This poses obvious challenges
for larger basins with many gauging locations.
[7] Here we propose a nonparametric disaggregation

approach that resamples a historic vector of daily propor-
tions, conditioned on an annual flow, via K‐NN resampling.
The disaggregated values are obtained by projecting the
aggregate flows on to the proportion vector. This ensures
summabililty, continuity across the daily time scale, and
positive disaggregated values unlike all the method dis-
cussed above. Furthermore, it has the ability to capture all
the distributional and cross‐dependency properties. The
method can be readily applied to disaggregation at multiple
time and space scales. Independently, a similar approach has
also been proposed by Lee [2008], which was applied to
multisite, annual to monthly disaggregation. The method
employs an adjusting procedure for resampled historic data
with a genetic algorithm to increase variability [Lee, 2008].
To demonstrate the utility and effectiveness of our proposed
method, it is used to generate daily flows at three sites on the
San Juan River, a tributary of the Colorado River located in
southwestern Colorado. Additionally, a comparison with the
results of Prairie et al. [2007] for locations in the Colorado
River Basin is provided.

2. Annual to Daily Disaggregation Method

[8] Nonparametric space‐time streamflow disaggregation
can be thought of as simulating from the conditional prob-
ability distribution function (PDF) f (Xt∣zt), where zt is a
vector of annual aggregate flows to be disaggregated and Xt

is a matrix of flows that sum to zt.
[9] Here we cast the problem as a conditional simulation

of the proportion vector from the conditional PDF f (Xt∣pt),
where pt is the vector of daily proportions, whose elements
sum to unity by definition, and z is the aggregate flow. The
simulation uses a K‐NN resampling approach [Lall and
Sharma, 1996; Prairie et al., 2007] in that, K‐nearest
neighbors to z are identified from historical flows and one of
them is resampled using a weight metric (see equation (2))
that gives more weight to those neighbors closest in mag-
nitude to z. This is akin to constructing the conditional PDF
locally in the neighborhood of z and simulating from it. The
daily proportion vector corresponding to the selected
neighbor (i.e., one of the historical years) is selected and the
aggregate flow z is projected on to this proportion vector of
the resampled historical year to obtain the disaggregated
flows. This simple yet robust and local approach provides
the ability to capture nonlinear and non‐Normal features.
Additionally, the method always generates positive values
and the summability of the disaggregated flows to the
aggregate flow is automatically preserved. The dis-
aggregated values have a rich variety, including flows out-
side the range of observed values. Daily values at a single
location are further disaggregated in space by projecting
them on to the appropriate proportion vector. The imple-
mentation algorithm is described below followed by an
example.
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2.1. Implementation Algorithm

[10] For the purpose of describing the implementation of
this technique, a single site, annual to daily disaggregation
problem is considered. Extension of the method to a mul-
tisite network is straightforward and will be discussed later.
[11] 1. Observed daily streamflow values are converted to

a proportion of the total annual flow of that particular year
(i.e., daily flows in a given year are divided by the total
annual flow of that year), giving a matrix P, with dimen-
sions n × 365 (n = number of years of observed data). By
construction, each row of this matrix sums to unity.
[12] 2. Suppose Z is the annual flow that needs to be

disaggregated to daily flows. First, K‐nearest neighbors of
Z are identified from the historical annual streamflow vector
(z). The neighbors are computed based on the distance
between Z and all the historical annual streamflow values.
The number of nearest neighbors, K =

ffiffiffi
n

p
, based on heur-

istics [Lall and Sharma, 1996] is found to be very effective
in a variety of applications. Each of the K‐nearest neighbors
is assigned a weight based on the weight function proposed
by Lall and Sharma [1996], given as,

W ðiÞ ¼ 1

i

� �, XK
i¼1

1

i

 !
; ð2Þ

where K is the number of nearest neighbors and i refers to
the “neighbor index,” with i = 1 being the closest of the
nearest neighbors. Note the weights are normalized so that
they sum to unity.
[13] 3. One of the K‐nearest neighbors (i.e., one of the

historical years) is chosen based on a weighted resampling
(i.e., probability of picking a given year is determined by the
corresponding weight from equation (2)). The proportion
vector corresponding to the picked year, say, (py) is
selected. Next, the annual streamflow (Z) is projected on to
this proportion vector to obtain the daily streamflow vector
(d), which is given by

d ¼ Z � py: ð3Þ

Since the proportion vector sums to unity, the disaggregated
daily streamflows sum to the aggregate annual flow.
[14] 4. Steps 2 and 3 are repeated to generate an ensemble

of daily streamflows.
[15] To extend the method to both space and time, the pro-

cess simply gains another dimension. The matrix P (365 × n)
will become an array of dimension 365 × n × s, where s
indicates the number of locations for disaggregation. Thus,
the resampled proportion vector (py) will now be a matrix of
dimension 365 × s. For multisite disaggregation, the annual

flow vector corresponds to an aggregate location down-
stream or an index gauge created by addition of streamflows
at all the locations.
[16] This approach, as seen above, is simple to implement

and can easily be applied to any space and time scales and
obviates any need to adjust the postdisaggregation values,
unlike methods developed previously. Also, it is equivalent
to simulating from the conditional PDF f(x∣z).

2.2. Numerical Example

[17] The following provides a simple numerical example
of the technique, using limited data and a “4 day year.”

p ¼

1967 :1 :3 :4 :2

1968 :15 :25 :35 :25

1969 :1 :2 :5 :2

1970 :05 :15 :65 :15

1971 :2 :2 :4 :2

1972 :1 :2 :4 :3

1973 :15 :2 :4 :25

1974 :05 :1 :8 :05

1975 :2 :2 :5 :1

2
66666666666666664

3
77777777777777775

z ¼

1967 35

1968 40

1969 33

1970 52

1971 43

1972 56

1973 38

1974 49

1975 32

2
66666666666666664

3
77777777777777775

Z ¼ 45

On the basis of the weighted resampling of the “K” nearest
neighbors, say year 1968 (y = 1968) is selected to be the
nearest neighbor. Next, the simulated annual value (Z) is
applied to the vector p1968 to produce the disaggregated
values (d).

Z � py ¼ d

45� :15 :25 :35 :25½ � ¼ 6:75 11:25 15:75 11:25½ �
X4
i¼1

di ¼ Z:

From the example, it can be seen that the technique is quite
parsimonious and easy to implement. Section 3 discusses
the ability of the method to reproduce observed statistics.

3. Model Evaluation

[18] The proportion based K‐NN disaggregation method
is evaluated by applying it to daily streamflow simulation at
three gauges on the San Juan River. The selected sites are
part of the U. S. Geological Survey (USGS) gauging net-
work in the San Juan Basin, located in southwestern
Colorado. Specifically, the gauging stations are San JuanRiver
near Carracas, CO (09346400), San Juan River at Pagosa
Springs (09342500), and Navajo River near Chromo, CO
(09344400). Data for these sites were obtained from the
USGS’s National Water Information System: Web interface
and span from 1972 to 1995. The gauge near Chromo, CO,
is no longer maintained, thus truncating the common record
at 1995. Daily flow values were converted from cubic feet
per second (cfs) to acre feet per day. Figure 1 shows a
schematic of these three gauges, the gauge IG is an index
gauge constructed by aggregating the flows at the three
locations.

Figure 1. Simplified basin schematic with index gauge
(IG): (1) San Juan River near Caraccas, CO; (2) San Juan
River near Pagosa Springs, CO; and (3) Navajo River near
Chromo, CO.
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[19] For evaluation, 100 traces each of the 50 years in
length for annual flow at the index gauge were generated
using the K‐NN lag‐1 [Lall and Sharma, 1996] approach.
Alternatively, a traditional AR(1) model could also have
been applied, as the disaggregation method is independent
of the annual simulation method. Thus, generated index
gauge annual flows are disaggregated to daily streamflows
at all the three locations using the methodology presented
above. A suite of statistics are computed at monthly and
daily time scales from the simulations and are presented as
box plots along with the corresponding value from the
historical data for comparison. The box of the box plot (see,
e.g., Figure 2) represents the interquartile range (IQR) with
the horizontal line being the median and the whiskers
extending to the 5th and 95th percentiles. Performance on a
given statistic is generally considered “good” when the
historic value falls with the IQR.

3.1. Performance Statistics

[20] For the purpose of this work, the term “basic statis-
tics” refers to mean, variance, coefficient of skew, maxi-

mum and minimum values, which are computed at the
monthly and daily time scales for comparison. In addition,
lag correlation, cross correlation between sites, and proba-
bility density functions (PDFs) are also used to evaluate the
performance of the proposed method.

4. Results

[21] We describe the results of the daily statistics fol-
lowed by the monthly. Then we implemented the proposed
method for annual to monthly disaggregation at the three
locations and compare them with the methodology proposed
by Prairie et al. [2007].

4.1. Daily Results

[22] The daily statistics (mean, variance, skew, maximum
and minimum values) are computed for a single day at the
middle of each month and are presented. Box plots of all the
basic distributional statistics for the San Juan River near
Carracas, CO (Figure 2) indicate that the method effectively
reproduces observed statistics at the daily time scale through
all the months. The lag‐1 autocorrelation is also well cap-

Figure 2. San Juan near Carracas, CO daily statistics; triangles represent values from observed data.
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tured (Figure 3), indicating that the simulated flows have
realistic continuity. The results were similar at other loca-
tions and days (figures not shown). Since the disaggregation
is performed for each year separately, as to be expected, the
correlation between the flow of the last day of a year and the
first day of the following year is not well captured. This can
be improved upon by including the streamflow of the last
day from the previous year to the annual flow in computing
the nearest neighbors. However, this can lead to deteriora-
tion of other statistics. Since the last and first months,
December and January, are generally low flow months in
this basin, we deem it not essential to explicitly preserve this
autocorrelation so long as other key statistics are well pre-
served, especially during high flow months.
[23] The box plots of PDFs of daily flows from the

simulations and the observed values for selected high flow
month of May and low flow month of September are shown

in Figures 4 and 5. This provides insights into the ability of
the method to capture the entire distribution, arguably of
greater importance than point statistics shown in previous
figures. It can be seen that the historical PDFs of daily
streamflows, which are highly non‐normal, are very well
captured by the model at different locations and months.

4.2. Monthly Results

[24] The disaggregated daily streamflows are aggregated
to obtain monthly values and the suite of basic statistics is
computed. Box plots of these statistics at the monthly time
step are shown for the San Juan River near Carracas, CO
(Figure 6). It can be seen that they are all well preserved.
Also, the maximum and minimum values generated are
beyond the range of the observed data, indicating that even
though a resampling approach is used, it is possible to
generate extremes outside the range of the data. Further-
more, all values are positive. Monthly cross‐correlations at
the same location are displayed in Figure 7, which are also

Figure 3. Daily lag‐1 correlation by month for (a) San
Juan River near Caraccas, CO; (b) San Juan River near
Pagosa Springs, CO; and (c) Navajo River near Chromo,
CO. Triangles represent values from observed data.

Figure 4. San Juan River near Carracas, CO, daily May
flow PDF. Solid line is observed data, and box plots are sim-
ulated flow.

Figure 5. Daily September flow PDF for Navajo River
near Chromo, CO. Solid line is observed data, and box plots
are simulated flow.
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well captured. Similar results were seen at the other loca-
tions (not shown). Cross correlation of monthly flows
between Pagosa Springs and Chromo sites are shown in
Figure 8. From the plot, it can be seen that the high corre-
lation between monthly flows is reflected in the dis-
aggregated simulations. The lower correlation in April may
be due to spatial variability associated with the start of
snowmelt and high flows. Similar monthly cross‐correlation
results were seen for other gauge combinations. Addition-
ally, the simulated January flow PDFs for the San Juan
near Carracas are presented as box plots with the observed
PDF overlaid (Figure 9). This demonstrates the ability to
capture the entire distribution, which is non‐normal. These
results indicate that the statistics at scales different from
the scale of disaggregation are very well reproduced by
this methodology.

4.3. Comparison With Methodology of Prairie et al.
[2007]

[25] To demonstrate the wide applicability of the pro-
posed technique to disaggregate flows at different temporal

locations and basins, a brief comparison with the results of
Prairie et al. [2007] on the Colorado River Basin is pro-
vided. As mentioned earlier, Prairie et al. [2007] present an
effective nonparametric annual to monthly disaggregation
which builds upon the earlier work of Tarboton et al.
[1998]. Four streamflow gauges (Colorado River near
Cisco, UT, Green River at Green River, UT, San Juan River
near Bluff, UT and Colorado River at Lee’s Ferry, AZ; see
their Figure 1) in the Colorado River Basin were considered
in their paper. We apply our methodology to these gauges in
the same manner (i.e., annual to monthly disaggregation) for
direct comparison. Figures 10 and 11 show box plots of
monthly and annual basic statistics at the Lees Ferry, AZ
gauge, from the methodology proposed here and their work,
respectively. It can be seen that both the methods capture the
basic statistics very well. However, the proportional disag-
gregation approach has the ability to produce values beyond
the observed data range without generating any negative
values. Furthermore, the methods have the ability to capture
non‐normal distributions very effectively, as can be seen
from Figures 12 and 13, showing the June flow PDF for the
San Juan River near Bluff, UT.

Figure 6. San Juan River near Carracas monthly statistics; triangles represent values from observed
data.
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[26] Regarding the utility of the Prairie et al. method for
daily disaggregation, this technique has a tendency to pro-
duce negative flows at the location with the smallest flow
magnitude, especially during the low flow season. This issue
was also seen in the work of Lee [2008] and further com-
plicated when attempting to apply the genetic algorithm to
daily data. However, at the monthly time scale, results were
quite good and similar to those of Prairie et al. [2007].

4.4. Lag Structure and Additional Daily Results

[27] To examine the persistence structure, we provide
daily autocorrelation function (ACF) plots for wet (May–

July) and dry (January–March) seasons at the Navajo River
near Chromo, CO site. For each disaggregated simulation,
an average ACF is computed for the two seasons, the range
of which is shown by the gray region (Figure 14). Similarly,
average ACFs are computed based on the observed data and
are shown as solid lines. The observed curve falls within the
range of the disaggregated results for both seasons. Addi-
tionally, daily statistics for a 14 day period of the wet season
are provided for the San Juan near Caraccas, CO and Navajo
near Chromo, CO sites (Figures 15 and 16). The mean,
variance, and skew of the observed data are well reproduced

Figure 7. Monthly cross correlations for San Juan near Pagosa Springs, CO. Triangles represent values
from observed data. Labels refer to months for which the cross correlation is computed (e.g., 1–6 is the
cross correlation between January and June).

Figure 8. Monthly correlation between San Juan River
near Carracas, CO, and Navajo River near Chromo, CO.
Triangles represent values from observed data.

Figure 9. January Flow PDF for San Juan River near
Carracas, CO. Solid line is observed data, and box plots
are simulated flow.
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Figure 10. Colorado River at Lee’s Ferry, AZ distributional statistics (12 months and annual, based on
proportional disaggregation method). Triangles represent values from observed data.
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by the simulations. However, simulated maximum and
minimum distributions do not capture the respective
observed values.
[28] For the San Juan near Caraccas, few values are

simulated below the observed minimum, but a variety
extend beyond the observed maximum (Figure 15). In the
case of the Navajo near Chromo (Figure 16), the opposite is
seen; few values are larger than the observed maximum, yet
a wealth of new minimum flows are simulated. These results
were determined to be an artifact of the observed data and
index gauge simulation method. For Figure 15, when new
minimum flows are not produced, this is due to the smallest
proportion values coming from the same year as the index
gauge annual minimum flow. While this is not often the
case, it can occur. This prohibits any new minimum flows
from being generated when the index simulation is a
resampling of the observed record (e.g., index sequential
method, K‐NN). However, this can easily be remedied by
employing a technique to generate annual values at the
index location which extend beyond the observed extremes
(e.g., AR‐1, etc.).
[29] Figure 17 shows the daily range of observed values

for all three locations as well as the median. In the case of
the Navajo River, the observed minimum and median are
quite close, indicating that at least 50% of the values for a
given day are similar to the value corresponding to the
historic low flow value. These consistently similar magni-

Figure 11. Colorado River at Lee’s Ferry, AZ distributional statistics (12 months and annual, based on
Prairie et al. [2007] method). Triangles represent values from observed data.

Figure 12. June flow PDF for the San Juan River near
Bluff, UT (based on proportional disaggregation method).
Solid line is observed data, and box plots are simulated
flow.
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tudes translate to substantial variability in the proportion
space; the local flow is fairly constant while the index flow
changes considerably year to year (i.e., for a fixed release,
the smallest proportion values are linked to the largest index
flow). Therefore, there is a high propensity to resample a
proportion vector that, when coupled with a below average
annual flow, will generate unseen values.
[30] The ability to generate a wide range of flow magni-

tudes is generally considered a strength in stochastic simu-
lation. However, a caveat exists; if there is a minimum flow
requirement, this method has the potential to simulate flow
values that violate such regulations. This is highlighted in
Figure 16. Therefore, it is essential to emphasize the
importance of understanding the basin in which flows are
being disaggregated and any special needs or requirements
that may exist.

5. Summary and Discussion

[31] A simple and highly adaptable disaggregation tech-
nique has been presented. The approach resamples historic

flow proportion vectors conditioned on flow at an index
location to produce disaggregated values that are continuous
and are guaranteed to sum to the original value being dis-
aggregated. The most novel application of the method is to
produce daily flows from a simulated annual value. How-
ever, it has been demonstrated that the method is useful and
effective at producing values at a variety of time scales.
Distributional statistics of the historic data are reproduced in
almost any space and time domain combination. Further-
more, the proportional disaggregation has the ability to
generate extreme values previously unseen in the historic
record, albeit with less frequency than some parametric
approaches.
[32] The main drawback to this technique is one that

frequently plagues nonparametric disaggregation schemes:
flow continuity between the end of one year and the start of
a subsequent year. Lee [2008] has proposed a nonparametric
disaggregation resampling approach that addresses this
issue. However, it is mainly effective at the monthly time
scale and for sites that dominate the index gauge. Proper lag
relationships and continuity are not guaranteed for upstream
locations that minimally contribute to the index gauge.
Additionally, at the daily disaggregation resolution, the
method of Lee [2008] offers little aid in preserving flow
continuity.
[33] Additionally, as discussed earlier, results suffer in

highly regulated reaches. As such, the method is best suited
for locations with limited anthropogenic impact (e.g., USGS
Hydro‐Climatic Data Network) or completely naturalized
flows. Once disaggregated, these data can be used as inputs
to a water decision support tool, enabling the propermodeling
of diversions, environmental flows, hydropower, reservoir
levels, etc., without having to make such considerations in
stochastic methods.
[34] Kumar et al. [2000] successfully developed a daily

disaggregation of monthly values through a kernel density
estimation of the conditional PDF from which to resample,
coupled with optimization to preserve continuity. The
approach was demonstrated on some of the same locations
within the San Juan Basin as utilized in this work. Results
indicate that both have the ability to effectively disaggregate
to daily values; however, a major advantage of this work is
the simplicity and limited computational requirements.
Thus, given the parsimony and versatility of this approach,
we believe it is a significant contribution to the field of

Figure 13. June flow PDF for the San Juan River near
Bluff, UT (based on Prairie et al. [2007] method). Solid
line is observed data, and box plots are simulated flow.

Figure 14. Navajo River near Chromo, CO, average daily autocorrelation function for (left) dry season
(January–March) and (right) wet season (May–July). Gray region is range for disaggregated data (aver-
aged over each simulation), and solid line is from observed data (averaged over period of record).
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Figure 15. San Juan River near Caraccas, CO, daily statistics for the period of 30 May to 12 June.
Triangles represent values from observed data.
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Figure 16. Navajo River near Chromo, CO, daily statistics for the period of 30 May to 12 June. Triangles
represent values from observed data.
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stochastic flow simulation and will prove quite useful as a
tool in water management and planning.
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