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Abstract
Understanding influent water quality variability is essential for the long-term planning of potable water systems. To

quantify variability and generate realistic influent scenarios, we propose a nonparametric time series approach based on

k-nearest neighbor (k-NN) bootstrap resampling. The k-NN approach resamples historical data conditioned on a ‘‘feature

vector’’ at a given time to generate values at subsequent times. We modified this algorithm by adding random perturbations

to the resampled values to generate realistic extremes unobserved in the historical record. k-NN is widely used in stochastic

hydrology and hydroclimatology; however, it is adapted here for the multivariate, data-limited context of water treatment.

To examine the performance of the algorithm, we applied it to an eleven-year, monthly water quality dataset of alkalinity,

temperature, total organic carbon, and pH from the Cache la Poudre River in Colorado. We found that the k-NN

simulations captured the relevant distributional statistics of the historical record, which suggests that the algorithm

produces realistic and varied scenarios. When used in conjunction with modeling and optimization, these scenarios have

the potential to improve the sustainability, resilience, and efficiency of potable water systems.

1 Introduction

Influent water quality conditions largely determine opera-

tional decisions at a drinking water treatment plant. These

decisions may include altering chemical doses, blending

source waters, or backwashing filters. Quantifying the

variability and uncertainty of the influent can promote

regulatory compliance, public health, and the sustainability

of water treatment (Benke and Hamilton 2008; Santana

et al. 2014; Towler et al. 2009). The goal of such quan-

tification is to create a suite of realistic water quality sce-

narios that a treatment plant may experience. To estimate

the performance of operating alternatives during such

scenarios, several simulation models have been developed

(Baxter et al. 1999; Harrington et al. 1992; Maier et al.

2004; Rietveld et al. 2010; Worm et al. 2010). Water

managers, consultants, or operators can use simulation to

test a range of plausible influent water quality scenarios

and estimate which operating policies yield the best

performance.

Influent water quality is a function of both natural and

anthropogenic impacts, such as seasonal changes, industrial

discharge, extreme events (Delpla et al. 2009; Khan et al.

2017), and source water type. Riverine sources tend to have

more volatile water quality than lakes and reservoirs, which

have the more buffering capacity. Processes that drive

water quality within a watershed include erosion and sed-

iment transport, the growth and decay of organic matter,

nutrient cycling, and heat transfer. Therefore, quality tends

to be a function of the climate and land use characteristics

(Delpla and Rodriguez 2014; Samson et al. 2016). Due to

this coupled nature of hydrology and water quality,

stochastic modeling approaches—which are well devel-

oped in hydrology and hydroclimatology (e.g., Khalili et al.

2009; Modarres 2007; Bras and Rodrı́guez-Iturbe 1985)—

are promising for the generation of influent water quality

scenarios.
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Stochastic modeling is divided into parametric and non-

parametric techniques. Popular parametric techniques

include the Thomas-Fiering or autoregressive lag-1 (Maass

et al. 1962; Thomas and Fiering 1962) and the autore-

gressive moving average (Box et al. 2015) models. Non-

parametric approaches include kernel density estimation

(Sharma et al. 1997), moving block bootstrap (Vogel and

Shallcross 1996), and k-Nearest Neighbor (k-NN) boot-

strap resampling (Lall and Sharma 1996). Parametric time

series models have been used to generate influent data

(e.g., Li et al. (2014)) but they require large datasets to

produce realistic scenarios—especially, considering mul-

tivariate applications. Since such large influent water

quality datasets are not often available to water utilities

(Towler et al. 2009), nonparametric approaches have pro-

mise in this context.

The k-NN bootstrap resampling is perhaps the most

commonly used nonparametric approach. It requires few

prior assumptions about the data, has shown to be effective

for linear and nonlinear relationships, and is able to capture

persistence in time series data (Lall and Sharma 1996;

Rajagopalan and Lall 1999). The characteristics of

streamflow data which motivated the development of the

k-NN resampling algorithm—serial dependence, long-term

persistence, and nonlinearity (Lall and Sharma 1996)—are

also common to influent water quality data. Moreover,

Yates et al. (2003) later modified the algorithm to account

for intervariable correlations, improving the quality of

multivariate simulations. This modification is critical for

the viability of these methods for water treatment appli-

cations, which are inherently multivariate problems. Sharif

and Burn (2007) have further altered the k-NN resampling

approach to simulate extreme events beyond those

observed in the historical record.

Understanding extremes is critical for long-term deci-

sion making and risk management planning (Haimes

2015), and therefore, desirable to simulate for water

treatment applications. Extreme weather-related events,

such as drought, heat waves, and flooding, can degrade

source water quality and disrupt treatment operations

(Khan et al. 2017). To mitigate these problems—particu-

larly those related to acute health risks—water utilities may

need to issue boil advisories and alter treatment and dis-

tribution practices. Due to the short length of water quality

datasets, extremes may not be represented within the his-

torical record. Moreover, extreme events are expected to

increase in frequency and intensity due to climate change

(IPCC 2014). Therefore, it is important for water quality

simulations account for these events.

In this work, we adapt the methods described by Lall

and Sharma (1996) and modifications by Yates et al. (2003)

and Sharif and Burn (2007) to generate realistic scenarios

of influent water quality for water treatment applications.

To illustrate this modified k-NN bootstrap resampling

approach, we simulate from a monthly dataset of Cache la

Poudre River water quality. This data exhibits complex

interrelationships among water quality variables, serial

dependence, and seasonality, which makes it well suited

for this technique. To evaluate the performance of the

algorithm on the dataset, we compare the sample statistics

of the observed record to those of the simulated scenarios.

These statistics include the mean, standard deviation,

minimum, maximum, joint correlation, and lag-1 autocor-

relation. Furthermore, we investigate how simulating

extremes impacts algorithmic performance across these

metrics.

2 Materials and methods

2.1 Data collection and processing

Water quality data were obtained from the City of Fort

Collins Utility for the influent sampling location of the

Cache la Poudre River. This eleven-year dataset includes

measures of alkalinity, pH, temperature, and total organic

carbon (TOC) collected at various frequencies (e.g.,

15-min, daily, weekly) by the utility. These water quality

variables were chosen due to their impact on the core

processes of water treatment: coagulation, filtration, and

disinfection. More generally, these variables influence the

acid–base chemistry of the water and are key predictors for

the formation of contaminants of concern known as dis-

infection byproducts.

To perform k-NN simulation (see Sect. 2.2), a complete

dataset is necessary and each variable must be aggregated

to the same frequency. Based on the number of missing

data points and timescales relevant for decision-making,

we chose a monthly frequency. Before aggregating the

data, systematic data collection errors were identified and

the associated values were removed from the dataset. This

process is detailed in SI.2 Data Quality Control and

Quality Assurance. After monthly aggregation (n = 132 for

each parameter), three data points were missing (n = 129).

To create a complete time series dataset (Fig. 1), the

na.interp() function within the forecast package in R was

used to interpolate between missing time series values

(Hyndman et al. 2018; Hyndman and Khandakar 2007).

For seasonal data, na.interp uses STL (Seasonal and Trend

decomposition using Loess) for this interpolation.

The result of data collection and processing is the

observed monthly water quality dataset, xt, where xt
denotes the vector of length p of available variables at

monthly time point t = [1,…,12 N], where N is the number

of years on record.
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2.2 Nearest neighbor resampling algorithm

In this section, we describe a six-step, k-Nearest Neighbor

(k-NN) bootstrap resampling algorithm—based on the

algorithm detailed in Sharif and Burn (2007)—for gener-

ating influent water quality scenarios from historical data.

To illustrate the algorithm, we apply it to the monthly

dataset described above. In this paper, we decided to

standardize the simulated data for each month by stan-

dardized by subtracting the monthly mean from each

observation and dividing by the monthly standard devia-

tion. The algorithm is carried out in standardized space.

Then, the simulated data are transformed back to the

original space. For information on the implications of

standardization, please refer to Section 2.3.

To begin a simulation, the starting month must be

defined by the user (e.g., January). The water quality values

for the first simulated month are then determined based on

randomly selecting a year from the historical record. The

water quality that was observed on the user-defined month

and randomly selected year serves as the first month of

simulated data. The simulation of subsequent months

proceeds as follows:

1. Define a feature vector: Define a ‘‘feature vector’’, Dt,

dimension d = pL, where L and p are the number of

lags and variables considered in the model, respec-

tively. The choice of feature vector represents the

dependence on which the simulated values, known as

the ‘‘successors’’, are conditioned. For instance, for the

case of L = 1 and p = 4, the generation of successors

would be based solely on characteristics of the nearest

neighbors of the previous month of the observed data

for four different water quality variables: Dt = xt21.

Additional lags can be represented (e.g., Dt = [xt-1, xt-

2, …, xt2L], where Dt is a 4 9 L matrix). To select the

appropriate number of lags, the user can use similar

approaches to fitting autoregressive and moving aver-

age models. These methods include identifying signif-

icant lags in the autocorrelation and partial

autocorrelation functions of the data and using AIC-

based methods (Lee and Ouarda 2011). In our analysis,

we identified a lag-1 dependence or L = 1 (see SI.3

Identification of Serial Dependence).

2. Find nearest neighbors: For the current timestep, i, the

feature vector, Di, is constructed. The neighbors to the

current feature vector, Dt, include all years on record

for that month. Next, the Mahalanobis distance (Ma-

halanobis 1936) (Eq. 1) is calculated to determine

which neighbors are the nearest to Di (Sharma and

O’Neill 2002; Yates et al. 2003):

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dt � Dið ÞTS�1 Dt � Dið Þ
q

ð1Þ

where S is a p 9 p matrix which describes the

covariance between Di and Dt, thus di is an N-dimen-

sional distance vector. N is defined as the number of

years on record.

3. Rank nearest neighbors and select k neighbors: Once

the distance from the feature vector is calculated for

each neighbor, the neighbors are ranked in ascending

distance order. The nearest k neighbors are then

chosen, from which the successor will be selected.

Here we use a popular heuristic suggested in Lall and

Fig. 1 Monthly Cache la Poudre

River influent water quality time

series (n = 132) for alkalinity,

pH, temperature, and total

organic carbon (2007–2017).

Regions shaded in orange

represent missing values that

were filled in using time series

interpolation
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Sharma (1996) in which k ¼
ffiffiffiffi

N
p

. Alternatively, k can

be selected using a AIC-based approach described in

Lee and Ouarda (2011).

4. Choose successor: To probabilistically select neighbors

among the k nearest neighbors, DkNN
t (4 9 k matrix, a

subset of Dt), we define a weighting function based on

the discrete kernel K described in Lall and Sharma

(1996). This kernel assigns the greatest probability for

the 1st nearest neighbor being selected and the least

probability for the kth neighbor. By computing the

cumulative distribution function of corresponding to

the kernel, we generate a value from uniform distribu-

tion on the interval [0,1] to choose which of the

k neighbors is selected. For the case of lag-1 depen-

dence (L = 1) the selected neighbor, xt�1; would

produce a successor (i.e., simulated value), ~xi, equal

to xt.

5. Add random innovations to successor: The fifth step of

the algorithm has three parts: (a) generate modified

successors, (b) bound variables, and (c) check that

bounds are met.

(a) To simulate values beyond those in the observed

record, random innovations or errors are added

to the successor from Step 4, ~xi. To generate

modified successor values, ~x
0
i, a smoothed boot-

strap with variance correction is applied (Eq. 2)

(Silverman 1986):

~x
0

i ¼ ~xi þ
rkNNt kkNNt zi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ kkNN
2

t rK
2

rkNN
2

t

r ð2Þ

where rkNNt is the standard deviation of the k

nearest neighbors,DkNN
t . kkNNt is the bandwidth of

a nonparametric distribution fit to the k nearest

neighbors for each variable. Here, we define the

bandwidth based on the rule-of-thumb estimation

of a Gaussian kernel density estimator—specifi-

cally, the bw.nrd0() function in the stats package

in R from Silverman (1986)—due to small sam-

ple sizes. zi is a Gaussian random variate with

mean zero and standard deviation of one. rK is

the standard deviation of the kernel. In this case,

we use a Gaussian kernel, where rK ¼ 1. Our

approach to random innovations differs from the

Sharif and Burn algorithm in two ways: 1) it uses

a smoothed bootstrap with variance correction

and 2) it generates values from the random vari-

ate, z, for each variable independently.

(b) If any water quality variables are bounded—for

example, TOC must be non-negative, a variable

kernel density estimation method for in Terrell

and Scott (1992) may be applied. Specifically,

the method can be used to generate a modified

bandwidth,kkNN
0

t , which is less likely to produce

negative values than kkNNt . The modified band-

width is only selected at values near zero, for

which the original kernel is likely to simulate

negative values. The algorithm we use to

accomplish this is the same as that described in

Sharma and O’Neill (2002) and Sharif and Burn

(2007).

(c) If bounded, repeat Steps 5a and b until they

produce a non-negative value.

6. The successor determines the next timestep and the

process repeats: Once the modified successor is

simulated, ~x
0
i, it determines the new current timestep.

Then, Steps 1–5 are repeated for the following months

until the simulated values are equal in length to the

historical record. In this paper, we define ‘‘one

simulation’’ as a series of simulated values of a length

equivalent to the historical record. The user specifies

the number of simulations generated by a single run of

the algorithm. Those simulations are collectively

referred to as an ‘‘ensemble’’.

2.3 Model application

When applying the k-NN resampling algorithm for simu-

lation, the user must choose whether to enable random

innovations, whether to standardize the data, which vari-

ables must be non-negative, and select the number of

simulations. These parameters are each model inputs for

the open source code associated with this work and can be

modified by the user (see SI.1 Code and Data Availability).

The user should enable random innovations if they wish

to simulate values beyond the observed record (i.e.,

extremes). In this work, we chose to standardize the data to

avoid the simulation of unrealistically high or low values

due to the inclusion of random innovations (discussed in

Step 5 of the algorithm). Whether or not standardization is

preferred will vary among datasets and requires the user to

judge what values they deem to be unrealistic. The mag-

nitude of random innovations can be fine-tuned by

adjusting the bandwidth calculation type (e.g., plug-in,

least-squares cross validation) in Step 5.

Although random innovations and standardization con-

trol the nature of extreme values, it may also be necessary

to bound variables that must be non-negative. For instance,

a negative value for the concentration of organic carbon

would be an unphysical result; therefore, the user must

bound this water quality variable to ensure that simulated

values are non-negative.
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The appropriate number of simulations can be deter-

mined empirically by comparing the distributions of sim-

ulated data. The goal of this exercise is to determine the

minimum number necessary to stabilize the distributional

statistics of the simulated data. In other words, if the data

from 500 simulations is nearly identical to the data that

results from 2,500 and 10,000 simulations, there is likely

no benefit to simulate more than 500 water quality

scenarios.

In the remainder of the paper, we will examine the

performance of our modified k-NN algorithm for the Cache

la Poudre dataset. For this dataset, we have enabled random

innovations and standardized the simulated data and

bounded simulated total organic carbon concentrations to

be nonnegative. We have chosen to generate 2500 water

quality simulations, each the same length as the historical

record. Next, we performed a comparative analysis of

monthly statistics for the simulated ensemble and the his-

torical record. The sample statistics that were calculated

include the maximum, minimum, mean, standard devia-

tion, lag-1 autocorrelation, and joint correlation. These

statistics are commonly used to assess simulation perfor-

mance in time series literature.

3 Results and discussion

Pairwise boxplots are useful to visually compare the sam-

ple statistics between the observed and simulated data. If

the simulated data were to reproduce the observed statistics

exactly, the extents of the boxes, whiskers, and the median

for both datasets would be identical. For all boxplots in this

paper, the boxes represent the 25th and 75th percentiles

and the whiskers extend no farther than 1.5 times the

interquartile range beyond the box. In Fig. 2, we find that

the boxplots are similar, overall, suggesting that the dis-

tribution is well preserved in the simulated data. Extreme

values, represented as points that lie past the whiskers, are

produced due to the incorporation of random innovations

from Step 5 of the k-NN algorithm. If desired, the random

innovations can be disabled, which would remove unob-

served values from the simulations, as demonstrated in

Fig. 3. Note the difference in axes extents between these

two figures.

To rigorously test the similarity of the simulated and

observed distributions, we performed a two sample Kol-

mogorov–Smirnov (K–S) test. This K–S test compares the

empirical distribution functions for two samples—the

observed and simulated data—with the null hypothesis that

the samples come from the same distribution. In our

analysis of the monthly distributions for each water quality

variable, we found no significant p values which suggests

that the simulated and observed distributions are similar.

This result was true for k-NN simulations both with and

without random innovations.

To compare the sample statistics of the observed record

and the ensemble of simulated scenarios, we show the

boxplots of the monthly mean, minimum, maximum, and

standard deviation of TOC (Fig. 4). Although not visual-

ized in Fig. 4, the TOC data is representative of the other

water quality variables considered in this work. For the

observed record, the sample statistics are visualized as a

single point for each month. Ideally, those points should

fall close to the median values of boxplots. Thus, Fig. 4

Fig. 2 Boxplots of observed

(red boxplots, n = 132) and

k-NN simulated (white

boxplots, n = 330,000) influent

water quality data of the

alkalinity, pH, temperature, and

total organic carbon for the

Cache la Poudre River

(2007–2017) in Fort Collins,

CO
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shows that these statistics were generally well reproduced

by the simulations, with one exception. The minimum and

standard deviation tended to be over- and under-simulated,

respectively, in the months of April through September.

In addition to preserving the distributional statistics of

individual water quality variables, the simulations should

also maintain the joint correlation between variables. This

is important because joint correlations may be significant to

water treatment decision making. For example, alkalinity

and pH tend to be highly correlated (see Fig. 1) because

they both are related the acid–base reactions. Furthermore,

such reactions are significant for treatment efficacy in

almost every process within the treatment plant. If the

simulated data does not maintain the correlation between

alkalinity and pH, it may under- or over-represent risk or

the cost associated with these variables for decision mak-

ers. Therefore, we assessed the pairwise correlation

Fig. 3 Boxplots of observed

(red, n = 132) and k-NN

simulated (white, n = 330,000)

influent water quality data of the

alkalinity, pH, temperature, and

total organic carbon for the

Cache la Poudre River

(2007–2017) in Fort Collins,

CO. In this instance, random

innovations have been disabled

within the k-NN algorithm

Fig. 4 Observed (red points)

and simulated (white boxplots,

n = 2500) sample statistics—

mean, standard deviation,

minimum, and maximum—for

total organic carbon data from

the Cache la Poudre River

(2007–2017) in Fort Collins,

CO
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between all four variables for the observed and simulated

data over the period of record (eleven years).

Figure 5 contains comparisons of the observed and

simulated correlations with historical values represented as

a single point and simulated data (n = 2500) represented by

boxplots. Here we see that there is minimal variability

among the pairwise correlations and the observed correla-

tions generally lie close to the median simulated values.

Thus, with respect to joint correlation, the statistic is

reproduced both consistently and accurately in the simu-

lated data.

Lastly, we review the month-to-month or lag-1 auto-

correlation of the k-NN simulated data (Fig. 6). Unlike the

joint correlation statistic described above, which describes

the relationship between two different water quality vari-

ables, the autocorrelation compares the same variable

across timesteps. Specifically, the lag-1 autocorrelation is

the correlation of data between two adjacent timesteps

Fig. 5 Observed (red points)

and simulated (white boxplots,

n = 2500) pairwise correlation

statistics for influent alkalinity,

pH, temperature, and total

organic carbon for the Cache la

Poudre dataset. Observed

correlations are labeled in red

text

Fig. 6 Observed (red points)

and simulated (white boxplots,

n = 2500) lag-1 (i.e., month-to-

month) autocorrelation for

alkalinity, pH, temperature, and

total organic carbon data from

the Cache la Poudre dataset

Stochastic Environmental Research and Risk Assessment (2020) 34:23–31 29
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(e.g., xt and xt-1). Our analysis of the autocorrelation

function suggests that the first lag is significant in the

observed record (see SI.3 Identification of Serial Depen-

dence), and therefore, it is a useful statistic to measure of

the persistence (i.e., serial dependence) in water quality

over time. Comparing the lag-1 autocorrelation of the

observed and simulated data (Fig. 6), we find that sea-

sonality of the lag-1 autocorrelation is generally repro-

duced; however, the autocorrelation tends to be under-

simulated across the water quality variables. This is par-

ticularly true for alkalinity and pH, which, in most months,

have observed autocorrelations near one.

4 Conclusion

Due to the short, multivariate nature of influent water

quality datasets, generating influent water quality data

which maintain the statistics on the observed record is non-

trivial. The k-NN bootstrap resampling algorithm described

in this paper is a robust, easy-to-use method for generating

influent water quality scenarios. Specifically, we illustrate

this approach for monthly data; however, it could be

adapted to other time scales of interest. Based on a mul-

tivariate water quality dataset of eleven years, we demon-

strated that the k-NN algorithm can reproduce the monthly

mean, minimum, maximum, standard deviation, lag-1

autocorrelation, and joint correlation for the period of

record. Furthermore, by implementing random innovations

described by Sharif and Burn (2007), the algorithm can

produce values beyond those contained in the observed

record.

The synthetic values produced by random innovations

allow for the simulation of extreme influent conditions

which are significant for long-term planning and risk

management. Although it is difficult to quantify whether

the synthetic values are realistic, expert opinion can be

used to determine their realism on a case-by-case basis. If

the variability introduced by the random innovations is

found to be too large or too small, the user can adjust

settings for data standardization and the bandwidth calcu-

lation—discussed in Step 5 of the algorithm. Additionally,

for variables that are subject to some upper or lower bound,

these variables users can impose these bounds to ensure

physically meaningful data.

The simulated data produced by the k-NN algorithm has

many potential applications within water treatment and

beyond. As discussed in Towler et al. (2009) water quality

scenario generation techniques can illustrate uncertainty

and variability in influent conditions which provides

insight for treatment decision making. This is especially

true for long-term planning, in which regulations, demand,

source water availability, and influent water quality are

subject to change over time (Brookes et al. 2014). From

computational perspective, influent water quality scenar-

ios—whether observed or synthetic—are necessary to

simulate the impacts of influent conditions.

These scenarios can also be used conjunction with water

quality simulation and optimization algorithms (i.e., sim-

ulation–optimization). Simulation–optimization methods

can suggest best practices for operational and infrastruc-

tural improvements for water treatment (Raseman et al.

2017). Similar techniques are used in water resources and

water quality management in which synthetic time series

data are fed into simulation–optimization schemes to

generate sets of optimal solutions (Quinn et al. 2017; Ward

et al. 2015). Furthermore, this technique is not exclusive to

water treatment applications. Similar approaches have been

outlined in hydrology (Lall and Sharma 1996; Sharma and

O’Neill 2002) and hydroclimatology (Rajagopalan and Lall

1999; Sharif and Burn 2007; Yates et al. 2003) and these

methods could also be applied to related fields such as

wastewater treatment.

Lastly, as real-time water quality monitoring continues

to advance, dataset quality will improve which will

improve the performance of the k-NN resampling algo-

rithm. Moreover, this algorithm will become increasingly

relevant as both mechanistic and data-driven treatment

simulators grow in popularity.
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