

Descomposición anaeróbica de C orgánico

In the absence of oxygen, this is what occurs in soils, sediments, sludge, etc. to return organic matter to its simplest forms

Figure 19.23. Anoxic decomposition. Shown is the overall process of anoxic decomposition, in which various groups of fermentative anaerobes cooperate in the conversion of complex organic materials ultimately to methane (CH4) and CQ2.

Brock, 2000

Fundamentos del proce	SO
TABLE 1 Conversion of ethanol to methane ^a	∆G°′ kJ
Ethanol $CH_{2}CH_{2}OH(aq) + H_{2}O(l) = CH_{3}COO^{-}(aq) + H^{+}(aq) + 2H_{2}(q)$	9.65
Hydrogen $2H_2(g) + \frac{1}{2}CO_2(g) = \frac{1}{2}CH_4(g) + H_2O(l)$	- 65.37
Acetate $CH_3COO^-(aq) + H^+(aq) = CH_4(g) + CO_2(g)$	- 35.83
Net CH ₃ CH ₂ OH(aq) = $3/2$ CH ₄ (g) + $1/2$ CH ₂ (g)	- 91.55
aThermodynamic values from Reference 4.	
first reaction cannot proceed unless the H ₂ -consum	ning organisi
uce the hydrogen partial pressure so that ΔG becom	es negative
Province CMI PADULAD DE CIENCIAS CI7115 - Biotecnología Ambiental From McCarty a	and Smith (1986)

Fundamentos de	el proceso	
V. Nutrient requirements		
See also Table 13.3 of textbook	NH_3 -N - as nee PO_4 -P - as need KCI $CaCI_2$ $MgSO_4.2H_2O$ $CoCI_2$ $FeCI_2$ $NiCI_2$	ded ded 50 50 300 0.5 10 0.5
Provide CMI Provide CMI Provi		

Ejemplos	
TABLE 2 Conversion of propionate and butyrate to methane ^a	∆G°′ kJ
Propionate CH ₂ CH ₂ COO ⁻ (aq) + 2H ₂ O(I) = CH ₂ COO ⁻ (aq) + 3H ₂ (q) + CO ₂ (q)	71.67
Hydrogen $3H_2(q) + \frac{3}{4}CO_2(q) = \frac{3}{4}CH_4(q) + \frac{3}{2}H_2O(1)$	- 98.06
Acetate $CH_{2}COO^{-}(aq) + H^{+}(aq) = CH_{4}(q) + CO_{4}(q)$	- 35.83
Net $CH_3CH_2COO^{-}(aq) + H^{+}(aq) + \frac{1}{2}H_2O(l) = \frac{7}{4}CH_4(q) \frac{5}{4}CO_2(q)$	- 62.22
Butyrate	49.20
Hydrogen P(x) = 1/2CO(x) + 1/2C	40.30
$2 \Pi_2(y) + \frac{1}{2} \nabla O_2(y) = \frac{1}{2} \nabla O_4(y) + \Pi_2 O(1)$ Acetate	- 00.37
Net $P(a_1) = 2CP_4(g) + 2CO_2(g)$	- /1.66
$CH_3CH_2CH_2COO^-(aq) + H_2O(I) + H^+(aq) = 5/2CH_4(g) + 3/2CO_2(g)$ "Thermodynamic values from Reference 4.	- 88.73
From McCarty and Smith (1986)	

Fermentación de CH₄ Practical applications: 1) Stabilization of organic sludge from wastewater treatment Energy production from farm residues Household usage in China, Korea, India Interest in large scale conversions in the United • States Treatment of high-strength industrial waste 4) Municipal solid waste: wet landfills and anaerobic composting 5) Direct treatment of sewage without primary settling. Brazilian engineers (Foresti and coworkers) have recently demonstrated that upflow anaerobic sludge blanket reactors can achieve reliable sewage treatment at full scale (at least in warm climates). CI7115 - Biotecnología Ambiental ICTIT

How much solids are destroyed?

$$f_s^{o} = (0.078 \text{ g vss/g COD})(1.42 \text{ g COD/g vss}) = 0.111$$

 $f_s = f_s^{o} \frac{(1+0.2b \theta_x^{d})}{1+b \theta_x^{d}} = 0.111 \frac{(1+0.2(0.015)(40))}{1+(0.015)(40)} = 0.0777$
 $f_e = 1 - f_s = 1 - 0.0777 = 0.9223$
COD consumption rate = Q°(S_{eff}°-S^e)
S_p°= γ X_d°=(1.5)(20 g vss/L) = 30 g COD/L

COD consumption rate = Q°(S_{eff}°-S^e) = 60(27.69-0.39) = 1638 kg COD/d (to cells and methane) Rate of conversion to cells = f_s (COD consumed) = (0.0777)(1638) = 127 kg COD/d VSS formed = 127 kg COD/d + 1.42 kg COD/kg vss = 89 kg vss/d formed Net vss destroyed = X_d degraded - vss formed = 1638/1.5 - 89 = 1003 kg/d destroyed Rate of COD conversion to methane = f_e (COD consumed) = (0.9223)(1638) = 1510 kg COD/d Volume methane produced at STP = (1510 kg COD/d)(0.35 m³/kg COD) = 528 m³/d Volume methane produced at 35°C = $(529 m³/d) \left[\frac{273+35}{273} \right] = 597 m³/d$

Rango de pH óptimo para procesos biológicos					
	<u>Organisms</u>	Function	<u>pH range</u>		
	Nitrifiers	Oxidize ammonia	6-9		
	Denitrifiers	Reduce nitrate to N ₂	6-9		
	Acidogens	Convert BOD_L to VFAs	6		
	Acetogens	Convert propionic acid and butyric acid to acetic acid	7 optimal		
	H ₂ -utilizing methanogens	Convert $H_2 + CO_2$ to methane	7 optimal		
	Acetoclastic methanogens	Convert acetic acid to methane	> 6.6 (7 optimal)		
	PAOs	Accumulate excess phosphorus	>7.2		
	Ingeniería Civil Fáculta d de clencias Fáscas V AretNaticas UNIVERSIDAD DE CHILE				

Methane fermentation

 \bullet Sufficient buffer must be present for CO_2 and for potential accumulation of volatile fatty acids

- pH of 6.6-7.8 is needed (Best at pH > 6.8)
- Bicarbonate buffering controls the pH
- % CO_2 in the gas controls CO_2 in solution
- Typical alkalinity requirement: 1500-4000 mg/L as CaCO₃

Alkaline		How many kg of the buffer		1995 Cost(\$)
buffer	Dissolution and Neutralization	are equivalent to one kmol of	Commonte	per kmc
CaCO ₃	$CaCO_3 + 2H^* = Ca^{2*} + H_2CO_3$ $CaCO_3 + H_2O + CO_2 = Ca^{2*} + 2HCO_3^{-1}$	ancanny t 100 g of CaCO ₃ neutralizes 2 moles of strong acid, 100 g of CaCO ₃ reacts with CO ₂ to make 2 moles of HCO ₃ . We have 100 + 2 = 50 kg CaCO ₃ per kmol of alkalinity.	Poor solubility restricts alkalinity to 1400-1500 mg/L as CaCO ₃	Not availabl (cheap)
Na ₂ CO ₃	$Na_2CO_3 + 2H^+ = 2Na^+ + H_2CO_3$ $Na_2CO_3 + H_2O + CO_2 = 2Na^+ + 2HCO_3^-$	106 ÷ 2 = 53 kg	Na is inhibitory at 3,500 mg/L. Na deflocculates soil.	11.55
K ₂ CO ₃	Like Na ₂ CO ₃	136÷ 2 = 68 kg	K is inhibitory at > 2,500 mg/L.	Not availabl
(NH ₄) ₂ CO ₃	$(NH_4)_2CO_3 = 2NH_4^+ + CO_3^{2-}$ $CO_3^- + 2H^+ = H_2CO_3$	96 ÷ 2 = <mark>48 kg</mark>		Not availabl
CaO (lime)	$\begin{array}{l} CaO + 2H_2O = Ca(OH)_2 \\ Ca(OH)_2 + 2H^* = Ca^{2+} + 2H_2O \\ Ca(OH)_2 + 2CO_2 = Ca^{2+} + 2HCO_3^- \end{array}$	56÷ 2 = <mark>28 kg</mark>	Can cause severe scaling @ pH>6.8. Can create a vacuum in a closed system.	3.74
MgO	Like CaO	40 ÷ 2 = 20 kg	Low solubility reduces chance of pH overshoot.	7.71
NaHCO ₃	NaHCO ₃ + H ₂ O = Na ⁺ + HCO ₃ HCO ₃ + H ⁺ = H ₂ CO ₃	84 kg	Exactly the right form, but expensive.	36.89
NaOH	NaOH + H^+ = Na ⁺ + H_2O NaOH + CO_2 = Na ⁺ + HCO_3^-	40 kg	Can create a vacuum in a closed system	35.20
кон	Like NaOH	56 kg	Can create a vacuum in a closed system	Not availabl
NH ₃	$NH_3 + H^+ = NH_4^+$ $NH_3 + CO_2 + H_2O = NH_4^+ + HCO_3^-$	17 kg	Can be toxic. Released as	Not available