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The mean squared error (MSE) and the related normalization, the Nash–Sutcliffe efficiency (NSE), are the
two criteria most widely used for calibration and evaluation of hydrological models with observed data.
Here, we present a diagnostically interesting decomposition of NSE (and hence MSE), which facilitates
analysis of the relative importance of its different components in the context of hydrological modelling,
and show how model calibration problems can arise due to interactions among these components. The
analysis is illustrated by calibrating a simple conceptual precipitation-runoff model to daily data for a
number of Austrian basins having a broad range of hydro-meteorological characteristics. Evaluation of
the results clearly demonstrates the problems that can be associated with any calibration based on the
NSE (or MSE) criterion. While we propose and test an alternative criterion that can help to reduce model
calibration problems, the primary purpose of this study is not to present an improved measure of model
performance. Instead, we seek to show that there are systematic problems inherent with any optimiza-
tion based on formulations related to the MSE. The analysis and results have implications to the manner
in which we calibrate and evaluate environmental models; we discuss these and suggest possible ways
forward that may move us towards an improved and diagnostically meaningful approach to model per-
formance evaluation and identification.

� 2009 Elsevier B.V. All rights reserved.
Introduction

The mean squared error (MSE) criterion and its related normal-
ization, the Nash–Sutcliffe efficiency (NSE, defined by Nash and
Sutcliffe, 1970) are the two criteria most widely used for calibra-
tion and evaluation of hydrological models with observed data.
The value of MSE depends on the units of the predicted variable
and varies on the interval [0.0 to inf], whereas NSE is dimension-
less, being scaled onto the interval [�inf to 1.0]. As a consequence,
the NSE value – obtained by dividing MSE by the variance of the
observations and subtracting that ratio from 1.0 (Eqs. (1) and (2))
– is commonly the measure of choice for reporting (and compar-
ing) model performance. Further, NSE can be interpreted as a clas-
sic skill score (Murphy, 1988), where skill is interpreted as the
comparative ability of a model with regards to a baseline model,
which in the case of NSE is taken to be the ‘mean of the observa-
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tions’ (i.e., if NSE 6 0, the model is no better than using the ob-
served mean as a predictor). The equations are:

MSE ¼ 1
n
�
Xn

t¼1

ðxs;t � xo;tÞ2 ð1Þ

NSE ¼ 1�
Pn

t¼1ðxs;t � xo;tÞ2Pn
t¼1ðxo;t � loÞ

2 ¼ 1�MSE
r2

o
ð2Þ

where n is the total number of time-steps, xs,t is the simulated value
at time-step t, xo,t is the observed value at time-step t, and lo and ro

are the mean and standard deviation of the observed values. In opti-
mization MSE is subject to minimization and NSE is subject to
maximization.

As evident from the above equations, NSE and MSE are closely
related. In this study we will mainly focus on NSE, but the results
can be generalized to MSE (and similar criteria such as RMSE).

While the NSE criterion may be a convenient and popular (al-
beit gross) indicator of model skill, there has been a long and vivid
discussion about the suitability of NSE (McCuen and Snyder, 1975;
Martinec and Rango, 1989; Legates and McCabe, 1999; Krause
et al., 2005; McCuen et al., 2006; Schaefli and Gupta, 2007; Jain
and Sudheer, 2008) and several authors have proposed modifica-
tions – e.g. Mathevet et al. (2006) proposed a bounded version
of NSE and Criss and Winston (2008) proposed a volumetric
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efficiency to be used instead of NSE. One of the main concerns
about NSE is its use of the observed mean as baseline, which can
lead to overestimation of model skill for highly seasonal variables
such as runoff in snowmelt dominated basins. A comparison of NSE
across basins with different seasonality (as is often reported in the
literature) should therefore be interpreted with caution. For such
situations, various authors have recommended the use of the sea-
sonal or climatological mean as a baseline model (Garrick et al.,
1978; Murphy, 1988; Martinec and Rango, 1989; Legates and McC-
abe, 1999; Schaefli and Gupta, 2007).

It is now generally accepted that the calibration of hydrological
models should be approached as a multi-objective problem (Gupta
et al., 1998). Within a multiple-criteria framework, the MSE and
NSE criteria continue to be commonly used, because they can be
computed separately for (1) different types of observations (e.g.
runoff and snow observations; Bergström et al., 2002), (2) different
locations (e.g. runoff at multiple gauges; Madsen, 2003), or (3) dif-
ferent subsets of the same observation (e.g. rising and falling limb
of the hydrograph; Boyle et al., 2000). More generally, however,
different types of model performance criteria – such as NSE, coef-
ficient of correlation, and bias – can be computed from multiple
variables and/or at multiple sites (see Anderton et al., 2002; Beld-
ring, 2002; Rojanschi et al., 2005; Cao et al., 2006; and others).

When handled in this manner, the model calibration problem
can be treated as a full multiple-criteria optimization problem
resulting in a ‘Pareto set’ of non-dominated solutions (Gupta
et al., 1998), or reduced to a related single-criterion optimization
problem by combining the different (weighted) criteria into one
overall objective function. Numerous examples of the latter ap-
proach exist in the literature where NSE or MSE appear in an over-
all objective function (e.g. Lindström, 1997; Bergström et al., 2002;
Madsen, 2003; van Griensven and Bauwens, 2003; Parajka et al.,
2005; Young, 2006; Rode et al., 2007; Marce et al., 2008; Wang
et al., 2009; Safari et al., 2009), because it conveniently enables
the application of efficient single-criterion automated search algo-
rithms, such as SCE (Shuffled Complex Evolution, Duan et al., 1992)
or DDS (Dynamically Dimensioned Search, Tolson and Shoemaker,
2007).

When using multiple criteria in evaluation, it has to be consid-
ered that some of these criteria are mathematically related, which
is not always recognized (Weglarczyk, 1998). For example, it is
possible to decompose the NSE criterion into separate components,
as shown by Murphy (1988) and Weglarczyk (1998), which facili-
tates a better understanding of how different criteria are interre-
lated and thereby enable more insight into what is causing a
particular model performance to be ‘good’ or ‘bad’. Equally impor-
tant, the decomposition can provide insight into possible trade-offs
between the different components.

In this paper we present a diagnostically interesting decompo-
sition of NSE (and hence MSE), which facilitates analysis of the rel-
ative importance of different components in the context of
hydrological modelling. As we will show in the first part of the pa-
per, model calibration problems can arise due to interactions
among these components. Based on this analysis, we propose
and test alternative criteria that can help to avoid these problems.
The analysis is illustrated with a case study in the second part of
the paper, where we calibrate a simple precipitation-runoff model
to daily data for a number of Austrian basins having a broad range
of hydro-meteorological characteristics. The evaluation of the re-
sults on both the calibration and an independent ‘evaluation’ per-
iod clearly demonstrates the problems that can be associated with
any calibration based on the NSE (or MSE) criterion. In the third
part of the paper we discuss the implications for calibration and
evaluation of environmental models and we also briefly discuss
some possible ways forward.
Decomposition of model performance criteria

Previous decomposition of NSE

A previous decomposition of criteria based on mean squared er-
rors (Murphy, 1988; Weglarczyk, 1998) has shown that there are
three distinctive components, represented by the correlation, the
conditional bias, and the unconditional bias, as evident in Eq. (3),
which shows a decomposition of NSE.

NSE ¼ A� B� C ð3Þ

with:

A ¼ r2

B ¼ ½r � ðrs=roÞ�2

C ¼ ½ðls � loÞ=ro�2

where r is the linear correlation coefficient between xs and xo, and
(ls, rs) and (lo, ro) represent the first two statistical moments
(means and standard deviations) of xs and xo, respectively. The
quantity A measures the strength of the linear relationship between
the simulated and observed values, B measures the conditional bias,
and C measures the unconditional bias (Murphy, 1988).

New decomposition of NSE

An alternative way in which to reformulate Eq. (3) is given be-
low as Eq. (4), which reveals that NSE consists of three distinctive
components representing the correlation, the bias, and a measure
of relative variability in the simulated and observed values.

NSE ¼ 2 � a � r � a2 � b2
n ð4Þ

with

a ¼ rs=ro

bn ¼ ðls � loÞ=ro

where the quantity a is a measure of relative variability in the
simulated and observed values, and bn is the bias normalized by
the standard deviation in the observed values (note that bn =
sqrt(C)).

Eq. (4) shows that two of the three components of NSE relate to
the ability of the model to reproduce the first and second moments
of the distribution of the observations (i.e. mean and standard
deviation), while the third relates to the ability of the model to
reproduce timing and shape as measured by the correlation coeffi-
cient. The ‘ideal’ values for the three components are r = 1, a = 1,
and bn = 0. From a hydrological perspective, ‘good’ values for each
of these three components are highly desirable, since in general we
aim at matching the overall volume of flow, the spread of flows
(e.g. flow duration curve), and the timing and shape of (for exam-
ple) the hydrograph (Yilmaz et al., 2008). It is clear, therefore, that
optimizing NSE is essentially a search for a balanced solution
among the three components, where with ‘optimal’ values of the
three components the overall NSE is maximized. This is similar
to the multiple-criteria approach of computing an overall
(weighted) objective function from several different criteria as dis-
cussed in ‘‘Introduction”.

However, in using NSE we must be concerned with two facts.
First, the bias (ls � lo) component appears in a normalized form,
scaled by the standard deviation in the observed flows. This means
that in basins with high runoff variability the bias component will
tend to have a smaller contribution (and therefore impact) in the
computation and optimization of NSE, possibly leading to model
simulations having large volume balance errors. In a multiple-cri-
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teria sense, this is equivalent to using a weighted objective func-
tion with a low weight applied to the bias component.

Second, and equally serious, the quantity a appears twice in Eq.
(4), exhibiting an interesting (and problematic) interplay with the
linear correlation coefficient r. It is easy to show, by taking the first
derivative of NSE (in Eq. (4)) with respect to a that the maximum
value of NSE is obtained when a = r. And, since r will always be
smaller than unity, this means that in maximizing NSE we will
tend to select a value for a that underestimates the variability in
the flows (more precisely, we will favour models/parameter sets
that generate simulated flows that underestimate the variability).

Taking these two facts together, we note that when bn = 0 and
a = r, then the NSE is equivalent to r2, which is the well-known
coefficient of determination. Therefore, r2 can be interpreted as a
maximum (potential) value for NSE if the other two components
are able to achieve their optimal values.

Fig. 1 illustrates the relationship of NSE with r and a, while
assuming that bn is zero (bn is only an additive term, anyway).
For a given r the optimal a for maximizing NSE lies on the 1:1 line,
although the ideal value of a is on a horizontal line at 1.0. This the-
oretical relationship is illustrated in Fig. 1a. Of course, not all com-
binations of r and a may be possible with a hydrological model due
to restrictions imposed by the model structure, feasible parameter
values and input–output data. However, Fig. 1b shows a real exam-
ple in which random sampling of the parameter space actually
seems to cover a large portion of the theoretical criteria space.
Since the model used here (HyMod model, Boyle, 2000) is a simple,
but representative, example of watershed models in common use,
the problematic interplay between a and r is likely to be of impor-
tance for any type of hydrological model that is optimized with
NSE.

Further, the same exact problems will arise when using MSE as
a model calibration criterion. We can substitute Eq. (4) into Eq. (2),
and thereby obtain Eq. (5) which shows the related decomposition
of the MSE criterion, consisting (again) of three error terms, but
here all three of them are additive.

MSE ¼ 2 � rs � ro � ð1� rÞ þ ðrs � roÞ2 þ ðls � loÞ
2 ð5Þ

From Eqs. (3)–(5) it should be immediately obvious that many
different combinations of the three components can result in the
same overall value for MSE or NSE, respectively, potentially leading
to considerable ambiguity in the comparative evaluation of alter-
native model hypotheses. The relative contribution of each of these
components to the overall MSE can be computed as:
Fig. 1. Relationship of NSE with a and c (bn is assumed to be zero). (a) Theoretical relatio
though a is at its ideal value at point B. (b) Illustrative example obtained by random par
11 years daily data, HyMod model; only those points where b2

n 6 0:01 are displayed. Co
fi ¼
FiP3
j¼1Fj

ð6Þ

with:

F1 ¼ 2 � rs � ro � ð1� rÞ
F2 ¼ ðrs � roÞ2

F3 ¼ ðls � loÞ
2

Alternative model performance criteria

As discussed above, a peculiar feature of the NSE criterion is the
problematic interplay between a and r, which is likely to result in
an underestimation of the variability in the flows. One way to over-
come this is by inflating the observed variability as indicated by Eq.
(7), while at the same time preserving the mean of the observa-
tions and their linear correlation with the simulations. Using Eq.
(7) with Eq. (4) results in Eq. (8), which represents a ‘corrected’
version of NSE:

x�o;t ¼ c � ðxo;t � loÞ þ lo ð7Þ

NSEcor ¼
1
c
� 2 � a � r � 1

c2 � a
2 � 1

c2 � b
2
n ð8Þ

where c is correction factor to inflate the variability in the observed
flows. It can be easily shown that if c is set equal to 1/r, it will assure
that a value of a = 1 will now maximize NSEcor (as opposed to a = r
maximizing NSE).

Alternatively, instead of trying to come up with a ‘corrected’
NSE criterion, since MSE and NSE can be decomposed into three
components, the whole calibration problem can instead be viewed
from the multi-objective perspective, by focusing on the correla-
tion, variability error and bias error as separate criteria to be opti-
mized. In doing this, it makes sense to enable a better hydrological
interpretation of the bias component by using the ratio of the
means of the simulated and observed flows (b) for this further
analysis – as opposed to using bn. With this formulation, using b in-
stead of bn, all three of the components now have their ideal value
at unity.

Fig. 2 shows an example for the trade-off between the three
components for a simple hydrological model using random param-
eter sampling. The plot shows a distinctive Pareto front in the
three-dimensional criteria space. If it is desired to select a compro-
mise solution from the Pareto front, one possible approach is to
nship illustrating ideal and optimal a: NSE at point A is greater than at point B, even
ameter sampling with a hydrological model: Leaf River, Mississippi, USA, 1924 km2,
ntour lines indicate values for NSE. See colour version of this figure online.



Fig. 2. Example for three-dimensional Pareto front of r, a and b. ED is the Euclidian
distance between the optimal point and the ideal point, where all three measures
are 1.0. Glan River, Austria, 432 km2, 5 years daily data, HBV model variant, random
parameter sampling.
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compute for all points the Euclidian distance from the ideal point
and then to subsequently select the point having the shortest dis-
tance (Eq. (9)). Since all three of the components are dimensionless
numbers, we are able to obtain a reasonable solution for the
Euclidian distance in the un-transformed criteria space. Alterna-
tively, a re-scaling of the axes in the criteria space is easily ob-
tained via Eq. (10). In this paper, we will only explore the use of
the criterion of Eq. (9), which is equivalent to setting all three scal-
ing factors of Eq. (10) to unity; for lack of a better name we will dis-
tinguish this criterion from the Nash–Sutcliffe efficiency (NSE) by
calling it the Kling–Gupta efficiency (KGE).

KGE ¼ 1� ED ð9Þ
KGEs ¼ 1� EDs ð10Þ

with:

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � 1Þ2 þ ða� 1Þ2 þ ðb� 1Þ2

q

EDs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½sr � ðr � 1Þ�2 þ ½sa � ða� 1Þ�2 þ ½sb � ðb� 1Þ�2

q

b ¼ ls=lo

where ED is the Euclidian distance from the ideal point, EDs is the
Euclidian distance from the ideal point in the scaled space, b is
the ratio between the mean simulated and mean observed flows,
i.e. b represents the bias; sr, sa and sb are scaling factors that can
be used to re-scale the criteria space before computing the Euclid-
ian distance from the ideal point, i.e. sr, sa and sb can be used for
adjusting the emphasis on different components. In optimization
KGE and KGEs are subject to maximization, with an ideal value at
unity. Similar to NSE, r can be interpreted as a maximum (potential)
value for KGE and KGEs if the other two components are able to
achieve their optimal values close to unity.

Analogous to Eq. (6) we can compute the relative contribution
of the three components with Eq. (11).

gi ¼
GiP3
j¼1Gj

ð11Þ
with:

G1 ¼ ðr � 1Þ2

G2 ¼ ða� 1Þ2

G3 ¼ ðb� 1Þ2
Notes on regression lines

As is well known, the slope of the regression lines and the coef-
ficient of correlation are related (Eqs. (12)–(14)). Since different
‘optimal’ values for a are obtained by the NSE and KGE criteria, this
also leads to implications for the regression lines.

r2 ¼ ks � ko ð12Þ

ks ¼
Cov so

r2
s
¼ r

a
ð13Þ

ko ¼
Cov so

r2
o
¼ r � a ð14Þ

with:

r ¼ Cov so

rs � ro

where Covso is the covariance between the simulated and observed
values, ks is the slope of the regression line when regressing the ob-
served against the simulated values, and ko is the slope of the
regression line when regressing the simulated against the observed
values.

Murphy (1988) has already noted that for NSE the conditional
bias term B in Eq. (3) will vanish only if the slope of the regression
line ks is equal to unity (i.e. regressing the observed against the
simulated values), which is desirable in the context of the ‘verifica-
tion’ of forecasts. This means that for a given forecast (simulated
value), the expected value of the observed value lies on the 1:1 line
(assuming a Gaussian distribution). As discussed before, the opti-
mal value of a that maximizes NSE is given by a model simulation
for which a is equal to r. As evident in Eq. (13) this results in ks = 1,
but at the same time this also implies that ko ¼ r2 (Eq. (14)). Be-
cause r2 will always be smaller than unity, this means that we will,
in general, tend to underestimate the slope of the regression line
when regressing the simulated against the observed values. The
tendency will be for high values (peak flows) to be underestimated
and for low values (recessions) to be overestimated in the
simulation.

In brief, for maximizing NSE the optimal values for ks and ko are
unity and r2, respectively. In the case of KGE, the optimal value for
a is at unity, which means that for maximizing KGE the optimal
values for both ks and ko are equal to r. Again, since r is smaller than
unity we will tend to underestimate high values and overestimate
low values.

In considering this, it should be noted that both approaches for
computing the regression lines (regressing observed against simu-
lated values, or vice versa) are valid, but have different interpreta-
tions. In the context of runoff simulations, when using ks we are
basing the evaluation on the expected error in simulation of the
observed runoff being zero for a given simulated runoff, which is
a sensible approach when making runoff forecasts under ‘normal’
conditions. However, if we are interested in the ‘unusual’ runoff
conditions – such as runoff peaks – then a more sensible approach
would be to use ko, where we are interested in the question, ‘‘If a
flood occurs, can we forecast (simulate) it?”, whereas in the case
of ks such a runoff peak is ‘averaged out’. Fig. 3 illustrates this with
typical scatter plots for runoff simulation. In this example, ks is
close to unity, suggesting unbiased forecasts (Fig. 3a), and at the
highest simulated flows of around 10 m3/s the small number of
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(b) regression against observed runoff (ko = 0.77). Pitten River, Austria, 277 km2, 5 years daily data, HBV model variant, parameters optimized on NSE. Note that in (a) and (b)
the identical data points are plotted, but the axes are flipped.
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observed flows (runoff peaks) that are well above the regression
line are ‘averaged out’ by the larger number of observed flows that
occur slightly below the regression line. However, it is clear that
whenever a runoff peak above 10 m3/s occurs, there is a clear ten-
dency for underestimation in the simulation (Fig. 3b).

These problems arise because the distribution of runoff is usu-
ally highly skewed. If ko is of higher interest, then the use of NSE
may cause problems, since the simulated runoff will tend to under-
estimate the peak flows. In the case of the KGE criterion, we will
also have a tendency towards underestimation, but not as severe
as with the NSE. Note that for extreme low-flows, similar consider-
ations as for the runoff peaks apply (but here we will tend to over-
estimate the low-flow).
Case study

To examine and illustrate the implications of the theoretical
considerations presented above we applied a simple conceptual
precipitation-runoff model to several basins. Using NSE (Eq. (2))
and KGE (Eq. (9)) as model performance criteria, two different sets
of parameters were obtained for each basin by calibration against
observed runoff data. For each parameter set we compare the over-
all model performance as evaluated by the NSE and KGE criteria
and, in addition, conduct a detailed analysis of the criterion com-
ponents. Further, we also examine the model performance on an
independent ‘evaluation’ period.
Fig. 4. (a) Map showing locations of the 49 Austrian basins used in this study. Also depic
of evaporation and index of wetness for the 49 Austrian basins. The index of wetness is
(ETp). The index of evaporation is computed as the ratio between actual evapotranspiratio
are taken from Hydrological Atlas of Austria (BMLFUW, 2007).
Study area

For this study we used 49 mesoscale Austrian basins (Fig. 4a)
used in the regionalization study reported by Kling and Gupta
(2009). All are pre-alpine or lowland basins where snowmelt does
not dominate runoff generation. They vary in size from 112.9 km2

to 689.4 km2, with a median size of 287.3 km2, and a mean eleva-
tion range from 232 m to 952 m above sea level. The basins repre-
sent a wide range of physiographic and meteorological properties,
with the most important land-use types being forest, grassland and
agriculture. According to the Hydrological Atlas of Austria
(BMLFUW, 2007), the long-term mean annual precipitation in the
basins ranges from 507 to 1929 mm, and the corresponding runoff
ranges from 44 to 1387 mm, resulting in a large range of runoff
coefficients (from 9% to 72%). Thus, both wet and dry basins are in-
cluded. Fig. 4b shows a diagnostic plot where normalized actual
evapotranspiration is plotted against normalized precipitation
(both variables are scaled by potential evapotranspiration); it indi-
cates that most of the basins are energy limited and only a few of
the basins are water limited.
Data basis

We used observed daily data for the period September 1990–
August 2000; the first 2 years were used as a warm-up period,
the next 5 years for calibration, and the final 3 years for indepen-
dent evaluation. Observed catchment outlet runoff data were used
ted are the 49 gauges and 222 precipitation stations. (b) Relationship between index
computed as the ratio between precipitation (P) and potential evapotranspiration
n (ETa) and ETp. Data represent long-term means from the period 1961 to 1990 and
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for parameter calibration in each of the basins. Precipitation inputs
were based on daily data from 222 stations, regionalized using the
method of Thiessen-Polygons. Air temperature inputs were based
on data from 98 stations, regionalized via linear regression with
elevation. Potential evapotranspiration inputs were based on
monthly fields of potential evapotranspiration (Kling et al., 2007)
with a spatial resolution of 1 � 1 km. The monthly potential evapo-
transpiration data were disaggregated to daily time-steps by using
daily data from 21 indicator stations, where the daily potential
evapotranspiration was computed using the Thornthwaite-method
(Thornthwaite and Mather, 1957).

Hydrological model

A simple, conceptual, spatially distributed daily precipitation-
runoff model similar to the HBV model (Bergström, 1995) was
used; the model was previously applied to these same basins by
Kling and Gupta (2009). The model uses a 1 � 1 km2 raster grid
for spatial discretization of the basins. However, for simplicity,
the current study assumes uniform parameter fields. Inputs to
the model are precipitation, air temperature, and potential evapo-
transpiration. The model consists of a snow module, soil moisture
accounting, runoff separation into different components, and a
routing module. Snowfall is determined from precipitation data
using a threshold temperature, and snowmelt is computed with
the temperature-index method (see e.g. Hock, 2003). Rainfall and
snowmelt are input to the soil module, where runoff generation
is computed via an exponential formulation that accounts for cur-
rent soil moisture conditions (see e.g. Bergström and Graham,
1998). Actual evapotranspiration depletes the soil moisture store;
S2crit

K1

K3

(K4)

Beta

K2

Rainfall + Snowmelt

S1max(S1crit)

act. ET

upstream
Runoff

Runoff

pot. ET
soil storage

surface flow
reservoir

base flow
reservoir

routing

Fig. 5. Conceptual model structure (the snow module is not shown). Parameters in
brackets are not calibrated.

Table 1
Parameters of the model. Parameters in brackets were not calibrated.

Parameter Units Feasible
range

Description

S1max mm 50–700 Soil storage capacity
Beta / 0.1–25 Exponent for computing runoff

generation
(S1crit) / (0.6) Critical soil moisture for actual

evapotranspiration
K1 h 10–500 Recession coefficient for surface flow
K2 h 10–1000 Recession coefficient for percolation
S2crit mm 0–15 Outlet height for surface flow
K3 h 500–10000 Recession coefficient for base flow
(K4) h (0–10) Recession coefficient for distributed

routing
the rate of actual evapotranspiration depends on current soil mois-
ture conditions and potential evapotranspiration. Runoff is sepa-
rated into fast (surface flow) and slow (base flow) components
by two linear reservoirs having different recession coefficients. A
further linear reservoir is used to simulate channel routing of the
runoff. Fig. 5 shows the conceptual structure of the model (the
snow module is not shown). The model equations are presented
in Kling and Gupta (2009). Table 1 lists the most important param-
eters of the model.

To reduce dimensionality of the parameter calibration problem,
some of the model parameters are set to plausible values and are
not further calibrated. This applies to snow parameters, because
snow is of limited importance in the basins of this study, and to
the channel routing parameters, which are of limited importance
at the daily time-step (the values of Kling and Gupta (2009) are
used). In addition, the critical soil moisture for reducing actual
evapotranspiration is set to a constant value. The six remaining
parameters were calibrated in each basin using the Shuffled Com-
plex Evolution optimization algorithm (SCE, Duan et al., 1992),
using six complexes (13 points per complex) and a convergence
criterion of 0.001 in five shuffling loops, resulting in approximately
2000 model evaluations per optimization run.
Results

Overall model performance

The optimization runs resulted in two parameter sets for each
basin. Optimization using the ‘optNSE’ method results in parame-
ter sets ‘hoptNSE’ that yield optimal runoff simulations maximizing
NSE (Eq. (4)), while optimization using the ‘optKGE’ method results
in parameter sets ‘hoptKGE’ that yield optimal runoff simulations
maximizing KGE (Eq. (9)). A standard method for reporting model
performance in precipitation-runoff modelling studies is to present
scatter plots of NSE between calibration and evaluation periods
(see e.g. Merz and Blöschl, 2004). Fig. 6 displays such a scatter plot;
as expected, for many basins the NSE deteriorates when going from
the calibration to the evaluation period (Fig. 6a). Similar results are
obtained for KGE (Fig. 6b).
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Fig. 6. Scatter plots of overall model performance: cal = calibration period,
eval = evaluation period. Note that in (a) two points are located outside the plotting
range because of negative NSE values in the evaluation period.
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Now, there can be different reasons for deterioration of model
performance on the evaluation period. These include over-fitting
of the parameters to the calibration period, non-stationarity be-
tween the calibration and evaluation periods, lack of ‘power’ in
the objective function, etc. Instead of falsification and model rejec-
tion, which would be a logical conclusion from such a result, it is
common practice to simply report the deterioration in the model
performance and then to move on. In our case, we can report that
when moving from calibration to evaluation period the median
NSE has decreased from 0.76 to 0.59 and the median KGE has de-
creased from 0.86 to 0.72, but what hydrological meaning do these
numbers have? Here, an analysis of the different components that
constitute the overall model performance enables us to learn much
more about the model behaviour, differences between the calibra-
tion and evaluation periods, and also differences between basins.

Before analysing the criterion components it is interesting to
note the relationship between NSE and KGE. Fig. 6 shows that
when optimizing on KGE (optKGE) there is a strong correlation be-
tween the values obtained for the KGE and NSE criteria (Fig. 6d).
However, when optimizing on NSE (optNSE), the correlation be-
tween the values obtained for NSE and KGE is lower (Fig. 6c).
The reasons for this will become much clearer later in this section,
but briefly it is useful to keep in mind that optimization on KGE
strongly controls the values that the a and b components can
achieve, whereas optimization on NSE constrains these compo-
nents only weakly.

Criterion components

The relative contributions of the criterion components to the
overall model performance obtained via optimization are shown
in Fig. 7 (see Eq. (6) for optNSE and Eq. (11) for optKGE). The ob-
tained (optimized) model performance is dominated by the com-
ponent representing r (dark grey), whereas the other components
representing the bias (light grey) and the variability (medium grey)
of flows have only small relative contributions. This applies for all
49 basins and for both optimization on NSE (Fig. 7a) and KGE
(Fig. 7b). However, a low relative contribution of a component to
the final value of the (optimized) model performance does not nec-
essarily imply that the model performance criterion is, in general,
insensitive to this component. Instead, the relative contribution of
a component can be small because of (1) low ‘weight’ of the com-
Fig. 7. Stacked area plots showing the relative contribution of the components for NSE an
and (d) random parameter sampling in the Glan River basin.
ponent in the equation for calculating the overall model perfor-
mance, and/or (2) the value of the component is close to its
optimal value. As a consequence of (2), the relative contribution
of the components representing the bias and the variability of
flows can become large for non-optimal parameter sets.

To illustrate these considerations, Fig. 7c and d shows the rela-
tive contribution of the criterion components using random
parameter sampling for a selected basin (Glan River). The sampled
points are arranged from left to right in order of decreasing perfor-
mance for the selected criterion. With decreasing overall model
performance (either NSE or KGE) there is a general tendency for
the relative contribution of r to decrease and for the other two
components to become much more important. In some cases only
the component representing the bias is dominant, whereas in other
cases only the component representing the variability of flows is
dominant. This clearly indicates that both NSE and KGE are sensi-
tive to all three of the components. From a multi-objective point of
view this is definitely desirable, because it means that by calibrat-
ing on the overall model performance we can substantially im-
prove the components representing the bias and the variability
of flows. Here of course we should remember that in NSE the bias
is normalized by the standard deviation of the observed flows and
that the ‘optimal’ a is equal to r. Hence, with NSE it is not necessar-
ily assured that from hydrological point of view good values for a
and b are obtained.

The cumulative distribution functions for the NSE, r, a, and b
measures as obtained with optNSE and optKGE in the calibration
and evaluation periods are shown in Fig. 8. Looking first at the re-
sults for the NSE criterion (Fig. 8a), we see that while the NSE ob-
tained by optNSE is larger than with optKGE, the difference is
rather small. This indicates that by calibrating on KGE, we have ob-
tained only a slight deterioration in overall performance as mea-
sured by NSE. Further, although there is a pronounced reduction
in NSE from calibration to evaluation period, the reduction is sim-
ilar for both optNSE and optKGE.

However, the change in NSE tells us little that is diagnostically
useful about the causes of this ‘deterioration’ in overall model per-
formance. Of more interest, are the values obtained for the three
criterion components. The results for the calibration period are dis-
cussed first. Note that the distribution of r is almost identical with
either optNSE or optKGE (Fig. 8b, filled symbols), indicating that
both of the criteria have achieved similar hydrograph match in
d KGE in the calibration period: (a) optNSE in 49 basins, (b) optKGE in 49 basins, (c)
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Table 2
Paradoxical examples for NSE and components in three basins (results for the
calibration period). All three components (r, a, b) improve but the overall model
performance measured by NSE decreases with the parameter set obtained by optKGE.

Basin Method NSE (/) KGE (/) r (/) a (/) b (/)

Zaya River optNSE 0.484 0.685 0.714 0.871 1.019
optKGE 0.452 0.732 0.733 1.026 1.001

Pitten River optNSE 0.742 0.828 0.863 0.899 1.028
optKGE 0.730 0.865 0.866 1.004 1.016

Glan River optNSE 0.786 0.855 0.888 0.912 1.028
optKGE 0.776 0.888 0.889 1.002 1.007
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Fig. 8. Cumulative distribution functions for NSE, r, a and b as obtained with optNSE and optKGE in the calibration and evaluation periods.
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terms of shape and timing. However, for the other two compo-
nents, optKGE has achieved considerably better results. Fig. 8c
shows that there is a strong tendency for underestimation of a
by optNSE (filled circle symbols), due to which only 18% of the ba-
sins are within 10% of the ideal value at unity, whereas for optKGE
(filled triangle symbols) all of the basins are within 10% of the ideal
value. Similarly optKGE yields good results for b (Fig. 8d), with all
of the basins having a bias of less than 10%, while for optNSE 16% of
the basins have a bias of greater than 10%. In general, optKGE re-
sults in a b value that is much closer to the ideal value at unity than
with optNSE. Thus, the use of optKGE has resulted in all of the ba-
sins having a and b close to their ideal values of unity during cal-
ibration. This now explains why we get such a high correlation
between NSE and KGE in Fig. 6d; because both a and b are now al-
most constant across the basins (here close to unity), the equations
for KGE and NSE both become approximately linear functions
of r, and in fact we tend towards the relationship NSEðhoptKGEÞ ¼
2�KGEðhoptKGEÞ � 1.

Next we examine what happens for the evaluation period. In
general, we see that the statistical distributions of the three com-
ponents have changed. The cumulative distribution function of
r has shifted to lower values in a consistent manner for both
optNSE and optKGE (Fig. 8b), so that both methods yield again very
similar results for timing and shape. However, the optKGE calibra-
tions have retained a median value of a close to unity (the same as
during calibration) while the overall variability in the distribution
has increased around the median value (Fig. 9c). This indicates that
the statistical tendency to provide good reproduction of flow vari-
ability persists into the evaluation period, but there is an increase
in the noise so that the distribution has become much wider. In
contrast, the optNSE results continue to show a systematic ten-
dency to underestimate a (variability of flows) during the evalua-
tion period along with a considerable increase in random noise.
Similarly, the cumulative distribution function of b obtained by
both methods remains centred close to its calibration value while
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showing an increase in the variability (Fig. 8d). The small shift in
the median value may be caused by the fact that there is approxi-
mately 5% less precipitation during the evaluation period. Clearly,
the KGE criterion has provided model calibrations that are statisti-
cally more desirable during calibration while providing results that
remain statistically more consistent on the independent evaluation
period.

An interesting observation is that in a few basins the paradoxi-
cal case occurs where all three of the criterion components im-
prove with optKGE, but the value of NSE decreases when
compared to the NSE obtained with optNSE (Table 2). The reason
for this is the interplay between the terms a and r in the NSE equa-
tion (illustrated nicely in Fig. 1). It is therefore actually (counter
intuitively) possible for both a and r to get closer to unity while
NSE gets smaller. This is, of course, because optimization on NSE
seeks to make a = r, and therefore ‘punishes’ solutions for which
a is close to the ideal value of unity, while r will always be smaller
than unity.

As discussed earlier, it is likely that optimization with NSE will
yield results where a is close to r. Fig. 9a shows a comparison be-
tween r and a obtained by the two optimization cases for all of the
basins. In general, when optimizing with NSE, the value of a is in-
deed very similar to r, which means that the variability of flows is
systematically underestimated (as shown above), and a ap-
proaches the ideal value of unity in only one of the 49 basins. In
contrast, when optimizing with KGE, the value of a is close to
the ideal value of unity for most of the basins.

Consequently, as expected from the theoretical discussion, sys-
tematically different results are obtained by optNSE and optKGE
for the slopes of the regression lines (Fig. 9b), where the cases of
regressing the simulated against the observed values (ko, Eq.
(14)) and regressing the observed against the simulated values
(ks, Eq. (13)) are distinguished. In general, when using optNSE
the value of ks is close to the ideal value at unity, but ko is signifi-
cantly smaller than one. In the case of optKGE both ks and ko are
smaller than one, but the underestimation is not as large as for
ko with optNSE. Note (from Eq. (12)) that the only way that we
can have both ks and ko equal to one is for r to be equal to unity,
which would only happen if the model and data were perfect.
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Parameters

Finally, we report briefly on the optimal parameter values ob-
tained using optNSE and optKGE. Interestingly, even though the
statistical properties of the streamflow hydrographs (as measured
by a and b) did change significantly (Fig. 8), for many basins the
parameter values did not change by large amounts (compared to
the feasible parameter range) when moving from optNSE to opt-
KGE (Fig. 10). The correlation between the parameter values of opt-
NSE and optKGE is at least 0.80 for all six of the parameters, and for
three of the parameters the correlation is larger than 0.90. For the
parameter K1 the values are slightly smaller with optKGE, which
has the effect of higher peaks and quicker recession of surface flow.
Also the parameter K3 decreases with optKGE, which has the effect
of a less dampened base flow response. Given the function of these
two parameters in the model structure, a reduction in the param-
eter values has the effect of increasing the value of the a measure.
In addition, we see an increase in the percolation parameter K2,
which results in more surface flow and less base flow, with the
overall effect of increasing the value of a.

The function of the parameters S1max and Beta in the model is
mainly to control the partitioning of precipitation into runoff and
evapotranspiration (thereby controlling the water balance), and
as a consequence these parameters mainly affect the b measure.
However, these parameters also affect the a measure and parame-
ter interaction between S1max and Beta complicates the analysis.
Given the function of these parameters in the model, the b measure
should increase with a decrease in either S1max and/or Beta, but
this is not obvious from Fig. 10, because a decrease in S1max can
be compensated by an increase in Beta, and vice versa.

For the parameter S2crit no clear tendency of change is visible.
Here it should be mentioned that there was no change in the
parameter values in sixteen of the basins for which the parameter
values were at their lower bounds (4 basins) and upper bounds (12
basins), respectively. Note that these 16 points also contribute to
the rather high correlation observed.

On a visual, albeit subjective, basis a comparison of the param-
eter sets obtained by optNSE and optKGE reveals that in many of
the basins the two parameter sets are almost indistinguishable,
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but nevertheless the criterion components have changed. As an
example, Fig. 11a displays a comparison of the parameters ob-
tained by optNSE and optKGE for the Glan River. Apparently the
parameter values are quite similar, although the a measure and
to a lesser extent the b measure have both improved when using
optKGE (see Table 2). For many basins, the difference in each of
the parameters was found to be only a small percentage of the
overall feasible range (Fig. 11b); in 14 of the 49 basins, all of the
six parameters have changed by less than 10%, and in only a few
of the basins did two or more parameters change by a significant
amount. For the latter, the changes may also (at least in part) be
a consequence of parameter interactions; for example, there is a
clear tendency for K2 and S2crit to increase/decrease simulta-
neously, and this fact must, of course, also be considered when
interpreting the scatter plots in Fig. 10.

Discussion

A decomposition of the NSE criterion shows that this measure of
overall model performance can be represented in terms of three
components, which measure the linear correlation, the bias and
the variability of flow. By simple theoretical considerations, we
can show that problems can arise in model calibrations that seek
to optimize the value of NSE (or its related MSE). First, because
the bias is normalized by the standard deviation of the observed
flows, the relative importance of the bias term will vary across ba-
sins (and also across years), and for cases where the variability in
the observed flows is high, the bias will have a low ‘weight’ in
the computation of NSE. Second, there will be a tendency for the
variability in the flows to be systematically underestimated, so that
the ratio of the simulated and observed standard deviations of
flows will tend to be equal to the correlation coefficient. As a con-
sequence, the slope of the regression line (when regressing simu-
lated against observed values) will be smaller than one, so that
runoff peaks will tend to be systematically underestimated. This
finding may seem to contradict the general notion that optimiza-
tion on NSE will improve simulation of runoff peaks. In fact NSE
is generally found to be highly sensitive to the large runoff values,
because of the (typically) larger model and data errors involved in
the matching of such events, and this fact is separate from the gen-
eral (theoretical and practical) tendency to underestimate the run-
off peaks. Of course, when it is of interest to regress the observed
against the simulated values then an optimization on NSE can yield
desirable results, since in such a case the optimal slope of the
regression line for maximizing NSE is equal to unity.

These theoretical considerations were all supported by the re-
sults of the modelling experiment. In such an experiment, not all
solutions within the theoretical criteria space are possible because
of constraints regarding the model structure, parameter ranges,
and available data. However, it was found that the simple model
was capable of achieving good solutions for the bias and the vari-
ability of flows with only slight decreases in the correlation coeffi-
cient. The optimization task therefore becomes one of specifying
the objective function in such a way that it is capable of achieving
such a solution as an optimal solution (i.e. simultaneously good
solutions for bias, flow variability and correlation). Apparently, this
was not the case with NSE, and we therefore formulated an alter-
native criterion (KGE) that is based on an equal weighting of the
three components (correlation, bias, and variability measures). In
general, the correlation will not reach its ideal value of unity, but
an optimization on KGE resulted in the other two components
being indeed close to their ideal values. Thus, the use of KGE in-
stead of NSE for model calibration improved the bias and the var-
iability measure considerably while only slightly decreasing the
correlation.

The simulation results were also examined for an independent
evaluation period. In general, the overall model performance and
the individual components deteriorated in a statistical sense. It is
at least partially likely that this is due to the rather short lengths
of the calibration and evaluation periods used in this study (5
and 3 years, respectively). Further, it should be noted that this
study has not accounted for either the uncertainty in the parame-
ter values or the uncertainty in the computed statistics, which
would require a more rigorous Bayesian approach. Nevertheless,
the results clearly show that optimization using NSE tends to
underestimate the variability of flows on the calibration period,
and that this behaviour tends to persist into the evaluation period.
Further, the bias in the calibration period is well constrained with
KGE, but not with NSE, whereas in the evaluation period (with
overall poorer bias) the results with NSE are only slightly inferior
to KGE.

An interesting result is that for many basins the optimal param-
eter values changed by only small amounts (relative to the feasible
range) when using KGE instead of NSE. In the KGE optimization
there was a tendency to decrease the recession parameters of sur-
face flow and base flow to simulate a flashier hydrograph, and
thereby improve the value of the variability measure. Because of
parameter interactions there was no clear tendency of a change
in the parameters for the bias measure. In general, this suggests
that the values of multiple criteria can be improved by making only
small changes in the parameter values. This emphasizes the impor-
tance of the relative sensitivity of the criterion components to
changes in the parameter values. On the one hand, this is a desir-
able effect during calibration, because we want to have measures
that are actually sensitive to the parameter values, thereby theo-
retically increasing parameter identifiability. On the other hand,
this raises important questions for parameter regionalization, be-
cause even a small ‘error’ in a parameter value could result in poor
values of individual measures, thereby causing poor overall model
performance.
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The attempt to explain the relationships between changes in
the parameters and values of the criterion components relates to
the idea of diagnostic model evaluation, as proposed by Gupta
et al. (2008) and tested by Yilmaz et al. (2008) and Herbst et al.
(2009). The idea behind diagnostic model evaluation is to move be-
yond aggregate measures of model performance that are primarily
statistical in meaning, towards the use of (multiple) measures and
signature plots that are selected for their ability to provide hydro-
logical interpretation. Such an approach should improve our ability
to diagnose the causes of a problem and to make corrections at the
appropriate level (i.e. model structure or parameters). The theoret-
ical development presented in this paper, shows one simple, statis-
tically founded approach to the development of a strategy for
diagnostic evaluation and calibration of a model. Clearly, the mea-
sures used in this study have some diagnostic value. The bias and
variability measures represent differences in matching of the
means and the standard deviations (the first two moments) of
the probability distributions of the quantities being compared.
Their appearance in NSE and MSE indicates that these performance
criteria give importance to matching these two long-term statistics
of the data. From a hydrological perspective, these statistics relate
to the properties of the flow duration curve, in which issues of tim-
ing and shape of the dynamical characteristics of flow are largely
ignored. These statistics will therefore be mainly controlled by as-
pects of model structure and values of the parameters that deter-
mine the general partitioning of precipitation into runoff,
evapotranspiration and storage (i.e. overall water balance) and,
further, the general partitioning of runoff into fast and slow flow
components (e.g. see Yilmaz et al., 2008). Meanwhile, all other dif-
ferences between the statistical properties of the observed and
simulated flows such as timing of the peaks, and shapes of the ris-
ing limbs and the recessions of the hydrograph (i.e. autocorrelation
structures), are lumped into the (linear) correlation coefficient as
an aggregate measure. A logical next step would be to further
decompose the correlation coefficient into diagnostic components
that represent different aspects of flow timing and shape (e.g. auto-
correlation structure). Further, a distinction between different
states (modes) of the hydrological response – such as driven and
non-driven (see e.g. Boyle et al., 2000) – may also prove to be sen-
sible. Such considerations are left for future work.

Before entering into our concluding remarks, we should point
out that the primary purpose of this study was not to design an im-
proved measure of model performance, but to show clearly that
there are systematic problems inherent with any optimization that
is based on mean squared errors (such as NSE). The alternative
criterion KGE was simply used for illustration purposes. An optimi-
zation on KGE is equivalent to selecting a point from the three-
dimensional Pareto front with the minimal distance from the ideal
point. Many different alternative criteria would also be sensible,
but ultimately it has to be understood that each single measure
of model performance has its own peculiarities and trade-offs be-
tween components. In the case of KGE probably the most problem-
atic characteristic is that the slope of the regression lines will tend
to be smaller than one, albeit not as strongly as with NSE (when
regressing simulated against observed values). Because of the sim-
ple design of the KGE criterion it is straightforward to understand
the trade-offs between the correlation, the bias and the variability
measure. These trade-offs are more complex in the case of NSE.

If single measures of model performance are used we deem it to
be imperative to clearly know the limitations of the selected crite-
rion. It then will depend upon the type of application whether
these limitations are of concern or not. The decomposition pre-
sented here highlights the fact that identical values of the NSE cri-
terion are not necessarily indistinguishable – as is commonly (and
erroneously) assumed in the literature in arguments relating to
equifinality (Beven and Binley, 1992; Beven and Freer, 2001) –
since the criterion components may be quite different. Thus, when
evaluating or reporting results based on calibration with NSE,
information about the correlation, bias, and variability of flows
should also be given (interestingly, this was already proposed by
Legates and McCabe (1999), although they did not discuss the
interrelation between NSE and its three components). Ultimately
the decision to accept or reject a model must be made by an expert
hydrologist, where such a decision is best based in a multiple-cri-
teria framework. To this end, an analysis of the components that
constitute the overall model performance can significantly en-
hance our understanding of model behaviour and provide insights
helpful for diagnosing differences between models, basins and
time periods within a hydrological context.
Summary and conclusions

In this study a decomposition of the widely used Nash–Sutcliffe
efficiency (NSE) was applied to analyse the different components
that constitute NSE (and hence MSE). We present theoretical con-
siderations that serve to highlight problems associated with the
NSE criterion. The results of a case study, where a simple precipi-
tation-runoff model was applied in several basins, support the the-
oretical findings. For comparison we show how an alternative
measure of model performance (KGE) can overcome the problems
associated with NSE.

In summary, the main conclusions of this study are:

� The mean squared error and its related NSE criterion consists of
three components, representing the correlation, the bias and a
measure of variability. The decomposition shows that in order
to maximize NSE the variability has to be underestimated. Fur-
ther, the bias is scaled by the standard deviation in the observed
values, which complicates a comparison between basins.

� Given that NSE consists of three components, an alternative
model performance criterion KGE is easily formulated by com-
puting the Euclidian distance of the three components from
the ideal point, which is equivalent to selecting a point from
the three-dimensional Pareto front. Such an alternative criterion
avoids the problems associated with NSE (but also introduces
new problems).

� The slopes of the regression lines are directly related with the
three components. NSE is suitable if the interest is in regressing
the observed against the simulated values, but less suitable for
regressing the simulated against the observed values. This
means that if NSE is used in optimization, then runoff peaks will
tend to be underestimated. The same applies for KGE, but the
underestimation will not be as severe.

� After optimization, the component representing the linear corre-
lation dominates the model performance criterion for both NSE
and KGE. For non-optimal parameter sets any of the three com-
ponents can be dominant in NSE or KGE.

� Even with a simple precipitation-runoff model it is possible to
obtain runoff simulations where the mean and variability of
flows are matched well, and the linear correlation is still high.
However, this applies only for optimization with KGE, since
NSE does not consider such a solution as ‘good’.

� The optimal parameter values may, in practice, only change by
small amounts when using KGE instead of NSE as the objective
function for optimization (as in our example). This emphasizes
the importance of considering the sensitivity of the three com-
ponents to perturbations in the parameter values.

A preliminary analysis of the results of other studies shows that
the same conclusions are obtained when using more complex,
hourly models (Kling et al., 2008) or simple, monthly water balance
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models (Martinez and Gupta, submitted for publication), which
emphasizes the generality of the conclusions of this study. This
study reinforces the argument that model calibration is a multi-
objective problem (Gupta et al., 1998), and shows that a decompo-
sition of the calibration criterion into components can help to
greatly enhance our understanding of the overall model perfor-
mance (and, by extension, the differences in model performance
between model structures, basins and time periods). To compute
these components is a straightforward task and should be included
in any evaluation of model simulations. Ultimately, such an ap-
proach may help in the design of diagnostically powerful evalua-
tion strategies that properly support the identification of
hydrologically consistent models.
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