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Abstract The high climate sensitivity of hydrologic systems,
the importance of those systems to society, and the imprecise
nature of future climate projections all motivate interest in
characterizing uncertainty in the hydrologic impacts of cli-
mate change. We discuss recent research that exposes impor-
tant sources of uncertainty that are commonly neglected by the
water management community, especially, uncertainties asso-
ciated with internal climate system variability, and hydrologic
modeling. We also discuss research exposing several issues
with widely used climate downscaling methods. We propose
that progress can be made following parallel paths: first, by
explicitly characterizing the uncertainties throughout the
modeling process (rather than using an ad hoc Bensemble of
opportunity^) and second, by reducing uncertainties through
developing criteria for excluding poor methods/models, as
well as with targeted research to improve modeling capabili-
ties. We argue that such research to reveal, reduce, and repre-
sent uncertainties is essential to establish a defensible range of
quantitative hydrologic storylines of climate change impacts.
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Introduction

Many planning and management decisions require an under-
standing of the vulnerability of hydrologic systems to a wide
range of different stresses. A key challenge is to identify defen-
sible options for the design and operation of systems under an
uncertain and changing climate [61]. In the water resources sec-
tor, this requires defining a range of different climate change
scenarios in order to evaluate the vulnerability of infrastructure
systems and the effectiveness of different adaptation strategies in
managing climate-related stresses [10, 98]. For many users, the
range of climate scenarios is most compatible with decision-
making processes when it is distilled into a set of discrete quan-
titative hydrologic Bstorylines^ of climate change impacts, each
representing key features from the full range of possible climate
scenarios. While much of this paper will focus on the implica-
tions for the water resource sector, the lessons here extend across
all of hydrology and, more generally, to any other field that is
grappling with projecting the impacts of climate change.

Developing quantitative hydrologic storylines of future
change for the water sector is an interdisciplinary endeav-
or—it entails representing current knowledge of global
change in the context of substantial uncertainty in the trajec-
tory of future climate and the associated impacts on hydrolog-
ic processes. Recent research has shown the importance of
assessing uncertainty from a large number of sources
(Fig. 1; see also the section BEmbracing uncertainty:
Research to reveal and reduce modeling uncertainty^), includ-
ing, global model structure [45, 56], internal climate variabil-
ity [23, 24], climate downscaling methods [35, 55], and hy-
drologic models [1, 57, 62, 92]. Increasing computational
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resources permit more sources to be combined, such that mod-
el ensemble sizes have grown from a handful of experiments a
few decades ago to hundreds of projections now. This plethora
of available projections and methodological options is
outpacing the ability of the applications community to handle
large ensembles and thereby comprehensively characterize
uncertainty [14]. Furthermore, it is critical to keep the appli-
cation community engaged and informed to ensure that this
plethora of science information can be translated into action-
able water resources planning and operational decisions.

This paper provides a critical review of capabilities to char-
acterize and understand uncertainty in the hydrologic impacts
of climate change (excluding changes in water management).
We conduct our review in the context of a paradigm shift in
water resources planning, namely a move toward a structured
decision-making (SDM) framework that tests the performance
of different options that are highlighted within an envelope of

broad uncertainty [10, 50, 104]. Specifically, we ask why re-
search is needed to characterize uncertainty in climate change
impacts on hydrology (BSocietal and Scientific Motivations to
Characterize and Understand Uncertainty^ section). We con-
sider societal motivations for appraising the potential impacts
of climate change in water resources planning and manage-
ment, as well as scientific motivations to understand and re-
duce uncertainty. We also ask how the science and applica-
tions communities are presently characterizing uncertainty
(BEmbracing Uncertainty: Research to Reveal and Reduce
Modeling Uncertainty^ section) and how the myriad uncer-
tainties can be distilled into a discrete set of quantitative hy-
drologic storylines (BEmbracing Uncertainty: Developing
Scenarios of Hydrologic Change for Applications^ section).
Our broader goal is to critique the current research path and
provide suggestions on ways to move the community forward
in fruitful directions (summarized in the BConcluding
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Fig. 1 Schematic on approaches to explicitly characterize and reduce the myriad uncertainties in assessments of the hydrologic impacts of climate
change and the development of representative quantitative hydrologic storylines for specific applications
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Remarks^ section). Our focus is on resolving uncertainties
that are tractable through improved models and experimental
design, as distinct from the uncertainties that hinge on un-
knowable human decision processes.

Societal and Scientific Motivations to Characterize
and Understand Uncertainty

Societal Motivations

The high sensitivity of water resource systems to climate var-
iability creates strong societal motivations to characterize and
understand the uncertainty in the weather, climate, and hydro-
logic impacts of global warming. The United Nations Hyogo
Framework for Action1 and the World Meteorological
Organisation Global Framework for Climate Services
(GFCS)2 recognize the central role played by climate infor-
mation in water resources planning and management, as well
as in reducing the risk of disasters associated with floods and
droughts. The GFCS calls for research into fundamental cli-
mate processes and into climate impacts on people and sectors
over seasonal to multidecadal timescales. Improving the effec-
tive use and communication of uncertain projections are seen
as central to enhanced decision-making and more urgent ac-
tion in the face of climate risks [63, 70, 71]. The effective use
of uncertain climate information requires a close working re-
lationship between the providers and recipients of climate ser-
vices, as well as managing user expectations about scientific
capabilities through more explicit statements about uncertain-
ty in climate service products (Climate Services Partnership
[21]).

Uncertainty about future projections is motivating a
revamping of the decision rules and evaluation principles used
for water infrastructure projects [10, 86, 104]. New ap-
proaches to water resources planning and management can
involve moving away from the traditional search for
Boptimal^ schemes, toward defining solutions that are better
suited to Bsatisficing^ across a range of plausible yet uncertain
quantitative hydrologic storylines. The SDM framework
(e.g., [32]) encompasses a very broad set of methods rath-
er than prescribing a rigid approach for problem solving.
The SDM objective therefore is to arrive at a solution that
is robust and meets a given problem’s objectives by ex-
plicitly considering both uncertainty and institutional set-
ting. Within the construct of the SDM framework, a group
of methods have been developed to address uncertainty,
and two widely used techniques for robustness analysis
are robust decision-making and information gap analysis
[5, 37, 49]. The underlying premise of these so-called

robustness analysis techniques under uncertainty is not
solely about predicting-then-acting but rather more gener-
ally to emphasize the evaluation of the performance of
different options within the context of declared uncer-
tainties and the minimization of potential regrets [50].

A renewed interest for research on uncertainty has stimu-
lated the development of new tools to support the Bstress-
testing^ of options, taking into account plausible ranges of
climate variability and change [69, 87, 101]. However, there
remains a need for practical guidance on defining the ranges of
uncertainty used to bound stress-test experiments, especially
characterizing uncertainties that have hitherto been neglected,
and on the opportunities to reduce uncertainties through better
methods and models (see the BEmbracing Uncertainty:
Research to Reveal and Reduce Modeling Uncertainty^ sec-
tion). Further research is also needed to assist decision makers
in the timing of options within dynamic adaptation pathways
approaches and in reconciling trade-offs between competing
water uses when these all operate under uncertainty [72].

Scientific Motivations

A key scientific motivation for research on uncertainty is the
quest to understand earth system change. In part, this involves
characterizing the uncertainties in model simulations in order
to focus research efforts that seek to improve process under-
standing and predictive models. For example, large uncer-
tainties linked to simplified representations of clouds and pre-
cipitation have stimulated new capabilities for Bcloud
resolving^ simulations of regional climate, which in turn have
deepened our understanding of how large-scale changes in
climate can affect orographic precipitation [77] and the inten-
sity of summer convective storms [42]. In this context, uncer-
tainty characterization is necessary to separate climate
Bsignal^ from Bnoise^, i.e., to identify changes where we have
some confidence, such as declining snowpack [64].
Additional research to characterize climate and hydrologic
modeling uncertainty will strengthen the scientific foundation
for specifying national and international policy actions aimed
at mitigating climate change.

Embracing Uncertainty: Research to Reveal
and Reduce Modeling Uncertainty

The process of defining quantitative hydrologic storylines of
climate change impacts for the water sector has been an active
area of research for nearly two decades [8, 12, 22, 38, 99,
104]. Recent research is beginning to reveal how different
methodological choices can impact portrayals of climate risk
[1, 4, 35, 39, 58, 59, 73, 92, 95]. Quantitative hydrologic
storylines of climate change impacts for the water sector must
encompass, as much as possible, the full suite of uncertainties

1 http://www.unisdr.org/we/coordinate/hfa
2 http://gfcs.wmo.int/water
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associated with (1) global climate modeling, including both
model uncertainty and unforced climate variability, (2) region-
al climate downscaling, and (3) hydrologic modeling.
Although not discussed here, such storylines should also re-
flect indirect consequences of climate variability and change
(including hydrologic responses mediated by changes, e.g., in
land use or atmospheric chemistry such as dust and aerosols)
as well as pertinent non-geophysical factors (such as the op-
erational regimes of water infrastructure).

The approach we advocate here is illustrated schematically
in Fig. 1, following three main steps. First, it is important to
adequately characterize uncertainty in all elements of the cli-
mate impacts modeling chain, including uncertainty in emis-
sions scenarios, uncertainty in selection and configuration of
climate models, uncertainties in internal climate system vari-
ability (characterized by small perturbations in climate model
initial conditions), uncertainty in climate downscaling, uncer-
tainty associated with the selection and configuration of hy-
drologic models, and uncertainty in hydrologic model calibra-
tion. Many of these uncertainty sources are neglected in cli-
mate impact studies. Second, it is important to reduce uncer-
tainties, though selection of likely emission scenarios, in-
formed sampling of climate models (e.g., model culling), sam-
pling of internal climate system variability, restriction to more
reliable climate downscaling methods, selection of hydrologic
models with adequate process representation, and estimating
parameters in hydrologic models using multivariate/
multiobjective methods that ensure high model process fidel-
ity, not just high Nash-Sutcliffe efficiencies. Third, from a
practical perspective, it is important to construct a small set
of example quantitative hydrologic Bstorylines^ of climate
change impacts to provide end-users of climate information
with a manageable set of scenarios they can use in their plan-
ning studies. The storylines proposed here are more specific
than the general climate change narratives proposed by Yates
et al. [104], as the focus is on explicitly characterizing all
sources of uncertainty in the modeling process. The following
sections will describe the construction of quantitative hydro-
logic storylines in more detail, focusing on the research that is
needed to characterize and reduce uncertainties at various
points in the climate impacts modeling chain.

Global Climate Modeling

Advances in global climate modeling are yielding more de-
tailed representations of earth system processes and feed-
backs. The specific decisions made when building climate
models (often equally plausible and equally defensible model-
ing strategies), along with the chaotic evolution of climate
system states, mean that increases in model complexity are
often accompanied by increases in the diversity of simulations
of future climate [45]. Such diversity in climate model simu-
lations is a positive attribute, as output from multiple models

provides the starting point to define alternative climate change
storylines that have value for evaluating water sector options
[8, 9, 74].

It is difficult to characterize uncertainties in climate model
simulations from the available multiple global climate model
ensemble. This is because uncertainties in climate modeling are
not explicitly encapsulated in the differences among the climate
models that are available for impact assessments [46, 66, 85].
As such, the available ensembles do not span the range of
possible physical representations, and they conflate modeling
error with natural, chaotic, variability. Consequently, climate
models offer at best a biased and incomplete sample of the
range of possible climate futures [7]. Moreover, global climate
models may not properly represent natural, unforced climate
variability, which can introduce substantial uncertainty in as-
sessments of climate changes on decadal to multidecadal time
scales [23, 24]. One solution is to improve the estimation of
each model’s forced climate signal by using sufficiently large
ensembles from single-physics climate model implementations
that differ only in their initial conditions [41], a practice that
may prove computationally impractical for many modeling
groups. Another solution is to generate perturbed physics en-
sembles [66], though this is also costly as well as logistically
difficult to apply across multiple models in a consistent and
coordinated way.

Another challenge is to reduce uncertainties in global cli-
mate model simulations. As noted above, collective increases
in model complexity can actually increase model diversity
because different modeling groupsmake various model devel-
opment decisions that ultimately impact model simulations.
Nevertheless, it is reasonable to accept that all models are
not created equal (i.e., some are better than others [44] for a
given objective), engendering an opportunity for methods to
cull or down-weight models. At present, attempts to do so
typically employ criteria based on historical model perfor-
mance which ostensibly reflect the adequacy of model repre-
sentations of earth system processes [97]. For instance, the
ability to balance evaporation with precipitation at global
scales might be regarded as a fundamental test of a climate
model’s fitness for hydrological applications [51]. Clearly,
however, such test metrics must be multifaceted, which leads
inevitably to the further challenge of defining and agreeing
upon criteria for model assessment—a problem likely to be
viewed variously from different societal and scientific per-
spectives. For example, the ability to represent important fea-
tures of the climate system such as the El Nino Southern
Oscillation (ENSO), the Madden-Julian Oscillation (MJO),
or the Pacific Decadal Oscillation (PDO) might be viewed as
key metrics for the evaluation of any climate model regardless
of the proposed application. A vexing gap in the model
weighting effort, however, has been the dearth of accepted
criteria to rate a model’s representation of earth system sensi-
tivities to emission forcing—that is, the model’s ability to
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provide an accurate answer to central questions about future
earth system impacts given climate change. Nonetheless, re-
ducing uncertainty through the selection/rejection of climate
models is an active area of research, and many groups are
experimenting with alternative methods to combine output
from multiple climate models [6, 13, 29, 46, 65]. As the com-
munity moves to higher resolution models, it will be interest-
ing to see how explicitly resolving processes (e.g., convection,
flow over mountain ranges) changes the profile of inter-model
differences.

Climate Downscaling

Advances in regional climate downscaling have been some-
what mixed. The key advances in statistical downscaling were
made over two decades ago, with recent work focused primar-
ily on refining traditional methods (see the reviews of Fowler
et al. [31]; Wilby and Fowler [100]). Non-stationarity in sta-
tistical downscaling model parameters is widely recognized as
a key problem, but has yet to be seriously characterized or
resolved by the community, creating considerable uncertainty
in how climate change is portrayed. One approach is to use
very high-resolution regional climate models as Bvirtual
worlds^ to explore the stationarity of predictor-predict and
relationships (following the seminal work of Charles et al.
[11]). In contrast to statistical downscaling, dynamical down-
scaling capabilities have evolved considerably. Such advances
are spurred in part by advances in computing, and in part by
advances in physics parameterizations [77], though character-
izing uncertainty in dynamical downscaling remains challeng-
ing [27, 55]. The age-old quest to characterize and reduce
uncertainties is accentuated by the gap between science and
applications, prompting Fowler and Wilby [30] to call for
more thinking about the transposition of insights about down-
scaling uncertainties into adaptation practice.

Recent research on regional climate downscaling has re-
vealed a number of uncertainties that have hitherto been large-
ly neglected by the water management community.
Considering parsimonious statistical models, Gutmann et al.
[35] conducted a comprehensive assessment of the climate
model re-scaling methods commonly used by the water man-
agement community in the USA, revealing substantial biases,
inadequate representation of extremes, and inadequate repre-
sentation of the spatial scaling characteristics that are impor-
tant for hydrology. The work suggests that techniques that
statistically re-scale the global model change signals are
undermined bymethodological artifacts that compromise their
utility for planning studies. Considering complex dynamical
models, Mearns et al. [55] evaluate the results from the coarse-
resolution North American Regional Climate Change
Assessment Program (NARCCAP) and reveal that many re-
gional climate model simulations have very different climate
change signals to the parent global model. The NARCCAP

findings call into question the notion that the use of high-
resolution physical parameterizations guarantees that a dy-
namical downscaling will provide a more precise and accurate
regional change projection. Because the choices of parameters
and physics parameterizations in regional dynamical down-
scaling models also give rise to significant uncertainty in
projected change signals, a computationally tractable method
for exploring and understanding these uncertainties is a critical
need. The perturbed physics approach is a key effort to char-
acterize climate dynamical downscaling uncertainties [67,
103] and is now being applied using high-resolution interme-
diate complexity atmospheric models [36].

The scope for reducing uncertainty in climate downscaling
parallels that in global climate modeling, i.e., avoiding, to the
extent possible, the use of physically inadequate models and
methods. Put simply, it is important to select among a range of
downscaling methods based on their historical performance
[90], including their ability to adequately represent extremes,
temporal sequencing (e.g., wet spell length), and the spatial
scaling characteristics that are important for hydrology [35].
As noted previously, dynamical downscaling methods have
shown substantial improvements when moving to higher res-
olutions. In particular, when dynamical models reach suffi-
cient resolution that the convective parameterization can be
turned off and mountain ranges are properly resolved (e.g., [3,
42, 77]), then there may be more agreement between models.
A critical remaining challenge for the community, as noted
earlier, is to assess the ability of downscaling methods to rep-
resent change in local-to-regional scale climate and hydrology
[76]. As with global climate modeling, therefore, the selection
of downscaling methods must proceed with caution, to avoid
unintended consequences of over-correcting the noise in cli-
mate model simulations (e.g., interpreting internal variability
as a model bias) and to avoid being overly confident in the
change signal from the global models [28, 35].

Hydrologic Modeling

The last decade brought a greater appreciation for how deci-
sions in hydrologic modeling can affect the portrayal of cli-
mate change impacts. Wilby [96] demonstrated that uncer-
tainties associated with the non-uniqueness of model parame-
ters had a large impact on the portrayal of climate change
impacts. More recently, others have emphasized the large im-
pacts associated with the choice of hydrologic models [59,
92], with traditional calibration approaches having limited im-
pact in reducing inter-model differences in the portrayal of
climate change signals, even for physically motivated models
[58]. The challenges of characterizing and reducing uncer-
tainties are therefore very acute in the hydrologic modeling
community.

Specific limitations of existing hydrologic modeling ap-
proaches relate to both (1) missing processes and (2)
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inadequate model parameters. In terms of resolving dominant
processes, many modeling groups follow a mechanistic
modeling approach in order to provide increased confidence
that results will hold under different climate regimes [18].
However, many climate impact studies are still conducted
using simplistic models that are not robust to non-
stationarity [94]. For example, models that parameterize po-
tential evapotranspiration as a function of air temperature can
exaggerate the hydrologic sensitivity to climate change [60,
78, 84]. Similar issues arise from neglecting processes such as
vegetation change, carbon fertilization, and surface water-
groundwater interactions [54, 75]. Even when models are rel-
atively Bcomplete^ in terms of their representation of domi-
nant processes, different model formulations lead to very dif-
ferent simulations of hydrologic processes and land-
atmosphere feedbacks [15, 17, 25, 48]. In terms of improving
model parameters, for catchment-scale studies, there is too
often a reliance on a curve-fitting approach to parameter esti-
mation, leading to compensatory model errors and poor rep-
resentation of dominant hydrologic processes [43]; similarly,
for regional- and continental-scale studies, there is too often a
reliance on a priori model parameters that also provide a poor
representation of dominant processes [2]. There is an interest-
ing interplay here between processes and parameters—while
we advocate mechanistic modeling, physically motivated
models have hundreds of parameters that are at best ill de-
fined. We do not even know the saturated hydraulic conduc-
tivity of the soil to within an order of magnitude, much less the
vertical rooting profiles, soil thickness, interception capacity,
and so forth.While we can estimate these parameters globally,
they are very crude estimates, and the uncertainty in those
parameters translates into large uncertainties in the climate
change signal. A key research effort is therefore to better char-
acterize hydrologic modeling uncertainties, using modeling
frameworks designed to accommodate multiple spatial con-
figurations, multiple process parameterizations, and multiple
model parameter values and explicitly represent the myriad
uncertainties in physically motivated models [16, 19, 20].

Opportunities to reduce uncertainty in hydrologic model-
ing arise from the judicious selection, configuration, and cal-
ibration of hydrologic models, guided by physical insights
about the studied hydrologic system. Concerning selection,
research effort is focused on developing models that appropri-
ately represent the dominant hydrologic processes [18] be-
cause neglecting processes (e.g., groundwater-surface water
interactions) or over-simplifying process representations
(e.g., temperature index snowmodels) leads to unreliable por-
trayals of climate change impacts [52, 60]. Concerning model
parameters, research effort is focused on implementing diag-
nostic and multiple objective approaches to parameter estima-
tion to avoid problems associated with compensatory param-
eter interactions and parameter non-uniqueness [33] and
hence reduce model uncertainty by selecting parameter sets

that faithfully represent observed hydrologic processes. As
just mentioned, estimates of model parameters are especially
uncertain for continental-domain hydrologic model applica-
tions [62], and dedicated research effort on such large-
domain applications can substantially reducemodel uncertain-
ty [81].

Embracing Uncertainty: Developing Scenarios
of Hydrologic Change for Applications

Quantitative hydrologic storylines of climate change impacts
for the water sector must, to the extent possible, encompass
the full suite of uncertainties associated with global climate
modeling, climate downscaling, hydrologic modeling, and
natural climate variability [1, 22, 26, 58, 83, 92, 99]. Recent
research has revealed that the water management community
has hitherto neglected or underestimated many of the uncer-
tainties in climate change scenarios, in particular, uncertainties
associated with internal climate system variability [23, 24, 39]
and hydrologic modeling [58, 92]. Other work has revealed
several issues with commonly used climate downscaling
methods, which can hinder portrayals of the hydrologic im-
pact of climate change [34, 35, 62].

The selection problem represents an important research
challenge because of the need to sample from the very large
ensemble in an objective fashion. While some progress has
been made on this topic [14, 46, 47, 53, 88, 102], existing
techniques typically focus primarily on one aspect of the prob-
lem, be it model fidelity3 [80, 89], sensitivity4 [79, 91], or
diversity5 [6, 47], with little work on the interplay among these
factors [82, 93]. Importantly, there is limited understanding on
how considerations of fidelity, sensitivity, and diversity in-
forms sampling from the hierarchy of models used to evaluate
impacts of climate change in the water resources sector, in-
cluding global climate models, climate downscaling, and hy-
drologic models.

Moving forward, it is important to create quantitative hy-
drologic storylines that reflect these myriad uncertainties.
Figure 1 illustrates such an approach, emphasizing the re-
search needed to characterize uncertainties, to reduce uncer-
tainties, and to develop hydrologic storylines for specific end-
user applications. A key component of this research (not
shown here) is also to reflect uncertainties in the management

3 Fidelity is the extent to which a model faithfully represents observed
processes, as measured by comparing historical model simulations to
observations. The suite of metrics used to evaluate model fidelity is very
important.
4 Sensitivity is the extent to which the model is sensitive to changes in the
parameters of the simulation, e.g., the sensitivity of a model to change in
boundary forcing.
5 Diversity is the extent to which models differ. Diversity can relate to
both the differences in model construction [47] as well as differences in
model simulations [6].
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models and other non-climate stresses that play a strong role in
defining possible futures and the effectiveness of different
water management options.

In this context, it is also important to move beyond the
direct consequences of changed air temperature (ΔT) and pre-
cipitation (ΔP) regimes on water supply and consider a wide
range of indirect hydrological impacts and dynamics implied
by ΔT and ΔP that are not captured in traditional climate
change assessments. For example, increased aridity may sug-
gest enhanced dust supply and deposition on snow/ice pack
leading to earlier or more rapid melt; changed patterns of
biomass accumulation and desiccation could alter wildfire
then subsequent flood and landslide hazards; variations in soil
moisture and temperatures could favor disease/pest outbreaks
and dieback of forest cover; drier/hotter conditions could drive
greater demand for outdoor water use in urban areas. Yates et
al. [104] assert that these types of narratives should be used to
stress-test water supply systems and adaptation options in
more convincing, holistic ways. More generally, the storyline
approach opens the way for including non-climatic pressures,
which may be of more immediate concern.

Concluding Remarks

Quantitative storylines of future hydrologic change must en-
compass the full suite of uncertainties associated with global
climate modeling, climate downscaling, hydrologic modeling,
and natural climate variability [1, 22, 58, 83, 92, 99], and
ultimately, this information must be put in a context such that
the water resources planning andmanagement community can
incorporate uncertain climate information along with expecta-
tions of other changes in order to make informed decisions.
This paper reviews how uncertainty is encapsulated in simu-
lations of future change throughout the modeling process. We
discuss research that reveals uncertainties that have hitherto
been neglected (e.g., due to poor models and methods and
internal climate variability). We also point to research that
can reduce uncertainties throughout the set of models and
methods that are used to understand the climate sensitivity
of water resources (reducing uncertainty through model selec-
tion/rejection, and focusing science attention on critical and
unmet model development needs). Our review is conducted
within the context of a paradigm shift in water resources plan-
ning, where the focus has moved to a SDM framework that
tests the performance of different options within the context of
uncertainties [10, 50, 104].

Our broader goal is to critique the current research path and
provide suggestions on ways to move the community forward
in fruitful directions. Key research priorities include:

& Improved characterization of uncertainty in global climate
models, by enhancing development and use of perturbed

physics and initial condition ensembles, and additional
research on the selection/rejection of climate models.

& Improved characterization of uncertainty in regional cli-
mate downscaling, by (a) enhancing development of
perturbed physics approaches (including more extensive
use of dynamical models of intermediate complexity), (b)
further development of statistical downscaling methods
that can represent metrics important for hydrology (spatial
scaling characteristics; extremes), and (c) abandoning
downscaling methods that have limited merit for hydro-
logic impact studies.

& Improved characterization of uncertainty in hydrologic
modeling, using frameworks designed to accommodate
multiple spatial configurations, multiple process parame-
terizations, and multiple model parameter values; reduc-
ing hydrologic model uncertainty through advances in hy-
drologic process representation (explicitly simulate domi-
nant processes and improving estimates of model param-
eters, especially for continental-domain applications).

& Use comprehensive characterizations of uncertainty in
global climate modeling, climate downscaling, land-
atmosphere feedback processes, and hydrologic modeling
to develop quantitative hydrologic Bstorylines^ describing
trajectories of hydrologic change that reflect these myriad
uncertainties.

Under the backdrop of uncertainty, it is also important to
emphasize areas where we have gained new knowledge and
understanding in order to provide meaningful guidance for
water resources planning and management. In particular, it is
important to identify changes in climate and hydrologic pro-
cesses where we have some confidence, such as declining
snowpack, using quantitative concepts such as the emergence
of statistically significant signals, or where a number of chang-
es occur in ways that improve signal to noise. With this un-
derstanding in hand, it is also important to improve the use and
communication of uncertain projections by enhancing the
working relationship between the providers and recipients of
climate services, as well as managing user expectations about
scientific capabilities through more explicit statements about
uncertainty in climate service products and where the results
are most robust.

We argue here that twenty-first century water resource
planning creates a strong need for more holistic depictions
of uncertainty. It is time to move beyond the common ad
hoc approach of defining a limited set of climate change sce-
narios based on a small collection of models and methods with
known problems. Instead, we advocate a more deliberate ap-
proach to assessing hydrologic uncertainty under climate
change, that is, at the same time, counterbalanced by the need
for more value-added explicit modeling [40, 76]. This creates
a need for new tools and techniques for generating local-to-
regional climate and hydrology scenarios for vulnerability
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assessment and adaptation options appraisal [68, 101]. Such
research into revealing, reducing, and representing uncer-
tainties is essential for defining plausible ranges of quantita-
tive hydrologic storylines of climate change impacts to sup-
port water resources planning and management.
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