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Why Worry about Numerics Given so Many Other Problems?
Hydrologists often face sources of uncertainty that dwarf those nor-
mally encountered in many engineering and scientific disciplines. While
a structural engineer designing a wall of a building can subject mul-
tiple bricks to repeated strength tests and simulate the full non-linear
behaviour of individual bricks, joints and reinforcing bars using finite-
element models applied at the scale of millimetres, we as hydrologists
often represent highly heterogeneous catchment systems, which may
include complex stream networks, preferential flowpaths, varied vegeta-
tion, land use and geology, using highly conceptualized lumped models.
Moreover, we often force these models with rainfall data from a single,
daily recording gauge well outside of the catchment. Given the simplicity
of our models, does it really matter how they are implemented?

It is then perhaps unsurprising that when asked 10 years ago whether
the popular TOPMODEL (Beven, 1997) calculates its fluxes based on
its storage at the start or at the end of a time step, a colleague
responded with a largely indifferent shrug—‘does it really matter,
given all other errors we are making?’ Similarly, another colleague
often referred to mysterious ‘pits’ in the objective function surface of
a hydrological model, which prevented the convergence of a standard
parameter optimization code we got off a floppy disk in a numerical
analysis book. What is causing those?

It would hardly be an exaggeration to say that objective function diffi-
culties have caused hydrologists many headaches over the last 40 years.
For example, Hendrickson et al. (1988) demonstrated that Newton-type
parameter optimization terminated all over the objective function space
depending on the initial search point. In a seminal paper, Duan et al.
(1992) showed glacial-like objective function landscapes, with sharp
spikes and otherwise messy geometry, and designed a global evolution-
ary method (the Shuffled Complex Evolution search, or SCE) that was
better suited to such problems. Around the same time, Beven and Bin-
ley (1992) proposed the generalized likelihood uncertainty estimation
(GLUE) framework, which was at least partially motivated by prob-
lems associated with searching for parameter optima of complex model
response surfaces. Indeed, the dotty plots reported in GLUE studies
often show significant distortions and irregularities. Given the undeni-
able empirical evidence of objective function complexity, the theme was
picked up in the design of Monte Carlo Markov Chain (MCMC) algo-
rithms, with techniques such as Shuffled Complex Evolution Metropo-
lis (SCEM) and DiffeRential Evolution Adaptive Metropolis (DREAM)
(Vrugt et al., 2003, 2009) aiming to improve the sampling of geometri-
cally complex and multi-optimal parameter distributions.

Quite remarkably, in many cases, model analysis complexities are con-
sequences of numerical artefacts in the model implementation—often,
literally, depending on whether the start-of-step or end-of-step fluxes
are used (Clark and Kavetski, 2010)! The extent of problems can be
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staggering, including (i) degraded performance of
parameter optimization and uncertainty analysis algo-
rithms, (ii) erroneous and/or misleading conclusions
of sensitivity analysis, parameter inference and model
interpretations and, finally, (iii) poor reliability of a
calibrated model in predictive applications. Indeed, at
times model behaviour becomes patently absurd (see
Section on Harbingers of Problems).

How can this be? While various explanations could
be advanced, we note that hydrologists have, quite
correctly, attributed objective function complexities to
model non-linearities (and large data errors). Yet, the
hydrological community has often lacked a willing-
ness to thoroughly question ‘what, more precisely, is
the origin of these non-linearities?’ and ‘is there some-
thing that is aggravating the non-linear behaviour and
resulting problems?’ Instead, we have often launched
straight into inventing new calibration algorithms and
paradigms to handle these complexities, rather than
seeing if these problems can be reduced, or even
avoided, in the first place.

This commentary surveys and discusses recent
work on the impact of poor numerical techniques
in conceptual hydrological models, relating it to the
important questions of reliable model development
and the hypothesis-oriented paradigm in hydrologi-
cal sciences. In particular, we excoriate the frequent
disregard of numerical errors by hydrologists who
tacitly assume them to be insignificant and dominated
by data and structural uncertainty. Such perception
is almost akin to arguing that an approximate prob-
lem might as well be solved using a broken calculator,
and, as illustrated here, may have caused hydrologists
decades of unnecessary headaches.

Numerical Troubles
Mathematical structure of hydrological models

Revealing insights into the nature of model non-
linearities can be gleaned from inspecting the for-
mulation of hydrological models. For example, the
continuous-time state-space form of an exponential
store is

dS (t)
dt

= P (t) − Q(S (t)) (1a)

Q = b exp(kS ) (1b)

where S (t), P (t) and Q(S (t)) are, respectively, the
storage, inflow and outflow at time t , fk , bg are
(positive) model parameters, and S (t0) = S0 is the
initial condition. Note that in Equation (1), the storage
is defined relative to an implied datum (i.e., S = 0
has no special significance) and is unconstrained (i.e.,
S 2 (−∞,+∞)) (e.g. Michel et al., 2003).

More realistic models will contain additional com-
ponents representing surface runoff, evapotranspira-
tion and/or other processes; multiple coupled

equations will be used to describe water balance in
distinct storage elements (e.g. canopy, snow and soil)
and, in the case of distributed models, multiple state
variables will be used to represent spatial variabil-
ity (Cherkauer et al., 2003; Ivanov et al., 2004, and
others).

In practice, regardless of the model structure, many
hydrologists write the model algorithm and computer
code directly from their perceptual understanding,
bypassing the formulation in continuous-time state-
space form. Many model codes, and even descriptions
of models (see the listings in Singh and Frevert,
2002a), are styled as follows:

Srz = Srz ini ! initialize store
DO i = 1, n ! loop over time steps
! calculate outflow using parameters
outflow(i) = b ∗ exp(k ∗ Srz)
! update storage
Srz = Srz + inflow(i) − outflow(i)

END DO

This can be recognized as the explicit Euler approx-
imation of Equation (1) over a series of discrete times
tn with spacing 1t ,

S (EE)
n+1 = Sn +1tPn −1tQ(Sn ) (2)

and is based on the fluxes at the beginning of the step
(Press et al., 1992; Butcher, 2008). Except in the limit
1t ! 0, even a single step of an approximation such
as Equation (2) incurs local errors that depend not
only on the step size but also on the non-linearity of
the solution and its derivatives. Moreover, because an
entire simulation time period comprises many time
steps, global errors will arise from the accumulation
of local errors.

Also, note that the code snippet above reflects the
style of many current hydrological models, which
implicitly embed the time step size into their equations
(in the above example, the time units of parameter
b and the time units of the forcing data become
intrinsically linked to the time step size used in
the model simulation). This situation appears quite
common. For example, in the popular GR4J model,
the step size is not stated in any of the model equations
(Perrin et al., 2003): the tacit assumption 1t = 1
(days) is ‘hardcoded’ directly into the model and
its software. This introduces time scale dependencies
beyond those present on the underlying state-space
model, and makes it unnecessarily difficult to apply
the model to data with a different temporal resolution.

Harbingers of problems

Hydrologists have often observed and reported
numerically poor behaviour in some specific models.
For example, Michel et al. (2003) noted that common
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implementations of the exponential store can produce
absurd behaviour. Consider the explicit Euler approx-
imation S (EE)

n+1 = Sn +1t[Pn − b exp(kSn )] applied in
two near-identical cases: both cases use the same
parameter values fk , bg and receive the same precipi-
tation input Pn , but case A has a higher initial storage
Sn than case B. Because of the exponential dependence
of the outflow on the storage, there is always a point
beyond which increasing the storage Sn at the start of
the step will result in decreasing the storage estimate
S (EE)

n+1 at the end of the step. Thus, case A could end
up drier than case B despite having higher initial stor-
age (with all parameters and forcing being identical).
Such behaviour makes no hydrological or mathemat-
ical sense and never occurs in the exact solution of
Equation (1).

Related problems can also arise with respect to
increases in the rainfall Pn . For example, if the rain-
fall is added to the store before computing its outflow
[as recommended by Michel et al. (2003); this could be
viewed as an ‘operator-splitting’ approximation tech-
nique, which allows applying fluxes in various distinct
sequences (Schoups et al., 2010)], the store can become
increasingly drier by the end of a step as its rainfall
input is increased. Note that adding the rainfall at the
end of the time step can simply postpone the absurdity
till the next step. In either case, a ‘sawtooth’ pattern
illustrated in Figure 1 can develop. Unsurprisingly,
permitting such behaviour can lead to catastrophic
errors in model predictions (see Figures 4 and 6 of
Michel et al., 2003).

These are not isolated instances. Michel et al. (2005)
subsequently reported that the traditional implemen-
tation of the Soil Conservation Service Curve Num-
ber (SCS-CN) approach to soil moisture accounting
widely used in rainfall–runoff modelling also suffers
from mathematical inconsistencies, again with respect
to initial conditions. Although Michel et al. (2003,
2005) mended the problems in both the exponential

and SCS-CN models by employing analytical integra-
tion techniques, as we elaborate in a later section,
analytical solutions are seldom applicable to general
hydrological and environmental models, especially in
spatially distributed contexts.

Can model complexity protect us against poor
numerics?
A sceptical hydrologist will correctly note that few,
if any, ‘real’ hydrological models are as simple as
Equation (1). Could it be that additional model com-
plexity, e.g. multiple flow pathways, ameliorates these
defects? Can problems arising in simple test cases with
known exact solutions go away in more complex mod-
elling scenarios?

Figure 2 shows the behaviour of a more realis-
tic model structure, where the non-linear exponen-
tial store is supplemented with a surface runoff
term (based on a topographic index with a Gamma
areal distribution, Sivapalan et al., 1987). Model sim-
ulations used parameter values within the ranges
reported for similar TOPMODEL-type formulations
(Beven, 1997). Consider the case of constant precipi-
tation of 100 mm/day over a 5-day period using daily
and hourly time steps. Here, three kinds of absurdi-
ties arise in the daily step explicit Euler approxima-
tions. In the left column (sub-surface scaling param-
eter m = 0·025 m), the store ‘over-fills’ on the first
time step (i.e. a wet bias), and then spectacularly
‘over-drains’ in the second step—despite still receiv-
ing the same amount of rainfall as that in the first step.
This causes a large pulse of baseflow and the storage
does not recover within the simulation period despite
all subsequent precipitation. In the middle column
(m = 0·03), the store still over-fills on the first step
and still over-drains in the second step, but the exces-
sive drainage is not as dramatic as when m = 0·025.
The result, however, is still worrisome: the sawtooth
pattern is again evident, characterized by successive

Figure 1. Absurdities in the behaviour of a simple reservoir approximated using the fixed-step explicit Euler scheme. Here, when 1t = 1 (T),
increasing the precipitation P to 2·0 (L/T) (filled red squares) results in the explicit Euler approximation of the exponential store described
by Equation (1) oscillating between wetter and drier values than when P = 1·5 (L/T) (empty red squares). Yet, the exact solution (black lines)
and the more robust [though still fixed-step with 1t = 1 (T)] implicit Euler approximation (blue squares) are smooth and well-behaved. The

model parameters are fixed at k = 1·42 (L−1), b = 1 (L/T) and the initial condition S0 = 0 (L)
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Figure 2. A more complex non-linear model behaving badly. Here, a TOPMODEL-like formulation is forced with constant precipitation
(100 mm/day) and approximated using the explicit Euler scheme (daily and hourly time steps) versus the implicit Euler scheme (daily time
steps). The figure shows simulations of the depth to the water table (top row), saturated area (middle row) and baseflow (bottom row), for
different values of the sub-surface scaling parameter m (in metres). Note that the daily-step estimates of saturated area and baseflow are
viewed as step-average values and hence the corresponding symbols are plotted midway through the step. For the hourly step results, the
values averaged to the daily scale are shown for commensurability with the daily-step results. For a constant forcing, the model should
smoothly approach a steady state (e.g. as seen in the hourly step solution). Yet, just like in simpler models, spurious sawtooth oscillations
develop in the fixed-step explicit Euler approximation unless the step size is sufficiently small. Rainfall variability and/or additional model
complexity could mask these oscillations, making them harder to detect, and allowing them to continue stealthily equivocating the unsuspecting
hydrologist. And just like in the simpler example, possible cures include using the more robust implicit Euler approximation and/or using

adaptive sub-stepping solutions

over-filling and over-draining. In the right column
(m = 0·035), the store also over-fills on the first time
step as in the other two cases, but then drains more
slowly.

In all the cases, the time series of storage, satu-
rated areas and baseflow are markedly different in
the daily versus the hourly runs. Also, while the daily
step simulations are highly sensitive to the value of
parameter m, the hourly step results are quite insen-
sitive to m. Making physical sense of this behaviour
is difficult—it could suggest a poorly conceptualized
drainage flux, or intrinsic time scale dependencies, or
both. Yet, the problem is neither: using the uncondi-
tionally stable implicit Euler approximation with fixed
daily steps produces a solution with no oscillations. Its
only difference from the explicit Euler scheme is that
the solution is forced to satisfy the fluxes at the end of
the time step (e.g., Press et al., 1992, pages 728–730;
see also Butcher, 2008).

More generally, in response to the opening ques-
tion of this section, it is precisely the potential for
compensatory interactions between the components of
more complex models that mandates that each model
component be numerically robust. Failing so, the pro-
cess identifiability problems confronting the hydrolo-
gist will be further exacerbated by numerical approxi-
mation errors interacting with process representations
and each other.

The full gamut

More recent work, combining numerical analysis
with empirical evaluations of many different model
structures across multiple catchments, suggests that
numerical troubles in conceptual hydrology are more
than just a couple of broken equations (Kavetski et al.,
2003; Clark and Kavetski, 2010). These studies have
indicated that the numerical errors of uncontrolled
time-stepping schemes routinely dwarf the structural
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Figure 3. Selected numerical daemons of conceptual hydrological modelling: numerical errors in the model predictions cause micro- and
macro-scale deformations of objective functions (top row) and lead to corrupted parameter inference (bottom row). The top row compares
the Nash–Sutcliffe surface for a 2D slice through the model parameter space for explicit Euler, implicit Euler and an adaptive time stepping
approximations of the same model equations applied in the Mahurangi River basin in New Zealand. The panels in the bottom row contrast
MCMC-derived parameter estimates obtained for different numerical solutions of the same models applied in three different MOPEX basins
(Duan et al., 2006). The differences between the MCMC-estimated parameter distributions within each panel in the bottom row arise solely
from differences in the time-stepping scheme. Although in some cases numerical effects may appear to be minor (Guadalupe), this cannot
justify complacency: in the absence of quality control (adaptive time stepping) or at least unconditional stability (implicit Euler), there is
simply no guarantee that a different forcing regime and/or different catchment conditions (e.g. as seen in the East Fork White basin) will
not bring out the worst in unreliable numerical methods such as the fixed-step explicit Euler scheme. Figure reproduced using the model

output presented by Kavetski and Clark (2010), where further monstrosities are showcased

errors of the model conceptualization. This has seri-
ous implications for model analysis and predictive
use, including inconsistent inferences of parameters
and internal states even if the calibrated streamflow
predictions are similar. Some of these effects can be
staggering, as shown in Figure 3. Even when numeri-
cal errors fortuitously compensate for data and struc-
tural errors during calibration, they make the model
unduly fragile in predictive mode, as evidenced in vali-
dation tests. Sensitivity analyses are also corrupted, in
some cases, to the extent that they reflect the sensitiv-
ity of numerical errors rather than of the hydrological
model itself (Kavetski and Clark, 2010). A disconcert-
ing consequence is that the interpretation of hydrolog-
ical model output to gain insights into internal catch-
ment dynamics, including the relative significance and
behaviour of different processes, can be severely com-
promised.

The lack of attention to numerical reliability may
have also hindered progress in the prediction in
ungauged basins (PUB) initiative [which, as noted by
Sivapalan et al. (2003), is of high practical relevance
as most basins around the world are ungauged]. For
example, appropriate model structures and parameter
values for ungauged catchments can, in principle, be

derived from the analysis and interpretation of models
calibrated in well-instrumented watersheds. However,
as listed above, the conclusions of such studies can
easily be tainted by numerical artefacts and hence
may not provide a sound basis for interpretation and
regionalization.

Given the endemic nature of numerical problems,
the hydrological community should take note: its
numerical daemons can be unforgiving! Even MCMC
methods, touted for their strength in exploring com-
plex multimodal distributions, are not immune, with
a demonstrable degradation of both accuracy and
efficiency (Kavetski and Clark, 2010; Schoups et al.,
2010). Indeed, Schoups et al. (2010), in Figure 3 and
related discussion, indicate that even sophisticated
MCMC methods such as DREAM are slow to con-
verge, or fail to converge, when applied to the geomet-
rically complex objective functions of poorly imple-
mented models [as illustrated in Figure 3 here, see also
Figure 1 in Kavetski and Clark (2010); and Figure 1
in Kavetski et al. (2003)]. And how can MCMC
schemes be immune? Even the most sophisticated
MCMC algorithm cannot detect when the hydrologi-
cal model itself is solved inaccurately. Moreover, we
stress that even a (practically unattainable) perfect
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MCMC sampler, if applied to a poorly imple-
mented hydrological model, would merely repro-
duce parameter distributions deformed by numerical
errors. In this respect, improving MCMC sampling
algorithms does not in itself address the root cause of
the problem—and indeed could simply mask it.

More Robust Approaches for Model Building
and Analysis

A broader perspective on previous work
The earlier studies by Michel et al. (2003, 2005)
attributed the troublesome model behaviour to ‘mis-
takes’ in the model-building process [e.g. ‘mistaking’
an instantaneous flux for a flow volume over a finite
time step, as suggested by Michel et al. (2003), p. 113].
However, the straightforward use of fluxes to obtain
flow volumes is consistent with numerical approxi-
mations, which necessarily assume constant, or oth-
erwise, analytically simple (e.g. linear, quadratic,
etc.) fluxes over finite time steps. Hence, this com-
mentary argues for a subtly different, but arguably
more general, perspective: these troublesome prob-
lems represent uncontrolled numerical approximation
errors.

When viewed from this more general perspective,
problems such as those reported by Michel et al.
(2003, 2005) are not so much ‘mistakes’ in integrating
the exponential store in TOPMODEL or the quadratic
SCS-CN store, but rather are indicative of a broader
problem of poor numerical implementation in concep-
tual hydrology. Indeed, numerical problems are not
limited to exponential or quadratic stores: analogous
pathologies, e.g. ‘the initially wetter store becoming
drier’ and ‘a store becoming drier as a result of
more rain’ readily arise in uncontrolled approxima-
tions of other non-linear reservoirs (Kavetski, 2005).
Because of the dependence of the outflow on the
unknown actual storage, flow volume and storage esti-
mates based on a finite number of flux evaluations
may not adequately reflect variations throughout the
time step. Although such errors arise in any numerical
approximation (including implicit schemes), fixed-step
explicit schemes are known to be especially fragile.
Indeed, while non-linearities in flux-state relationships
can drastically exacerbate numerical artefacts, even
linear reservoirs, when approximated without due
regard to numerical errors, can produce meaningless
unstable results. Hence, the hydrological community
should tackle the issue of numerical errors in a gen-
eral hydrological modelling context, rather than try-
ing to ‘mend’ specific cases such as exponential and
quadratic stores, etc.

So, what to do? Use more robust numerics!
When reading many classic hydrological papers [e.g.
the derivation of the Probability Distribution Model

(PDM) model by Moore and Clarke (1981)], one
is often struck by their mathematical elegance:
the problem is clearly formulated and analytical
solutions used. However, nature is not always ana-
lytically tractable. Even combinations of simple indi-
vidual fluxes are generally analytically non-integrable:
e.g. dS /dt = P and dS /dt = −kS a both have analyti-
cal solutions, yet dS /dt = P − kS a does not. Restrict-
ing hydrology to analytical models would prevent
adequate representations of many important non-
linear processes (Dunne and Black, 1970; Western
et al., 2004; Tromp-van Meerveld and McDonnell,
2006).

Yet, reliable and well-established techniques are
available for the approximate solution of differen-
tial equations, especially for the comparatively sim-
ple cases arising in conceptual hydrological modelling
[e.g., see Butcher (2008) for good review of the exten-
sive field of numerical integration]. For example, the
implicit Euler time-stepping scheme avoids unstable
growth of errors and is widely used in groundwater,
petroleum, geotechnical and other engineering soft-
ware (Clark and Kavetski, 2010). Even more reliable
are adaptive time stepping schemes, which reduce the
step size in regions of rapid change of the solution
(e.g. in response to a strong forcing such as a rain-
fall event) but lengthen it during quiescent periods.
More than just preventing instabilities, adaptive meth-
ods can constrain numerical approximation errors
below a user-prescribed tolerance and are standard
in mathematical software, including both commer-
cial packages, public libraries and multi-physics pack-
ages [e.g., Shampine and Reichelt (1997) and many
others].

When applied to conceptual hydrological mod-
els, the use of robust time-stepping schemes proved
immediately beneficial. Unconditionally stable implicit
schemes, as well as adaptive methods with error con-
trol, not only significantly simplify the model calibra-
tion problem in terms of accuracy and efficiency but
also markedly broaden the repertoire of model analy-
sis techniques, including hitherto abandoned Newton-
type optimization (Kavetski and Clark, 2010). We
do note that some subtleties arise when selecting
time-stepping schemes in the context of derivative-
based parameter optimization, sensitivity analysis
and uncertainty estimation. For example, fixed-step
implicit schemes, despite lacking strict error control,
may be favoured over adaptive integration because
they more readily support numerically smooth model
response surfaces (Gill et al., 1981). We also stress
that while robust time stepping will remove spuri-
ous artefacts, genuine model non-linearities may still
give rise to potentially complicated response surfaces
and objective functions [Figure 1 in Kavetski et al.
(2006)].
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Computational ‘inefficiencies’ and programming
complexities

It is sometimes claimed that accurate time stepping, in
particular employing adaptive and/or implicit meth-
ods, is ‘computationally inefficient’. This confuses
‘efficiency’ and ‘cost’. A numerically efficient algo-
rithm achieves high accuracy at minimal cost. In this
respect, a fixed-step explicit Euler solution is not ‘com-
putationally efficient’—it is cheap and inaccurate! In
our opinion, while hydrologists, like any scientists, will
always strive to tackle problems at the edge of and
beyond computational feasibility, it is imprudent to
exchange reliability for speed, even if it requires more
attention to code development and, in some cases, the
use of more specialized techniques and packages.

It is worth noting that robust numerical solutions—
including algorithm selection and implementation—
are not always straightforward, especially for complex
spatially distributed models. Moreover, while imple-
mentation costs are relatively low for well-designed
code exploiting the state-space form of the model
equations, retrofitting an existing ad hoc code may
require substantial code re-organization and enhance-
ment. Nevertheless, we stress that cases where method
selection is critical and non-trivial are often precisely
those for which simplistic uncontrolled techniques are
most unreliable, and for which a robust carefully
designed algorithm is sorely needed!

Better Hypothesis Testing: Separation of
Concepts from Implementation

It could be argued that much of the original motiva-
tion for numerical methods came from engineering.
While mathematicians tended to look for an ‘exact
solution to an approximate problem’, engineers often
preferred ‘approximate solutions to the exact prob-
lem’. This can create considerable confusion in the
context of hypothesis testing—because when scientists
talk about ‘hypothesis testing’, they usually refer to
the representation of some phenomenon, rather than
to the accuracy with which some equation is solved.

Hence, a clear delineation of the governing
equations from their numerical implementation pro-
vides better support for hypothesis testing. It allows
hydrologists to focus their attention on improving
model representations of nature, without confusing
process conceptualization (‘structural’) errors with
numerical errors of the selected solution technique.
Importantly, multiple alternative representations of
nature can and should be evaluated within the same
robust numerical framework (Clark et al., 2008). It
is stressed that while numerical accuracy (even ana-
lytical solutions) cannot, even in principle, reduce
the structural errors in the hypothesized governing

equations, numerical robustness plays the irreplace-
able role of eliminating unnecessary spurious arte-
facts. It also avoids compensation of numerical errors
by model parameter values (see Figure 11 in Kavetski
and Clark, 2010), which is important if the hydrolo-
gist is interested in ‘getting the right answers for the
right reasons’ (Kirchner, 2006).

In our opinion, the numerical solution should not be
viewed as part of the model itself. For example, inter-
preting the operator-splitting approximation (tacitly
used in common hydrological models such as GR4J,
VIC and Sacramento model, see Kavetski et al., 2003;
Schoups et al., 2010) as a genuine model feature is
conceptually unsatisfying: it implies that fluxes oper-
ate sequentially within a single time step —e.g. surface
runoff, followed by baseflow and evaporation. Yet we
know that these processes take place concurrently.
These considerations are relevant in numerical design:
unless adaptive sub-stepping is incorporated into the
operator-splitting algorithm (Schoups et al., 2010), the
dependence of the solution on the selected sequence of
fluxes makes the computer implementation reliant on
rather arbitrary assumptions.

Closing Remarks
A numerically savvy reader may wonder ‘what is
all the fuss about?’ Is it not obvious that differen-
tial equations must at least be solved stably, and that
reliable error control is part of most ordinary differ-
ential equation (ODE) solvers? Has this point not been
already made countless times in the applied ODE lit-
erature (Butcher, 2008), in the ‘popularly oriented’
numerical texts (Kahaner et al., 1989; Press et al.,
1992) and even in software manuals [e.g. the Matlab
ODE toolkit by Shampine and Reichelt (1997) sim-
ply disallows fixed-step integration]? We do indeed
get these legitimate questions from colleagues in more
numerically oriented disciplines, such as groundwater,
physics, mathematics and others.

We also note that many hydrological models have
already been implemented using robust techniques.
These include, for example, up-scaling (Reggiani and
Rientjes, 2005), regionalization (Kling and Gupta,
2009), residence time analysis (Vache and McDon-
nell, 2006) and other applications. In conceptual
rainfall–runoff modelling, unified state-space formu-
lations and robust numerics are exploited in the
Framework for Understanding Structural Errors
(FUSE) (Clark et al., 2008). In the broader environ-
mental literature, we can point to groundwater (Har-
baugh, 2005), geochemical (Binning and Celia, 2008)
and other applications. In some studies, ‘heuristic’
time stepping has been used, for example, selecting
‘normal’, ‘medium’ and ‘small’ time steps depend-
ing on the thickness of snow layers (Marks et al.,
1999), varying the time step in a rainfall–runoff model
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depending on the observed rainfall forcing (Hughes
and Sami, 1994), setting the time step size based on
the estimated time of concentration of a catchment
(Maniak, 1997), etc. Though such heuristics may lack
the stringency and reliability of formal error control
[e.g. see Figure 4 in the Richards equation case study
by Kavetski et al. (2002)], they may at least guard
against gross numerical errors and absurdities.

Yet we argue that the robust numerics paradigm
is yet to be accepted as a required standard in
conceptual hydrology. For example, the collections
listed in Singh and Frevert (2002a,b), and most other
studies, fail to report the techniques used to solve their
model equations, making their numerical robustness
difficult to ascertain. This can be asking for trouble:
confounding numerical artefacts are not some rare
isolated instances, but can affect virtually any model
structure, in any catchment, and under common
hydroclimatic conditions (Clark and Kavetski, 2010;
Schoups et al., 2010; see also earlier work by Kavetski
et al., 2003; Michel et al., 2003, and others). These are
the key concerns raised in this commentary.

We also note that, in the same breath as urging new
ways of ‘holistic’ thinking and training, it is sometimes
suggested that the hydrological community shift away
from ‘traditionalist’ technical training (which, in engi-
neering, should include linear algebra, differential
equations, and so forth). We see little direct advocacy
for the theme of robust numerics in leading commen-
taries on the future of hydrology (e.g., Wagener et al.,
2010). Nor is the often-poor attention to robust math-
ematics recognized as a major factor ‘undermining
the science of hydrology’ by other prominent com-
mentaries (e.g., Andreassian et al., 2007; Beven, 2008;
Buytaert et al., 2008; Sivapalan, 2009; and others). It
is indisputable that much innovation is needed in the
pursuit of hydrological process understanding and its
incorporation into models. Yet, in our quest towards
new imaginative hydrological solutions, we must not
overlook the fact that they will, one way or another,
be numerically based. Then, a cavalier attitude to the
underlying mathematics—whether due to tacit dis-
regard or lack of training—can easily create verita-
ble numerical daemons that will thwart scientific and
operational progress.

Hence, while certainly not suggesting that the
hydrologist and experimentalist must become numeri-
cians, this commentary stresses that they must
nonetheless be comfortable with formulating their
insights in clear mathematical terms (e.g. in
state-space form) and with employing robust, quality-
controlled numerical techniques in model develop-
ment and analysis—whether by programming them-
selves, investing into canned toolkits, or, perhaps
as a last resort, by inviting the Numerician into

the hitherto tête-à-tête dialogue between the Mod-
eller and the Experimentalist (Seibert and McDonnell,
2002).

Reliable hydrological modelling is a major chal-
lenge without adding confounding numerical
artefacts—there remain the formidable unresolved
issues of data uncertainty and structural error treat-
ment. We stress that, unlike other thorny issues for
which a consensus is far from established (see dis-
cussions in Beven et al., 2008; Renard et al., 2010;
Doherty and Welter, 2010; and others), numerical
approximations are well-understood and uncontro-
versial for the types of equations usually encoun-
tered in conceptual hydrology. Continuing to rely on
the simple explicit scheme, the archetypal numeri-
cal integration method introduced 240 years ago by
the prodigious Leonhard Euler (1768–1770), fails
to exploit major mathematical developments of the
last two centuries and is hardly defensible. In the
absence of robust numerical technology, seemingly
trivial numerical aspects can have profound impact
on the model performance, equivocating scientific
analyses and undermining operational predictions.
We hope that this commentary will further motivate
the Hydrologist to avoid preventable numerical trou-
bles before tackling more genuine challenges.
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