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Hint: See Appendix B.2.

3.4 In this exercise, generalized cross validation is used to compare con-
ditionally parametric fits with bivariate smooth fits for the ethanol
dataset.

a) Make a GCV plot for the model NOx~E+C, with scale=0. Use
smoothing parameters ranging from 0.25 to 0.8.

b) Repeat for the conditionally parametric model NOx"E+cpax ©.
Use both the conditionally quadratic (the default) and condi-
tionally linear, by setting deg=1. Compare the results.

¢) scale=0 is equivalent to scale=c(0.204,3.932) (the sample
standard deviations). Compute the GCV plot for other scale
parameters, such as scale=c(0.204,8). The conditionally para-
metric fit is obtained as the second component tends to infinity.

3.5 This exercise compares asymptotic and finite sample approximations
to the local regression variance.

a) Generate a sample with n = 50, with z; sampled i.i.d. from
the standard normal distribution. Also generate a sample Y; ~
N(0,1) (the mean function doesn’t matter for this exercise).

b) Compute a local linear fit, with constant bandwidth h = 1.
Plot the standard deviation ||{(z)|| using the LOCFIT command
plot(fit,what="nlx"). Compute and plot the asymptotic ap-
proximation (2.39). Note that

\ W (v)2du/( \ W (v)dv)? = 175/247

for the tricube weight function. Remember the square root!

¢) Repeat using a nearest neighbor bandwidth with a = 0.7. When
computing the asymptotic variance, approximate the nearest
neighbor bandwidth by h(z) = a/(2f(z)).

d) Repeat this exercise using two predictor variables, with both
components i.i.d. N(0,1).

4
Local Likelihood Estimation

Generalized linear models (McCullagh and Nelder 1989) provide a gener-
alization of linear regression to likelihood models, for example, when the
responses are binary or Poisson count data. Fitting of smooth likelihood
Eonmm_m dates to Henderson (1924b), who fitted penalized likelihood models
mo binary data. This paper, although rarely referred to in modern literature
is particularly noteworthy as it was one of the earliest works on :rm:room
based regression models.

In this chapter a local likelihood approach is used. This was first proposed
in Brillinger (1977) and studied in detail by Tibshirani (1984), Tibshirani
and Hastie (1987) and Staniswalis (1989) among others. The local likelihood
model is described in Section 4.1. Section 4.2 discusses fitting with LoCFIT.
.Wmnaos 4.3 introduces diagnostic procedures for local likelihood models
including residuals and model assessment criteria. Section 4.4 presents moEm”
theoretical results for local likelihood, including existence of the estimates
and approximations to the bias and variance.

4.1 The Local Likelihood Model

The likelihood regression model assumes response variables have a density

u\.. ~ \A..-\_qu
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where 6; = 0(z;) is a function of the covariates z;. Examples include the
exponential distribution with mean 6,

1

f(,6) = 5™ Ijp,00)(4)
and the discrete Bernoulli distribution with parameter p,
f0,p) =1-p; f(L,p) =p.

Let I(y,0) = log(f(y,6)). The global log-likelihood of a parameter vector
0 = (0(x,),...,0(z,)) is

£0) = 2 1% 8(z:). (4.1)
i=1

A generalized linear model assumes 6(z) has a parametric linear form; for
example, 8(z) = ag + a,x. The local likelihood model no longer assumes
a parametric form but fits a polynomial model locally within a smoothing
window. The local polynomial log-likelihood is

L.(a) = WSAH:G\: {a, A(z; ~ z))). (4.2)
i=1

Maximizing over the parameter a leads to the local likelihood estimate.

Definition 4.1 (Local Likelihood Estimate) Let @ be the maximizer
of the local likelihood (4.2). The local likelihood estimate of 8(x) is

6(z) = (&, A(0)) = éo.

Example 4.1. (Local Logistic Regression.) Consider the Bernoulli
regression model, where

P(Y; = 1) = p(z:);
The log-likelihood is
WY, p(z:))

P(Y; = 0) = 1 - p(z,).

Il

Y;log(p(z:)) + (1 - Y;) log(1 ~ p(z:))

x._om A$v +log(1 - p(z).

A local polynomial approximation could be used for p(z;). But this isn’t
necessarily a good idea, since 0 < p(z;) < 1, while polynomials have no
such constraints. Instead, the interval (0,1) is mapped to (—00,00) using

the logistic link function
p(z) v
O(z) =log | ——— ).
) =1os (12505

s
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Correspondingly, the local polynomial log-likelihood is

L.(a) = M,.U.sE Ax. (@, A(z; - z)) — log(1 + el Atz ~=) vv .

i=1

The local polynomial estimate is Q,AHV = dy. To estimate p(z), the link
function is inverted: )
&b(=)

@) =

Definition 4.2 (Link Function) Suppose f(y, ) is a parametric family
of distributions, with mean

k= p(0) = Ey(Y).

Suppose further that u(6) is 1-1. The link function is the inverse mapping
of this relation; that is, the function g(-) satisfying

6 = g(u).
The local likelihood estimate of u(z) is

fi(z) = g7'(6(z)).

In parametric regression models, the choice of link function is largely
dictated by the data. If the truc mean is log-linear, onc has to use the
log link. With local regression models, one does not assume the model is
globally correct, so the choice of link can be driven more by convenience.
One compelling requirement, used to motivate the logistic link in Example
4.1, is that the parameter space for 6(z) be (—00,00). For non-negative
parameters, the log link is often a natural choice. Another requirement is
that I(y,0) be concave. This helps ensure stability of the local likelihood
algorithm; see Section 4.4.

The variance stabilizing link satisfies

52
E 302 (v, 0)
is constant, independent of the parameter §. When the link satisfies this
property, var(6(z)) is also independent of 6(z), at least asymptotically (see
Section 4.4). This property is used for confidence interval construction in
Section 9.2.3.

Another link, the canonical link, has some attractive theoretical proper-

ties. An exponential family of distributions has densities of the form

fy, 1) = exp(r(p)y ~ ¥(1)) foly).

.
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The canonical link is 6 = 7(1). When a local polynomial model is used for
8(z), the local likelihood (and hence f(z)) £.(a) depends on the data only
through Y0, wi(z)A(z; — z)Y;. This locally sufficient statistic simplifies
theoretical calculations.

4.2 Local Likelihood with LOCFIT

LOCFIT supports local likelihood regression with a variety of families and
link functions, as summarized in Table 4.1. By default, a Gaussian family
is assumed; this is the standard local regression discussed in Chapter 2.

Link Function
ident log logit inverse sqrt arcsin
Gaussian  d,c,v

Binomial y d,c v
Poisson y d,c v
Gamma y d,v c

Geometric y d

Von Mises d,v
Cauchy d,v
Huber d,v

TABLE 4.1. Supported local likelihood families and link functions: default link
(d), canonical link (c), variance stabilizing link (v) and other supported links (y).

Example 4.2. The mine dataset consists of a single response; the num-
ber of fractures in the upper seam of coal mines. There are four predic-
tor variables. Fitting log-linear Poisson models, Myers (1990) showed that
one predictor variable (percentage of extraction from the lower seam) was
highly significant, while two other predictors had some importance. Here,
we use the single predictor variable extrp and fit using a local log-linear
model. The variable selection problem is considered later.

> fit <- locfit(frac~extrp, data=mine, family="poisson",
+ deg=1, alpha=0.6)
> plot(fit, band="g", get.data=T)

The Poisson family is specified by the family argument. The default link is
the log link (Table 4.1); the plot() method automatically back-transforms
to display the estimated mean (Figure 4.1). The plot also shows approxi-
mate 95% pointwise confidence intervals for the mean.

The plot shows the mean initially increases, then levels off for extrp >
80. The confidence intervals suggest the leveling off is a real feature; the
bands do not cover any curve of the form e*+%%, and thus a log-linear model
would appear inadequate for this dataset.

TR
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FIGURE 4.1. Mine fracture dataset: local Poisson regression.

Example 4.3. Mortality data of the type considered in Figure 1.1 is
one example of binomial data; the observed mortality rates for each age are
the number of deaths divided by the number of patients. Unfortunately, the
original source for this dataset did not give the number of patients. Here,
we use a second mortality dataset, from Henderson and Sheppard (1919)
for which this information is available. The number of trials at each age is
given as the weights argument to the locfit () call:

> fit <- locfit(deaths"age, weights=n, family="binomial",
+ data=morths, alpha=0.5)

> plot(fit, band="g", get.data = T)

Figure 4.2 displays the fit, with 95% pointwise confidence intervals. The
data has been smoothed using local quadratic logistic regression, with near-
est neighbor span of 0.5. This shows a gradual increasing trend, with some
wild behavior at the right boundary. One must be careful when interpret-
ing this plot because there are large differences in the weights. For ages
between 70 and 80, there are as many as 150 at-risk patients, but just one
for age=99. Likewise, there are just six patients for ages 55 and 56; this

.?m well as the usual boundary variability) leads to the wide confidence
intervals at the left boundary.

.<<m now define the families supported by LOCFIT. Each family is specified
using the mean parameter u(z;). Also included is a weight parameter n,,
which for most families can be interpreted as a prior weight or the number
of replications for each observation.
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FIGURE 4.2. Local logistic regression for mortality data of Henderson and Shep-
pard.

The Gaussian family has densities

Esu,\,m\wmi-mwg-%__é_
and the local likelihood criterion is equivalent to the local least squares
criterion. Thus, family="gauss"” produces the local regression estimate,
but assumes o2 = 1. This distinction is important when constructing con-
fidence intervals; the usual family for local regression is the quasi family
family="qgauss". For more discussion of this distinction, see the discus-
sion of quasi-likelihood in Section 4.3.4.
The binomial family has probability mass function

n;

ﬁVtAHmV_\AH I.tAH..vv:..lewE =0,1,...,n Abwv

The Bernoulli distribution (n; = 1) represents the outcome of a single
trial with success probability u(z;). The binomial distribution counts the
number of successes in n; independent trials.

The Poisson family is used to model count data. The distribution has
the mass function

. .E
P(Y; = y) = (b “w.: emm=) Y 2 0,1,2,.... (4.4)
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The exponential and gamma families (family="gamma®) are often
used to model survival times. The gamma density function is

t.AP.-.vI:..Qz.I~ ~y/u(z;)
(y) = ———7—— Yy 2> 0. 4.5
fr.(v) Ty v (4.5)
The special case n; = 1 is the exponential distribution.
The geometric and negative binomial families (fanily="geon") can
be regarded as discrete analogs of the exponential and gamma distributions.
The negative binomial distribution has mass function

II:..+u\|H Ea..vc .I
wc\.islA o Vc+£a..vv....+<é|o_r:: (4.6)

The geometric distribution is the special case n; = 1. If one observes a se-
quence of Bernoulli trials with success probability p(z;) = u(z:)/(1+u(z;)),
the geometric distribution models the number of successes observed before
a single failure. The negative binomial distribution models the number of
successes until n; failures are observed.

The von Mises family (family=*circ") has densities

1 ) —plz:
\SAQV = Nﬁﬁ.vaz. cos(y~—pu( .:m -r<y<m,
. i

where I(n;) is a normalizing constant. This distribution is frequently used
to model datasets where the responses are angular or measured on a circle.
Regression models for u(z) were introduced by Gould (1969). Fisher (1993)
is an extensive resource for statistical methods for circular data.

Numerically, the von Mises family can be difficult to fit, since the log-
likelihood has multiple local maxima. If fi(z) is a local likelihood estimate,
s is fi(z) + 2. More serious problems are caused by adding a linear term.
If the z; are uniform random variables (and hence irrational), some number
theoretic argumnents show one can come arbitrarily close to interpolation,
simply by choosing a linear function with a carefully chosen large slope.

This is related to the barber’s pole problem discussed by Gould (1969)
and in more detail by Johnson and Wehrly (1978) and Fisher and Lee
(1992), who discuss various ways of restricting A(z) to [—m, 7). None of the
solutions seem entirely satisfactory, since #(z) may genuinely have multiple
circles over the range of the data. For practical purposes, the identifiability
problems shouldn’t create too much difficulty, unless the data is close to
uniform. It also helps if the origin is chosen as a favored direction, so the
estimate shouldn’t skip from —= to .

The Cauchy and Huber families are intended mainly for local robust
regression. A full description is given in Section 6.4.




66 4. Local Likelihood Estimation
4.3 Diagnostics for Local Likelihood

This section discusses diagnostic and model selection issues for local likeli-
hood. Largely, the techniques are natural extensions of the local regression
methodology discussed in Section 2.3. Work devoted to diagnostic issues for
local likelihood includes Firth, Glosup and Hinkley (1991) and Staniswalis
and Severini (1991). The methods are generally similar to techniques used
in parametric generalized linear models by McCullagh and Nelder (1989).

4.3.1 Deviance

In Chapter 2, we developed diagnostic methods based on the residuals
Y; — ii(z;), and the residual sum of squares. For local likelihood models,
these tools are less natural. For example, for the gamma family (4.5), u(z)
is a scale parameter. In this case, it is more natural to consider diagnostics
based on the ratio Yi/fi(z;) rather than the difference Y; — j(z;)-

The natural predictor of a future observation at a point z is g~ 0(=))
where g(-) is the link function. One possible loss function is the deviance,
for a single observation (z,Y), defined by

D(Y,8(z)) =2 A%Ec\.s - zx&a:v .
[]

It is casily seen that D(Y, 6) > 0, and D(Y, 6 =0ifY = g~ '(8). Since it is

based on the likelihood, the deviance provides a measure of the evidence an

observation Y provides against 6(z) being the true value of 6(z). With a

Gaussian likelihood and o = 1, the deviance is simply the squared residual.
The total deviance is defined as

Mc?%&. (4.7)

This generalizes the residual sum of squares for a regression model.
Example 4.4. Let Y; be an observation from the gamma family with
parameters n; (known) and g; (unknown). The log-likelihood is
Y:
I(Y;, p) = —nilog(ps) + (ni — 1) log(Ys) — m.. — log(I'(ny))-
For fixed Y; and n;, this is maximized at p; = Y;/n;. Thus, the deviance
for an estimate fi; is

Y; Y;
D(Y;, 1) =2 | —nilo )+ = - v
(i) =2 (- log( ) + 7~
As expected, this depends on Y; and ji; only through the ratio Y;/j;. Using
the Taylor series approximation log(z) 2~ 1 - (z - 1)2/2 yields

R 1 N
D(Yi, ju) = - (Y — nafis)?.
(Tt}
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The <w—.mw=8 of Y; is n,u?. Thus, the deviance is approximately (Y; —
E(Y:))?/var(Y;). As n; — 00, one has the limiting distribution

D(Y;, i) = x3, (4.8)

v_.oinon_b..mwnoummmnmi.ﬂam:_aanainzgaozogv ize
other likelihoods. ¢ © generallzed to

4.3.2 Residuals for Local Likelihood

In the opwm.o... generalized linear models, a number of suitable extensions
of ﬁ.uo definition of residuals are discussed in McCullagh and Nelder (1989
mm.wn..:ou 2.4) and Hastie and Pregibon (1992, page 205). Four possible defi-
E...SEE,Q

e Deviance residual
ri = sign(Y; - ) D(Y;,6:)'/%;

e Pearson residual
o= BB
vV

¢ Response residual
i =Y — i
e Likelihood derivative
3 .
ry = %&AV\-.@av,

where 6; = 0(z;), ji; = fi(z;) and V; = var(Y;). For the sample residuals
these are estimated using the fitted values. .

For the Gaussian likelihood, all four definitions produce the residuals
K.. — pi. For other likelihoods, the definitions do not coincide, and all have
slightly different interpretations. The Pearson residuals all m—wﬁw variance
1, and under the assumption n; — 0o, the residuals are asymptotically
N(0,1). Using (4.8), the deviance residuals have a similar property.

Example 4.5. We compute residuals for the mortality data of Hen-
derson and Sheppard used in Example 4.3. The residuals are found using
LOCFIT’s residuals() function. The type of residual is specified by the
type argument; the default is the deviance residuals:

> for(ty in c("deviance", "pearson", "response", "ldot")) {
res <- residuals(fit, type=ty)

+ plot(morths$age, res, main=ty, type="b")

+ abline(h = 0, 1ty = 2)

+}

+
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FIGURE 4.3. Residual plots for the mortality data of Henderson and Sheppard.

Figure 4.3 shows four sets of residuals plotted against age. Given the
small sample sizes, there is little benefit to smoothing the residual v_o_”.m. S0
points are simply joined by lines. No strong patterns appear .5 the n.mo.azw_
plots. Both the deviance and Pearson residuals are mainly in the interval
[—2,2], which indicates that the binomial model adequately models the
variability of this dataset.

4.3.83 Cross Validation and AIC

To help guide the choice of local likelihood model, we need extensions of
the cross validation and CP methods introduced in Chapter 2. It is natural
to consider methods based directly on the likelihood or deviance functions.

Definition 4.3 The likelihood (or deviance) cross validation criterion

is defined by substituting the leave-z;-out estimate 6_;(z;) in the total
deviance (4.7);

LOV@) = 3 D(¥ibi(s))
i=1
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= QINMNC\:Q»I..AH_VV Ah.wv

i=1

where C depends on the observations Y;, but not the estimate §(x) and
hence not the bandwidth or local polynomial degree.

Computation of the n leave-z;-out estimates can be expensive. An al-
ternative to deletion methods is the method of infinitesimal perturbations,
developed in Cook (1977) for linear models, and Pregibon (1981) for logis-
tic regression models. The technique underlies Theorem 2.2, which relates
the deletion estimate j_;{x:) with the estimate i(z;) and the influence
function infl(z;).

In the local likelihood setting, the simplification of Theorem 2.2 no longer
holds. Instead, approximations must be developed; details are provided in
Section 4.4.3 and Exercise 4.6. First, we identify an influence function such
that

0_i(z;) = 6(x;) — infi(z)I(Y;, 8(x;)). (4.10)

We use i(y,8) and [(y,8) to denote the first and second partial derivatives
of I(y, 8) with respect to 6. Substituting (4.10) into the deviance and using
a one-term Taylor series gives

D(Y;,6_:(z:)) =~ D(Y;, 0i(z:)) + 2infl(z:)i(Y;, 6(x.))2.

Summing this over all observations gives an approximation to the likelihood
cross validation statistic (4.9). Since E(I(Y,6)?) = —E(I(Y,9)), the fitted
degrees of freedom are defined as

v = MUEEH_EL.E_@FE
i=1

This leads to a generalization of the Akaike information criterion (Akaike,
1973, 1974) to local likelihood models.

Definition 4.4 The Akaike information criterion (AIC) for local like-
lihood is

AIC(d) = M,.U D(Y:,8(z:)) + 21, (4.11)

i=]

where v, is the degrees of freedom for the local likelihood fit.

Example 4.6. We apply the AIC statistic to the mine dataset, sing a
variety of nearest neighbor bandwidths:

> a <- seq(0.4, 1, by=0.05)
> plot(aicplot(frac”extrp, data=mine, family="

poisson",
+ deg=1, alpha=a))
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FIGURE 4.4. Akaike information criterion for the mine dataset.

The aicplot() function is similar to gcvplot() (Section 3.4.2). Figure
4.4 shows the AIC plot. The minimum AIC occurs at about 2.9 degrees of
freedom (a = 0.6). Larger smoothing parameters (i.e., smaller degrees of
freedom) result in inferior fits. This provides evidence that the parametric
log-linear model is inadequate for this dataset, and the curvature in Figure
4.1 is real.

4.8.4 Owverdispersion

If a likelihood model correctly models a dataset, the Pearson residuals de-
fined in Section 4.3.2 should have mean 0 and variance 1. The deviance
residuals are similar, using the approximation of Example 4.4. If the resid-
uals exhibit a nonzero mean (for example, several successive residuals have
the same sign), this indicates that the data is oversmoothed, and smaller
bandwidths should be used.

Overdispersion occurs when the residuals have variance larger than 1. For
example, the Poisson distribution has the property var(Y;) = E(Y;). But
count data often exhibit more variability than this relation can explain.
The mean can still be estimated using Poisson regression, but the variance
of ji(z) may be severely underestimated.

There are several ways to handle overdispersed data. One method is
through a variance stabilizing transformation, where one finds a function
g(Y) such that the transformed data g(Y;) has approximately constant
variance. A local regression model is then fitted to the transformed data.
The most commonly used family of transformations is the Box-Cox, or
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power, family (Box and Cox 1964). A more sophisticated implementation
is the ATS (average, transformation and smoothing) method of Cleveland,
Mallows and McRae (1993), which includes a presmoothing step prior to
the transformation.

Another technique is to find a family of distributions that better fits the
data. For example, the negative binomial distribution (4.6) has mean wg
and variance wu(l + u); in this case, the variance is always larger than the
mean. One then estimates the shape parameter w and fits the corresponding
negative binomial model. An example using this approach is provided in
Section 7.3.1.

A cleaner solution is quasi-likelihood, introduced by Wedderburn (1974);
see also chapter 9 of Wedderburn (1974) and the recent book by Heyde
(1997). Fan, Heckman and Wand (1995) discuss the local quasi-likelihood
method. In quasi-likelihood models, one assumes a relation between the
mean and variance of the observations:

var(Y;) = o®V ()

where V() is a known function and o? is an unknown dispersion parame-
ter. For example, under a Poisson model, one has var(Y;) = p;, so the quasi-
Poisson model takes V(u) = y. Table 4.2 summarizes the variance relation-
ships for the common families supported in LOCFIT. In locfit() calls, the
quasi-family is obtained, for example, with the family="qpoisson" argu-
ment.

Family Variance o2V (i)

quasi-Gaussian a?

quasi-binomial o2u(l - p)
quasi-Poisson o2u
quasi-gamma a2u?

quasi-geometric o2u(p+1)

TABLE 4.2. Quasi-likelihood families and their variance functions.

Note that fitting a quasi-likelihood model is identical to fitting the corre-
sponding likelihood model. The difference is in variance estimation: While
the likelihood families assume the dispersion parameter is 02 = 1, the

quasi-likelihood families estimate the dispersion parameter. The estimate
used by LOCFIT is

2 n MU”-"— &Av\-.@AH-vvn

o = = = .
-2+ T (Y, 6(20))
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4.4 Theory for Local Likelihood Estimation

This section addresses some of the theoretical issues concerning local like-
lihood. Our emphasis is on results that have immediate practical conse-
quences. First, we look at the motivation for maximizing the local likeli-
hood. Then, we turn to important computational concerns and related is-
sues such as existence and uniqueness. Finally, approximate representations
for the estimate are derived; this leads to bias and variance approximations,
and definitions of degrees of freedom.

4.4.1 Why Mazimize the Local Likelihood?

The log-likelihood £(8), for fixed 8, is a random variable, dependent on the
observations Y3, ..., Y,. The mean E(L(6)) is a function of the parameter
vector 6, and this mean function is maximized at the true parameter vector
6. For any parameter vector 8*, Exercise 4.2 shows that

E (L(6%)) <E(L(6))- (4.12)

This motivates maximum likelihood: parameter values @ for which £(6)
are the most likely values of 8, given the observed data. Thus, among a
class of candidate parameter vectors, we select the one that maximizes the
empirical log-likelihood.

This maximum likelihood property extends to the local log-likelihcod:

E Wﬁ.?x?.ﬁ <E M,.Us,.?z?é (4.13)

=1

with equality if and only if 6} = 6; for all i with w;(x) > 0. The local like-
lihood estimate considers candidate classes of the form 8} = (a, A(z; — 7))
and maximizes over this class of candidates.

4.4.2 Local Likelihood Equations

Assuming the likelihood is nicely behaved, the parameter vector a is a
solution of the local likelihood equations

WEAHY»?—. — z)i(Y;, {a, A(z; — 2))) =0, (4.14)
i=1

obtained by differentiating (4.2). In matrix notation, the local likelihood
equations can be written

XTWI(Y,Xa) =0 (4.15)

4.4 Theory for Local Likelihood Es

where, as before, X is the design matrix and W is the diagon
entries w;(z).

For most likelihoods, the local likelihood equations (4.14)
closed form solution, and must be solved by iterative metha
to two questions:

1. Does the maximizer & exist?
2. Is the maximizer & unique?

The following theorem addresses these questions for concave

Theorem 4.1 Suppose the log-likelihood I(y, 8) is defined fc
interval (a,b) (e = —o0 and b = co are permitted); I(y, 8) ha:
derivative with respect to 6 and I(y,0) = —0co as 6 | a or ¢
suppose WX has full column rank. Then the maximizer & ¢
isfies the local likelihood equations (4.14). If in addition i(y,
the solution of (4.14) is unique.

Proof: Let al) be a sequence of parameter estimates suc]

75 hnAQQJ = sup .hHAQv.

J—o0

If a¥) has a limit point a*, then by continuity, £(e*) = sup
a* = &. Otherwise, la®)|| — oo; since WX has full rank
09 = (a9, A(z; ~ z)) — oo for some i with wi{z) > 0. B
is bounded above, this contradicts (4.16).

Since the parameter space is open, & lies in the interior,
solution of the local likelihood equations. Differentiating (4.
Jacobian matrix —J;(Xa), where

- W% Aam avu. Az — 7)A(z; — 7)7l

i=1

= XTwWivx

J;(6)

and V is a diagonal matrix with elements —(I(Y;,6;). The
I(Y;,6;) implies J,(6) is positive definite; strictly so since 3
rank. This implies uniqueness of .

Theorem 4.1 gives a number of conditions on the choice «
zation that help ensure the local likelihood estimation is well
fortunately the conditions are rather restrictive; particular
families. Fortunately, modifying the results for specific fam
straightforward. Exercises 4.3 and 4.4 study the Poisson and
ilies more closely.
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4.4.8 Bias, Variance and Influence

Because of the nonlinear definition of &, it is not possible to derive ex-
act means and variances of & @; indeed, these often don’t exist because of
singularities that occur with small probabilities. For example, in the bi-
nomial family, there is always a positive probability that all responses
are 0, in which case the local likelihood estimate does not exist. We still
need distributional approximations for the local likelihood estimate, and to
make headway we need approximations to the estimate itself. We should
emphasize the approximations derived here depend on the design points
Z1,...,Zn, and not on an asymptotic design density. This is quite differ-
ent ?oE previous results in Fan, Heckman and Wand (1995) and Fan and
Gijbels (1996, pages 196-197).

The results proceed in three parts. First, Theorem 4.2 establishes consis-
tency of the local likelihood estimate. Theorem 4.3 establishes the asymp-
totic representation of the estimate, from which variance approximations
can be derived. Theorem 4.4 derives a bias approximation using derivatives
of 8(x).

Theorem 4.2 Suppose l(y, ) is concave, bounded and twice differentiable
for all y. Then for either random or regular designs,

6(zx)
Ha > 0
0

aas & — 0 and nh? — oo. Here, H is a diagonai matrix of powers of h;
HA(v/R) = A(v).

Remark: This result implies consistency of QXHV = @g. It does not imply
the remaining elements of & converge to G.

Proof: Applying the weak law of large numbers and using the continuity
of 8(x) one obtains, for any fixed vector a,

75 2 (555 o5 (BT )

2, E \ \ SA: avxe. Ap.kz vams.ﬁzﬁe
\ \. W)y, {a, A@))) @ dydy

where f(z) is the design density. The left-hand side is maximized at a =
Ha, while an argument similar to (4.13) shows the right-hand side is maxi-
mized at (6(z),0,...,0)T. The theorem follows using convexity of the like-
libood. a

4.4 Theory for Local Likelihood Estimatic

The components of the vector @ should estimate the coefficient
of the Taylor series expansion of §( - ) expanded around the fitting
As a first step in obtaining an asymptotic representation, we loo
discrepancy & — &. This leads to the following result.

Theorem 4.3 Under the conditions of Theorem 4.2,
H(a — a) = HIT' X WI(Y, Xa) + o((nh?)~1/2).
Proof: Expanding the local likelihood equations yields

0 H'XTWI(Y, Xa)
= H'XTWIi(Y,Xa) — H'3,(a — a) + o(nh'H(a —

and hence
H(a —a) = HIT'XTWI(Y, Xa) + o(H(a — a)).

The result follows since HIT'XTWI(Y, Xa) has size O, ((nh%)~Y/

In Theorem 4.3, the first row of the matrix J° 1XTW plays a rok
to the weight diagram in iocal regression. The influence function
defined to be the ith component of this weight diagram:

infi(z) = W(0)eTJT

This measures the sensitivity of the estimate 8(z;) to changes in
A rather more subtle interpretation of the influence function is tl
z;-out cross validation approximation

0_i(z;) = b(z:) — infi(z,)i(Y;, 6:);

see Exercise 4.6. One also obtains an approximate variance of m,o
Theorem 4.3:

vari(z) = T I713,37 e,

The fitted degrees of freedom for a local likelihood model are defi:

w = MmbmAHmvem
i=1
n
v, = Muﬁiﬁﬁve..
i=1
where v; = —I(Y;,6(z:)). One may prefer to use E(v;) in place

(4.20) and the matrices J;, since the expected values are nonran
necessarily positive, even wheu the log-likelihood is not concave
essentially the question of observed versus expected Fisher inforn
parametric models, and makes little difference asymptotically.
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The final step in the asymptotic representation is to identify the bias
of the local likelihood estimate. This can be expressed using higher order
derivitives of §(z). The result is stated for one dimensional z;; the multi-
variate result involves terms for all partial derivatives.

Theorem 4.4 The first term of the bias expansion is
E(HI;'XTWI(Y, Xa))
6+ (z)
(p+ 1)

HI! M w;(z)(z; — z)PH A(zi — z)vi + o(RPHY).

i=1
For p > 1, the second term involving #(P+2) is similar.
Proof: Let §; = (&, A(z; — z)). Then

Aamwlmwww 07 (z) + ()

uniformly on the smoothing window, and

i(v,6) = i(Y:,0(z:)) + (6: — 6(z:))i(Yz, 0(z:)) + O(8(z:) — 6:)%)

0(z;) = 6; +

. T; — p+1 .
= i(Y;,0(z:)) — Almﬂﬂnwvl_lai_xavxxiﬁs + O(hP+2).
Substituting into Theorem 4.3 and remembering E(i(Y;, 6(z;))) = 0 com-
pletes the proof. .

‘We remark that the careful theoretical analysis of local likelihood is im-
portant. Many statistical software packages include functions for fitting
generalized linear models: the glm() function in S-Plus, and similar func-
tions in other packages. These functions usually allow weights for each ob-
servation, so local likelihood models can be fitted by calling glm() repeat-
edly, with a new set of weights for each fitting point. This implementation
was used by Bowman and Azzalini (1997) and the associated software.

This approach produces correct estimates but incorrect inferences. The
problem is that glm() interprets weights as a sample size; for example, the
n; in (4.3). This appears as a multiplier for the V matrix in the Jacobian
{4.17), rather than as the required W. In particular, this implies the matrix
J2 is computed incorrectly, and the standard errors are not correct, even
asymptotically.

4.5 Exercises

4.1 This exercise uses the Henderson and Shepherd mortality dataset,
from Example 4.3.

4.2

a)

b)

a)

b)

c)

4.5 Exercise

Compute a local quadratic fit, using the arcsin link. Plo
and confidence intervals. Compare with Figure 4.2. Exp
narrower confidence intervals near the left boundary.
Compute and compare AIC and LCV plots for both the
and arcsin links. Use both local quadratic and local linear
Which fits appear best? Does a global linear model (wit.
link function) appear satisfactory?

Prove for any a, b,

a—b
b

log(a) < log(b) +

Suppose a random variable Y has density g(y), and let ¢
any other density. Show that

E(log g*(Y)) < E(logg(Y))

with equality if and only if ¢ = ¢g* almost everywhere.
Prove (4.12) and (4.13).

4.3 For the Poisson family, the conditions of Theorem 4.1 are not s

4.5

a)

b)

when Y; = 0 for some i, since 1(0, #) = —u is monotone.

sing the canonical link @ = log(x), show the result of T
4.1 still holds, with the additional requirement that W
full rank after deleting rows corresponding to Y; = 0.

Show the existence extends to the identity and square ro
Provide an example to show the estimate might not sat
local likelihood equations.

4.4 For the Bernoulli family, the situation is even worse, since th
hood is monotone for all observations. Using local linear fitti
the logistic link, show the local likelihood estimate exists if a
if no v # 0 and c exists for which

(1,zi) <c V iwithw(z)>0,Y;=0
(vxz) 2 e ¥V iwithw(z)>0Y =1,

that is, no hyperplane separates the observations with Y; =
those with Y; = 1.

Consider Bernoulli trials (z;,Y;) with ¥; € {0,1} and repli
values. The dataset can be smoothed directly using logistic re,
or replicated z values pooled to form a new dataset Aaw. n;,Y;
n; as the weights argument.

2
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a) If the same bandwidths are used for each awnum.on. m:oi the same
estimate results. Also show the influence function is the same tor

3 each dataset.

~ b) Show the likelihood cross validation scores for .nro two mwm.mmmam
are unequal, so that minimizing LCV(6) may SoE. go differen
answers. Show EOQV is the same, up to an additive constant

(independent of 3.

4.6 This exercise develops the method of infinitesimal umnn.cnd.wﬁmo”wu wﬂm
. derives the approximation (4.10). Consider ﬁro.—oo.w_ likelihoo 1 esti-
mate at a point z = z; and the modified local likelihood equations

XTWIi(Y, Xa) — AW(0)exi(Y;, (a, A(0))) =0

where ) is a parameter and the solution is a(r).

a) Show a(0) is the full local likelihood m.E.mBona_. estimate, while
a(1) is the leave-z;-out parameter estimate.

b) Show

86N _ 316, Ww(0)i(Y:, B(zs))-
X |neo

¢) Conclude, to a first order approximation, that
@l-.An..-.v 3 mAH-.v - wﬂmﬂamvmo\r @ASJ.VV“
and hence

LCV(f) ~ WGR.@?: +2 Y infi(z)i(¥:, 6(z:))*-
i=1 i=1

Density Estimation

Suppose observations X, ..., X, have an unknown density f(z).
sity estimation problem is to estimate f(z).

The histogram is a density estimate, where the z space is div
bins, and counts of the data are provided for each bin. This is a si
intuitive approach, but it has problems for continuous data. Hi
choose the bins, and where should they be placed? A discrete 1
may smooth out important features in the data.

This chapter studies an adaptation of the local likelihood methc
sity estimation. Section 5.1 derives the estimate. Section 5.2 desc
implementation, using the LOCFIT software. Section 5.3 introdu
/nostic methods such as residual plots and AIC. The more technic;

) - 9.4 studies theoretical properties for the local likelihood estimate

_ _. __ _._.____,m.u. Local Likelihood Density Estimation

g ‘An extension of local likelihood methods to the density estimatior.

'is described in Loader (1996b) and Hjort and Jones (1996). Con

! _.om-:_a:room function

() = 3 log(F(X:)) — n( \a f(w)du — 1)

=1

.4:9.@ X is the domain of the density. The definition (5.1) of
Jlikelihood is unusual, with the added a penalty term n( '+ f(u)du
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is a density, the penalty is 0, so (5.1) coincides with the usual log-likelihood
in this case. The reason for adding the penalty to (5.1) is that £( b nws.vm
treated as a likelihood for any non-negative function .‘. iﬁ..roc.n imposing
the constraint [ f(z)dz = 1. A more complete justification is given in
Section 5.4. :

A localized version of the log-likelihood is

L.(f) = WS Amfhv log(f(X;)) - n \

X

S A: - av zs%.a.s

i=1

We consider a local polynomial approximation for log(f(u)); log(f(u)) =
{@, A(u — z)) in a neighborhood of z. The local likelihood becomes

L@)=YW Ammv (a, A(X; ~ )

=1

13.\\.« S\ A: M HV mvaPb?lavvv&F Am.wv

Definition 5.1 Let @ = (&p,.-.,dp)T be the maximizer o.m the local log-
likelihood (5.3). The local likelihood density estimate is defined as

f(z) = exp((a, A(0))) = exp(8o). (5.4)

Under fairly general conditions, the local parameter vector mm is aro. mo._u.
tion of the system of local likelihood equations cbtained by differentiating
(5.3):

L3 406~ 22

u \. m?nss\ A: | av %kﬁ%% a.s
. h

where w;(z) = W((X; — z)/h). These equations have a simple and intu-
itive interpretation. The left-hand side of (5.5) is simply a «monmﬁ of F.o&-
ized sample moments up to order p, while the right-hand ma.m is H.oom.ruaa
population moments using the log-polynomial density approximation. Hro
local likelihood estimate simply matches localized sample moments with
i opulation moments.

ﬂonm_u”swohh_%m.w. (Local Constant Fitting). When the _o.ow_ constant poly-
nomial (p = 0) is used, (5.5) consists of the single equation

WMM&E = \w w A:mav exp(o)du,

5.1 Local Likelihood Density Estimati

yielding the closed form for the density estimate

) =expta0) = s S o)
i=

This is the kernel density estimate considered by Rosenblatt (1956),
(1958) and Parzen (1962).

The kernel density estimate has been widely studied; see, for ¢
the books by Prakasa Rao (1983), Silverman (1986), Scott (1992) ar
and Jones (1995). Being based. on a local constant approximation, i
from the same problems as local constant regression, such as trirc
peaks. An additional problem occurs in the tails, since increasin
widths for data sparsity can lezd to severe bias. This problem we
tigated more fully by Loader (1996b), where relative efficiencies ¢
and local log-polynomial methods were compared.

5.1.1 Higher Order Kernels

The system of equations (5.5) defining the local likelihood estim
the simple moment-matching interpretation noted previously. The 1
matching equations can also be used with other local approximai
the density. The identity link f(u) ~ (a. A(u — z)) gives the systen

wmbﬁku.lavsu.ﬁavu\\.«x?lavs A:Nav?.m?lavv%

with the density estimate being f(z) = d,. Since (5.7) is a linear
of equations, one can solve explicitly for & and .m (z). Local approxi
estimates of this type were considered in Sergeev (1979).

Some manipulation shows the solution of (5.7) can be written

F@) = :IHNN M:US\. AN..:I av

i=1

where W*(v) = (8, A(v)) W(v) for an appropriate coefficient vector
kernel W*(v) satisfies the moment conditions,

fl
—_

.\ W*(v)dv
.\ Y W*(v)dv

I
(=)
<.

I

—
3

Weight functions satisfying these moment conditions are known as |
of order p + 1, and were introduced by Parzen (1962). The mot
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is bias reduction: If the bias of f(z) mmvmxwgamm EaMnMMwWM mMM“Mn, MWM
iti the low order .
moment conditions (5.8) ensure that ‘ . ! S o
i i imation using higher order kerne
close connection between density estimal e Sarda (1962)
i i i tigated by Lejeunc and Sar .
local polynomial fitting was inves' i da (902 s
i igher order kernel estimates ten
For practical purposes, the hig py- gy
i ikelihood approach based on (5.5).
satisfactory than the local likelihoo : o o ogtF )
i i lynomial approximation for log
son is that (5.5) applies a local poly : o&(ftz))
i i t be non-negative, the polyno
ther than f(z) itself. Since f(z) mus : h 0
MWvM”.iEma%M »an log(f(z)) is usually better, particulatly in the tails of
densities.

5.1.2 Poisson Process Rate Estimation

A problem closely related to density estimation is mmemeﬁnm. ew@ ﬂwaumwm
function for a point process. If X;,...,Xn are the random points of a p
process, the corresponding counting process is

N
Z(A) =) I(X: € A)

i=1

for any set A. The intensity function, A(z), defines the mean of Z(A):
E(Z(A)) = \> Az)dz. (59)

A simple example of a point process is tie E.EvoBomgmocw Wo_mwmw
process, where Z(A) has a Poisson distribution with mean (5.9). For
process, the log-likelihood function is

N
n?zvn,.Mumam»?T \u Az)dz.

See, for example, Cox and Lewis (1966). This differs mnoB.ewM :%M%&MM&
Am.u.v for density estimation in only AH_S .Hm.ﬂﬁwnwn.e nﬂuﬂmww aﬂ moES _m”u om
f the factor N in front of the integral. e ocalizal of
Mna‘Mmaé.Sou of the local likelihood ong.emoum mo=3.< mﬁma“? and the
implementation of the estimation procedure is almost identical.

5.1.8 Discrete Data

In practice, all datasets are discrete. For the types oMM.Mm.mEmMuMH WMMMM
i i istributions, this discrete
modeled as coming from continuous dis X ] 518 often
i ith more heavily rounded data,
t a very fine level and can be ignored. 15 . t
Mmmo%ew:o&m becomes important, and it must be modeled using a discrete

- formula. Using family="rate"

5.2 Density Estimation in LOCFI

probability mass function rather than a continuous density. Smoot]
ability estimates of a mass function have been widely studied using
methods; see, for example, Dickey (1968), Aitchison and Aitken

Titterington (1980) and Simonoff (1987, 1995, 1996). The last of the
considers local likelihood approaches.

A local log-likelihood for the mass function is obtained by replac

integrals in (5.1) and (5-2) by sums over the mass points. Assume t}
points X, ..., X, are integer valued, and consider the (5, Y;) pairs,
Y; is the number of observations equal to j. The total number of
vations is n = 3% Y. The corresponding probabilities to be est
are p(j) = P(X, = j). Using a local polynomial model for log(p(j

neighborhead of a fitting point z, the discrete version of the local like
(5.2) is

L@ = > w(5E) @ag-ay,

j=—o0s

o ) -
3w Q wav eleAG-2)

j=—c0

This is the local likelihood (4.2), with I(y, ) = ylog(u) — ny. Exce
the factor n, this is the Poisson log-likelihood. Thus, estimating a
function is almost equivalent to a local Poisson regression. Note th
on the right-hand side of (5.11) is not restricted to values of jwithY

Although the close relation between discrete probability estimation,
son regression and density estimation is apparent, there are importan
oretical differences. The raw probability Y;/n is a /n-consistent est
of p(5), and, given a sufficiently large sample, this will be the best
estimate. Thus, the large sample behavior of the continuous densit;
discrete probability estimates are quite different.

Discreteness also has a major impact on bandwidth selection. This
will be discussed more later, but the important point is that discret
tributions do not have densities. Thus, if a selector designed for conti
data is blindly applied to discrete data, problems should result, as t}
lector will prefer densities that place a spike at each data point. Sele

have to be adapted specifically to discrete data, and the result £ = 0

is, use the raw probabilities) has to be considered a legitimate answe

5.2 Density Estimation in LOCFIT

In LOCFIT, density estimation corresponds to family="density".
family becomes the default when no left-hand side is specified in the nr

gives the Poisson process rate estimat
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FIGURE 5.1. Density estimation for'the Old Faithful geyser dataset.

Example 5.2. The Old Faithful geyser dataset, as given by Weisberg
(1985) and Scott (1992), contains the durations of 107 eruptions. The den-
sity is estimated using a mixed smoothing parameter with a fixed compo-
nent of 0.8 and nearest neighbor span of 0.1:

> fit <- locfit(~geyser,alpha=c(0.1,0.80),flim=c(1,6))
> plot(fit, mpv=200, xlab="01ld Faithful Eruption Duration",
+ ylab="Density", get.data=T)

The fit is shown in Figure 5.1. This clearly shows two peaks in the data:
a sharp peak around two minutes 2nd a broader peak around 4 minutes.
Note the £1im=c(1,6) argument given to the locfit() call; this specifies
fitting iimits slightly outside the range of the data, thus allowing us to see
the tails of the density. The get.data=T option causes the data points to
be displayed as a ‘rug’ along the bottom of the plot, rather than the scatter
plot used in the regression setting.

Example 5.3. The high order kernels discussed in Section 5.1.1 can be
fitted using 1ink="ident". We use the fourth order kernel (local quadratic)
estimate for the Old Faithful dataset:

> fit <- locfit(~geyser, alpha=c(0.1,0.6), flim=c(1,6),

+ link="ident")

> plot(fit, mpv=200, xlab="01d Faithful Eruption Duration",
+ ylab="Density", get.data=T)

The resulting fit in Figure 5.2 seems less satisfactory than that obtained
previously in Figure 5.1: The estimate is not constrained to be positive,

5.2 Density Estimation in LocF

0.4

Densi
0.2

0.0

1 2 3 4 5
Old Faithful Eruption Duration

M.Hnﬂcm,m 5.2. Local quadratic (fourth order kernel) fit to the Old Faithfi
ataset.

and the method seems to oversmooth the left peak, despite the 1
smaller bandwidth. )

Example 5.4. Izenman and Sommer (1588) and Sheather (1992
a dataset on measurements of the thickness of 486 postage stamp:
1872 Hidalgo issue of Mexico. The thicknesses are recorded to the
0.001 millemetres. This discreteness is coarse encugh to matter, as
when bandwidth selectors are applied to this problem (Exercise

58% qudratic density estimate is computed using the Poisson Teg
model:

> fit <- locfit(count"thick, weights=rep(0.486,76),
+ data=stamp, family = "poisson", alpha = c(0, 0.004))
> plot(fit, m=200, get.data=T) )

The critical point is the weignts argument. Setting weights=rep
effectively divides the Poisson regression by n, leading to estimatio
mass function. The probability of a bin centered at a point z; is :
imately nA f(z;) where A is the size of the bin and f(z) is the «
Comparing with the Poisson family (4.4), we set the weight n; =n
the mean u(z;) = f(z;). In this example, n = 486 and A = 0.001.
Figure 5.3 shows the resulting multimodal estimate. The explana
the multimodality, provided by Izenman and Sommer (1988), is that
number of different types of paper were used to print this stamp.
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0.06 0.08 0.10 0.12
Thickness (m.m.)

FIGURE 5.3. Postage stamp data. Density estimate using local Poisson regression
for discrete data.

5.2.1 Multivariate Density Ezamples

Multivariate density estimation requires multiple predictor variables in the
model formula, similar to the regression case in Section 3.5. In this section,
some examples are presented.

Example 5.5. (Multivariate Density Estimation). The trimod dataset
is a bivariate dataset with 225 observations from a trimodal distribution.
Each of the three components is a bivariate standard normal distribution,
with centers at (3v/3/2,0), (—3v/3/2,3) and (—3v/3/2, —3). The true peak
height is about 1/(6n) = 0.053.

The multivariate density is estimated by specifying multiple terms on
the right-hand side of tLe formula. Here, we fit a local log-quadratic model,
with a 35% nearest neighbor bandwidth:

> fit.trim <- locfit(“x0+x1, data=trimod, alpha=0.35)
> plot(fit.trim, type="persp")

Figure 5.4 shows the fit.

A common density estimation problem is to estimate the smallest region
containing a fixed probability mass. At first, constructing such a region
may appear to require tricky numerical integration of the density estimate.
However, a trick to estimate the contour level is to order the fitted values
at the data points, and use the corresponding empirical level.

5.3 Diagnostics for Density Estimatio:
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FIGURE 5.4. Bivariate density estimation.

Example 5.6. (Probability Contours). We compute 95% and 50
contours for the trimodal sample used in Example 5.5. First, use
to compute fitted values at the data points. Then, produce a contc
with the appropriate empirical contour levels:

> emp <~ sort(fitted(fit.trim))
> plot(fit.trim, vband=F, v=emp[floor(c(0.05,0.5)%225)].
> points(trimod$x0, trimod$xi, col=2, cex=0.5)

Figure 5.5 shows the result. The 50% contour defines three separate
and the 95% contour has a small hole in the middle.

5.3 Diagnostics for Density Estimation

Does the density estimate fit the data? The question of diagnostic
as important for density estimation as it is for regression. But ar
the question is much more difficult. The source of the problem is
There is no natural definition for residuals for a density estimate,
saturated model. In Section 5.3.1 some possible definitions of resid
considered, along with graphical displays for detecting lack of fit.
goodness of fit criteria based on the likelihood are considered in
5.3.2 and squared error methods in Section 5.3.3.
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FIGURE 5.5. Probability contour plots: 50% and 95% mass contours for a tri-
modal example.

5.8.1 Residuals for Density Estimation

There are a number of ways to construct residual type diagnostics for den-
sity estimation. Perhaps the most obvious is to compare the integral of the
density estimate,

F@)= [ fwa,

with the empirical distribution function
N 1 <
Femp(z) = = .szx_. <z).
=

Example 5.7. Figure 5.6 shows the empirical distribution function and
the integral of a local density estimate. The smoothing parametet for the
density estimate is a = (0.1, 1.2), which is larger than that used in Figure
5.1:

> fit <- locfit(“geyser, alpha=c(0.1,1.2),
+ flim=c(1,6), renorm=T)

> x <~ seq(l, 6, by=0.01)

> z <- predict(fit, x)

5.3 Diagnostics for Density Estimatio:
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FIGURE 5.6. Empirical distribution function (step curve) and integrated
estimate (smooth curve) for the Old Faithful dataset.

> plot{x, 0.0l*cumsum(z), type="1")
> lines(sort(geyser), (1:107)/107, type="s")

The renorm=T argument rescales the density estimate so that it im
to 1.

In Figure 5.6, the empirical distribution function is steeper than 1
mate between 1.8 and 2, which indicates that the peak has been t1
The flatness of the empirical distribution function between 2 and &
cates that the estimate has overfilled the valley.

The P-P and Q-Q plots are based £ and m._nav. The P-P (or p
ity) plot uses the result that F(X;) behave like a sample from a
distribution. If X(;) is the ith order statistic, then E(F(X(;)) =i/
Thus, a plot of N\.,..ANEV against i/(n + 1) should be close to a strai;
large departures from a straight line indicate lack of fit. The Q-G
tile} plot transforms back to the observation scale, ploting X

F=1(G/(n + 1)).

An alternative residual diagnostic for density estimation is to be;
a small bandwidth and look at the change in the estimate as the
of smoothing is increased; can this change be attributed to noise,
it indicate lack of fit? The simplest implementation of this idea i
gin with a histogram, computed at a small bandwidth. Then, t.
histogram counts and smooth them using local Poisson regressior
scribed in Section 5.1.3 and Example 5.4. One can then compute r
for the Poisson model, as discussed in Section 4.3.2.
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5.3 Diagnostics for Density Estimation

Example 5.8. We construct residual plots for the Old Faithful geyser
dataset. First, a raw histogram of the data is constructed using a bin width
of 0.05:

> geyser.round <- data.frame(duration=seq(1.05,5.95,by=0.05),
+ count=as.numeric(table(cut(geyser,
+ breaks=seq(1.025,5.975,1length=100)))))

Note that care is required to ensure zeros are retained. The fit and residual
plots can now be constructed:

> fit <- locfit(count~duration, data=geyser.round,

+ weights=rep(107+0.05,99), alpha=c(0.1,1.2},

+ family="poisson")

> plot(fit, get.data = T)

> res <- residuals(fit)

> fitr <~ locfit.raw(geyser.round$duration, res, alpha=0.1)
> plot(geyser.round$duration, res)

> lines(fitr)

Figure 5.7 shows the fits and smoothed residual plots for three different
smoothing parameters. As the smoothing parameter decreases, the fit shows
the left peak getting sharper and the trough for 2 < duration < 3.5
getting deeper. The residual plots also show this: In the top residual plot,
there is a pronounced peak and five successive positive residuals, around
duration = 1.8. The residuals also show some evidence of the trough being
filled in, even at smallest smoothing parameter.

5.8.2 Influence, Cross Validation and AIC

The likelihood cross validation criterion for density estimation is

LCV(f) = W log f-i(X:) —n A \a flu)du — HV (5.12)
i=1

where .wl. (X;) denotes the density estimate at X; when this observation is
deleted from the dataset. This criterion was first proposed for the kernel
density estimate (5.6) by Habbema, Hermans and Van Der Broek (1974)
and Duin (1976).

As in Section 4.3.3, the likelihood cross validation score can be approxi-
mated using the method of infinitesimal perturbations. This leads to

" o wW(0 _ 1
log fi(X:) = log F(X:) — D eTMyte, +

n n

(5.13)

where

-
N
w
H
(4]
»
-
N

3 4 5

lu. .
M; = \ S\ Aﬁ A Hv b?lﬂv\»?lHvﬂm?l?lavv&:.
X

FIGURE 5.7. Fits and smoothed residual plots for geyser data: a = (0.1,
(top), a = (0.1,0.8) (middle) and a = (0.1,0.5) (bottom). _
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The influence function for density estimation is defined as
infl(z) = n W (0)eT M7 er;
the dependence on z is through the matrix M;. Then
n
n n . ; . .
3 log fa(Xi) & Y log F(Xi) = D infi(X:) + 1.
i=1 i=1

WHH . . 3 .
Summing over the observations leads to the Akaike information criterion

for density estimation:

AIC(f) = -2 W_om f(X:)+2) infi(X:) +2n A \a flu)du ~ o . (5.15)
=1

i=1

(5.14)

The factor of —2 is introduced here to be ooum.mmama with our definition of
AIC for local likelihood regression. The quantity
n .
vy = MEEN..V
i=1

iti dom for a density estimation fit, ex-
i definition of the degrees of free Y o
NMMM« the regression v, defined by (2.16). Correspondingly, we can exten

the v, definition to "
i=]

~ -1
where vari(z) = n~'e] My ' MaM; “e;.

5.8.3 Squared Error Methods

idati uares

An entirely different method of cross <wrmwn=.uP w.boiu um W.H%MG@B
validation, was developed for density estimation _mvv. Rude o (82
Mﬂowmwoiag wapv. This method does not target the likelihood function,

but rather the integrated squared error;
SEGL) = [ (@) - f@)de
| fapa-2 [ j@seas [ sariso

The third terin on the right-hand side of GHS a.oma uoe. %vgw omum ﬁ_ﬂn“mm
timate .m (x). If the object is to choose f to minimize the Enmmnw Aavnma ~
error, then the final termcan be ignored. The first ﬂnmnum snu o i ..H_rm
pends only on the density estimate and can be evaluate

central term can be expressed as

\ ” §(2)f(z)dz = E(F(X))

5.3 Diagnostics for Density Estimatio

where X is a random variable with density f(-) and is independen
original sample. This can be cstimated by leave-one-out cross valic

E(FC0) = =3 FlXo).
i=1

This leads to the following definition.

Definition 5.2 The least squares cross validation criterion for
sity estimate f(z) is

LSCV(f) = \ " fw)de - mMU Foi(Xy).
—o0 i=1

As usual, the cross validation component can be approximated us
influence function. Using (5.13) and (5.14), we have

F-%) % FX) exp(n™) exp(~inf(X,)) & —" F(0)(1 = inf(
Thus, the LSCV criterion can be approximated by

18OV~ [ fede~ 2o 3" g - maxs).

i=1

This is exact for local constant fitting.

5.8.4 Implementation

. The aicplot() and lcvplot() functions introduced in Section 4.3
be used directly for density estimation. By default, these ignore the i1
term in (5.15). To renormalize the density estimate so that J f(z)d

- add the renorm=T argument.

The likelihood criteria must be applied rather carefully, since the
considerable attention to the tail of densities, But any density estima

‘perform poorly in the tails and choice of bandwidth is largely an as

tion. For example, should a single outlier represent its own little pes

density, or should it represent a long tail?

~ Schuster and Gregory (1981) note that LCV, when used to se

‘constant bandwidth estimate, always selects a bandwidth larger th:

smallest separation between data points, and thus produces extremely

results for long tailed distributions. AIC also exhibits anomolous bel
gt small bandwidths. . )
This is not & eriticisin of AIC or 'LCV;-but-simply a recognitior

‘constant bandwidth estimates are poor in tails. The solution comes i
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parts. First, ensure that larger bandwidths are used in the tails; for ex-
ample, by using a nonzero nearest neighbor component in LOCFIT’s two-
component specification. Second, compare the criteria with the fitted de-
grees of freedom, and look over a sensible range.

A second problem is caused by ties in the data. This effect has been
mostly studied with the LSCV criterion and local constant estimation (Sil-
verman 1986; Sheather 1992). The main result is that if there are too many
ties in the data, LSCV(fy) — —oo as h — 0. But again LSCV should not
be criticized for this behavior. A sample from a continuous density does
not have ties. By selecting h = 0, LSCYV is simply trying to reproduce the
raw data histogram. But problems where this occurs should be treated as
discrete, and the LSCV criterion modified accordingly (Exercise 5.4).

Example 5.9. In Figure 5.8 we compute the AIC criterion for local
constant, local linear and local quadratic density estimates for the Old
Faithful dataset. A typical call to aicplot() is:

> a0 <- cbind(0.05, ¢(0.17,5eq(0.2,0.7,by=0.05)))
> plot(aicplot(“geyser, alpha=a0, deg=0, renorn=T,
+ flim=c(1,6), ev="grid", mg=51), pch="0")

To control tail behavior, the nearest neighbor component of the smoothing
parameter is fixed at a = 0.05 for local constant and local log-linear fitting,
and a = 0.1 for local log-quadratic. The constant component h of the
smoothing parameter is changed from fit to fit. Corresponding computation
of the LSCV criterion is shown on the right of Figure 5.8.

We use the fitted degrees of freedom v as the z-axis. Both criteria, and
each local polynomial degree (0, 1 and 2), show similar patterns. Fewer
than five degrees of freedom is inadequate, while for more than five degrees
of freedom the criteria are indecisive. Local log-quadratic fitting is better
than local log-linear and local constant.

For local quadratic fitting, six degrees of freedom corresponds to the
smoothing parameter (0.1,0.9), and twelve degrees of freedom corresponds
to (0.1,0.4). The AIC criterion relates to what was shown in the fits and
residual plots in Figure 5.7. The largest smocthing parameter, (0.1,1.2)
was too large, with little to choose between the smaller parameters.

Whkile all the curves in Figure 5.8 show a similar pattern, the location
of the minimum varies substantially. This emphasizes the importaunce of
looking at the whole cross validtaion curve, rather than just the minimum.

If the bandwidths are decreased further, most of the criteria will down-
turn again, as discreteness and tails of the data take over. But by ploting the
criteria against degrees of freedom, as in Figure 5.8, we obtain a sensible
view of the data. Fits above 14 degrees of freedom are rarely useful for
datasets of 107 observations.

5.4 Some Theory for Density Estimatio

- 8 N
(<2}
n% -AMU < ._&
S& 1o § ' |1
8 .Mo s 1%
5 0 B
o & | 0 SF | _o ‘
28 12°% >9 1 20
2 mnm_ 00 @ Hrloo
o | Z2d2252 22| o ?22 :
by 11 < | 31 2
———— <? - 2
4 6 8 10 12 14 4 6 8 10 1
Degrees of Freedom Degrees of Freedc

Wmﬁﬂﬁm 5.8. >._B.=8_m criterion (left) and least squares cross validatior
9..» e Old Faithful dataset. Values for local constant fitting (0), loc:
fitting (1) and local quadratic fitting (2). T

5.4 Some Theory for Density Estimation

HEm. mmonmo.a derives basic theoretical properties for the local lik
density 89.5&8 and develops an approximate distribution theo:
results are similar to the corresponding results for local likelihood re;
models in Section 4.4, so only the main ideas are sketched here. m

5.4.1 Motivation for the Likelihood

The wnnnwnnm<o~.~8m of maximum likelihood estimation stems from (4
the density estimation notation this.can be written as

EsL(fi) < EfL(f),

with .o.pcw_;% only when f, = f almost everywhere. With the e
Mme.Son of the likelihood (5.1), this property holds for all non-n
3 rM_S_onm \.: we do not require f; to be a density. One consequ
s oxnmn.maon is that maximum likelihood estimation can be per
with multiplicative parameters. For example, fitting the family f %n '
Cexp(—(z — p)%/2) by maximum likelihood gives & = (2m)~1/2 ,
The property (5.18) extends to the local log-likelihood; .

@\hC«-.HV < @\hﬁ.\. Hv

Wwith equality when f(u) = fi(u) on the support of W ((u — z)/h

suggests estimati imizi 1
.«MMM . imating f(z) by maximizing (5.2) over a suitable class «
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5.4.2 Eristence and Uniqueness

Let C (dependent on the fitting point z, the weight function W and the
degree of local polynomial p) be the parameter space:

v-2 - du < oo}.

C=fa= (a0 mr): [ W(*5 JECRIENAN
(5.19)
In many cases the set C is open; for example, if the weight function is

bounded and has compact support, C = R4, In this case, «:w mm.nwnw.a.wm
vector & (if it exists) must lie in the interior of C, and it is a solution o

local likelihood equations (5.5). . )
The Jacobian of the local likelihood (5.3) is

J(a) = — \x Alu—z)A(u—z)TW A: — av exp({a, A(u — z)))du.

h

For non-negative weight functions W, this is strictly :mmw«?o. amm“#ﬂ .HJ_M
implies that the local likelihood is concave, and .&w local Es i ooa.%&um
mate, if it exists, is unique. The following theorem gives precise conditio!
for existence.

5.19) is open. The local like-
Theorem 5.1 Suppose the parameter space ( )

lihood density estimate exists if and only if there exists no parameter vector
ap # 0 such that

{ag, A(X; —z)y=0 V i:w{z)>0
{0, A(u—2z)) <0 V :LQA:MHVVP

Proof: Suppose such an ag exists. Then

n u—z\ Mt+clao,A(u=—2)) gy,
hsCS+n§vH»M§Aavl:\$\A h xm ’

i=1

Clearly

\/Mau .EmAHv

i=1

©0;

lim L.(\ey + cap)

o0

lim lim £z(\ey + cao)

A—00 c—00

the likelihood is unbounded and the omagem does not exist.
Conversely, suppose no such ag exists. Write

mcvh?.avﬂmab mﬂb h?o.ar G.wcv
a a:llal|=1

5.4 Some Theory for Density Estimation

we need to show both these suprema are actually achieved. For fixed
flall = 1, we claim (Exercise 5.3)

L:(da) = XY wi(z){a, A(X; - z))

i=1

.I:\ w Aﬂ - Hv \#Aﬂ _ Svm\ﬁn.}?—lﬂvv&ﬁ
x h

is a concave function of A and tends to —oo as A — =00 (or when ) te:
the boundaries of the parameter space C, when this is bounded). Th
inner supremum of (5.20) must be achieved; let the maximizer be A =
Concavity of £L(a, z) implies A(a) must be continuous on the surface .
unit sphere, and hence the outer supremum is achieved by compactn

What does Theorem 5.1 mean in practical terms? For existence ¢
density estimate, we must be unable to find a polynomial (other tha
trivial solution, a constant) that attains its maximum at every poii
being used in the fit. This generalizes the separating hyperplane the
for local logistic regression (Exercise 4.4). The local linear estimate «
provided at least one cbservation has nonzero weight, since a linear fun
is monotone. A quadratic polynomial may have a single maximum, s
local quadratic estimate exists provided two distinct observations re
nonzero weight.

5.4.3 Asymptotic Representation

The main result of this section is an approximate decomposition o
local likelihood estimate as the sum of a deterministic bias’ compc
and a random component. The result is obtained by linearizing the
likelihood equations, similarly to the techniques used for local likeli
regression in Section 4.4. The following notation is needed:

® g(z) =log(f(z)), and § is the vector of Taylor series coefficient:
to order p.

* M, = [W(52)Y A(u — ) A(u — )T f(u)du; 5 = 1,2.
® by = h=(PHY) f(y T)PHIW (252) A(u - ) f (u)du.
e Sy, is the left-hand side of the local likelihood equations;

.m.: = Wsﬁﬁﬂvxﬁk- - Hv. Am
i=]1

The decomposition of the local likelihood estimate is,asn — o0, h=h.
0 and nh,, — co:
hPtl w@iv?v

He-a) = (p+1)!

HM; !5,
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+wm§~|_§. — E(S,)) + o(RP*! + (nh%)~Y/2)(5.23)

The first term represents a systematic bias component, and the second term
is a random variance component. The bias component as stated is for one
dimension; the d-dimensional result requires all partial derivatives of g(z)
of order p + 1. The covariance matrix of S, is evaluated in Exercise 5.1. A
central limit theorem (Loader 1996b) shows asymptotic normality of S,
and hence of &. The normal approximation for & has the covariance matrix
w§w~§n§~|_.
n
By the delta method, the asymptotic variance of f (z) is f(z)? times the
(1,1) element of this matrix.
Example 5.10. For the local log-linear density estimate (p = 1), one

obtaing N O 0 \
i@ e feweya )

This yields the variance and bias approximations
. R? , | [vPW(v)dv
E(d) —g(z) ~ —9¢"(z) TW()do
1 [W()idv
nhf(z) (f W(v)dv)*”

These can be transformed using the delta method to obtain approximate
biases and variances for f(z):

var{do) =~

h2 e J W (v)dv
ﬂ\?vm AHV %S\Aev&c

f(z) [W(v)2dv
“nh (JW(v)dv)?

Q

E(f(z)) - f(=)

2

var(f(2))

5.5 Exercises

5.1 Consider S, defined by (5.22), where X,,...,X,, are independent
identically distributed random variables with density f(z).

a) Show

EGS)) = n \ w A: - nv Als — 2)f(u)du

cov(S,) = :En|wm$=vma=vq.

5.5 Exercise

Derive a similar expression for the covariance matrix co

b) Suppose the density is continuous at z with f(z) > 0,1
h=h, — 0and nh — co. Let H be as defined in (2.37)

1
ﬂlﬁnoiml.w:v = f(z) \. W(v)? A(v) A(v)Tdv + of

in particular, the covariance term involving E(S,,) is as
ically negligible. Evaluate n~lE(H"1S,) cmmnmﬂv ,Hm.ﬁw
for f(z), retaining terms up to o(h?).

c) dmwﬁlnmvogovmm. ’s inequality show, on a componentwis
P(IH™Y(S, = E(S.))| > €) = 0 for all € > 0. Hence, shov
H1S, - f(z) \ W (v) A(v)dv
in probability.
d) Using (5.24) and the local likelihood equations, show

\ log m (=)

\ o

in Umonga. and that the local likelihoud density estin
consistent.

Ha —

5.2 Corsider local log-quadratic densi

ty estimation in d dimension:
the Gaussian weight function. >

a) Write .aoi.: the local likelihood equations. Express the
hand side in terms of the multivariate integrals

u
\.S\ Amv mn+vu.=+=.~,0:&=m
\. uW AHIMV mn+ou.=+=.~.0=&§ |
.\,.E.GQ,S\ AMV mn+eu.=+=n.0=n~ﬁ. {

Here, b is a vector in R4

and C is a symmetric d x d mat;
b) Show .

.\‘S\ AMV mn+eu.=+=n.0=&.:

= (202 exp(a-+ J6"M"%) det(M)/2

where M = h=2]-2C. Derive closed forms for (5.25) and (¢
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¢) Provide a closed form solution for the density estimate. What
condition is necessary for existence of the estimate? Is the pa-
rameter space open?

6

Flexible Local Regression

5.3 Consider the log-likelihood £:()e,z) with fixed a, [|a]] = 1. Suppose
a does not satisfy the conditions of the vector ap in Theorem 5.1.
That is, either (a, A(X; —z)) # 0 for some i with w;(z) > 0 or
(a, A(u — z)) has both positive and negative regions on the support
of W({u — z)/h). Show that Lz(\a) — —oo as A — Foo.

5.4 Izenman and Sommer (1988) and Sheather (1992) have fitted kernel
density estimates to the postage stamp data (Example 5.4) using
the Gaussian kernel and standard deviation about 0.0013. In LOCFIT
terms, this is a constant bandwidth of 2.5 x 0.0013 = 0.0C325.

a) Evaluate and plot this fit. Compare with the local log-quadratic
fit (Figure 5.3) and the data, Is the kernel estimate adequate for
modeling the peaks?

b) Develop an LSCV algorithm for discrete Poisson regression for
kernel density estimation. Use the loss function Y, (B — pi)*
where p; is the probability of the ith bin. The cross valida-
tion should use leave-one-observation-out; not leave-one-bin-out.
Consider the behavior of LSCV(h) at small bandwidths. In par-
ticular, show it has a finite limit as b — 0 (Bonus: Use the
influence function; don’t restrict to deg=0).

¢) Write an S function to evaluate the discrete LSCV criterion using
a LOCFIT fit. Apply this [unction to the postage stamp data.
Compare with the results of Sheather (1992).

In this chapter we look at the flexibility that can be obtained by che
the components .o». local regression: the coefficients, the fitting criteri
the weight functions. The specific problems studied include:

* Higher order coefficients and local slopes (section 6.1).
* Periodic and seasonal smoothing (Section 6.2).

e One-sided sm i i : . . .
Remark. The point of this exercise is that discrete data does not have 6.3). oothing and discontinuous function estimation (S¢
densities, and this is particularly important for model selection when

small bandwidths are used. * Robust local regression (Section 6.4).

6.1 Derivative Estimation

_wﬂ?wn.?a.wno .wm natural interest in many settings. At the most basic

HrM derivative AsvHBmmmE.mm the effect of the independent variable
mean response. i '(z) = 0 impli i

the rmear p n particular, u'(z) = 0 implies the covariate is h,
_>m mavg.mmnma. in Mwonmou 6.1.1, the problem of derivative estimat;

MNM:& by Eonsmm?:n.% and interpretation difficulties. To make any

am way, one must be §.E=m to assume that if the local polynomial fit
ata within the smoothing window, then the local slope provides a

approximation to the derivative. Thi -
estimate. vative. This leads to the following local :




