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ABSTRACT In this paper, we examine the main concepts of transport pricing in an urban environ-

ment, focusing on the automobile, public transport and walking or cycling as travel alternatives.

A review of the literature on the first-best and second-best pricing policies is provided, with an

emphasis on public transport pricing, including the setting of frequency and vehicle capacity, the

influence of bus congestion externalities and the interactions between transport pricing reforms

and the broader tax system. A model is developed to analyse the impact of non-motorized transport

on optimal public transport pricing policy, congestion interactions between cars and buses associated

with the transfer of passengers at bus stops and the existence of a capacity constraint within the

public transport mode.

1. Introduction

There have been extensive efforts made to analyse the merits of road pricing as a
tool to manage congestion and other transport externalities; however, the analysis
of road pricing for private transport has received a disproportionate amount of
attention relative to public transport and multimodal analysis. In this paper, we
focus on multimodal pricing, with an emphasis on public transport and the influ-
ence of non-motorized transport on optimal pricing decisions.

First, we review the main concepts associated with the economics of public
transport pricing. Second, we develop a multimodal pricing model incorporating
automobile, public transport and non-motorized transport. This model extends
the previous literature by identifying the role that non-motorized transport can
play in the optimal setting of fares for public transport, an issue raised by Kerin
(1992). We analyse how the optimal fare, frequency and vehicle size should be
determined when the capacity constraint is binding for a public transport
service, that is, when demand meets the capacity offered by the operator. The
imbalance in the demand distribution throughout the day is often associated
with a binding capacity constraint in high-demand peak periods, as observed
in many public transport systems. In the framework, we include the cost of
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externalities other than congestion, such as accidents, pollution and noise, and the
toll collection cost, all of which increase the marginal cost of motorized transport
compared with walking or cycling. The emphasis of this paper is not on the
numerical value of optimal fares and subsidies as reported in the literature, but
on the underlying economic principles.1

The paper is organized as follows. Section 2 reviews the basic concepts on
optimal pricing in urban transport. Section 3 extends the result on fares to the
analysis of several relevant outputs, such as frequency and capacity in bus trans-
port, the need for subsidies and interactions with other sectors of the economy,
and Section 4 develops a pricing model highlighting the main insights, with con-
clusions being provided in Section 5.

2. Setting Public Transport Fares: The First-Best and Second-Best Models

The analysis of transport pricing schemes usually distinguishes between the first-
best (in which all prices match marginal costs) and the second-best policies. As
reviewed by Quinet (2005), in the first-best world, there are no external effects,
no public goods, firms are price-takers, there is no tax or taxes are optimal,
there is no uncertainty or asymmetry in information, and there are no transaction
costs and no redistribution issues. However, transport systems in the real world
do not match these conditions, creating a second-best outcome.2 Technological or
acceptability constraints impose second-best situations within the transport
sector, given the impossibility of taxing at marginal costs all modes or all locations
in a network.

2.1 The First-Best Pricing

The principles of marginal cost pricing of private transport have a long history.3 In
the context of automobiles, it has been recognized that establishing a cost function
for the study of demand and welfare must include travel time as a key factor. In
the study of public transport pricing, Mohring (1972), Turvey and Mohring
(1975) and Jansson (1979) were the first to recognize this. The addition of user
time costs as an input in the social cost function of public transport proved to
have remarkable consequences for the application of the marginal cost pricing
rule. When an increase in demand is met by an increase in the frequency of
service, the travel cost of all users decreases due to savings in waiting time
(assumed to be inversely related to frequency), a phenomenon that is not observed
when only operator cost is considered in the public transport cost function. Con-
sequently, marginal cost lies below the average cost, which is the first-best argu-
ment for subsidizing public transport operation, as introduced by Mohring
(1972) and Turvey and Mohring (1975). Intuitively, a lower fare will encourage
more travellers to use public transport, which would be accompanied by an
increase in the optimal frequency that produces benefit for all passengers
(Jansson, 1993).

The first-best fare is the one that maximizes social welfare, defined as the sum of
user and operator benefits. The unrestricted solution of this problem is a well-
known result, that the optimal public transport fare equals total marginal cost
(i.e. the summation of user and operator marginal costs) minus the average user
cost (e.g. Else, 1985; Tisato, 1998). The principle of marginal cost pricing as a
means to achieve economic efficiency applies to public transport services, but
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with the subtraction of what users already ‘pay’ when using the service, that is,
their own time (Jara-Dı́az, 2007).

Several refinements to these basic principles have been introduced. The contri-
bution of Tabuchi (1993) highlights a renewed interest in the properties of the
bimodal equilibrium between private and public transport under different
pricing regimes. Instead of assuming static congestion for the automobile,
Tabuchi assumed a dynamic bottleneck that arises when the flow of cars
exceeds the capacity of the road (Vickrey, 1969; Arnott et al., 1993). With a
highly stylized model that ignores travel time as a cost for rail users and capacity
constraints, Tabuchi showed that as demand grows, it is more attractive to have a
rail-based alternative competing with cars, due to economies of scale in the former
mode and congestion externality in the latter mode. Subsequently, Danielis and
Marcucci (2002) extended Tabuchi’s two-mode approach to include budget con-
straints on rail operations, and Huang (2002) introduced a stochastic (logit)
modal choice model.

A different approach was presented by Kraus and Yoshida (2002), who adopted
the highway bottleneck model of Vickrey (1969) for the modelling of rail commut-
ing, assuming that users arrive at stations at the same time as trains do. They
showed that the average user cost increases with demand, that is, the opposite
result to the decreasing average user cost of all the Mohring’type models, a
result explained in part because the length of the peak period is not fixed, such
that as demand grows, the peak period enlarges (i.e. some passengers take
earlier trains), which increases the schedule delay cost at the destination, given
that the desired arrival time is fixed. Kraus and Yoshida (2002) provided an impor-
tant insight into how the scheduling considerations of users affect average costs of
travelling; however, their approach is less appropriate for modelling high-
frequency services, in which it has been empirically observed that passengers
arrive at stations or bus stops randomly at a more or less constant rate.4 Therefore,
the waiting time at stops exists even if the capacity constraint is not binding, and
consequently, the economies of scale induced by increasing frequency should be
accounted for.

Not only are additional benefits for users associated with a more frequent public
transport service, but costs could also be incurred if providing extra bus kilo-
metres has a negative effect on speeds for both buses and cars (Section 3.6). In
this case, an increase in frequency can augment total average cost, and Mohring’s
(1972) scale economies argument for bus subsidies no longer applies, as shown in
Mohring (1983). Nonetheless, there are a number of strategies that can be used to
make bus transport more efficient in order to minimize or avoid the congestion
related to high bus frequency. An example is the provision of faster fare collection
systems at bus stops, as analysed by Tirachini and Hensher (2011), who, using an
optimization model for congested bus corridors, showed that increasing total
costs are observed for high-demand services if passengers are allowed to pay
fares on boarding the buses, and frequency is over 120 veh/h, but decreasing
total costs are still obtained even for higher frequencies when the fare payment
is done before boarding buses.

2.2 The Second-Best Pricing

As widely recognized in the literature, several departures from ideal first-best
conditions exist in reality. In the case of public transport pricing, the most
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evident and analysed situation is where buses or trains compete with underpriced
cars, which imposes a second-best constraint on the determination of public trans-
port fares. The classical argument is that if cars are underpriced, there is an excess
of car travel; therefore, it would be welfare improving to reduce the public trans-
port fare in order to attract some car users to trains or buses, reducing the level of
congestion and other traffic externalities on the road network. This is a second
economic rationale to subsidizing public transport, after the economies of scale
(first-best) argument5 (Preston, 2008; Parry and Small, 2009). As argued by
Small (2008), from the first-best and second-best fare analysis, congestion charging
could be seen as a way to reduce the financial needs of public transport, since an
optimal road charge should decrease the subsidy required for public transport,
even if the revenue from road pricing is not earmarked to public transport.

Formal proofs that an alternative mode should be priced below the marginal
cost when cars are priced at the average cost instead of at the marginal cost can
be traced to Lévy-Lambert (1968), Marchand (1968) and Sherman (1971). The
idea, linked to competitive neutrality, was extended by Glaister (1974), who
found a second-best bus fare below marginal cost, not only in the peak period
but also in the (congestion-free) off-peak period, the latter due to two effects—
first, a low off-peak bus fare can attract peak car users, and second, peak bus
users are attracted to travelling by bus during the off-peak periods, which relieves
pressure in the peak periods, and therefore decreases the peak bus fare, which in
turn attracts more car travellers to public transport. More recently, Parry and
Small (2009) found that substantial gains in social welfare are obtained from
diverting car drivers into public transport (second-best argument) in peak
periods, whereas the case to subsidize fares due to the reduction of user costs
(scale economies—first-best argument) is stronger in the off-peak periods.

In summary, we found that setting public transport fares below the average
operator cost is supported by most of the formal analyses of pricing, resulting
in the call for an ‘optimal’ subsidy regardless of it being based on the first-best
or second-best grounds. Despite the rigorous analytical approaches and empirical
evidence, the extant literature has a number of limitations, associated, in particu-
lar, with the omission of non-motorized modes such as walking and cycling, and
the distortionary effect of bus subsidies, as identified by Kerin (1992). Some of
these factors have been accounted for in more recent research, such as possible
inefficiencies associated with subsidy (Section 2.3), the existence of tax distortions
and their interaction with the transport system (Section 3.5), and the impact of bus
congestion on travel times and operation costs (Section 3.6). In this paper, we
identify the potential influence of non-motorized transport on optimal pricing
decisions (Section 4).

2.3 Issues that Arise When Subsidizing Public Transport

Observed practice has shown a number of problems associated with public trans-
port subsidies that stylized first-best and second-best models have ignored. The
realization of the efficiency gains that optimal subsidies in theory yield in practice
depends on several factors, such as the form of the subsidy (e.g., operating
subsidy per passenger or passenger-kilometre vs. one-off grant), the structure of
the service provider (private or public company) and the relationship between
the provider and the subsidizing body (Else, 1985). Moreover, the authority may
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not have sufficient information on costs and demand to estimate the optimal level
of subsidy (Frankena, 1983).

A potentially major problem is the inefficiency induced in the operation of
public transport services by some types of subsidies (Bly et al., 1980; Cervero,
1984; Pickrell, 1985). Recent research has shown that there are ways to contain
the cost spiral in the presence of subsidy, through performance-based benchmark-
ing and the use of service quality indicators in service contracts (Hensher and
Prioni, 2002; Hensher and Stanley, 2003; Mazzulla and Eboli, 2006; Gatta and
Marcucci, 2007), action taken by the regulator to enforce penalties for poor per-
formance and the application of competitive tendering (Hensher and Houghton,
2004; Hensher and Wallis, 2005).

A related issue discussed by Preston (2008) comes from the distinction between
capital and operating subsidies. One-off subsidies targeted specifically at capital
investment may condition the decisions of policy-makers and operators
towards over-investing in capital, for example, acquiring more sophisticated or
newer vehicles instead of spending on the maintenance of the current fleet. Pre-
defined rail-specific capital subsidies may also lead to unjustified rail investments
in areas with low demand for public transport, with the second-round effect of
inducing an unnecessarily large subsidy for operations. Therefore, the correct ex
ante determination of capital and operating subsidies is crucial to ensure efficiency
in the allocation of resources to public transport service provision.

In general, the way in which an ‘optimal’ subsidy is paid is crucial, and the
business environment should be defined to minimize or eliminate potential
money waste induced by ill-designed subsidies. The design of contracts to
tackle this problem is a topic of ongoing research and continuous learning in
public transport agencies around the world.

3. Results that Matter

3.1 Optimal Frequency and Capacity

Optimal values of frequency and capacity are obtained when the marginal social
benefits are equal to their marginal cost. When the effect of frequency on waiting
and dwell times for users is taken into account, the first-best scenario over a single
route usually leads to some form of the square root rule for the optimal frequency,
first introduced by Mohring (1972) and later extended by several authors includ-
ing Jansson (1980), Jara-Dı́az and Gschwender (2003, 2009) and Jara-Dı́az et al.
(2008). An important and sometimes forgotten outcome is that the square root
rule does not necessarily mean that optimal frequency depends on the square
root of demand; this is a result of the first Mohring model (Mohring, 1972). Sub-
sequent extensions with more accurate representations of the user cost function
have shown that even though the square root form is maintained, demand
under the root appears to a degree higher than one, for example, the quadratic for-
mulation in Jansson (1980) that included the boarding and alighting impact on
travel time.6 Therefore, even though the functional form for the optimal frequency
is a square root when a single route is considered, it can vary with demand to a
power higher than 0.5 (e.g., around 0.8 as numerically found by Tirachini and
Hensher, 2011, with a model that includes bus congestion between stations).

A relevant issue for the economic analysis of pricing options is the determi-
nation of the optimal change in public transport frequency and capacity when
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road pricing is introduced. The answer is not straightforward; for instance,
Jansson (2010) found that bus frequency, when car travel is underpriced, should
be lower than that when marginal cost road pricing is in place due to the negative
impact of frequency on the environment and excessive congestion derived from
the greater-than-optimal car traffic. However, the bimodal rail–car analysis of
Kraus (2003) concludes that both rail frequency and capacity should increase if
cars are underpriced, assuming no congestion interaction and disregarding the
environmental cost associated with rail, assumptions that are relaxed in the
model given in Section 4. The existing literature does not offer unambiguous
evidence for the direction of change in frequency and capacity of public transport
after applying road pricing; indeed, the outcome seems to depend on the model-
ling assumptions. Bus (and rail) frequency should be increased with congestion
pricing in situations where the expected modal switching (given the relevant
cross-price elasticities) might lead to a shortage of service capacity, at least in
peak periods. The anticipation of modal switching in London and Stockholm
delivered increased buses in advance of the application of cordon pricing,
which was used to show that the revenue raised from the congestion charge
was being hypothecated back to the transport sector for the benefit of modal
switchers.

3.2 When the Capacity Constraint is Binding

Capacity constraints play a role in the optimization of public transport fares.
Transport capacity on a public transport route is given by the product of service
frequency f and the capacity of vehicles K. This transport capacity sets the
maximum flow that the service is able to accommodate in a given period of
time. The first transport pricing study to consider capacity considerations is that
of Glaister (1974), who found that the bus fare should include the shadow price
of capacity, that is, the extra social benefit achieved if capacity is increased by
one unit. Glaister did not provide an expression for the shadow price of capacity
because capacity is not an optimization variable in his model, but Pedersen (2003)
and Small and Verhoef (2007) derived an expression for the shadow price of
capacity as a function of user and operator cost parameters, which is added to
the optimal fare when the capacity constraint is binding.

Another argument to increase bus fares when the capacity constraint is binding
was provided by Turvey and Mohring (1975), who argued for higher fares when
buses run full (or close to full), as this increases the probability of passengers not
being able to board the first bus that arrives at their stop and having to wait for one
or more buses to continue their trip.

In summary, transport capacity appears to play a role in increasing both the
first-best and second-best fares when the system is operating at capacity. Never-
theless, the fact that the capacity constraint is binding does not necessarily
mean that the provided frequency and bus size are not optimal. This issue is ana-
lysed in Section 4.

3.3 The Effect of Including Other Externalities Beyond Congestion

When environmental externalities are included in the first-best pricing models,
optimal prices increase for motorized modes, which would in turn reduce the
first-best subsidy calculated for public transport (Kerin, 1992). However, the
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second-best analysis is different. Taking the case of fuel emissions, one bus is likely
to pollute more than one car, but it can carry more people with a single vehicle,
thus reversing the result of comparing vehicles only; that is, the marginal external
cost of car users is usually higher than that of public transport riders;7 therefore, it
is expected that the fare premium on optimal prices associated with considering
externalities other than congestion is greater for private transport than for
public transport. On second-best grounds, this would tend to reduce the bus
fare even more and consequently justify higher subsidies (Else, 1985).

The contribution of environmental and accident externalities to optimal fares
relative to the congestion externality strongly depends on the specific application,
in particular, on the degree of congestion observed. It is common that in peak
periods in highly urbanized areas, the marginal cost of congestion is significantly
higher than that of other externalities, whereas in the off-peak periods, the exter-
nal costs of congestion, accidents and pollution have approximately the same
order of magnitude, as reported by De Borger et al. (1996) for Belgium and
Parry and Small (2009) for London and US cities. Therefore, we can conclude
that ignoring externalities other than congestion should not have a substantial
impact on fares in the peak period, but it does matter for off-peak travel.

3.4 Dedicated Bus Lanes

The study of private and public transport pricing options is different if modes
share the right of way or run on segregated roads. Mohring (1983) analysed the
convenience of having reserved lanes for buses and found that travel cost
savings of providing dedicated road infrastructure for buses are small when mar-
ginal cost pricing is in place, but considerable benefits are obtained when toll and
fare constraints are present (second-best scenarios), to the point that the travel cost
in a situation with exclusive bus lanes, toll and bus fare constraints is only slightly
higher than that when first-best pricing is implemented for mixed-traffic (bus–
automobile) roads. Berglas et al. (1984) showed that if travel cost decreases with
road width, and the cost of separating the right of way for buses and cars is
zero, the mixed-traffic operation is never superior and is more likely to be inferior
than providing exclusive lanes for buses and cars, given that a bus passenger has a
lower contribution to congestion than a car user.

The superiority of providing exclusive bus lanes was supported by Basso and
Silva (2010), who using data from Santiago de Chile found that the provision of
one-bus lane on a corridor increases social welfare with respect to any scenario
in which buses and cars share the right of way (even when optimal pricing is
applied in mixed traffic but not for exclusive bus lanes). The optimal operation
with dedicated bus lanes is translated into a lower requirement on the number
of buses, a lower bus fare and higher frequency, providing large benefits for
bus users.

In summary, implementing dedicated bus road infrastructure to reduce travel
costs is shown as being slightly worse (Mohring, 1983) or better (Basso and
Silva, 2010) than providing marginal cost pricing on mixed-traffic conditions;
however, there is the added advantage that bus lanes as a transport policy tool
are likely to be more politically and sociably acceptable than imposing marginal
cost pricing (Mohring, 1983), a fact that is evident when comparing the number
of cities in which marginal cost pricing has been implemented in contrast to
cities with dedicated bus lanes. A limitation of all economic models incorporating
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bus lanes is that they abstract from the extra cost of reserved bus lanes produced
by diversions and extra delays at intersections, as some movements need to be
prohibited for cars. This consideration is likely to reduce the welfare gain esti-
mates of segregated bus lanes; however, it is unlikely to change the conclusions
obtained by the authors.

3.5 Interactions with Other Sectors of the Economy

The previous analyses and results are based on partial equilibrium models that
abstract from the interaction between transport and other sectors of the
economy. This is a significant issue because the findings of a partial equilibrium
model establish, for example, the need to subsidize public transport, but say
nothing as to how that subsidy should be financed and what its repercussions
are on the wider fiscal system. In order to answer these questions, one needs a
general equilibrium model to estimate the impact of transport pricing reforms
on the government budget, the labour market, land use, firms and so on.8

As to how to fund public transport subsidies was first analytically addressed by
Dodgson and Topham (1987), who investigated the efficiency of raising the
subsidy for public transport through an increase in the tax on other goods. The
convenience of such a subsidy strongly depends on the marginal cost of public
funds (MCF), which measures the welfare loss for society in raising additional
revenue to finance public spending through the application of distortionary
taxes (Browning, 1976; Kleven and Kreiner, 2006). The MCF depends on what
tax instrument is used to increase government revenue (e.g., uniform lump sum
tax and income tax), and hence the welfare analysis of transport pricing policies
depends on the source of the money required to cover financial deficits or invest-
ments (Proost et al., 2007; Calthrop et al., 2010), or how the revenue is allocated if
there is a surplus.

What is the impact of wider fiscal considerations on optimal fares and subsi-
dies? It is expected that estimated public transport subsidies would decrease,
given that when there is no account as to how the subsidies are funded, their
cost is misrepresented in the social welfare analysis (Kerin, 1992). This issue can
be analysed in a simple (but not complete) way that avoids dealing with
general equilibrium models, by simply including the marginal cost of public
funds in partial equilibrium models, as implemented, for example, by Proost
and Van Dender (2008), who found that road prices and public transport fares
increase in the presence of costly public funds, as the benefits of generating
revenue to be used elsewhere in the economy (or the benefits from reducing the
subsidy for public transport) are taken into account. A similar conclusion was
reached by Parry and Small (2009), who suggested that fiscal considerations
would decrease optimal public transport subsidies in the USA, but not to the
point of jeopardizing their need on second-best grounds.

In summary, approaching the problem by including the MCF in the net reven-
ues of a transport intervention in a partial equilibrium model is useful as a first
approximation to assist in answering the question as to how tax distortions
affect, and are affected by, reforms in the transport sector, but a fuller understand-
ing requires a general equilibrium model. For example, the impacts of reduced
congestion on other markets (as shown by Parry and Bento, 2001, for the
income tax), derived from a public transport subsidy, are not going to be captured
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with an approach that only considers the MCF as representing the rest of the
economy (Calthrop et al., 2010).

3.6 Effects of Bus Congestion and Congestion Interactions

Traditional first-best models consider that the travel time of buses is fixed in
between bus stops, that is, there are no time delays caused by cars and buses them-
selves (e.g., Mohring, 1972; Jansson, 1979). This assumption is plausible for
services in which the frequency is relatively low, with no noticeable bus inter-
action due to bunching or queuing delays behind bus stops. Nevertheless, as
frequency grows, it is more likely that buses will arrive at bus stops when there
are other buses transferring passengers, with queuing delays arising at bus
stops. This is a relevant issue for pricing analysis, since frequency-induced con-
gestion increases bus travel time for users and operators, in contrast to the econ-
omies of scale effect on reducing waiting times (Kerin, 1992).

A technical problem when bus congestion is included in formal pricing analysis
is that the bus congestion technology has not been realistically understood and
defined because of the myriad number of factors that influence how buses interact
with each other, with other modes and with passengers. In theoretical models, the
authors typically apply bus flow–delay functions borrowed from car traffic
models, such as the linear function implemented by Ahn (2009) and the Bureau
of Public Roads (BPR) function used by Fernández et al. (2005) and Wichiensin
et al. (2007). These are not necessarily good representations of the interaction
between buses and cars, bus stops and passengers. Moreover, these functions
do not explicitly account for the fact that buses have to stop at bus stops, which
is sometimes implicitly internalized by applying to buses a large passenger car-
equivalency factor, for example, to assume that a standard bus is equivalent to
four or five cars (Parry and Small, 2009).

More recently, there have been improvements in the characterization of bus con-
gestion technology. Basso and Silva (2010) proposed a non-linear function for bus
frequency that accounts for the delay that cars experience when buses stop at a bus
stop, in such a way that the mean delay transferred to cars is small when bus fre-
quency is low and equals bus dwell time when bus frequency is high. Another
example is that given by Tirachini and Hensher (2011), who estimated bus
queuing delay functions at bus stops as a function not only of the bus frequency
but also of the number of passengers being transferred and the fare payment tech-
nology used by passengers (e.g., cash, magnetic strip, contactless card and off-
board payment). The travel time functions are consequently more realistic than
traffic-borrowed formulae for the analysis of congestion induced by bus stops.

We are far from a realistic characterization of the phenomenon of congestion
when urban buses are involved. The inclusion of engineering or simulation
models that deal with bus dynamics at bus stops (Fernández and Tyler, 2005;
Fernández, 2010) into economic pricing analysis is a possible way forward to
improve our understanding of bus and car delays in mixed systems and its impli-
cations for pricing policy.

3.7 Non-motorized Transport

Second-best pricing models that consider only two modes—cars and transit (bus
or rail)—have found that subsidies for public transport are desirable, with fares
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offered below marginal cost, due to the underpricing of cars. However, as argued
by Kerin (1992), this approach overlooks the existence of other modes, notably
walking and cycling, that play a crucial role in urban transport systems, especially
for short trips. Disregarding non-motorized transport is a growing concern
because low bus fares not only deter some drivers from using their cars but also
divert walkers and cyclists into trains or buses, which is not necessarily a desirable
outcome. As such, a pricing model that also includes non-motorized transport
seems to be desirable in order to estimate the impact of these modes on (possibly
decreasing) optimal subsidies for public transport. To the best of our knowledge,
this issue has not been formally analysed in the first-best or second-best pricing
models. It is addressed in Section 4.

4. A Three-mode Pricing Model

4.1 Introduction

We propose a simple model that incorporates non-motorized transport and
revisits the impact of a capacity constraint on optimal public transport pricing.
Even though there are no analytical models that address the issue of the influence
of non-motorized transport on urban transport pricing policy, we do find that
walking and cycling are considered as travelling alternatives in applied models
(e.g., Safirova et al., 2006; Proost and Van Dender, 2008), but no attempt is made
to identify as to how the design of the pricing instrument would change by con-
sidering or ignoring walking and cycling.

4.2 Model Assumptions

Consider a single origin–destination pair and three modes: automobile (a),
public transport (b), which could be a bus or a rail-based mode, and a non-
motorized mode (e), which could be walking or cycling. At this point, we
need to distinguish between non-motorized modes as being complementary
or an alternative to motorized modes; walking is commonly an access and/or
egress mode in a trip chain that includes driving or riding a bus or train, in
which case the modes are complementary. In our model, we assume walking
or cycling as the (linehaul) mode, that is, as an alternative to choosing a motor-
ized mode (walking and cycling as an access mode is included in the motorized
alternatives). The competitiveness of walking and cycling is mainly associated
with trip distance and factors such as steepness, weather and availability of
safe walking and cycling facilities. In all situations, walking as a substitute to
motorized modes typically declines as distance increases. For example, in
Sydney, we found that 35.4% of total trips are shorter than 2 km and 24.9% of
total trips are between 2 and 5 km; on these distance ranges, 65.8% of trips
shorter than 1 km are walking-only trips, a fraction that is 23.6% for trips
between 1 and 2 km and 5.4% for trips between 2 and 5 km (TDC, 2010).
Donoso et al. (2006) reported a similar pattern for Santiago de Chile. Then,
there is a (location-specific) distance range in which walking is an alternative
for motorized modes.

In the model, the decision variables are optimal prices for both automobile and
public transport, and frequency and size (capacity) of buses or trains. We consider
only one period of operation,9 which allows us to find a closed-form formula for
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the optimal prices of automobile and public transport to shed light on the impact
of non-motorized transport and capacity constraints. Road capacity is fixed and
tax distortions are ignored.

We follow much of the notation of Small and Verhoef (2007). Ignoring income
effects, the joint demand for the three modes can be obtained from the benefit
function B(qa, qb, qe), which expresses the consumers’ willingness to pay for a
particular combination {qa, qb, qe} of travel by automobile, public transport
and non-motorized mode. The inverse demand function di for mode i is
given by

di(qa, qb, qe) = ∂B(qa, qb, qe)

∂qi
, i [ {a, b, e}. (1)

Let Ci and ci be the total and average cost functions of mode i, respectively,
including both time and operation costs, that is

Ci = qici. (2)

Let ca(qa, qb, fb, Kb) and cb(qa, qb, fb, Kb) be the average costs of car and bus
travel, respectively. We assume that these cost functions depend on car demand
qa, bus frequency fb and bus capacity Kb (related to bus size), and the activity of
buses at bus stops, which is given by fb, qb and Kb if dwell time increases with
crowding. The relationship between car demand qa and car flow fa is fa = yaqa,
where ya is the inverse of the average occupancy rate per car.10 Bus cost cb includes
user cost cu (access, waiting and in-vehicle time costs) and operator cost co (which
depends on bus frequency and size); hence

cb = cu + co. (3)

We assume that the travel time associated with walking or cycling is fixed and
independent of demand or flow of any mode, that is, the non-motorized mode is
uncongestible.

In equilibrium, the marginal benefit is equal to the generalized price, ca + ta

and cu + tb for cars and public transport (Equation (4)), respectively, where ta

is the road use charge for the automobile and tb is the fare for public
transport:

∂B

∂qa
= ca + ta,

∂B

∂qi
= cu + tb. (4)

We assume that the public transport mode is a bus that shares the right of way
with cars, resulting in congestion dependence between the two modes. The case
of trains or buses running on segregated busways is a particular case of the
above, derived after assuming congestion independence between modes, as
usually assumed by researchers who address the rail–car pricing problem
(Tabuchi, 1993; Arnott and Yan, 2000; Pels and Verhoef, 2007).

The social welfare function SW (5) is, maximized subject to a capacity constraint
for public transport vehicles, given by expression (6), which states that the
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transport capacity fbKb must be sufficient to carry total demand qb:

Max SW = B(qa, qb, qe) − qaca(qa, qb, fb, Kb) − qbcb(qa, qb, fb, Kb) − qece. (5)

subject to qb ≤ fbKb. (6)

4.3 The First-Best Pricing

To solve the constrained maximization problems (5) and (6), we set the Lagrange
function L given by

L = B(qa, qb, qe) − qaca(qa, qb, fb, Kb) − qbcb(qa, qb, fb, Kb) − qece + l[fbKb

− qb], (7)

where l is the Lagrange multiplier associated with constraint (6), that is, the mar-
ginal social benefit of increasing bus transport capacity by one unit. After applying
the first-order conditions (see the Appendix), we find that

ta = qa
∂ca

∂qa
+ qb

∂cb

∂qa
(8)

te = 0. (9)

Equation (8) is the well-known Pigouvian tax for cars, including here the mar-
ginal cost on bus cost due to car demand (the second term), whereas Equation (9)
shows that the price for walking or cycling is zero (the uncongestible mode).

The solution for the optimal bus fare, frequency and capacity depends on
whether or not the capacity constraint (6) is binding.

Case 1: Capacity constraint is not binding
In this case, l = 0 and the optimal fare is obtained as

tb = co + qa
∂ca

∂qb
+ qb

∂cb

∂qb
. (10)

The optimal frequency and capacity are obtained by solving the following
system of equations:

qa
∂ca

∂fb
+ qb

∂cb

∂fb
= 0 (11a)

qa
∂ca

∂Kb
+ qb

∂cb

∂Kb
= 0. (11b)

Case 2: Capacity constraint is binding
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In this case, constraint (6) is active, that is, qb = fbKb, and the Lagrange multi-
plier is l = 0. From Equation (A3),

tb = co + qa
∂ca

∂qb
+ qb

∂cb

∂qb
+ l. (12)

From Equation (A5), the marginal welfare benefit of capacity can be
expressed as

l = 1

Kb
qa

∂ca

∂fb
+ qb

∂cb

∂fb

[ ]
, (13)

and using that 1/Kb = fb/qb, we finally obtain

tb = co + qa
∂ca

∂qb
+ qb

∂cb

∂qb
+ fb

qa

qb

∂ca

∂fb
+ ∂cb

∂fb

[ ]
. (14)

Equation (14) shows the effect of the capacity constraint on the optimal bus
fare. A similar result was obtained by Pedersen (2003) in a model with no
car–bus interactions. When the capacity constraint is binding, one possibility
is to increase the frequency to satisfy constraint (6) to a higher-than-optimal
value. In that case, the term within the brackets in Equation (14) is positive
and represents the impact on car and bus marginal costs of the increased fre-
quency necessary to deal with a demand that the optimal frequency (solution
of Equation (11a)) cannot meet. Nevertheless, note that frequency and capacity
can be optimal and the capacity constraint can indeed be binding, if, for
example, there is no extra benefit of providing excess capacity (no crowding
or comfort costs), and therefore, once the frequency has been optimized, the
vehicle size is obtained as the minimum that satisfies Equation (6). In this
case, expression (14) is valid, but the capacity-related term within the brackets
is zero because the frequency is optimal (solution of Equation (11a)), and then
Equation (14) is reduced to the optimal fare (11) with no capacity constraints.
An important outcome of Equation (14) is that what really matters when
setting optimal fares is not if the capacity constraint is binding, but whether
or not the operator provides the optimal transport capacity.

4.4 The Second-Best Pricing

We can solve the same problem assuming that there is no road price for cars, that
is, ta = 0. The Lagrange function is

L = B(qa, qb, qe) − qaca(qa, qb, fb, Kb) − qbcb(qa, qb, fb, Kb) − qece + l[fbKb − qb]

+ ga ca −
∂B

∂qa

( )
+ gb cu + tb −

∂B

∂qb

( )
+ ge ce −

∂B

∂qe

( )
.

(15)

The first-order conditions are given in the Appendix.
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We can simplify the differential notation as follows:

∂2B

∂qi∂qj
= ∂2B

∂qj∂qi
; Bij. (16a)

∂ci

∂qj
; cij, (16b)

where Bij is the derivative of the inverse demand di in Equation (1) with respect to
qj, that is, it measures a marginal change in willingness to pay for mode i due to a
marginal change in the amount of travel on mode j. If there is no substitution
between two modes then Bij = 0. If all modes are substitutes (e.g., an increase in
bus fare would increase the amount of car and non-motorized travel), then Bij , 0
∀ i, j. On the other hand, Bij . 0 would mean that i and j are complements.
Moreover, as Kraus (2003) discussed, following standard microeconomics for
utility maximizing consumers, it should hold that (assuming that trip demand
is independent of income) Bii ≤ 0 and BiiBjj . BijBji for any modes i and j.

Case 1: Capacity constraint is not binding
After some algebraic manipulation, we obtain the second-best bus fare tSB

b as

tSB
b = tb − (qacaa + qbcba)

cab − Bab + (BaeBbe/Bee)
caa − Baa + B2

ae/Bee
, (17)

where tb is the first-best fare (10). Unlike the first-best pricing rule, under the
second-best rule, the non-motorized mode plays a role through the substitution
parameters Bae, Bbe and Bee. Note that if car is an uncongestible mode and does
not interact with buses, then the second-best correction is zero (the second term
on the right-hand side of Equation (17)), and consequently the second-best
fare is equal to the first-best fare, tSB

b = tb, analogous to a two-link road pricing
analysis when one link is uncongestible (e.g., Knight, 1924; Verhoef et al., 1996).

Two new results can be derived from Equation (17). First, if we assume that
there is no substitution between modes a and e and b and e, then Bae = Bbe = 0,
and Equation (17) is reduced to

tSB
b0 = tb − (qacaa + qbcba)

cab − Bab

caa − Baa
, (18)

which is the second-best bus fare considering only two modes, as obtained by Small
and Verhoef (2007), for the case in which there is no congestion interaction between
modes, that is, cab = cba = 0, and by Ahn (2009), who considered that bus demand
does not affect car travel time, that is, cab = 0. If cab = 0, the second-best bus fare
equals the first-best price (tSB

b0 = tb) when there is no cross-demand elasticity
between car and bus, that is, when Bab = 0, and therefore a low bus fare has no
effect on mode shifting, as noted by Small and Verhoef (2007) and Ahn (2009). Never-
theless, when delays related to bus passenger activities affect cars (cab = 0), the
second-best fare (18) is not reduced to the first-best fare (10) even if Bab = 0 (noting
that this does not mean that the second-best fare decreases with cab because cab

increases the first-best fare tb in Equation (18), as shown in Equation (10)).
Second, Equation (17) can be used to formally assess Kerin’s (1992) claim that

second-best fares obtained by considering car and public transport only are
likely to be lower than the optimal fares if the analysis is extended to walking
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and cycling. A comparison between Equations (17) and (18), assuming for illustra-
tive purposes that demand and congestion levels are the same, indicates that the
second-best bus fare will be larger when considering non-motorized transport if

t SB
b . t SB

b0 ⇔ Bbe

Bae
.

cab − Bab

caa − Baa
, (19)

that is, the larger the value of Bbe and the lower Bae and Bab (in absolute values), the
more likely is Equation (17) to be greater than Equation (18). The intuition behind
this result is that if the modal substitution between public transport and non-
motorized modes (Bbe) is strong relative to the substitution between car and
public transport (Bab) and car and non-motorized modes (Bab), a lower public
transport fare attracts more passengers who would otherwise be walking or
cycling than driving. But note that the change could go the other way as well
(tSB

b , tSB
b0 ) if the modal substitution between automobile and non-motorized

transport is stronger than that between public transport and non-motorized
modes (low value of Bbe/Bae). Certainly, the result depends on trip distance,
since for long trips cycling and walking are unlikely to be an option (as discussed
in Section 4.2 when we analysed modal split per trip distance), which means Bae =
Bbe = 0 and the analysis can be reduced to motorized modes only.

Optimal frequency and bus capacity are the solution of

(qa − ga)
∂ca

∂fb
+ qb

∂cb

∂fb
= 0, (20a)

(qa − ga)
∂ca

∂Kb
+ qb

∂cb

∂Kb
= 0 (20b)

with ga = (qacaa + qbcba)/(caa − Baa + B2
ae/Bee).

That is, in the second-best case, the congestion externality of buses to cars is less
internalized because ga . 0, as commented by Ahn (2009), the intuition being that
due to the underpricing of cars, the negative effect of buses on car travel time
should be weighted less. If there is no congestion interaction, that is, ∂ca/∂fb = 0,
the rules for the first-best and second-best frequencies and bus capacities are
the same (Equations (11) and (20)), then a higher bus demand qb in the first-best
case (due to the pricing of cars) would make the first-best frequency higher
than the second-best one, which is not a straightforward result with cross-conges-
tion, due to the presence of ga in Equation (20a).

Case 2: Capacity constraint is binding
Analogously to the first-best case, the second-best bus fare is obtained as

tSB
b = tb − (qacaa + qbcba)

cab − Bab + BaeBbe/Bee

caa − Baa + B2
ae/Bee

+ fb
qa − ga

qb

∂ca

∂fb
+ ∂cb

∂fb

( )
. (21)

4.5 Extensions: Other External Costs and Collection Costs

In this section, we extend the preceding approach by including more cost
components, namely toll collection costs and external costs such as accidents,
pollution and noise. The toll collection and operator costs are usually disregarded
from the formal analysis of pricing policies, even though current road pricing
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schemes show that they are not negligible; operating costs account for 7% of the
revenues in Singapore, 25% in Stockholm and 48% in London (May et al., 2010),
mostly influenced by the choice of technology for charging and enforcement.11

A simple way to include operating costs OC is proposed in

OC(qa) = oc0 + oc1qa, (22)

where oc0 is a fixed cost and oc1 is the marginal cost per transaction. The fare col-
lection cost for public transport is partially included in the bus or rail operator cost
co (Equation (4)), which may include the fixed collection cost due to software
requirements plus fare payment devices at stations or vehicles. The cost per trans-
action, if not negligible, can be incorporated in the same way as Equation (22).

External costs EC other than congestion (see Section 3.4) can be expressed as
follows:

EC(qa, qb, fb, Kb) = yaqaECa(qa, qb, fb, Kb) + fbECb(qa, qb, fb, Kb), (23)

where ECa and ECb are the external cost rates per vehicle for car and public
transport (assuming the external costs of walking or cycling to be zero), and the
car flow is fa = yaqa, where ya is the inverse of the average occupancy rate per
car. Expressions (22) and (23) can be subtracted from the social welfare formula
(5) to derive the first-best and second-best pricing results. Denoting
ECij ; ∂ECi/∂qj, the results for the first-best prices are

ta = qacaa + qbcba + oc1 + yaqaECaa + yaECa + fbECba, (24)

tb = co + qacab + qbcbb + yaqaECab + fbECbb. (25)

Since external costs other than congestion are assumed to be positive for car
and bus users, it is likely that the result of expressions (24) and (25) will be
greater than the optimal prices when considering only congestion externalities
(Equations (8) and (10)), and therefore, the internalization of accidents, noise or
pollution costs would increase the generalized cost of motorized transport
modes compared with non-motorized modes (although the final result
depends on the sensitivity of demands qa and qb to price) and reduce the
amount of subsidy for public transport on first-best grounds. The second-best
analysis can be undertaken in the same fashion. Regarding the toll collection
costs, only the marginal cost per transaction oc1 shows up in the optimal toll
(24); however, the fixed cost of collection oc0 in Equation (22) is accounted
for in the calculation of social welfare; furthermore, oc0 may be so high that
the total collection cost is larger than the welfare gain from the internalization
of the external cost, in which case tolling is not welfare improving unless a
more cost-effective way of collecting tolls is implemented.

5. Summary and Conclusions

In this paper, we have reviewed some of the main issues associated with pricing in
urban transport, with special attention being paid to the pricing of public trans-
port services. The focus was on the economic fundamentals of pricing policies
and their implication for a number of variables and outputs and not on the
actual value of road prices, fares and subsidies obtained in the literature.
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We have developed a model to analyse some issues that have been partially
treated in the literature. It has been shown analytically that the effect of consid-
ering non-motorized transport alternatives on optimal public transport fares
depends on the demand substitution between modes; the stronger is the
demand substitution between public transport and non-motorized modes, rela-
tive to the substitution between automobile and public transport and automobile
and non-motorized modes, the more likely it is that a higher optimal public
transport fare would result when considering walking or cycling with respect
to fare setting.

We revisited the role of a capacity constraint in public transport service pro-
vision, which suggested that a capacity constraint plays a role in optimal
pricing only when the transport capacity cannot be set at its optimal level. We
also presented a way to include externalities other than congestion and toll col-
lection costs into the analysis of optimal pricing under the first-best and second-
best rules, which showed that the internalization of externalities other than con-
gestion is likely to increase optimal fares and road charges, therefore increasing
the generalized price of motorized transport modes relative to a non-motorized
alternative.

Future research needs to recognize the extended set of influences on optimal
pricing of public transport and the implications this has for identifying optimal
subsidy levels. For example, although travel time variability and modal reliability
are known to have a significant role in influencing the quality of service and
hence demand, the relationship between service reliability and pricing on
public transport needs to be better understood. Optimal investment in public
transport infrastructure, particularly in the case of buses, has also received
little attention in the literature on the economics of public transport, despite
being a topic of growing relevance nowadays as high-performance urban bus
systems (Bus Rapid Transit or BTR) are spreading quickly in cities around the
world (Wright and Hook, 2007; Hensher and Golob, 2008). The examination of
high-performance–high-demand bus-based systems also highlights the impor-
tance of analysing bus congestion and crowding costs in the context of pricing
decisions and public transport service design. Alternative modes such as motor-
cycles have not been included in the analysis and could be accommodated in
future developments with a special qualification, as in this case the estimation
of congestion, and particularly accident externalities, is harder to establish in a
multimodal setting in which motorcycles may share the right of way with cars,
buses, trucks and bicycles.

Other areas worthy of further research include building in preference hetero-
geneity for the fuller set of attributes, recognizing the wider economic impacts
of transport pricing, and the distributive justice implications of road pricing. Dis-
tributional concerns emphasize the need for a general equilibrium approach to
identify who is affected by the taxes levied to fund transport projects or subsidy
for public transport (Dodgson and Topham, 1987; Proost et al., 2007). In ongoing
research, Hensher is developing a new referendum model to identify the impact
of alternative road pricing schemes on community acceptability; the modelling
approach conditions preference heterogeneity by the believability of subjective
evidence judgements. The political economy of road pricing suggests that the
use of toll revenues to subsidize public transport is crucial for the ex ante public
acceptability of road pricing reforms (Marcucci et al., 2005; De Borger and
Proost, 2012).

Multimodal Transport Pricing 197

D
ow

nl
oa

de
d 

by
 [

K
.U

.L
eu

ve
n 

- 
T

ijd
sc

hr
if

te
n]

 a
t 0

0:
50

 0
1 

Ju
ne

 2
01

2 



Acknowledgements

This work has received financial support from Conicyt (Chile) through its pro-
gramme of PhD scholarships. The detailed comments of two anonymous referees
have greatly improved the final version of the paper.

Notes

1. For numerical comparisons on fares and subsidies, among several studies, see Proost and Van
Dender (2008) and Parry and Small (2009).

2. See Rouwendal and Verhoef (2006) or Small and Verhoef (2007) for a more detailed discussion on
second-best issues.

3. The history of road pricing and the evolution of the research on this topic have been extensively
reviewed by Marcucci (2001) and Lindsey (2006). For a detailed survey on road pricing issues,
see Tsekeris and Voß (2009).

4. A headway of 10 min or shorter is usually taken as the one that makes most passengers to ignore a
timetable.

5. Other arguments in favour of subsidizing public transport include pursuing distributional or social
objectives and option values, which are not treated in this paper (see Kerin, 1992; Preston, 2008).

6. Another extension is including route density as a decision variable, in which case, the optimal fre-
quency results in a cubic root of a function of demand (e.g., Kuah and Perl, 1988; Chang and Schon-
feld, 1991; Small, 2004).

7. As empirically found for pollution and accidents, but not for noise (De Borger et al., 1996). The
Milan Ecopass scheme is a pioneer in the application of differentiated charges based on the emis-
sion standard of vehicles (Rotaris et al., 2010).

8. For an extended discussion on the advantages of general equilibrium models, see Calthrop et al.
(2010).

9. Examples of multiperiod analyses are Glaister (1974), Glaister and Lewis (1978), De Borger et al.

(1996) and Proost and Van Dender (2008).

10. We assume that the occupancy rate does not change with pricing reforms, that is, we ignore the
possibility of car-pooling if road price increases.

11. In the case of London, other authors presented higher estimates of operating costs. Prud’homme
and Bocarejo (2005) estimated that in 2003 the London congestion charging scheme’s operating
costs were 85% of toll revenue and that net revenue would not be enough to cover the annualized
capital cost. Mackie (2005), Santos and Shaffer (2004) and Santos (2005) were more optimistic; they
concluded that the operating cost was, respectively, 75%, 72% and 53–60% of the net revenue.
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Appendix

The first-order conditions for first best (Section 4.3):

L=B(qa, qb, qe)− qaca(qa, qb, fb, Kb)−qbcb(qa, qb, fb, Kb)−qece +l[fbKb −qb], (A1)

∂L

∂qa
= ∂B

∂qa
− ca −qa

∂ca

∂qa
−qb

∂cb

∂qa
= 0, (A2)

∂L

∂qb
= ∂B

∂qb
−qa

∂ca

∂qb
− cb −qb

∂cb

∂qb
−l= 0, (A3)

∂L

∂qe
= ∂B

∂qe
− ce = 0, (A4)

∂L

∂fb
=−qa

∂ca

∂fb
−qb

∂cb

∂fb
+lKb = 0, (A5)

∂L

∂Kb
=−qa

∂ca

∂Kb
−qb

∂cb

∂Kb
+lfb = 0, (A6)

l[fbKb −qb]= 0. (A7)

Recalling the equilibrium condition (4), (A2) and (A4) yield results (8) and (9).
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The first-order conditions for second best (Section 4.4):

L = B(qa,qb,qe)−qaca(qa,qb,fb,Kb)

−qbcb(qa,qb,fb,Kb)−qece+l[fbKb−qb]+ga ca−
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( )
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l[fbKb−qb]=0. (A18)

202 A. Tirachini and D.A. Hensher

D
ow

nl
oa

de
d 

by
 [

K
.U

.L
eu

ve
n 

- 
T

ijd
sc

hr
if

te
n]

 a
t 0

0:
50

 0
1 

Ju
ne

 2
01

2 


