
Advanced C++
Alexandre Bergel

Pablo Pizarro
DCC - University of Chile

http://bergel.eu
03-01-2022

Roadmap

1. Tests (fixture, mock)

2. Debugging

Roadmap

1. Tests (fixture, mock)

2. Debugging

Googletest

 Popular framework to write unit tests in C++

 Allow one to define assertions, unit tests, test suite

Googletest - Example
// win = 1, draw = 0, loose = -1
TEST(CachipunClass, TestStone) {
 Scissor scissor;
 Paper paper;
 Stone stone;
 ASSERT_EQ(stone.play(scissor), 1);
 ASSERT_EQ(stone.play(paper),-1);
 ASSERT_EQ(stone.play(stone), 0);
}

// win = 1, draw = 0, loose = -1
TEST(CachipunClass, TestScissor) {
 Scissor scissor;
 Paper paper;
 Stone stone;
 ASSERT_EQ(scissor.play(paper), 1);
 ASSERT_EQ(scissor.play(scissor), 0);
 ASSERT_EQ(scissor.play(stone), -1);
}
// win = 1, draw = 0, loose = -1
TEST(CachipunClass, TestPaper) {
 Scissor scissor;
 Paper paper;
 Stone stone;
 ASSERT_EQ(paper.play(scissor), -1);
 ASSERT_EQ(paper.play(paper), 0);
 ASSERT_EQ(paper.play(stone), 1);
}

Googletest - Example
// win = 1, draw = 0, loose = -1
TEST(CachipunClass, TestStone) {
 Scissor scissor;
 Paper paper;
 Stone stone;
 ASSERT_EQ(stone.play(scissor), 1);
 ASSERT_EQ(stone.play(paper),-1);
 ASSERT_EQ(stone.play(stone), 0);
}

// win = 1, draw = 0, loose = -1
TEST(CachipunClass, TestScissor) {
 Scissor scissor;
 Paper paper;
 Stone stone;
 ASSERT_EQ(scissor.play(paper), 1);
 ASSERT_EQ(scissor.play(scissor), 0);
 ASSERT_EQ(scissor.play(stone), -1);
}
// win = 1, draw = 0, loose = -1
TEST(CachipunClass, TestPaper) {
 Scissor scissor;
 Paper paper;
 Stone stone;
 ASSERT_EQ(paper.play(scissor), -1);
 ASSERT_EQ(paper.play(paper), 0);
 ASSERT_EQ(paper.play(stone), 1);
}

Data used by the tests. Assertions
exercises operations on the data

Fixture

 It is very common to have data used by unit tests

 As soon as tests are not trivial, you will need to have some
data, ready to be used by the tests

 In the World of testing, this data is called fixture

 Using Googletest, a fixture is defined as a class, and define
data that can be used in many different tests

class CachipunTest : public ::testing::Test {
protected:
 Scissor scissor;
 Paper paper;
 Stone stone;
};

// win = 1, draw = 0, loose = -1
TEST_F(CachipunTest, TestStone) {
 ASSERT_EQ(stone.play(scissor), 1);
 ASSERT_EQ(stone.play(paper),-1);
 ASSERT_EQ(stone.play(stone), 0);
}

// win = 1, draw = 0, loose = -1
TEST_F(CachipunTest, TestScissor) {
 ASSERT_EQ(scissor.play(paper), 1);
 ASSERT_EQ(scissor.play(scissor), 0);
 ASSERT_EQ(scissor.play(stone), -1);
}

// win = 1, draw = 0, loose = -1
TEST_F(CachipunTest, TestPaper) {
 ASSERT_EQ(paper.play(scissor), -1);
 ASSERT_EQ(paper.play(paper), 0);
 ASSERT_EQ(paper.play(stone), 1);
}

class CachipunTest : public ::testing::Test {
protected:
 Scissor scissor;
 Paper paper;
 Stone stone;
};

// win = 1, draw = 0, loose = -1
TEST_F(CachipunTest, TestStone) {
 ASSERT_EQ(stone.play(scissor), 1);
 ASSERT_EQ(stone.play(paper),-1);
 ASSERT_EQ(stone.play(stone), 0);
}

// win = 1, draw = 0, loose = -1
TEST_F(CachipunTest, TestScissor) {
 ASSERT_EQ(scissor.play(paper), 1);
 ASSERT_EQ(scissor.play(scissor), 0);
 ASSERT_EQ(scissor.play(stone), -1);
}

// win = 1, draw = 0, loose = -1
TEST_F(CachipunTest, TestPaper) {
 ASSERT_EQ(paper.play(scissor), -1);
 ASSERT_EQ(paper.play(paper), 0);
 ASSERT_EQ(paper.play(stone), 1);
}

CachipunTest is a fixture, defined
as a subclass of ::testing::Test

Initializing the fixture

 The fixture for the cachipun example does not require any
initialization

 However, initializing a fixture may involve a sequence of
non-trivial steps

 Googletest offers the necessary to initialize the fixture

class FileSystemTest : public ::testing::Test {
protected:
 void SetUp() override {
 emptyFS = new FileSystem();
 fs = new FileSystem();
 d1 = new Directory("directory1");
 d2 = new Directory("directory2");
 textFile = new TextFile("file.txt", "Hello World!");

 int content[4] = {65, 66, 67, 68};
 binaryFile = new BinaryFile("binary.bin", content, 4);

 d1->add(d2);
 d1->add(textFile);
 d1->add(binaryFile);

 fs->add(d1);
 }

 FileSystem *emptyFS, *fs;
 Directory *d1, *d2;
 TextFile *textFile;
 BinaryFile *binaryFile;
};

class FileSystemTest : public ::testing::Test {
protected:
 void SetUp() override {
 emptyFS = new FileSystem();
 fs = new FileSystem();
 d1 = new Directory("directory1");
 d2 = new Directory("directory2");
 textFile = new TextFile("file.txt", "Hello World!");

 int content[4] = {65, 66, 67, 68};
 binaryFile = new BinaryFile("binary.bin", content, 4);

 d1->add(d2);
 d1->add(textFile);
 d1->add(binaryFile);

 fs->add(d1);
 }

 FileSystem *emptyFS, *fs;
 Directory *d1, *d2;
 TextFile *textFile;
 BinaryFile *binaryFile;
};

Ensure you are really doing an
override

TEST_F(FileSystemTest, getSize) {
 ASSERT_EQ(0, emptyFS->getSize());
 ASSERT_EQ(16, fs->getSize());
}

TEST_F(FileSystemTest, getNumberOfFiles) {
 ASSERT_EQ(0, emptyFS->getNumberOfFiles());
 ASSERT_EQ(2, fs->getNumberOfFiles());

 Directory d("another directory");
 d.add(new TextFile("another file", "bonjour"));
 fs->add(&d);
 ASSERT_EQ(3, fs->getNumberOfFiles());
}

TEST_F(FileSystemTest, getNumberOfDirectories) {
 ASSERT_EQ(1, emptyFS->getNumberOfDirectories());
 ASSERT_EQ(3, fs->getNumberOfDirectories());

 Directory d("another directory");
 d.add(new TextFile("another file", "bonjour"));
 fs->add(&d);
 ASSERT_EQ(4, fs->getNumberOfDirectories());
}

Explicit Fixture

 Non-trivial tests must have a fixture, and it happens that the
same fixture can be used in many different tests

 Having a class Fixture help reducing code duplication, and
reduce the complexity of the tests

 Having simple and clear tests is important because unit
tests are often considered as a “living” documentation

Testing scenario

Unit tests Object

Complex
object 1

Complex
object 2

Testing scenario

Unit tests Object

Complex
object 1

Complex
object 2

We can directly
test the behavior

of Object

Testing scenario

Unit tests Object

Complex
object 1

Complex
object 2

However, we
cannot test the

interaction with the
complex objects

Testing scenario

Unit tests Object

Complex
object 1

Complex
object 2

Mock testing is
about testing

these interactions

Mocking
 Mocking is a testing technique used to isolate complex
object behavior

 Mock objects simulate the behavior of real objects

 A test will now test whether the mocked objects are used
properly

 Part of the test verifies that the mock was used correctly

 Assertions are about how the code under test is interacting
with other system modules

 gMock is part of Googletest

class MockDirectory : public Directory {
public:
 MockDirectory(string aName) : Directory(aName) {}
 MOCK_METHOD(vector<Item*>, getItems, (), (override));
 MOCK_METHOD(void, add, (Item* anItem), (override));
 MOCK_METHOD(void, accept, (Visitor* v), (override));
 MOCK_METHOD(int, getSize, (), (override));
};

TEST_F(FileSystemTest, testingDirectory) {
 MockDirectory d("another directory");
 EXPECT_CALL(d, getSize()).Times(AtLeast(1));
 d.add(new TextFile("another file", "bonjour"));
 fs->add(&d);
 fs->getSize();

 EXPECT_CALL(d, accept).Times(Exactly(1));
 fs->getNumberOfFiles();
}

class MockDirectory : public Directory {
public:
 MockDirectory(string aName) : Directory(aName) {}
 MOCK_METHOD(vector<Item*>, getItems, (), (override));
 MOCK_METHOD(void, add, (Item* anItem), (override));
 MOCK_METHOD(void, accept, (Visitor* v), (override));
 MOCK_METHOD(int, getSize, (), (override));
};

TEST_F(FileSystemTest, testingDirectory) {
 MockDirectory d("another directory");
 EXPECT_CALL(d, getSize()).Times(AtLeast(1));
 d.add(new TextFile("another file", "bonjour"));
 fs->add(&d);
 fs->getSize();

 EXPECT_CALL(d, accept).Times(Exactly(1));
 fs->getNumberOfFiles();
}

Define the MockDirectory class. The mock class
needs to defines mock methods for each virtual
function of Directory

class MockDirectory : public Directory {
public:
 MockDirectory(string aName) : Directory(aName) {}
 MOCK_METHOD(vector<Item*>, getItems, (), (override));
 MOCK_METHOD(void, add, (Item* anItem), (override));
 MOCK_METHOD(void, accept, (Visitor* v), (override));
 MOCK_METHOD(int, getSize, (), (override));
};

TEST_F(FileSystemTest, testingDirectory) {
 MockDirectory d("another directory");
 EXPECT_CALL(d, getSize()).Times(AtLeast(1));
 d.add(new TextFile("another file", "bonjour"));
 fs->add(&d);
 fs->getSize();

 EXPECT_CALL(d, accept).Times(Exactly(1));
 fs->getNumberOfFiles();
}

The mock directory is hooked into the filesystem we
created in the fixture.

class MockDirectory : public Directory {
public:
 MockDirectory(string aName) : Directory(aName) {}
 MOCK_METHOD(vector<Item*>, getItems, (), (override));
 MOCK_METHOD(void, add, (Item* anItem), (override));
 MOCK_METHOD(void, accept, (Visitor* v), (override));
 MOCK_METHOD(int, getSize, (), (override));
};

TEST_F(FileSystemTest, testingDirectory) {
 MockDirectory d("another directory");
 EXPECT_CALL(d, getSize()).Times(AtLeast(1));
 d.add(new TextFile("another file", "bonjour"));
 fs->add(&d);
 fs->getSize();

 EXPECT_CALL(d, accept).Times(Exactly(1));
 fs->getNumberOfFiles();
}

Rules may be defined to describe part of behavior
of mocked objects. E.g., getSize() is called at least
once, and accept is called exactly 1 time.

class MockDirectory : public Directory {
public:
 MockDirectory(string aName) : Directory(aName) {}
 MOCK_METHOD(vector<Item*>, getItems, (), (override));
 MOCK_METHOD(void, add, (Item* anItem), (override));
 MOCK_METHOD(void, accept, (Visitor* v), (override));
 MOCK_METHOD(int, getSize, (), (override));
};

TEST_F(FileSystemTest, testingDirectory) {
 MockDirectory d("another directory");
 EXPECT_CALL(d, getSize()).Times(AtLeast(1));
 d.add(new TextFile("another file", "bonjour"));
 fs->add(&d);
 fs->getSize();

 EXPECT_CALL(d, accept).Times(Exactly(1));
 fs->getNumberOfFiles();
}

Rules may be defined to describe part of behavior
of mocked objects. E.g., getSize() is called at
least once, and accept is called exactly 1 time.

The call of getNumberOfFiles()
creates a visitor and make it run

Mocking

 The previous example shows a case in which we use
gMock to test:

 The method getSize() is called exactly once on a Directory when calling
getSize() on the filesystem

 The method accept(…) is called exactly once when calling
getNumberOfFiles() on the file system.

 These two tests are difficult to express without a mocking
framework

Mocking - Making CMakeLists happy

 Do not forget to add gmock_main in the test/
CMakeLists.txt

 in the target_link_libraries section

Mocking a class

 Longer description of gMock may be found on:

 https://google.github.io/googletest/gmock_for_dummies.html

 gMock can be used with Boost without any problem

 just make sure that mock objects are not copied

Roadmap

1. Tests (fixture, mock)

2. Debugging

Good thing about printing:
-Very easy to use
-No need to learn a new tool
-Very flexible (one can print anything)

However, printing to debug has many
problems:
-Good only at printing (e.g., no way to navigate
into a data structure)
-Need a way to turn on/off
-Postmortem process (only when the problem
had ended one can try to understand what
happened)

Debugging

 The standard debuggers for C++ are called gdb and lldb

 Usable from the command line

 But a UI will make you significantly faster to use

 Most programming environments uses gdb or lldb
underneath

Debugging

 A debugger offer:

 Breakpoints to tell the program under run to suspend

 Inspector of the heap and the runtime callstack

 Operations to manually execute statements

 Watcher to see the value of different instructions

Click to set a breakpoint

Press the bug button to
enter the debug mode

Threads and stack frames

Heap (portion of memory
where objects live and

allocated memory)

Debug operations. The
most important are step-in

and step-into

Condition may be set to activate a
breakpoint

Breakpoint

 Different kind of breakpoints are supported in CLion:

 Unconditional breakpoint

 Breakpoint with condition

 Breakpoint when exception are raised

 Support for full customization of the breakpoint (simply right
click on a breakpoint)

Exercise (optional)

 Add fixture and mocks in your tests

What you should know!

 Explicitly defining a fixture is essential as soon as test are
non-trivial

 Mocking is an expressive way to check for some program
invariant

 The debugger must be your new friend, forever!

Can you answer these questions?

 How to test for sequence in method calls using gMock?

License

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
-Share: copy and redistribute the material in any medium or format
-Adapt: remix, transform, and build upon the material for any purpose, even
commercially

The licensor cannot revoke these freedoms as long as you follow the license terms

 Attribution: you must give appropriate credit

 ShareAlike: if you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original

Complete license: https://creativecommons.org/licenses/by-sa/4.0/

Original version of this lecture from Oscar Nierstrasz, Uni - Bern

www.dcc.uchile.cl

