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1.3 Suppose a graduation rule has a weight diagram with all positive
weights [; > 0 and that it reproduces constants (i.e. Yl =1). Also
assume [; # 0 for some j # 0. Show that graduation rule cannot
be cubic reproducing. That is, there exists a cubic (or lower degree)
polynomial that will not be reproduced by the graduation rule.

1.4 Compute the error reduction factors and coefficients of V4 for Hen-
derson’s formula with m = 5,...,10. Make a scatterplot of the two
components. Also compute and add the corresponding points for
Spencer’s 15- and 21-point rules, Woolhouse's rule and Higham’s rule.

Remark. This exercise shows the bias-variance trade-off: As the length
of the graduation rule increases, the variance decreases but the coef-
ficient of V*y; increases (in absolute value).

1.5 For each year in the age range 20 to 45, 1000 customers each wish
to buy a $10000 life insurance policy. Two competing companies
set premiums as follows: First, estimate the mortality rate for each
age, then set the premium to cover the expected payout, plus a
10% profit. For example, if the company estimates 40 year olds to
have a mortality rate of 0.01, the expected (per customer) payout is
0.01 x $10000 = $100, so the premium is $110. Both companies use
Spencer’s mortality data to estimate mortality rates. The Gauss Life
Company uses a least squares fit to the data, while Spencer Under-
writing applies Spencer’s 15-point rule.

a) Compute for each age group the premiums charged by each com-
pany.

b) Suppose perfect customer behavior, so, for example, all the 40
year old customers choose the company offering the lowest pre-
mium to 40 year olds. Also suppose Spencer’s 21-point rule pro-
vides the true mortality rates. Under these assumptions, com-
pute the expected profit (or loss) for each of the two companies.

1.6 For large m, show the weights for Henderson's ideal formula are ap-
proximately m®W (k/m) where W(v) = (1 — z2 3. Thus, conclude
that the weight diagram is approximately 315/512 x W(k/m)(3 —
11(k/m)?). Compare with the (0,4,3) kernel in Table 1 of Miiller
(1984).

2
Local Regression Methods

HEm chapter introduces the basic ideas of local regression and develops
important methodology and theory. Section 2.1 introduces the local regres-
sion method. Sections 2.2 and 2.3 discuss, in a mostly nontechnical manner
statistical modeling issues. Section 2.2 introduces the bias-variance :.E_m._
omw and the effect of changing smoothing parameters. Section 2.3 discusses
&wmuomao techniques, such as residual plots and confidence intervals, Sec-
tion 2.4 introduces more formal criteria for model comparison and selection
such as cross validation. _

The final two sections are more technical. Section 2.5 introduces the
nwooJ..Om linear estimation. This provides characterizations of the local
_.om_.ﬁm_on estimate and studies some properties of the bias and variance
Section 2.6 introduces asymptotic theory for local regression. .

2.1 The Local Regression Estimate

. . ted to the pre-
dictor variables. Suppose a dataset consists of n pairs of observations,

(z1, Y1), (x4, Y2), ..., (zn, Y..). We assume a model of the form

Yi=p(z)+¢ (2.1)
where u(z) is an unknown function and ¢;

random errors in the observations or variabj
in the z;.

is an error term, representing
lity from sources not included
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The errors ¢; are assumed to be independent and identically distributed
with mean 0; E(¢;) = 0, and have finite variance; E(e?) = 02 < co. Glob-
ally, no strong assumptions are made about y. Locally around a point z, we
assume that p can be well approximated by a member of a simple class of
parametric functions. For example, Taylor’s theorem says that any differen-
tiable function can be approximated locally by a straight line, and a twice
differentiable function can be approximated by a quadratic polynomial.

For a fitting point x, define a bandwidth k(z) and a smoothing window
(z—h(z), z+h(z)). To estimate p(z), only observations within this window
are used. The observations weighted according to a formula

s..@nE Aaiwva v s.s

where W(u) is a weight function that assigns largest weights to observations
close to z. For many of our examples, we use the tricube weight function

W(u) = (1- juf’)’. (23)

Within the smoothing window, u(u) is approximated by a polynomial.
For example, a local quadratic approximation is

1

2

whenever |u — z| < h(z). A compact vector notation for polynomials is

p(u) = ag +ay(u — ) + zag(u—z)? (2.4)

ag +ai1(u—x)+ W.S? —z)? = (a, A(u — ))

where a is a vector of the coefficients and A(:) is a vector of the fitting
functions. For local quadratic fitting,

ag 1
a=|a A(v) = Y
v

[+ 5] T

The coefficient vector a can be estimated by minimizing the locally weighted
sum of squares:

D wilz)(Y: ~ (8, A(z: ~ z)))". (2:5)

i=1

The local regression estimate of u(z) is the first component of a.

Definition 2.1 The local regression estimate is
fi(z) = (8, A(0)) = o, (2.6)

obtained by setting 4 = z in (2.4).
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FIGURE 2.1. Local regression: Smoothing windows (bottom); local least squares
fits (solid curves) and estimates ji(z) (big circles).

The local regression procedure is illustrated in Figure 2.1. The ethanol
dataset, measuring exhaust emissions of a single cylinder engine, is origi-
nally from Brinkman (1981) and has been studied extensively by Cleveland
(1993) and others. The response variable, NOx, measures the concentra-
tion of certain pollutants in the emissions, and the predictor variable, E, is
the equivalence ratio, measuring the richness of the air and fuel mix in the
engine. Figure 2.1 illustrates the fitting procedure at the points E = 0.535
and E = 0.95. The observations are weighted according to the two weight
functions shown at the bottom of Figure 2.1. The local quadratic polyno-
mials are then fitted within the smoothing windows. From each quadratic,
only the central point, indicated by the large circles in Figure 2.1, is re-
tained. As the smoothing window slides along the data, the fitted curve is
generated. Figure 2.2 displays the resulting fit.

The preceding demonstration has used local quadratic polynomials. It is
instructive to consider lower order fits.

Example 2.1. (Local Constant Regression) For local constant polyno-
mials, there is just one local coefficient ag, and the local residual sum of
squares (2.5) is

3 wile)(¥: — ao)?.
i=1

The minimizer is easily shown to be

Y wi@)Y,
Mm—"— E_AHV .

f(z) =ag = (2.7)




18 2. Local Regression Methods

E

FIGURE 2.2. Local regression fit of the ethanol data.

.H.,Em is the kernel estimate of Nadaraya (1964) and Watson (1964). It is
simply a weighted average of observations in the smoothing window. A lo-
nw._ constant approximation can often only be used with small smoothing
45@9:9 and noisy estimates result. The estimate is particularly suscep-
tible to boundary bias. In Figure 2.1, if a local constant fit was used at
E = 0.535, it would clearly lie well above the data,

Example 2.2. (Local Linear Regression) The local lin i i
ear estimate,
A(v) = (1 v)T, has the closed form imate, with

bAHv = Mm—"- E—.AHvM\m + A..N _ WEV MN.-H— EmAHVAH—. - Msvx

i1 Wi(z) i1 wi(Z)(z; — Zu)? (2.8)

irmma Ty = 3L, wi(z)z;/ =1 wi(z). See exercise 2.1. That is, the lo-
cal linear estimate is the local constant estimate, plus a correction ~».o_. local
slope .om the data and skewness of the z;. This correction reduces the bound-
ary bias problem of local constant estimates. When the fitting point z is
not near a boundary, one usually has z = Z,, and there is little differ-
ence between local constant and local linear fitting. A local linear estimate
exhibits bias if the mean function has high curvature.

2.1.1 Interpreting the Local Regression Estimate

Hm. studies of linear regression, one often focuses on the regression coeffi-
cients. One assumes the model being fitted is correct and asks questions

T
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such as how well the estimated coefficients estimate the true coefficients.
For example, one might compute variances and confidence intervals for the
regression coefficients, test significance of the coefficients or use model se-
lection criteria, such as stepwise selection, to decide what coefficients to
include in the model. The fitted curve itself often receives relatively little
attention.

In local regression, we have to change our focus. Instead of concentrat-
ing on the coefficients, we focus on the fitted curve. A basic question that
can be asked is “how well does /i(z) estimate the true mean u(z)?". When
variance estimates and confidence intervals are computed, they will be com-
puted for the curve estimate {i(z). Model selection criteria can still be used
to select variables for the local model. But they also have a second use,
addressing whether an estimate j(z) is satisfactory or whether alternative
local regression estimates, for example, with different bandwidths, produce
better results.

2.1.2 Multivariate Local Regression

Formally, extending the definition of local regression to multiple predictors
is straightforward; we require a multivariate weight function and multivari-
ate local polynomials. This was considered by McLain (1974) and Stone
(1982). Statistical methodology and visualization for multivariate fitting
was developed by Cleveland and Devlin (1988) and the associated LOESS
method.

With two predictor variables, the local regression model becomes

Y = u(zin, zi2) + ¢,

where u(-, -) is unknown. Again, a suitably smooth function 4 can be
approximated in a neighborhood of a point z = (z.,1,z.2) by a local poly-
nomial; for example, a local quadratic approximation is

P
Bun,uz) =~ ag+ay(u —z.1) +ax(uz -z 3) + %AS -z.,)?

a
taq(ur -z 1 )(uz —z 2) + %?n —-z.5)%

This can again be written in the compact form
u(uy, u2) = (@, A(u — z)),
where A(-) is the vector of local polynomial basis functions:
1
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Weights are defined on the multivariate space, so observations close to a
fitting point z receive the largest weight. First, define the length of a vector

v in RY by
d v; 2
2 - -
ol =) A&v ) (2.10)

Jj=1
where s; > 0 is a scale parameter for the Jjth dimension. A spherically
symmetric weight function gives an observation z; the weight

E.AHVHS\ A__a_.\ﬂs__v . (2.11)

As in the univariate case, the local coefficients are estimated by solving the

weighted least squares problem (2.5). Following Definition 2.1, ji(z) is the
first component of 4.

2.2 The Components of Local Regression

Much work remains to be done to make local regression useful in practice.
There are several components of the local fit that must be specified: the

bandwidth, the degree of local polynomial, the weight function and the
fitting criterion.

2.2.1 Bandwidth

The bandwidth h(z) has a critical effect on the local regression fit. If h(z)
is too small, insufficient data fall within the smoothing window, and a noisy
fit, or large variance, will result. On the other hand, if h(z) is too large, the
local polynomial may not fit the data well within the smoothing window,
and important features of the mean function #(z) may be distorted or lost
completely. That is, the fit will have large bias. The bandwidth must be
chosen to compromise this bias-variance trade-off.

Ideally, one might like to choose a separate bandwidth for each fitting
point, taking into account features such as the local density of data and
the amount of structure in the mean function. In practice, doing this in a
sensible manner is difficult. Usually, one restricts attention to bandwidth
functions with a small number of parameters to be selected.

The simplest specification is a constant bandwidth, h(z) = h for all
z. This is satisfactory in some simple examples, but when the independent
variables z; have a nonuniform distribution, this can obviously lead to prob-
lems with empty neighborhoods. This is particularly severe in boundary or
tail regions or in more than one dimension.

Data sparsity problems can be reduced by ensuring neighborhoods con-
tain sufficient data. A nearest neighbor bandwidth chooses h(z) so that

T e
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FIGURE 2.3. Local fitting at different bandwidths. Four different iiearest neigh-
bor fractions: a = 0.8,0.6,0.4 and 0.2 are used.

the local neighborhood always contains a specified number of points. m..o.. a
smoothing parameter a between 0 and 1, the nearest neighbor bandwidth
h(z) is computed as follows:

1. Compute the distances d(z,z;) = |z — z;| between the fitting point =
and the data points z;.

2. Choose h(z) to be the kth smallest distance, where k = [na].

Example 2.3. Figure 2.3 shows local quadratic fits for the ethanol
dataset using four different values of a. Clearly, the fit produced by the
smallest fraction, a = 0.2, produces a much noisier fit than the largest
bandwidth, a = 0.8. In fact, « = 0.8 has oversmoothed, since it doesn’t
track the data well. For 1.0 < E < 1.2, there is a sequence of 17 succes-
sive data points lying below the fitted curve. The leveling off at the right
boundary is not captured. The peak for 0.9 < E < 1.0 appears to be
trimmed.

The fit with a = 0.2 shows features - bimodality of the peak and a
leveling off around E = 0.7 that don’t show up at larger bandwidths. Are
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these additional features real, or are they artifacts of random noise in the
data? Our apriori guess might be that these are random noise; we hope
that nature isn’t too nasty. But proving this from the data is impossible.
There are small clumps of observations that support both of the additional
features in the plot with a = 0.2, but probably not enough to declare
statistical significance.

This example is discussed in more detail later. For now, we note the
one-sided nature of bandwidth selection. While large smoothing parameters
may easily be rejected as oversmoothed, it is much more difficult to conclude
Jrom the data alone that a small bandwidth is undersmoothed.

2.2.2  Local Polynomial Degree

Like the bandwidth, the degree of the local polynomial used in (2.5) affects
the bias-variance trade-off. A high polynomial degree can always provide
a better approximation to the underlying mean u(u) than a low polyno-
mial degree. Thus, fitting a high degree polynomial will usually lead to
an estimate () with less bias. But high order polynomials have large
numbers of coefficients to estimate, and the result is variability in the esti-
mate. To some extent, the effects of the polynomial degree and bandwidth
are confounded. For example, if a local quadratic estimate and local linear
estimate are computed using the same bandwidth, the local quadratic esti-
mate will be more variable. But the variance increase can be compensated
by increasing the bandwidth.

It often suffices to choose a low degree polynomial and concentrate on
choosing the bandwidth to obtain a satisfactory fit. The most common
choices are local linear and local quadratic. As noted in Example 2.1, a
local constant fit is susceptible to bias and is rarely adequate. A local
linear estimate usually produces better fits, especially at boundaries. A
local quadratic estimate reduces bias further, but increased variance can
be a problem, especially at boundaries. Fitting local cubic and higher orders
rarely produces much benefit.

Example 2.4. Figure 2.4 displays local constant, local linear, local
quadratic and local cubic fits for the ethanol dataset. Nearest neighbor
bandwidths are used, with o = 0.25,0.3,0.49 and 0.59 for the four degrees.
These smoothing parameters are chosen so that each fit has about seven
degrees of freedom; a concept defined in section 2.3.2. Roughly, two fits
with the same degrees of freedom have the same variance var(ii(z)).

The local constant fit in Figure 2.4 is quite noisy, and also shows bound-
ary bias: The fit doesn’t track the data well at the left boundary. The local
linear fit reduces both the boundary bias and the noise. A closer examina-
tion suggests the local constant and linear fit have trimmed the peak: For
0.8 < E < 1.0, nearly all the data points are above the fitted curve. The
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FIGURE 2.4. Ethanol data: Effect of changing the polynomial degree.

local quadratic and local cubic fits in Figure 2.4 produce better results:
The fits show less noise and track the data better.

2.2.3 The Weight Function

The weight function W(u) has much less effect on the bias-variance trade-
off, but it influences the visual quality of the fitted regression curve. The
simplest weight function is the rectangular:

W(u) = Ij-y 3)(u).

This weight function is rarely used, since it leads to discontinuous weights
w;i(z) and a discontinuous fitted curve. Usually, W (u) is chosen to be con-
tinuous, symmetric, peaked at 0 and supported on [—1, 1]. A common choice
is the tricube weight function (2.3).

Other types of weight function can aiso be useful. Friedman and Stuetzle
(1982) use smoothing windows covering the same number of data points
both before and after the fitting point. For nonuniform designs this is
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asymmetric, but it can improve variance properties. McLain (1974) and
Lancaster and Salkaus kas (1981) use weight functions with singularities
at u = 0. This leads to a fitted smooth curve that interpolates the data.

In Section 6.3, one-sided weight functions are used to model discontinuous
curves.

2.2.4 The Fitting Criterion

The local regression estimate, as defined by (2.5) and (2.6), is a local least
squares estimate. This is convenient, since the estimate is easy to compute
and much of the methodology available for least squares methods can be
extended fairly directly to local regression. But it also inherits the bad
properties of least squares estimates, such as sensitivity to outliers.

Any other fitting criterion can be used in place of least squares. The local
likelihood method uses likelihoods instead of least squares; this forms a ma-

jor topic later in this book. Local robust regression methods are discussed
in Section 6.4.

2.3 Diagnostics and Goodness of Fit

In local regression studies, one is faced with several model selection issues:
Variable selection, choice of local polynomial degree and smoothing pa-
rameters. An ideal aim may be fully automated methods: We plug data
into a program, and it automatically returns the best fit. But this goal is
unattainable, since the best fit depends not only on the data, but on the
questions of interest.

What statisticians (and statistical software) can provide is tools to help
guide the choice of smoothing parameters. In this section we introduce some
graphical aids to help the decision: residual plots, degrees of freedom and
confidence intervals. Some more formal tools are introduced in Section 2.4.
These tools are designed to help decide which features of a dataset are real
and which are random. They cannot provide a definitive answer as to the
best bandwidth for a (dataset,question) pair.

The ideas for local regression are similar to those used in parametric mod-
els. Other books on regression analysis cover these topics in greater detail
than we do here; see, for example, chapter 3 of Draper and Smith (1981)
or chapters 4, 5 and 6 of Myers (1990). Cleveland (1993) is a particularly

" good reference for graphical diagnostics.

It is important to remember that no one diagnostic technique will explain
the whole story of a dataset. Rather, using a combination of diagnostic
tools and looking at these in conjunction with both the fitted curves and
the original data provide insight into the data. What features are real;
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have these been adequately modeled; are underlying assumptions, such as
homogeneity of variance, satisfied?

2.8.1 Residuals

The most important diagnostic component is the residuals. For local re-
gression, the residuals are defined as the difference between observed and
fitted values:
& =Y; — p{z).

One can use the residuals to construct formal tests of goodness of fit or to
modify the local regression estimate for nonhomogeneous variance. These
topics will be explored more in Chapter 9. For practical purposes, most
insight is often gained simply by plotting the residuals in various manners.
Depending on the situation, plots that can be useful include:

1. Residuals vs. predictor variables, for detecting lack of fit, such as a
trimmed peak.

2. Absolute residuals vs. the predictors, to detect dependence of residual
variance on the predictor variables. One can also plot absolute resid-
uals vs. fitted values, to detect dependence of the residual variance
on the mean response.

3. Q-Q plots (Wilk and Gnanadesikan 1968), to detect departure from
normality, such as skewness or heavy tails, in the residual distribution.
If non-normality is found, fitting criteria other than least squares may
produce better results. See Section 6.4.

4. Serial plots of é; vs. €,_, to detect correlation between residuals.

o

Sequential plot of residuals, in the order the data were collected. In an
industrial experiment, this may detect a gradual shift in experimental
conditions over time.

Often, it is helpful to smooth residual plots: This can both draw attention
to any features shown in the plot, as well as avoiding any visual pitfalls.
Exercise 2.6 provides some examples where the wrong plot, or a poorly
constructed plot, can provide misleading information.

Example 2.5. Figure 2.5 displays smoothed residual plots for the four
fits in Figure 2.3. The residual plots are much better at displaying bias, or
oversmoothing, of the fit. For example, the bias problems when o = 0.8
are much more clearly displayed from the residual plots in Figure 2.5 than
from the fits in Figure 2.3. Of course, as the smoothing parameter a is
reduced, the residuals generally get smaller, and show less structure.

The smooths of the residuals in Figure 2.5 are constructed with a, = 0.2
(this should be distinguished from the a used to smooth the original data).
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FIGURE 2.5. Residual plots for the ethanol dataset.

But o, itself is not important. What is important is that the smooths help
search for clusters of residuals that may indicate lack of fit. At @ = 0.8, the
lack of fit is clear. At @ = 0.6 and o = 0.4, the peaks in the smooth are

generally supported by clumps of residuals, although generally not enough
to indicate lack of fit.

This example shows that it is important not to look at the residual plots
alone, but to use them in conjunction with plots of the fit. The object is to
determine whether large residuals correspond to features in the data that

have been inadequately modeled. The purpose of the plots can be related
to the bias-variance trade-off:

® Plots of the fit help us detect noise in the fit.
¢ Residual plots help us detect bias.

It is important to note that the purpose of adding a smooth to a residual
plot is not to provide a good estimate of the mean. Rather, it is to enhance
our view of the residuals; by reducing the noise, our attention may be more
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readily drawn to features that have been missed or not properly modeled
by the smooth.

2.3.2 Influence, Variance and Degrees of Freedom

How can we characterize the amount of smoothing being performed? The
bandwidth provides one characterization. But this is not ideal, since it takes
no account of the other choices that go into the smooth, such as the de-
gree of local polynomial and the weight function. Moreover, the bandwidth
doesn’t enable meaningful comparison with other smoothing methods or
with parametric models.

What we need is unitless characterizations which allow comparison be-
tween methods. We discuss two types of characterization:

o Pointwise criteria, characterizing the amount of smoothing at a sin-
gle point. These include the variance reducing factor and influence
function.

o Global criteria, characterizing the overall amount of smoothing. This
is the fitted degrees of freedom.

Before proceeding with definitions, the importance of the ideas presented
here, both in theory and practice, must be emphasized. Throughout this
book these concepts (and generalizations) will appear repeatedly. We al-
ready saw the variance reducing factor used in optimality results in Chap-
ter 1; this will also appear in inference and confidence interval construc-
tion. The influence function and degrees of freedom will appear repeatedly
in model selection criteria. The importance of these concepts has of course
been emphasized elsewhere, both in local regression literature and else-
where in the smoothing literature. See Craven and Wahba (1979), Cleve-
land and Devlin (1988), Buja, Hastie and Tibshirani (1989), Wahba (1990),
Hastie and Tibshirani (1990) and Cleveland and Loader (1996). Ye (1998)
contains a nice discussion of the importance, motivation, generalizations
and applications of degrees of freedom.

Because the local regression estimate solves a least squares problem, fi(z)
is a linear estimate. That is, for each z there exists a weight diagram
vector I(z) = {l;(z)}", such that

Blz) =) _L(=)Yi. (2.12)
i=1

For local constant regression, (2.7) gives the explicit formula

wi(z)

li(z) = M.“..M.L :&.AHV.
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For more general local regression, the weight diagram is derived in Section
2.5. The weight diagram leads to compact forms for the mean and variance
of the local regression estimate:

EMz)) = Y L(=@)wz:) = (i(z),n)
i=1
var(i(z)) = QNM:ENM%_E&:_». (2.13)
=1

The variance assumes the observations Y; are independent and have con-
stant variance 0. The variance reducing factor ||l(z)||> measures the
reduction in variance due to the local regression. Usually, this decreases as

the bandwidth increases. Under mild conditions, one can show (see Theo-
rem 2.3):

= < M < e < 1. (2.14)

The extreme cases 1/n and 1 correspond, respectively, to i(z) being the
sample average and interpolating the data.

The hat matrix is the n x n matrix L with rows I(z;)7, which maps
the data to the fitted values:

A(z1)
: =LY. (2.15)
i(zn)
The influence or leverage values are the diagonal elements li(z:) of the
hat matrix. We denote these by infl(z;); these measure the sensitivity of
the fitted curve fi(z;) to the individual data points.
The degrees of freedom of a local fit provide a generalization of the

number of parameters of a parametric model. In fact, there are several
possible definitions, but two of the most useful are

vy

W infi(z;) = tr(L)
i=1

mo= 3 eI = (LT, (2.16)
i=l1

The usefulness of the degrees of freedom is in providing a measure of the
amount of smoothing that is comparable between different estimates ap-
plied to the same dataset. The concept was used in Example 2.4 to compare
local polynomial fits of differing degrees, where we required smoothing pa-

rameters to perform the same amount of smoothing in each of the four
cases.
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FIGURE 2.6. Influence functions (solid) and variance functions (dashed) for local
quadratic and local cubic fits to the ethanol dataset.

For a parametric regression model, the hat matrix L is symmetric and
idempotent, and the definitions coincide and usually equal the number of
parameters. For local regression models, the two definitions are usually not
equal; following (2.14), 1 < v € v} < n. Both of these definitions arise
naturally later.

Example 2.8. Figure 2.6 shows the influence and variance functions
for the local quadratic and local cubic fits from Figure 2.4. Largely, the
influence values are slightly less than 0.1, indicating that Y, constitutes
about 10% of the fitted value ji(z;). The variance function is slightly less
than the influence. The degrees of freedom are v, = 7.16 and v = 6.60 for
the local quadratic fit, and v, = 6.97 and v = 6.53 for the local cubic.

But the main feature is the boundary effect, particularly at the left, where
the influence function shows a huge increase. This reflects the difficuity of
fitting a polynomial at boundary regions. Note also that the effect is more
pronounced for the local cubic fit: This shows that boundaries are a main
concern when choosing the degree of the local fit.

2.8.83 Confidence Intervals

If i(z) is an unbiased estimate of u(z), an approximate confidence interval
for the true mean is

I(z) = (i(z) — call(z) ||, A=) + 5 |IL)ID),
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where ¢ is the appropriate quantile of the standard normal distribution
(¢ = 1.96 for 95% confidence) and  is an estimate of the residual standard
deviation.

Prediction intervals provide interval estimates for a new observation Yiew
at a point Tye. Assuming the new observation is independent of the esti-
mation data, one has

var(Yoew — A(Znew)) = Qu? + __RH:miv__nV.
Thus, a prediction interval has limits
M(Znew) £ c5(1 + [|i(z)]|2)1/2. (2.17)

Note that prediction intervals assume normality: If Y., is not normally
distributed, the prediction interval will not be correct, even asymptotically.

In analogy with parametric regression, the variance o2 can be estimated
using the normalized residual sum of squares:

.2 1
o" =
n—2u +v,;

3 - (=), (2.18)
i=1

where v, and v, are defined by (2.16). The residual degrees of freedom,
n — 2v) + 1, are defined so that 62 is unbiased. See Section 2.5.1.

The assumption that A(z) is unbiased is rarely exactly true, so variance
estimates and confidence intervals are usually computed at small band-
widths where bias is small. Confidence intervals, bias correction and vari-
ance estimation are discussed in more detail in Chapter 9.

2.4 Model Comparison and Selection

2.4.1 Prediction and Cross Validation

How good is a local regression estimate? To formalize this question, we
need to define criteria with which to assess the performance of the fit. One
possible criterion is the prediction mean squared error for future observa-
tions:
PMSE(2) = E(Yaew — (T new))?. (2.19)
Clearly, PMSE(j1) depends on assumptions made about z.,,. For now,
assume that the design points z;,... »Zn are an independent sample from
a density f(z), and the new point Zpew is sampled from the same density.
The cross validation method provides an estimate of PMSE.

Definition 2.2 The cross validation estimate of the PMSE of an esti-
mate f is

CV(E) = = 3 (¥ ~ ji—i(a)? (2:20)
i=1
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where fi_;(x;) denotes the leave-z;-out estimate of u(z:). That is, each
Z; is deleted from the dataset in turn, and the local regression estimate
computed from the remaining n — 1 data points.

The leave-one-out cross validation criteria was introduced for paramet-
ric regression models by Allen (1974) as the PRESS (prediction error sum
of squares) procedure. Wahba and Wold (1975) applied the method to
smoothing splines. Model validation based on splitting datasets into es-
timation data and prediction data has a long history, discussed by Stone
(1974) and Snee (1977) among others.

The generalized cross validation criterion was first proposed in the con-
text of smoothing splines by Craven and Wahba (1979). This provides an
approximation to cross validation and is easier to compute. The motivation
for the definition will appear in Section 2.5.

Definition 2.3 The generalized cross validation score for a local es-
timate [ is

n o 2
GCV(a) = :M..u_%xn sﬁa.: : (2.21)

. where vy is the fitted degrees of freedom defined by (2.16).

2.4.2 Estimation Error and CP

The cross validation methods are motivated by prediction error: How well
does ji(z) predict new observations? Alternatively, one can consider estima-
tion error: How well does ji(z) estimate the true mean #(x)? One possible
loss criterion is the sum of the squared error over the design points;

L(p,u) =) (a(z:) - w(za))*. (2.22)
i=1

The CP criterion, introduced by Mallows (1973) for parametric regression,
provides an unbiased estimate of L(, ) in the sense that E(CP(a)) =
E(L(, u)). The CP statistic was extended to local constant fitting by Rice
(1984) and to local regression by Cleveland and Devlin (1988).

Definition 2.4 The CP estimate of risk for a local regression estimate
Alz) is
H n
CP(a) = 22 Y- A(zi))? —n+ 20y,

i=]

Implementation of the CP method requires an estimate of 02. The usual
use of CP is to compare several different fits (for example, local regression
with different bandwidths or different polynoimial degrees). One should use
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FIGURE 2.7. Generalized cross validation plot (left) and CP plot (right) for the
ethanol dataset.
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the same estimate 62 for all fits being considered. The recommendation of
Cleveland and Devlin is to compute the estimate (2.18) from a fit at the
smallest bandwidth under consideration, at which one should be willing to
assume that bias is negligible.

2.4.8 Cross Validation Plots

Frequently, the use of cross validation and CP is automated: A computer
program computes CV(2) or CP(j) for several different fits and selects the
fit with the lowest score. But, as argued strongly by Cleveland and Devlin
(1988), this discards much of the information about the bias-variance trade-
off that the statistics provide. Cleveland and Devlin introduce the CP (or
M) plot as a graphical tool for displaying these statistics.

Example 2.7. The GCV and CP statistics are computed for local
quadratic fits to the ethanol dataset and a range of smoothing parameters;
0.2 < a £ 0.8. The results are shown in Figure 2.7 as a cross validation
plot eoms.m.a CP plot (right). These plots use the fitted degrees of free-
dom tr(L”L) as the horizontal axis and the GCV and CP statistics as the
vertical axis. The smoothing parameter is a = 0.8 on the left, decreasing
in steps of 0.05 to a = 0.2 on the right.

Both plots show a similar profile. The first four points, with fewer than
five fitted degrees of freedom (or a > 0.65), produce large GCV and CP
scores, indicating these fits are inadequate. For larger degrees of freedom,
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the plots (especially GCV) are flat, indicating there is little to choose be-
tween the fits. As a is decreased from 0.6 to 0.2, the fitted degrees of
freedom incrcases from 5.6 to 16.4, and the GCV score ranges from 0.107
to 0.127.

An important point in the construction of Figure 2.7 is the use of the
fitted degrees of freedom, rather than the smoothing parameter, as the
horizontal axis. This aids interpretation: Four degrees of freedom represents
a smooth model with very little flexibility, while 16 degrees of freedom
represents a noisy model showing many features. It also aids comparability.
For example, CP scores could be computed for other polynomial degrees
or for other smoothing methods and added to the plot.

The cross validation and CP plots must be emphasized as a graphical
aid in choosing smoothing parameters. Flat plots, such as Figure 2.7, oc-
cur frequently, and any model with a GCV score near the minimum is
likely to have similar predictive power. The flatness of the plot reflects the
uncertainly in the data, and the resultant difficulty in choosing smoothing
parameters. We concluded earlier that a = 0.8 was too large for the ethanol
dataset; the lack of fit is reflected as the sharp increase in the GCV and CP
scores at the left boundary of Figure 2.7. At the other end, we are unsure
whether the additional features at a = 0.2 in Figure 2.3 were real. The flat
GCV plot reflects this uncertainty.

A consequence of Figure 2.7 is that going to extensive lengths to mini-
mize GCV is very data-sensitive and can produce an unsatisfactory fit. In
general, minimizing GCV (or CP, or CV) is highly variable: two visually
similar datasets could produce very different results. Most importantly, just
minimizing GCV discards significant information provided by the whole
profile of the GCV curve, as displayed by the cross validation plot.

We should emphasize that the points raised here are not problems with
cross validation and CP, but a reflection of the difficulty of model selection.
This issue is explored further in Chapter 10, where cross validation methods
are compared with bandwidth selectors claimed to be less variable. Such
selectors are found to reflect the model selection difficulty in other ways; in
particular, missing features when applied to difficult smoothing problems.

2.5 Linear Estimation

As noted previously, local regression is a linear estimate. The linear rep-
resentation (2.12) provides the basis for a theoretical development of local
regression estimation. Simple mean and variance expressions have already
been derived; further properties are developed in this section. Results are
also derived for the influence function and model selection criteria.

The first task is to identify the weight diagram. Let X be the n x (p +1)
design matrix with rows A(z; —z)7, W be the diagonal matrix with entries
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wi(z) and Y = (1,75, ...,Y,)” be the response vector. The weighted sum
of squares (2.5) can be written in matrix form

(Y — Xa)TW(Y — Xa).

If WX has full column rank, least squares theory gives the explicit expres-
sion

a=(XTWX) 'X"wy (2.23)

for the minimizer of (2.5).
The representation (2.23) identifies the weight diagram for the local poly-
nomial smooth, defined by (2.12):

U(z)T = T (XTWX) 1 XTW. (2.24)

Here, e, is the unit vector; e, = (1,0,...,0)7.

The following theorem, originally from Henderson (1916) for local cubic
fitting, provides a characterization of the weight diagrams for local poly-
nomial regression.

Theorem 2.1 (Henderson’s Theorem) The weight diagram for a local
polynomial fit of degree p has the form

Ti—T

i(z) = W ?ﬂv (a, Az — ) (2.25)

that is, the least squares weights multiplied by a polynomial of degree p.
This representation is unique, provided XTWX is non-singular.

Conversely, if a linear estimate reproduces polynomials of degree p, and
the weight diagram has at most p sign changes, then the estimate can be
represented as a local polynomial fit of degree p.

Proof: The representation (2.24) immediately yields (2.25), with aT =
el (XTWX)™?, providing XWX is non-singular.

For the converse, define a polynomial P(u—z) of degree < p, whose roots
match the sign changes of the weight diagram. Then, the smoother is recon-
structed as local polynomial smoothing with weights w;(z) = l;(z)/P(z; -
z). o

Despite its innocuous simplicity, Henderson’s theorem has profound con-
sequences. For example, the polynomial reproduction property implies the
local regression method achieves exact bias correction in finite samples.
The bias of a local linear estimate cannot depend on the slope p'(z). See
Section 2.5.2 for more discussion. As noted in Section 1.4, this contrasts
sharply with kernel smoothing literature, where considerable effort has been
expended in achieving asymptotic bias corrections.

For an immediate illustration of the power of Henderson’s theorem, we
derive a simplification of the leave-one-out cross validation statistic (2.20).
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Theorem 2.2 If infl(z;) < 1, the leave-one-out cross validation estimate
h-i(z) is R )
A(z:) — infi(z,)Y,

1 - infl(x;)

boi(z) =

and

,I_:C\..IEN..:N
ow-ISESEE ew

i=1

This result can be proved directly using (2.12), (2.24) and some tedious
matrix algebra. See Exercise 2.2 or Appendix B.4 of Myers (1990) for the
same result for parametric regression. The following proof derives the result
directly from Henderson’s theorem.

Proof: Let

N..\.?...v a . R
Hlmbnﬁﬂmv..ﬂ - N.....ﬂp..ﬁ *u.

mj(z;) =

Using Henderson's theorem, we show that {m;(z,)} is the weight diagram

for i_;(z;) and thus

bnhuv - :&:H-Vv\.
1 — infl(z;)

foim) =) my(z)Y; =
et
(2.26) then follows directly from (2.20).
For fixed z;, {m;(z:)} is a polynomial multiplied by the weights W ((z, —

z;)/h), because {l;(z;)} is. It remains to show that {m;(z;)} reproduces
polynomials P(z) of degree < p:

2 mEIPE) = s 2 L(e)P(e;) ~ Lz Ple)
= :“ ey (e - infi(z) P(z,)
= P(z)

where the second line follows from the polynomial reproducing property of
A&.“.Aﬁmvww-“—. 0

Theorem 2.2 assumes the bandwidth h(z) does not change when the
fit is carried out on the reduced dataset. This assumption can fail for a
nearest neighbor bandwidth, but for estimating prediction error, this is the
correct assumption to make, since the leave-one-out problem should mimic,
as closely as possible, the true prediction problem.

The motivation for GCV also follows from the approximation (2.26),
simply replacing infl(z;) by the average value tr(L)/n.
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b) Show that the weight diagram for /i(i) is quadratic reproducing,
and hence by Henderson'’s theorem f is a local quadratic smooth.
Does the weight diagram look sensible?

2.6 Some visual experiments:

a) Construct a dataset with a mean function having flat and steep
regions. For example, let ; be uniform on the interval [-5, 5] and
Y; = ®(x;) + ¢; where ®(z) is the standard normal distribution
function and ¢; is normally distributed with ¢ = 0.1. Plot the
dataset. Does the residual variance look constant?

b) Construct a nonuniform predictor variable. For example, in S-
Plus, x <- sqrt(runif(100)). Generate standard normal ob-
servations as the response variable. Plot the data. Does the resid-
ual variance look constant? This experiment may take two or
three attempts; eventually, large residuals in the high density
region should be distracting.

Remark. A real data example where these visual distractions occur is
provided in Exercise 3.2.

2.7 Estimation under the L, loss function.
a) Suppose X ~ N(u,0?). Show that
= By _g(-# Lo
EIX| = (2(5) - 2(-£)) +20¢(4).
Here, ¢(-) and ®(-) denote the standard normal density and

distribution function.

b) Consider the risk function Ry (, ) = n~! 30 |a(z:) — p(zs)|.
Derive an explicit expression for R)(f, ) in terms of the bias
and variance.

2.8 L, Cross Validation. Suppose the risk function for predicting a future

observation (Zuew,Ynew) i8 E|Yiew — fi{Znew)|- This is estimated by
the L, cross validation criterion

a1l R
CVi(@) = = DI = p-i(i)l.
=1
Show that

CVi(@) = MU _Hu\ - E\MMM.VV_

Propose an L, version of generalized cross validation.
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Fitting with LOCFIT

The examples in this book are implemented using the local regression soft-
ware LOCFIT. This can be used either as a stand-alone program or as a li-
brary within the S (Becker, Chambers and Wilks 1988), S-Plus or R (Ihaka
and Gentleman 1996) languages. See Appendix A for details of how to
obtain the LOCFIT code and installation.

The code examples in this book are designed for S version 4; most will
also work in 8-Plus and R. The syntax for the stand-alone C-LOCFIT version
is different. For many examples, the corresponding code for the stand-alone
version can be obtained using the example command:

locfit> example 3.1
Example 3.1. Local Regression

locfit NOx"E data=ethanol alpha=0.5
plotfit data=T

prints the corresponding code on the screen. Typing

locfit> example 3.1 run

results in the code being executed and plots being produced as appropriate.
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3.1 Local Regression with LOCFIT

LOCFIT provides two functions, locfit() and locfit.raw(), to perform
local regression. The locfit() function uses the S model language to spec-
ify the local regression model, while 1locfit.raw() has separate arguments
for the predictor and response variables. In other respects, the two functions
are identical.

Example 3.1. We fit a local quadratic model to the ethanol dataset and
plot the resuit:

> fit <- locfit(NOx"E, data=ethanol, alpha=0.5)

> fit

Call:

locfit(formula = NOx ~ E, data = ethanol, alpha = 0.5)

Number of observations: 88
Fitted Degrees of freedom: 6.485
Residual scale: 0.336

> plot(fit, get.data=T)
The plot was displayed in Figure 2.2.

The first argument to locfit() is the model formula NOx"E specifying
the local regression model and is read as “NOx is modeled by E". The
data=ethanol argument specifies a data frame where the variables in the
model formula may be found; if the data argument is omitted, currently
attached data directories are searched. The use of model formulae and
data frames follows chapter 2 of Chambers and Hastie (1992). The third
argument to the locfit() function, alpha, controls the bandwidth. Here,
a nearest neighbor based bandwidth covering 50% of the data is used. The
fit could also be generated by

> fit <- locfit.raw(ethanol$E, ethanol$NOx, alpha=0.5)

The fit returned by the locfit() call is an S object, with the "locfit”
class. Printing the fit then shows a short summary. The plot(fit) com-
mand then calls the plot method plot.locfit(). The get.data=T argu-
ment adds the original data to the plot.

Confidence intervals can be added to the plot with the band= argument,
for example,

> plot(fit,band="global")

adds confidence intervals under the assumption that the residual variance
o2 is constant. If band="local”, an attempt is made to estimate o2 lo-
cally. If band="pred”, prediction bands (2.17) are computed under the
constant variance assumption. Variance estimation and confidence bands

are discussed in more detail in Chapter 9.
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3.2 Customizing the Local Fit

The locfit () function has additional arguments to control the fit. The
most important are described in this section; others are introduced through-
out the book as they are needed.

Smoothing Parameter. The alpha argument, used in Example 3.1,
controls the bandwidth. When alpha is given as a single number, it repre-
sents a nearest neighbor fraction, as described in section 2.2.1.

Example 3.2. (Changing the Smoothing Parameter.) We compute lo-
cal regression fits for the ethanol dataset, with four different smoothing
parameters:

> alp <- ¢(0.8,0.6,0.4,0.2)
> for(a in alp) {
+ fit <~ locfit(NOx"E, data=ethanol, alpha=a)

+ plot(fit, get.data=T, main=paste("alpha =",a))
+}

The fits are as shown in Figure 2.3 (For the actual code producing the
trellis display, see section B.4).

More generally, alpha can be specified as a vector with two components.
The second component represents a constant bandwidth, so alpha=c(0,1)
implies h(z) =1 is used everywhere. If both the nearest neighbor and fixed
components are nonzero, both bandwidths are computed, and k(z) will be
chosen as the larger component. Specifically, if @ = (aq, ay), the bandwidth
h(z) is computed as follows:

l.k= [nag].

2. Compute d; = |z — zil;i=1,...,n and find the kth sinallest dy).
3. Return h(z) = max(dk), ay).

The default smoothing parameter is alpha=c(0.7,0).

Degree of Local Polynomial. The degree of local polynomial is spec-
ified through the deg argument: deg=1 specifies a local linear fit; deg=2
species local quadratic (the default). For univariate fits, LOCFIT supports
any degree, although there’s usually little reason to use degrees greater
than 3. For multivariate fits, deg=3 is the maximum.

The Weight Function. LocFIT supports several weight functions, listed
in Table 3.1. These are selected with the kern argument to the locf it(Q)
function. For example,

> locfit(..., kern="gauss")

mm._mnnm the Gaussian weight function. The default weight function is the
tricube. Note also the factor of 2.5 in the Gaussian weight function; this
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makes the scaling for the Gaussian weight function more comparable to the
compact weight functions.

rect Rectangular W(z)=1,|z|<1

tria  Triangular W(z)=1-|z|,|z| <1
epan  Epanechnikov W(z)=1-22 |z| <1
bisq  Bisquare W(z) = (1 -z2)?,|z| < 1
tcub  Tricube W(z)=(1-|z|3)3,|z| < 1
trwt  Triweight Wiz) = (1-22)3, |z < 1
gauss Gaussian W (z) = exp(—(2.5z)%/2)
expl  Exponential W(z) = exp(—3|z|)

minm  Minimax See Section 13.3

macl  McLain W(z) = 1/(z + €)?

TABLE 3.1. The LOCFIT weight functions.

3.3 The Computational Model

The definition of local regression formally requires solving a weighted least
squares problem for each fitting point z. But for large datasets, or the iter-
ative procedures discussed in later chapters, this becomes computationally
expensive.

The idea of a computational model began with the LOWESS algorithm
(Cleveland 1979) and was developed considerably by LOESS (Cleveland and
Grosse 1991). The local regression method is carried out at a small set of
fitting points. The fitted values and local slopes at these fitting points are
then used to define a fitted surface, which can be evaluated rapidly at any
point. LOCFIT uses a similar computational model but differs in the way the
fitting points are chosen. In particular, the LOCFIT computational model
is bandwidth adaptive, choosing the most fitting points in regions where
the smallest bandwidths are used. The algorithm is described more fully in
Chapter 12.

The determination of fitting points and the direct fitting are performed
by the locfit () function. The predict.locfit () and preplot.locfit(}
methods are used to interpolate the fits. These functions have a similar set
of arguments but differ in the returned objects: predict.locfit () returns
a vector of the predicted values, while preplot.locfit() returns an object
with the "preplot.locfit” class. This object contains prediction points,
predicted values and other information required to produce a plot.

Example 3.3. For the fit to the ethanol dataset, the fitted surface is
evaluated at E = 0.6,0.8 and 1.0:

> fit <~ locfit(NOx"E, data=ethanol, alpha=0.5)
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> predict(fit, c(0.6,0.8,1.0))
[1] 0.7239408 2.7544413 3.1183651

The two arguments to predict() are the "locfit" object and the
newdata of prediction points. The latter can have one of several forms,

including a vector, data frame, matrix or grid margins. See Appendix B.1
for more details.

3.4 Diagnostics
3.4.1 Residuals

The residuals of a LOCFIT model can be found with the command

> res <- residuals(fit)

which calls the residuals method residuals.locfit().

Example 3.4. Smoothed residual plots are constructed for the four fits
in Figure 2.3:

> alp <- ¢(0.8,0.6,0.4,0.2)

> for(a in alp) {

+ fit <- locfit(NOx"E, data=ethanol, alpha=a)

+ res <- residuals(fit)

+ fit2 <- locfit.raw(ethanol$E, res, alpha=0.2)
+ plot(ethanol$E, res, main=paste(“alpha =",a),
+ ylim = c(-1,1))

+ lines(fit2)

+ abline(h=0, 1lty=2)

+}

Figure 2.5 showed the smoothed residual plots. Note that locfit.raw()
is used to smooth the residuals, since the residuals are not stored on the
ethanol data frame.

3.4.2 Cross Validation

The cross validation and CP criteria can be computed from information
stored on a "locfit” object. We begin with GCV, since this is most direct.

Example 3.5. From the ethanol fit, we extract a dp component that
contains information about the fit:!

> fit <- locfit(NOx"E, data=ethancl, alpha=0.5)

!Here, and elsewhere, users of S version 3 must substitute $ for ¢.
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> fitQ@dp
nnalph fixh adpen cut 1k df1 df2 v
0.5 0 0 0.8 -4.53376 7.013307 6.487448 0.1126948

The components of interest to us are 1k (—0.5 times the residual sum of
squares), df1 (tr(L)) and df2 (tr(L'L)). Since this dataset contains 88
points, the GCV score is computed as

> gencv <- 88* (-2#£itQdp["1k"])/(88-£ it@dp[vdaf1"])"2
> gencv
1k
0.1216622

In fact, LOCFIT provides two functions, gcv() and gcvplot ), to mmsvr@
this. gcv() automatically calls loctit(), and returns a vector with four
components: the log-likelihood (—0.5 times the residual sum of mn_.mm._,ﬁv.
the degrees of freedom according to the influence and variance definitions,
and the GCV score. The arguments for gcv() are exactly the same as for
locfit(). . .

gcvplot() is a wrapper function for gcv(). It is provided a vector of
smoothing parameters, and calls gev() in turn for each parameter. It re-
turns an object with the "gcvplot” class; the plot .Eoz.-oa defined for this
class produces cross validation plots such as those in Figure 2.7.

Example 3.6. The gcvplot() function is applied to the ethanol dataset
for a range of smoothing parameters:

> alpha <- seq(0.2, 0.8, by=0.05)
> plot(gcvplot (NOx"E, data=ethanol, alpha=alpha),
+  ylim=c(Q,0.2))

Figure 2.7 showed the result. Note that each smoothing parameter here is
a nearest neighbor fraction; to use constant bandwidths, alpha should be
a two-column matrix with the first column 0.

The cross validation approach is only slightly more noEv:.owSa. We can
use the definition directly by using a special cross validation evaluation
structure, ev="cross":

> fit <- locfit(NOx"E, data=ethanol, alpha=0.5, ev="cross")
> -2=fit@dp[*1k"]/88

1k
0.1171337

This deletes each observation in turn and computes the fit, so mroia om&
be used for fairly small datasets. For large datasets, an approximation is

> fit <~ locfit(NOx"E, data=ethanol, alpha=0.5)
> r <- residuals(fit)

3.5 Multivariate Fitting and Visualization 51

> infl <- fitted(fit,what="infl")
> mean((r/(1-infl))"~2)
{1] 0.1190185

The small discrepancy here is because the fitted values and influence func-

tion are being interpolated rather than computed directly at each point. A
simpler alternative is

> mean(residuals(fit,cv=T) "2)
[1] 0.1177989

When provided with the cv=T argument, the residuals.locfit() func-
tion computes the values

(1 + infi(z))(Y; — f(z.)). (3.1)
Thus the sum of squares in this case is
3 (@ + infi(z))(Y: - A(z,))? (3.2)
=1

rather than the exact cross validation. Clearly, the two approaches are
asymptotically equivalent in large samples, when infl(z;) is small. The mo-
tivation for (3.1) will become clear in Chapter 4, where (3.1) generalizes
naturally to local likelihood problems. Droge (1996) argued that (3.2) pro-
vides a better estimate of the prediction mean squared error in finite sam-
ples. A pair of functions, 1cv() and lcvplot(), are provided to implement
this cross validation method.

The pair of functions, cp() and cpplot(), implement the CP method.
The implementation is again similar to gcv(), but now requires an esti-
mate of the residual variance o2. By default, cpplot() takes the variance
estimate (2.18) from the fit with the largest degrees of freedom vs.

3.5 Multivariate Fitting and Visualization

To specify a multivariate local regression model, multiple terms are speci-
fied on the right-hand side of the model formula.

Example 3.7. We consider the ethanol dataset used in Figure 2.1. A
second predictor variable, C, was not considered previously and measures
the compression ratio of the engine. The fit is computed by:

> fit <~ locfit(NOx"E+C, data=ethanol, alpha=0.5, scale=0)
> plot(fit, get.data=T)
> plot(fit, type="persp")

The formula can be given either as NOx“E+C or NOx"E+C; both will give the
same results. Figure 3.1 shows the resulting contour and perspective plots.
If type="image", the plot is produced using the S-Plus image() function.

e e M A e
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FIGURE 3.1. Bivariate local regression for the ethanol data.
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An important argument in the multivariate case is scale. This provides a
set of scales s; to use in the distance computation (2.10), thereby controlling
the relative amounts of smoothing in each variable. Specifying scale=0
results in the sample standard deviations of each of the variables being
computed and used as scales. One can also compare fits with different
choices of scales using cross validation methods.

The contour plot and perspective plot in Figure 3.1 both display the
fitted surface, but serve different visualization purposes. No general claim
can be made that one of these displays is better. Either display shows that
NOx is much more heavily dependent on E than on C. The general nature
of this dependence - first increasing, then decreasing, as E increases - is
more readily apparent in the perspective plot. On the other hand, values
of the fitted surface are more readily judged from the contour plot. As an
exercise, try to estimate %(0.7,13) from the perspective plot, and then do
the same from the contour plot.

What about the dependence on C? Both plots appear to show some in-
crease in NOx with C, although it is difficult to preceive the precise nature
of the relationship. Is there any interaction between the two variables? Nei-
ther plot is good for answering this type of question. An alternative display
is of one dimensional cross sections of the fit. The S Trellis library (Becker,
Cleveland, Shyu and Kaluzny 1994) provides a convenient mechanisin for
producing such plots. An interface is provided in the plot.locfit () func-
tion, by specifying a panel variable pv, which is varied within a panel of the
trellis display, and a tv, which is varied between panels of the trellis display.
A final argument, mtv, specifies the number of panels for the display.

Example 3.8. To run this example, trellis graphics must be initialized,
using the trellis.device() function. We plot the bivariate fit to the
ethanol dataset, using E as the trellis variable:

> fit <~ locfit(NOx"E+C, data=ethanol, alpha=0.5, scale=0)
> plot(fit, pv="C*, tv="E", mtv=9, get.data=T)

Figure 3.2 display the results. The slight dependence of NOx ou C is much
easier to sce in this plot than in Figures 3.1 and 3.3.

3.5.1 Additive Models

The definition of multivariate local regression extends to any number of
dimensions. But beyond two or three dimensions, a local regression model
is difficult to fit, due to both the rapid increase in the number of parameters
in the local model and the sparsity of data in high dimensional spaces. In
addition, visualization of a high dimensional surface is difficult.

Because of these problems, a number of simplified models have been
proposed. Typically, these methods build a fitted surface by applying local
regression (or other smoothers) to low dimensional projections of the data.
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FIGURE 3.2. Bivariate local regression: Ethanol data sectioned by equivalence
ratio E.

The most widely studied model of this type is the additive model, which
for two predictors z and z has the form

w(z, z) = wm(z) + p2(2)

where py(z) and pg(z) are smooth functions. The backfitting algorithm
can be used to fit the model and alternately estimates the components.
A thorough account of additive models and the backfitting algorithm can
be found in Hastie and Tibshirani (1990). Opsomer and Ruppert (1997)
discuss some theoretical properties of the backfitting algorithm.

Additive models are fitted in S using the gam() function described in
Hastie (1992). To use LOCFIT for the additive component, functions 1£ O
and gam.1£ () are provided. The 1£() functionis used in the model formula;
at the time of writing it accepts the alpha, deg, ev and kern arguments.
We remark that the gam library also includes a 1o() function for fitting
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additive terms using local regression and LOESS. The 1£() function has
considerably more flexibility.

Example 3.9. An additive model is fitted to the ethanol dataset. We
use a local quadratic term with alpha=0.5 for the equivalence ratio and a
local linear term for the compression ratio.

> library("locfit",first=T)
> fit <- gam(NOx~1f(E,alpha=0.5)+1f(C,deg=1),data=ethanol)
> plot(fit)

Figure 3.3 plots the two additive components, showing nearly linear depen-
dence on C and the peaked dependence on E. One has to look closely at the
scales to see that the E dependence is much stronger.

Important: For this example to work properly, you must specify first=T
when attaching the LOCFIT library, or otherwise ensure "1f" appears in
your gam.slist variable.

A special case of the additive model is the partially linear model:

B(z, 2) = p1(z) + (B, 2).

This model is particularly attractive since the backfitting algorithm has a
closed form limit:

PN

B=(XIA-L)Xa) " XI(A-Ly)Y, (3.3)

where X is the design matrix for the parametric component and L, is the
hat matrix for the smooth component. See Hastie and Tibshirani ((1990),
page 118). This model can be fitted using gam(). For example,

> gam(NOx"1£(E,alpha=0.5)+C, data=ethanol)

produces a fit that is smooth in E and linear in C.

Using a slightly different motivation, Robinson (1988) and Eubank and
Speckman (1993a) arrive at a modified form of (3.3), using (I-L,)T(I-L,)
in place of I - L,. Other references on partially linear models include Engle,
Granger, Rice and Weiss (1986), Green (1987) and Severini and Staniswalis
(1994). A more thorough review is provided by Ichimura and Todd (1999).

3.5.2 Conditionally Parametric Models

The conditionally parametric model is similar to the partially linear model,
in that the fit is smooth in some variables and parametric in others. But
the conditionally parametric fit allows all coefficients of the parametric

variables to depend on the smoothing variables. A conditionally quadratic
fit has the form

p(z, 2) = ag(z) + 61(2)z + az(z)2’.
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FIGURE 3.3. Components of an additive fit to the ethanol dataset.
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For fixed z, u(z, 2) is a quadratic function of z. But all three coefficients,
ao(z), a1(z) and aa(z), are allowed to vary as a function of x. This differs
from the partially linear model in which only ay(z) is allowed to depend
on .

The conditionally parametric fit was considered in detail by Cleveland,
Grosse and Shyu (1992) and Cleveland (1994). In particular, they provide
a conceptually straightforward way to fit the model: Simply fit a bivariate
local regression in z and z but ignore the z variable when computing the
distances and smoothing weights. The varying coefficient model (Hastie
and Tibshirani 1992) is a broad class of models that encompasses both
conditionally parametric fits and partially linear models.

To fit a conditionally parametric model in LOCFIT, one uses the special
cpar () function in the model formula. For example,

> locfit(NOx"E+cpar(C), data=ethanol, alpha=0.5)

produces a fit that is conditionally quadratic in C.

3.6 Exercises

3.1 a) Try to fit the ethanol dataset using local constant and local lin-
ear fitting. By varying the bandwidth (using both the fixed and
nearest neighbor components, if necessary), can a fit comparable
to the local quadratic fit in Figure 2.2 be obtained? Pay atten-
tion to both proper modeling of the peak and the leveling off at
the boundaries, and to the roughness of the estimates.

b) Compute the GCV scores for local linear fitting, and compare
with the results of local quadratic fitting in Figure 2.7.

3.2 The diabetes dataset used by Hastie and Tibshirani (1990) consists
of a predictor variable age and response 1cp.

a) Produce a scatter plot of the data. Does the residual variance
look constant?

b) Fit a local regression model. Construct appropriate smoothed
residual plots to investigate the nonhomogeneous variance fur-
ther. (You'll probably conclude that the nonhomogeneity is real,
but much less than might have been guessed from the scatter-
plot).

Note: the dataset can be accessed using data=diab in LOCFIT.
3.3 Consider the L, cross validation of Exercise 2.8. Write a modified

version of gcv() to implement the L, generalized cross validation

(use residuals() to get Y; — fi(z;)). Apply this to the NOx~E model
for the ethanol dataset, and compare with Figure 2.7.





