
Undergraduate Topics in Computer Science

A Beginners
Guide to Python 3
Programming

John Hunt

Undergraduate Topics in Computer Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky, Department of Computer Science, University of Oxford,
Oxford, UK
Chris Hankin, Department of Computing, Imperial College London, London, UK
Dexter C. Kozen, Computer Science Department, Cornell University, Ithaca, NY,
USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson , Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark
Steven S. Skiena, Department of Computer Science, Stony Brook University, Stony
Brook, NY, USA
Iain Stewart, Department of Computer Science, Science Labs, University of
Durham, Durham, UK
Mike Hinchey, University of Limerick, Limerick, Ireland

https://orcid.org/0000-0002-2484-5580

‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems, many of which include fully
worked solutions.
The UTiCS concept relies on high-quality, concise books in softback format, and
generally a maximum of 275-300 pages. For undergraduate textbooks that are likely
to be longer, more expository, Springer continues to offer the highly regarded Texts
in Computer Science series, to which we refer potential authors.

More information about this series at http://www.springer.com/series/7592

http://www.springer.com/series/7592

John Hunt

A Beginners Guide to Python
3 Programming

123

John Hunt
Midmarsh Technology Ltd
Chippenham, Wiltshire, UK

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-030-20289-7 ISBN 978-3-030-20290-3 (eBook)
https://doi.org/10.1007/978-3-030-20290-3

© Springer Nature Switzerland AG 2019, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-20290-3

This book was written for, and is dedicated
to, my daughter Phoebe and son Adam;
I could not be prouder of either of you.

Preface

There is currently huge interest in the Python programming language. This is driven
by several factors; its use in schools with the Raspberry Pi platform, its ability to be
used for DevOps scripts, its use in data science and machine learning and of course
the language itself.

There are many books on Python, however, most assume previous programming
experience or are focussed on particular aspects of Python use such as data science
or machine learning or have a scientific flavor.

The aim of this book is to introduce Python to those with little or very little
programming knowledge, and then to take them through to become an experienced
Python developer.

As such the earlier parts of the book introduce fundamental concepts such as
what a variable is and how a for loop works. In contrast, the later chapters introduce
advanced concepts such as functional programming, object orientation, and
exception handling.

In between a wide range of topics are introduced and discussed from a Python
point of view including functions, recursion, operators, Python properties, modules
and packages, protocols and monkey patching, etc.

After the core elements of Python are established, each new subject area is
introduced by way of an introductory chapter presenting the topic in general, pro-
viding background on that subject, why it is of importance, etc. These introductions
cover Structured Analysis, functional programming, and object orientation.

Some of the key aspects of this book are:

1. It assumes very little knowledge or experience of Python or programming.
2. It provides a basic introduction to Python as well as advanced topics such as

generators and coroutines.
3. This book provides extensive coverage of object orientation and the features in

Python 3 supporting classes, inheritance, and protocols.
4. Pythons’ support for functional programming is also presented.

vii

5. Following on from introducing the basic ideas behind functional programming,
the book presents how advanced functional concepts such as closures, currying,
and higher-order functions work in Python.

6. The book includes exercises at the end of most chapters with online solutions.
7. There are several case studies spread through the book that broaden under-

standing of preceding topics.
8. All code examples (and exercise solutions) are provided online in a GitHub

repository.

Chapter Organization

Each chapter has a brief introduction, the main body of the chapter, followed by a
list of (typically) online references that can be used for further reading.

Following this, there is typically an Exercises section that lists one or more
exercises that build on the skills you will have learned in that chapter.

Sample solutions to the exercises are available in a GitHub online repository that
supports this book.

What You Need

You can of course just read this book; however, following the examples in this
book will ensure that you get as much as possible out of the content.

For this, you will need a computer.
Python is a cross-platform programming language and as such you can use

Python on a Windows PC, a Linux box or an Apple Mac, etc. So you are not tied to
a particular type of operating system; you can use whatever you have available.

However, you will need to install some software on that computer. At a mini-
mum, you will need Python.

This book focusses on Python 3, so you will need that. Some guidance on this is
provided in Chap. 2 on setting up your environment.

You will also need some form of editor in which to write your programs. There
are numerous generic programming editors available for different operating systems
with Vim on Linux, Notepad++ on Windows and Sublime Text on Windows, and
Macs being popular choices.

However, using an integrated development environment (IDE) editor such as
PyCharm will make writing and running your programs much easier.

viii Preface

Using an IDE

The IDE I prefer for Python is PyCharm, although it is not the only IDE for Python
by any means, but it is a very widely used one.

Other IDEs available for Python include:

• Rodeo which is a lightweight, open source, IDE see https://rodeo.yhat.com.
• Jupyter Notebook which is a web-based IDE and is particularly good for data

scientists https://jupyter.org.
• Visual Studio Code. This is a very good free editor from Microsoft that has

really useful features https://code.visualstudio.com.
• Sublime Text is more of a text editor that color codes Python; however, for a

simple project it may be all you need https://www.sublimetext.com.

Downloading the PyCharm IDE

PyCharm is provided by JetBrains who make tools for a variety of different lan-
guages. The PyCharm IDE can be downloaded from their site—see https://www.
jetbrains.com/. Look for the menu heading ‘Tools’ and select that. You will see a
long list of tools, which should include PyCharm.

Select this option. The resulting page has a lot of information on it; however,
you only need to select the ‘DOWNLOAD NOW’. Make sure that you select the
operating system you use (there are options for Windows, Mac OS, and Linux).

There are then two download options available: Professional and Community.
The Professional version is the charged for option, while the Community version is

Preface ix

https://rodeo.yhat.com
https://jupyter.org
https://code.visualstudio.com
https://www.sublimetext.com
https://www.jetbrains.com/
https://www.jetbrains.com/

free. For most of the work I do in Python, the Community version is more than
adequate and it is therefore the version you can download and install (note with the
Professional version you do get a free trial but will need to either pay for the full
version at the end of the trial or reinstall the Community version at that point).

Assuming you selected the Community edition the installer will now download,
and you will be prompted to run it. Note you can ignore the request to subscribe if
you want.

You can now run the installer and follow the instructions provided.

Setting Up the IDE

You need to first start the PyCharm IDE. Once started, the first dialog shown to you
asks if you want to import any settings you may have had for another version of
PyCharm. At this point, select ‘Do not import settings’.

Step through the next set of dialogs selecting the look and feel (I like the light
version of the IDE), whether you want to share data with JetBrains, etc. Once you
have completed this, click the ‘Start PyCharm’ option.

You should now be presented with the landing screen for PyCharm:

We will now create a project for you to work in. A project in PyCharm is where
you write your programs and how you config what version of Python you are using
and any libraries that you might need (such as graphics libraries, etc.).

Click on the ‘Create New Project’ option in the landing dialog.
You will now be asked where you want to create this new project. Again you can

use the default location, but you will need to give it a name, I will call my project
python-intro.

x Preface

It is also worth making sure that the Python interpreter you installed has been
picked up by the IDE. You can do this by opening the ‘Project Interpreter: New
Virtualenv environment’ option and making sure that the base interpreter field is
populated appropriately. This is shown below:

If all is OK, then select ‘Create’; if the base interpreter is not specified or is
incorrect, then click on the ‘…’ button to the right of the field and browse to the
appropriate location.

On opening the PyCharm project, you should see a Welcome message; click
‘Close’ and the project will be set up for you.

When you open the project, you will be shown at least two views. The left-hand
view is the ‘Project’ view which shows you all the directories and files in your
project. The right-hand area is where the editor is presented that allows you to type
in your program. For example,

The third area that may be shown represents the output from your program. If
this is the first time you have opened the project, then it may not yet be visible.
However, if you run a program, it will be shown at the bottom of the IDE. For
example:

Preface xi

Conventions

Throughout this book, you will find a number of conventions used for text styles.
These text styles distinguish different kinds of information.

Code words, variable sand Python values, used within the main body of the text,
are shown using a Courier font. For example:

This program creates a top-level window (the wx.Frame) and gives it a title. It also creates
a label (a wx.StaticText object) to be displayed within the frame.

In the above paragraph, wx.Frame and wx.StaticText are classes available in a
Python graphical user interface library.

A block of Python code is set out as shown here:

num = int(input('Enter another number: '))
if num > 0:

print(num,'is positive')
print(num,'squared is ', num * num)

print('Bye')

Note that keywords and strings are shown in bold font.

xii Preface

Any command line or user input is shown in italics:

> python hello.py

Or

Hello, world
Enter your name:John
Hello John

Example Code and Sample Solutions

The examples used in this book (along with sample solutions for the exercises at the
end of most chapters) are available in a GitHub repository. GitHub provides both a
server environment hosting Git and a web based interface to that environment.

Git is a version control system typically used to manage source code files (such
as those used to create systems in programming languages such as Python but also
Java, C#, C++, Scala, etc). Systems such as Git are very useful for collaborative
development as they allow multiple people to work on an implementation and to
merge their work together. They also provide a useful historical view of the code
(which also allows developers to roll back changes if modifications prove to be
unsuitable).

If you already have Git installed on your computer, then you can clone (obtain a
copy of) the repository locally using:

git clone https://github.com/johnehunt/beginnerspython3.
git

If you do not have Git, then you can obtain a zip file of the examples using
https://github.com/johnehunt/beginnerspython3/

archive/master.zip
You can of course install Git yourself if you wish. To do this, see https://git-scm.

com/downloads. Versions of the Git client for Mac OS, Windows, and Linux/Unix
are available here.

However, many IDEs such as PyCharm come with Git support and so offer
another approach to obtaining a Git repository.

For more information on Git, see http://git-scm.com/doc. This Git guide pro-
vides a very good primer and is highly recommended.

Bath, UK John Hunt

Preface xiii

https://github.com/johnehunt/beginnerspython3.git
https://github.com/johnehunt/beginnerspython3.git
https://github.com/johnehunt/beginnerspython3/archive/master.zip
https://github.com/johnehunt/beginnerspython3/archive/master.zip
https://git-scm.com/downloads
https://git-scm.com/downloads
http://git-scm.com/doc

Contents

1 Introduction . 1
1.1 What Is Python? . 1
1.2 Python Versions . 2
1.3 Python Programming . 3
1.4 Python Libraries . 3
1.5 Python Execution Model . 4
1.6 Running Python Programs . 5

1.6.1 Interactively Using the Python Interpreter 5
1.6.2 Running a Python File . 6
1.6.3 Executing a Python Script . 7
1.6.4 Using Python in an IDE . 9

1.7 Useful Resources . 10

2 Setting Up the Python Environment . 13
2.1 Introduction . 13
2.2 Check to See If Python Is Installed . 13
2.3 Installing Python on a Windows PC . 15
2.4 Setting Up on a Mac . 20
2.5 Online Resources . 22

3 A First Python Program . 23
3.1 Introduction . 23
3.2 Hello World . 23
3.3 Interactive Hello World . 24
3.4 Variables . 26
3.5 Naming Conventions . 28
3.6 Assignment Operator . 29
3.7 Python Statements . 29
3.8 Comments in Code . 30
3.9 Scripts Versus Programs . 30

xv

3.10 Online Resources . 31
3.11 Exercises . 31

4 Python Strings . 33
4.1 Introduction . 33
4.2 What Are Strings? . 33
4.3 Representing Strings . 34
4.4 What Type Is String . 35
4.5 What Can You Do with Strings? . 35

4.5.1 String Concatenation . 36
4.5.2 Length of a String . 36
4.5.3 Accessing a Character . 36
4.5.4 Accessing a Subset of Characters 37
4.5.5 Repeating Strings . 37
4.5.6 Splitting Strings . 38
4.5.7 Counting Strings . 38
4.5.8 Replacing Strings . 39
4.5.9 Finding Sub Strings . 39
4.5.10 Converting Other Types into Strings 40
4.5.11 Comparing Strings . 40
4.5.12 Other String Operations . 40

4.6 Hints on Strings . 42
4.6.1 Python Strings Are Case Sensitive 42
4.6.2 Function/Method Names . 42
4.6.3 Function/Method Invocations 42

4.7 String Formatting . 43
4.8 String Templates . 45
4.9 Online Resources . 48
4.10 Exercises . 49

5 Numbers, Booleans and None . 51
5.1 Introduction . 51
5.2 Types of Numbers . 51
5.3 Integers . 52

5.3.1 Converting to Ints . 53
5.4 Floating Point Numbers . 53

5.4.1 Converting to Floats . 54
5.4.2 Converting an Input String into a Floating Point

Number . 54
5.5 Complex Numbers . 55
5.6 Boolean Values . 55
5.7 Arithmetic Operators . 57

5.7.1 Integer Operations . 57
5.7.2 Negative Number Integer Division 59

xvi Contents

5.7.3 Floating Point Number Operators 60
5.7.4 Integers and Floating Point Operations 60
5.7.5 Complex Number Operators 61

5.8 Assignment Operators . 61
5.9 None Value . 62
5.10 Online Resources . 63
5.11 Exercises . 63

5.11.1 General Exercise . 64
5.11.2 Convert Kilometres to Miles 64

6 Flow of Control Using If Statements . 65
6.1 Introduction . 65
6.2 Comparison Operators . 65
6.3 Logical Operators . 66
6.4 The If Statement . 66

6.4.1 Working with an If Statement 67
6.4.2 Else in an If Statement . 68
6.4.3 The Use of elif . 68

6.5 Nesting If Statements . 69
6.6 If Expressions . 70
6.7 A Note on True and False . 71
6.8 Hints . 72
6.9 Online Resources . 72
6.10 Exercises . 72

6.10.1 Check Input Is Positive or Negative 72
6.10.2 Test if a Number Is Odd or Even 73
6.10.3 Kilometres to Miles Converter 73

7 Iteration/Looping . 75
7.1 Introduction . 75
7.2 While Loop . 75
7.3 For Loop . 77
7.4 Break Loop Statement . 79
7.5 Continue Loop Statement . 81
7.6 For Loop with Else . 82
7.7 A Note on Loop Variable Naming . 83
7.8 Dice Roll Game . 83
7.9 Online Resources . 84
7.10 Exercises . 84

7.10.1 Calculate the Factorial of a Number 84
7.10.2 Print All the Prime Numbers in a Range 85

Contents xvii

8 Number Guessing Game . 87
8.1 Introduction . 87
8.2 Setting Up the Program . 87

8.2.1 Add a Welcome Message . 87
8.2.2 Running the Program . 88

8.3 What Will the Program Do? . 89
8.4 Creating the Game . 90

8.4.1 Generate the Random Number 90
8.4.2 Obtain an Input from the User 91
8.4.3 Check to See If the Player Has Guessed the

Number . 91
8.4.4 Check They Haven’t Exceeded Their Maximum

Number of Guess . 92
8.4.5 Notify the Player Whether Higher or Lower 93
8.4.6 End of Game Status . 94

8.5 The Complete Listing . 94
8.6 Hints . 96

8.6.1 Initialising Variables . 96
8.6.2 Blank Lines Within a Block of Code 96

8.7 Exercises . 97

9 Recursion . 99
9.1 Introduction . 99
9.2 Recursive Behaviour . 99
9.3 Benefits of Recursion . 100
9.4 Recursively Searching a Tree . 100
9.5 Recursion in Python . 102
9.6 Calculating Factorial Recursively . 102
9.7 Disadvantages of Recursion . 104
9.8 Online Resources . 105
9.9 Exercises . 105

10 Introduction to Structured Analysis . 107
10.1 Introduction . 107
10.2 Structured Analysis and Function Identification 107
10.3 Functional Decomposition . 108

10.3.1 Functional Decomposition Terminology 109
10.3.2 Functional Decomposition Process 110
10.3.3 Calculator Functional Decomposition Example 110

10.4 Functional Flow . 112
10.5 Data Flow Diagrams . 112
10.6 Flowcharts . 113
10.7 Data Dictionary . 115
10.8 Online Resources . 116

xviii Contents

11 Functions in Python . 117
11.1 Introduction . 117
11.2 What Are Functions? . 117
11.3 How Functions Work . 118
11.4 Types of Functions . 118
11.5 Defining Functions . 119

11.5.1 An Example Function . 120
11.6 Returning Values from Functions . 121
11.7 Docstring . 123
11.8 Function Parameters . 124

11.8.1 Multiple Parameter Functions 124
11.8.2 Default Parameter Values . 125
11.8.3 Named Arguments . 126
11.8.4 Arbitrary Arguments . 127
11.8.5 Positional and Keyword Arguments 128

11.9 Anonymous Functions . 129
11.10 Online Resources . 131
11.11 Exercises . 131

12 Scope and Lifetime of Variables . 133
12.1 Introduction . 133
12.2 Local Variables . 133
12.3 The Global Keyword . 135
12.4 Nonlocal Variables . 136
12.5 Hints . 137
12.6 Online Resources . 138
12.7 Exercise . 138

13 Implementing a Calculator Using Functions 139
13.1 Introduction . 139
13.2 What the Calculator Will Do . 139
13.3 Getting Started . 140
13.4 The Calculator Operations . 140
13.5 Behaviour of the Calculator . 141
13.6 Identifying Whether the User Has Finished 142
13.7 Selecting the Operation . 144
13.8 Obtaining the Input Numbers . 146
13.9 Determining the Operation to Execute 147
13.10 Running the Calculator . 147
13.11 Exercises . 148

14 Introduction to Functional Programming . 149
14.1 Introduction . 149
14.2 What Is Functional Programming? . 149

Contents xix

14.3 Advantages to Functional Programming 151
14.4 Disadvantages of Functional Programming 153
14.5 Referential Transparency . 153
14.6 Further Reading . 155

15 Higher Order Functions . 157
15.1 Introduction . 157
15.2 Recap on Functions in Python . 157
15.3 Functions as Objects . 158
15.4 Higher Order Function Concepts . 160

15.4.1 Higher Order Function Example 161
15.5 Python Higher Order Functions . 162

15.5.1 Using Higher Order Functions 163
15.5.2 Functions Returning Functions 164

15.6 Online Resources . 165
15.7 Exercises . 165

16 Curried Functions . 167
16.1 Introduction . 167
16.2 Currying Concepts . 167
16.3 Python and Curried Functions . 168
16.4 Closures . 170
16.5 Online Resources . 172
16.6 Exercises . 173

17 Introduction to Object Orientation . 175
17.1 Introduction . 175
17.2 Classes . 175
17.3 What Are Classes for? . 176

17.3.1 What Should a Class Do? . 177
17.3.2 Class Terminology . 177

17.4 How Is an OO System Constructed? 178
17.4.1 Where Do We Start? . 179
17.4.2 Identifying the Objects . 180
17.4.3 Identifying the Services or Methods 181
17.4.4 Refining the Objects . 182
17.4.5 Bringing It All Together . 183

17.5 Where Is the Structure in an OO Program? 186
17.6 Further Reading . 188

18 Python Classes . 189
18.1 Introduction . 189
18.2 Class Definitions . 190
18.3 Creating Examples of the Class Person 191
18.4 Be Careful with Assignment . 192

xx Contents

18.5 Printing Out Objects . 194
18.5.1 Accessing Object Attributes 194
18.5.2 Defining a Default String Representation 195

18.6 Providing a Class Comment . 196
18.7 Adding a Birthday Method . 197
18.8 Defining Instance Methods . 198
18.9 Person Class Recap . 199
18.10 The del Keyword . 200
18.11 Automatic Memory Management . 201
18.12 Intrinsic Attributes . 202
18.13 Online Resources . 203
18.14 Exercises . 203

19 Class Side and Static Behaviour . 205
19.1 Introduction . 205
19.2 Class Side Data . 205
19.3 Class Side Methods . 206

19.3.1 Why Class-Side Methods? . 207
19.4 Static Methods . 207
19.5 Hints . 208
19.6 Online Resources . 208
19.7 Exercises . 209

20 Class Inheritance . 211
20.1 Introduction . 211
20.2 What Is Inheritance? . 211
20.3 Terminology Around Inheritance . 215
20.4 The Class Object and Inheritance . 217
20.5 The Built-in Object Class . 218
20.6 Purpose of Subclasses . 218
20.7 Overriding Methods . 219
20.8 Extending Superclass Methods . 221
20.9 Inheritance Oriented Naming Conventions 222
20.10 Python and Multiple Inheritance . 223
20.11 Multiple Inheritance Considered Harmful 225
20.12 Summary . 230
20.13 Online Resources . 230
20.14 Exercises . 231

21 Why Bother with Object Orientation? . 233
21.1 Introduction . 233
21.2 The Procedural Approach . 233

21.2.1 Procedures for the Data Structure 234
21.2.2 Packages . 235

Contents xxi

21.3 Does Object Orientation Do Any Better? 235
21.3.1 Packages Versus Classes . 235
21.3.2 Inheritance . 237

21.4 Summary . 239

22 Operator Overloading . 241
22.1 Introduction . 241
22.2 Operator Overloading . 241

22.2.1 Why Have Operator Overloading? 241
22.2.2 Why Not Have Operator Overloading? 242
22.2.3 Implementing Operator Overloading 242

22.3 Numerical Operators . 244
22.4 Comparison Operators . 247
22.5 Logical Operators . 249
22.6 Summary . 249
22.7 Online Resources . 250
22.8 Exercises . 250

23 Python Properties . 253
23.1 Introduction . 253
23.2 Python Attributes . 253
23.3 Setter and Getter Style Methods . 255
23.4 Public Interface to Properties . 256
23.5 More Concise Property Definitions . 258
23.6 Online Resources . 260
23.7 Exercises . 260

24 Error and Exception Handling . 263
24.1 Introduction . 263
24.2 Errors and Exceptions . 263
24.3 What Is an Exception? . 264
24.4 What Is Exception Handling? . 265
24.5 Handling an Exception . 267

24.5.1 Accessing the Exception Object 269
24.5.2 Jumping to Exception Handlers 270
24.5.3 Catch Any Exception . 272
24.5.4 The Else Clause . 272
24.5.5 The Finally Clause . 273

24.6 Raising an Exception . 274
24.7 Defining an Custom Exception . 275
24.8 Chaining Exceptions . 277
24.9 Online Resources . 279
24.10 Exercises . 279

xxii Contents

25 Python Modules and Packages . 281
25.1 Introduction . 281
25.2 Modules . 281
25.3 Python Modules . 282
25.4 Importing Python Modules . 284

25.4.1 Importing a Module . 284
25.4.2 Importing from a Module . 285
25.4.3 Hiding Some Elements of a Module 287
25.4.4 Importing Within a Function 288

25.5 Module Properties . 288
25.6 Standard Modules . 289
25.7 Python Module Search Path . 291
25.8 Modules as Scripts . 292
25.9 Python Packages . 294

25.9.1 Package Organisation . 294
25.9.2 Sub Packages . 296

25.10 Online Resources . 296
25.11 Exercise . 297

26 Abstract Base Classes . 299
26.1 Introduction . 299
26.2 Abstract Classes as a Concept . 299
26.3 Abstract Base Classes in Python . 300

26.3.1 Subclassing an ABC . 300
26.3.2 Defining an Abstract Base Class 302

26.4 Defining an Interface . 304
26.5 Virtual Subclasses . 305
26.6 Mixins . 306
26.7 Online Resources . 308
26.8 Exercises . 308

27 Protocols, Polymorphism and Descriptors . 311
27.1 Introduction . 311
27.2 Implicit Contracts . 311
27.3 Duck Typing . 313
27.4 Protocols . 314
27.5 An Protocol Example . 315
27.6 The Context Manager Protocol . 315
27.7 Polymorphism . 317
27.8 The Descriptor Protocol . 319
27.9 Online Resources . 322
27.10 Exercises . 322

Contents xxiii

28 Monkey Patching and Attribute Lookup . 325
28.1 Introduction . 325
28.2 What Is Monkey Patching? . 325

28.2.1 How Does Monkey Patching Work? 326
28.2.2 Monkey Patching Example 326
28.2.3 The Self Parameter . 327
28.2.4 Adding New Data to a Class 328

28.3 Attribute Lookup. 328
28.4 Handling Unknown Attribute Access 331
28.5 Handling Unknown Method Invocations 332
28.6 Intercepting Attribute Lookup . 333
28.7 Intercepting Setting an Attribute . 334
28.8 Online Resources . 335
28.9 Exercises . 335

29 Decorators . 337
29.1 Introduction . 337
29.2 What Are Decorators? . 337
29.3 Defining a Decorator . 338
29.4 Using Decorators . 339
29.5 Functions with Parameters . 340
29.6 Stacked Decorators . 340
29.7 Parameterised Decorators . 342
29.8 Method Decorators . 343

29.8.1 Methods Without Parameters 343
29.8.2 Methods with Parameters . 344

29.9 Class Decorators . 345
29.10 When Is a Decorator Executed? . 347
29.11 Built-in Decorators . 348
29.12 FuncTools Wrap . 348
29.13 Online Resources . 349
29.14 Book Reference . 350
29.15 Exercises . 350

30 Iterables, Iterators, Generators and Coroutines 353
30.1 Introduction . 353
30.2 Iteration . 353

30.2.1 Iterables . 353
30.2.2 Iterators . 354
30.2.3 The Iteration Related Methods 354
30.2.4 The Iterable Evens Class . 354
30.2.5 Using the Evens Class with a for Loop 355

30.3 The Itertools Module . 356
30.4 Generators . 356

xxiv Contents

30.4.1 Defining a Generator Function 356
30.4.2 Using a Generator Function in a for Loop 357
30.4.3 When Do the Yield Statements Execute? 357
30.4.4 An Even Number Generator 358
30.4.5 Nesting Generator Functions 358
30.4.6 Using Generators Outside a for Loop 359

30.5 Coroutines . 360
30.6 Online Resources . 361
30.7 Exercises . 361

31 Collections, Tuples and Lists . 363
31.1 Introduction . 363
31.2 Python Collection Types . 363
31.3 Tuples . 364

31.3.1 Creating Tuples . 364
31.3.2 The tuple() Constructor Function 364
31.3.3 Accessing Elements of a Tuple 365
31.3.4 Creating New Tuples from Existing Tuples 365
31.3.5 Tuples Can Hold Different Types 366
31.3.6 Iterating Over Tuples . 367
31.3.7 Tuple Related Functions . 367
31.3.8 Checking if an Element Exists 368
31.3.9 Nested Tuples . 368
31.3.10 Things You Can’t Do with Tuples 369

31.4 Lists . 369
31.4.1 Creating Lists . 369
31.4.2 List Constructor Function . 371
31.4.3 Accessing Elements from a List 372
31.4.4 Adding to a List . 373
31.4.5 Inserting into a List . 374
31.4.6 List Concatenation . 374
31.4.7 Removing from a List . 375
31.4.8 The pop() Method . 375
31.4.9 Deleting from a List . 376
31.4.10 List Methods . 377

31.5 Online Resources . 377
31.6 Exercises . 378

32 Sets . 379
32.1 Introduction . 379
32.2 Creating a Set . 379
32.3 The Set() Constructor Function . 380
32.4 Accessing Elements in a Set . 380
32.5 Working with Sets . 380

Contents xxv

32.5.1 Checking for Presence of an Element 380
32.5.2 Adding Items to a Set . 381
32.5.3 Changing Items in a Set . 381
32.5.4 Obtaining the Length of a Set 382
32.5.5 Obtaining the Max and Min Values in a Set 382
32.5.6 Removing an Item . 382
32.5.7 Nesting Sets . 383

32.6 Set Operations . 384
32.7 Set Methods . 386
32.8 Online Resources . 386
32.9 Exercises . 387

33 Dictionaries . 389
33.1 Introduction . 389
33.2 Creating a Dictionary . 389

33.2.1 The dict() Constructor Function 390
33.3 Working with Dictionaries . 391

33.3.1 Accessing Items via Keys . 391
33.3.2 Adding a New Entry . 391
33.3.3 Changing a Keys Value . 391
33.3.4 Removing an Entry . 392
33.3.5 Iterating over Keys . 393
33.3.6 Values, Keys and Items. 394
33.3.7 Checking Key Membership 394
33.3.8 Obtaining the Length of a Dictionary 395
33.3.9 Nesting Dictionaries . 395

33.4 A Note on Dictionary Key Objects . 396
33.5 Dictionary Methods . 397
33.6 Online Resources . 397
33.7 Exercises . 398

34 Collection Related Modules . 401
34.1 Introduction . 401
34.2 List Comprehension . 401
34.3 The Collections Module . 402
34.4 The Itertools Module . 405
34.5 Online Resources . 406
34.6 Exercises . 406

35 ADTs, Queues and Stacks . 407
35.1 Introduction . 407
35.2 Abstract Data Types . 407
35.3 Data Structures . 408

xxvi Contents

35.4 Queues . 408
35.4.1 Python List as a Queue . 409
35.4.2 Defining a Queue Class . 409

35.5 Stacks . 411
35.5.1 Python List as a Stack . 412

35.6 Online Resources . 413
35.7 Exercises . 413

36 Map, Filter and Reduce . 415
36.1 Introduction . 415
36.2 Filter . 415
36.3 Map . 417
36.4 Reduce . 419
36.5 Online Resources . 420
36.6 Exercises . 420

37 TicTacToe Game . 423
37.1 Introduction . 423
37.2 Classes in the Game . 423
37.3 Counter Class . 426
37.4 Move Class . 427
37.5 The Player Class . 427
37.6 The HumanPlayer Class . 428
37.7 The ComputerPlayer Class . 429
37.8 The Board Class . 430
37.9 The Game Class . 431
37.10 Running the Game . 432

Correction to: Functions in Python . C1

Contents xxvii

Chapter 1
Introduction

1.1 What Is Python?

Python is a general-purpose programming language in a similar vein to other
programming languages that you might have heard of such as C++, JavaScript or
Microsoft’s C# and Oracle’s Java.

It has been around for some considerable time having been originally conceived
back in the 1980s by Guido van Rossum at Centrum Wiskunde & Informatica
(CWI) in the Netherlands. The language is named after one of Guido’s favourite
programs “Monty Pythons Flying Circus”, a classic and somewhat anarchic British
comedy sketch show originally running from 1969 to 1974 (but which has been
rerun on various stations ever since) and with several film spin offs. You will even
find various references to this show in the documentation available with Python.

As a language it has gained in interest over recent years, particularly within the
commercial world, with many people wanting to learn the language. This increased
interest in Python is driven by several different factors:

1. Its flexibility and simplicity which makes it easy to learn.
2. Its use by the Data Science community where it provides a more standard

programming language than some rivals such as R.
3. Its suitability as a scripting language for those working in the DevOps field

where it provides a higher level of abstraction than alternative languages tra-
ditionally used.

4. Its ability to run on (almost) any operating system, but particularly the big three
operating systems Windows, MacOS and Linux.

5. The availability of a wide range of libraries (modules) that can be used to extend
the basic features of the language.

6. It is free!

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_1

Python itself is now managed by the not-for-profit Python Software Foundation
(see https://en.wikipedia.org/wiki/Python_Software_Foundation) which was laun-
ched in March 2001. The mission of the foundation is to foster development of the
Python community; it is also responsible for various processes within the Python
community, including developing the core Python distribution, managing intel-
lectual rights and supporting developer conferences including PyCon.

1.2 Python Versions

Currently there are two main versions of Python called Python 2 and Python 3.

• Python 2 was launched in October 2000 and has been, and still is, very widely
used.

• Python 3 was launched in December 2008 and is a major revision to the lan-
guage that is not backward compatible.

The issue between the two versions can be highlighted by the simple print
facility:

• In Python 2 this is written as print 'Hello World'
• In Python 3 this is written as print ('Hello World')

It may not look like much of a difference but the inclusion of the '()' marks a
major change and means that any code written for one version of Python will
probably not run on the other version. There are tools available, such as the 2–3
utility, that will (partially) automate translation from Python 2 to Python 3 but in
general you are still left with significant work to do.

This then raises the question which version to use?
Although interest in Python 3 is steadily increasing there are many organisations

that are still using Python 2. Choosing which version to use is a constant concern
for many companies.

However, the Python 2 end of life plan was initially announced back in 2015 and
although it has been postponed to 2020 out of concern that a large body of existing
code could not easily be forward-ported to Python 3, it is still living on borrowed
time. Python 3 is the future of the Python language and it is this version that has
introduced many of the new and improved language and library features (that have
admittedly been back ported to Python 2 in many cases). This book is solely
focussed on Python 3.

In the remainder of this book when we refer to Python we will always be
referring to Python 3.

2 1 Introduction

https://en.wikipedia.org/wiki/Python_Software_Foundation

1.3 Python Programming

There are several different programming paradigms that a programming language
may allow developers to code in, these are:

• Procedural Programming in which a program is represented as a sequence of
instructions that tell the computer what it should do explicitly. Procedures and/
or functions are used to provide structure to the program; with control structures
such as if statements and loop constructs to manage which steps are executed
and how many times. Languages typifying this approach include C and Pascal.

• Declarative Programming languages, such as Prolog, that allow developers to
describe how a problem should be solved, with the language/environment
determining how the solution should be implemented. SQL (a database query
language) is one of the most common declarative languages that you are likely
to encounter.

• Object Oriented Programming approaches that represent a system in terms of
the objects that form that system. Each object can hold its own data (also known
as state) as well as define behaviour that defines what the object can do.
A computer program is formed from a set of these objects co-operating together.
Languages such as Java and C# typify the object oriented approach.

• Functional Programming languages decompose a problem into a set of
functions. Each function is independent of any external state, operating only on
the inputs they received to generate their outputs. The programming language
Haskell is an example of a functional programming language.

Some programming languages are considered to be hybrid languages; that is
they allow developers to utilise a combination of difference approaches within the
same program. Python is an example of a hybrid programming language as it allows
you to write very procedural code, to use objects in an object oriented manner and
to write functional programs. Each of these approaches is covered in this book.

1.4 Python Libraries

As well as the core language, there are very many libraries available for Python.
These libraries extend the functionality of the language and make it much easier to
develop applications. These libraries cover

• web frameworks such as Django/Flask,
• email clients such as smtplib (a SMTP email client) and imaplib (an IMAP4

email client),
• content management operations such as the Zope library,
• lightweight concurrency (running multiple operations at the same time) using

the Stackless library,
• the Generation of Microsoft Excel files using the Python Excel library,
• graphics libraries such as Matplotlib and PyOpenGL,
• machine learning using libraries such as SKLearn and TensorFlow.

1.3 Python Programming 3

A very useful resource to look at, which introduces many of these libraries (also
known as modules), is the ‘Python 3 module of the Week’ web site which can be
found at https://pymotw.com/3. This lists many of the libraries/modules available
and provides a short introduction to what they do and how to use them.

1.5 Python Execution Model

Python is not a precompiled language in the way that some other languages you
may have come across are (such as C++). Instead it is what is known as an
interpreted language (although even this is not quite accurate). An interpreted
language is one that does not require a separate compilation phase to convert the
human readable format into something that can be executed by a computer. Instead
the plain text version is fed into another program (generally referred to as the
interpreter) which then executes the program for you.

Python actually uses an intermediate model in that it actually converts the plain
text English style Python program into an intermediate 'pseudo' machine code
format and it is this intermediate format that is executed. This is illustrated below:

The way in which the Python interpreter processes a Python program is broken
down into several steps. The steps shown here are illustrative (and simplified) but
the general idea is correct.

1. First the program is checked to make sure that it is valid Python. That is a check
is made that the program follows all the rules of the language and that each of
the commands and operations etc. is understood by the Python environment.

2. It then translates the plain text, English like commands, into a more concise
intermediate format that is easier to execute on a computer. Python can store this
intermediate version in a file which is named after the original file but with a '.
pyc' extension instead of a '.py' extension (the 'c' in the extension indicates it
contains the compiled version of the code).

3. The compiled intermediate version is then executed by the interpreter.

When this program is rerun, the Python interpreter checks to see if a '.pyc' file
is present. If no changes have been made to the source file since the '.pyc' was

4 1 Introduction

https://pymotw.com/3

created, then the interpreter can skip steps 1 and 2 and immediately run the '.pyc'
version of the program.

One interesting aspect of Python’s usage is that it can be (and often is) used in an
interactive fashion (via the REPL), with individual commands being entered and
executed one at a time, with context information being built up. This can be useful
in debugging situations.

1.6 Running Python Programs

There are several ways in which you can run a Python program, including

• Interactively using the Python interpreter
• Stored in a file and run using the Python command
• Run as a script file specifying the Python interpreter to use within the script file
• From within a Python IDE (Integrated Development Environment) such as

PyCharm.

1.6.1 Interactively Using the Python Interpreter

It is quite common to find that people will use Python in interactive mode. This uses
the Python REPL (named after Read Evaluate Print Loop style of operation).

Using the REPL, Python statements and expressions can be typed into the
Python prompt and will then be executed directly. The values of variables will be
remembered and may be used later in the session.

To run the Python REPL, Python must have been installed onto the computer
system you are using. Once installed you can open a Command Prompt window
(Windows) or a Terminal window (Mac) and type python into the prompt. This is
shown for a Windows machine below:

1.5 Python Execution Model 5

In the above example, we interactively typed in several Python commands and
the Python interpreter 'Read' what we have typed in, 'Evaluated' it (worked out what
it should do), 'Printed' the result and then 'Looped' back ready for further input. In
this case we

• Printed out the string 'Hello World'.
• Added 5 and 4 together and got the result 9.
• Stored the string 'John' in a variable called name.
• Printed out the contents of the variable name.

To leave the interactive shell (the REPL) and go back to the console (the system
shell), press Ctrl-Z and then Enter on Windows, or Ctrl-D on OS X or Linux.
Alternatively, you could also run the Python command exit() or quit().

1.6.2 Running a Python File

We can of course store the Python commands into a file. This creates a program file
that can then be run as an argument to the python command.

For example, given a file containing the following file (called hello.py) with
the 4 commands in it:

To run the hello.py program on a PC using Windows we can use the python
command followed by the name of the file:

We can also run the same program on an Apple Mac using MacOS via the
python interpreter. For example on a Mac we can do the following:

6 1 Introduction

This makes it very easy to create Python programs that can be stored in files and
run when needed on whatever platform is required (Windows, Linux or Mac). This
illustrates the cross platform nature of Python and is just one of the reasons why
Python is so popular.

1.6.3 Executing a Python Script

It is also possible to transform a file containing a stored Python program into a
Script. A script is a stand-alone file that can be run directly without the need to
(explicitly) use the python command.

This is done by adding a special line to the start of the Python file that indicates
the Python command (or interpreter) to use with the rest of the file. This line must
start with '#!' and must come at the start of the file.

To convert the previous section’s file into a Script we would need to add the
path to the python interpreter. Here path refers to the route that the computer
must take to find the specified Python interpreter (or executable).

The exact location of the Python interpreter on your computer depends on what
options were selected when you (or whoever installed Python) set it up. Typically
on a Windows PC Python will be found in the 'Program Files' directory or it might
be installed in its own 'Python' directory.

Whatever the location of the Python interpreter, to create a script we will need to
add a first line to our hello.py file. This line must start with a #!. This combination
of characters is known as a shebang and indicates to Linux and other Unix like
operating systems (such as MacOS) how the remainder of the file should be
executed.

For example, on a Apple Mac we might add:

/Library/Frameworks/Python.framework/Versions/3.7/bin/python3

When added to the hello.py file we now have:

1.6 Running Python Programs 7

However, we cannot just run the file as it stands. If we tried to run the file
without any changes then we will get an error indicating that the permission to
execute the file has been denied:

$./hello.py
-bash: ./hello.py: Permission denied
$

This is because by default you can’t just run a file. We need to mark it as
executable. There are several ways to do this, however one of the easiest on a Mac
or Linux box is to use the chmod command (which can be used to modify the
permissions associated with the file). To make the file executable we can change the
file permissions to allow the file to be run by using the following command from a
terminal window when we are in the same directory as the hello.py file:

$ chmod +x hello.py

Where +x indicates that we want to add the executable permission to the file.
Now if we try to run the file directly it executes and the results of the commands

within the file are printed out:

Note the use of the './' preceding the file name in the above; this is used on Linux
and Macs to tell the operating system to look in the current directory for the file to
execute.

Different systems will store Python in different locations and thus might need
different first lines, for example on a Linux we might write:

8 1 Introduction

#!/usr/local/bin/python3
print('Hello, world')
print(5 + 4)
name = 'John'
print(name)

By default Windows does not have the same concept. However, to promote
cross platform portability, the Python Launcher for Windows can also support this
style of operation. It allows scripts to indicate a preference for a specific Python
version using the same #! (Shebang) format as Unix style operating systems. We
can now indicate that the rest of the file should be interpreted as a Python script; if
multiple versions of Python are installed this may require Python 3 to be explicitly
specified. The launcher also understands how to translate the Unix version into
Windows versions so that /user/local/bin/python3 will be interpreted as
indicating that python3 is required.

An example of the hello.py script for a Windows or Linux machine is given
below using Notepad++ on a Windows box.

When the launcher was installed it should have been associated with Python files
(i.e. files that have a '.py' extension). This means that if you double-click on one of
these files from the Windows Explorer, then the Python launcher will be used to run
the file.

1.6.4 Using Python in an IDE

We can also use an IDE such as PyCharm to writing and execute our Python
program. The same program is shown using PyCharm below:

1.6 Running Python Programs 9

In the above figure, the simple set of commands are again listed in a file called
hello.py. However, the program has been run from within the IDE and the
output is shown in an output console at the bottom of the display.

1.7 Useful Resources

There are a wide range of resources on the web for Python; we will highlight a few
here that you should bookmark. We will not keep referring to these to avoid
repetition but you can refer back to this section whenever you need to:

• https://en.wikipedia.org/wiki/Python_Software_Foundation Python Software
Foundation.

• https://docs.python.org/3/ The main Python 3 documentation site. It contains
tutorials, library references, set up and installation guides as well as Python
how-tos.

• https://docs.python.org/3/library/index.html A list of all the builtin features for
the Python language—this is where you can find online documentation for the
various class and functions that we will be using throughout this book.

• https://pymotw.com/3/ the Python 3 Module of the week site. This site contains
many, many Python modules with short examples and explanations of what the
modules do. A python module is a library of features that build on and expand

10 1 Introduction

https://en.wikipedia.org/wiki/Python_Software_Foundation
https://docs.python.org/3/
https://docs.python.org/3/library/index.html
https://pymotw.com/3/

the core Python language. For example, if you are interested in building games
using Python then pyjama is a module specifically designed to make this easier.

• https://www.fullstackpython.com/email.html is a monthly newsletter that
focusses on a single Python topic each month, such as a new library or module.

• http://www.pythonweekly.com/ is a free weekly summary of the latest Python
articles, projects, videos and upcoming events.

1.7 Useful Resources 11

https://www.fullstackpython.com/email.html
http://www.pythonweekly.com/

Chapter 2
Setting Up the Python Environment

2.1 Introduction

In this chapter we will check to see if you have Python installed on your computer.
If you do not have Python installed we will step through the process of installing
Python. This is necessary because when you run a Python program it looks for the
python interpreter that is used to execute your program or script. Without the
python interpreter installed on your machine Python programs are just text files!

2.2 Check to See If Python Is Installed

The first thing you should do is to see if Python 3 is already installed on your
computer. First check to see that you don’t have Python installed. If it is you don’t
need to do anything unless it is a very old version of Python 3 such as 3.1 or 3.2.

On a Windows machine you can check the version installed by opening a
Command Prompt window (this can be done by searching for Cmd in the 'Type
here to search' box in Windows 10).

Once the Command window is open try typing in python. This is illustrated
below:

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_2

Note the above has tried both python and python3 in case the latest version has
been installed using that name.

On a system such as a Mac you can use the Terminal and do the same thing. You
will probably find that at least python (2) is pre-installed for you. For example, if
you type in python on a Mac you will get something like this:

This indicates that the above user has version 2.7.15 installed (note you may
have another 2.x version installed).

However, be careful if you find that you have Python 2 installed on your
machine; this book is focussed solely on Python 3.

If you have started a Python interpreter then

• Use quit() or exit() to exit the Python interpreter; exit() is an alias for
quit() and is provided to make Python easier to use.

If Python 3 was not available, then the following steps will help you to install it.
If the correct version of Python is already available on your computer then you

can skip to the next chapter.

14 2 Setting Up the Python Environment

2.3 Installing Python on a Windows PC

Step 1: Downloading Python
Python is available for a wide range of platforms from Windows, to Mac OS and
Linux; you will need to ensure that you download the version for your operating
system.

Python can be downloaded from the main Python web site which can be found at
http://www.python.org

As you will see the 'Downloads' link is the second from the left on the large
menu bar below the search field. Click on this and you will be taken to the
download page; the current Python 3 version at the time of writing is Python 3.7
which is the version we will download. Click on the Download Python link. For
example, for a Windows machine you will see:

This will download an installer for your operating system. Even if a newer
version of Python is available (which is likely as the version is updated quiet
frequently) the steps should be fundamentally the same.

2.3 Installing Python on a Windows PC 15

http://www.python.org

Step 2: Running the Installer
You will now be prompted for the location to install Python, for example:

Note that it is easiest if you click on the 'Add Python 3.7 to PATH' option as this
will make it available from the command line. If you don’t do this then don’t worry,
we can add Python to the PATH later on (the PATH environment variable is used by
Windows to find the location of programs such as the Python interpreter).

Next select the 'Install Now' option and follow the installation steps.
If everything went as expected you should now see an confirmatory dialog

such as:

If you are on Windows now close any command windows that you have open
(the PATH variable is not updated for existing Command Windows). This can be
done by typing in 'exit' or closing the window.

16 2 Setting Up the Python Environment

Step 3: Set Up the PATH (optional)
If you did not select 'Add Python 3.7 to PATH' at the start of the installation you
will now need to set up the PATH environment variable. If you did then skip onto
the next step.

You can set the PATH environment variable using the system environment
variables editor.

The easiest way to find this is to type 'envir' into the Windows search box, it
will then list all applications which match this pattern including the 'Edit the system
environment variables' editor. If you are logged into your machine as a user with
'admin' rights use the first one listed, if you are logged in as a user without admin
rights select the 'Edit environment variables for your account;' option.

One the resulting dialog select the 'Environment Variables …' button at the
bottom of the page:

2.3 Installing Python on a Windows PC 17

One the next dialog select the PATH environment variable and select Edit:

Now add the locations in which you installed Python, by default this will be
something like

Note Python37-32 should be replaced by the version of Python you are installing
if it is different.

The end result should look something like:

18 2 Setting Up the Python Environment

Now click on OK until all the windows are closed.

Step 4: Verify the Installation
Next open a new Command Prompt window and type in python as shown below:

Congratulations you have installed Python and run the python interpreter!

Step 5: Run Some Python
Now at the '>>>' prompt type in

Be careful to make sure you use all lowercase letters for the 'print' function;
Python is very case sensitive which means that as far as Python is concerned
print('Hello World') and Print('Hello World') are completely
different things.

Also make sure that you have single quotes around the Hello World text this
makes it a string. If you get this right then on Windows you should see:

You have now run your first Python program. In this case your program printed
out the message 'Hello World' (a traditional first program in most program-
ming languages).

Step 6: Exit the Python Interpreter
To exit the Python interpreter use exit() or Ctrl-Z plus Return.

2.3 Installing Python on a Windows PC 19

2.4 Setting Up on a Mac

Installing Python on a Mac is similar to installing it on a Windows machine in that
you can download the Python installer for the Apple Mac from the Python Software
Foundation web site (https://www.python.org). Of course this time you need to
make sure you select the Mac OS version of the download as shown below:

From here you can select the macOS 64-bit installer (make sure you select the
appropriate one for your version of the operating system). This will download an
Apple package that can be installed (it will have a name similar to
python-3.7.2-macos10.9.pkg although the version number of Python and
the Mac OS operating system may be different). You will need to run this installer.

When you run this installer the Python Installer wizard dialog will open as
shown below:

20 2 Setting Up the Python Environment

https://www.python.org

Step through the dialogs presented to you by the installer wizard accepting each
option until the installation starts. Once the installation has completed you will be
presented with a summary screen confirming the installation was successful. You
can now close the installer.

This will have created a new folder in your Applications folder for Python 3.7.
Note that on a Mac which already has Python 2 installed (which is installed by

default), Python 3 can be installed along side it and can be accessible via the
python3 command (as shown below). You should confirm that Python has been
installed successfully by opening a Terminal window and entering the Python 3
REPL:

Now at the '>>>' prompt type in

Be careful to make sure you use all lowercase letters for the 'print' function; as
Python is very case sensitive which means that as far as Python is concerned
print('Hello World') and Print('Hello World') are completely
different things.

The result should be as shown below:

2.4 Setting Up on a Mac 21

You can now exit the REPL using the exit() or quit().

2.5 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/using/index.html with documentation for Python setup
and usage.

• https://docs.python.org/3/faq/windows.html Python on Windows FAQ.
• https://www.jetbrains.com/pycharm/ The PyCharm IDE home page.

22 2 Setting Up the Python Environment

https://docs.python.org/3/using/index.html
https://docs.python.org/3/faq/windows.html
https://www.jetbrains.com/pycharm/

Chapter 3
A First Python Program

3.1 Introduction

In this chapter we will return to the Hello World program and look at what it is
doing. We will also modify it to become more interactive and will explore the
concept of Python variables.

3.2 Hello World

As mentioned in the previous chapter, it is traditional to get started in a new
programming language with writing a Hello World style program. This is very
useful as it ensures that your environment, that is the interpreter, any environmental
settings, your editor (or IDE) etc. are all set up appropriately and can process (or
compile) and execute (or run) your program. As the 'Hello World' program is about
the simplest program in any language, you are doing this without the complexities
of the actual language being used.

Our 'Hello World' program has already been presented in the first chapter of this
book, however we will return to it here and take a closer look at what is going on.

In Python the simplest version of the Hello World program merely prints out a
string with the welcome message:

print('Hello World')

You can use any text editor or IDE (Integrated Development Editor) to create a
Python file. Examples of editors commonly used with Python include Emacs, Vim,
Notepad++, Sublime Text or Visual Studio Code; examples of IDEs for Python
include PyCharm and Eclipse. Using any of these tools we can create file with a

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_3

.py extension. Such a file can contain one or more Python statements that represent
a Python program or Script.

For example, we can create a file called hello.py containing the above
print() function in it.

One question this raises is where does the print() function come from?
In fact, print() is a predefined function that can be used to print things out,

for example to the user. The output is actually printed to what is known as the
output stream. This handles a stream (sequence) of data such as letters and numbers.
This output stream of data can be sent to an output window such as the terminal on
a Mac or Command Window on a Windows PC. In this case we are printing the
string 'Hello World'.

By predefined here we mean that it is built into the Python environment and is
understood by the Python interpreter. This means that the interpreter knows where
to find the definition of the print() function which tells it what to do when it
encounters the print() function.

You can of course write your own functions and we will be looking at how to do
that later in this book.

The print() function actually tries to print whatever you give it,

• when it is given a string it will print a string,
• if it is given an integer such as 42 it will print 42 and
• if it is a given a floating point number such as 23.56 then it will print 23.56.

Thus, when we run this program, the string 'Hello World' is printed out to the
console window.

Also note that the text forming the Hello World string is wrapped within two
single quote characters; these characters delimit the start and end of the string; if
you miss one of them out then there will be an error.

To run the program, if you are using an IDE such as PyCharm, then you can
select the file in the left hand tree and from the right mouse button select Run. If you
want to run this program again you can merely click on the green arrow in the tool
bar at the top of the IDE.

If you are running it from the command line type in python followed by the
name of the file, for example:

> python hello.py

This should be done in the directory where you created the file.

3.3 Interactive Hello World

Let us make our program a little more interesting; lets get it to ask us our name and
say hello to us personally.

24 3 A First Python Program

The updated program is:

print('Hello, world')
user_name = input('Enter your name: ')
print('Hello ', user_name)

Now after printing the original 'Hello World' string, the program then has two
additional statements.

The result of running this program is:

Hello, world
Enter your name: John
Hello John

We will look at each of the new statements separately.
The first statement is:

user_name = input('Enter your name: ')

This statement does several things. It first executes another function called
input(). This function is passed a string—which is known as an argument—to
use when it prompts the user for input.

This function input(), is again a built-in function that is part of the Python
language. In this case it will display the string you provide as a prompt to the user
and wait until the user types something in followed by the return key.

Whatever the user types in is then returned as the result of executing the input()
function. In this case that result is then stored in the variable user_name.

A variable is a named area of the computers’ memory that can be used to hold
things (often referred to as data) such as strings, numbers, boolean such as True/
False etc. In this case the variable user_name is acting as a label for an area of
memory which will hold the string entered by the user. The basic idea is illustrated
in the following diagram:

3.3 Interactive Hello World 25

This simplified picture illustrates how a variable, such as user_name, can
reference an area of memory containing actual data. In this diagram the memory is
shown as a two dimensional grid of memory locations. Each location has an address
associated with it. This address is unique within the memory and can be used to
return to the data held at that location. This address is often referred to as the
memory address of the data. It is this memory address that is actually held in the
variable user_name; this is why the user_name variable is shown as pointing
to the area in memory containing the string 'John'.

Thus the variable user_name allows us to access this area of memory easily
and conveniently.

For example, if we want to get hold of the name entered by the user in another
statement, we can do so merely by referencing the variable user_name. Indeed,
this is exactly what we do in the second statement we added to our program. This is
shown below:

print('Hello', user_name)

The last statement again uses the built-in print() function, but this time it takes
two arguments. This is because the print() function can actually take a variable
number of arguments (data items that we pass into it). Each argument is separated by a
comma. In this case we have passed in the string 'Hello' and whatever value is
referenced by (present at thememory address indicated by) the variableuser_name.

3.4 Variables

You may wonder why the element holding the user’s name above is referred to as a
variable. It is a called a variable because the value it references in memory can vary
during the lifetime of the program.

For example we can modify our Hello World program to ask the user for the
name of their best friend and print out a welcome message to that best friend. If we
want to, we can reuse the variable to hold the name of that best friend. For example:

print('Hello, world')
name = input('Enter your name: ')
print('Hello', name)
name = input('What is the name of your best friend: ')
print('Hello Best Friend', name)

When we run this version of the program and the user enters 'John' for their
name and 'Denise' for their best friends’ name we will see:

26 3 A First Python Program

Hello, world
Enter your name: John
Hello John
What is the name of your best friend: Denise
Hello Best Friend Denise

As you can see from this when the string 'Hello Best Friend' is printed, it is the
name 'Denise' that is printed alongside it.

This is because the area of memory that previously held the string 'John' now
holds the string 'Denise'.

In fact, in Python the variable name is not restricted to holding a string such as
'John' and 'Denise'; it can also hold other types of data such as numbers or the
values True and False. For example:

my_variable = 'John'
print(my_variable)
my_variable = 42
print(my_variable)
my_variable = True
print(my_variable)

The result of running the above example is

John
42
True

As you can see my_variable first holds (or references the area of memory
containing) the string 'John', it then holds the number 42 and finally it holds the
Boolean value True (Boolean values can only be True or False).

This is referred to in Python as Dynamic Typing. That is the type of the data held
by a variable can Dynamically change as the program executes. Although this may
seem like the obvious way to do things; it is not the approach used by many
programming languages such as Java and C# where variables are instead Statically
Typed. The word static is used here to indicate that the type of data that a variable
can hold will be determined when the program is first processed (or compiled).
Later on it will not be possible to change the type of data it can hold; thus if a
variable is to hold a number it cannot later on hold a String. This is the approach
adopted by languages such as Java and C#.

Both approaches have their pros and cons; but for many people the flexibility of
Pythons variables are one of its major advantages.

3.4 Variables 27

3.5 Naming Conventions

You may have noticed something above some of the variable names we have
introduced above such as user_name and my_variable. Both these variable
names are formed of a set of characters with an underbar between the 'words' in the
variable name.

Both these variable names highlight a very widely used naming convention in
Python, which is that variable names should:

• be all lowercase,
• be in general more descriptive than variable names such as a or b (although

there are some exceptions such as the use of variables i and j in looping
constructs).

• with individual words separated by underscores as necessary to improve
readability.

This last point is very important as in Python (and most computer programming
languages) spaces are treated as separators which can be used to indicate where one
thing ends and another starts. Thus it is not possible to define a variable name such
as:

• user name

As the space is treated by Python as a separator and thus Python thinks you are
defining two things 'user' and 'name'.

When you create your own variables, you should try to name then following the
Python accepted style thus name such as:

• my_name, your_name, user_name, account_name
• count, total_number_of_users, percentage_passed, pass_

rate
• where_we_live, house_number,
• is_okay, is_correct, status_flag

are all acceptable but

• A, Aaaaa, aaAAAaa
• Myname, myName, MyName or MYName
• WHEREWELIVE

Do not meet the accepted conventions.
However, it is worth mentioning that these are merely commonly adhered to

conventions and even Python itself does not always comply with these conventions.
Thus if you define a variable name that does not conform to the convention Python
will not complain.

28 3 A First Python Program

3.6 Assignment Operator

One final aspect of the statement shown below has yet to be considered

user_name = input('Enter your name: ')

What exactly is this '=' between the user_name variable and the input()
function?

It is called the assignment operator. It is used to assign the value returned by the
function input() to the variable user_name. It is probably the most widely
used operator in Python. Of course, it is not just used to assign values from
functions as the earlier examples illustrated. For example, we also used it when we
stored a string into a variable directly:

my_variable = 'Jason'

3.7 Python Statements

Throughout this chapter we have used the phrase statement to describe a portion of
a Python program, for example the following line of code is a statement that prints
out a string 'Hello' and the value held in user_name.

print('Hello', user_name)

So what do we mean by a statement? In Python a statement is an instruction that
the Python interpreter can execute. This statement may be formed of a number of
elements such as the one above which includes a call to a function and an
assignment of a value to a variable. In many cases a statement is a single line in
your program but it is also possible for a statement to extend over several lines
particularly if this helps the readability or layout of the code. For example, the
following is a single statement but it is laid out over 6 lines of code to make it easier
to read:

print('The total population for’,
city,
'was',
number_of_people_in_city,
'in’,
year)

As well as statements there are also expressions. An expression is essentially a
computation that generates a value, for example:

3.6 Assignment Operator 29

4 + 5

This is an expression that adds 4 and 5 together and generates the value 9.

3.8 Comments in Code

It is common practice (although not universally so) to add comments to code to help
anyone reading the code to understand what the code does, what its intent was, any
design decisions the programmer made etc.

Comments are sections of a program that are ignored by the Python interpreter—
they are not executable code.

A comment is indicated by the '#' character in Python. Anything following that
character to the end of the line will be ignored by the interpreter as it will be
assumed to be a comment, for example:

This is a comment
name = input('Enter your name: ')
This is another comment
print(name) # this is a comment to the end of the line

In the above, the two lines starting with a # are comments—they are for our
human eyes only. Interestingly the line containing the print() function also has a
comment—that is fine as the commend starts with the # and runs to the end of the
line, anything before the # character is not part of the comment.

3.9 Scripts Versus Programs

Python can be run in several ways:

• Via the Python interpreter by entering the REPL; the interactive Python session.
• By having the Python interpreter run a file containing stored Python commands.
• By setting up an association at the operating system level so that any files

ending with .py are always run by the Python interpreter.
• By indicating the Python interpreter to use at the start of the Python file. This is

done by including a first line in a file with something similar to '#!/usr/bin/
env python'. This indicates that the rest of the file should be passed to the
Python interpreter.

All of these can be defined as a way to run a Python program or indeed a Python
script.

However, for the purposes of this book we will treat a file containing a first line
specifying the Python interpreter to use as a script. All other Python code that

30 3 A First Python Program

represents some code to execute for a specific purpose will be called a Python
program. However, this is really only a distinction being made here to simplify
terminology.

3.10 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/reference/simple_stmts.html For information on
statements in Python.

3.11 Exercises

At this point you should try to write your own Python program. It is probably
easiest to start by modifying the Hello World program we have already been
studying. The following steps take you through this:

1. If you have not yet run the Hello World program, then do so now. To run your
program you have several options. The easiest if you have set up an IDE such as
PyCharm is to use the 'run' menu option. Otherwise if you have set up the
Python interpreter on your computer, you can run it from a command prompt
(on Windows) or a Terminal window (on a Mac/Linux box).

2. Now ensure that you are comfortable with what the program actually does. Try
commenting out some lines—what happens; is that the behaviour you expected?
check that you are happy with what it does.

3. Once you have done that, modify the program with your own prompts to the
user (the string argument given to the input function). Make sure that each string
is surrounded by the single quote characters (''); remember these denote the start
and end of a string.

4. Try creating your own variables and storing values into those instead of the
variable user_name.

5. Add a print() function to the program with your own prompt.
6. Include an assignment that will add two numbers together (for example 4 + 5)

and then assign the result to a variable.
7. Now print out that variables value once it has been assigned a value.
8. Make sure you can run the program after each of the above changes. If there is

an error reported attempt to fix that issue before moving on.

You must also be careful with the indentation of your program—Python is very
sensitive to how code is laid out and at this point all statements should start at the
beginning of the line.

3.9 Scripts Versus Programs 31

https://docs.python.org/3/reference/simple_stmts.html

Chapter 4
Python Strings

4.1 Introduction

In the previous chapter we used strings several times, both as prompts to the user
and as output from the print() function. We even had the user type in their name
and store it in a variable that could be used to access this name at a later point in
time. In this chapter we will explore what a string is and how you can work with
and manipulate them.

4.2 What Are Strings?

During the description of the Hello World program we referred to Python strings
several times, but what is a string?

In Python a string is a series, or sequence, of characters in order. In this defi-
nition a character is anything you can type on the keyboard in one keystroke, such
as a letter 'a', 'b', 'c' or a number '1', '2', '3' or a special characters such as '\', '[', '$' etc.
a space is also a character ' ', although it does not have a visible representation.

It should also be noted that strings are immutable. Immutable means that once a
string has been created it cannot be changed. If you try to change a string you will
in fact create a new string, containing whatever modifications you made, you will
not affect the original string in anyway. For the most part you can ignore this fact
but it means that if you try to get a sub string or split a string you must remember to
store the result—we will see this later on in this chapter.

To define the start and end of a string we have used the single quote character ',
thus all of the following are valid strings:

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_4

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_4

• 'Hello'
• 'Hello World'
• 'Hello Andrea2000'
• 'To be or not to be that is the question!'

We can also define an empty string which has no characters in it (it is defined as
a single quote followed immediately by a second single quote with no gap between
them). This is often used to initialise or reset a variable holding a reference to a
string, for example

• some_string = ''

4.3 Representing Strings

As stated above; we have used single quotes to define the start and end of a string,
however in Python single or double quotes can be used to define a string, thus both
of the following are valid:

• 'Hello World'
• "Hello World"

In Python these forms are exactly the same, although by convention we default
to using single quotes. This approach is often referred to as being more Pythonic
(which implies it is more the convention used by experienced Python programmers)
but the language does not enforce it.

You should note however, that you cannot mix the two styles of start and end
strings, that is you cannot start a string with a single quote and end a string with a
double quote, thus the following are both illegal in Python:

• 'Hello World'' # This is illegal
• ''Hello World' # So is this

The ability to use both '' and ' however, comes in useful if your string needs to
contain one of the other type of string delimiters. This is because a single quote can
be embedded in a string defined using double quotes and vice versa, thus we can
write the following:

print("It's the day")
print('She said "hello" to everyone')

The output of these two lines is:

It's the day
She said "hello" to everyone

A third alternative is the use of triple quotes, which might at first hand seem a bit
unwieldy, but they allow a string to support multi-line strings, for example:

34 4 Python Strings

z = """
Hello
 World
"""
print(z)

Which will print out

Hello
 World

4.4 What Type Is String

It is often said that Python is untyped; but this is not strictly true—as was stated in
an earlier chapter it is a dynamically typed language with all data having an
associated type.

The type of an item of data (such as a string) determines what it is legal to do
with the data and what the effect of various actions will be. For example, what the
effect of using a '+' operator is will depend on the types involved; if they are
numbers then the plus operator will add them together; if however strings are
involved then the strings will be concatenated (combined) together etc.

It is possible to find out what type a variable currently holds using the built-in
type() function. This function takes a variable name and will return the type of
the data held by that variable, for example:

my_variable = 'Bob'
print(type(my_variable))

The result of executing these two lines of code is the output:

<class 'str'>

This is a shorthand for saying that what is held in my_variable is currently a
class (type) of string (actually string is a class and Python supports ideas from
Object Oriented Programming such as classes and we will encounter them later in
the book).

4.5 What Can You Do with Strings?

In Python terms this means what operations or functions are their available or
built-in that you can use to work with strings. The answer is that there are very
many. Some of these are described in this section.

4.3 Representing Strings 35

4.5.1 String Concatenation

You can concatenate two strings together using the '+' operator (an operator is an
operation or behaviour that can be applied to the types involved). That is you can
take one string and add it to another string to create a new third string:

string_1 = 'Good'
string_2 = " day"
string_3 = string_1 + string_2
print(string_3)
print('Hello ' + 'World')

The output from this is

Good day
Hello World

Notice that the way in which the string is defined does not matter here,
string_1 used single quotes but string_2 used double quotes; however they
are both just strings.

4.5.2 Length of a String

It can sometimes be useful to know how long a string is, for example if you are
putting a string into a user interface you might need to know how much of the string
will be displayed within a field. To find out the length of a string in Python you use
the len() function, for example:

print(len(string_3))

This will print out the length of the string currently being held by the variable
string_3 (in terms of the number of characters contained in the string).

4.5.3 Accessing a Character

As a string is a fixed sequence of letters, it is possible to use square brackets and an
index (or position) to retrieve a specific character from within a string. For example:

my_string = 'Hello World'
print(my_string[4])

36 4 Python Strings

However, you should note that strings are indexed from Zero! This means that
the first character is in position 0, the second in position 1 etc. Thus stating [4]
indicates that we want to obtain the fifth character in the string, which in this case is
the letter 'o'. This form of indexing elements is actually quite common in pro-
gramming languages and is referred to a zero based indexing.

4.5.4 Accessing a Subset of Characters

It is also possible to obtain a subset of the original string, often referred to as a
substring (of the original string). This can again be done using the square brackets
notation but using a ':' to indicate the start and end points of the sub string. If one of
the positions is omitted then the start or end of the string is assumed (depending
upon the omission), for example:

my_string = 'Hello World'
print(my_string[4]) # characters at position 4
print(my_string[1:5]) # from position 1 to 5
print(my_string[:5]) # from start to position 5
print(my_string[2:]) # from position 2 to the end

Will generate

o
ello
Hello
llo World

As such my_string[1:5] returns the substring containing the 2nd to 6th
letters (that is 'ello'). In turn my_string[:5] returned the substring con-
taining the 1st to 6th letters and my_string[2:] the sub string containing the
3rd to the last letters.

4.5.5 Repeating Strings

We can also use the '*' operator with strings. In the case of strings this means repeat
the given string a certain number of times. This generates a new string containing
the original string repeated n number of times. For example:

print('*' * 10)
print('Hi' * 10)

Will generate

HiHiHiHiHiHiHiHiHiHi

4.5 What Can You Do with Strings? 37

4.5.6 Splitting Strings

A very common requirement is the need to split a string up into multiple separate
strings based on a specific character such as a space or a comma.

This can be done with the split() function, that takes a string to used in
identifying how to split up the receiving string. For example:

title = 'The Good, The Bad, and the Ugly'
print('Source string:', title)
print('Split using a space')
print(title.split(' '))
print('Split using a comma')
print(title.split(','))

This produces as output

Source string: The Good, The Bad, and the Ugly
Split using a space
['The', 'Good,', 'The', 'Bad,', 'and', 'the', 'Ugly']
Split using a comma
['The Good', ' The Bad', ' and the Ugly']

As can be seen from this the result generated is either a list of each word in the
string or three strings as defined by the comma.

You may have noticed something odd about the way in which we wrote the call
to the split operation. We did not pass the string into split() rather we used the
format of the variable containing the string followed by '.' and then split().

This is because split() is actually what is referred to as a method. We will
return to this concept more when we explore classes and objects. For the moment
merely remember that methods are applied to things like string using the dot
notation.

For example, given the following code

title = 'The Good, The Bad, and the Ugly'
print(title.split(' '))

This means take the string held by the variable title and split it based on the
character space.

4.5.7 Counting Strings

It is possible to find out how many times a string is repeated in another string. This
is done using the count() operation for example

my_string = 'Count, the number of spaces'
print("my_string.count(' '):", my_string.count(' '))

38 4 Python Strings

Which has the output

my_string.count(' '): 8

indicating that there are 8 spaces in the original string.

4.5.8 Replacing Strings

One string can replace a substring in another string. This is done using the
replace() method on a string. For example:

welcome_message = 'Hello World!'
print(welcome_message.replace("Hello", "Goodbye"))

The output produced by this is thus

Goodbye World!

4.5.9 Finding Sub Strings

You can find out if one string is a substring of another string using the find()
method. This method takes a second string as a parameter and checks to see if that
string is in the string receiving the find() method, for example:

string.find(string_to_find)

The method returns −1 if the string is not present. Otherwise it returns an index
indicating the start of the substring. For example

print('Edward Alun Rawlings'.find('Alun'))

This prints out the value 5 (the index of the first letter of the substring 'Alun' note
strings are indexed from Zero; thus the first letter is at position Zero, the second at
position one etc.

In contrast the following call to the find() method prints out −1 as 'Alun' is no
longer part of the target string:

print('Edward John Rawlings'.find('Alun'))

4.5 What Can You Do with Strings? 39

4.5.10 Converting Other Types into Strings

If you try to use the '+' concatenation operator with a string and some other type
such as a number then you will get an error. For example if you try the following:

msg = 'Hello Lloyd you are ' + 21
print(msg)

You will get an error message indicating that you can only concatenate strings
with strings not integers with strings. To concatenate a number such as 21 with a
string you must convert it to a string. This can be done using the str() function.
This contest any type into a string representation of that type. For example:

msg = 'Hello Lloyd you are ' + str(21)
print(msg)

This code snippet will print out the message:

Hello Lloyd you are 21

4.5.11 Comparing Strings

To compare one string with another you can use the '==' equality and '!=' not equals
operators. These will compare two strings and return either True or False
indicating whether the strings are equal or not.

For example:

print('James' == 'James') # prints True
print('James' == 'John') # prints False
print('James' != 'John') # prints True

You should note that strings in Python are case sensitive thus the string 'James'
does not equal the string 'james'. Thus:

print('James' == 'james') # prints False

4.5.12 Other String Operations

There are in fact very many different operations available for strings, including
checking that a string starts or ends with another string, that is it upper or lower case
etc. It is also possible to replace part of a string with another string, convert strings
to upper, lower or title case etc.

40 4 Python Strings

Examples of these are given below (note all of these operations use the dot
notation):

some_string = 'Hello World'
print('Testing a String')
print('-' * 20)
print('some_string', some_string)
print("some_string.startswith('H')",
some_string.startswith('H'))
print("some_string.startswith('h')",
some_string.startswith('h'))
print("some_string.endswith('d')", some_string.endswith('d'))
print('some_string.istitle()', some_string.istitle())
print('some_string.isupper()', some_string.isupper())
print('some_string.islower()', some_string.islower())
print('some_string.isalpha()', some_string.isalpha())

print('String conversions')
print('-' * 20)
print('some_string.upper()', some_string.upper())
print('some_string.lower()', some_string.lower())
print('some_string.title()', some_string.title())
print('some_string.swapcase()', some_string.swapcase())
print('String leading, trailing spaces', " xyz ".strip())

The output from this is

Testing a String

some_string Hello World
some_string.startswith('H') True
some_string.startswith('h') False
some_string.endswith('d') True
some_string.istitle() True
some_string.isupper() False
some_string.islower() False
some_string.isalpha() False
String conversions

some_string.upper() HELLO WORLD
some_string.lower() hello world
some_string.title() Hello World
some_string.swapcase() hELLO wORLD
String leading, trailing spaces xyz

4.5 What Can You Do with Strings? 41

4.6 Hints on Strings

4.6.1 Python Strings Are Case Sensitive

In Python the string 'l' is not the same as the string 'L'; one contains the lower-case
letter 'l' and one the upper-case letter 'L'. If case sensitively does not matter to you
then you should convert any strings you want to compare into a common case
before doing any testing; for example using lower() as in

some_string.lower().startswith('h')

4.6.2 Function/Method Names

Be very careful with capitalisation of function/method names; in Python
isupper() is a completely different operation to isUpper(). If you use the
wrong case Python will not be able to find the required function or method and will
generate an error message. Do not worry about the terminology regarding functions
and methods at this point—for now they can be treated as the same thing and only
differ in the way that they recalled or invoked.

4.6.3 Function/Method Invocations

Also be careful of always including the round brackets when you call a function or
method; even if it takes no parameters/arguments. There is a significant difference
between isupper and isupper(). The first one is the name of an operation on a
string while the second is a call to that operation so that the operation executes.
Both formats are legal Python but the result is very different, for example:

print(some_string.isupper)
print(some_string.isupper())

produces the output:

<built-in method isupper of str object at 0x105eb19b0>
False

Notice that the first print out tells you that you are referring to the built-in
method called isupper defined on the type String; while the second actually runs
isupper() for you and returns either True or False.

42 4 Python Strings

4.7 String Formatting

Python provides a sophisticated formatting system for strings that can be useful for
printing information out or logging information from a program.

The string formatting system uses a special string known as the format string that
acts as a pattern defining how the final string will be laid out. This format string can
contain placeholders that will be replaced with actual values when the final string is
created. A set of values can be applied to the format string to fill the placeholders
using the format() method.

The simplest example of a format string is one that provides a single placeholder
indicated by two curly braces (e.g. {}). For example, the following is a format
string with the pattern 'Hello' followed by a placeholder:

format_string = 'Hello {}!'

This can be used with the format() string method to provide a value (or
populate) the placeholder, for example:

print(format_string.format('Phoebe'))

The output from this is:

Hello Phoebe!

A format string can have any number of placeholders that must be populated, for
example the next example has two placeholders that are populated by providing two
values to the format() method:

Allows multiple values to populate the string
name = "Adam"
age = 20
print("{} is {} years old".format(name, age))

In this case the output is:

Adam is 20 years old

It also illustrates that variables can be used to provide the values for the format
method as well as literal values. A literal value is a fixed value such as 42 or the
string 'John'.

By default the values are bound to the placeholders based on the order that they
are provided to the format() method; however this can be overridden by pro-
viding an index to the placeholder to tell it which value should be bound, for
example:

4.7 String Formatting 43

Can specify an index for the substitution
format_string = "Hello {1} {0}, you got {2}%"
print(format_string.format('Smith', 'Carol', 75))

In this case the second string 'Carol' will be bound the first placeholder; note that
the parameters are numbered from Zero not one.

The output from the above example is:

Hello Carol Smith, you got 75%

Of course when ordering the values it is quiet easy to get something wrong either
because a developer might think the strings are indexed from 1 or just because they
get the order wrong.

An alternative approach is to use named values for the placeholders. In this
approach the curly brackets surround the name of the value to be substituted, for
example {artist}. Then in the format() method a key=value pair is provided
where the key is the name in the format string; this is shown below:

Can use named substitutions, order is not significant
format_string = "{artist} sang {song} in {year}"
print(format_string.format(artist='Paloma Faith',
song='Guilty', year=2017))

In this example the order no longer matters as the name associated with the
parameter passed into the format() method is used to obtain the value to be
substituted. In this case the output is:

Paloma Faith sang Guilty in 2017

It is also possible to indicate alignment and width within the format string. For
example, if you wish to indicate a width to be left for a placeholder whatever the
actual value supplied, you can do this using a colon (':') followed by the width to
use. For example to specify a gap of 25 characters which can be filled with a
substitute value you can use {:25} as shown below:

print('|{:25}|'.format('25 characters width'))

In the above the vertical bars are merely being used to indicate where the string
starts and ends for reference, they have no meaning within the format method. This
produces the output:

|25 characters width |

44 4 Python Strings

Within this gap you can also indicate an alignment where:

• < Indicates left alignment (the default),
• > Indicates right alignment,
• ^ Indicates centered.

These follow the colon (':') and come before the size of the gap to use, for
example:

print('|{:<25}|'.format('left aligned')) # The default
print('|{:>25}|'.format('right aligned'))
print('|{:^25}|'.format('centered'))

Which produces:

|left aligned |
| right aligned|
| centered |

Another formatting option is to indicate that a number should be formatted with
separators (such as a comma) to indicate thousands:

Can format numbers with comma as thousands separator
print('{:,}'.format(1234567890))
print('{:,}'.format(1234567890.0))

Which generates the output:

1,234,567,890
1,234,567,890.0

There are in fact numerous options available to control the layout of a value
within the format string and the Python documentation should be referenced for
further information.

4.8 String Templates

An alternative to using string formatting is to use string Templates. These were
introduced into Python 2.4 as a simpler, less error prone, solution to most string
formatting requirements.

A string template is a class (type of thing) that is created via the string.
Template() function. The template contains one or more named variables pre-
ceded with a $ symbol. The Template can then be used with a set of values that
replace the template variables with actual values.

4.7 String Formatting 45

For example:

import string

Initialise the template with ¢variables that
will be substitute with actual values
template = string.Template('$artist sang $song in $year')

Note that it is necessary to include an import statement at the start of the program
as Templates are not provided by default in Python; they must be loaded from a
library of additional string features. This library is part of Python but you need to
tell Python that you want to access these extra string facilities.

We will return to the import statement later in the book; for now just except
that it is needed to access the Template functionality.

The Template itself is created via the string.Template() function. The
string passed into the string.Template() function can contain any characters
plus the template variables (which are indicated by the $ character followed by the
name of the variable such as $artist above).

The above is thus a template for the pattern 'some-artist sang some-song in some-
year'.

The actual values can be substituted into the template using the substitute()
function. The substitute function takes a set of key=value pairs, in which the key is the
name of the template variable (minus the leading $ character) and the value is the
value to use in the string.

print(template.substitute(artist='Freddie Mercury', song='The
Great Pretender', year=1987))

In this example $artist will be replaced by 'Freddie Mercury', $song by
'The Great Pretender' and $year by 1987. The substitute function will then return a
new string containing

'Freddie Mercury sang The Great Pretender in 1987'

This is illustrated in the following code:

import string

Initialise the template with $variables that
will be substitute with actual values
template = string.Template('$artist sang $song in $year')

Replace / substitute template variables with actual values
Can use a key = value pairs where the key is the name of
the template Variable and the value is the value to use
in the string
print(template.substitute(artist='Freddie Mercury', song='The
Great Pretender', year=1987))

46 4 Python Strings

This produces:

Freddie Mercury sang The Great Pretender in 1987

We can of course reuse the template by substituting other values for the template
variables, each time we call the substitute() method it will generate a new
string with the template variables replaced with the appropriate values:

print(template.substitute(artist='Ed Sheeran', song='Galway
Girl', year=2017))
print(template.substitute(artist='Camila Cabello',
song='Havana', year=2018))

With the above producing:

Ed Sheeran sang Galway Girl in 2017
Camila Cabello sang Havana in 2018

Alternatively you can create what is known as a dictionary. A dictionary is a
structure comprised of key:value pairs in which the key is unique. This allows a
data structure to be created containing the values to use and then applied to the
substitute function:

d = dict(artist = 'Billy Idol', song='Eyes Without a Face',
year = 1984)
print(template.substitute(d))

This produces a new string:

Billy Idol sang Eyes Without a Face in 1984

We will discuss dictionaries in greater detail later in the book.
Template strings can contain template variables using the format

$name-of-variable; however there are a few variations that are worth noting:

• $$ allows you to include a '$' character in the string without Python interpreting
it as the start of a template variable this the double '$$' is replaced with a
single $. This is known as escaping a control character.

• ${template_variable} is equivalent to $template_variable. It is
required when valid identifier characters follow the placeholder but are not part
of the placeholder, such as ''${noun}ification''.

Another point to note about the template.substitute() function is that if
you fail to provide all the template variables with a value then an error will be
generated. For example:

print(template.substitute(artist='David Bowie', song='Rebel
Rebel'))

4.8 String Templates 47

Will result in the program failing to execute and an error message being gen-
erated:

Traceback (most recent call last):
 File "/emplate_examples.py", line 16, in <module>
 print(template.substitute(artist='David Bowie', song='Rebel
Rebel'))
 File "/Library/Frameworks/Python.framework/Versions/3.7/lib/
python3.7/string.py", line 132, in substitute
 return self.pattern.sub(convert, self.template)
 File "/Library/Frameworks/Python.framework/Versions/3.7/lib/
python3.7/string.py", line 125, in convert
 return str(mapping[named])
KeyError: 'year'

This is because the template variable $year has not been provided with a value.
If you do not want to have to worry about providing all the variables in a

template with a value then you should use the safe_substitute() function:

print(template.safe_substitute(artist='David Bowie',
song='Rebel Rebel'))

This will populate the template variables provided and leave any other template
variables to be incorporated into the string as they are, for example:

David Bowie sang Rebel Rebel in $year

4.9 Online Resources

There is a great deal of online documentation available on strings in Python
including:

• https://docs.python.org/3/library/string.html which presents common string
operations.

• https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str this pro-
vides information on strings and the str class in Python.

• https://pyformat.info has a simple introduction to Python string formatting.
• https://docs.python.org/3/library/string.html#format-string-syntax which pre-

sents detailed documentation on Python string formatting.
• https://docs.python.org/3/library/string.html#template-strings for documentation

on string templates.

48 4 Python Strings

https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://pyformat.info
https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library/string.html#template-strings

4.10 Exercises

We are going to try out some of the string related operations.

1. Explore replacing a string
Create a string with words separated by ',' and replace the commas with spaces;
for example replace all the commas in 'Denyse,Marie,Smith,21,London,UK'
with spaces. Now print out the resulting string.

2. Handle user input
The aim of this exercise is to write a program to ask the user for two strings and
concatenate them together, with a space between them and store them into a new
variable called new_string.

Next:

• Print out the value of new_string.
• Print out how long the contents of new_string is.
• Now convert the contents of new_string to all upper case.
• Now check to see if new_string contains the string 'Albus' as a substring.

4.10 Exercises 49

Chapter 5
Numbers, Booleans and None

5.1 Introduction

In this chapter we will explore the different ways that numbers can be represented
by the built-in types in Python. We will also introduce the Boolean type used to
represent True and False. As part of this discussion we will also look at both
numeric and assignment operators in Python. We will conclude by introducing the
special value known as None.

5.2 Types of Numbers

There are three types used to represent numbers in Python; these are integers (or
integral) types, floating point numbers and complex numbers.

This begs the question why? Why have different ways of representing numbers;
after all humans can easily work with the number 4 and the number 4.0 and don’t
need completely different approaches to writing them (apart from the '.' of course).

This actually comes down to efficiency in terms of both the amount of memory
needed to represent a number and the amount of processing power needed to work
with that number. In essence integers are simpler to work with and can take up less
memory than real numbers. Integers are whole numbers that do not need to have a
fractional element. When two integers are added, multiplied or subtracted they will
always generate another integer number.

In Python real numbers are represented as floating point numbers (or floats).
These can contain a fractional part (the bit after the decimal point). Computers can
best work with integers (actually of course only really 1s and 0s). They therefore
need a way to represent a floating point or real number. Typically this involves
representing the digits before and after the decimal point.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_5

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_5

The term floating point is derived from the fact that there is no fixed number of
digits before or after the decimal point; that is, the decimal point can float.

Operations on floating point numbers such as addition, subtract, multiplication
etc. will generate new real numbers which must also be represented. It is also much
harder to ensure that the results are correct as potentially very small and very large
fractional parts may be involved. Indeed, most floating-point numbers are actually
represented as approximations. This means that one of the challenges in handling
floating-point numbers is in ensuring that the approximations lead to reasonable
results. If this is not done appropriately, small discrepancies in the approximations
can snowball to the point where the final results become meaningless.

As a result, most computer programming languages treat integers such as 4 as
being different from real numbers such as 4.000000004.

Complex numbers are an extension of real numbers in which all numbers are
expressed as a sum of a real part and an imaginary part. Imaginary numbers are real
multiples of the imaginary unit (the square root of −1), where the imaginary part is
often written in mathematics using an 'i' while in engineering it is often written
using a 'j'.

Python has built-in support for complex numbers, which are written using the
engineering notation; that is the imaginary part is written with a j suffix, e.g. 3 + 1j.

5.3 Integers

All integer values, no matter how big or small are represented by the integral (or int)
type in Python 3. For example:

x = 1
print(x)
print(type(x))
x =
1001
print(x)
print(type(x))

If this code is run then the output will show that both numbers are of type int:

1
<class 'int'>
1001
<class 'int'>

This makes it very easy to work with integer numbers in Python. Unlike some
programming languages such as C# and Java have different integer types depending
on the size of the number, small numbers having to be converted into larger types in
some situations.

52 5 Numbers, Booleans and None

5.3.1 Converting to Ints

It is possible to convert another type into an integer using the int() function. For
example, if we want to convert a string into an int (assuming the string contains a
integer number) then we can do this using the int() function. For example

total = int('100')

This can be useful when used with the input() function.
The input() function always returns a string. If we want to ask the user to input

an integer number, then we will need to convert the string returned from the
input() function into anint.We can do this by wrapping the call to theinput()
function in a call to the int() function, for example:

age = int(input('Please enter your age:'))
print(type(age))
print(age)

Running this gives:

Please enter your age: 21
<class 'int'>
21

The int() function can also be used to convert a floating point number into an
int, for example:

i = int(1.0)

5.4 Floating Point Numbers

Real numbers, or floating point numbers, are represented in Python using the IEEE
754 double-precision binary floating-point number format; for the most part you do
not need to know this but it is something you can look up and read about if you
wish.

The type used to represent a floating point number is called float.
Python represents floating point numbers using a decimal point to separate the

whole part from the fractional part of the number, for example:

exchange_rate = 1.83
print(exchange_rate)
print(type(exchange_rate))

5.3 Integers 53

This produces output indicating that we are storing the number 1.83 as a floating
point number:

1.83
<class 'float'>

5.4.1 Converting to Floats

As with integers it is possible to convert other types such as an int or a string into a
float. This is done using the float() function:

int_value = 1
string_value = '1.5'
float_value = float(int_value)
print('int value as a float:', float_value)
print(type(float_value))
float_value = float(string_value)
print('string value as a float:', float_value)
print(type(float_value))

The output from this code snippet is:

int value as a float: 1.0
<class 'float'>
string value as a float: 1.5
<class 'float'>

5.4.2 Converting an Input String into a Floating Point
Number

As we have seen the input() function returns a string; what happens if we want
the user to input a floating point (or real) number? As we have seen above, a string
can be converted into a floating point number using the float() function and
therefore we can use this approach to convert an input from the user into a float:

exchange_rate = float(input("Please enter the exchange rate to
use: "))
print(exchange_rate)
print(type(exchange_rate))

Using this we can input the string 1.83 and convert it to a floating-point number:

Please enter the exchange rate to use: 1.83
1.83
<class 'float'>

54 5 Numbers, Booleans and None

5.5 Complex Numbers

Complex numbers are Pythons third type of built-in numeric type. A complex
number is defined by a real part and an imaginary part and has the form
a + bi (where i is the imaginary part and a and b are real numbers):

The real part of the number (a) is the real number that is being added to the pure
imaginary number.

The imaginary part of the number, or b, is the real number coefficient of the pure
imaginary number.

The letter 'j' is used in Python to represent the imaginary part of the number, for
example:

c1 = 1j
c2 = 2j
print('c1:', c1, ', c2:', c2)
print(type(c1))
print(c1.real)
print(c1.imag)

We can run this code and the output will be:

c1: 1j , c2: 2j
<class 'complex'>
0.0
1.0

As you can see the type of the number is 'complex' and when the number is
printed directly it is done so by printing both the real and imaginary parts together.

Don’t worry if this is confusing; it is unlikely that you will need to use complex
numbers unless you are doing some very specific coding, for example within a
scientific field.

5.6 Boolean Values

Python supports another type called Boolean; a Boolean type can only be one of
True or False (and nothing else). Note that these values are True (with a capital
T) and False (with a capital F); true and false in Python are not the same thing and
have no meaning on their own.

5.5 Complex Numbers 55

The equivalent of the int or float class for Booleans is bool.
The following example illustrates storing the two Boolean values into a variable

all_ok:

all_ok = True
print(all_ok)
all_ok = False
print(all_ok)
print(type(all_ok))

The output of this is

True
False
<class 'bool'>

The Boolean type is actually a sub type of integer (but with only the values
True and False) so it is easy to translate between the two, using the functions
int() and bool() to convert from Booleans to Integers and vice versa. For
example:

print(int(True))
print(int(False))
print(bool(1))
print(bool(0))

Which produces

1
0
True
False

You can also convert strings into Booleans as long as the strings contain either
True or False (and nothing else). For example:

status = bool(input('OK to proceed: '))
print(status)
print(type(status))

When we run this

OK to proceed: True
True
<class 'bool'>

56 5 Numbers, Booleans and None

5.7 Arithmetic Operators

Arithmetic operators are used to perform some form of mathematical operation such
as addition, subtraction, multiplication and division etc. In Python they are repre-
sented by one or two characters. The following table summarises the Python
arithmetic operators:

Operator Description Example

+ Add the left and right values together 1 + 2

− Subtract the right value from the left value 3 − 2

* Multiple the left and right values 3 * 4

/ Divide the left value by the right value 12/3

// Integer division (ignore any remainder) 12//3

% Modulus (aka the remainder operator)—only return any remainder 13%3

** Exponent (or power of) operator—with the left value raised to the
power of the right

3 ** 4

5.7.1 Integer Operations

Two integers can be added together using +, for example 10 + 5. In turn two
integers can be subtracted (10 − 5) and multiplied (10 * 4). Operations such as +,
− and * between integers always produce integer results.

This is illustrated below:

home = 10
away = 15
print(home + away)
print(type(home + away))

print(10 * 4)
print(type(10*4))

goals_for = 10
goals_against = 7
print(goals_for - goals_against)
print(type(goals_for - goals_against))

The output from this is

25
<class 'int'>
40
<class 'int'>
3
<class 'int'>

5.7 Arithmetic Operators 57

However, you may notice that we have missed out division with respect to
integers, why is this? It is because it depends on which division operator you use as
to what the returned type actually is.

For example, if we divide the integer 100 by 20 then the result you might
reasonably expect to produce might be 5; but it is not, it is actually 5.0:

print(100 / 20)
print(type(100 / 20))

The output is

5.0
<class 'float'>

And as you can see from this the type of the result is float (that is a floating
point number). So why is this the case?

The answer is that division does not know whether the two integers involved
divide into one another exactly or not (i.e. is there a remainder). It therefore defaults
to producing a floating point (or real) number which can have a fractional part. This
is of course necessary in some situations, for example if we divide 3 by 2:

res1 = 3/2
print(res1)
print(type(res1))

In this case 3 cannot be exactly divided by 2, we might say that 2 goes into 3
once with a remainder. This is what is shown by Python:

1.5
<class 'float'>

The result is that 2 goes into 3, 1.5 times with the type of the result being a
float.

If you are only interested in the number of times 2 does go into 3 and are happy
to ignore the fractional part then there is an alternative version of the divide operator
//. This operator is referred to as the integer division operator:

res1 = 3//2
print(res1)
print(type(res1))

which produces

1
<class 'int'>

But what if you are only interested in the remainder part of a division, the integer
division operator has lost that? Well in that case you can use the modulus operation
('%'). This operator returns the remainder of a division operation: for example:

58 5 Numbers, Booleans and None

print('Modulus division 4 % 2:', 4 % 2)
print('Modulus division 3 % 2:', 3 % 2)

Which produces:

Modulus division 4 % 2: 0
Modulus division 3 % 2: 1

A final integer operator we will look at is the power operator that can be used to
raise an integer by a given power, for example 5 to the power of 3. The power
operator is '**', this is illustrated below:

a = 5
b = 3
print(a ** b)

Which generates the number 125.

5.7.2 Negative Number Integer Division

It is also worth just exploring what happens in integer and true division when
negative numbers are involved. For example,

print('True division 3/2:', 3 / 2)
print('True division 3//2:', -3 / 2)
print('Integer division 3//2:', 3 // 2)
print('Integer division 3//2:', -3 // 2)

The output from this is:

True division 3/2: 1.5
True division 3//2: -1.5
Integer division 3//2: 1
Integer division 3//2: -2

The first three of these might be exactly what you expect given our earlier
discussion; however, the output of the last example may seem a bit surprising, why
does 3//2 generate 1 but −3//2 generates −2?

The answer is that Python always rounds the result of integer division towards
minus infinity (which is the smallest negative number possible). This means it pulls
the result of the integer division to the smallest possible number, 1 is smaller than
1.5 but −2 is smaller than −1.5.

5.7 Arithmetic Operators 59

5.7.3 Floating Point Number Operators

We also have the multiple, subtract, add and divide operations available for floating
point numbers. All of these operators produce new floating point numbers:

print(2.3 + 1.5)
print(1.5 / 2.3)
print(1.5 * 2.3)
print(2.3 - 1.5)
print(1.5 - 2.3)

These statements produce the output given below:

3.8
0.6521739130434783
3.4499999999999997
0.7999999999999998
-0.7999999999999998

5.7.4 Integers and Floating Point Operations

Any operation that involves both integers and floating point numbers will always
produce a floating point number. That is, if one of the sides of an operation such as
add, subtract, divide or multiple is a floating point number then the result will be a
floating point number. For example, given the integer 3 and the floating point
number 0.1, if we multiple them together then we get a floating point number:

i = 3 * 0.1
print(i)

Executing this we get

0.30000000000000004

Which may or may not have been what you expected (you might have expected
0.3); however this highlights the comment at the start of this chapter relating to
floating point (or real) numbers being represented as an approximation within a
computer system. If this was part of a larger calculation (such as the calculation of
the amount of interest to be paid on a very large loan over a 10 year period) then the
end result might well be out by a significant amount.

It is possible to overcome this issue using one of Pythons modules (or libraries).
For example, the decimal module provides the Decimal class that will appro-
priately handle multiplying 3 and 0.1.

60 5 Numbers, Booleans and None

5.7.5 Complex Number Operators

Of course you can use operators such as multiply, add, subtract and divide with
complex numbers. For example:

c1 = 1j
c2 = 2j
c3 = c1 * c2
print(c3)

We can run this code and the output will be:

(-2+0j)

You can also convert another number or a string into a complex number using
the complex()function. For example:

complex(1) # generates (1+0j)

In addition the math module provides mathematical functions for complex
numbers.

5.8 Assignment Operators

In Chap. 3 we briefly introduced the assignment operator ('=') which was used to
assign a value to a variable. There are in fact several different assignment operators
that could be used with numeric values.

These assignment operators are actually referred to as compound operators as
they combine together a numeric operation (such as add) with the assignment
operator. For example, the += compound operator is a combination of the add
operator and the = operator such that

x = 0
x += 1 # has the same behaviour as x = x + 1

Some developers like to use these compound operators as they are more concise
to write and can be interpreted more efficiently by the Python interpreter.

The following table provides a list of the available compound operators

5.7 Arithmetic Operators 61

Operator Description Example Equivalent

+= Add the value to the left-hand variable x += 2 x = x + 2

−= Subtract the value from the left-hand variable x −= 2 x = x – 2

*= Multiple the left-hand variable by the value x *= 2 x = x * 2

/= Divide the variable value by the right-hand value x /= 2 x = x/2

//= Use integer division to divide the variable’s value by
the right-hand value

x //= 2 x = x//2

%= Use the modulus (remainder) operator to apply the
right-hand value to the variable

x %= 2 x = x % 2

**= Apply the power of operator to raise the variable’s
value by the value supplied

x **= 3 x = x **
3

5.9 None Value

Python has a special type, the NoneType, with a single value, None.
This is used to represent null values or nothingness.
It is not the same as False, or an empty string or 0; it is a non-value. It can be

used when you need to create a variable but don’t have an initial value for it. For
example:

winner = None

You can then test for the presence of None using 'is' and 'is not', for
example:

print(winner is None)

This will print out True if and only if the variable winner is currently set to
None.

Alternatively you can also write:

print(winner is not None)

Which will print out True only if the value of winner is not None.
Several example using the value None and the 'is' and is not' operators are given

below:

winner = None
print('winner:', winner)
print('winner is None:', winner is None)
print('winner is not None:', winner is not None)
print(type(winner))
print('Set winner to True')
winner = True
print('winner:', winner)
print('winner is None:', winner is None)
print('winner is not None:', winner is not None)
print(type(winner))

62 5 Numbers, Booleans and None

The output of this code snippet is:

winner: None
winner is None: True
winner is not None: False
<class 'NoneType'>
Set winner to True
winner: True
winner is None: False
winner is not None: True
<class 'bool'>

5.10 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
Numeric Types.

• https://docs.python.org/3/library/stdtypes.html#truth-value-testing Boolean val-
ues and boolean testing.

• https://docs.python.org/3/library/decimal.html which provides information on
the Python decimal module.

• https://docs.python.org/3/library/cmath.html which discusses mathematical
functions for complex numbers.

If you are interested in how floating point numbers are represented then a good
starting points are:

• https://en.wikipedia.org/wiki/Double-precision_floating-point_format which
provides an overview of floating point representation.

• https://en.wikipedia.org/wiki/IEEE_754 which is the Wikipedia page on the
IEEE 754 Double-precision floating-point number format.

5.11 Exercises

The aim of the exercises in this chapter is to explore the numeric types we have
been looking at.

5.9 None Value 63

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://docs.python.org/3/library/decimal.html
https://docs.python.org/3/library/cmath.html
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/IEEE_754

5.11.1 General Exercise

Try to explore the different number types available in Python.
You should try out the different numeric operators available and mix up the

numbers being used, for example, 1 and well as 1.0 etc.
Check to see the results you get are what you expect.

5.11.2 Convert Kilometres to Miles

The aim of this exercise is to write a program to convert a distance in Kilometres
into a distance in miles.

1. Take input from the user for a given distance in Kilometres. This can be done
using the input() function.

2. Convert the value returned by the input() function from a string into an
integer using the int() function.

3. Now convert this value into miles—this can be done by dividing the kilometres
by 0.6214

4. Print out a message telling the user what the kilometres are in miles.

64 5 Numbers, Booleans and None

Chapter 6
Flow of Control Using If Statements

6.1 Introduction

In this chapter we are going to look at the if statement in Python. This statement is
used to control the flow of execution within a program based on some condition.
These conditions represent some choice point that will be evaluated to True or
False. To perform this evaluation it is common to use a comparison operator (for
example to check to see if the temperature is greater than some threshold). In many
cases these comparisons need to take into account several values and in these
situations logical operators can be used to combine two or more comparison
expressions together.

This chapter first introduces comparison and logical operators before discussing
the if statement itself.

6.2 Comparison Operators

Before exploring if statements we need to discuss comparison operators. These
are operators that return Boolean values. They are key to the conditional elements
of flow of control statements such as if.

A comparison operator is an operator that performs some form of test and returns
True of False.

These are operators that we use in everyday life all the time. For example, do I
have enough money to buy lunch, or is this shoe in my size etc.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_6

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_6

In Python there are a range of comparison operators represented by typically one
or two characters. These are:

Operator Description Example

== Tests if two values are equal 3 == 3

!= Tests that two values are not equal to each other 2 != 3

< Tests to see if the left-hand value is less than the right-hand value 2 < 3

> Tests if the left-hand value is greater than the right-hand value 3 > 2

<= Tests if the left-hand value is less than or equal to the right-hand value 3 <= 4

>= Tests if the left-hand value is greater than or equal to the right-hand value 5 >= 4

6.3 Logical Operators

In addition to comparison operators, Python also has logical operators.
Logical operators can be used to combined Boolean expressions together.

Typically, they are used with comparison operators to create more complex con-
ditions. Again, we use these every day for example we might consider whether we
can afford an ice cream and whether we will be having our dinner soon etc.

There are three logical operators in Python these are listed below:

Operator Description Example

and Returns True if both left and right are true (3 < 4) and (5 > 4)

or Returns two if either the left or the right is truce (3 < 4) or (3 > 5)

not Returns true if the value being tested is False not 3 < 2

6.4 The If Statement

An if statement is used as a form of conditional programming; something you
probably do every day in the real world. That is, you need to decide whether you
are going to have tea or coffee or to decide if you will have toast or a muffin for
breakfast etc. In each of these cases you are making a choice, usually based on
some information such as I had coffee yesterday, so I will have tea today.

In Python such choices are represented programmatically by the if condition
statement.

In this construct if some condition is true some action is performed, optionally if
it is not true some other action may be performed instead.

66 6 Flow of Control Using If Statements

6.4.1 Working with an If Statement

In its most basic from, the if statement is

if <condition-evaluating-to-boolean>:
statement

Note that the condition must evaluate to True or False (or an equivalent
value—see later in this chapter). If the condition is True then we will execute the
indented statement.

Note that indentation, this is very important in Python; indeed, layout of the code
is very, very important in Python. Indentation is used to determine how one piece of
code should be associated with another piece of the code.

Let us look at a simple example,

num = int(input('Enter a number: '))
if num < 0:
 print(num, 'is negative')

In this example, the user has input a number; if it is less than zero a message
noting this will be printed to the user. If the number is positive; then nothing will be
output.

For example,

Enter a number: -1
-1 is negative

If we wish to execute multiple statements when our condition is True we can
indent several lines; in fact all lines indented to the same level after the if
statement will automatically be part of the if statement. For example;

num = int(input('Enter another number: '))
if num > 0:
 print(num, 'is positive')
 print(num, 'squared is ', num * num)

print('Bye')

If we now run this program and input 2 then we will see

Enter another number: 2
2 is positive
2 squared is 4
Bye

6.4 The If Statement 67

However, if we enter the value −1 then we get

Enter another number: -1
Bye

Note that neither of the indented lines was executed.
This is because the two indented lines are associated with the if statement and

will only be executed if the Boolean condition evaluates (returns) True. However,
the statement print('Bye') is not part of the if statement; it is merely the next
statement to executed after the if statement (and its associated print() state-
ments) have finished.

6.4.2 Else in an If Statement

We can also define an else part of an if statement; this is an optional element that
can be run if the conditional part of the if statement returns False. For example:

num = int(input('Enter yet another number: '))
if num < 0:
 print('Its negative')
else:
 print('Its not negative')

Now when this code is executed, if the number entered is less than zero then the
first print() statement will be run otherwise (else) the second print() state-
ment will be run. However, we are guaranteed that at least one (and at most one) of
the print() statements will execute.

For example, in run 1 if we enter the value 1:

Enter yet another number: 1
Its not negative

And in run 2 if we enter the value −1:

Enter yet another number: -1
Its negative

6.4.3 The Use of elif

In some cases there may be several conditions you want to test, with each condition
being tested if the previous one failed. This else-if scenario is supported in Python
by the elif element of an if statement.

68 6 Flow of Control Using If Statements

The elif element of an if statement follows the if part and comes before any
(optional) else part. It has the format:

elif <condition-evaluating-to-boolean>:
statement

For example

savings = float(input("Enter how much you have in savings: "))
if savings == 0:
 print("Sorry no savings")
elif savings < 500:
 print('Well done')
elif savings < 1000:
 print('Thats a tidy sum')
elif savings < 10000:
 print('Welcome Sir!')
else:
 print('Thank you')

If we run this:

Enter how much you have in savings: 500
Thats a tidy sum

Here we can see that the first if condition failed (as savings is not equal to 0).
However, the next elif also must have returned False as savings were greater
than 500. In fact it was the second elif statement that returned True and thus the
associated print('Thats a tidy sum') statement was executed. Having
executed this statement the if statement then terminated (the remaining elif and
else parts were ignored).

6.5 Nesting If Statements

It is possible to nest one if statement inside another. This term nesting indicates
that one if statement is located within part of the another if statement and can be
used to refine the conditional behaviour of the program.

An example is given below. Note that it allows some behaviour to be performed
before and after the nested if statement is executed/run. Also note that indentation is
key here as it is how Python works out whether the if statements are nested or not.

6.4 The If Statement 69

snowing = True
temp = -1
if temp < 0:
 print('It is freezing')
 if snowing:
 print('Put on boots')
 print('Time for Hot Chocolate')
print('Bye')

In this example, if the temperature if less than Zero then we will enter the if
block of code. If it is not less than zero we will skip the whole if statement and
jump to the print('Bye') statement which is after both If statements.

In this case the temperature is set to −1 and so we will enter the If statement. We
will then print out the 'It is freezing' string. At this point another if statement is
nested within the first if statement. A check will now be made to see if it is
snowing. Notice that snowing is already a Boolean value and so will be either
True or False and illustrates that a Boolean value on its own can be used here.

As it is snowing, we will print out 'Put on boots'.
However, the statement printing out 'Time for Hot Chocolate' is not part of the

nested if. It is part of the outer if (this is where indentation is important). If you
wanted it to only be printed out if it was snowing then it must be indented to the
same level as the first statement in the nested if block, for example:

snowing = True
temp = -1
if temp < 0:
 print('It is freezing')
 if snowing:
 print('Put on boots')
 print('Time for Hot Chocolate')
print('Bye')

This now changes the inner (or nested) if to have two print statements
associated with it.

This may seem subtle, but it is key to how Python uses layout to link together
individual statements.

6.6 If Expressions

An if expression is a short hand form of an if statement that returns a value. In
fact, the difference between an expression and a statement in a programming lan-
guage is just that; expressions return a value; statements do not.

70 6 Flow of Control Using If Statements

It is quite common to want to assign a specific value to a variable dependent on
some condition. For example, if we wish to decide if someone is a teenager or not
then we might check to see if they are over 12 and under 20. We could write this as:

age = 15
status = None
if (age > 12) and age < 20:
 status = 'teenager'
else:
 status = 'not teenager'
print(status)
If we run this, we get the string 'teenager' printed out.
However, this is quite long and it may not be obvious that the real intent of this

code was to assign an appropriate value to status.
An alternative is an if expression. The format of an if expression is

<result1> if <condition-is-met> else <result2>

That is the result returned from the if expression is the first value unless the
condition fails in which case the result returned will be the value after the else. It
may seem confusing at first, but it becomes easier when you see an example.

For example, using the if expression we can perform a test to determine the value
to assign to status and return it as the result of the if expression. For example:

status = ('teenager' if age > 12 and age < 20 else 'not
teenager')
print(status)

Again, the result printed out is 'teenager' however now the code is much more
concise, and it is clear that the purpose of the test is to determine the result to assign
to status.

6.7 A Note on True and False

Python is actually quite flexible when it comes to what actually is used to represent
True and False, in fact the following rules apply

• 0, '' (empty strings), None equate to False
• Non zero, non empty strings, any object equate to True.

However, we would recommend sticking to just True and False as it is often
a cleaner and safer approach.

6.6 If Expressions 71

6.8 Hints

One thing to be very careful of in Python is layout.
Unlike language such as Java and C# the layout of your program is part of your

program. It determines how statements are associated together and how flow of
control elements such as if statements effect which statements are executed.

Also, be careful with the if statement and its use of the ':' character. This
character is key in separating out the conditional part of the if statement from the
statements that will be executed depending upon whether the condition is True or
False.

6.9 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not
Boolean Operations.

• https://docs.python.org/3/library/stdtypes.html#comparisons Comparison
operators.

• https://docs.python.org/3/tutorial/controlflow.html the online Python flow of
control tutorial.

6.10 Exercises

There are three different exercises in this section, you can select which you are
interested in or do all three.

6.10.1 Check Input Is Positive or Negative

The aim of this exercise is to write a small program to test if an integer is positive or
negative.

Your program should:

1. Prompt the user to input a number (use the input() function). You can assume
that the input will be some sort of number.

2. Convert the string into an integer using the int() function.
3. Now check whether the integer is a positive number or a negative number.
4. You could also add a test to see if the number is Zero.

72 6 Flow of Control Using If Statements

https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not
https://docs.python.org/3/library/stdtypes.html#comparisons
https://docs.python.org/3/tutorial/controlflow.html

6.10.2 Test if a Number Is Odd or Even

The exercises requires you to write a program to take input from the user and
determine if the number is odd or even. Again you can assume that the user will
enter a valid integer number.

Print out a message to the user to let them know the result.
To test if a number is even you can use

(num % 2) == 0

Which will return True if the number is even (note the brackets are optional but
make it easier to read).

6.10.3 Kilometres to Miles Converter

In this exercise you should return to the kilometres to miles converter you wrote in
the last chapter.

We will add several new tests to your program:

1. Modify your program such that it verify that the user has entered a positive
distance (i.e. they cannot enter a negative number).

2. Now modify your program to verify that the input is a number; if it is not a
number then do nothing; otherwise convert the distance to miles.

To check to see if a string contains only digits use the method isnumeric()
for example '42'.isnumeric(); which returns True if the string only con-
tains numbers. Note this method only works for positive integers; but this is suf-
ficient for this example.

6.10 Exercises 73

Chapter 7
Iteration/Looping

7.1 Introduction

In this section we will look at the while loop and the for loop available in Python.
These loops are used to control the repeated execution of selected statements.

7.2 While Loop

The while loop exists in almost all programming languages and is used to iterative
(or repeat) one or more code statements as long as the test condition (expression) is
True. This iteration construct is usually used when the number of times we need to
repeat the block of code to execute is not known. For example, it may need to repeat
until some solution is found or the user enters a particular value.

The behaviour of the while loop is illustrated in below.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_7

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_7

The Python while loop has the basic form:

while <test-condition-is-true>:
 statement or statements

As shown both in the diagram and can be inferred from the code; while the test
condition/expression is True then the statement or block of statements in the
while loop will be executed.

Note that the test is performed before each iteration, including the first iteration;
therefore, if the condition fails the first time around the loop the statement or block
of statements may never be executed at all.

As with the if statement, indentation is key here as the statements included in
the while statement are determined by indentation. Each statement that is indented
to the same level after the while condition is part of the while loop.

However, as soon as a statement is no longer following the while block; then it
is no longer part of the while loop and its execution is no longer under the control
of the test-condition.

The following illustrates an example while loop in Python:

count = 0
print('Starting')
while count < 10:
 print(count, ' ', end='') # part of the while loop
 count += 1 # also part of the while loop
print() # not part of the while loop
print('Done')

In this example while some variable count is less than the value 10 the while
loop will continue to iterate (will be repeated). The while loop itself contains two
statements; one prints out the value of count variable while the other increments
count (remember count +=1 is equivalent to count = count + 1).

We have used the version of print() that does not print a carriage return when it
prints out a value (this is indicated by the end='' option passed to the print()
function).

The result of running this example is:

Starting
0 1 2 3 4 5 6 7 8 9
Done

As you can see the statements printing the starting and done messages are only
run once. However, the statement printing out the count variable is run 10 times
(printing out the values 0–9).

Once the value of count is equal to 10 then the loop finishes (or terminates).
Note that we needed to initialise the count variable before the loop. This is

because it needs to have a value for the first iteration of the while loop. That is

76 7 Iteration/Looping

before the while loop does anything the program needs to already know the first
value of count so that it can perform that very first test. This is a feature of the while
loops behaviour.

7.3 For Loop

In many cases we know how many times we want to iterative over one or more
statements (as indeed we did in the previous section). Although the while loop
can be used for such situations, the for loop is a far more concise way to do this. It
typically also clearer to another programmer that the loop must iterate for a specific
number of iterations.

The for loop is used to step a variable through a series of values until a given
test is met. The behaviour of the for loop is illustrated in below.

This flow chart shows that some sequence of values (for example all integer
values between 0 and 9) will be used to iterate over a block of code to process.
When the last item in the sequence has been reached, the loop will terminate.

Many languages have a for loop of the form:

for i = from 0 to 10
 statement or statements

In this case a variable 'i' would take the values 0, 1, 2, 3 etc. up to 10.
In Python the approach is slightly different as the values from 0 up to 10 are

represented by a range. This is actually a function that will generate the range of
values to be used as the sequence in the for loop. This is because the Python for
loop is very flexible and can loop over not only a range of integer values but also a
set of values held in data structures such as a list of integers or strings. We will

7.2 While Loop 77

return to this feature of the for loop when we look at collections/containers of data
in a later chapter.

The format of the Python for loop when using a range of values is

for <variable-name> in range(...):
 statement
 statement

An example is shown below which equates to the while loop we looked at
earlier:

Loop over a set of values in a range
print('Print out values in a range')
for i in range(0, 10):
 print(i, ' ', end='')
print()
print('Done')

When we run this code, the output is:

Print out values in a range
0 1 2 3 4 5 6 7 8 9
Done

As can be seen from the above; the end result is that we have generated a for
loop that produces the same set of values as the earlier while loop. However,

• the code is more concise,
• it is clear we are processing a range of values from 0 to 9 (note that it is up to but

not including the final value) and
• we did not need to define the loop variable first.

For these reasons for loops are more common in programs in general than while
loops.

One thing you might notice though is that in the while loop we are not
constrained to incrementing the count variable by one (we just happened to do
this). For example, we could have decided to increment count by 2 each time
round the loop (a very common idea). In fact, range allows us to do exactly this; a
third argument that can be provided to the range function is the value to increment
the loop variable by each time round the loop, for example:

Now use values in a range but increment by 2
print('Print out values in a range with an increment of 2')
for i in range(0, 10, 2):
 print(i, ' ', end='')
print()
print('Done')

78 7 Iteration/Looping

When we run this code, the output is

Print out values in a range with an increment of 2
0 2 4 6 8
Done

Thus the value of the loop variable has jumped by 2 starting at 0. Once its value
was 10 or more then the loop terminates. Of course, it is not only the value 2 we
could use; we could increment by any meaningful integer, 3, 4 or 5 etc.

One interesting variation on the for loop is the use of a wild card (a '_') instead
of a looping variable; this can be useful if you are only interested in looping a
certain number of times and not in the value of the loop counter itself, for example:

Now use an 'anonymous' loop variable
for _ in range(0,10):
 print('.', end='')
print()

In this case we are not interested in the values generated by the range per se only
in looping 10 times thus there is no benefit in recording the loop variable. The loop
variable is represented by the underbar character ('_').

Note that in actual fact this is a valid variable and can be referenced within the
loop; however by convention it is treated as being anonymous.

7.4 Break Loop Statement

Python allows programmers to decide whether they want to break out of a loop
early or not (whether we are using a for loop or a while loop). This is done using
the break statement.

The break statement allows a developer to alter the normal cycle of the loop
based on some criteria which may not be predictable in advance (for example it may
be based on some user input).

The break statement, when executed, will terminate the current loop and jump
the program to the first line after the loop. The following diagram shows how this
works for a for loop:

7.3 For Loop 79

Typically, a guard statement (if statement) is placed on the break so that the
break statement is conditionally applied when appropriate.

This is shown below for a simple application where the user is asked to enter a
number which may or may not be in the range defined by the for loop. If the
number is in the range, then we will loop until this value is reached and then break
the loop (that is terminate early without processing the rest of the values in the
loop):

print('Only print code if all iterations completed')
num = int(input('Enter a number to check for: '))
for i in range(0, 6):

if i == num:
break

 print(i, ' ', end='')
print('Done')

If we run this and enter the value 7 (which is outside of the range) then all the
values in the loop should be printed out:

Enter a number to check for: 7
0 1 2 3 4 5 Done

However, if we enter the value 3 then only the values 0, 1 and 2 will be printed
out before the loop breaks (terminates) early:

Enter a number to check for: 3
0 1 2 Done

Note that the string 'Done' is printed out in both cases as it is the first line after
the for loop that is not indented and is thus not part of the for loop.

80 7 Iteration/Looping

Note that the break statement can come anywhere within the block of code
associated with the loop construct (whether that is a for loop or a while loop).
This means that there can be statements before it and after it.

7.5 Continue Loop Statement

The continue statement also affects the flow of control within the looping
constructs for and while. However, it does not terminate the whole loop; rather it
only terminates the current iteration round the loop. This allows you to skip over
part of a loop’s iteration for a particular value, but then to continue with the
remaining values in the sequence.

A guard (if statement) can be used to determine when the continue state-
ment should be executed.

As with the break statement, the continue statement can come anywhere
within the body of the looping construct. This means that you can have some
statements that will be executed for every value in the sequence and some that are
only executed when the continue statement is not run.

This is shown below. In this program the continue statement is executed only for
odd numbers and thus the twoprint() statements are only run if the value ofi is even:

for i in range(0, 10):
 print(i, ' ', end='')

if i % 2 == 1:
continue

 print('hey its an even number')
 print('we love even numbers')
print('Done')

When we run this code we get

7.4 Break Loop Statement 81

0 hey its an even number
we love even numbers
1 2 hey its an even number
we love even numbers
3 4 hey its an even number
we love even numbers
5 6 hey its an even number
we love even numbers
7 8 hey its an even number
we love even numbers
9 Done

As you can see, we only print out the messages about a number being even when
the values are 0, 2, 4, 6 and 8.

7.6 For Loop with Else

A for loop can have an optional else block at the end of the loop. The else part
is executed if and only if all items in the sequence are processed. The for loop may
fail to process all elements in the loop if for some reason an error occurs in your
program (for example if you have a syntax error) or if you break the loop.

Here is an example of a for loop with an else part:

Only print code if all iterations completed over a list
print('Only print code if all iterations completed')
num = int(input('Enter a number to check for: '))
for i in range(0, 6):

if i == num:
break

 print(i, ' ', end='')
else:
 print()
 print('All iterations successful')

If we run this code and enter the integer value 7 as the number to check for; then
the else block executes as the if test within the for statement is never True
and thus the loop is never broken, and all values are processed:

Only print code if all iterations completed
Enter a number to check for: 7
0 1 2 3 4 5
All iterations successful

However, if we enter the value 3 as the number to check for; then the if
statement will be True when the loop variable 'i' has the value 3; thus only the
values 0, 1 and 2 will be processed by the loop. In this situation the else part will
not be executed because not all the values in the sequence were processed:

82 7 Iteration/Looping

Only print code if all iterations completed
Enter a number to check for: 3
0 1 2

7.7 A Note on Loop Variable Naming

Earlier in the book we said that variable names should be meaningful and that
names such as 'a' and 'b' were not in general a good idea. The one exception to this
rule relates to loop variable names used with for loops over ranges. It is very
common to find that these loop variables are called 'i', 'j' etc.

It is such a common convention that if a variable is called 'i' or 'j' people expect it
to be a loop variable. As such

• you should consider using these variable names in looping constructs,
• and avoid using them elsewhere.

But this does raise the question why 'i' and 'j'; the answer is that it all goes back
to a programming language called Fortran which was first developed in the 1950s.
In this programming language loop variables had to be called 'i' and 'j' etc. Fortran
was so ubiquitous for mathematical and scientific programming, where loops are
almost di rigour, that this has become the convention in other languages which do
not have this restriction.

7.8 Dice Roll Game

The following short program illustrates how a while loop can be used to control
the execution of the main body of code. In this game we will continue to roll a pair
of dice until the user indicates that they do not want to roll again (we use the
random module for this which is discussed in the next chapter). When this occurs
the while loop will terminate:

import random

MIN = 1
MAX = 6

roll_again = 'y'

while roll_again == 'y':
 print('Rolling the dices...')
 print('The values are....')
 dice1 = random.randint(MIN, MAX)
 print(dice1)
 dice2 = random.randint(MIN, MAX)
 print(dice2)
 roll_again = input('Roll the dices again? (y / n): ')

7.6 For Loop with Else 83

When we run this program the results of rolling two dice are shown. The
program will keep looping and printing out the two dice values until the user
indicates that they no longer want to roll the dice:

Rolling the dices...
The values are....
2
6
Roll the dices again? (y / n): y
Rolling the dices...
The values are....
4
1
Roll the dices again? (y / n): y
Rolling the dices...
The values are....
3
6
Roll the dices again? (y / n): n

7.9 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/tutorial/controlflow.html the online Python flow of
control tutorial.

7.10 Exercises

There are two exercises for this chapter. The first exercise will require a simple for
loop while the second is more complicated requiring nested for loops and a
break statement.

7.10.1 Calculate the Factorial of a Number

Write a program that can find the factorial of any given number. For example, find
the factorial of the number 5 (often written as 5!) which is 1 * 2 * 3 * 4 * 5 and
equals 120.

The factorial is not defined for negative numbers and the factorial of Zero is 1;
that is 0! = 1.

84 7 Iteration/Looping

https://docs.python.org/3/tutorial/controlflow.html

Your program should take as input an integer from the user (you can reuse your
logic from the last chapter to verify that they have entered a positive integer value
using isnumeric()).

You should

1. If the number is less than Zero return with an error message.
2. Check to see if the number is Zero—if it is then the answer is 1—print this out.
3. Otherwise use a loop to generate the result and print it out.

7.10.2 Print All the Prime Numbers in a Range

A Prime Number is a positive whole number, greater than 1, that has no other
divisors except the number 1 and the number itself.

That is, it can only be divided by itself and the number 1, for example the
numbers 2, 3, 5 and 7 are prime numbers as they cannot be divided by any other
whole number. However, the numbers 4 and 6 are not because they can both be
divided by the number 2 in addition the number 6 can also be divided by the
number 3.

You should write a program to calculate prime number starting from 1 up to the
value input by the user.

If the user inputs a number below 2, print an error message.
For any number greater than 2 loop for each integer from 2 to that number and

determine if it can be divided by another number (you will probably need two for
loops for this; one nested inside the other).

For each number that cannot be divided by any other number (that is its a prime
number) print it out.

7.10 Exercises 85

Chapter 8
Number Guessing Game

8.1 Introduction

In this chapter we are going to bring everything we have learned so far together to
create a simple number guessing game.

This will involve creating a new Python program, handling user input, using the
if statement as well as using looping constructs.

We will also, use an additional library or module, that is not by default available
by default to your program; this will be the random number generator module.

8.2 Setting Up the Program

We want to make sure that we don’t overwrite whatever you have done so far, and
we would like this Python program to be separate from your other work. As such
we will create a new Python file to hold this program. The first step will be to create
a new Python file. If you are using the PyCharm IDE you can do it using the
New>PythonFile menu option.

8.2.1 Add a Welcome Message

To make sure everything is working correctly we will add a simple print()
statement to the file so that we can test out running it.

You can add anything you like, including printing out 'Hello World', however
the example shown below shows a welcome message that can be used at the start of
the game in the PyCharm IDE:

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_8

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_8

8.2.2 Running the Program

We can now run our embryonic program. If you are using PyCharm then to do this
we can select the file in the left-hand view and use the right mouse menu to select
the 'Run' option:

When we do this the Python console will be opened at the bottom of the IDE and
the output displayed:

88 8 Number Guessing Game

From now on you can rerun the number_guess_game program merely by
clicking on the little green arrow at the top right-hand side of PyCharm (it allows
you to rerun the last program that PyCharm executed).

8.3 What Will the Program Do?

The aim of our number guess game is to guess the number that the program has
come up with.

The main flow of the program is shown in the following diagram:

8.2 Setting Up the Program 89

Essentially the program logic is

• The program randomly selects a number between 1 and 10.
• It will then ask the player to enter their guess.
• It will then check to see if that number is the same as the one the computer

randomly generated; if it is then the player has won.
• If the player’s guess is not the same, then it will check to see if the number is

higher or lower than the guess and tell the player.
• The player will have 4 goes to guess the number correctly; if they don’t guess

the number within this number of attempts, then they will be informed that they
have lost the game and will be told what the actual number was.

8.4 Creating the Game

8.4.1 Generate the Random Number

We will start off by looking at how we can generate a random number. Up to this
point we have only used the built-in functions that are provided by Python auto-
matically. In actual fact Python comes with very many modules provided by the
Python organisation itself, by third party vendors and by the open source (typically
free) software community.

The Python random module or library is one that is provided with Python as
part of the default environment; but the functions within it are not automatically
loaded or made available to the programmer. This is partly because there are so
many facilities available with Python that it could become overwhelming; so for the
most part Python only makes available by default the most commonly used facil-
ities. Programmers can then explicitly specify when they want to use some facilities
from one of the other libraries or modules.

The random module provides implementations of pseudo-random number
generators for use in application programs. These random number generators are
referred to as pseudo because it is very hard for a computer to truly generate a series
of random numbers; instead it does its best to mimic this using an algorithm; which
by its very nature will be based on some logic which will mean that it is not
impossible to predict the next number—hence it is not truly random. For our
purposes this is fine but there are applications, such as security and encryption,
where this can be a real problem.

To access the random module in Python you need to import it; this makes the
module visible in the rest of the Python file (in our case to our program). This is
done using

90 8 Number Guessing Game

import random
number_to_guess = random.randint(1,10)

Once we have imported it, we can use the functions within this module, such as
randint. This function returns a random integer between the first and second
arguments. In the above example it means that the random number generated will
be between 1 and 10 inclusive.

The variable number_to_guess will now hold an integer which the player of
the game must guess.

8.4.2 Obtain an Input from the User

We now need to obtain input from the user representing their guess. We have
already seen how to do this in previous chapters; we can use the input() function
which returns a string and then the integer function that will convert that string into
an integer (we will ignore error checking to make sure they have typed in a number
at this point). We can therefore write:

guess = int(input('Please guess a number between 1 and 10: '))

This will store the number they guessed into the variable guess.

8.4.3 Check to See If the Player Has Guessed the Number

We now need to check to see whether the player has guessed the correct number.
We could use an if statement for this, however we are going to want to repeat

this test until either they have guessed correctly or until they have run out of goes.
We will therefore use a while loop and check to see if their guess equals the

number to be guessed:

guess = int(input('Please guess a number between 1 and 10: '))
while number_to_guess != guess:

The loop above will be repeated if the number they entered did not match the
number to be guessed.

We can therefore print a message telling the player that their guess was wrong:

guess = int(input('Please guess a number between 1 and 10: '))
while number_to_guess != guess:

print('Sorry wrong number')

8.4 Creating the Game 91

Now we need the player to make another guess otherwise the program will never
terminate, so we can again prompt them to enter a number:

guess = int(input('Please guess a number between 1 and 10: '))
while number_to_guess != guess:

print('Sorry wrong number')
TBD ...
guess = int(input('Please guess again: '))

8.4.4 Check They Haven’t Exceeded Their Maximum
Number of Guess

We also said above that the player can’t play forever; they have to guess the correct
number within 4 goes. We therefore need to add some logic which will stop the
game once they exceed this number.

We will therefore need a variable to keep track of the number of attempts they
have made.

We should call this variable something meaningful so that we know what it
represents, for example we could call it count_number_of_tries and ini-
tialise it with the value 1:

count_number_of_tries = 1

This needs to happen before we enter the while loop.
Inside the while loop we need to do two things

• check to see if the number of tries has been exceeded,
• increment the number of tries if they are still allowed to play the game.

We will use an if statement to check to see if the number of tries has been met;
if it has we want to terminate the loop; the easiest way to this is via a break
statement.

if count_number_of_tries == 4:
break

If we don’t break out of the loop we can increment the count using the '+='
operator. We thus now have:

92 8 Number Guessing Game

count_number_of_tries = 1
guess = int(input('Please guess a number between 1 and 10: '))
while number_to_guess != guess:

print('Sorry wrong number')
if count_number_of_tries == 4:

 break
TBD ...
guess = int(input('Please guess again: '))
count_number_of_tries += 1

8.4.5 Notify the Player Whether Higher or Lower

We also said at the beginning that to make it easier for the player to guess the
number; we should indicate whether their guess was higher or lower than the actual
number. To do this we can again use the if statement; if the guess is lower we print
one message but if it was higher we print another.

At this point we have a choice regarding whether to have a separate if state-
ment to that used to decide if the maximum goes has been reached or to extend that
one with an elif. Each approach can work but the latter indicates that these
conditions are all related so that is the one we will use.

The while loop now looks like:

count_number_of_tries = 1
guess = int(input('Please guess a number between 1 and 10:
'))
while number_to_guess != guess:

print('Sorry wrong number')
if count_number_of_tries == 4:

 break
elif guess < number_to_guess:

 print('Your guess was lower than the number')
else:

 print('Your guess was higher than the number')
guess = int(input('Please guess again: '))
count_number_of_tries += 1

Notice that the if statement has a final else which indicates that the guess was
higher; this is fine as by this point it is the only option left.

8.4 Creating the Game 93

8.4.6 End of Game Status

We have now covered all the situations that can occur while the game is being
played; all that is left for us to do is to handle the end of game messages.

If the player has guessed the number correctly, we want to congratulate them; if
they did not guess the number, we want to let them know what the actual number
was. We will do this using another if statement which checks to see if the player
guessed the number of not. After this we will print an end of game message:

8.5 The Complete Listing

For ease of reference the complete listing is provided below:

print('Welcome to the number guess game')

Initialise the number to be guessed
number_to_guess = random.randint(1,10)

Initialise the number of tries the player has made
count_number_of_tries = 1

Obtain their initial guess
guess = int(input('Please guess a number between 1 and 10: '))
while number_to_guess != guess:
 print('Sorry wrong number')

Check to see they have not exceeded the maximum
 # number of attempts if so break out of loop otherwise

import random

)

94 8 Number Guessing Game

 # give the user come feedback
if count_number_of_tries == 4:

break
 elif guess < number_to_guess:
 print('Your guess was lower than the number')

else:
 print('Your guess was higher than the number')

Obtain their next guess and increment number of attempts
guess = int(input('Please guess again: '))

 count_number_of_tries += 1

Check to see if they did guess the correct number
if number_to_guess == guess:
 print('Well done you won!')
 print('You took', count_number_of_tries , 'goes to complete
the game')
else:
 print("Sorry - you loose")
 print('The number you needed to guess was',

 number_to_guess)

print('Game Over')

And a sample run of the program is shown here:

Welcome to the number guess game
Please guess a number between 1 and 10: 5
Sorry wrong number
Your guess was higher than the number
Please guess again: 3
Sorry wrong number
Your guess was lower than the number
Please guess again: 4
Well done you won!
You took 3 goes to complete the game
Game Over

8.5 The Complete Listing 95

8.6 Hints

8.6.1 Initialising Variables

In Python it is not necessary to declare a variable before you assign to it; however, it
is necessary to give it an initial value before you reference it. Here reference it
refers to obtaining the value held by a variable. For example

count = count + 1

what this says is obtain the value held by count, add 1 to it and then store the
new value back into count.

If count does not have a value before you try to do this then you are trying to
get hold of nothing and add 1 to it; which you can’t do and thus an error will be
generated in your program, such as:

NameError: name 'count_number_of_tries' is not defined

This is also true for

count += 1

Remember this is just a shorthand form of count = count + 1 and thus still
relies on count having a value before this statement.

This is why we needed to initialise the count_number_of_tries variable
before we used it.

8.6.2 Blank Lines Within a Block of Code

You may have noticed that we have used blank lines to group together certain lines
of code in this example. This is intended to make it easier to read the code and are
perfectly allowable in Python. Indeed, the Python layout guidelines encourage it.

It is also possible to have a blank line within an indented block of code; the
block of statements is not terminated until another line with valid Python on it is
encountered which is not indented to the same level.

96 8 Number Guessing Game

8.7 Exercises

For this chapter the exercises all relate to adding additional features to the game:

1. Provide a cheat mode, for example if the user enters −1 print out the number
they need to guess and then loop again. This does not count as one of their goes.

2. If their guess is within 1 of the actual number tell the player this.
3. At the end of the game, before printing 'Game Over', modify your program so

that it asks the user if they want to play again; if they say yes then restart the
whole thing.

8.7 Exercises 97

Chapter 9
Recursion

9.1 Introduction

Recursion is a very powerful way to implement solutions to a certain class of
problems. This class of problems is one where the overall solution to a problem can
be generated by breaking that overall problem down into smaller instances of the
same problem. The overall result is then generated by combining together the
results obtained for the smaller problems.

9.2 Recursive Behaviour

A recursive solution in a programming language such as Python is one in which a
function calls itself one or more times in order to solve a particular problem. In
many cases the result of calling itself is combined with the functions current state to
return a result.

In most cases the recursive call involves calling the function but with a smaller
problem to solve. For example, a function to traverse a tree data structure might call
itself passing in a sub-tree to process. Alternatively a function to generate a factorial
number might call itself passing in a smaller number to process etc.

The key here is that an overall problem can be solved by breaking it down into
smaller examples of the same problem.

Functions that solve problems by calling themselves are referred to as recursive
functions.

However, if such a function does not have a termination point then the function
will go on calling itself to infinity (at least in theory). In most languages such a
situation will (eventually) result in an error being generated.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_9

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_9

For a recursive function to the useful it must therefore have a termination
condition. That is a condition under which they do not call themselves and instead
just return (often with some result). The termination condition may be because:

• A solution has been found (some data of interest in a tree structure).
• The problem has become so small that it can be solved without further recursion.

This is often referred to as a base case. That is, a base case is a problem that can
be solved without further recursion.

• Some maximum level of recursion has been reached, possibly without a result
being found/generated.

We can therefore say that a recursive function is a function defined in terms of
itself via self-referential expressions. The function will continue to call itself with
smaller variations of the overall problem until some termination condition is met to
stop the recursion. All recursive functions thus share a common format; they have a
recursive part and a termination point which represents the base case part.

9.3 Benefits of Recursion

The key benefit of recursion is that some algorithms (solutions to computer prob-
lems) are expressed far more elegantly and with a great deal less code when
implemented recursively than when using an iterative approach.

This means that the resulting code can be easier to write and easier to read.
These twin ideas are important both for the developers who initially create the

software but also for those developers who must maintain that software (potentially
a significant amount of time later).

Code that is easier to write tends to be less error prone. Similarly code that is
easier to read tends to be easier to maintain, debug, modify and extend.

Recursion is also well suited to producing functional solutions to a problem as
by its very nature a recursive function relies on its inputs and outputs and does not
hold any hidden state. We will return to this in a later chapter on Functional
Programming.

9.4 Recursively Searching a Tree

As an example of a problem that is well suited to a recursive solution, we will
example how we might implement a program to traverse a binary tree data
structure.

A binary tree is a tree data structure made up of nodes in which each node has a
value, a left pointer and a right pointer.

100 9 Recursion

The root node is the top most node in the tree. This root node then references a
left and right subtree. This structure is repeated until a leaf node. A leaf node is a
node in which both the right and left pointers are empty (that is they have the value
None).

This is shown below for a simple binary tree:

Thus a binary tree is either empty (represented by a null pointer), or is made of a
single node, where the left and right pointers each point to a binary tree.

If we now want to find out if a particular value is in the tree then we can start at
the root node.

If the root node holds the value we print it; otherwise we can call the search
function on the child nodes of the current node. If the current node has no children
we just return without a result.

The pseudo code for this might look like:

search(value_to_find, current_node):
 If current_node.value == value_to_find:
 print(‘value found:’, current_node.value)
 Else If current.node.has_children:
 search(value, current_node.left)
 search(current_node.right)

This illustrates how easy it is to write a recursive function that can solve what
might at first appear to be a complex problem.

9.4 Recursively Searching a Tree 101

9.5 Recursion in Python

Most computer programs support the idea of recursion and Python is no exception.
In Python it is perfectly legal to have a function that calls itself (that is within the
body of the function a call is made to the same function). When the function is
executed it will therefore call itself.

In Python we can write a recursive function such as:

def recursive_function():
 print('calling recursive_function')
 recursive_function()

Here the function recursive_function() is defined such that it prints out
a message and then calls itself. Note that no special syntax is required for this as a
function does not need to have been completely defined before it is used.

Of course in the case of recursive_function() this will result in infinite
recursion as there is no termination condition. However, this will only become
apparent at runtime when Python will eventually generate an error:

Traceback (most recent call last):
 File "recursion_example.py", line 5, in <module>
RecursionError: maximum recursion depth exceeded while calling
a Python object

However, as already mentioned a recursive function should have a recursive part
and a termination or base case part. The termination condition is used to identify
when the base case applies. We should therefore add a condition to identify the
termination scenario and what the base case behaviour is. We will do this in the
following section as we look at how a factorial for a number can be generated
recursively.

9.6 Calculating Factorial Recursively

We have already seen how to create a program that can calculate the factorial of a
number using iteration as one of the exercises in the last chapter; now we will create
an alternative implementation that uses recursion instead.

Recall that the factorial of a number is the result of multiplying that number by each
of the integer values up to that number, for example, tofind the factorial of the number 5
(written as 5!) we can multiple 1 * 2 * 3 * 4 * 5which will generate the number 120.

We can create a recursive solution to the Factorial problem by defining a
function that takes an integer to generate the factorial number for. This function
will return the value 1 if the number passed in is 1—this is the base case.
Otherwise it will multiple the value passed into it with the result of calling itself
(the factorial() function) with n − 1 which is the recursive part.

102 9 Recursion

The function is given below:

def factorial(n):
if n == 1: # The termination condition

return 1 # The base case
else:

res = n * factorial(n-1) # The recursive call
return res

print(factorial(5))

The key to understanding this function is that it has:

1. A termination condition that is guaranteed to execute when the value of n is 1.
This is the base case; we cannot reduce the problem down any further as the
factorial of 1 is 1!

2. The function recursively calls itself but with n − 1 as the argument; this means
each time it calls itself the value of n is smaller. Thus the value returned from
this call is the result of a smaller computation.

To clarify how this works we can add some print statements (and a depth
indicator) to the function to indicate its behaviour:

def factorial(n, depth = 1):
if n == 1:

 print('\t' * depth, 'Returning 1')
return 1

else:
 print('\t'*depth,'Recursively calling factorial(',n-
1,')')
 result = n * factorial(n-1, depth + 1)
 print('\t' * depth, 'Returning:', result)

return result

print('Calling factorial(5)')
print(factorial(5))

When we run this version of the program then the output is:

Calling factorial(5)
 Recursively calling factorial(4)
 Recursively calling factorial(3)
 Recursively calling factorial(2)
 Recursively calling factorial(1)
 Returning 1

 Returning: 2
 Returning: 6
 Returning: 24
 Returning: 120
120

9.6 Calculating Factorial Recursively 103

Note that the depth parameter is used merely to provide some indentation to the
print statements.

From the output we can see that each call to the factorial program results in
a simpler calculation until the point where we are asking for the value of 1! which is
1. This is returned as the result of calling factorial(1). This result is multi-
plied with the value of n prior to that; which was 2. The causes factorial(2) to
return the value 2 and so on.

9.7 Disadvantages of Recursion

Although Recursion can be a very expressive way to define how a problem can be
solved, it is not as efficient as iteration. This is because a function call is more
expensive for Python to process that a for loop. In part this is because of the
infrastructure that goes along with a function call; that is the need to set up the stack
for each separate function invocation so that all local variables are independent of
any other call to that function. It is also related to associated unwinding the stack
when a function returns. However, it is also affected by the increasing amount of
memory each recursive call must use to store all the data on the stack.

In some languages optimisations are possible to improve the performance of a
recursive solution. One typical example relates to a type of recursion known as tail
recursion. A tail recursive solution is one in which the calculation is performed
before the recursive call. The result is then passed to the recursive step, which
results in the last statement in the function just calling the recursive function.

In such situations the recursive solution can be expressed (internally to the
computer system) as an iterative problem. That is the programmer write the solution
as a recursive algorithm but the interpreter or compiler converts it into an iterative
solution. This allows programmers to benefit from the expressive nature of recur-
sion while also benefiting from the performance of an iterative solution.

You might think that the factorial function presented earlier is tail recur-
sive; however it is not because the last statement in the function performs a cal-
culation that multiples n by the result of recursive call.

However, we can refactor the factorial function to be tail recursive. This
version of the factorial function passes the evolving result along via the
accumulator parameter. It is given for reference here:

def tail_factorial(n, accumulator=1):
if n == 0:

return accumulator
else:

return tail_factorial(n - 1, accumulator * n)

print(tail_factorial(5))

104 9 Recursion

However, it should be noted that Python currently does not perform tail recur-
sion optimisation; so this is a purely a theoretical exercise.

9.8 Online Resources

The following provides some references on recursion available on line:

• https://en.wikipedia.org/wiki/Recursion_(computer_science) Provides wikipe-
dias introduction to recursion.

• https://www.sparknotes.com/cs/recursion/whatisrecursion/section1/ provides an
introduction to the concept of recursion.

9.9 Exercises

In this set of exercises you will get the chance to explore how to solve problems
using recursion in Python.

1. Write a program to determine if a given number is a Prime Number or not. Use
recursion to implement the solution. The following code snippet illustrates how
this might work:

print('is_prime(3):', is_prime(3)) # True
print('is_prime(7):', is_prime(7)) # True
print('is_prime(9):', is_prime(9)) # False
print('is_prime(31):', is_prime(31)) # True

2. Write a function which implements Pascal’s triangle for a specified number of
rows. Pascals triangle is a triangle of the binomial coefficients. The values held
in the triangle are generated as follows: In row 0 (the topmost row), there is a
unique nonzero entry 1. Each entry of each subsequent row is constructed by
adding the number above and to the left with the number above and to the right,
treating blank entries as 0. For example, the initial number in the first (or any
other) row is 1 (the sum of 0 and 1), whereas the numbers 1 and 3 in the third
row are added together to generate the number 4 in the fourth row. An example
of Pascals triangle for 4 rows is given below:

9.7 Disadvantages of Recursion 105

https://en.wikipedia.org/wiki/Recursion_(computer_science
https://www.sparknotes.com/cs/recursion/whatisrecursion/section1/

For example, your function might be called pascals_traingle() in which
case the following application illustrates how you might use it:

triangle = pascals_triangle(5)
for row in triangle:
 print(row)

The output from this might be:

[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]

106 9 Recursion

Chapter 10
Introduction to Structured Analysis

10.1 Introduction

In the preceding chapters what we have seen is typical of the procedural approach to
programming. In the next chapter we will begin to explore the definition of func-
tions which allow a more modular style of programming.

In this chapter we will introduce an approach to the analysis and design of
software systems called Structured Analysis/Design. Within this area there are
many specific and well documented methods including SSADM (Structured
Systems Analysis and Design Method) and the Yourden structured method.
However, we will not focus on any one specific approach; instead we will outline
the key ideas and the two basic elements of most Structured Analysis methods;
Functional Decomposition and Data Flow Analysis. We will then present
Flowcharts for designing algorithms.

10.2 Structured Analysis and Function Identification

The Structured Analysis methods typically employ a process driven approach (with
a set of prescribed steps or stages) which in one way or another consider what the
inputs and outputs of the system are and how those inputs are transformed into the
outputs. This transformation involves the application of one or more functions. The
steps involved in Structured Analysis identify these functions and will typically
iteratively break them down into smaller and smaller functions until an appropriate
level of detail has been reached. This process is known as Functional
Decomposition.

Although simple Python programs may only contain a sequence of statements
and expressions; any program of a significant size will need to be structured such
that it can be:

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_10

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_10

• understood easily by other developers,
• tested to ensure that it does what is intended,
• maintained as new and existing requirements evolve,
• debugged to resolve unexpected or undesirable behaviour.

Given these requirements it is common to want to organise your Python program
in terms of functions and sub functions.

Functional Decomposition supports the analysis and identification of these
functions.

10.3 Functional Decomposition

Functional Decomposition is one way in which a system can be broken down into
its constituent parts. For example, for a computer payroll system to calculate how
much an hourly paid employee should receive it might be necessary to:

1. Load the employee’s details from some form of permanent storage (such as a file
or a database).

2. Load how many hours the employee has worked for that week (possibly from
another system that records the number of hours worked).

3. Multiple the hours worked by the employee’s hourly rate.
4. Record how much the employee is to be paid in a payroll database or file.
5. Print out the employee’s pay slip.
6. Transfer the appropriate funds from the company’s bank account to the

employees bank account.
7. Record in the payroll database the everything has been completed.

Each of the above steps could represent a function performed by the system.
These top level functions could themselves be broken down into lower level

functions. For example, printing out the employees payroll slip may involve
printing their name and address in a particular format, printing the employee
number, social security number etc. As well as printing historical information such
as how much they have been paid in the current financial year, how much tax they
have paid etc. All in addition to printing the actual amount they are being paid.

This process of breaking down higher level functions into lower level functions
helps with:

• testing the system (functions can be tested in isolation),
• understanding the system as the organisation of the functions can give meaning

to the code, as well as allowing each function to be understood in isolation from
the rest of the system,

• maintaining the system as only those functions that need to be changed may be
affected by new or modified requirements,

108 10 Introduction to Structured Analysis

• debugging the system as issues can be isolated to specific functions which can
be examined independently of the rest of the application.

It is also known as a top-down refinement approach. The term top-
down refinement (also known as stepwise design) highlights the idea that we are
breaking down a system into the sub-systems that make it up.

It is common to represent the functions identified in the form of a tree illustrating
the relationships between the higher level functions and lower level functions. This
is illustrated below:

This diagram illustrates how a credit card approval process can be broken down
into sub functions.

10.3.1 Functional Decomposition Terminology

The key terms used within Functional Decomposition are:

• Function. This is a task that is performed by a device, system or process.
• Decomposition. This is the process by which higher level functions are broken

down into lower level functions where each function represents part of the
functionality of the higher level function.

• Higher Level Function. This is a function that has one or more sub functions.
This higher level function depends on the functionality of the lower level
functions for its behaviour.

• Sub Function. This is a function that provides some element of the behaviour of
a higher level function. A sub function can also be broken down into its own sub
functions in a hierarchical manner. In the above diagram the Review for
Compliance function is both a sub function and has its own sub functions.

10.3 Functional Decomposition 109

• Basic Function. A basic function is a function that has no smaller sub functions.
The Perform Credit Check and Review Against internal Rules functions are both
Basic Functions.

10.3.2 Functional Decomposition Process

At a very high level, Functional Decomposition consists of a series of steps such as
those outlined below:

1. Find/Identify the inputs and outputs of the system.
2. Define how the inputs are converted to the outputs. This will help identify the

top most, high level function(s).
3. Look at the current function(s) and try to break them down into a list of sub

functions. Identify what each sub function should do and what its inputs and
outputs are.

4. Repeat step 2 for each function identified until the functions identified can’t or
should not be decomposed further.

5. Draw a diagram of the function hierarchy you have created. Viewing the
functions and their relationships is a very useful thing to do as it allows
developers to visualise the system functionally. There are many CASE
(Computer Aided Software Engineering) tools that help with this but any
drawing tool (such as Visio) can be used.

6. Examine the diagram for any repeating functions. That is, functions that do the
same thing but appear in different places in the design. These are probably more
generic functions that can be reused. Also examine the diagram to see if you can
identify any missing functions.

7. Refine/Design the interfaces between one function and another. That is, what
data/information is passed to and from a function to a sub function as well as
between functions.

10.3.3 Calculator Functional Decomposition Example

As an example of Functional Decomposition let us consider a simple calculator
program.

We want this program to be able to perform a set of mathematical operations on
two numbers, such as add, subtract, multiple and divide. We might therefore draw a
Functional Decomposition Diagram (or FDD) such as:

110 10 Introduction to Structured Analysis

This illustrates that the Calculator function can be decomposed into the add,
subtract multiply and Divide functions.

We might then identify the need to enter the two numbers to be operated on. This
would result in one or more new functions being added:

We might also identify the need to determine which numerical operation should
be performed based on user input. This function might sit above the numerical
functions or along side them. This is in fact an example of a design decision that the
designer/developer must make based on their understanding of the problem and
how the software will be developed/tested/used etc.

In the following version of the Functional Decomposition Diagram the operation
selection function is placed at the same level as the numerical operations as it
provides information back to the top level function.

10.3 Functional Decomposition 111

10.4 Functional Flow

Although the decomposition hierarchy presented in the Functional Decomposition
Diagram illustrates the functions and their hierarchical relationships; it does not
capture how the data flows between the functions or the order in which the func-
tions are invoked.

There are several approaches to describing the interactions between the functions
identified by Functional Decomposition including the use of pseudo code, Data
Flow Diagrams and Sequence diagrams:

• Pseudo Code. This is a form of structured english that is not tied to any
particular programming language but which can be used to express simple ideas
including conditional choices (similar to if statements) and iteration (as typified
by looping constructs). However, as it is a pseudo language, developers are not
tied to a specific syntax and can include functions without the need to define
those functions in detail.

• Data Flow Diagrams. These diagrams are used to chart the inputs, processes,
and outputs of the functions in a structured graphical form. A data-flow diagram
typically has no control flow, there are no decision rules and no loops. For each
data flow, there must be at least one input and one end point. Each process
(function) can be refined by another lower-level data-flow diagram, which
subdivides this process into sub-processes.

• Sequence Diagrams. These are used to represent interactions between different
entities (or objects) in sequence. The functions invoked are represented as being
called from one entity to another. Sequence diagrams are more typically used
with Object Oriented systems.

10.5 Data Flow Diagrams

A Data Flow Diagram consists of a set of inputs and outputs, processes (functions),
flows, data stores (also known as warehouses) and terminators.

• Process. This is the process (or function or transformation) that converts inputs
into outputs. The name of the process should be descriptive indicating what it
does.

• Data Flow. The flow indicates the transfer of data/information from one element
to another (that is a flow has a direction). The flow should have a name that
suggests what information/data is being exchanged. Flows link processes, data
stores and terminators.

• Data Store/Warehouse. A data store (which may be something such as a file,
folder, database, or other repository of data) is used to store data for later use.
The name of the data store is a plural noun (e.g. employees). The flow from the
data store usually represents the reading of the data stored in the data store, and

112 10 Introduction to Structured Analysis

the flow to the waredata storehouse usually expresses data entry or updating
(sometimes also deleting data).

• Terminator. The Terminator represents an external entity (to the system) that
communicates with the system. Examples of entities might be human users or
other systems etc.

An example of a Data Flow Diagram is given below using the functions iden-
tified for the calculator:

In this diagram the hierarchy of DFDs is indicated by the levels which expand on
how the function in the previous level is implemented by the functions at the next
level. This DFD also only presents the data flow for the situation where the user
selects the add function as the numerical operation to apply.

10.6 Flowcharts

A flowchart is a graphical representation of an algorithm, workflow or process for a
given problem.

Flowcharts are used in the analysis, design and documentation of software
systems. As with other forms of notation (such as DFDs) Flowcharts help designers
and developers to visualise the steps involved in a solution and thus aid in
understanding the processes and algorithms involved.

The steps in the algorithm are represented as various types of boxes. The
ordering of the steps is indicated by arrows between the boxes. The flow of control
is represented by decision boxes.

10.5 Data Flow Diagrams 113

There are a number of common notations used with Flowcharts and most of
those notations use the following symbols:

The meaning of these symbols is given below:

• Terminal. This symbol is used to indicate the start or end of a program or
subprocess. They usually contain the words ‘Start’, ‘End’ or ‘Stop’ or a phrase
indicating the start or end of some process such as ‘Starting Print Run’.

• Process. This symbol represents one or more operations (or programming
statements/expressions) that in some way apply behaviour or change the state of
the system. For example they may add two numbers together, run some form of
calculation or change a boolean flag etc.

• Decision. This represents a decision point in the algorithm; that is it represents a
decision point which will alter the flow of the program (typically between two
different paths). The decision point is often represented as a question with a
‘yes’/‘no’ response and this is indicated on the flow chart by the use of ‘yes’ (or
‘y’) and ‘no’ (or ‘n’) labels on the flow chart. In Python this decision point may
be implemented using an if statement.

• Input/Output. This box indicates the input or output of data from the algorithm.
This might represent obtaining input data from the user or printing out results to
the user.

• Flow. These arrows are used to represent the algorithms order of execution of
the boxes.

• Predefined Process. This represents a process that has been defined elsewhere.
• Stored Data. Indicates that data is stored in some form of persistent storage

system.
• Off Page Connector. A labelled connector for use when the target is on another

page (another flowchart).

114 10 Introduction to Structured Analysis

Using the above symbols we can create a Flowchart for our simple integer
calculator program:

The above flowchart shows the basic operation of the calculator; the user selects
which operation to perform, enters the two numbers and then depending upon the
operation the selected operation is performed. The result is then printed out.

10.7 Data Dictionary

Another element commonly associated with Structured Analysis/Design is the Data
Dictionary. The Data Dictionary is a structured repository of data elements in the
system. It stores the descriptions of all Data Flow Diagram data elements. That is it
records details and definitions of data flows, data stores, data stored in data stores,
and the processes. The format used for a data dictionary varies from method to
method and project to project. It can be as simple as an Excel spreadsheet to an
enterprise wide software system such as Semanta (https://www.semantacorp.com/
data-dictionary).

10.6 Flowcharts 115

https://www.semantacorp.com/data-dictionary
https://www.semantacorp.com/data-dictionary

10.8 Online Resources

There are many online resources available that discuss functional decomposition,
both from a theoretical a practical Python oriented, point of view including:

• https://en.wikipedia.org/wiki/Structured_analysis Wikipedia Structured
Analysis Page.

• https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design Wikipedia
page on Top Down and Bottom Up design.

• https://en.wikipedia.org/wiki/Edward_Yourdon#Yourdon_Structured_Method
Wikipedia page on the Yourden method.

• https://en.wikipedia.org/wiki/Structured_systems_analysis_and_design_method
Wikipedia page on SSADM.

• https://en.wikipedia.org/wiki/Functional_decomposition The wikipedia page on
Functional Decomposition.

• https://docs.python.org/3/howto/functional.html The Python standard docu-
mentation on functional decomposition.

• https://en.wikipedia.org/wiki/Data-flow_diagram Wikipedia page on Data Flow
Diagrams (DFDs).

• https://en.wikipedia.org/wiki/Sequence_diagram Wikipedia page on Sequence
Diagrams.

• https://en.wikipedia.org/wiki/Data_dictionary Wikipedia page on Data
Dictionaries.

• https://en.wikipedia.org/wiki/Flowchart Wikipedia Flowchart page.

116 10 Introduction to Structured Analysis

https://en.wikipedia.org/wiki/Structured_analysis
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
https://en.wikipedia.org/wiki/Edward_Yourdon#Yourdon_Structured_Method
https://en.wikipedia.org/wiki/Structured_systems_analysis_and_design_method
https://en.wikipedia.org/wiki/Functional_decomposition
https://docs.python.org/3/howto/functional.html
https://en.wikipedia.org/wiki/Data-flow_diagram
https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Data_dictionary
https://en.wikipedia.org/wiki/Flowchart

Chapter 11
Functions in Python

11.1 Introduction

As discussed in the last chapter; when you build an application of any size you will
want to break it down into more manageable units; these units can then be worked
on separately, tested and maintained separately. One way in which these units can
be defined is as Python functions.

This chapter will introduce Python functions, how they are defined, how they
can be referenced and executed. It considers how parameters work in Python
functions and how values can be returned from functions. It also introduces lambda
or anonymous functions.

11.2 What Are Functions?

In Python functions are groups of related statements that can be called together, that
typically perform a specific task, and which may or may not take a set of parameters
or return a value.

Functions can be defined in one place and called or invoked in another. This
helps to make code more modular and easier to understand.

It also means that the same function can be called multiple times or in multiple
locations. This help to ensure that although a piece of functionality is used in
multiple places; it is only defined once and only needs to be maintained and tested
in one location.

The original version of this chapter was revised: text has been replaced. The correction to this
chapter is available at https://doi.org/10.1007/978-3-030-20290-3_38

© Springer Nature Switzerland AG 2019, corrected publication 2020
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_11

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_11

11.3 How Functions Work

We have said what they are and a little bit about why they might be good but not
really how they work.

When a function is called (or invoked) the flow of control a program jumps from
where the function was called to the point where the function was defined. The
body of the function is then executed before control returns back to where it was
called from.

As part of this process, all the values that were in place when the function was
called, are stored away (on something called the stack) so that if the function
defines its own versions, they do not overwrite each other.

The invocation of a function illustrated below:

Each time the call is made to function_name() the program flow jumps to
the body of the function and executes the statements there. Once the function
finishes it returns to the point at which the function was called.

In the above this happens twice as the function is called at two separate points in
the program.

11.4 Types of Functions

Technically speaking there are two types of functions in Python; built-in functions
and user-defined functions.

Built-in functions are those provided by the language and we have seen several
of these already. For example, both print() and input() are built-in functions.
We did not need to define them ourselves as they are provided by Python.

118 11 Functions in Python

In contrast user-defined functions are those written by developers. We will be
defining user-defined functions in the rest of this chapter and it is likely that in
many cases, most of the programs that you will write will include user-defined
functions of one sort or another.

11.5 Defining Functions

The basic syntax of a function is illustrated below:

This illustrates several things:

1. All (named) functions are defined using the keyword def; this indicates the start
of a function definition. A keyword is a part of the syntax of the Python
language and cannot be redefined and is not a function.

2. A function can have a name which uniquely identifies it; you can also have
anonymous functions, but we will leave those until later in this chapter.

3. The naming conventions that we have been adopting for variables also applies to
functions, they are all lower case with the different elements of the function
name separated by an '_'.

4. A function can (optionally) have a list of parameters which allow data to be
passed into the function. These are optional as not all functions need to be
supplied with parameters.

5. A colon is used to mark the end of the function header and the start of the
function body. The function header defines the signature of the function (what its
called and the parameters it takes). The function body defines what the function
does.

6. An optional documentation string (the docstring) can be provided that
describes what the function does. We typically use the triple double quote string
format as this allows the documentation string to go over multiple lines if
required.

7. One or more Python statements make up the function body. These are indented
relative to the function definition. All lines that are indented are part of the
function until a line which is intended at the same level as the def line.

8. It is common to use 4 spaces (not a tab) to determine how much to indent the
body of a function by.

def function_name(parameter list):
"""docstring"""
statement
statement(s)

11.4 Types of Functions 119

11.5.1 An Example Function

The following is one of the simplest functions you can write; it takes no parameters
and has only a single statement that prints out the message 'Hello World':

This function is called print_msg and when called (also known as invoked) it
will run the body of the function which will print out the string, for example

Will generate the output

Be careful to include the round brackets () when you call the function. This is
because if you just use the function’s name then you are merely referring to the
location in memory where the function is stored, and you are not invoking it.

We could modify the function to make it a little more general and reusable by
providing a parameter. This parameter could be used to supply the message to be
printed out, for example:

Now the print_my_msg function takes a single parameter and this parameter
becomes a variable which is available within the body of the function. However,
this parameter only exists within the body of the function; it is not available outside
of the function.

This now means that we can call the print_my_msg function with a variety of
different messages:

def print_msg():
print('Hello World!')

print_msg()

Hello World!

def print_my_msg(msg):
print(msg)

print_my_msg('Hello World')
print_my_msg('Good day')
print_my_msg('Welcome')
print_my_msg('Ola')

120 11 Functions in Python

The output from calling this function with each of these strings being supplied as
the parameter is:

11.6 Returning Values from Functions

It is very common to want to return a value from a function. In Python this can be
done using the return statement. Whenever a return statement is encountered
within a function then that function will terminate and return any values following
the return keyword.

This means that if a value is provided, then it will be made available to any
calling code.

For example, the following defines a simple function that squares whatever value
has been passed to it:

When we call this function, it will multiple whatever it is given by itself and then
return that value. The returned value can then be used at the point that the function
was invoked, for example:

When this code is run, we get:

Hello World
Good day
Welcome
Ola

def square(n):
return n * n

Store result from square in a variable
result = square(4)
print(result)
Send the result from square immediately to another function
print(square(5))
Use the result returned from square in a conditional
expression
if square(3) < 15:

print(' Still less than 15 ')

11.5 Defining Functions 121

It is also possible to return multiple values from a function, for example in this
swap function the order in which the parameters are supplied is swapped when
they are returned:

We can then assign the values returned to variables at the point when the
function is called:

Which produces

In actual fact the result returned from the swap function is what is called a tuple
which is a simple way to grouping data together. This means that we could also
have written:

Which would have printed the tuple out:

We will look at tuples more when we consider collections of data.

16
25
Still less than 15

def swap(a, b):
return b, a

a = 2
b = 3
x, y = swap(a, b)
print(x, ',', y)

3 , 2

z = swap(a, b)
print(z)

(3, 2)

122 11 Functions in Python

11.7 Docstring

So far our example functions have not included any documentation strings (the
docstring). This is because the docstring is optional and the functions we have
written have been very simple.

However, as functions become more complex and may have multiple parameters
the documentation provided can become more important.

The docstring allows the function to provide some guidance on what is expected
in terms of the data passed into the parameters, potentially what will happen if the
data is incorrect,as well as what the purpose of the function is in the first place.

In the following example, the docstring is being used to explain the behaviour of
the function and how the parameter is used.

When used this method will guarantee that a valid integer will be returned to the
calling code:

An example of what happens when this is run is given below:

def get_integer_input(message):
"""
This function will display the message to the user
and request that they input an integer.

If the user enters something that is not a number
then the input will be rejected
and an error message will be displayed.

The user will then be asked to try again."""

value_as_string = input(message)
while not value_as_string.isnumeric():

print('The input must be an integer')
value_as_string = input(message)
return int(value_as_string)

age = get_integer_input('Please input your age: ')
print('age is', age)

Please input your age: John
The input must be an integer
Please input your age: 21
age is 21

11.7 Docstring 123

The docstring can be read directly from the code but is also available to IDEs
such as PyCharm so that they can provide information about the function. It is even
available to the programmer via a very special property of the function called
__doc__ that is accessible via the name of the function using the dot notation:

Which generates

11.8 Function Parameters

Before we go any further it is worth clarifying some terminology associated with
passing data into functions. This terminology relates to the parameters defined as
part of the function header and the data passed into the function via these
parameters:

• A parameter is a variable defined as part of the function header and is used to
make data available within the function itself.

• An argument is the actual value or data passed into the function when it is
called. The data will be held within the parameters.

Unfortunately many developers use these terms interchangeably but it is worth
being clear on the distinction.

11.8.1 Multiple Parameter Functions

So far the functions we have defined have only had zero or one parameters;
however that was just a choice. We could easily have defined a function which
defined two or more parameters. In these situations, the parameter list contains a list
of parameter names separated by a comma.

print(get_integer_input.__doc__)

This function will display the message to the user
and request that they input an integer.

If the user enters something that is not a number
then the input will be rejected
and an error message will be displayed.

The user will then be asked to try again.

124 11 Functions in Python

For example

Here the greeter function takes defines two parameters; name and message.
These parameters (which are local to the function and cannot be seen outside of the
function) are then used within the body of the function.

The output is

You can have any number of parameters defined in a function (prior to Python
3.7 there was a limit of 256 parameters—although if you have this many then
probably you have a major problem with the design of your function—however this
limit has now gone).

11.8.2 Default Parameter Values

Once you have one or more parameters you may want to provide default values for
some or all of those parameters; particular for ones which might not be used in most
cases.

This can be done very easily in Python; all that is required is that the default
value must be declared in the function header along with the parameter name.

If a value is supplied for the parameter, then it will override the default. If no
value is supplied when the function is called, then the default will be used.

For example, we can modify the greeter() function from the previous sec-
tion to provide a default message such as 'Live Long and Prosper'.

Now we can call the greeter() function with one or two arguments.
When we run this example, we will get:

def greeter(name, message):
print('Welcome', name, '-', message)

greeter('Eloise', 'Hope you like Rugby’)

Welcome Eloise - Hope you like Rugby

def greeter(name, message = 'Live Long and Prosper'):
print('Welcome', name, '-', message)

greeter('Eloise')
greeter('Eloise', 'Hope you like Python')

11.8 Function Parameters 125

As you can see from this in the first example (where only one argument was
provided) the default message was used. However, in the second example where a
message was provided, along with the name, then that message was used instead of
the default.

Note we can use the terms mandatory and optional for the parameters in
greeter(). In this case

• name is a mandatory field/parameter
• message is an optional field/parameter (as it has a default value).

One subtle point to note is that any number of parameters in a function’s
parameter list can have a default value; however once one parameter has a default
value all remaining parameters to the right of that parameter must also have default
values. For example, we could not define the greeter function as

As this would generate an error indicating that name must have a default value
as it comes after (to the right) of a parameter with a default value.

11.8.3 Named Arguments

So far we have relied on the position of a value to be used to determine which
parameter that value is assigned to. In many cases this is the simplest and cleanest
option.

However, if a function has several parameters, some of which have default
values, it may become impossible to rely on using the position of a value to ensure
it is given to the correct parameter (because we may want to use some of the default
values instead).

For example, let us assume we have a function with four parameters

Welcome Eloise - Live Long and Prosper
Welcome Eloise - Hope you like Python

def greeter(message = 'Live Long and Prosper', name):
print('Welcome', name, '-', message)

def greeter(name,
title = 'Dr',
prompt = 'Welcome',
message = 'Live Long and Prosper'):

print(prompt, title, name, '-', message)

126 11 Functions in Python

This now raises the question how do we provide the name and the message
arguments when we would like to have the default title and prompt?

The answer is to use named arguments (or keyword arguments). In this approach
we provide the name of the parameter we want an argument/value to be assigned to;
position is no longer relevant. For example:

In this example we are using the default values for title and prompt and
have changed the order of message and name. This is completely legal and
results in the following output:

We can actually mix positional and named arguments in Python, for example:
Here 'Lloyd' is bound to the name parameter as it is the first parameter, but 'We

like Python' is bound to message parameter as it is a named argument.

However, you cannot place positional arguments after a named argument, so we
cannot write:

As this will result in Python generating an error.

11.8.4 Arbitrary Arguments

In some cases, you do not know how many arguments will be supplied when a
function is called. Python allows you to pass an arbitrary number of arguments into
a function and then process those arguments inside the function.

To define a parameter list as being of arbitrary length, a parameter is marked
with an asterisk (*). For example:

greeter(message = 'We like Python', name = 'Lloyd')

Welcome Dr Lloyd - We like Python

greeter('Lloyd', message = 'We like Python')

greeter(name='John', 'We like Python')

def greeter(*args):
for name in args:

 print('Welcome', name)

greeter('John', 'Denise', 'Phoebe', 'Adam', 'Gryff', 'Jasmine')

11.8 Function Parameters 127

This generates

Note that this is another use of the for loop; but this time it is a sequence of
strings rather than a sequence of integers that is being used.

11.8.5 Positional and Keyword Arguments

Some functions in Python are defined such that the arguments to the methods can
either be provided using a variable number of positional or keyword arguments.
Such functions have two arguments *args and **kwargs (for positional argu-
ments and keyword arguments).

They are useful if you do not know exactly how many of either position or
keyword arguments are going to be provided.

For example, the function my_function takes both a variable number of
positional and keyword arguments:

This can be called with any number of arguments of either type:

Welcome John
Welcome Denise
Welcome Phoebe
Welcome Adam
Welcome Gryff
Welcome Jasmine

def my_function(*args, **kwargs):
for arg in args:

print('arg:', arg)
for key in kwargs.keys():

print('key:', key, 'has value: ', kwargs[key])

my_function('John', 'Denise', daughter='Phoebe', son='Adam')
print('-' * 50)
my_function('Paul', 'Fiona', son_number_one='Andrew',
son_number_two='James', daughter='Joselyn')

128 11 Functions in Python

Which produces the output:

Also note that the keywords used for the arguments are not fixed.
You can also define methods that only use one of the *args and **kwargs

depending on your requirements (as we saw with the greeter() function above),
for example:

In this case, the named function only supports the provision of keyword
arguments. Its output in the above case is:

In general, these facilities are most likely to be used by those creating libraries as
they allow for great flexibility in how the library can be used.

11.9 Anonymous Functions

All the functions we have defined in this chapter have had a name that they can be
referenced by, such as greeter or get_integer_input etc. This means that
we can reference and reuse these functions as many times as we like.

arg: John
arg: Denise
key: son has value: Adam
key: daughter has value: Phoebe
--
arg: Paul
arg: Fiona
key: son_number_one has value: Andrew
key: son_number_two has value: James
key: daughter has value: Joselyn

def named(**kwargs):
for key in kwargs.keys():

print('arg:', key, 'has value:', kwargs[key])

named(a=1, b=2, c=3)

arg: a has value: 1
arg: c has value: 3
arg: b has value: 2

11.8 Function Parameters 129

However, in some cases we want to create a function and use it only once; giving
it a name for this one time can pollute the namespace of the program (i.e. there are
lots of names around) and also means that someone might call it when we don’t
expect them to.

Python therefore another option when defining a function; it is possible to define
an anonymous function. In Python an anonymous function is one that does not have
a name and can only be used at the point that it is defined.

Anonymous functions are defined using the keyword lambda and for this
reason they are also known as lambda functions.

The syntax used to define an anonymous function is:

Anonymous functions can have any number of arguments but only one
expression (that is a statement that returns a value) as their body. The expression is
executed, and the value generated from it is returned as the result of the function.

As an example, let us define an anonymous function that will square a number:

In this example the lambda definition indicates that there is one parameter to the
anonymous function ('i') and that the body of the function is defined after the colon
':' which multiples i * i; the value of which is returned as the result of the function.
The whole anonymous function is then stored into a variable called double.

We can store the anonymous function into the variable as all functions are
instances of the class function and can be referenced in this way (we just haven’t
done this so far).

To invoke the function, we can access the reference to the function held in the
variable double and then use the round brackets to cause the function to be
executed, passing in any values to be used for the parameters:

When this is executed the value 100 is printed out.
Other examples of lambda/anonymous functions are given below (illustrating

that an anonymous function can take any number of arguments):

lambda arguments: expression

double = lambda i : i * i

print(double(10))

func0 = lambda: print('no args')
func1 = lambda x: x * x
func2 = lambda x, y: x * y
func3 = lambda x, y, z: x + y + z

130 11 Functions in Python

These can be used as shown below:

The output from this code snippet is:

11.10 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/library/functions.html for a list of built-in functions in
Python.

• https://www.w3schools.com/python/python_functions.asp the W3 Schools brief
introduction to Python functions.

• https://www.w3schools.com/python/python_lambda.asp a short summary of
lambda functions.

11.11 Exercises

For this chapter the exercises involve the number_guess_game you created in
the last chapter:

Take the number guess game and break it up into a number of functions. There is
not necessarily a right or wrong way to do this; look for functions that are mean-
ingful to you within the code, for example:

1. You could create a function to obtain input from the user.
2. You could create another function that will implement the main game playing

loop.
3. You could also provide a function that will print out a message indicating if the

player won or not.
4. You could create a function to print a welcome message when the game starts

up.

func0()
print(func1(4))
print(func2(3, 4))
print(func3(2, 3, 4))

no args
16
12
9

11.9 Anonymous Functions 131

https://docs.python.org/3/library/functions.html
https://www.w3schools.com/python/python_functions.asp
https://www.w3schools.com/python/python_lambda.asp

Chapter 12
Scope and Lifetime of Variables

12.1 Introduction

We have already defined several variables in the examples we have being working
with in this book. In practice, most of these variables have been what are known as
global variables. That is there are (potentially) accessible anywhere (or globally) in
our programs.

In this chapter we will look at local variables as defined within a function, at
global variables and how they can be referenced within a function and finally we
will consider nonlocal variables.

12.2 Local Variables

In practice developers usually try to limit the number of global variables in their
programs as global variables can be accessed anywhere and can be modified
anywhere and this can result in unexpected behaviours (and has been the cause of
many, many bugs in all sorts of programs over the years).

However, not all variables are global. When we define a function, we can create
variables which are scoped only to that function and are not accessible or visible
outside of the function. These variables are referred to as local variables (as they are
local to the function).

This is a great help in developing more modular code which has been proven to
be easier to maintain and in fact develop and test.

In the following function local variable called a_variable has been created
and initialised to hold the value 100.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_12

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_12

When this function is called a_variable will be initialised to 100 and will
then be printed out to the console:

100

Thus when we ran the my_function() it successfully printed out the value
100 which was held in the local (to the function) variable a_variable.

However if we attempt to access a_variable outside the function, then it will
not be defined and we will generate an error, for example:

When we run this code, we get the number 100 printed out from the call the
my_function(). However, an error is then reported by Python:

This indicates that a_variable is undefined at the top level (which is the
global scope). Thus, we can say that a_variable is not globally defined.

This is because a_variable only exists and only has meaning inside
my_function; outside of that function it cannot be seen.

In fact, each time the function is called, a_variable comes back into exis-
tence as a new variable, so the value in a_variable is not even seen from one
invocation of the function to another.

This raises the question what happens if a global variable called a_variable
is defined? For example, if we have the following:

Actually, this is fine and is supported by Python. There are now two versions of
a_variable in the program; one of which is defined globally and one of which is
defined within the context of the function.

Python does not get confused between these and treats then as completely
separately. This is just like having two people called John in the same class in
school. If they were only called John this might cause some confusion, but if they
have different surnames then it is easy to distinguish between them via their full
names such as John Jones and John Smith.

a_variable = 25
my_function()
print(a_variable)

100
Traceback (most recent call last):
 File "localvars.py", line 7, in <module>
 print(a_variable)
NameError: name 'a_variable' is not defined

my_function()
print(a_variable)

def my_function():
a_variable = 100
print(a_variable)

my_function()

134 12 Scope and Lifetime of Variables

In this case we have global a_variable and my_function a_variable.
Thus if we run the above code we get

The value 100 does not overwrite the value 25 as they are completely different
variables.

12.3 The Global Keyword

But what happens if what you want is to reference the global variable within a
function.

As long as Python does not think you have defined a local variable then all will
be fine. For example

This prints out the value 100.
However, things go a bit astray if you try to modify the global variable inside the

function. At this point Python thinks you are creating a local variable. If as part of
the assignment you try to reference the current value of that (now) local variable
you will get an error indicating that it currently does not have a value. For example,
if we write:

And then run this example, we will get

Indicating that we have referenced max before it was assigned a value—even
though it was assigned a value globally before the function was called!

100
25

max = 100
def print_max():

print(max)
print_max()

def print_max():
max = max + 1
print(max)

print_max()

Traceback (most recent call last):
 File "localvars.py", line 17, in <module>
 print_max()
 File "localvars.py", line 14, in print_max
 max = max + 1
UnboundLocalError: local variable 'max' referenced before
assignment

12.2 Local Variables 135

Why does it do this? To protect us from ourselves—Python is really saying ‘Do you
really want to modify a global variable here?’. Instead it is treating max as a
local variable and as such it is being referenced before a value has been assigned to it.

To tell Python that we know what we are doing and that we want to reference the
global variable at this point we need to use the keyword global with the name of
the variable. For example:

Now when we try to update the variable max inside the function print_max(),
Python knowswemean the global version of the variable and uses that one. The result
is that we now print out the value 101 and max is updated to 101 for everyone
everywhere!

12.4 Nonlocal Variables

It is possible to define functions inside other functions, and this can be very useful
when we are working with collections of data and operations such as map()
(which maps a function to all the elements of a collection of data).

However, local variables are local to a specific function; even functions defined
within another function cannot modify the outer functions local variables (as the
inner function is a separate function). They can reference it, just as we could
reference the global variable earlier; the issue is again modification.

The global keyword is no help here as the outer function’s variables are not
global, they are local to a function.

For example, if we define a nested function (inner) inside the parent outer function
(outer) and want the inner function to modify the local field we have a problem:

max = 100

def print_max():
global max
max = max + 1
print(max)

print_max()
print(max)

def outer():
 title = 'original title'

def inner():
 title = 'another title'
 print('inner:', title)

 inner()
 print('outer:', title)

outer()

136 12 Scope and Lifetime of Variables

In this example both outer() and inner() functions modify the title vari-
able. However, they are not the same title variable and as long as this is what we
need then that is fine; both functions have their own version of a title local variable.

This can be seen in the output where the outer function maintains its own value
for title:

However, if what we want is for the inner() function to modify the outer()
function’s title variable then we have a problem.

This problem can be solved using the nonlocal keyword. This indicates that a
variable is not global but is also not local to the current function and Python should
look within the scope in which the function is defined to fund a local variable with
the same name:

If we now declare title as nonlocal in the inner() function, then it will
use the outer() functions version of title (it will be shared between them) and
thus when the inner() function changes the title it will change the it for both
functions:

The result of running this is

12.5 Hints

Points to note about the scope and lifetime of variables

1. The scope of a variable is the part of a program where the variable is known.
Parameters and variables defined inside a function are not visible from outside.
Hence, they have a local scope.

2. The lifetime of a variable is the period throughout which the variable exits in the
memory of your Python program. The lifetime of variables inside a function is
as long as the function executes. These local variables are destroyed as soon as
the function returns or terminates. This means that the function does not store
the values in a variable from one invocation to another.

def outer():
 title = 'original title'

def inner():
nonlocal title

 title = 'another title'
 print('inner:', title)
 inner()
 print('outer:', title)

outer()

inner: another title
outer: another title

inner: another title
outer: original title

12.4 Nonlocal Variables 137

12.6 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-
and-global-variables-in-python which provides further information on the
Python rules for local and global variables.

12.7 Exercise

Return to the number guess game—did you have to make any compromises with
the variables to overcome the global variable issue? If so can you resolve them now
with the use of the global?

138 12 Scope and Lifetime of Variables

https://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-and-global-variables-in-python
https://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-and-global-variables-in-python

Chapter 13
Implementing a Calculator Using
Functions

13.1 Introduction

In this chapter we will step through the development of another Python program;
this time the program will be to provide a simple calculator which can be used to
add, subtract, multiple and divide numbers. The implementation of the calculator is
base on the Function Decomposition performed earlier in the book in the
Introduction to Structured Analysis chapter.

The calculator will be implemented using Python functions to help modularise
the code.

13.2 What the Calculator Will Do

This will be a purely command driven application that will allow the user to specify

• the operation to perform and
• the two numbers to use with that operation.

When the program starts up it can use a loop to keep processing operations until
the user indicates that they wish to terminate the application.

We can also use an if statement to select the operation to perform etc.
As such it will also build on several other features in Python that we have

already been working with.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_13

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_13

13.3 Getting Started

The first step will be to create a new Python file. If you are using the PyCharm IDE
you can do it using the New>PythonFile menu option (look back at the number
guess game chapter if you can’t remember how to do this). The file can be called
anything you like, but calculator seems like a reasonable name.

In the newly created (and empty) calculator.py file type in a welcome print
message such as:

print('Simple Calculator App')

Now run the calculator.py program (again if you don’t remember how to
do that look back at the Number Guess Game chapter).

You should see the message printed out in the Python console. This verifies that
the file has been created properly and that you can run the Python code you will
define in it.

13.4 The Calculator Operations

We are going to start by defining a set of functions that will implement the add,
subtract, multiply and divide operations.

All of these functions take two numbers and return another number. We have
also given each function a docstring to illustrate their use, although in practice the
functions are so simple and self-describing that the docstring is probably redundant.

The functions are listed below; you can now add them to thecalculator.pyfile:

def add(x, y):
 """" Adds two numbers """

return x + y

def subtract(x, y):
 """ Subtracts two numbers """

return x - y

def multiply(x, y):
 """ Multiples two numbers """

return x * y

def divide(x, y):
 """Divides two numbers"""

return x / y

We now have the basic functions needed by the calculator.

140 13 Implementing a Calculator Using Functions

13.5 Behaviour of the Calculator

We can no explore what the operation of the calculator program should be.
Essentially, we want to allow the user to be able to select the operation they want

to perform, provide the two numbers to use with the operation and then for the
program to call the appropriate function. The result of the operation should then be
presented to the user.

We then want to ask the user whether they want to continue to use the calculator
or to exit the program. This is illustrated below in flow chart form:

Based on this flowchart we can put in place the skeleton of the logic for the
calculator’s processing cycle.

We will need a while loop to determine whether the user has finished or not
and a variable to hold the result and print it out.

The following code provides this skeleton.

finished = False
while not finished:
 result = 0
 # Get the operation from the user
 # Get the numbers from the user
 # Select the operation
 print('Result:', result)
 print('=================')
 # Determine if the user has finished

print('Bye')

13.5 Behaviour of the Calculator 141

If you try to run this right now then you will find that this code will loop forever
as the user is not yet prompted to say if they wish to continue or not. However, it
does provide the basic framework; we have

• a variable,finished, with a Boolean flag in it to indicate if the user has finished or
not. This is referred to as a flag because it is a Boolean value and because it is being
used to determine whether to terminate the main processing loop or not.

• a variable to hold the result of the operation and the two numbers.
• the while loop representing the main processing loop of the calculator.

13.6 Identifying Whether the User Has Finished

We could address several of the remaining areas next; however, we will select the
last step—that of determining if the user has finished or not. This will allow us to
start to run the application so that we can test out the behaviour.

To do this we need to prompt the user to ask them if they want to continue using
the calculator.

At one level this is very straight forward; we could ask the user to input 'y' or 'n'
to indicates yes I have finished or no I want to keep going.

We could therefore use the input function as follows:

user_input = input('Do you want to finish (y/n): ')

We could then check to see if they have entered a 'y' character and terminate the
loop.

However, anytime we take any input from something outside of our program
(such as the user) we should verify the input. For example, what should the program
do if the user enters 'x' or the number '1'? One option is to treat anything that is not a
'y' as being—I want to keep going. However, this is opening up our simple program
to bad practices and (in a much larger system) to potential security issues and
certainly to potential hacker attacks.

It is a much better idea to verify that the input is what is expected and to reject
any input until it is either a 'y' or an 'n'.

This means that the code is more complex than a single input statement; there is
for example an implied loop here and as well as some idea of input validation.

This means that this is an ideal candidate for a function that will encapsulate this
behaviour into a separate operation. We can then test this function which is always
a good idea. It also means that where we use the function, we have a level of
abstraction. That is we can name the function appropriately which will make it
easier to see what we intended, instead of having a mass of code in one place.

We will call the function check_if_user_has_finished; this name makes
it very clear what the purpose of the function is. It also means that when we use it in
our main processing loop its role in that loop will be obvious.

142 13 Implementing a Calculator Using Functions

The function is given below:

def check_if_user_has_finished():
"""

 Checks that the user wants to finish or not.
 Performs some verification of the input."""

ok_to_finish = True
user_input_accepted = False

 while not user_input_accepted:
 user_input = input('Do you want to finish (y/n): ')

if user_input == 'y':
 user_input_accepted = True

 elif user_input == 'n':
 ok_to_finish = False

user_input_accepted = True
 else:
 print('Response must be (y/n), please try again')

return ok_to_finish

Notice the use of two variables that are local to the function:

• the first variable (ok_to_finish) holds the result of the function; whether it is
OK to finish or not. It is given a default value of True; this follows the fail
closed approach—which suggests that it is always better to fail by closing down
an application or connection. In this case it means that if something goes wrong
with the code (if it contains a software bug or logic error) the user will not keep
looping forever.

• the second variable (user_input_accepted) is used to indicate whether
the user has provided an acceptable input or not (i.e. have they entered 'y' or 'n')
until they do the loop inside the function will repeat.

The loop itself is interesting as we are looping while the user input has not been
accepted; note that we can (almost) read the while loop as plain English text. This is
both a feature of Python (it is intended to be easily readable) and also of the use of a
meaningful name for the variable itself.

Within the loop we obtain the input from the user; check to see if it is 'y' or 'n'. If
it is either of these options, we set the user_input_accepted flag to True.
Otherwise the code will print out a message indicating that the only acceptable
input is a 'y' or 'n'.

Notice that we only set the ok_to_finish variable to False if the user inputs
a 'n'; this is because the ok_to_finish variable by default has a value of True
and thus there is no need to reassign True to it if the user select 'n'.

We can now add this function into our main processing loop in place of the last
comment:

13.6 Identifying Whether the User Has Finished 143

finished = False
while not finished:
 result = 0
 # Get the operation from the user
 # Get the numbers from the user
 # Select the operation
 print('Result:', result)
 print('=================')
 finished = check_if_user_has_finished(()

print('Bye')

We can now run the application.
You may wonder why we would do this at this point as it does not yet do any

calculations for us; the answer is that we can verify that the overall behaviour of the
main loop works and that the check_if_user_has_finished() function
operates correctly.

13.7 Selecting the Operation

Next let us implement the function used to obtain the operation to perform.
Again, we want to name this function in such a way as to help with the com-

prehensibility of our program. In this case we are asking the user to select which
operation they want to perform, so let’s call the function
get_operation_choice.

This time we need to present a list of options to the user and then ask them to
make a selection. Again, we want to write our function defensively, so that it makes
sure the user only inputs a valid option; if they do not then the function prompts
them for another input. This means our function will have a loop and some vali-
dation code.

There are four options available to the user: Add, Subtract, Multiply and Divide.
We will therefore number then 1 to 4 and ask the user to select an option between 1
and 4.

There are several ways in which we can verify that they have entered a number
in this range, including

• converting the string entered into a number and using numerical comparison
(but then we need to check that they entered an integer),

• having multiple if and elif statements (but that seems a bit long winded) or
• by checking that the entered character is one of a set of values (which is the

approach we will use).

144 13 Implementing a Calculator Using Functions

To check that a value is in a set of other value (that it is one of the values in the
set) you can use the ‘in’ operator, for example:

user_selection in ('1', '2', '3', '4')

This will return True if (and only if) user_selection contains one of the
strings '1', '2', '3' or '4'.

We can therefore use it in our function to verify that the user entered a valid
input.

The get_operation_choice function is shown below:

def get_operation_choice():
 input_ok = False

while not input_ok:
 print('Menu Options are:')
 print('\t1. Add')
 print('\t2. Subtract')
 print('\t3. Multiply')
 print('\t4. Divide')
 print('-----------------')
 user_selection = input('Please make a selection: ')

if user_selection in ('1', '2', '3', '4'):
 input_ok = True

else:
 print('Invalid Input (must be 1 - 4)')
 print('-----------------')

return user_selection

Work through this function and make sure you are comfortable with all its
elements. The ‘\t’ character is a special character denoting a Tab.

We can now update our main calculator loop with this function:

finished = False

while not finished:
 result = 0
 menu_choice = get_operation_choice()

 # Get the numbers from the user
 # Select the operation
 print('Result:', result)
 print('=================')
 finished = check_if_user_has_finished(()

print('Bye')

13.7 Selecting the Operation 145

13.8 Obtaining the Input Numbers

Next we need to obtain two numbers from the user to use with the selected
operation.

In our introduction to Functions in Python chapter we looked at a function (the
get_integer_input() function) that could be used to take input from the user
and convert it (safely) into an integer; if the user entered a non-number then this
functionwould prompt them to enter an actual number.We can reuse the function here.

However, we need to ask the user for two numbers; we will therefore create a
function which uses the get_integer_input() function to prompt the user for
two numbers and then return both numbers. Both functions are shown here:

def get_numbers_from_user():
 num1 = get_integer_input('Input the first number: ')
 num2 = get_integer_input('Input the second number: ')

return num1, num2

def get_integer_input(message):
 value_as_string = input(message)

while not value_as_string.isnumeric():
 print('The input must be an integer')
 value_as_string = input(message)

return int(value_as_string)

Having one function call another function is very common and indeed we have
already been doing this; the input() function has been used several times, the
only difference here is that we have written the get_integer_input()
function ourselves.

When we can the get_numbers_from_user() function we can store the
results returned into two variables; one for each result; for example:

n1, n2 = get_numbers_from_user()

We can now add this statement to the main calculator loop:

finished = False
while not finished:
 result = 0
 menu_choice = get_operation_choice()
 n1, n2 = get_numbers_from_user()
 # Select the operation
 print('Result:', result)
 print('=================')
 finished = check_if_user_has_finished(()

print('Bye')

146 13 Implementing a Calculator Using Functions

13.9 Determining the Operation to Execute

We are now almost there and can update our main calculation loop with some logic to
determine the actual operation to invoke. To do this we will use an if statement with
the optionalelif parts. Theif statement will be conditional on the operation selected
and will then call the appropriate function (such as add, subtract etc.) as shown here:

if menu_choice == '1':
 result = add(n1, n2)
elif menu_choice == '2':
 result = subtract(n1, n2)
elif menu_choice == '3':
 result - multiply(n1, n2)
elif menu_choice == '4':
 result = divide(n1, n2)

Each part of the if statement calls a different function; but they all store the
value returned into the result variable.

We can now add this to the calculation loop to create our fully functional
calculator loop:

finished = False
while not finished:
 result = 0
 menu_choice = get_operation_choice()
 n1, n2 = get_numbers_from_user()

if menu_choice == '1':
 result = add(n1, n2)

elif menu_choice == '2':
 result = subtract(n1, n2)

elif menu_choice == '3':
 result - multiply(n1, n2)

elif menu_choice == '4':
 result = divide(n1, n2)
 print('Result:', result)
 print('=================')
 finished = check_if_user_has_finished(()

print('Bye')

13.10 Running the Calculator

If you now run the calculator you will be prompted as appropriate for input. You
can try and break the calculator by entering characters when numbers are requested,
or values out of range for the operations etc. and it should be resilient enough to
handle these erroneous inputs, for example:

13.9 Determining the Operation to Execute 147

Simple Calculator App
Menu Options are:
 1. Add
 2. Subtract
 3. Multiply
 4. Divide

Please make a selection: 5
Invalid Input (must be 1 - 4)
Menu Options are:
 1. Add
 2. Subtract
 3. Multiply
 4. Divide

Please make a selection: 1

Input the first number: 5
Input the second number: 4
Result: 9
=================
Do you want to finish (y/n): y
Bye

13.11 Exercises

For this chapter the exercises relate to extensions to the calculator:

1. Add an option to apply the modulus (%) operator to the two numbers input by
the user. This will involve defining an appropriate function and adding this as an
option to the menu. You will also need to extend the main calculator control
loop to handle this option.

2. Add a power of (**) option to the calculator.
3. Modify the program to take floating point numbers instead of simple integers.
4. Allow the choice of division operator or integer division operator (this have both

'/' and '//' available.

148 13 Implementing a Calculator Using Functions

Chapter 14
Introduction to Functional
Programming

14.1 Introduction

There has been much hype around Functional Programming in recent years.
However, Functional Programming is not a new idea and indeed goes right back to
the 1950s and the programming language LISP. However, many people are not
clear as to what Functional Programming is and instead jump into code examples
and never really understand some of the key ideas associated with Functional
Programming such as Referential Transparency.

This chapter introduces Functional Programming (also known as FP) and the key
concept of Referential Transparency (or RT).

One idea to be aware of is that Functional Programming is a software coding
style or approach and is separate from the concept of a function in Python.

Python Functions can be used to write Functional Programs but can also be used
to write procedural style programs; so do not get too hung up on the syntax that
might be used or the fact that Python has functions just yet. Instead explore the idea
of defining a functional approach to your software design.

14.2 What Is Functional Programming?

Wikipedia describes Functional Programming as:

… a programming paradigm, a style of building the structure and elements of computer
programs, that treats computation as the evaluation of mathematical functions and
avoids state and mutable data.

There are a number of points to note about this definition. The first is that it is
focussed on the computational side of computer programming. This might seem
obvious but most of what we have looked at so far in Python would be considered
procedural in nature.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_14

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_14

Another thing to note is that the way in which the computations are represented
emphasises functions that generate results based purely on the data provided to
them. That is these functions only rely on their inputs to generate a new output.
They do not generate on any side effects and do not depend on the current state of
the program. As an example of a side effect, if a function stored a running total in a
global variable and another function used that total to perform some calculation;
then the first function has a side effect of modifying a global variable and the second
relies on some global state for its result.

Taking each of these in turn:

1. Functional Programming aims to avoid side effects. A function should be
replaceable by taking the data it receives and in lining the result generated (this
is referred to as referential transparency). This means that there should be no
hidden side effects of the function. Hidden side effects make it harder to
understand what a program is doing and thus make comprehension, develop-
ment and maintenance harder. Pure functions have the following attributes:

• the only observable output is the return value.
• the only output dependency are the arguments.
• arguments are fully determined before any output is generated.

2. Functional Programming avoids concepts such as state. If some operation is
dependent upon the (potentially hidden) state of the program or some element of
a program, then its behaviour may differ depending upon that state. This may
make it harder to comprehend, implement, test and debug. As all of these impact
on the stability and probably reliability of a system, state-based operations may
result in less reliable software being developed. As functions do not (should not)
rely on any given state (only upon the data they are given) they should as a
result be easier to understand, implement, test and debug.

3. Functional Programming promotes immutable data. Functional
Programming also tends to avoid concepts such as mutable data. Mutable data is
data that can change its state. By contrast Immutability indicates that once
created, data cannot be changed. In Python Strings are immutable. Once you
create a new string you cannot modify it. Any functions that apply to a string
that might conceptually alter the contents of the string, result in a new String
being generated. Many developers take this further by having a presumption of
immutability in their code; that means that by default all data holding types are
implemented as immutable. This ensures that functions cannot have hidden side
effects and thus simplifies programming in general.

4. Functional Programming promotes declarative programming which means
that programming is oriented around expressions that describe the solution
rather than focus on the imperative approach of most procedural programming
languages. Imperative languages emphasise aspects of how the solution is
derived. For example, an imperative approach to looping through some con-
tainer and printing out each result in turn would look like this:

150 14 Introduction to Functional Programming

Whereas a functional programming approach would look like:

Functional Programming has its roots in the lambda calculus, originally devel-
oped in the 1930s to explore computability. Many Functional Programming lan-
guages can thus be considered as elaborations on this lambda calculus. There have
been numerous pure Functional Programming languages including Common Lisp,
Clojure and Haskell. Python provides some support for writing in the functional
style; particularly where the benefits of it are particularly strong (such as in pro-
cessing various different types of data).

Indeed, when used judiciously, functional programming can be a huge benefit
for, and an enhancement to, the toolkit available to developers.

To summarise then:

• Imperative Programming is what is currently perceived as traditional pro-
gramming. That is, it is the style of programming used in languages such as C,
C++, Java and C# etc. In these languages a programmer tells the computer what
to do. It is thus oriented around control statements, looping constructs and
assignments.

• Functional Programming aims to describe the solution, that is what the pro-
gram needs to do (rather than how it should be done).

14.3 Advantages to Functional Programming

There are a number of significant advantages to functional programming compared
to imperative programming. These include:

1. Less code. Typically, a functional programming solution will require less code
to write than an equivalent imperative solution. As there is less code to write,
there is also less code to understand and to maintain. It is therefore possible that
functional programs are not only more elegant to read but easier to update and
maintain. This can also lead to enhanced programmer productivity as they spend
less time writing reams of code as well as less time reading those reams of code.

2. Lack of (hidden) side effects (Referential Transparency). Programming
without side effects is good as it makes it easier to reason about functions (that is

int sizeOfContainer = container.length
for (int i = 1 to sizeOfContainer) do
 element = container.get(i)
 print(element)
enddo

container.foreach(print)

14.2 What Is Functional Programming? 151

a function is completely described by the data that goes in and the results that
come back). This also means that it is safe to reuse these functions in different
situations (as they do not have unexpected side effects). It should also be easier
to develop, test and maintain such functions.

3. Recursion is a natural control structure. Functional languages tend to
emphasis recursion as a way of processing structures that would use some form
of looping constructs in an imperative language. Although you can typically
implement recursion in imperative languages, it is often easier to do in func-
tional languages. It is also worth noting that although recursion is very
expressive and a great way for a programmer to write a solution to a problem, it
is not as efficient at run time as iteration. However, any expression that can be
written as a recursive routine can also be written using looping constructs.
Functional programming languages often incorporate tail end recursive opti-
misations to convert recursive routines into iterative ones at runtime. A util end
recursive function is one in which the last thing a function does before it returns
is to call itself. This means that rather than actually invoking the function and
having to set up the context for that function, it should be possible to reuse the
current context and to treat it in an iterative manner as a loop around that
routine. Thus the programmer benefits from the expressive recursive construct
and the runtime benefits of an iterative solution using the same source code. This
option is typically not available in imperative languages.

4. Good for prototyping solutions. Solutions can be created very quickly for
algorithmic or behaviour problems in a functional language. Thus, allowing
ideas and concepts to be explored in a rapid application development style.

5. Modular Functionality. Functional Programming is modular in terms of
functionality (where Object Oriented languages are modular in the dimension of
components). They are thus well suited to situations where it is natural to want
to reuse or componentise the behaviour of a system.

6. The avoidance of state-based behaviour. As functions only rely on their
inputs and outputs (and avoid accessing any other stored state) they exhibit a
cleaner and simpler style of programming. This avoidance of state-based
behaviour makes many difficult or challenging areas of programming simpler
(such as those in concurrent applications).

7. Additional control structures. A strong emphasis on additional control
structures such as pattern matching, managing variable scope, tail recursion
optimisations etc.

8. Concurrency and immutable data. As functional programming systems
advocate immutable data structures it is simpler to construct concurrent systems.
This is because the data being exchanged and accessed is immutable. Therefore,
multiple executing thread or processes cannot affect each other adversely. The
Akka Actor model builds on this approach to provide a very clean model for
multiple interacting concurrent systems.

9. Partial Evaluation. Since functions do not have side effects, it also becomes
practical to bind one or more parameters to a function at compile time and to reuse
these functions with bound values as new functions that take fewer parameters.

152 14 Introduction to Functional Programming

14.4 Disadvantages of Functional Programming

If functional programming has all the advantages previously described, why isn’t it
the mainstream force that imperative programming languages are? The reality is
that functional programming is not without its disadvantages, including:

• Input-Output is harder in a purely functional language. Input-Output flows
naturally align with stream style processing, which does not neatly fit into the
data in, results out, nature of functional systems.

• Interactive applications are harder to develop. Interactive applications are
constructed via request response cycles initiated by a user action. Again, these
do not naturally sit within the purely functional paradigm.

• Continuously running programs such as services or controllers may be more
difficult to develop, as they are naturally based upon the idea of a continuous loop.

• Functional programming languages have tended to be less efficient on
current hardware platforms. This is partly because current hardware plat-
forms are not designed with functional programming in mind and also because
many of the systems previously available were focussed on the academic
community where out and out performance was not the primary focus.
However, this has changed to a large extent with modern functional languages
such as Scala and Heskell.

• Not data oriented. A pure Functional Language does not really align with the
needs of the primarily data-oriented nature of many of today’s systems. Many
(most) commercial systems are oriented around the need to retrieve data from a
database, manipulate it in some way and store that data back into a database. Such
data can be naturally represented via objects in an Object-Oriented language.

• Programmers are less familiar with functional programming concepts and
thus find it harder to pick up function-oriented languages.

• Functional Programming idioms are often less intuitive to (traditional) proce-
dural programmers than imperative idioms which can make debugging and main-
tenance harder. Although with the use of a functional approach in many other
languages nowbecomingmore popular (including in Python) this trend is changing.

• Many Functional Programming languages have been viewed as Ivory tower
languages that are only used by academics. This has been true of some older
functional languages but is increasingly changing with the advent of languages
such as Scala and with the facilities provided in more mainstream programming
languages such as Python.

14.5 Referential Transparency

An important concept within the world of functional programming is that of
Referential Transparency.

14.4 Disadvantages of Functional Programming 153

An operation is said to be Referentially Transparent if it can be replaced with its
corresponding value, without changing the programs behaviour, for a given set of
parameters.

For example, let us assume that we have defined the function increment as
shown below.

If we use this simple example in an application to increment the value 5:

We can say that the function is Referentially Transparent (or RT) if it always returns
the same result for the same value (i.e. that increment(5) always returns 6):

Any function that references a value which has been captured from its sur-
rounding context and which can be modified cannot be guaranteed to be RT. This
can have significant consequences for the maintainability of the resulting code. This
can happen if for example the increment function did not add 1 to the parameter but
added a global value. If this global value is changed then the function would
suddenly start to return different values for the previously entered parameters. For
example, the following code is no longer Referentially Transparent:

The output from this code is 6 and 7—as the value of amount has changed
between calls to the increment() function.

A closely related idea is that of No Side Effects. That is, a function should not
have any side effects, it should base its operation purely on the values it receives,

def increment(num):
return num + 1

print(increment(5))
print(increment(5))

amount = 1
def increment(num):

return num + amount

print(increment(5))
amount = 2
print(increment(5))

154 14 Introduction to Functional Programming

and its only impact should be the result returned. Any hidden side effects again
make software harder to maintain.

Of course, within most applications there is a significant need for side effects, for
example any logging of the actions performed by a program has a side effect of
updating some logged information somewhere (typically in a file), any database
updates will have some side effect (i.e. that of updating the database). In addition
some behaviour is inherently non RT, for example a function which returns the
current time can never be Referentially Transparent.

However, for pure functions it is a useful consideration to follow.

14.6 Further Reading

There is a large amount of material on the web that can help you learn more about
Functional Programming including:

• https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-
4f69aa109569 intended as a friendly introduction to Functional programming.

• https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-
functional-programming-a2c2a15c84 which provides an introduction to the
basic principles of Functional programming.

• https://www.tutorialspoint.com/functional_programming which provides a good
grounding in the basic concepts of Functional Programming.

• https://docs.python.org/3/howto/functional.html which is the Python standard
library tutorial on Functional Programming.

14.5 Referential Transparency 155

https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569
https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569
https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-functional-programming-a2c2a15c84
https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-functional-programming-a2c2a15c84
https://www.tutorialspoint.com/functional_programming
https://docs.python.org/3/howto/functional.html

Chapter 15
Higher Order Functions

15.1 Introduction

In this chapter we will explore the concept of high-order functions. These are
functions that take as a parameter, or return (or both), a function. To do this we will
first look into how Python represents functions in memory and explore what
actually happens when we execute a Python function.

15.2 Recap on Functions in Python

Let us first recap a few things regarding functions in Python:
Functions (mostly) have a name and when invoked (or executed) the body of

code associated with the function name is run.
There are some important ideas to remember when considering functions:

• functions can be viewed as named blocks of code and are one of the main ways
in which we can organise our programs in Python,

• functions are defined using the keyword def and constitute a function header
(the function name and the parameters, if any, defined for that function) and the
function body (what is executed when the function is run),

• functions are invoked or executed using their name followed by round brackets
'()' with or without parameters depending on how the function has been defined.

This means we can write a function such as the following get_msg function:

def get_msg():
return 'Hello Python World!'

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_15

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_15

We can then call it by specifying its name and the round brackets:

This of course prints out the string 'Hello Python World!' which is what
you should expect by now.

15.3 Functions as Objects

A few chapters back we threw in something stating that if you forgot to include the
round brackets then you were referencing the function itself rather than trying to
execute it!

What exactly does that mean? Let’s see what happens if we forgot to include the
round brackets:

The output generated now is:

which might look very confusing at first sight.
What this is actually telling you is that you have referenced a function called

get_msg that is located at a (hexidecimal) address in memory.
It is interesting to note that just as data has to be located in memory so does

program code (so that it can be found and run); although typically data and code are
located in separate areas of memory (as data tends to be short lived).

Another interesting thing to do is to find out what the type of get_msg is—hey
it’s a function—but what does that mean?

If we issue this statement and run it in Python:

Then we will get the following:

This means that it is of the class of things that are functions just as 1 is of the
class of things called integers, 'John' is of the class of things called strings and
42.6 is of the class of things called floating point numbers.

message = get_msg()
print(message)

message = get_msg
print(message)

print(type(get_msg))

<function get_msg at 0x10ad961e0>

<class 'function'>

158 15 Higher Order Functions

Taking this further it actually means that the thing being referenced by
get_msg is a function object (an example or instance of the Function class). This
get_msg is really a type of variable that references (or points at) at the function
object in memory which we can execute using the round brackets.

This is illustrated by the following diagram:

This means that when we run get_msg() what actually happens is we go to
the get_msg variable and following the reference (or pointer) there to the function
and then because we have the round brackets we run that function.

This has two implications:

1. we can pass the reference to a function around,
2. we can make get_msg reference (point) at a different function

Let us look at the first of these implications. If we assign the reference repre-
sented by get_msg to something else, then in effect we have an alias for this
function. This is because another variable now also references the same function.
For example, if we write:

Then the result is that the string 'Hello Python World!' is again printed out.
What this has done is to copy the reference held in get_msg into

another_reference (but it is a copy of that reference and that is the address of
the function in memory). Thus, we now have in memory:

So just to emphasise this—we did not make a copy of the function; only its
address in memory. Thus the same value is held in both get_msg and
another_reference and both these values are references to the same function object
in memory.

What does this mean and why should we care? Well it means that we can pass
references to functions around within our program which can be a very useful
feature that we will look at later in this chapter.

Now let us go back to the second implication mentioned above; we can reassign
another function to get_msg.

another_reference = get_msg
print(another_reference())

15.3 Functions as Objects 159

For example, let’s say we wrote this next:

Now get_msg no longer references the original functions; it now references the
new function defined by get_some_other_msg. It means that in memory we
now have

Which means the result of calling print(get_msg()) will be that the string
'Some other message!!!' is returned and printed out (rather than the
'Hello Python World!').

However, notice that we did not overwrite the original function; it is still being
referenced by the another_reference variable and indeed can still be called
via this variable. For example, the code:

now generates the output:

This illustrates some of the power but also the potential confusion that comes
from how functions are represented and can be manipulated in Python.

15.4 Higher Order Function Concepts

Given that we can assign a reference into a function to a variable; then this might
imply that we can also use the same approach to pass a reference to a function as an
argument to another function.

print(get_msg())
print(another_reference())

Some other message!!!
Hello Python World!

def get_some_other_msg():
return 'Some other message!!!'

get_msg = get_some_other_msg
print(get_msg())

160 15 Higher Order Functions

This means that one function can take another function as a parameter. Such
functions are known as higher-order functions and are one of the key constructs in
Functional Programming.

That is, a function that takes another function as a parameter is known as a
higher order function.

In fact, in Python, Higher-Order Functions are functions that do at least one of
the following (and may do both):

• Take one or more functions as a parameter,
• Return as a result a function.

All other functions in Python are first-order functions.
Many of the functions found in the Python libraries are higher order functions. It

is a common enough pattern that once you are aware of it you will recognise it in
many different libraries.

15.4.1 Higher Order Function Example

As an abstract example, consider the following higher order function apply. This
function (written in pseudo code—not a real programming language) takes an
integer and a function. Within the body of the function being defined, the function
passed in as a parameter is applied to the integer parameter. The result of the
function being defined is then returned:

The function apply is a higher order function because its behaviour (and its
result) will depend on the behaviour defined by another function—the one passed
into it.

We could also define a function that multiplies a number by 10.0, for example:

Now we can use the function mult with the function apply, for example:

This would return the value 50.0

def apply(x, function):
result = function(x)
return result

def mult(y):
return y * 10.0

apply(5, mult)

15.4 Higher Order Function Concepts 161

15.5 Python Higher Order Functions

As we have already seen when we define a function it actually creates a function
object that is referenced by the name of the function. For example, if we create the
function mult_by_two:

Then this has created a function object referenced by the name multi_by_two
that we can invoke (execute) using the round brackets '()'.

It is also a one parameter function that takes a number and returns a value which
is twice that number

Thus, a parameter that expects to be given a reference to a function that takes a
number and returns a number can be given a reference to any function that meets
this (implied) contract. This includes our mult_by_two function but also any of
the following:

All of the above could be used with the following higher order function:

For example:

The output from this code is:

The following listing provides a complete set of the earlier sample functions and
how they may be used with the apply function:

def mult_by_two(num):
return num * 2

def mult_by_five(num):
return num * 5

def square(num):
return num * num

def add_one(num):
return num + 1

def apply(num, func):
return func(num)

result = apply(10, mult_by_two)
print(result)

20

print(apply(10, mult_by_five))
print(apply(10, square))
print(apply(10, add_one))
print(apply(10, mult_by_two))

162 15 Higher Order Functions

The output from this is:

15.5.1 Using Higher Order Functions

Looking at the previous section you may be wondering why you would want to use
a higher-order function or indeed why define one. After all, could you not have
called one of the functions (multi_by_five, square, add_one or
mult_by_two) directly by passing in the integer to used? Yes, we could have, for
example we could have done:

And this would have exactly the same effect as calling:

The first approach would seem to be both simpler and more efficient.
The key to why higher-order functions are so powerful is to consider what would

happen if we know that some function should be applied to the value 10 but we do
not yet know what it is. The actual function will be provided at some point in the
future. Now we are creating a reusable piece of code that will be able to apply an
appropriate function to the data we have when that function is known.

For example, let us assume that we want to calculate the amount of tax
someone should pay based on their salary. However, we do not know how to
calculate the tax that this person must pay as it is dependent on external factors.
The calculate_tax function could take an appropriate function that performs
that calculation and provides the appropriate tax value.

The following listing implements this approach. The function calculate_tax
does not know how to calculate the actual tax to be paid, instead a function must be
provided as a parameter to the calculate_tax function. The function passed in
takes a number and returns the result of performing the calculation. It is used with
the salary parameter also passed into the calculate_tax function.

50
100
11
20

square(10)

apply(10, square)

import math

def simple_tax_calculator(amount):
return math.ceil(amount * 0.3)

def calculate_tax(salary, func):
return func(salary)

print(calculate_tax(45000.0, simple_tax_calculator))

15.5 Python Higher Order Functions 163

The simple_tax_calculator function defines a function that takes a
number and multiplies it by 0.3 and then uses the math.ceil function (imported
from the math library/module) to round it up to a whole number. A call is then
made to the calculate_tax function passing in the float 45000.0 as the salary
and a reference to the simple_tax_calculator function. Finally, it prints out
the tax calculated. The result of running this program is:

Thus, the function calculate_tax is a reusable function that can have
different tax calculation strategies defined for it.

15.5.2 Functions Returning Functions

In Python as well as passing a function into another function; functions can be
returned from a function. This can be used to select amongst a number of different
options or to create a new function based on the parameters.

For example, the following code creates a function that can be used to check
whether a number is even, odd or negative based on the string passed into it:

Note the use of the raise Value Error; for the moment we will just say that
this is a way of showing that there is a problem in the code which may occur if this
function is called with an in appropriate parameter value for 's'.

This function is a factory for functions that can be created to perform specific
operations. It is used below to create three functions that can be used to validate
what type a number is:

def make_checker(s):
if s == 'even':

return lambda n: n%2 == 0
elif s == 'positive':

return lambda n: n >= 0
elif s == 'negative':

return lambda n: n < 0
else:

raise ValueError('Unknown request')

f1 = make_checker('even')
f2 = make_checker('positive')
f3 = make_checker('negative')
print(f1(3))
print(f2(3))
print(f3(3))

164 15 Higher Order Functions

Of course, it is not only anonymous functions that can be returned from a
function; it is also possible to return a named function. This is done by returning
just the name of the function (i.e. without the round brackets).

In the following example, a named function is defined within an outer function
(although it could have been defined elsewhere in the code). It is then returned from
the function:

We can then use this make_function to create the adder function and store
it into another variable. We can now use this function in our code, for example:

Which produces the output

def make_function():
def adder(x, y):

return x + y

return adder

f1 = make_function()
print(f1(3, 2))
print(f1(3, 3))
print(f1(3, 1))

5
6
4

15.6 Online Resources

Further information on higher order functions in Python can be found using the
following online resources:

• https://en.wikipedia.org/wiki/Higher-order_function Wikipedia page on Higher
Order functions.

• https://docs.python.org/3.1/library/functools.html a module to support the cre-
ation and use of higher order functions.

• https://www.tutorialspoint.com/functional_programming/functional_
programming_higher_order_functions.htm A tutorial on higher order functions.

15.7 Exercises

The aim of this exercise is to explore higher order functions.
You should write a higher order function function called

my_higher_order_function(i, func). This function takes a parameter
and a second function to apply to the parameter.

15.5 Python Higher Order Functions 165

https://en.wikipedia.org/wiki/Higher-order_function
https://docs.python.org/3.1/library/functools.html
https://www.tutorialspoint.com/functional_programming/functional_programming_higher_order_functions.htm
https://www.tutorialspoint.com/functional_programming/functional_programming_higher_order_functions.htm

Now you should write a sample program that uses the higher order function you
just created to perform. An example of the sort of thing you might implement is
given below:

If you are using the above code as your test application then you should write
each of the supporting functions; each should take a single parameter.

Sample output from this code snippet is:

Note a simple way to find the square root of a number is to use the exponent (or
power of) operator and multiply by 0.5.

print(my_higher_order_function(2, double))
print(my_higher_order_function(2, triple))
print(my_higher_order_function(16, square_root))
print(my_higher_order_function(2, is_prime))
print(my_higher_order_function(4, is_prime))
print(my_higher_order_function('2', is_integer))
print(my_higher_order_function('A', is_integer))
print(my_higher_order_function('A', is_letter))
print(my_higher_order_function('1', is_letter))

4
8
4.0
True
False
True
False
True
False

166 15 Higher Order Functions

Chapter 16
Curried Functions

16.1 Introduction

Currying is a technique which allows new functions to be created from existing
functions by binding one or more parameters to a specific value. It is a major source
of reuse of functions in Python which means that functionality can be written once,
in one place and then reused in multiple other situations.

The name Currying may seem obscure, but the technique is named after Haskell
Curry (for whom the Haskell programming language is also named).

This chapter introduces the core ideas behind currying and explores how cur-
rying can be implemented in Python. The chapter also introduces the concept of
closures and how they affect curried functions.

16.2 Currying Concepts

At an abstract level, consider having a function that takes two parameters. These
two parameters, x and y are used within the function body with the multiply
operator in the form x * y. For example, we might have:

This function operation() might then be used as follows

Which would result in 5 being multiplied by 2 to give 10. Or it could be used:

operation(x, y): return x * y

total = operation(2, 5)

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_16

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_16

Which would result in 5 being multiplied by 10 to give 50.
If we needed to double a number, we could thus reuse the operation()

function many times, for example:

All of the above would double the second number. However, we have had to
remember to provide the 2 so that the number can be doubled. However, the
number 2 has not changed between any of the invocations of the operation()
function. What if we fixed the first parameter to always be 2, this would mean that
we could create a new function that apparently only takes one parameter (the
number to double). For example, let us say we could write something like:

Such that we could now write:

In essence double() is an alias for operation(), but an alias that provides
the value 2 for the first parameter and leaves the second parameter to be filled in by
the future invocation of the double function.

16.3 Python and Curried Functions

A curried function in Python is a function where one or more of its parameters have
been applied or bound to a value, resulting in the creation of a new function with
one fewer parameters than the original. For example, let us create a function that
multiplies two numbers together:

total = operation(10, 5)

operation(2, 5)
operation(2, 10)
operation(2, 6)
operation(2, 151)

double = operation(2, *)

double(5)
double(151)

def multiply(a, b):

return a * b

168 16 Curried Functions

This is a general function that does exactly what it says; it multiplies any two
numbers together. These numbers could be any two integers or floating-point
numbers etc.

We can thus invoke it in the normal manner:

The result of executing this statement is:

We could now define a new method that takes a function and a number and
returns a new (anonymous) function that takes one new parameter and calls the
function passed in with the number passed in and the new parameter:

Look carefully at this function; it has used or bound the number passed into the
multby function to the invocation of the function passed in, but it has also defined
a new variable 'y' that will have to be provided when this new anonymous function
is invoked. It then returns a reference to the anonymous function as the result of
multby.

The multby function can now be used to bind the first parameter of the
multiply function to anything we want. For example, we could bind it to 2 so that it
will always double the second parameter and store the resulting function reference
into a property double:

We could also bind the value 3 to the first parameter of multiple to make a
function that will triple any value:

Which means we can now write:

def multby(func, num):
return lambda y: func(num, y)

double = multby(multiply, 2)

print(multiply(2, 5))

10

triple = multby(multiply, 3)

print(double(5))
print(triple(5))

16.3 Python and Curried Functions 169

which produces the output

You are not limited to just binding one parameter; you can bind any number of
parameters in this way.

Curried functions are therefore very useful for creating new functions from
existing functions.

16.4 Closures

One question that might well be on your mind now is what happens when a
function references some data that is in scope where it is defined but is no longer
available when it is evaluated? This question is answered by the implementation of
a concept known as closure.

Within Computer Science (and programming languages in particular) a closure
(or a lexical closure or function closure) is a function (or more strictly a reference to
a function) together with a referencing environment. This referencing environment
records the context within which the function was originally defined and if nec-
essary, a reference to each of the non-local variables used by that function. These
non-local or free variables allow the function body to reference variables that are
external to the function, but which are utilised by that function. This referencing
environment is one of the distinguishing features between a functional language and
a language that supports function pointers (such as C).

The general concept of a lexical closure was first developed during the 1960s but
was first fully implemented in the language Scheme in the 1970s. It has since been
used within many functional programming languages including LISP and Scala.

At the conceptual level, a closure allows a function to reference a variable
available in the scope where the function was originally defined, but not available
by default in the scope where it is executed.

For example, in the following simple programme, the variable more is defined
outside the body of the function named increase. This is permissible as the
variable is a global variable. Thus, the variable more is within scope at the point of
definition.

10
15

170 16 Curried Functions

Within our program we invoke the increase function by passing in the value
10. This is done twice with the variable more being reset to 50 between the two.
The output from this program is shown below:

Note that it is the current value of more that is being used when the function
executes and not the value of more present at the point that the function was
defined. Hence the output is 110 and 60 that is 100 + 10 and then 50 + 10.

This might seem obvious as the variable more is still in scope within the same
function as the invocations of the function referenced by increase.

However, consider the following example:

In the above listing the function increment initially adds 1 to whatever value
has been passed to it. Then in the program this function is called with the value 5
and the result returned by the function is printed. This will be the value 6.

However, after this a second function, reset_function() is invoked. This
function has a variable that is local to the function. That is, normally it would only
be available within the function reset_function. This variable is called
addition and has the value 50.

more = 100

def increase(num):
return num + more

print(increase(10))
more = 50
print(increase(10))

110
60

def increment(num):
return num + 1

def reset_function():
global increment
addition = 50
increment = lambda num: num + addition

print(increment(5))
reset_function()
print(increment(5))

16.4 Closures 171

The variable addition is however, used within the function body of a new
anonymous function definition. This function takes a number and adds the value of
addition to that number and returns this as the result of the function. This new
function is then assigned to the name increment. Note that to ensure we reference
the global name incrementwe must use the keyword global (otherwise we will
create a local variable that just happens to have the same name as the function).

Now, when the second invocation of increment occurs, the
reset_function() method has terminated and normally the variable
addition would no longer even be in existence. However, when this program
runs the value 55 is printed out from the second invocation of increment. That is
the function being referenced by the name increment, when it is called the
second time, is the one defined within reset_function() and which uses the
variable addition.

The actual output is shown below:

So, what has happened here? It should be noted that the value 50 was not copied
into the second function body. Rather it is a concrete example of the use of a
reference environment with the closure concept. Python ensures that the variable
addition is available to the function, even if the invocation of the function is
somewhere different to where it was defined by binding any free variables (those
defined outside the scope of the function) and storing them so that they can be
accessed by the function’s context (in effect moving the variable from being a local
variable to one which is available to the function anywhere; but only to the
function).

16.5 Online Resources

Further information on currying see:

• https://en.wikipedia.org/wiki/Currying Wikipedia page on currying.
• https://wiki.haskell.org/Currying A page introducing currying (based on the

Haskell language but still a useful reference).
• https://www.python-course.eu/currying_in_python.php A tutorial on currying in

Python.

172 16 Curried Functions

https://en.wikipedia.org/wiki/Currying
https://wiki.haskell.org/Currying
https://www.python-course.eu/currying_in_python.php

16.6 Exercises

This exercise is about creating a set of functions to perform currency conversions
based on specified rates using currying to create those functions.

Write a function that will curry another function and a parameter in a similar
manner to multby in this chapter—call this function curry().

Now define a function that can be used to convert an amount into another
amount based on a rate. The definition of this conversion function is very straight
forward and just involves multiplying the number by the rate.

Now create a set of functions that can be used to convert a value in one currency
into another currency based on a specific rate. We do not want to have to remember
the rate, only the name of the function. For example:

If the above code is run the output would be:

dollars_to_sterling = curry(convert, 0.77)
print(dollars_to_sterling(5))

euro_to_sterling = curry(convert, 0.88)
print(euro_to_sterling(15))

sterling_to_dollars = curry(convert, 1.3)
print(sterling_to_dollars(7))

sterling_to_euro = curry(convert, 1.14)
print(sterling_to_euro(9))

3.85
13.2
9.1
10.26

16.6 Exercises 173

Chapter 17
Introduction to Object Orientation

17.1 Introduction

This chapter introduces the core concepts in Object Orientation. It defines the
terminology used and attempts to clarify issues associated with objects. It also
discusses some of the perceived strengths and weaknesses of the object-oriented
approach. It then offers some guidance on the approach to take in learning about
objects.

17.2 Classes

A class is one of the basic building blocks of Python. It is also a core concept in a
style of programming known as Object Oriented Programming (or OOP). OOP
provides an approach to structuring programs/applications so that the data held, and
the operations performed on that data, are bundled together into classes and
accessed via objects.

As an example, in an OOP style program, employees might be represented by a
class Employee where each employee has an id, a name, a department and a
desk_number etc. They might also have operations associated with them such as
take_a_holiday() or get_paid().

In many cases classes are used to represent real world entities (such as
employees) but they do not need to, they can also represent more abstract concepts
such as a transaction between one person and another (for example an agreement to
buy a meal).

Classes act as templates which are used to construct instances or examples of a
class of things. Each example of the class Person might have a name, an age, an

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_17

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_17

address etc., but they have their own values for their name, age and address. For
example, to represent the people in a family we might create an example of the class
Person with the name Paul, the age 52 and the address set to London. We may also
create another Person object (instance) with the name Fiona, the age 48 and the
address also of London and so on.

An instance or object is therefore an example of a class. All instances/objects of
a class possess the same data variables but contain their own data values. Each
instance of a class responds to the same set of requests and has the same behaviour.

Classes allow programmers to specify the structure of an object (i.e. its attributes
or fields, etc.) and the its behaviour separately from the objects themselves.

This is important, as it would be extremely time-consuming (as well as ineffi-
cient) for programmers to define each object individually. Instead, they define
classes and create instances or objects of those classes.

They can then store related data together in a named concept which makes it
much easier to structure and maintain code.

17.3 What Are Classes for?

We have already seen several types of data in Python such as integer, string,
boolean etc. Each of these allowed us to hold a single item of data (such as the
integer 42 or the string 'John' and the value True). However, how might we
represent a Person, a Student or an Employee of a firm? One way we can do this is
to use a class to represent them.

As indicated above, we might represent any type of (more complex) data item
using a combination of attributes (or fields) and behaviours. These attributes will
use existing data types, these might be integers, strings, Booleans, floating-point
numbers or other classes.

For example, when defining the class Person we might give it:

• a field or attribute for the person’s name,
• a field or attribute for their age,
• a field or attribute for their email,
• some behaviour to give them a birthday (which will increment their age),
• some behaviour to allow us to send them a message via their email,
• etc.

In Python classes are used:

• as a template to create instances (or objects) of that class,
• define instance methods or common behaviour for a class of objects,
• define attributes or fields to hold data within the objects,
• be sent messages.

176 17 Introduction to Object Orientation

Objects (or instances), on the other hand, can:

• be created from a class,
• hold their own values for instance variables,
• be sent messages,
• execute instance methods,
• may have many copies in the system (all with their own data).

17.3.1 What Should a Class Do?

A class should accomplish one specific purpose; it should capture only one idea. If
more than one idea is encapsulated in a class, you may reduce the chances for reuse,
as well as contravene the laws of encapsulation in object-oriented systems. For
example, you may have merged two concepts together so that one can directly
access the data of another. This is rarely desirable.

The following guidelines may help you to decide whether to split the class with
which you are working. Look at the comment describing the class (if there is no
class comment, this is a bad sign in itself). Consider the following points:

• Is the description of the class short and clear? If not, is this a reflection on the
class? Consider how the comment can be broken down into a series of short
clear comments. Base the new classes around those comments.

• If the comment is short and clear, do the class and instance variables make sense
within the context of the comment? If they do not, then the class needs to be
re-evaluated. It may be that the comment is inappropriate, or the class and
instance variables inappropriate.

• Look at how and where the attributes of the class are used. Is their use in line
with the class comment? If not, then you should take appropriate action.

17.3.2 Class Terminology

The following terms are used in Python (and other languages that support object
orientation):

• Class A class defines a combination of data and behaviour that operates on that
data. A class acts as a template when creating new instances.

• Instance or object An instance also known as an object is an example of a class.
All instances of a class possess the same data fields/attributes but contain their
own data values. Each instance of a class responds to the same set of requests.

• Attribute/field/instance variable The data held by an object is represented by its
attributes (also sometimes known as a field or an instance variable). The “state”
of an object at any particular moment relates to the current values held by its
attributes.

17.3 What Are Classes for? 177

• Method A method is a procedure defined within an object.
• Message A message is sent to an object requesting some operation to be per-

formed or some attribute to be accessed. It is a request to the object to do
something or return something. However, it is up to the object to determine how
to execute that request. A message may be considered akin to a procedure call in
other languages.

17.4 How Is an OO System Constructed?

At this point you may be wondering how a system can be built from classes and
objects instantiated from those classes? What would such an application look like?
It is clear it is different to writing functions and free-standing application code that
calls those functions?

Let’s use a real world (physical) system to explore what an OOP application
might look like.

This system aims to provide a diagnosis tutor for the equipment illustrated
above. Rather than use the wash–wipe system from a real car, students on a car
mechanics diagnosis course use this software simulation. The software system
mimics the actual system, so the behaviour of the pump depends on information
provided by the relay and the water bottle.

The operation of the wash–wipe system is controlled by a switch which can be in
one of five positions: off, intermittent, slow, fast and wash. Each of these settings
places the system into a different state:

178 17 Introduction to Object Orientation

For the pump and the wiper motor to work correctly, the relay must function
correctly. In turn, the relay must be supplied with an electrical circuit. This elec-
trical circuit is negatively fused and thus the fuse must be intact for the circuit to be
made. Cars are negatively switched as this reduces the chances of short circuits
leading to unintentional switching of circuits.

17.4.1 Where Do We Start?

This is often a very difficult point for those new to object-oriented systems. That is,
they have read the basics and understand simple diagrams, but do not know where
to start. It is the old chestnut, “I understand the example but don’t know how to
apply the concepts myself”. This is not unusual and, in the case of object orien-
tation, is probably normal.

The answer to the question “where do I start?” may at first seem somewhat
obscure; you should start with the data. Remember that objects are things that
exchange messages with each other. The things possess the data that is held by the
system and the messages request actions that relate to the data. Thus, an
object-oriented system is fundamentally concerned with data items.

Before we go on to consider the object-oriented view of the system, let us stop
and think for a while. Ask yourself where could I start; it might be that you think
about starting “with some form of functional decomposition” (breaking the problem
down in terms of the functions it provides) as this might well be the view the user
has of the system. As a natural part of this exercise, you would identify the data
required to support the desired functionality. Notice that the emphasis would be on
the system functionality.

Let us take this further and consider the functions we might identify for the
example presented above:

Switch setting System state

Off The system is inactive

Intermittent The blades wipe the windscreen every few seconds

Slow The wiper blades wipe the windscreen continuously

Fast The wiper blades wipe the windscreen continuously and quickly

Wash The pump draws water from the water bottle and sprays it onto the
windscreen

Function Description

Wash Pump water from the water bottle to the windscreen

Wipe Move the windscreen wipers across the windscreen

17.4 How Is an OO System Constructed? 179

We would then identify important system variables and sub-functions to support
the above functions.

Now let us go back to the object-oriented view of the world. In this view, we
place a great deal more emphasis on the data items involved and consider the
operations associated with them (effectively, the reverse of the functional decom-
position view). This means that we start by attempting to identify the primary data
items in the system; next, we look to see what operations are applied to, or per-
formed on, the data items; finally, we group the data items and operations together
to form objects. In identifying the operations, we may well have to consider
additional data items, which may be separate objects or attributes of the current
object. Identifying them is mostly a matter of skill and experience.

The object-oriented design approach considers the operations far less important
than the data and their relationships. In the next section we examine the objects that
might exist in our simulation system.

17.4.2 Identifying the Objects

We look at the system as a whole and ask what indicates the state of the system. We
might say that the position of the switch or the status of the pump is significant.
This results in the data items shown below

The identification of the data items is considered in greater detail later. At this
point, merely notice that we have not yet mentioned the functionality of the system
or how it might fit together, we have only mentioned the significant items. As this is
such a simple system, we can assume that each of these elements is an object and
illustrate it in a simple object diagram:

Data item States

switch setting Is the switch set to off, intermittent, wipe, fast wipe or wash?

wiper motor Is the motor working or not?

pump state Is the pump working or not?

fuse condition Has the fuse blown or not?

water bottle level The current water level

relay status Is current flowing or not?

180 17 Introduction to Object Orientation

Notice that we have named each object after the element associated with the data
item (e.g. the element associated with the fuse condition is the fuse itself) and that
the actual data (e.g. the condition of the fuse) is an instance variable of the object.
This is a very common way of naming objects and their instance variables. We now
have the basic objects required for our application.

17.4.3 Identifying the Services or Methods

At the moment, we have a set of objects each of which can hold some data. For
example, the water bottle can hold an integer indicating the current water level.
Although object-oriented systems are structured around the data, we still need some
procedural content to change the state of an object or to make the system achieve
some goal. Therefore, we also need to consider the operations a user of each object
might require. Notice that the emphasis here is on the user of the object and what
they require of the object, rather than what operations are performed on the data.

Let us start with the switch object. The switch state can take a number of values.
As we do not want other objects to have direct access to this variable, we must
identify the services that the switch should offer. As a user of a switch we want to
be able to move it between its various settings. As these settings are essentially an
enumerated type, we can have the concept of incrementing or decrementing the
switch position. A switch must therefore provide a move_up and a move_down
interface. Exactly how this is done depends on the programming language; for now,
we concentrate on specifying the required facilities.

If we examine each object in our system and identify the required services, we
may end up with the following table:

17.4 How Is an OO System Constructed? 181

We generated this table by examining each of the objects in isolation to identify
the services that might reasonably be required. We may well identify further ser-
vices when we attempt to put it all together.

Each of these services should relate to a method within the object. For example,
the moveUp and moveDown services should relate to methods that change the state
instance variable within the object. Using a generic pseudo-code, the move_up
method, within the switch object, might contain the following code:

This method changes the value of the state variable in switch. The new value of
the instance variable depends on its previous value. You can define moveDown in a
similar manner. Notice that the reference to the instance variable illustrates that it is
global to the object. The moveUp method requires no parameters. In object-oriented
systems, it is common for few parameters to be passed between methods (partic-
ularly of the same object), as it is the object that holds the data.

17.4.4 Refining the Objects

If we look back to able table, we can see that fuse, wiper motor, relay and pump all
possess a service called working?. This is a hint that these objects may have
something in common. Each of them presents the same interface to the outside
world. If we then consider their attributes, they all possess a common instance

Object Service Description

switch move_up Increment switch value

move_down Decrement switch value

State? Return a value indicating the current switch state

fuse working? Indicate if the fuse has blown or not

wiper motor working? Indicate whether the wipers are working or not

relay working? Indicate whether the relay is active or not

pump working? Indicate whether the pump is active or not

water bottle fill Fill the water bottle with water

extract Remove some water from the water bottle

empty Empty the water bottle

def move_up(self):
if self.state == "off" then

self.tate = "wash"
else if self.state == "wash" then

self.state = "wipe"

182 17 Introduction to Object Orientation

variable. At this point, it is too early to say whether fuse, wiper motor, relay and
pump are all instances of the same class of object (e.g. a Component class) or
whether they are all instances of classes which inherit from some common super-
class (see below). However, this is something we must bear in mind later.

17.4.5 Bringing It All Together

So far, we have identified the primary objects in our system and the basic set of
services they should present. These services were based solely on the data the
objects hold. We must now consider how to make our system function. To do this,
we need to consider how it might be used. The system is part of a very simple
diagnosis tutor; a student uses the system to learn about the effects of various faults
on the operation of a real wiper system, without the need for expensive electronics.
We therefore wish to allow a user of the system to carry out the following
operations:

• change the state of a component device
• ask the motor what its new state is

17.4 How Is an OO System Constructed? 183

The move_up and move_down operations on the switch change the switch’s
state. Similar operations can be provided for the fuse, the water bottle and the relay.
For the fuse and the relay, we might provide a change_state interface using the
following algorithm:

Discovering the state of the motor is more complicated. We have encountered a
situation where one object’s state (the value of its instance variable) is dependent on
information provided by other objects. If we write down procedurally how the value
of other objects affect the status of the pump, we might get the following
pseudo-code:

This algorithm says that the pump status depends on the relay status, the switch
setting and the fuse status. This is the sort of algorithm you might expect to find in
your application. It links the sub-functions together and processes the data.

In an object-oriented system, well-mannered objects pass messages to one
another. How then do we achieve the same effect as the above algorithm? The
answer is that we must get the objects to pass messages requesting the appropriate
information. One way to do that is to define a method in the pump object that gets
the required information from the other objects and determines the motor’s state.
However, this requires the pump to have links to all the other objects so that it can
send them messages. This is a little contrived and loses the structure of the
underlying system. It also loses any modularity in the system. That is, if we want to
add new components then we have to change the pump object, even if the new
components only affect the switch. This approach also indicates that the developer
is thinking too procedurally and not really in terms of objects.

In an object-oriented view of the system, the pump object only needs to know
the state of the relay. It should therefore request this information from the relay. In
turn, the relay must request information from the switches and the fuse.

if fuse is working then
if switch is not off then

if relay is working then
pump status = "working"

define change_state(self)
if self.state == "working" then

self.tate = "notWorking"
else

self.state = "working"

184 17 Introduction to Object Orientation

The above illustrates the chain of messages initiated by the pump object:

1. pump sends a working? message to the relay,
2. relay sends a state? message to the switch, the switch replies to the relay,
3. relay sends a second working? message to the fuse:

• The fuse replies to the relay
• the relay replies to the motor
• If the pump is working, then the pump object sends the final message to the

water bottle

4. pump sends a message extract to the water bottle

In step four, a parameter is passed with the message because, unlike the previous
messages that merely requested state information, this message requests a change in
state. The parameter indicates the rate at which the pump draws water from the
water bottle.

The water bottle should not record the value of the pump’s status as it does not
own this value. If it needs the motor’s status in the future, it should request it from
the pump rather than using the (potentially obsolete) value passed to it previously.

In the above figure we assumed that the pump provided the service working?
which allows the process to start. For completeness, the pseudo-code of the
working? method for the pump object is:

def working?(self)
self.status = relay.working().
if self.status == "working" then

water_bottle.extract(self.status)

17.4 How Is an OO System Constructed? 185

This method is a lot simpler than the procedural program presented earlier. At no
point do we change the value of any variables that are not part of the pump,
although they may have been changed as a result of the messages being sent. Also,
it only shows us the part of the story that is directly relevant to the pump. This
means that it can be much more difficult to deduce the operation of an
object-oriented system merely by reading the source code. Some Python environ-
ments (such as the PyCharm IDE) alleviate this problem, to some extent, through
the use of sophisticated browsers.

17.5 Where Is the Structure in an OO Program?

People new to object orientation may be confused because they have lost one of the
key elements that they use to help them understand and structure a software system:
the main program body. This is because the objects and the interactions between
them are the cornerstone of the system. In many ways, the following figure shows
the object-oriented equivalent of a main program. This also highlights an important
feature of most object-oriented approaches: graphical illustrations. Many aspects of
object technology, for example object structure, class inheritance and message
chains, are most easily explained graphically.

Let us now consider the structure of our object-oriented system. It is dictated by
the messages that are sent between objects. That is, an object must possess a
reference to another object in order to send it a message. The resulting system
structure is illustrated below.

In Python, this structure is achieved by making instance variables reference the
appropriate objects. This is the structure which exists between the instances in the
system and does not relate to the classes, which act as templates for the instances.

186 17 Introduction to Object Orientation

We now consider the classes that create the instances. We could assume that
each object is an instance of an equivalent class (see above (a)). However, as has
already been noted, some of the classes bear a very strong resemblance. In par-
ticular, the fuse, the relay, the motor and the pump share a number of common
features. Table following table compares the features (instance variables and ser-
vices) of these objects.

From this table, the objects differ only in name. This suggests that they are all
instances of a common class such as Component. This class would possess an
additional instance variable, to simplify object identification.

If they are all instances of a common class, they must all behave in exactly the
same way. However, we want the pump to start the analysis process when it
receives the message working?, so it must possess a different definition of working?
from fuse and relay. In other ways it is very similar to fuse and relay, so they can be
instances of a class (say Component) and pump and motor can be instances of
classes that inherit from Component (but redefine working?). This is illustrated in
the previous figure (c). The full class diagram is presented in the Figure below.

fuse relay motor pump

instance variable state state state state

services working? working? working? working?

17.5 Where Is the Structure in an OO Program? 187

17.6 Further Reading

If you want to explore some of the ideas presented in this chapter in more detail
here are sone online references:

• https://en.wikipedia.org/wiki/Object-oriented_programming This is the wikipe-
dia entry for Object Oriented Programming and thus provides a quick reference
to much of the terminology and history of the subject and acts asa jumping off
point for other references.

• https://dev.to/charanrajgolla/beginners-guide—object-oriented-programming
which provides a light hearted look at the four concepts within object orienta-
tions namely abstraction, inheritance, polymorphism and Encapsulation.

• https://www.tutorialspoint.com/python/python_classes_objects.htm A Tutorials
Point course on Object Oriented Programming and Python.

188 17 Introduction to Object Orientation

https://en.wikipedia.org/wiki/Object-oriented_programming
https://dev.to/charanrajgolla/beginners-guide%e2%80%94object-oriented-programming
https://www.tutorialspoint.com/python/python_classes_objects.htm

Chapter 18
Python Classes

18.1 Introduction

In Python everything is an object and as such is an example of a type or class of
things. For example, integers are an example of the int class, real numbers are
examples of the float class etc. This is illustrated below for a number of different
types within Python:

This prints out a list of classes that define what it is to be an int, or a float or a
bool etc. in Python:

However, you are not just restricted to the built-in types (aka classes); it is also
possible to define user defined types (classes). These can be used to create your own
data structures, your own data types, your own applications etc.

This chapter considers the constructs in Python used to create user defined
classes.

print(type(4))
print(type(5.6))
print(type(True))
print(type('Ewan'))
print(type([1, 2, 3, 4]))

<class 'int'>
<class 'float'>
<class 'bool'>
<class 'str'>
<class 'list'>

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_18

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_18

18.2 Class Definitions

In Python, a class definition has the following format

Although you should note that you can mix the order of the definition of attri-
butes, and methods as required within a single class.

The following code is an example of a class definition:

Although this is not a hard and fast rule, it is common to define a class in a file
named after that class. For example, the above code would be stored in a file called
Person.py; this makes it easier to find the code associated with a class. This is
shown below using the PyCharm IDE:

class nameOfClass(SuperClass):
__init__
attributes
methods

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

190 18 Python Classes

The Person class possesses two attributes (or instance variables) called name
and age.

There is also a special method defined called __init__. This is an initialiser
(also known as a constructor) for the class. It indicates what data must be supplied
when an instance of thePerson class is created and how that data is stored internally.

In this case a name and an age must be supplied when an instance of the
Person class is created.

The values supplied will then be stored within an instance of the class (represented
by the special variable self) in instance variables/attributes self.name and
self.age. Note that the parameters to the __init__ method are local variables
andwill disappearwhen themethod terminates, butself.name andself.age are
instance variables and will exist for as long as the object is available.

Let us look for a moment at the special variable self. This is the first parameter
passed into any method. However, when a method is called we do not pass a value
for this parameter ourselves; Python does. It is used to represent the object within
which the method is executing. This provides the context within which the method
runs and allows the method to access the data held by the object. Thus self is the
object itself.

You may also be wondering about that term method. A method is the name
given to behaviour that is linked directly to the Person class; it is not a
free-standing function rather it is part of the definition of the class Person.

Historically, it comes from the language Smalltalk; this language was first used
to simulate a production plant and a method represented some behaviour that could
be used to simulate a change in the production line; it therefore represented a
method for making a change.

18.3 Creating Examples of the Class Person

New instances/objects (examples) of the class Person can be created by using the
name of the class and passing in the values to be used for the parameters of the
initialisation method (with the exception of the first parameter self which is pro-
vided automatically by Python).

For example, the following creates two instances of the class Person:

The variable p1 holds a reference to the instance or object of the class Person
whose attributes hold the values 'John' (for the name attribute) and 36 (for the age
attribute). In turn the variable p2 references an instance of the class Person whose
name and age attributes hold the values 'Phoebe' and 21. Thus in memory we have:

p1 = Person('John', 36)
p2 = Person('Phoebe', 21)

18.2 Class Definitions 191

The two variables reference separate instances or examples of the class
Person. They therefore respond to the same set of methods/operations and have
the same set of attributes (such as name and age); however, they have their own
values for those attributes (such as 'John' and 'Phoebe').

Each instance also has its own unique identifier—that shows that even if the
attribute values happen to be the same between two objects (for example there
happen to be two people called John who are both 36); they are still separate
instances of the given class. This identifier can be accessed using the id()
function, for example:

When this code is run p1 and p2 will generate different identifiers, for example:

Note that actual number generated may vary from that above but should still be
unique (within your program).

18.4 Be Careful with Assignment

Given that in the above example, p1 and p2 reference different instances of the
class Person; what happens when p1 or p2 are assigned to another variable? That
is, what happens in this case:

print('id(p1):', id(p1))
print('id(p2):', id(p2))

id(p1): 4547191808
id(p2): 4547191864

p1 = Person('John', 36)
px = p1

192 18 Python Classes

What does px reference? Actually, it makes a complete copy of the value held
by p1; however, p1 does not hold the instance of the class Person; it holds the
address of the object. It thus copies the address held in p1 into the variable px. This
means that both p1 and px now reference (point at) the same instance in memory;
we there have this:

This may not be obvious when you print p1 and px:

As this could just imply that the object has been copied:

However, if we print the unique identifier for what is referenced by p1 and px
then it becomes clear that it is the same instance of class Person:

which prints out

As can be seen the unique identifier is the same.
Of course, if p1 is subsequently assigned a different object (for example if we

ran p1 = p2) then this would have no effect on the value held in px; indeed, we
would now have:

print(p1)
print(px)

John is 36
John is 36

print('id(p1):', id(p1))
print('id(px):', id(px))

id(p1): 4326491864
id(px): 4326491864

18.4 Be Careful with Assignment 193

18.5 Printing Out Objects

If we now use the print() function to print the objects held by p1 and p2, we
will get what might at first glance appear to be a slightly odd result:

The output generated is

What this is showing is the name of the class (in this case Person) and a
hexadecimal number indicates where it is held in memory. Neither of which is
particularly useful and certainly doesn’t help us in knowing what information p1
and p2 are holding.

18.5.1 Accessing Object Attributes

We can access the attributes held by p1 and p2 using what is known as the dot
notation. This notation allows us to follow the variable holding the object with a dot
('.') and the attribute we are interested in access. For example, to access the name of
a person object we can use p1.name or for their age we can use p1.age:

print(p1)
print(p2)

<__main__.Person object at 0x10f08a400>
<__main__.Person object at 0x10f08a438>

print(p1.name, 'is', p1.age)
print(p2.name, 'is', p2.age)

194 18 Python Classes

The result of this is that we output

Which is rather more meaningful.
In fact, we can also update the attributes of an object directly, for example we

can write:

If we now run

then we will get

We will see in a later chapter (Python Properties) that we can restrict access to
these attributes by making them into properties.

18.5.2 Defining a Default String Representation

In the previous section we printed out information from the instances of class
Person by accessing the attributes name and age.

However, we now needed to know the internal structure of the class Person to
print out its details. That is, we need to know that there are attributes called name
and age available on this class.

It would be much more convenient if the object itself knew how to convert its
self into a string to be printed out!

In fact we can make the class Person do this by defining a method that can be
used to convert an object into a string for printing purposes.

This method is the __str__ method. The method is expected to return a string
which can be used to represent appropriate information about a class.

The signature of the method is

Methods that start with a double underbar ('__') are by convention considered
special in Python and we will see several of these methods later on in the book. For
the moment we will focus only on the __str__() method.

John is 36
Phoebe is 21

p1.name = 'Bob'
p1.age = 54

print(p1.name, 'is', p1.age)

Bob is 54

def __str__(self)

18.5 Printing Out Objects 195

We can add this method to our class Person and see how that affects the output
generated when using the print() function.

We will return a string from the __str__ method that provides and the name
and age of the person:

Note that in the __str__ method we access the name and age attributes using
the self parameter passed into the method by Python. Also note that it is nec-
essary to convert the age number attribute into a string. This is because the '+'
operator will do string concatenation unless one of the operands (one of the sides of
the '+') is a number; in which case it will try and do arithmetic addition which of
course will not work if the other operand is a string!

If we now try to print out p1 and p2:

The output generated is:

Which is much more useful.

18.6 Providing a Class Comment

It is common to provide a comment for a class defining what that class does, its
purpose and any important points to note about the class.

This can be done by providing a docstring for the class just after the class
declaration header; you can use the triple quotes string ('' '' ''…'' '' '') to
create multiple line docstrings, for example:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return self.name + ' is ' + str(self.age)

print(p1)
print(p2)

John is 36
Phoebe is 21

196 18 Python Classes

The docstring is accessible through the __doc__ attribute of the class. The
intention is to make information available to users of the class, even at runtime. It
can also be used by IDEs to provide information on a class.

18.7 Adding a Birthday Method

Let us now add some behaviour to the class Person. In the following example, we
define a method called birthday() that takes no parameters and increments the
age attribute by 1:

Note that again the first parameter passed into the method birthday is self.
This represents the instance (the example of the class Person) that this method
will be used with.

If we now create an instance of the class Person and call birthday() on it,
the age will be incremented by 1, for example:

class Person:
""" An example class to hold a

persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ' is ' + str(self.age)

class Person:
""" An example class to hold a persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ' is ' + str(self.age)

def birthday(self):
Happy birthday you were', self.age) '
+= 1

print (
self.age
print('You are now', self.age)

p3 = Person('Adam', 19)
print(p3)
p3.birthday()
print(p3)

18.6 Providing a Class Comment 197

When we run this code, we get

As you can see Adam is initially 19; but after his birthday he is now 20.

18.8 Defining Instance Methods

The birthday() method presented above is an example of what is known as an
instance method; that is, it is tied to an instance of the class. In that case the method
did not take any parameters, nor did it return any parameters; however, instance
methods can do both.

For example, let us assume that the Person class will also be used to calculate
how much someone should be paid. Let us also assume that the rate is £7.50 if you
are under 21 but that there is a supplement of 2.50 if you are 21 or over.

We could define an instance method that will take as input the number of hours
worked and return the amount someone should be paid:

We can invoke this method again using the dot notation, for example:

Running this shows that Phoebe (who is 21) will be paid £400 while Adam who
is only 19 will be paid only £300:

Adam is 19
Happy birthday you were 19
You are now 20
Adam is 20

class Person:
""" An example class to hold a persons name and age"""
...
def calculate_pay(self, hours_worked):

rate_of_pay = 7.50
if self.age >= 21:

 rate_of_pay += 2.50
return hours_worked * rate_of_pay

pay = p2.calculate_pay(40)
print('Pay', p2.name, pay)
pay = p3.calculate_pay(40)
print('Pay', p3.name, pay)

Pay Phoebe 400.0
Pay Adam 300.0

198 18 Python Classes

Another example of an instance method defined on the class Person is the
is_teenager() method. This method does not take a parameter, but it does
return a Boolean value depending upon the age attribute:

Note that the implicitly provided parameter 'self' is still provided even when
a method does not take a parameter.

18.9 Person Class Recap

Let us bring together the concepts that we have looked at so far in the final version
of the class Person.

This class exhibits several features we have seen already and expands a few
others:

class Person:
""" An example class to hold a persons name and age"""
#...
def is_teenager(self):

return self.age < 20

class Person:
""" An example class to hold a persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ' is ' + str(self.age)

def birthday(self):
Happy birthday you were', self.age) print ('

self.age += 1
print('You are now', self.age)

def calculate_pay(self, hours_worked):
rate_of_pay = 7.50
if self.age >= 21:

 rate_of_pay += 2.50
return hours_worked * rate_of_pay

def is_teenager(self):
return self.age < 20

18.8 Defining Instance Methods 199

• The class has a two parameter initialiser that takes a String and an Integer.
• It defines two attributes held by each of the instances of the class; name and age.
• It defines a __str__ method so that the details of the Person object can be

easily printed.
• It defines three methods birthday(), calculate_pay() and

is_teenager().
• The method birthday() does not return anything (i.e. it does not return a value)

and is comprised of three statements, two print statements and an assignment.
• is_teenager() returns aBoolean value (i.e. one that returnsTrue orFalse).

An example application using this class is given below:

This application creates an instance of the Person class using the values 'John'
and 36. It then prints out p1 using print (which will automatically call the
__str__() method on the instances passed to it). It then accesses the values of
name and age properties and prints these. Following this it calls the
is_teenager() method and prints the result returned. It then calls
the birthday() method. Finally, it assigns a new value to the age attribute. The
output from this application is given below:

18.10 The del Keyword

Having at one point created an object of some type (whether that is a bool, an int
or a user defined type such as Person) it may later be necessary to delete that
object. This can be done using the keyword del. This keyword is used to delete
objects which allows the memory they are using to be reclaimed and used by other
parts of your program.

p1 = Person('John', 36)
print(p1)
print (p1.name, 'is', p1.age)
print('p1.is_teenager', p1.is_teenager())
p1.birthday()
print(p1)
p1.age = 18
print(p1)

John is 36
John is 36
p1.is_teenager False
Happy birthday you were 36
You are now 37
John is 37
John is 18

200 18 Python Classes

For example, we can write

After the del statement the object held by p1 will no longer be available and
any attempt to reference it will generate an error.

You do not need to use del as setting p1 above to the None value (representing
nothingness) will have the same effect. In addition, if the above code was defined
within a function or a method then p1 will cease to exist once the function or
method terminates and this will again have the same effect as deleting the object
and freeing up the memory.

18.11 Automatic Memory Management

The creation and deletion of objects (and their associated memory) is managed by
the Python Memory Manager. Indeed, the provision of a memory manager (also
known as automatic memory management) is one of Python’s advantages when
compared to languages such as C and C++. It is not uncommon to hear C++
programmers complaining about spending many hours attempting to track down a
particularly awkward bug only to find it was a problem associated with memory
allocation or pointer manipulation. Similarly, a regular problem for C++ developers
is that of memory creep, which occurs when memory is allocated but is not freed
up. The application either uses all available memory or runs out of space and
produces a run time error.

Most of the problems associated with memory allocation in languages such as C
++ occur because programmers must not only concentrate on the (often complex)
application logic but also on memory management. They must ensure that they
allocate only the memory which is required and deallocate it when it is no longer
required. This may sound simple, but it is no mean feat in a large complex
application.

An interesting question to ask is “why do programmers have to manage memory
allocation?”. There are few programmers today who would expect to have to
manage the registers being used by their programs, although 30 or 40 years ago the
situation was very different. One answer to the memory management question,
often cited by those who like to manage their own memory, is that “it is more
efficient, you have more control, it is faster and leads to more compact code”. Of
course, if you wish to take these comments to their extreme, then we should all be
programming in assembler. This would enable us all to produce faster, more effi-
cient and more compact code than that produced by Python or languages such as
Java.

The point about high level languages, however, is that they are more productive,
introduce fewer errors, are more expressive and are efficient enough (given modern
computers and compiler technology). The memory management issue is somewhat

p1 = Person('John', 36)
print(p1)
del p1

18.10 The del Keyword 201

similar. If the system automatically handles the allocation and deallocation of
memory, then the programmer can concentrate on the application logic. This makes
the programmer more productive, removes problems due to poor memory man-
agement and, when implemented efficiently, can still provide acceptable
performance.

Python therefore provides automatic memory management. Essentially, it allo-
cates a portion of memory as and when required. When memory is short, it looks
for areas which are no longer referenced. These areas of memory are then freed up
(deallocated) so that they can be reallocated. This process is often referred to as
Garbage Collection.

18.12 Intrinsic Attributes

Every class (and every object) in Python has a set of intrinsic attributes set up by
the Python runtime system. Some of these intrinsic attributes are given below for
classes and objects.

Classes have the following intrinsic attributes:

• __name__ the name of the class
• __module__ the module (or library) from which it was loaded
• __bases__ a collection of its base classes (see inheritance later in this book)
• __dict__ a dictionary (a set of key-value pairs) containing all the attributes

(including methods)
• __doc__ the documentation string.

For objects:

• __class__ the name of the class of the object
• __dict__ a dictionary containing all the object’s attributes.

Notice that these intrinsic attributes all start and end with a double underbar—
this indicates their special status within Python.

An example of printing these attributes out for the class Person and a instance
of the class are shown below:

print('Class attributes')
print(Person.__name__)
print(Person.__module__)
print(Person.__doc__)
print(Person.__dict__)
print('Object attributes')
print(p1.__class__)
print(p1.__dict__)

202 18 Python Classes

The output from this is:

18.13 Online Resources

See the following for further information on Python classes:

• https://docs.python.org/3/tutorial/classes.html The Python Standard library
Class tutorial.

• https://www.tutorialspoint.com/python3/python_classes_objects.htm The tuto-
rials point tutorial on Python 3 classes.

18.14 Exercises

The aim of this exercise is to create a new class called Account.

1. Define a new class to represent a type of bank account.
2. When the class is instantiated you should provide the account number, the name

of the account holder, an opening balance and the type of account (which can be
a string representing 'current', 'deposit' or 'investment' etc.). This means that
there must be an __init__ method and you will need to store the data within
the object.

Class attributes
Person
__main__
 An example class to hold a persons name and age
{'__module__': '__main__', '__doc__': ' An example class to
hold a persons name and age', 'instance_count': 4,
'increment_instance_count': <classmethod object at
0x105955588>, 'static_function': <staticmethod object at
0x1059555c0>, '__init__': <function Person.__init__ at
0x10595d268>, '__str__': <function Person.__str__ at
0x10595d2f0>, 'birthday': <function Person.birthday at
0x10595d378>, 'calculate_pay': <function Person.calculate_pay
at 0x10595d400>, 'is_teenager': <function Person.is_teenager at
0x10595d488>, '__dict__': <attribute '__dict__' of 'Person'
objects>, '__weakref__': <attribute '__weakref__' of 'Person'
objects>}
Object attributes
<class '__main__.Person'>
{'name': 'John', 'age': 36}

18.12 Intrinsic Attributes 203

https://docs.python.org/3/tutorial/classes.html
https://www.tutorialspoint.com/python3/python_classes_objects.htm

3. Provide three instance methods for the Account; deposit(amount),
withdraw(amount) and get_balance(). The behaviour of these
methods should be as expected, deposit will increase the balance, withdraw will
decrease the balance and get_balance() returns the current balance.

4. Define a simple test application to verify the behaviour of your Account class.

It can be helpful to see how your class Account is expected to be used. For this
reason a simple test application for the Account is given below:

The following output illustrates what the result of running this test application
might look like:

acc1 = Account('123', 'John', 10.05, 'current')
acc2 = Account('345', 'John', 23.55, 'savings')
acc3 = Account('567', 'Phoebe', 12.45, 'investment')

print(acc1)
print(acc2)
print(acc3)

acc1.deposit(23.45)
acc1.withdraw(12.33)
print('balance:', acc1.get_balance())

Account[123] - John, current account = 10.05
Account[345] - John, savings account = 23.55
Account[567] - Phoebe, investment account = 12.45
balance: 21.17

204 18 Python Classes

Chapter 19
Class Side and Static Behaviour

19.1 Introduction

Python classes can hold data and behaviour that is not part of an instance or object;
instead they are part of the class.

This chapter introduces class side data, behaviour and static behaviour.

19.2 Class Side Data

In Python classes can also have attributes; these are referred to as class variables or
attributes (as opposed to instance variables or attributes).

In Python variables defined within the scope of the class, but outside of any
methods, are tied to the class rather than to any instance and are thus class variables.

For example, we can update the class Person to keep a count of how many
instances of the class are created:

class Person:
""" An example class to hold a persons name and age"""

instance_count = 0

def __init__(self, name, age):
Person.instance_count += 1
self.name = name
self.age = age

The variable instance_count is not part of an individual object, rather it is
part of the class and all instances of the class can access that shared variable by
prefixing it with the class name.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_19

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_19

Now each time a new instance of the class is created, the instance_count is
incremented, thus if we write:

p1 = Person('Jason', 36)
p2 = Person('Carol', 21)
p3 = Person('James', 19)
p4 = Person('Tom', 31)
print(Person.instance_count)

The output will be:

4

This is because 4 instances have been created and thus __init__() has been
run 4 times and instance_count has been incremented four times.

19.3 Class Side Methods

It is also possible to define behaviour that is linked to the class rather than an
individual object; this behaviour is defined in a class method.

Class methods are written in a similar manner to any other method but are
decorated with @classmethod and take a first parameter which represents the
class rather than an individual instance. This decoration is written before the
method declaration.

An example of a class method is shown below:

class Person:
""" An example class to hold a persons name and age"""
instance_count = 0

@classmethod
def increment_instance_count(cls):

cls.instance_count += 1

def __init__(self, name, age):
Person.increment_instance_count()
self.name = name
self.age = age

In this case the class method increments the instance_count variable; note
that the instance_count variable is accessed via the cls parameter passed into
the increment_instance_count method by Python. As this is a class
method you do not need to prefix the class attribute with the name of class; instead
the first parameter to the class method, cls, represents the class itself.

206 19 Class Side and Static Behaviour

The class method can be accessed by prefixing it with the name of the class and
using the dot notation to indicate which method to call. This is illustrated in the
body of the __init__() method.

19.3.1 Why Class-Side Methods?

It may at first seem unclear what should normally go in an instance method as
opposed to what should go in a class method. After all, they are both defined in the
class. However, it is important to remember that

• Instance methods define the behaviour of the instance or object.
• Class methods define the behaviour of the class.

Class-side methods should only perform one of the following roles:

• Instance creation This role is very important as it is how you can use a class as a
factory for objects and can help hide a whole load of set up and instantiation
work.

• Answering enquiries about the class This role can provide generally useful
objects, frequently derived from class variables. For example, they may return
the number of instances of this class that have been created.

• Instance management In this role, class-side methods control the number of
instances created. For example, a class may only allow a single instance of the
class to be created; this is termed a singleton class. Instance management
methods may also be used to access an instance (e.g. randomly or in a given
state).

• Examples Occasionally, class methods are used to provide helpful examples
which explain the operation of a class. This can be very good practice.

• Testing Class-side methods can be used to support the testing of an instance of a
class. You can use them to create an instance, perform an operation and compare
the result with a known value. If the values are different, the method can report
an error. This is a very useful way of providing regression tests.

• Support for one of the above roles.

Any other tasks should be performed by an instance method.

19.4 Static Methods

There is one more type of method that can be defined on a class; these are static
methods.

19.3 Class Side Methods 207

Static methods are defined within a class but are not tied to either the class nor
any instance of the class; they do not receive the special first parameter representing
either the class (cls for class methods) or the instances (self for instance methods).

They are in effect, the same as free standing functions but are defined within a
class often for convenience or to provide a way to group such functions together.

A staticmethod is a method that is decorated with the @staticmethod decorator.
An example of a static method is given below:

class Person:

@staticmethod
def static_function():

print('Static method')

Static methods are invoked via the name of the class they are defined in, for
example:

Person.static_function()

A note for Java and C# programmers; in both Java and C# the term class side
and static are used interchangeably (not helped by the use of the keyword static for
these methods). However, in both cases those methods are the equivalent of class
side methods in Python. In Python class methods and static methods are two very,
very different things—do not use these terms interchangeably.

19.5 Hints

There are a range of special methods available in Python on a class.
All of these special methods start and end with a double underbars ('__').
In general, in Python anything that starts and ends with these double underbars is

considered special and so care should be taken when using them.
You should never name one of your own methods or functions __<some-

thing>__ unless you intend to (re)define some default behaviour.

19.6 Online Resources

There is surprisingly little information available on Python’s static and class
methods (which in part explains why many developers are confused by them),
however the following are available:

208 19 Class Side and Static Behaviour

• https://python-reference.readthedocs.io/en/latest/docs/functions/staticmethod.
html documentation on static methods.

• https://python-reference.readthedocs.io/en/latest/docs/functions/classmethod.
html?highlight=classmethod documentation on class methods.

• https://www.tutorialspoint.com/class-method-vs-static-method-in-python tuto-
rial on class methods versus static methods.

19.7 Exercises

The aim of this exercise is to add housekeeping style methods to the Account class.
You should follow these steps:

1. We want to allow the Account class from the last chapter to keep track of the
number of instances of the class that have been created.

2. Print out a message each time a new instance of the Account class is created.
3. Print out the number of accounts created at the end of the previous test program.

For example add the following two statements to the end of the program:

print('Number of Account instances created:',
Account.instance_count)

19.6 Online Resources 209

https://python-reference.readthedocs.io/en/latest/docs/functions/staticmethod.html
https://python-reference.readthedocs.io/en/latest/docs/functions/staticmethod.html
https://python-reference.readthedocs.io/en/latest/docs/functions/classmethod.html%3fhighlight%3dclassmethod
https://python-reference.readthedocs.io/en/latest/docs/functions/classmethod.html%3fhighlight%3dclassmethod
https://www.tutorialspoint.com/class-method-vs-static-method-in-python

Chapter 20
Class Inheritance

20.1 Introduction

Inheritance is a core feature of Object-Oriented Programming. It allows one class to
inherit data or behaviour from another class and is one of the key ways in which
reuse is enabled within classes.

This chapter introduces inheritance between classes in Python.

20.2 What Is Inheritance?

Inheritance allows features defined in one class to be inherited and reused in the
definition of another class. For example, a Person class might have the attributes
name and age. It might also have behaviour associated with a Person such as
birthday().

We might then decide that we want to have another class Employee and that
employees also have a name and an age and will have birthdays. However, in
addition an Employee may have an employee Id attribute and a
calculate_pay() behaviour.

At this point we could duplicate the definition of the name and age attributes
and the birthday() behaviour in the class Employee (for example by cutting
and pasting the code between the two classes).

However, this is not only inefficient; it may also cause problems in the future.
For example we may realise that there is a problem or bug in the implementation of
birthday() and may correct it in the class Person; however, we may forget to
apply the same fix to the class Employee.

In general, in software design and development it is considered best practice to
define something once and to reuse that something when required.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_20

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_20

In an object-oriented system we can achieve the reuse of data or behaviour via
inheritance. That is one class (in this case the Employee class) can inherit features
from another class (in this case Person). This is shown pictorially below:

In this diagram the Employee class is shown as inheriting from the Person class.
Thismeans that theEmployee class obtains all the data and behaviour of thePerson
class. It is therefore as though the Employee class has defined three attributes name,
age and id and two methods birthday() and calculate_pay().

A class that is defined as extending a parent class has the following syntax:

Note that the parent class is specified by providing the name of that class in
round brackets after the name of the new (child) class.

We can define the class Person in Python as before:

We could now define the class Employee as being a class whose definition
builds on (or inherits from) the class Person:

class SubClassName(BaseClassName):
class-body

class Person:

def __init__(self, name, age):
self.name = name
self.age = age

def birthday(self):
print('Happy birthday you were', self.age)
self.age += 1
print('You are now', self.age)

212 20 Class Inheritance

Here we do several things:

1. The class is called Employee but it extends Person. This is indicated by
including the name of the class being inherited in parentheses after the name of
the class being defined (e.g. Employee(Person)) in the class declaration.

2. Inside the __init__ method we reference the __init__() method
defined in the class Person and used to initialise instances of that class (via the
super().__init__() reference. This allows whatever initialisation is
required for Person to happen. This is called from within the Employee
class’s __init__() which then allows any initialisation required by the
Employee to occur. Note that the call to the super().__init__() ini-
tialiser can come anywhere within the Employee.__init__() method; but
by convention it comes first to ensure that whatever the Person class does
during initialisation does not over write what happens in the Employee class.

3. All instances of the class Person have a name, and age and have the
behaviour birthday().

4. All instances of the class Employee have a name, and age and an id and have
the behaviours birthday() and calculate_pay(house_worked).

5. The method calculate_pay() defined in the Employee class can access
the attributes name and age just as it can access the attribute id. In fact, it uses
the employee’s age to determine the rate of pay to apply.

We can go further, and we can subclass Employee, for example with the class
SalesPerson:

class Employee(Person):
def __init__(self, name, age, id):

super().__init__(name, age)
self.id = id

def calculate_pay(self, hours_worked):
rate_of_pay = 7.50
if self.age >= 21:

rate_of_pay += 2.50
return hours_worked * rate_of_pay

class SalesPerson(Employee):
def __init__(self, name, age, id, region, sales):

super().__init__(name, age, id)
self.region = region
self.sales = sales

def bonus(self):
return self.sales * 0.5

20.2 What Is Inheritance? 213

Now we can say that the class SalesPerson has a name, an age and an id
as well as a region and a sales total. It also has the methods birthday(),
calculate_pay(hourse_worked) and bonus().

In this case the SalesPerson.__init__() method calls the Employee.
__init__() method as that is the next class up the hierarchy and thus we want to
run that classes initialisation behaviour before we set up the SalesPerson class
(which of course in turn runs the Person classes initialisation behaviour).

We can now write code such as:

With the output being:

It is important to note that we have not done anything to the class Person by
defining Employee and SalesPerson; that is it is not affected by those class
definitions. Thus, a Person does not have an employee id. Similarly, neither an
Employee nor a Person have a region or a sales total.

print('Person')
p = Person('John', 54)
print(p)
print('-' * 25)

print('Employee')
e = Employee('Denise', 51, 7468)
e.birthday()
print('e.calculate_pay(40):', e.calculate_pay(40))
print('-' * 25)

print('SalesPerson')
s = SalesPerson('Phoebe', 21, 4712, 'UK', 30000.0)
s.birthday()
print('s.calculate_pay(40):', s.calculate_pay(40))
print('s.bonus():', s.bonus())

Person
John is 54

Employee
Happy birthday you were 51
You are now 52
e.calculate_pay(40): 400.0

SalesPerson
Happy birthday you were 21
You are now 22
s.calculate_pay(40): 400.0
s.bonus(): 15000.0

214 20 Class Inheritance

In terms of behaviour, instances of all three classes can run the method
birthday(), but

• only Employee and SalesPerson objects can run the method calcul-
cate_pay() and

• only SalesPerson objects can run the method bonus().

20.3 Terminology Around Inheritance

The following terminology is commonly used with inheritance in most object
oriented languages including Python:

ClassA class defines a combination of data and procedures that operate on that data.
Subclass A subclass is a class that inherits from another class. For example, an

Employee might inherit from a class Person. Subclasses are, of course, classes
in their own right. Any class can have any number of subclasses.

Superclass A superclass is the parent of a class. It is the class from which the
current class inherits. For example, Person might be the superclass of
Employee. In Python, a class can have any number of superclasses.

Single or multiple inheritance Single and multiple inheritance refer to the
number of super classes from which a class can inherit. For example, Java is a
single inheritance system, in which a class can only inherit from one class. Python
by contrast is a multiple inheritance system in which a class can inherit from one or
more classes.

Note that a set of classes, involved in an inheritance hierarchy, such as those
shown above, are often named after the class at the root (top) of the hierarchy; in
this case it would make these classes part of the Person class hierarchy.

20.2 What Is Inheritance? 215

Types of Hierarchy
In most object-oriented systems there are two types of hierarchy; one refers to
inheritance (whether single or multiple) and the other refers to instantiation. The
inheritance hierarchy has already been described. It is the way in which one class
inherits features from a superclass.

The instantiation hierarchy relates to instances or objects rather than classes and
is important during the execution of the object.

There are two types of instance relationships: one indicates a part-of relation-
ship, while the other relates to a using relationship (it is referred to as an is-
a relationship). This is illustrated below:

The difference between an is-a relationship and a part-of relationship is often
confusing for new programmers (and sometimes for those who are experienced in
non object oriented languages). The above figure illustrates that a Student is-a type
of Person whereas an Engine is part-of a Car. It does not make sense to say that a
student is part-of a person or that an engine is-a type of car!

In Python, inheritance relationships are implemented by the sub-classing
mechanism. In contrast, part-of relationships are implemented using instance
attributes in Python.

The problem with classes, inheritance and is-a relationships is that on the surface
they appear to capture a similar concept. In the following figure the hierarchies all
capture some aspect of the use of the phrase is-a. However, they are all intended to
capture a different relationship.

The confusion is due to the fact that in modern English we tend to overuse the
term is-a. For example, in English we can say that an Employee is a type of Person
or that Andrew is a Person; both are semantically correct. However, in Python
classes such as Employee and Person and an object such as Andrew are different
things. We can distinguish between the different types of relationship by being
more precise about our definitions in terms of a programming language, such as
Python.

216 20 Class Inheritance

20.4 The Class Object and Inheritance

Every class in Python extends one or more superclasses. This is true even of the
class Person shown below:

This is because if you do not specify a superclass explicitly Python automatically
adds in the class object as a parent class. Thus the above is exactly the same as the
following listing which explicitly lists the class object as the superclass of Person:

Both listings above define a class called Person that extends the class object.
In fact, between Python 2.2 and Python 3 it was required to use the long hand

form to ensure that the new style classes were being used (as opposed to an older

class Person:
def __init__(self, name, age):
self.name = name
self.age = age

class Person(object):
def __init__(self, name, age):

self.name = name
self.age = age

20.4 The Class Object and Inheritance 217

way in which classes were defined pre Python 2.2). As such it is common to find
that Python developers still use the long hand (explicit) form when defining classes
that directly extend object.

The fact that all class eventually inherit from the class object means that
behaviour defined in object is available for all classes everywhere.

20.5 The Built-in Object Class

The class object is the base (root) class for all classes in Python. It has methods that are
therefore available in all Python objects. It defines a common set of special methods
and intrinsic attributes. The methods include the special methods __str__(),
__init()__, __eq__() (equals) and __hash__() (hash method). It also
defines attributes such as __class__, __dict__, __doc__ and __module__.

20.6 Purpose of Subclasses

Subclasses are used to refine the behaviour and data structures of a superclass.
A parent class may define some generic/shared attributes and methods; these can

then be inherited and reused by several other (sub) classes which add subclass
specific attributes and behaviour.

In fact, there are only a small number of things that a subclass should do relative
to its parent or super class. If a proposed subclass does not do any of these then your
selected parent class is not the most appropriate super class to use.

A subclass should modify the behaviour of its parent class or extend the data
held by its parent class. This modification should refine the class in one or more of
these ways:

• Changes to the external protocol or interface of the class, that is it should extend
the set of methods or attributes provided by the class.

• Changes in the implementation of the methods; i.e. the way in which the
behaviour provided by the class are implemented.

• Additional behaviour that references inherited behaviour.

If a subclass does not provide one or more of the above, then it is incorrectly
placed. For example, if a subclass implements a set of new methods, but does not
refer to the attributes or methods of the parent class, then the class is not really a
subclass of the parent (it does not extend it).

218 20 Class Inheritance

As an example, consider the class hierarchy illustrated above. A generic root class
has been defined. This class defines a Conveyance which has doors, fuel (both with
default values) and a method, start_up(), that starts the engine of the conveyance.
Three subclasses of Conveyance have also been defined: Dinghy, Car and Tank.
Two of these subclasses are appropriate, but one should probably not inherit from
Conveyance. We shall consider each in turn to determine their suitability.

• The class Tank overrides the number of doors inherited, uses the start_up
method within the method move, and provides a new attribute. It therefore
matches all three of our criteria.

• Similarly, the class Car overrides the number of doors and uses the method
start_up(). It also uses the instance variable fuel within a new method
accelerate(). It also, therefore, matches our criteria.

• The class Dinghy defines a new attribute sails and a new method
set_sail(). As such, it does not use any of the features inherited from
Conveyance. However, we might say that it has extended Conveyance by
providing this attribute and method. We must then consider the features pro-
vided by Conveyance. We can ask ourselves whether they make sense within
the context of Dinghy. If we assume that a dinghy is a small sail-powered boat,
with no cabin and no engine, then nothing inherited from Conveyance is
useful. In this case, it is likely that Conveyance is misnamed, as it defines
some sort of a motor vehicle, and the Dinghy class should not have extended it.

20.7 Overriding Methods

Overriding occurs when a method is defined in a class (for example, Person) and
also in one of its subclasses (for example, Employee). It means that instances of
Person and Employee both respond to requests for this method to be run but
each has their own implementation of the method.

20.6 Purpose of Subclasses 219

For example, let us assume that we define the method __str__() in these
classes (so that we have a string representation of these objects to use with the
print function). The pseudo code definition of this in Person might be:

In Employee, it might be defined as:

The method in Employee replaces the version in Person for all instances of
Employee. If we ask an instance of Employee for the result of __str__(), we
get the string ‘Employee(<some_id>)’. If you are confused, think of it this way:

If you ask an object to perform some operation, then, to determine which version of the
method is run, look in the class used to create the instance. If the method is not defined
there, look in the class’s parent. Keep doing this until you find a method which implements
the operation requested. This is the version which is used.

As a concrete example, see the classes Person and Employee below; in
which the __str__() method in Person is overridden in Employee.

Instances of these classes will both be convertible to a string using __str__()
but the version used by instances of Employee will differ from that used with
instances of Person, for example:

def __str__(self):
return 'Person ' + self.name + ' is ' + str(self.age)

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return self.name + ' is ' + str(self.age)

class Employee(Person):
def __init__(self, name, age, id):

super().__init__(name, age)
self.id = id

def __str__(self):
return self.name + ' is ' + str(self.age) + ' - i

str(self.id) + ')'

def __str__(self):
return 'Employee(' + str(self.id) + ')'

220 20 Class Inheritance

Generates as output:

As can be seen from this the Employee class prints the name, age and id of
the Employee while the Person class only prints the name and age.

20.8 Extending Superclass Methods

However, in the previous section we had to duplicated the code in Person down
in Employee so that we could convert the name and age attributes into strings.

However we can avoid this duplication by invoking the parent class’smethod from
within the child class version (as we in fact did for the __init__() initialiser).

For example:

In this version of the code the Employee classes version of the __str__()
method first calls the parent classes version of this method and then adds the
location information to the string returned from that. This means that we only have
one location that converts name and age into a string.

p = Person('John', 54)
print(p)
e = Employee('Denise', 51, 1234)
print(e)

John is 54
Denise is 51 - id(1234)

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return self.name + ' is ' + str(self.age)

class Employee(Person):
def __init__(self, name, age, id):

super().__init__(name, age)
self.id = id

def __str__(self):
return super().__str__() + '-id(' + str(self.id) + ')'

20.7 Overriding Methods 221

The output from the code

remains exactly the same:

20.9 Inheritance Oriented Naming Conventions

There are two naming conventions to be aware of with respect to Python classes
and inheritance. These are that

• Single underbar convention. Methods or instance variables/attributes (those
accessed via self) whose names start with a single under bar are considered to
be protected that is they are private to the class but can be accessed from any
subclass. Their scope is thus the class and any subclasses (either direct sub-
classes or any level of sub subclass).

• Double underbar convention. Method or instance variables/attributes (those
accessed via self) whose names start with a double under bar should be
considered private to that class and should not be called from outside of the
class. This includes any subclasses; private means private to the class and only
to that class.

Any identifier of the form __somename (at least two leading underscores and at
most one trailing underscore) is textually replaced with _classname__somename,
where classname is the current class name with leading underscore(s) stripped.

Python does what is called name mangling to provide some support for methods
that start with a double under bar. This mangling is done without regard to the
syntactic position of the identifier, so it can be used to define class-private instance
and class variables, methods, variables stored in globals, and even variables stored
in instances.

p = Person('John', 54)
print(p)
e = Employee('Denise', 51, 1234)
print(e)

John is 54
Denise is 51 - id(1234)

222 20 Class Inheritance

20.10 Python and Multiple Inheritance

Python supports the idea of multiple inheritance; that is a class can inherit from one
or more other classes (many object-oriented languages limit inheritance to a single
class such as Java and C#).

This idea is illustrated by the following diagram:

In this case the class ToyCar inherits from the class Car and the class Toy. In
turn the Car and Toy classes inherit from the (default) base class object.

The syntax for defining multiple inheritance in Python allows multiple super-
classes to be listed in the parent class list (defined by the brackets following the
class name). Each parent class is separated by a comma. The syntax is thus:

For example:

class SubClassName(BaseClassName1, BaseClassName2, …
BaseClassNameN):

class-body

class Car:
""" Car """

class Toy:
""" Toy """

class ToyCar(Car, Toy):
""" A Toy Car """

20.10 Python and Multiple Inheritance 223

We can say that the class ToyCar inherits all the attributes (data) and methods
(behaviour) defined in classes Car, Toy and object.

One of the fundamental questions that this raises is how is inheritance of
behaviour managed within a multiple inheritance hierarchy. The challenge that
multiple inheritance possesses is illustrated by adding a couple of methods to the
class hierarchy we are looking at. In this example we have added the method
move() to both the class Car and the class Toy:

The question here is which version of the method move() will be run when an
instance of the ToyCar class is instantiated and we call toy_car.move()?

This illustrates (a simple version of) the so-called “diamond inheritance”
problem.

The issue is that with multiple base classes from which attributes or methods
may be inherited, there is often ambiguity that must be resolved. Here, when we
create an instance of the class ToyCar, and call the move() method, does this
invoke the one inherited from the Car base class or from the Toy base class?

The answer is that in Python 3, a breadth first search is used to find methods
defined in parent classes; this means that when the method move() is called on
ToyCar, it would first look in Car; it would then only look in Toy if it could not
find a method move() in Car. If it cannot find the method in either Car or Toy it
would then look in the class object.

As a result, it will find the version in Car first and use that version.

224 20 Class Inheritance

This is shown below:

The output of this is

However, if we alter the order in which the ToyCar inherits from the parent
classes such that we swap Toy and Car around:

Then the Toy class is searched first and the output is changed to Toy – move().
This shows that the order in which a class inherits from multiple classes is

significant In Python.

20.11 Multiple Inheritance Considered Harmful

At first sight multiple inheritance in Python might appear to be particularly useful;
after all it allows you to mix together multiple concepts into a single class very
easily and quickly. This is certainly true and it can be a very flexible feature if used
with care. However, the word care is used here and should be noted.

Multiple inheritance can also be very dangerous and is quiet a contentious topic
for programmers and for those designing programming languages. Few things in
programming are inherently bad but multiple inheritance can result in a level of
complexity (and unexpected behaviour) that can tie developers in knots.

Part of the problem highlighted by those protesting against multiple inheritance
is down to the increased complexity and ambiguity that can occur with multiple
inheritance trees that may interconnect between the different classes. One way to

class Car:
def move(self):

print('Car - move()')

class Toy:
def move(self):

print('Toy - move()')

class ToyCar(Car, Toy):
""" A Toy Car """

tc = ToyCar()
tc.move()

Car - move()

class ToyCar(Toy, Car):
""" A Toy Car """

20.10 Python and Multiple Inheritance 225

think of this is that if a class inherits from multiple classes, then that class may have
the same classes in the class hierarchy multiple times, this can make it hard to
determine which version of a method may execute and this may allow bugs to go
untouched or indeed introduce expected issues due to different interactions between
methods. This is exacerbated when inherited methods call super() using the
same method name such as:

The following diagram presents a somewhat convoluted multiple inheritance
example where the class names A-X have been used so that there is no semantic
meaning attributable to the inherited classes. Different classes define several
common methods (print_info() and get_data()).

All the classes in the hierarchy define a __str__() method that returns the
class name; if the class extends a class other than object, then the super version of
__str__() is also invoked:

The code for this class hierarchy is given at the end of the section to avoid
breaking up the flow.

We can now use the X class in a simple Python program:

def get_data(self):
return super().get_data() + 'FData'

226 20 Class Inheritance

The question now is what is the output from this program?
What is the string printed to represent X? What is printed out as a result of

calling the method print_info()?
The output from this simple code is:

However, if we change the order of inheritance for the class ‘H’ from (F, G) to
(G, F) then the output changes:

This is of course because the search order, back up through the class hierarchy, is
now different.

Note that this change came about not because of a modification we made to the
class we instantiated (that is the class X), but from the order of the classes that one
of its parents inherited from. This can be one of the unintended consequences of
multiple inheritance; changing something in the multiple class hierarchy at one
level can break some behaviour further down the hierarchy in a class that is
unknown to the developer.

Also note that the class inheritance diagram we presented earlier did not state
what order the parent classes were listed in for any specific class (this was left to the
discretion of the programmer).

Of course Python is not ambiguous nor does it get confused; it is the human
developer that can get confused and be surprised with the behaviour that is then
presented. Indeed, if you try and define a class hierarchy which Python cannot
resolve into a consistent structure it will tell you so, for example:

x = X()
print('print(x):', x)
print('-' * 25)
x.print_info()

print(x): CGFHJX

HCDataGDataFData

print(x): CFGHJX

HCDataFDataGData

Traceback (most recent call last):
File "multiple_inheritance_example.py", line 65, in <mo
class Z(H, J):

TypeError: Cannot create a consistent method resolution
order (MRO) for bases F, G

20.11 Multiple Inheritance Considered Harmful 227

What can be confusing is that Python’s ability to produce a consistent structure
can also be dependent on the order of inheritance. For example, if we modify the
classes that ‘X’ inherits from such that the order is I and J:

Then this compiles and can be used with the previous code (albeit with different
output):

However, if we change the order of the parent classes such that we swap I and J:

We now get a TypeError exception raised:

Therefore, in general care needs to be taken when utilising multiple inheritance;
but that is not to say that such situations are not useful. In some cases you want a
class to inherit from parents that have complete different hierarchies and are
completely separate from each other; in such situations multiple inheritance can be
very useful—these so called orthogonal behaviours are one of the best uses of
multiple inheritance and should not be ignored merely due to concerns of increased
complexity.

The class definitions used for the multiple inheritance class hierarchy are given
below:

class X(I, J):
def __str__(self):

return super().__str__() + 'X'

print(x): AIX

A

class X(J, I):
def __str__(self):

return super().__str__() + 'X'

Traceback (most recent call last):
File "multiple_inheritance_example.py", line 73, in <module>
class X(J, I):

TypeError: Cannot create a consistent method resolution
order (MRO) for bases J, I

228 20 Class Inheritance

class A:
def __str__(self):

return 'A'
def print_info(self):

print('A')

class B:
def __str__(self):

return 'B'

class C:
def __str__(self):

return 'C'
def get_data(self):

return 'CData'

class D:
def __str__(self):

return 'D'
def print_info(self):

print('D')

class E:
def __str__(self):

return 'E'
def print_info(self):

print('E')

class F(C, D, E):
def __str__(self):

return super().__str__() + 'F'
def get_data(self):

return super().get_data() + 'FData'
def print_info(self):

print('F' + self.get_data())

class G(C, D, E):
def __str__(self):

return super().__str__() + 'G'
def get_data(self):

return super().get_data() + 'GData'

class H(F, G):
def __str__(self):

return super().__str__() + 'H'
def print_info(self):

print('H' + self.get_data())

20.11 Multiple Inheritance Considered Harmful 229

20.12 Summary

To recap on the concept of inheritance. Inheritance is supported between classes in
Python. For example, a class can extend (subclass) another class or a set of classes.
A subclass inherits all the methods and attributes defined for the parent class(es) but
may override these in the subclass.

In terms of the inheritance we say:

• A subclass inherits from a super class.
• A subclass obtains all code and attributes from the super class.
• A subclass can add new code and attributes.
• A subclass can override inherited code and attributes.
• A subclass can invoke inherited behaviour or access inherited attributes.

20.13 Online Resources

There are many resources available online relating to class inheritance including:

• https://docs.python.org/3/tutorial/classes.html#inheritance The Python software
foundation tutorial on class inheritance.

• https://en.wikipedia.org/wiki/Multiple_inheritance which provides a discussion
on multiple inheritance and the potential challenges it can introduce.

class J(H):
def __str__(self):

return super().__str__() + 'J'

class I(A, J):
def __str__(self):

return super().__str__() + 'I'

class X(J, H, B):
def __str__(self):

return super().__str__() + 'X'

230 20 Class Inheritance

https://docs.python.org/3/tutorial/classes.html#inheritance
https://en.wikipedia.org/wiki/Multiple_inheritance

20.14 Exercises

The aim of these exercises is to extend the Account class you have been devel-
oping from the last two chapters by providing DepositAccount,
CurrentAccount and InvestmentAccount subclasses.

Each of the classes should extend the Account class by:

• CurrentAccount adding an overdraft limit as well as redefining the with-
draw method.

• DepositAccount by adding an interest rate.
• InvestmentAccount by adding an investment type attribute.

These features are discussed below:
The CurrentAccount class can have an overdraft_limit attribute. This

can be set when an instance of a class is created and altered during the lifetime of
the object. The overdraft limit should be included in the __str__() method used
to convert the account into a string.

The CurrentAccount withdraw() method should verify that the balance
never goes below the overdraft limit. If it does then the withdraw() method
should not reduce the balance instead it should print out a warning message.

The DepositAccount should have an interest rate associated with it which is
included when the account is converted to a string.

The InvestmentAccount will have a investment_type attribute which
can hold a string such as ‘safe’ or ‘high risk’.

This also means that it is no longer necessary to pass the type of account as a
parameter—it is implicit in the type of class being created.

For example, given this code snippet:

CurrentAccount(account_number, account_holder,
opening_balance, overdraft_limit)
acc1 = CurrentAccount('123', 'John', 10.05, 100.0)
DepositAccount(account_number, account_holder,
opening_balance,
interest_rate)
acc2 = DepositAccount('345', 'John', 23.55, 0.5)
InvestmentAccount(account_number, account_holder,
opening_balance,
investment_type)
acc3 = InvestmentAccount('567', 'Phoebe', 12.45, 'high risk')

acc1.deposit(23.45)
acc1.withdraw(12.33)

print('balance:', acc1.get_balance())
acc1.withdraw(300.00)
print('balance:', acc1.get_balance())

20.14 Exercises 231

Then the output might be:

balance: 21.17
Withdrawal would exceed your overdraft limit
balance: 21.17

232 20 Class Inheritance

Chapter 21
Why Bother with Object Orientation?

21.1 Introduction

The pervious four chapters have introduced the basic concepts behind object ori-
entation, the terminology and explored some of the motivation. This chapter looks
at how object orientation addresses some of the issues that have been raised with
procedural languages. To do this it looks at how a small extract of a program might
be written in a language such as C, considers the problems faced by the C developer
and then looks at how the same functionality might be achieved in an
object-oriented language such as Python. Do not worry too much about the syntax
you will be presented with; it is mostly a form of pseudo code and it should not
detract from the legibility of the examples.

21.2 The Procedural Approach

Consider the following example:

This defines a data structure for recording dates. There are similar structures in
many procedural languages such as C, Ada and Pascal.

So, what is wrong with a structure such as this? Nothing, apart from the issue of
visibility? That is, what can see this structure and what can update the contents of

record Date {
int day
int month
int year

}

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_21

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_21

the structure? Any code can directly access and modify its contents. Is this prob-
lem? It could be, for example, some code could set the day to −1, the month to 13
and the year to 9999.

As far as the structure is concerned the information it now holds is fine (that is
day = 01, month = 13, year = 9999). This is because the structure only knows it is
supposed to hold integers; it knows nothing about dates per se. This is not sur-
prising, it is only data.

21.2.1 Procedures for the Data Structure

This data is associated with procedures that perform operations on it. These
operations might be to

• test whether the date represents a date at a weekend or part of the working week.
• change the date (in which case the procedure may also check to see that the date

is a valid one).

For example:

How do we know that these procedures are related to the date structure we have
just looked at? By the naming conventions of the procedures and by the fact that
one of the parameters is a data (record).

The problem is that these procedures are not limited in what they can do to the
data (for example the setDay procedure might have been implemented by a Brit
who assumes that the data order is day, month and year. However, it may be used
by an American who assumes that date order is month, day, year. Thus the mean of
set_day(date, 9, 3, 1946) will be interpreted very differently. The
American views this as the 3rd of September 1946, while the Brit views this as the
9th of March, 1946. In either case, there is nothing to stop the date record being
updated with both versions. Obviously the set_day() procedure might check the
new date to see it was legal, but then again it might not. The problem is that the data
is naked and has no defense against what these procedures do to it. Indeed, it has no
defense against what any procedures that can access it, may do to it.

is_day_of_week(date)
in_month(date, 2)
next_day(date)
set_day(date, 9, 3, 1946)

234 21 Why Bother with Object Orientation?

21.2.2 Packages

One possibility is of course to use a package construct. In languages such as Ada,
packages are common place and are used as a way of organising code and
restricting visibility. For example,

The package construct provides some ring fencing of the data structure and a
grouping of the data structure with the associated procedures. In order to use this
package a developer must import the package. They can then access the procedures
and work with data of the specified type (in this case Date).

There can even be data that is hidden from the user within a private part. This
therefore increases the ability to encapsulate the data (hide the data) from unwel-
come attention.

21.3 Does Object Orientation Do Any Better?

This is an important question “Does object orientation do any better?” than the
procedural approach described above? We will first consider clases then
inheritance.

21.3.1 Packages Versus Classes

It has been argued (to me at least) that an Ada package is just like a class. It
provides a template from which you can create executable code, it provides a wall
around your data with well-defined gateways etc. However, there are a number of
very significant differences between packages and classes.

Firstly, packages tend to be larger (at least conceptually) units than classes. For
example, the TextIO package in Ada is essentially a library of textual IO facilities,
rather than a single concept such as the class string in Python. Thus packages are
not used to encapsulate a single small concept such as string or Date, but rather
a whole set of related concepts (as indeed they are used in Python). Thus, a class is
a finer level of granularity than a package.

package Dates is
 type Date is
 function is_day_of_week(d: Date) return Boolean;
 function in_month(d: Date, m: Integer) return

Boolean;
...

21.2 The Procedural Approach 235

Secondly, packages still provide a relatively loose association between the data
and the procedures. An Ada package may actually deal with very many data
structures with a wide range of methods. The data and the methods are related
primarily via the related set of concepts represented by the package. In contrast a
class tends to closely relate data and methods in a single concept. Indeed, one of the
guidelines relating to good class design is that if a class represents more than one
concept, then you should split it into two classes.

Thus, this close association between data and code means that the resulting
concept is more than just a data structure (it is closer to a concrete realisation of
concept). For example:

Anyone using an instance of Date now gets an object which can tell you
whether it is a day of the week or not and can hold the appropriate data. Note that
the is_day_of_week() method takes no parameters other than self, it doesn’t
need to as it and the date information are part of the same thing. This means that a
user of a Date object will never need to get their hands on the actual data holding
the date (i.e. the integers day, month and year). Instead, they should go via the
methods. This may only seem a small step, but it is a significant one, nothing
outside the object should need to access the data within the object. In contrast the
data structure in the procedural version, is not only held separately to the proce-
dures, the values for day, month or year it must also be modified directly.

For example, compare the differences between an excerpt from a program to
manipulate dates (using a procedural programming language):

class Date:

def __init__(self, day, month, year):
 self.day = day
 self.month = month
 self.year = year

def is_day_of_week(self):
 """Check if date is a week day"""
 # ... To be defined

def in_month(self, month_index):
 """Check if month is in month_index"""
 return self.month == month_index

236 21 Why Bother with Object Orientation?

Note that it was necessary to first create the data and then to set the fields in the
data structure. Here we have been good and have used the interface procedures to
do this. Once we had the data set up we could then call methods such as
IsDayOfWeek and InMonth on that data.

In contrast the Python code uses a constructor to pass in the appropriate ini-
tialisation information. How this is initialised internally is hidden from the user of
the class Date. We then call method such as is_day_of_week() and
is_month(12) directly on the object date.

The thing to think about here is where would code be defined?

21.3.2 Inheritance

Inheritance is a key element in an object-oriented language allowing one class to
inherit data and methods from another.

One of the most important features of inheritance (ironically) is that it allows the
developer to get inside the encapsulation bubble in limited and controlled ways.

This allows the sub-class to take advantage of internal data structures and
methods, without compromising the encapsulation afforded to objects. For example,
let us define a subclass of the class Date:

date = Date(12, 2, 1998)
date.is_day_of_week()
date.in_month(12)

setDay(d, 28);
setMonth(d, 2);
setYear(d, 1998);
isDayOfWeek(d);
inMonth(d, 2);

d: Date;

class Birthday(Date):
 name = ''
 age = 0

def is_birthday():
 # ... Check to see if it is their birthday

21.3 Does Object Orientation Do Any Better? 237

The method is_birthday() could check to see if the current date, matched
the birthday represented by an instance of Birthday and return true if it does and
false if it does not.

Note however, that the interesting thing here is that not only have we not had to
define integers to represent the date, nor have we had to define methods to access
such dates. These have both been inherited from the parent class Date.

In addition, we can now treat an instance of Birthday as either a Date or as a
Birthday depending on what we want to do!

What would you do in languages such as C, Pascal or Ada? One possibility is
that you could define a new package Birthday, but that package would not extend
Dates, it would have to import Dates and add interfaces to it etc? However, you
certainly couldn’t treat a Birthday package as a Dates package.

In languages such as Python, because of polymorphism, you can do exactly that.
You can reuse existing code that only knew about Date, for example:

This is because birthday is indeed a type of Date as well as being a type of
Birthday.

You can also use all of the features defined for Date on Birthdays:

Indeed, you don’t actually know where the method is defined. This method
could be defined in the class Birthday (where it would override that defined in
the class Date). However, it could be defined in the class Date (if no such method
is defined in Birthday); without looking at the source code there is no way of
knowing!

Of course, you can also use the new methods defined in the class Birthday on
instance (objects) of this class. For example:

birthday = Birthday(12, 3, 1974)

def test(date):
Do something that works with a date

t.test(birthday)

birthday.is_day_of_week()

birthday.is_birthday()

238 21 Why Bother with Object Orientation?

21.4 Summary

Classes in an object-oriented language provide a number of features that are not
present in procedural languages. To summarise, the main points to be noted from
this chapter on object orientation are:

• Classes provide for inheritance.
• Inheritance provides for reuse.
• Inheritance provides for extension of a data type.
• Inheritance allows for polymorphism.
• Inheritance is a unique feature of object orientation.

21.4 Summary 239

Chapter 22
Operator Overloading

22.1 Introduction

We will explore Operator Overloading in this chapter; what it is, how it works and
why we want it.

22.2 Operator Overloading

22.2.1 Why Have Operator Overloading?

Operator overloading allows user defined classes to appear to have a natural way of
using operators such as +, −, <, > or == as well as logical operators such as &
(and) and | (or).

This leads tomore succinct and readable code as it is possible towrite code such as:

It feels more natural for both developers and those reading the code. The
alternative would be to create methods such as add and write code such as

Which semantically might mean the same thing but feel less natural to most
people.

q1 = Quantity(5)
q2 = Quantity(10)
q3 = q1 + q2

q1 = Quantity(5)
q2 = Quantity(10)
q3 = q1.add(q2)

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_22

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_22

22.2.2 Why Not Have Operator Overloading?

If operator overloading is such a good idea, why don’t all programming languages
support it? Interestingly Java, a very widely used programming language, does not
support operator overloading!

One answer is because it can be abused! For example, what is the meaning of the
following code:

It is not clear what '+' means in this context; in what way is Denise being added
to John; does it imply they are getting married? If so, what is the result that is held
in p3?

The problem here is that from a design perspective (which in this case may be
purely intuitive but in other cases may relate to the intention of an application) the
plus operator does not make sense for the type Person. However, there is nothing
in the Python language to indicate this and thus anyone can code any operator into
any class!

As a general design principle; developers should follow the semantics of built in
types and thus should only implement those operators which are appropriate for the
type being developed. For example, for arithmetic value types such as Quantity
it makes perfect sense to provide a plus operator but for domain specific
data-oriented types such as Person it does not.

22.2.3 Implementing Operator Overloading

To implement operators such as '+' in a user defined class it is necessary to
implement specific methods that are then mapped to the arithmetic or logical
operators used by users of the class.

These methods are considered special in that they start with and end with a
double underscore ('__'). Such methods are considered private and usually
restricted for Python oriented implementations (we have seen these already with
methods such as __init__() and __str__()).

As an example, let us assume that we want to implement the '+' and '−' operators
for our Quantity type. We also want our Quantity type to hold an actual value
and be able to be converted into a string for printing purposes.

To implement the '+' and '−' operators we need to provide two special methods
one will provide the implementation of the '+' operator and one will provide the
implementation of the '−' operator:

p1 = Person('John')
p2 = Person('Denise')
p3 = p1 + p2

242 22 Operator Overloading

• '+' operator is implemented by a method with the signature def __add__
(self, other):

• '−' operator is implemented by a method with the signature def __sub__
(self, other):

Where other represents another Quantity or other suitable type which will
be either added to, or subtracted from, the current Quantity object.

The methods will be mapped by Python to the operators '+' and '−'; such that if
someone attempts to add to quantities together then the __add__() method will
be called etc.

The definition of the class Quantity is given below; note that the class
actually just wraps a number held in the attribute value.

Using this class definition, we can create two instances of the type Quantity
and add them together:

If we run this code snippet we get:

class Quantity:
def __init__(self, value=0):

self.value = value
def __add__(self, other):

new_value = self.value + other.value
return Quantity(new_value)

def __sub__(self, other):
new_value = self.value - other.value
return Quantity(new_value)

def __str__(self):
return 'Quantity[' + str(self.value) + ']'

q1 = Quantity(5)
q2 = Quantity(10)
print('q1 =', q1, ', q2 =', q2)

q3 = q1 + q2
print('q3 =', q3)

q1 = Quantity[5] , q2 = Quantity[10]
q3 = Quantity[15]

22.2 Operator Overloading 243

Note that we have made the class Quantity immutable; that is once a
Quantity instance has been created its value cannot be changed (it is fixed).

This means that when two quantities are added tougher a new instance of the
class Quantity is created. This is analogous to how integers work, if you add
together 2 + 3 then you get 5; neither 2 or 3 are modified however; instead a new
integer 5 is generated—this is an example of the general design principle; devel-
opers should follow the semantics of built in types; Quantity objects act like
number objects.

22.3 Numerical Operators

There are nine different numerical operators that can be implemented by special
methods; these operators are listed in the following table:

We have already seen examples of add and subtract; this table indicates how we
can also provide operators for multiplication and division etc.

The above table also presents Bitwise shift operators (both left and right). These
operate at the bit level used to represent numbers under the hood and can be a very
efficient way of manipulating numeric values; however, we do not want to support
these operators for our Quantity class therefore we will only implement the core
numeric operators of multiplication, division and power.

Also note that the names of the divisionmethods are not div but __truediv__()
and __floordiv__() indicating the difference in behaviour between '/' and '//'.

The updated Quantity class is given below:

Operator Expression Method

Addition q1 + q2 __add__(self, q2)

Subtraction q1 – q2 __sub__(self, q2)

Multiplication q1 * q2 __mul__(self, q2)

Power q1 ** q2 __pow__(self, q2)

Division q1 / q2 __truediv__(self, q2)

Floor Division q1 // q2 __floordiv__(self, q2)

Modulo (Remainder) q1 % q2 __mod__(self, q2)

Bitwise Left Shift q1 � q2 __lshift__(self, q2)

Bitwise Right Shift q1 � q2 __rshift__(self, q2)

244 22 Operator Overloading

This means that we can now extend our simple application that uses the
Quantity class to include some of these additional numerical operators:

class Quantity:
def __init__(self, value=0):

self.value = value

def __add__(self, other):
new_value = self.value + other.value
return Quantity(new_value)

def __sub__(self, other):
new_value = self.value - other.value
return Quantity(new_value)

def __mul__(self, other):
new_value = self.value * other.value
return Quantity(new_value)

def __pow__(self, other):
new_value = self.value ** other.value
return Quantity(new_value)

def __truediv__(self, other):
new_value = self.value / other.value
return Quantity(new_value)

def __floordiv__(self, other):
new_value = self.value // other.value
return Quantity(new_value)

def __mod__(self, other):
new_value = self.value % other.value
return Quantity(new_value)

def __str__(self):
return 'Quantity[' + str(self.value) + ']'

22.3 Numerical Operators 245

The output from this is now:

One interesting point to note is that the multiple and divide style methods, we
might want to multiple a Quantity by an integer or divide a Quantity by an
integer. There is nothing to stop us doing this and indeed this might be a very useful
behaviour. This would allow a Quantity to be multiplied by 2 or divided by 2,
for example:

At the moment if we tried to run the above code we would generate an error
telling us that an int does not have a value attribute. However, we can test to see if
the argument passed into the __mult__() and __truediv__() methods is an
int or not using the isinstance function. This function takes a variable and the
name of a class and returns True if the contents of the variable is an instance of the
named class, for example:

q1 = Quantity(5)
q2 = Quantity(10)
print('q1 =', q1, ', q2 =', q2)

q3 = q1 + q2
print('q3 =', q3)
print('q2 - q1 =', q2 - q1)

print('q1 * q2 =', q1 * q2)
print('q1 / q2 =', q1 / q2)

q1 = Quantity[5] ,q2 = Quantity[10]
q3 = Quantity[15]
q2 - q1 = Quantity[5]
q1 * q2 = Quantity[50]
q1 / q2 = Quantity[0.5]

print('q1 * 2', q1 * 2)
print('q2 / 2', q2 / 2)

246 22 Operator Overloading

Now when we run the earlier print statements we generate the output:

22.4 Comparison Operators

Numerical types (such as integers and real numbers) also support comparison
operators such as equals, not equals, greater than, less than as well as greater than or
equal to and less than or equal to.

Python allows these comparison operators to be defined for user defined types/
classes as well.

Just as numerical operators such as '+' and '−' are implemented by special
methods so are comparison operators. For example the '<' operator is implemented
by a method called __lt__(self, other).

The complete list of comparison operators and the associated special methods is
given in the following table:

q1 * 2 Quantity[10]
q2 / 2 Quantity[5.0]

class Quantity:
Code ommitted for brevity

def __mul__(self, other):
if isinstance(other, int):

new_value = self.value * other
else:

new_value = self.value * other.value
return Quantity(new_value)

def __truediv__(self, other):
if isinstance(other, int):

new_value = self.value / other
else:

new_value = self.value / other.value
return Quantity(new_value)

Operator Expression Method

Less than q1 < q2 __lt__(q1, q2)

Less than or equal to q1 <= q2 __le__(q1, q2)

Equal to q1 == q2 __eq__(q1, q2)

Not Equal to q1 != q2 __ne__(q1, q2)

Greater than q1 > q2 __gt__(q1, q2)

Greater than or equal to q1 >= q2 __ge__(q1, q2)

22.3 Numerical Operators 247

We can add these definitions to our Quantity class to provide a more com-
plete type that can be used in comparison style tests (such as if statements).

The updated Quantity class is given below (with some of the numerical
operators omitted for brevity):

This now means that we can update out sample application to take advantage of
these comparison operators:

class Quantity:
def __init__(self, value=0):

self.value = value
def __add__(self, other):

new_value = self.value + other.value
return Quantity(new_value)

remaining numerical operators omitted for brevity ...

def __eq__(self, other):
return self.value == other.value

def __ne__(self, other):
return self.value != other.value

def __ge__(self, other):
return self.value >= other.value

def __gt__(self, other):
return self.value > other.value

def __lt__(self, other):
return self.value < other.value

def __le__(self, other):
return self.value <= other.value

def __str__(self):
return 'Quantity[' + str(self.value) + ']'

q1 = Quantity(5)
q2 = Quantity(10)
print('q1 =', q1, ',q2 =', q2)
q3 = q1 + q2
print('q3 =', q3)
print('q1 < q2: ', q1 < q2)
print('q3 > q2: ', q3 > q2)
print('q3 == q1: ', q3 == q1)

248 22 Operator Overloading

The output from this is now:

22.5 Logical Operators

The final category of operators that can be defined on a class are Logical operators.
These are operators that can be used with and/or type tests; they typically return the
values True or False.

As with the numerical operators and the comparison operators; the logical
operators are implemented by a set of special methods.

The following table summarises the logical operators and the methods used to
implement them:

As these operators do not really make sense for the Quantity type, we will not
define them. For example, what would it mean to say:

In what way is q1 an alternative to q2?

22.6 Summary

Only use operators when they make sense and only implement those operators that
work with the type you are defining. In general, this means

• Arithmetic operators should only be used for values types with a numeric
property.

q1 = Quantity[5] ,q2 = Quantity[10]
q3 = Quantity[15]
q1 < q2: True
q3 > q2: True
q3 == q1: False

Operator Expression Method

AND q1 & q2 __and__(q1, q2)

OR q1 | q2 __or__(q1, q2)

XOR q1 ^ q2 __xor__(q1, q2)

NOT *q1 __invert__()

q1 | q2

22.4 Comparison Operators 249

• Comparison operators typically only make sense for classes that can be ordered.
• Logical operators typically work for types that are similar in nature to Booleans.

22.7 Online Resources

Some online resources on operator overloading include:

• https://docs.python.org/3/reference/datamodel.html for information on operator
overloading in Python.

• https://pythonprogramming.net/operator-overloading-intermediate-python-
tutorial/ Tutorial on operator overloading.

• http://cafe.elharo.com/programming/operator-overloading-considered-harmful/
An article on why operagoer overloading may be harmful to good programming
style.

22.8 Exercises

The aim of this exercise is to create a new numeric style class.
You should create a new user defined class called Distance. It will be very

similar to Quantity.
You should be able to add two distances together, subtract one distance from

another, divide a distance by an integer, multiply a distance by an integer etc.
You should therefore be able to support the following program:

d1 = Distance(6)
d2 = Distance(3)

print(d1 + d2)
print (d1 - d2)
print (d1 / 2)
print(d2 // 2)
print(d2 * 2)

250 22 Operator Overloading

https://docs.python.org/3/reference/datamodel.html
https://pythonprogramming.net/operator-overloading-intermediate-python-tutorial/
https://pythonprogramming.net/operator-overloading-intermediate-python-tutorial/
http://cafe.elharo.com/programming/operator-overloading-considered-harmful/

Note that the division and multiplication operators work with a distance and an
integer; you will therefore need to think about how to implement the special
methods for these operators.

The output from this might be:

Distance[9]
Distance[3]
Distance[3.0]
Distance[1]
Distance[6]

22.8 Exercises 251

Chapter 23
Python Properties

23.1 Introduction

Many object-oriented languages have the explicit concept of encapsulation; that is
the ability to hide data within an object and only to provide specific gateways into
that data. These gateways are methods defined to get or set the value of an attribute
(often referred to as getters and setters). This allows more control over access to the
data; for example, it is possible to check that only a positive integer above zero, but
below 120, is used for a person’s age etc.

In many languages such as Java and C# attributes can be hidden from external
access using specific keywords (such as private) that indicate the data should be
made private to the object.

Python does not explicitly have the concept of encapsulation; instead it relies on
two things; a standard convention used to indicate that an attribute should be
considered private and a concept called a property which allows setters and getters
to be defined for an attribute.

23.2 Python Attributes

All object attributes are publicly available in Python; that is, they are all visible to
any code using the object.

For example, given the following definition of the class Person both name and
age are part of the public interface of the class Person;

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_23

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_23

Because name and age are part of the class’s public interface it means that we
can write:

Which is of course a bit bizarre as the person now has the name '42' and an age
of −1, thus the output from this is:

We can indicate that we want to treat age and name as being private to the object
by prefixing the attribute names with an underbar ('_') as shown below:

This tells Python programmers that we want to consider _name and _age as
being private. However, it should be noted that this is only a convention; albeit a
very strongly adhered to convention. There is still nothing here that would stop
someone writing:

class Person:
def __init__(self, name, age):

 self.name = name
 self.age = age

def __str__(self):
 return 'Person[' + str(self.name) + '] is ' +
 str(self.age)

person = Person('John', 54)
person.name = 42
person.age = -1
print(person)

Person[42] is -1

class Person:
def __init__(self, name, age):

 self._name = name
 self._age = age

def __str__(self):
return 'Person[' + str(self._name) +'] is ' + s

 str(self._age)

person = Person('John', 54)
person._age = -1
print(person)

254 23 Python Properties

However, the developer of the class Person is at liberty to change the internals of
the class (such as_age) without notice andmost would consider that anyonewho had
ignored the convention and now had a problem had only themselves to blame.

23.3 Setter and Getter Style Methods

This of course raises the question; how should we now get hold of a Persons’ name
and age in an acceptable way?

The answer is that a developer should provide getter methods and setter methods
that can be used to access the values.

We can update the Person class with some getter methods and a single setter
method:

The two getter methods have the format of get_ followed by the name of the
attribute they are getting. Thus, we have get_age and get_name. Typically, all
that getters do is to return the attribute being used (as is the case here).

The single setter method is a little different; it validates the data that has been
provided to check that it is appropriate (i.e. that it is an Integer using isinstance
(new_age,int) and that it is a value over Zero but under 120). Only if the data
passes these checks is it used as the new value of the person’s age, for example if
we try to set a persons age to −1:

class Person:
def __init__(self, name, age):

 self._name = name
 self._age = age

def get_age(self):
return self._age

def set_age(self, new_age):
if isinstance(new_age,int) & new_age > 0 &

new_age < 120:
 self._age = new_age

def get_name(self):
return self._name

def __str__(self):
return 'Person[' + str(self._name) +'] is ' +

str(self._age)

23.2 Python Attributes 255

Then this is ignored, and the person’s age remains as it was, thus the output of
this is:

It should be noted that this might be considered silent failure; that is we tried to set
the age and it failed but no one knows this. In many cases rather than fail silently we
would prefer to notify someone of the error by throwing some form of Error object;
this will be discussed in the next chapter on Error and Exception handling.

You might well ask at this point where is the setter for the _name attribute? The
answer is that we want to make the _name attribute a read only attribute and
therefore we have not provided a setter style method. This is a common idiom
followed in Python—you can have read-write attributes and read-only attributes
depending on whether they have getter and setter methods or not. It is also possible
to a write-only attribute, but this is very rare and only has a few use cases.

23.4 Public Interface to Properties

Although we now have a more formal interface to the attributes held by an instance
of the class Person; it is rather ungainly:

We end up having to write more code and although there is an argument that it
makes the code more obvious (i.e. person.get_age() can be read as get the
age of the person object); it is somewhat verbose and you have to remember to
include the parentheses (()').

To get around this a concept known as Properties was introduced in Python 2.2.
In the original syntax for this it was possible to add an addition line of code to the
class that told Python that you wanted to provide a new property and that specific
methods were to be used to set and get the values of this property.

person = Person('John', 54)
person.set_age(-1)
print(person)

Person[John] is 54

person = Person('John', 54)
print(person)
print(person.get_age())
print(person.get_name())

256 23 Python Properties

The syntax for defining a property in this way is:

Where fget indicates the getter function, fset the setter function fdel the
function to be used to delete a value and doc provides documentation on the property
(all of which are optional).

We can modify our Person class so that age is now a property (note a
common convention is that if the attribute is named _age, the methods are named
get_age and set_age and the property will be called age):

We can now write:

<property_name> = property(fget=None, fset=None,
 fdel=None, doc=None)

class Person:
def __init__(self, name, age):

 self._name = name
 self._age = age

def get_age(self):
 return self._age

def set_age(self, new_age):
if isinstance(new_age,int) & new_age > 0 &

new_age < 120:
 self._age = new_age

 age = property(get_age, set_age, doc="An age property")

def get_name(self):
return self._name

 name = property(get_name, doc="A name property")

def __str__(self):
return 'Person[' + str(self._name) +'] is ' +

str(self._age)

person = Person('John', 54)
print(person)
print(person.age)
print(person.name)
person.age = 21
print(person)

23.4 Public Interface to Properties 257

Notice how we can now write person.age and person.age = 21; in both
these cases we are accessing the property age that results in the method get_age()
and set_age() being executed respectively. Thus, the setter is still protecting the
update to the underlying _age attribute that is actually used to hold the actual value.

Also note that if a method is not provided for one of the fget, fset, fdel
methods then this is not an error; it merely indicates that the property does not
support that type of accessor. Thus, the name property is a read_only property as it
does not define a setter method.

A delete method can be used to release the memory associated with an attribute;
in the case of an int it is not required but it may be required for a more complex,
user defined type.

We could therefore write:

Note that we are using a keyword reference for the delete method as we have
skipped the setter and cannot therefore rely on positional arguments.

23.5 More Concise Property Definitions

The example shown in the previous section works but it is still quite verbose itself;
while this is on the class writers’ side it still seems somewhat heavyweight.

To overcome this a more concise option has been available since Python 2.4.
This approach uses what are known as decorators. Decorators represent meta data
(that is information about your code that the Python interpreter can use to work out
what you want it to do with certain things).

Python 2.4 introduced three new decorators @property, @<property-
name>.setter and @<propertyname>.deleter. These decorators are
added to the start of a method definition to indicate that the method should be used
to provide access to a property (and define that property), define a setter for the
property or a deleter for the property.

We will now update our Person class to use the decorators:

def del_name(self):
 del self._name
name = property(get_name, fdel=del_name, doc="A name
property")

258 23 Python Properties

Notice three important things about this example:

• The name of the methods is no longer a set_age and get_age; instead both
methods are now just age and the decorator distinguishes their role. Also notice
that we no longer have a separate statement that declares the property—it is now
implicit in the use of the @property decorator and the name of the associated
method.

• The @property decorator is used to define the name of the property (in this
case age) and to define further decorators which will be named after the property
with a .setter or .deleter element e.g. @age.setter.

• The documentation string is now defined in the method associated with the
@property decorator (providing this documentation string is usually con-
sidered good practice).

However, we do not need to change the program that used the class Person, as
the interface to the class remained the same.

class Person:
def __init__(self, name, age):

 self._name = name
 self._age = age

@property
 def age(self):
 """ The docstring for the age property """
 print('In age method')

return self._age

@age.setter
def age(self, value):

 print('In set_age method')

if isinstance(value,int) & value > 0 & value < 120:
 self._age = value

@property
def name(self):

 print('In name')
return self._name

@name.deleter
def name(self):

del self._name

def __str__(self):
return 'Person[' + str(self._name) +'] is ' +

str(self._age)

23.5 More Concise Property Definitions 259

23.6 Online Resources

Some online resources on properties are:

• https://www.python-course.eu/python3_properties.php a discussion on Python
properties versus getters and setters.

• https://www.journaldev.com/14893/python-property-decorator a short intro-
duction to the @property decorator.

23.7 Exercises

In this exercise you will add properties to an existing class.
Return to the Account class that you created several chapters ago; convert the

balance into a read only property using decorators, then verify that the following
program functions correctly:

acc2 = DepositAccount('345', 'John', 23.55, 0.5)
acc3 = acc3 = InvestmentAccount('567', 'Phoebe', 12.45,
'high risk')

print(acc1)
print(acc2)
print(acc3)

acc1.deposit(23.45)
acc1.withdraw(12.33)
print('balance:', acc1.balance)

print('Number of Account instances created:',
Account.instance_count)

print('balance:', acc1.balance)
acc1.withdraw(300.00)
print('balance:', acc1.balance)

acc1 = CurrentAccount('123', 'John', 10.05, 100.0)

260 23 Python Properties

https://www.python-course.eu/python3_properties.php
https://www.journaldev.com/14893/python-property-decorator

The output from this might be:

Creating new Account
Creating new Account
Creating new Account
Account[123] - John, current account = 10.05overdraft
limit: -100.0
Account[345] - John, savings account = 23.55interest
rate: 0.5
Account[567] - Phoebe, investment account = 12.45
balance: 21.17
Number of Account instances created: 3
balance: 21.17
Withdrawal would exceed your overdraft limit
balance: 21.17

23.7 Exercises 261

Chapter 24
Error and Exception Handling

24.1 Introduction

This chapter considers exception and error handling and how it is implemented in
Python. You are introduced to the object model of exception handling, to the
throwing and catching of exceptions, and how to define new exceptions and
exception-specific constructs.

24.2 Errors and Exceptions

When something goes wrong in a computer program someone needs to know about
it. One way of informing other parts of a program (and potentially those running a
program) is by generating an error object and propagating that through the code
until either something handles the error and sorts thing out or the point at which the
program is entered is found.

If the Error propagates out of the program, then the user who ran the program
needs to know that something has gone wrong. They are notified of a problem via a
short report on the Error that occurred and a stack trace of where that error can be
found.

You may have already seen these yourself when writing your own programs. For
example, the following screen dump illustrates a programming error where
someone has tried to concatenate a string and a number together using the '+'

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_24

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_24

operator. This error has propagated out of the program and a stack trace of the code
that was called is presented (in this case the function print used the __str__()
method of the class Person). Note the line numbers are included which helps with
debugging the problem.

In Python the terms Error and Exception are used inter-changeably; although
from a style point of view Exceptions might be used to represent issues with
operations such as arithmetic exceptions and errors might be associated with
functional issues such as a file not being found.

24.3 What Is an Exception?

In Python, everything is a type of object, including integers, strings, booleans and
indeed Exceptions and Errors. In Python the Exception/Error types are defined in a
class hierarchy with the root of this hierarchy being the BaseException type.
All built-in errors and exceptions eventually extend from the BaseException
type. It has a subclass Exception which is the root of all user defined exceptions
(as well as many built-in exceptions). In turn ArithmeticException is the
base class for all built-in exceptions associated with arithmetic errors.

264 24 Error and Exception Handling

The above diagram illustrates the class hierarchy for some of the common types
of errors and exceptions.

When an exception occurs, this is known as raising an exception and when it is
passed to code to handle this is known as throwing an exception. These are terms
that will become more obvious as this chapter progresses.

24.4 What Is Exception Handling?

An exception moves the flow of control from one place to another. In most situ-
ations, this is because a problem occurs which cannot be handled locally but that
can be handled in another part of the system.

The problem is usually some sort of error (such as dividing by zero), although it
can be any problem (for example, identifying that the postcode specified with an
address does not match). The purpose of an exception, therefore, is to handle an
error condition when it happens at run time.

It is worth considering why you should wish to handle an exception; after all the
system does not allow an error to go unnoticed. For example, if we try to divide by
zero, then the system generates an error for you. This may mean that the user has

24.3 What Is an Exception? 265

entered an incorrect value, and we do not want users to be presented with a dialog
suggesting that they enter the system debugger. We can therefore use exceptions to
force the user to correct the mistake and rerun the calculation.

The following table illustrates terminology typically used with exception/error
handling in Python.

Different types of error produce different types of exception. For example, if the
error is caused by dividing an integer by zero, then the exception is a arithmetic
exception. The type of exception is identified by objects and can be caught and
processed by exception handlers. Each handler can deal with exceptions associated
with its class of error or exception (and its subclasses).

An exception is instantiated when it is raised. The system searches back up the
execution stack (the set of functions or methods that have been invoked in reverse
order) until it finds a handler which can deal with the exception. The associated
handler then processes the exception. This may involve performing some remedial
action or terminating the current execution in a controlled manner. In some cases, it
may be possible to restart executing the code.

As a handler can only deal with an exception of a specified class (or subclass), an
exception may pass through a number of handler blocks before it finds one that can
process it.

Exception An error which is generated at runtime

Raising an exception Generating a new exception

Throwing an
exception

Triggering a generated exception

Handling an exception Processing code that deals with the error

Handler The code that deals with the error (referred to as the catch block)

Signal A particular type of exception (such as out of bounds or divide by zero)

266 24 Error and Exception Handling

The above figure illustrates a situation in which a divide by zero exception called
ZeroDivisionError is raised. This exception is passed up the execution stack
where it encounters an exception handler defined for an End of File exception. This
handler cannot handle the ZeroDivisionError and so it is passed further up
the execution stack. It then encounters a handler for an out of memory exception.
Again, it cannot deal with a ZeroDivisionError and the exception is passed
further up the execution stack until it finds a handler defined for the
ZeroDivisionError. This handler then processes the exception.

24.5 Handling an Exception

You can catch an exception by implementing the try—except construct. This
construct is broken into three parts:

• try block. The try block indicates the code which is to be monitored for the
exceptions listed in the except expressions.

• except clause. You can use an optional except clause to indicate what to do
when certain classes of exception/error occur (e.g. resolve the problem or
generate a warning message). There can be any number of except clauses in
sequence checking for different types of error/exceptions.

• else clause. This is an optional clause which will be run if and only if no
exception was thrown in the try block. It is useful for code that must be
executed if the try clause does not raise an exception.

• finally clause. The optional finally clause runs after the try block exits
(whether or not this is due to an exception being raised). You can use it to clean
up any resources, close files, etc.

This language construct may at first seem confusing, however once you have
worked with it for a while you will find it less daunting.

As an example, consider the following function which divides a number by zero;
this will raise the ZeroDivisionError when it is run for any number:

If we now call this function, we will get the error trackback in the standard
output:

def runcalc(x):
x / 0

runcalc(6)

24.4 What Is Exception Handling? 267

This is shown below:

However, we can handle this by wrapping the call to runcalc within a try
statement and providing an except clause. The syntax for a try statement with
an except clause is:

A concrete example of this is given below for a try statement that will be used
to monitor a call to runcalc:

which now results in the string 'oops' being printed out. This is because when
runcalc is called the '/' operator throws the ZeroDivisionError which is
passed back to the calling code which has an except clause specifying this type of
exception. This catches the exception and runs the associated code block which in
this case prints out the string 'oops'.

In fact, we don’t have to be as precise as this; the except clause can be given a
class of exception to look for and it will match any exception that is of that type or
is an instance of a subclass of the exception. We therefore can also write:

The Exception class is a grandparent of the ZeroDivisionError thus
any ZeroDivisionError object is also a type of Exception and thus the except
block matches the exception passed. This means that you can write one except
clause and that clause can handle a whole range of exceptions.

try:
<code to monitor>

except <type of exception to monitor for>:
<code to call if exception is found>

try:
runcalc(6)

except ZeroDivisionError:
print('oops')

try:
runcalc(6)

except Exception:
print('oops')

268 24 Error and Exception Handling

However, if you don’t want to have a common block of code handling your
exceptions, you can define different behaviours for different types of exception.
This is done by having a series of except clauses; each monitoring a different type
of exception:

In this case the first except monitors for a ZeroDivisionError but the
other excepts monitor for other types of exception. Note that the except
Exception is the last except clause in the list as ZeroDivisionError,
IndexError and FileNotFoundError are all eventual subclasses of
Exception and thus this clause would catch any of these types of exception. As
only one except clause is allowed to run; if this except handler came fist the
other except handers would never ever be run.

24.5.1 Accessing the Exception Object

It is possible to gain access to the exception object being caught by the except
clause using the as keyword. This follows the exception type being monitored and
can be used to bind the exception object to a variable, for example:

Which produces:

If there are multiple except clauses, each except clause can decide whether
to bind the exception object to a variable or not (and each variable can have a
different name):

try:
runcalc(6)

except ZeroDivisionError as exp:
print(exp)
print('oops')

try:
runcalc(6)

except ZeroDivisionError:
print('oops')

except IndexError:
print('arrgh')

except FileNotFoundError:
print('huh!')

except Exception:
print('Duh!')

division by zero
oops

24.5 Handling an Exception 269

In the above example three of the four except clauses bind the exception to a
variable (each with a different name—although they could all have the same name)
but one, the FileNotFoundError except clause does not bind the exception to a
variable.

24.5.2 Jumping to Exception Handlers

One of the interesting features of Exception handling in Python is that when an
Error or an Exception is raised it is immediately thrown to the exception handlers
(the except clauses). Any statements that follow the point at which the exception
is raised are not run. This means that a function may be terminated early and further
statements in the calling code may not be run.

As an example, consider the following code. This code defines a function
my_function() that prints out a string, performs a division operation which will
cause a ZeroDivisionError to be raised if the y value is Zero and then it has a
further print statement. This function is called from within a try statement.
Notice that there is a print statement each side of the call to my_function().
There is also a handler for the ZeroDivisionError.

try:
runcalc(6)

except ZeroDivisionError as exp:
print(exp)
print('oops')

except IndexError as e:
print(e)
print('arrgh')

except FileNotFoundError:
print('huh!')

except Exception as exception:
print(exception)
print('Duh!')

def my_function(x, y):
print('my_function in')
result = x / y
print('my_function out')
return result

print('Starting')

try:
print('Before my_function')
my_function(6, 2)
print('After my_function')

except ZeroDivisionError as exp:
print('oops')

print('Done')

270 24 Error and Exception Handling

When we run this the output is

Which is what would probably be expected; we have run every statement with the
exception of the except clause as the ZeroDivisionError was not raised.

If we now change the call to my_function() to pass in 6 and 0 we will raise
the ZeroDivisionError.

Now the output is

The difference is that the second print statement in my_function() has not
been run; instead after print 'my_function in' and then raising the error we have
jumped straight to the except clause and run the print statement in the asso-
ciated block of code.

This is partly why the term throwing is used with respect to error and exception
handling; because the error or exception is raised in one place and thrown to the
point where it is handled, or it is thrown out of the application if no except clause is
found to handle the error/exception.

Starting
Before my_function
my_function in
my_function out
After my_function
Done

print('Starting')

try:
print('Before my_function')
my_function(6, 0)
print('After my_function')

except ZeroDivisionError as exp:
print('oops')

print('Done'

Starting
Before my_function
my_function in
oops
Done

24.5 Handling an Exception 271

24.5.3 Catch Any Exception

It is also possible to specify an except clause that can be used to catch any type of
error or exception, for example:

This must be the last except clause as it omits the exception type and thus acts
as a wildcard. It can be used to ensure that you get notified that an error did occur—
although you do not know what type of error it actually was; therefore, use this
feature with caution.

24.5.4 The Else Clause

The try statement also has an optional else clause. If this is present, then it must
come after all except clauses. The else clause is executed if and only if no
exceptions were raised. If any exception was raised the else clause will not be run.
An example of the else clause is shown below:

In this case the output is:

try:
my_function(6, 0)

except IndexError as e:
print(e)

except:
print('Something went wrong')

try:
my_function(6, 2)

except ZeroDivisionError as e:
print(e)

else:
print('Everything worked OK')

my_function in
my_function out
Everything worked OK

272 24 Error and Exception Handling

Asyou can see theprint statement in theelse clause has been executed, however
if we change the my_function() call to pass in a zero as the second parameter
(which will cause the function to raise a ZeroDivisionError), then the output is:

As you can see the else clause was not run but the except handler was executed.

24.5.5 The Finally Clause

An optional finally clause can also be provided with the try statement. This
clause is the last clause in the statement and must come after any except classes
as well as the else clause.

It is used for code that you want to run whether an exception occurred or not. For
example, in the following code snippet:

The try block will run, if no error is raised then the else clause will be
executed and last of all the finally code will run, we will therefore have as output:

If however we pass in 6 and 0 to my_function():

try:
my_function(6, 2)

except ZeroDivisionError as e:
print(e)

else:
print('Everything worked OK')

finally:
print('Always runs')

my_function in

division by zero

my_function in
my_function out
Everything worked OK
Always runs

try:
my_function(6, 0)

except ZeroDivisionError as e:
print(e)

else:
print('Everything worked OK')

finally:
print('Always runs')

24.5 Handling an Exception 273

We will now raise an exception in my_function() which means that the try
blockwill execute, then theZeroDivisionErrorwill be raised, it will be handled
by the except clause and then the finally clause will run. The output is now:

As you can see in both cases the finally clause is executed.
The finally clause can be very useful for general housekeeping type activities

such as shutting down or closing any resources that your code might be using, even
if an error has occurred.

24.6 Raising an Exception

An error or exception is raised using the keyword raise. The syntax of this is

For example:

In the above function the second statement in the function body will create a new
instance of the ValueError class and then raise it so that it is thrown allowing it
to be caught by any exception handlers that have been defined.

We can handle this exception by writing a try block with an except clause
for the ValueError class. For example:

This generates the output

my_function in
division by zero
Always runs

raise <Exception/Error type to raise>()

def function_bang():
print('function_bang in')
raise ValueError('Bang!')
print('function_bang')

try:
function_bang()

except ValueError as ve:
print(ve)

function_bang in
Bang!

274 24 Error and Exception Handling

Note that if you just want to raise an exception without providing any con-
structor arguments, then you can just provide the name of the exception class to the
raise keyword:

You can also re-raise an error or an exception; this can be useful if you merely
want to note that an error has occurred and then re throw it so that it can be handled
further up in your application:

This will re raise the ValueError caught by the except clause. Note here we
did not even bind it to a variable; however, we could have done this if required.

24.7 Defining an Custom Exception

You can define your own Errors and Exceptions, which can give you more control
over what happens in particular circumstances. To define an exception, you create a
subclass of the Exception class or one of its subclasses.

For example, to define a InvalidAgeException, we can extend the
Exception class and generate an appropriate message:

This class can be used to explicitly represent an issue when an age is set on a
Person which is not within the acceptable age range.

raise ValueError # short hand for raise ValueError()

try:
function_bang()

except ValueError:
print('oops')
raise

try:
function_bang()

except ValueError as ve:
print(ve)
raise

class InvalidAgeException(Exception):
""" Valid Ages must be between 0 and 120 """

24.6 Raising an Exception 275

We can use this with the class Person that we defined earlier in the book; this
version of the Person class defined age as a property and attempted to validate
that an appropriate age was being set:

Note that the age setter method now throws an InvalidAgeException, so if
we write:

We can capture the fact that an invalid age has been specified.
However, in the exception handler we don’t know what the invalid age was. We

can of course provide this information by including it in the data held by the
InvalidAgeException.

class Person:
def __init__(self, name, age):

self._name = name
self._age = age

@property
def age(self):

""" The docstring for the age property """
print('In age method')
return self._age

@age.setter
def age(self, value):

print('In set_age method(', value, ')')
if isinstance(value, int) & (value > 0 & value < 120):

self._age = value
else:

raise InvalidAgeException(value)

@property
def name(self):

print('In name')
return self._name

@name.deleter
def name(self):

del self._name

def __str__(self):
return 'Person[' + str(self._name) + '] is ' +

self._age

try:
p = Person('Adam', 21)
p.age = -1

except InvalidAgeException:
print('In here')

276 24 Error and Exception Handling

If we now modify the class definition such that we provide an initialiser to allow
parameters to be passed into the new instance of the InvalidAgeException:

We have also defined a suitable __str__() method to convert the exception
into a string for printing purposes.

We do of course need to update the setter to provide the value that has caused the
problem:

We can now write:

Now if the exception is raised a message will be printed out giving the actual
value that caused the problem:

24.8 Chaining Exceptions

One final feature that can be useful when creating your own exceptions is to chain
them to a generic underlying exception. This can be useful when a generic
exception is raised, for example, by some library or by the Python system itself, and
you want to convert it into a more meaningful application exception.

class InvalidAgeException(Exception):
""" Valid Ages must be between 0 and 120 """

def __init__(self, value):
self.value = value

def __str__(self):
return 'InvalidAgeException(' + str(self.value) + ')'

@age.setter
def age(self, value):

print('In set_age method(', value, ')')
if isinstance(value,int) & (value > 0 & value < 120):

self._age = value
else:

raise InvalidAgeException(value)

try:
p = Person('Adam', 21)
p.age = -1

except InvalidAgeException as e:
print(e)

In set_age method(-1)
InvalidAgeException(-1)

24.7 Defining an Custom Exception 277

For example, let us say that we want to create an exception to represent a specific
issue with the parameters passed to a function divide, but we don’t want to use the
generic ZeroDivisionException, instead we want to use our own
DivideByYWhenZeroException. This new exception could be defined as

And we can use it in a function divide:

We have used the raise and from keywords when we are instantiating the
DivideByYWhenZeroException. This chains our exception to the original
exception that indicates the underling problem.

We can now call the divide method as below:

This produces a Traceback as given below:

class DivideByYWhenZeroException(Exception):
""" Sample Exception class"""

def divide(x, y):
try:

result = x /y
except Exception as e:

raise DivideByYWhenZeroException from e

def main():
divide(6, 0)

Traceback (most recent call last):
File

"/Users/Shared/workspaces/pycharm/pythonintro/exceptions/exce
ptions.py", line 43, in divide

result = x /y
ZeroDivisionError: division by zero
The above exception was the direct cause of the following
exception:
Traceback (most recent call last):
File

"/Users/Shared/workspaces/pycharm/pythonintro/exceptions/exce
ptions.py", line 136, in <module>

main()
File

"/Users/Shared/workspaces/pycharm/pythonintro/exceptions/exce
ptions.py", line 79, in main

divide(6, 0)
File

"/Users/Shared/workspaces/pycharm/pythonintro/exceptions/exce
ptions.py", line 45, in divide

raise DivideByYWhenZeroException from e
__main__.DivideByYWhenZeroException

278 24 Error and Exception Handling

As can be seen you get information about both the (application specific)
DivideByYWhenZeroException and the original ZeroDivisionError—the
two are linked together. This can be very useful when defining such application specific
exceptions (but where the actual underlying exception must still be understood).

24.9 Online Resources

For more information on Pythons errors and exceptions sets:

• https://docs.python.org/3/library/exceptions.html The Standard Library docu-
mentation for built-in exceptions.

• https://docs.python.org/3/tutorial/errors.html The Standard Python documenta-
tion tutorial on errors and exceptions.

• https://www.tutorialspoint.com/python/python_exceptions.htm An alternative
tutorial on Python exception handling.

24.10 Exercises

This exercise involves adding error handling support to the CurrentAccount class.
In the CurrentAccount class it should not be possible to withdraw or deposit

a negative amount.
Define an exception/error class called AmountError. The AmountError

should take the account involved and an error message as parameters.
Next update the deposit() and withdraw() methods on the Account and

CurrentAccount class to raise anAmountError if the amount supplied is negative.
You should be able to test this using:

This should result in the exception 'e' being printed out, for example:

Next modify the class such that if an attempt is made to withdraw money which
will take the balance below the over draft limit threshold an Error is raised.

AmountError (Cannot deposit negative amounts) on Account[123] -
John, current account = 21.17overdraft limit: -100.0

try:
acc1.deposit(-1)

except AmountError as e:
print(e)

24.8 Chaining Exceptions 279

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/tutorial/errors.html
https://www.tutorialspoint.com/python/python_exceptions.htm

The Error should be a BalanceError that you define yourself. The
BalanceError exception should hold information on the account that generated
the error.

Test your code by creating instances of CurrentAccount and taking the
balance below the overdraft limit.

Write code that will use try and except blocks to catch the exception you
have defined.

You should be able to add the following to your test application:

try:
print('balance:', acc1.balance)
acc1.withdraw(300.00)
print('balance:', acc1.balance)

except BalanceError as e:
print('Handling Exception')
print(e)

280 24 Error and Exception Handling

Chapter 25
Python Modules and Packages

25.1 Introduction

Modules and packages are two constructs used in Python to organise larger pro-
grams. This chapter introduces modules in Python, how they are accessed, how they
are define and how Python finds modules etc. It also explores Python packages and
sub-packages.

25.2 Modules

A module allows you to group together related functions, classes and code in
general. You can think of a module as being like a library of code (although in fact
many libraries are themselves composed of several modules as for example, a
library may have optional or extensions to the core functionality).

It is useful to organise your code into modules when the code either becomes
large or when you want to reuse some elements of the code base in multiple
projects.

Breaking up a large body of code from a single file helps with simplifying code
maintenance and comprehensibility of code, testing, reuse and scoping code. These
are explored below:

• Simplicity—Focussing on a subset of an overall problem helps us to develop
solutions that work for the subset and can be combined together to solve the
overall problem. This means that individual modules can be simpler than the
overall solution.

• Maintenance—Modules typically make it easier to define logical boundaries
between one body of code and another. This means it is easier to see what
comprises a module and to verify that the module works appropriately even

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_25

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_25

when modified. It also helps to distinguish one body of code from another so
makes it easier to work out where changes should go.

• Testing—As one module can be made independent of another module there are
less dependencies and cross overs. This means that a module can be tested in
isolation and even before other modules, and the overall application, have been
written.

• Reusability—Defining a function or class on one module means that it is easier
to reuse that function or class in another module, as the boundaries between the
one module and another are clear.

• Scoping—Modules typically also define a namespace, that is a scope within
which each function or class is unique. Think of a namespace a bit like a
surname; within a classroom there may be several people with the first name
‘John’, but we can distinguish each person by using their full name, for example
‘John Hunt’, ‘John Jones’, ‘John Smith’ and ‘John Brown’; each surname in this
example provides a namespace which ensures each John is unique (and can be
referenced uniquely).

25.3 Python Modules

In Python a module equates to a file containing Python code. A module can contain

• Functions
• Classes
• Variables
• Executable code
• Attributes associated with the module such as its name.

The name of a module is the name of the file that it is defined in (minus the suffix
‘.py’). For example, the following diagram illustrates a function and a class defined
within a file called utils.py:

Thus, the printer() function and the class Shape are defined in the utils
module. They can be referenced via the name of the utils module.

282 25 Python Modules and Packages

As an example, let us look at a definition for our utils module defined in the
file util.py:

The module has a comment which is at the start of the file—this is useful
documentation for anyone working with the module. In some cases, the comment at
the start of the module can provide extensive documentation on the module such as
what it provides, how to use the features in the module and examples that can be
used as a reference.

The module also has some executable code (the print statement just after the
comment) that will be run when the module is loaded/initialised by Python. This
will happen when the module is first referenced in an application.

"""This is a test module"""
print('Hello I am the utils module')

def printer(some_object):
 print('printer')
 print(some_object)
 print('done')

class Shape:
def __init__(self, id):

 self._id = id

def __str__(self):
 return 'Shape - ' + self._id

@property
 def id(self):
 """ The docstring for the id property """

 print('In id method')
return self._id

@id.setter
 def id(self, value):
 print('In set_age method')
 self._id = id

default_shape = Shape('square')

25.3 Python Modules 283

A variable default_shape is also initialised when the module is loaded and
can also be referenced outside the module in a similar manner to the module’s
function and class. Such variables can be useful in setting up defaults or predefined
data that can be used by developers working with the module.

25.4 Importing Python Modules

25.4.1 Importing a Module

A user defined module is not automatically accessible to another file or script; it is
necessary to import the module. Importing a module makes the functions, classes
and variables defined in the module visible to the file they are imported into.

For example, to import all the contents of the utils module into a file called
my_app.py we can use:

Note that we do not give the file name (i.e. utils.py) instead we give the
module name to import (which does not include the .py).

The result is as shown below:

Once the definitions within the utilsmodule are visible inside my_app.pywe
can use them as if they had been defined in the current file. Note that due to scoping the
function, class and variable defined within the utilsmodule will be prefixed by the
name of the module; i.e. utils.printer and utils.Shape etc.:

When we run the my_app.py file we will produce the following output:

import utils

import utils

utils.printer(utils.default_shape)
shape = utils.Shape('circle')
utils.printer(shape)

284 25 Python Modules and Packages

Notice that the first line of the output is the output from the print statement in the
utils module (i.e. the line print('Hello I am the utils module')) this
illustrates the ability in Python to define behaviour that will be run when a module is
loaded; typically this might execute some housekeeping code or set up behaviour
required by the module. It should be noted that the module is only initialised the first
time that it is loaded and thus the executable statements are only run once.

Ifwe forgot to include theimport statement at the start of thefile, then Pythonwould
not know to use the utilsmodule. We would thus generate an error indicating that the
utils element is not known: NameError: name 'utils' is not defined.

There can be any number of modules imported into a file; these can be both user
defined modules and system provided modules. The modules can be imported via
separate import statements or by supplying a comma separated list of modules:

A common convention is to place all import statements at the start of a file;
however, this is only a convention and import statements can be placed anywhere
in a file prior to where the imported module’s features are required. It is a common
enough convention however, that tools such as PyCharm will indicate a style issue
if you do not put the imports at the start of the file.

25.4.2 Importing from a Module

One issue with the previous example is that we have had to keep referring to the
facilities provided by the utils module as utils.<thing of interest>;
which while making it very clear that these features come from the utils module,
is a little tedious. It is the equivalent of referring to a person via their full name
every time we speak to them. However, if they are the only other person in the room
then we don’t usually need to be so formal; we could just use their first name.

import utils
import support
import module1, module2, module3

Hello I am the utils module
printer
Shape - square
done
printer
Shape - circle

25.4 Importing Python Modules 285

A variant of the import statement allows us to import everything from a
particular module and remove the need to prefix the modules functions or classes
with the module name, for example:

Which can be read as from <module name> import everything in that module
and make it directly available.

As this shows we can reference default_shape, the printer() function
and the Shape class directly. Note the '*' here is often referred to as a wildcard;
meaning that it represents everything in the module.

The problem with this form of import is that it can result in name clashes as it
brings into scope all the elements defined in the utils module. However, we may
only actually be interested in the Shape class; in which case we can choose to only
bring that feature in, for example:

Now only the Shape class has been imported into the file and made directly
available.

You can even give an alias for an element being imported from a module using
the import statement. For example, you can alias the whole package:

for example:

In this example, instead of referring to the module we are importing as utils,
we have given it an alias and called it utilities.

We can also alias individual elements of a module, for example a function can be
given an alias, as can a variable or a class. The syntax for this is

from utils import Shape
s = Shape('rectangle')
print(s)

from <module name> import *

from utils import *
printer(default_shape)
shape = Shape('circle')
printer(shape)

import <module_name> as <alternative_module_name>

import utils as utilities
utilities.printer(utilities.default_shape)

286 25 Python Modules and Packages

For example:

In this case the printer function in the utils module is being aliased to
myfunc and will thus be known as myfunc in the current file.

We can even combine multiple from imports together with some of the ele-
ments being imported having aliases:

25.4.3 Hiding Some Elements of a Module

By default, any element in a module whose name starts with an underbar ('_') is
hidden when a wildcard import of the contents of a module is performed.

In this way certain named items can be hidden unless they are explicitly
imported. Thus, if our utils module now included a function:

And then we tried to import the whole module using the wildcard import and
access _special_function:

from <module_name> import <element> as <alias>

from utils import printer as myfunc

from utils import Shape, printer as myfunc
s = Shape('oval')
myfunc(s)

"""This is a test module"""
print('Hello I am the utils module')

as before

def _special_function():
 print('Special function')

from utils import *
_special_function()

25.4 Importing Python Modules 287

We will get an error:

However, if we explicitly import the function then we can still reference it:

Now the code works:

This can be used to hide features that are either not intended to be used exter-
nally from a module (developers then use them at their own peril) or to make
advanced features only available to those who really want them.

25.4.4 Importing Within a Function

In some cases, it may be useful to limit the scope of an import to a function; thus,
avoiding any unnecessary use of, or name clashes with, local features.

To do this you merely add an import into the body of a function, for example:

In this case the Shape class is only accessible within the body of my_func().

25.5 Module Properties

Every module has a set of properties that can be used to find what features it
provides, what its name is, what (if any) its documentation string is etc.

These properties are considered special as they all start, and end, with a double
underbar ('__'). These are:

• __name__ the name of the module
• __doc__ the doctoring for the module
• __file__ the file in which the module was defined.

def my_func():
from util import Shape

 s = Shape('line')

NameError: name '_special_function' is not defined

from utils import _special_function
_special_function()

Hello I am the utils module
Special function

288 25 Python Modules and Packages

You can also obtain a list of the contents of a module once it has been imported
using the dir(<module-name>) function. For example:

Which produces:

Note that the executable print statement is still executed as this is run when
the module is loaded into Python’s current runtime; even though all we do it then
access some of the module’s properties.

Mostly module properties are used by tools to help developers; but they can be a
useful reference when you are first encountering a new module.

25.6 Standard Modules

Python comes with many built-in modules as well as many more available from
third parties.

Of particular use is the sys module, which contains a number of data items and
functions that relate to the execution platform on which a program is running.

Some of the sys module’s features are shown below, including sys.path(),
which lists the directories that are searched to resolve a module when an import
statement is used. This is a writable value, allowing a program to add directories
(and hence modules) before attempting an import.

Hello I am the utils module
utils
This is a test module
utils.py
['Shape', '__builtins__', '__cached__', '__doc__', '__file__',
'__loader__', '__name__', '__package__', '__spec__',
'_special_function', 'default_shape', 'printer']

import utils
print(utils.__name__)
print(utils.__doc__)
print(utils.__file__)
print(dir(utils))

print('sys.maxsize: ', sys.maxsize)
print('sys.path: ', sys.path)
print('sys.platform: ', sys.platform)

import sys
print('sys.version: ', sys.version)

25.5 Module Properties 289

Which produces the following output on a Mac:

A common module management tool is known as Anaconda. Anaconda (which
is widely used particularly within the Data Science and Data Analytics field) is
shipped with a large number of common third party Python libraries/modules.
Using Anaconda avoids the need to download separate modules; instead Anaconda
acts as a repository of (most) modules and means that accessing these modules is as
simple as importing them into your code.

You can download Anaconda from https://www.anaconda.com/download.
To see the available Python libraries in Anaconda use the Anaconda Navigator:

[Clang 6.0 (clang-600.0.57)]
sys.maxsize: 9223372036854775807
sys.path: ['/pythonintro/modules', '/workspaces/pycharm', '/
Library/Frameworks/Python.framework/Versions/3.7/lib/
python37.zip', '/Library/Frameworks/Python.framework/Versions/
3.7/lib/python3.7', '/Library/Frameworks/Python.framework/
Versions/3.7/lib/python3.7/lib-dynload', '/Library/Frameworks/
Python.framework/Versions/3.7/lib/python3.7/site-packages']
sys.platform: Darwin

290 25 Python Modules and Packages

https://www.anaconda.com/download

25.7 Python Module Search Path

One point that we have glossed over so far is how does Python find these modules?
The answer is that it uses a special environment variable called the PYTHONPATH.
This is a variable that can be set up prior to running Python that tells it where to
look for to find any named modules.

It is hinted at in the previous section where the sys module’s path variable is
printed out. On the machine that this code was run on the output of this variable
was:

This is actually a list of the locations that Python would look into find a module;
these include the PyCharm project holding the modules related to the examples
used in this book (which is the current directory), then a top level PyCharm location
and a series of Python locations (where locations equal directories on the host
machine).

Python will search though each of these locations in turn to find the named
module; it will use the first module it finds. The actual search algorithm is:

• The current directory.
• If the module isn’t found, Python then searches each directory in the shell

variable PYTHONPATH.
• If all else fails, Python checks the default path. On Unix/Linux this default path

is normally /usr/local/lib/python/.

One point to note about this search order is that it is possible to hide a system
provided module by creating a user defined one and giving it the same name as the
system module; this is because your own module will be found first and will hide
the system provided one.

In this case the PYTHONPATH will be used to find built in Python modules under
the Python installation, while our own user defined modules will be found within
the PyCharm project workspace directories.

It is also possible to override the default PYTHONPATH variable. It is what is
known as an environment variable and so it can be set as a Unix/Linux or Windows
operating system environment variable which can then be picked up by your Python
environment. The syntax used to set the PYTHONPATH depends on whether you are
using Windows or Unix/Linux as it is set at the operating system level:

Here is a typical PYTHONPATH from a Windows system:

sys.path: ['/pycharm/pythonintro/modules', '/workspaces/
pycharm', '/Library/Frameworks/Python.framework/Versions/3.7/
lib/python37.zip', '/Library/Frameworks/Python.framework/
Versions/3.7/lib/python3.7', '/Library/Frameworks/
Python.framework/Versions/3.7/lib/python3.7/lib-dynload', '/
Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/
site-packages']

25.7 Python Module Search Path 291

And here is a typical PYTHONPATH from a Unix/Linux system:

25.8 Modules as Scripts

Any Python file is not only a module but also a Python script or program. This
means that it can be executed directly if required. For example, the following is the
contents of a file called module1.py:

When this file is run directly, or loaded into the Python REPL, then the
free-standing code will be executed and the output generated will be:

This looks fine until you try to use module1 with your own code; the
free-standing code will still execute this if we now write:

"""This is a test module"""
print('Hello I am module 1')

def f1():
 print('f1[1]')

def f2():
 print('f2[1]')

x = 1 + 2
print('x is', x)
f1()
f2()

Hello I am module 1
x is 3
f1[1]
f2[1]

set PYTHONPATH = c:\python30\lib;

set PYTHONPATH = /usr/local/lib/python

import module1
module1.f1()

292 25 Python Modules and Packages

Where you might expect only to see the result of running the f1() function
from module1 you actually get:

The first 4 lines are run when module1 is loaded as they are free standing
executable statements within the module.

We can of course remove the free-standing code; but what if we sometimes want
to run module1 as a script/program and sometimes use it as a module imported
into other modules?

In Python we can distinguish between when a file is loaded as a module and
when it is being run as a standalone script/program. This is because Python sets the
module property __name__ to the name of the module when it is being loaded as a
module; but if a file is being run as a standalone script (or the entry point of an
application) then the __name__ is set to the string __main__. This is partly
because historically main() has been the entry point for applications in numerous
other languages such as C, C++, Java and C#.

We can now determine whether a module is being loaded or run as a script/main
application by checking the __name__ property of the module (which is directly
accessible from within a module). If the module is the __main__ entry point then
run some code; if it is not then do something else.

For example,

"""This is a test module"""
print('Hello I am module 1')

def f1():
 print('f1[1]')

def f2():
 print('f2[1]')

if __name__ == '__main__':
 x = 1 + 2
 print('x is', x)
 f1()
 f2()

Hello I am module 1
x is 3
f1[1]
f2[1]
f1[1]

25.8 Modules as Scripts 293

Now the code within the if statement will only be executed when this module is
loaded as the starting point for an application/script. Note that the print statement
at the top of the module will still be executed in both scenarios; this can be useful as
it allows set up or initialisation behaviour to still be executed where appropriate.

A common pattern, or idiom is to place the code to be run when a file is being
loaded directly (rather than as a module) in a function called main() and to call
that function from within the if statement. This helps to clarify which behaviour is
intended to run when, thus our module’s final version is:

This version is what would now be called idiomatic Python or Pythonic in style.

25.9 Python Packages

25.9.1 Package Organisation

Python allows developers to organize modules together into packages, in a hier-
archical structure based on directories.

A package is defined as

• a directory containing one or more Python source files and
• an optional source file named __init__.py. This file may also contain code

that is executed when a module is imported from the package.

"""This is a test module"""
print('Hello I am module 1')

def f1():
 print('f1[1]')

def f2():
 print('f2[1]')

def main():
 x = 1 + 2
 print('x is', x)
 f1()
 f2()

if __name__ == '__main__':
 main()

294 25 Python Modules and Packages

For example, the following picture illustrates a package utils containing two
modules classes and functions.

In this case the __init__.py file contains package level initialisation code:

The contents of the __init__.py file will be run once, the first time either
module within the package is referenced.

The functions module then contains several function definitions; while the
classes module contains several class definitions.

We refer to elements of the package relative to the package name—as shown
below:

Here we are importing both the functions module and the classes module
from the utils package. The function f1() is defined in the functions
module while the Processor class is defined within the classes module.

You can use all the from and import styles we have already seen, for example
you can import a function from a module in a package and give it an alias:

It is possible to import all the modules from a package by simply importing the
package name. If you wish to provide some control over what is imported from a
package when this happens you can define a variable all in the __init__.py
file that will indicate what will be imported in this situation.

print('utils package')

from utils.functions import *
f1()
from utils.classes import *
p = Processor()

from util.functions import f1 as myfunc
myfunc()

25.9 Python Packages 295

25.9.2 Sub Packages

Packages can contain sub packages to any depth you require. For example, the
following diagram illustrates this idea:

In the above diagram utils is the root package, this contains two sub packages
file_utils and network_utils. The file_utils package has an initiali-
sation file and a file_support module. The network_utils package also has
a package initialisation file and two modules; network_monitoring and
network_support. Of course, the root package also has its own initialisation
file and its own modules classes and functions.

To import the sub package, we do the same as before but each package in the
path to the module is separate by a dot, for example:

or

25.10 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/tutorial/modules.html#standard-modules the standard
modules.

• https://docs.python.org/3/tutorial/modules.html#packages packages.

import utils.file_utils.file_support

from utils.file_utils.file_support import file_logger

296 25 Python Modules and Packages

https://docs.python.org/3/tutorial/modules.html#standard-modules
https://docs.python.org/3/tutorial/modules.html#packages

• https://docs.python.org/3/tutorial/stdlib.html brief tour of the standard library
part 1.

• https://docs.python.org/3/tutorial/stdlib2.html brief tour of the standard library
part 2.

• https://pymotw.com/3/ the Python Module of the Week site listing very many
modules and an extremely useful reference.

25.11 Exercise

The aim of this exercise is to create a module for the classes you have been
developing.

You should move your Account, CurrentAccount, DepositAccount
and BalanceError classes into a separate module (file) called accounts. Save
this file into a new Python package called fintech.

Separate out the test application from this module so that you can import the
classes from the package.

Your test application will now look like:

You could of course also use from accounts import * to avoid prefixing
the accounts related classes with accounts.

import fintech.accounts as accounts

acc1 = accounts.CurrentAccount('123', 'John', 10.05, 100.0)
acc2 = accounts.DepositAccount('345', 'John', 23.55, 0.5)
acc3 = accounts.InvestmentAccount('567', 'Phoebe', 12.45, 'high
risk')

print(acc1)
print(acc2)
print(acc3)

acc1.deposit(23.45)
acc1.withdraw(12.33)
print('balance:', acc1.balance)

print('Number of Account instances created:',
accounts.Account.instance_count)

try:
 print('balance:', acc1.balance)
 acc1.withdraw(300.00)
 print('balance:', acc1.balance)
except accounts.BalanceError as e:
 print('Handling Exception')
 print(e)

25.10 Online Resources 297

https://docs.python.org/3/tutorial/stdlib.html
https://docs.python.org/3/tutorial/stdlib2.html
https://pymotw.com/3/

Chapter 26
Abstract Base Classes

26.1 Introduction

This chapter presents Abstract Base Classes (also known as ABCs) which were
originally introduced in Python 2.6.

An Abstract Base Class is a class that you cannot instantiate and that is expected
to be extended by one or more subclassed. These subclasses will then fill in any the
gaps left the base class.

Abstract Base Classes are very useful for creating class hierarchies with a high
level of reuse from the root class in the hierarchy.

26.2 Abstract Classes as a Concept

An abstract class is a class from which you cannot create an object. It is typically
missing one or more elements required to create a fully functioning object.

In contrast a non-abstract (or concrete) class leaves nothing undefined and can be
used to create a working object.

You may therefore wonder what use an abstract class is?
The answer is that you can group together elements which are to be shared

amongst a number of classes, without providing a complete implementation. In
addition, you can force subclasses to provide specific methods ensuring that
implementers of a subclass at least supply appropriately named methods. You
should therefore use abstract classes when:

• you wish to specify data or behaviour common to a set of classes, but insuffi-
cient for a single instance,

• you wish to force subclasses to provide specific behaviour.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_26

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_26

In many cases, the two situations go together. Typically, the aspects of the class
to be defined as abstract are specific to each class, while what has been imple-
mented is common to all classes.

26.3 Abstract Base Classes in Python

Abstract Base Classes (or ABCs as they are sometimes referred to) cannot be
instantiated themselves but can be extended by subclasses. These subclasses can be
concrete classes or can themselves be Abstract Base Classes (that extend the
concept defined in the root Abstract Base Class).

Abstract Base Classes can be used to define generic (potentially abstract)
behaviour that can be mixed into other Python classes and act as an abstract root of
a class hierarchy. They can also be used to provide a more formal way of specifying
behaviour that must be provided by a concrete class.

Abstract Base Classes can have:

• Zero or more abstract methods or properties (but are not required to).
• Zero or more concrete methods and properties (but are not required to).
• Both private and protected attributes (following the single underscore and

double underscore conventions).

ABCs can also be used to specify a specific interface or formal protocol. If an
ABC defines any abstract methods or abstract properties, then the subclasses must
provide implementations for all such abstract elements.

There are many built-in ABCs in Python including (but not limited to):

• data structures (collection module),
• numbers module,
• streams (IO module).

In fact, ABCs are widely used internally within Python itself and many devel-
opers use ABCs without ever knowing they exist or understanding how to define
them.

Indeed, ABCs are not widely used by developers building systems with Python
although this is in part because they are most appropriate to those building libraries,
particularly those that are expected to be extended by developers themselves.

26.3.1 Subclassing an ABC

Typically, an Abstract Base Class will need to be imported from the module in
which it is defined; of course, if the ABC is defined in the current module then this
will not be necessary.

300 26 Abstract Base Classes

As an example, the collections.MutableSequence class is an ABC;
this is an ABC for a sequence of elements that can be modified (mutable) and
iterated over. We can use this as the base class for our own type of collection which
we will call a Bag, for example:

from collections import MutableSequence

class Bag(MutableSequence):
pass

In this example we are importing the MutableSequence from the col-
lections module. We then define the class Bag as extending the
MutableSequence Abstract Base Class. For the moment we are using the
special Python keyword pass as a place holder for the body of the class.

However, this means that the Bag class is actually also an abstract class as it
does not implement any of the abstract methods in the MutableSequence ABC.

Python, however, does not validate this at import time; instead it validates it at
runtime when an instance of the type is to be created.

In this case, the Bag class does not implement the abstract methods in
MutableSequence and thus if a program attempts to create an instance of Bag,
then the following error would be raised:

Traceback (most recent call last):
File "/pythonintro/abstract/Bag.py", line 10, in <module>
main()

File "/pythonintro/abstract/Bag.py", line 7, in main
bag = Bag()

TypeError: Can't instantiate abstract class Bag with abstract
methods __delitem__, __getitem__, __len__, __setitem__,
insert

As can be seen this is a rather formal requirement; if you don’t implement all the
methods defined as abstract in the parent class then you can’t create an instance of
the class you are defining (because it is also abstract).

We can define a method for each of the abstract classes in the Bag class and then
we will be able to create an instance of the class, for example:

26.3 Abstract Base Classes in Python 301

This version of Bag meets all the requirements imposed on it by the ABC
MutableSequence; that is, it implements each of the special methods listed and
the insert method. The class Bag can now be considered to be a concrete class.

However, in this case the methods themselves don’t do anything (they again use
the Python keyword pass which acts as a placeholder for the code to implement
each method). However, we can now write:

bag = Bag()

And the application will not generate an error message.
At this point we could now progress to implementing each method such that it

provides an appropriate implementation of the Bag.

26.3.2 Defining an Abstract Base Class

An Abstract Base Class can be defined by specifying that the class has a metaclass;
typically, ABCMeta. The ABCMeta metaclass is provided by the abc module.

The metaclass is specified using the metaclass attribute of the parent class list.
This will create a class that can be used as an ABC. Alternatively you can extend
the abc.ABC class that specified the ABCMeta as its metaclass.

This is exactly how the ABCs in the _collections_abc.py file are
implemented.

The following code snippet illustrates this idea. The ABCMeta class is imported
from the abc module. It is then used with the class Shape via the metaclass
attribute of the class inheritance list:

from collections import MutableSequence

class Bag(MutableSequence):

def __getitem__(self, index):

pass

def __delitem__(self, index):
pass

def __len__(self):
pass

def __setitem__(self, index, value):
pass

def insert(self, index, value):
pass

302 26 Abstract Base Classes

Note that at this point although Shape is an ABC, it does not define any abstract
elements and so can actually be instantiated just like any other concrete class.
However, we will next define some abstract methods for the Shape ABC.

To define an abstract method, we need to also import the abstractmethod
decorator from the abc module, (if we want to define an abstract property then we
need to add @property to an appropriate abstract method). Importing the
abstractmethod decorator is illustrated below:

from abc import ABCMeta, abstractmethod

We can now expand the definition of our Shape class:

from abc import ABCMeta, abstractmethod

class Shape(metaclass=ABCMeta):
def __init__(self, id):

self._id = id

@abstractmethod
def display(self): pass

@property
@abstractmethod
def id(self): pass

The class Shape is now an Abstract Base Class and requires that any subclass
must provide an implementation of the method display() and the property id
(otherwise the subclass will automatically become abstract).

The class Circle is a concrete subclass of the Shape ABC; it thus provides a
__init__() initialisation method, a display method and an id property (the
__init__() method is used to allow the _id attribute in the base class to be
initialised).

from abc import ABCMeta

class Shape(metaclass=ABCMeta):

def __init__(self, id):
self.id = id

26.3 Abstract Base Classes in Python 303

We can now use the class Circle in an application:

c = Circle("circle1")
print(c.id)
c.display()

We can instantiate the Circle class as it is concrete and we know we can call
the method display() and access the property id on instances of Circle.
The output from the above code is thus:

circle1
Circle: circle1

26.4 Defining an Interface

Many languages such as Java and C# have the concept of an interface definition;
this is a contract between the implementors of an interface and the user of the
implementation guaranteeing that certain facilities will be provided.

Python does not explicitly have the concept of an interface contract (note here
interface refers to the interface between a class and the code that utilizes that class).

However, it does have Abstract Base Classes.
Any Abstract Base Class that only has abstract methods or properties in it can be

treated as a contract that must be implemented (it can of course also have concrete
methods, properties and attributes; it is up to the developer). However, as we know
that Python will guarantee that any instances can only be created from concrete
classes, we can treat an ABC has behaving like a contract between a class and those
using that class.

This is an approach that is adopted by numerous frameworks and libraries within
Python.

class Circle(Shape):
def __init__(self, id):

super().__init__(id)

def display(self):
print('Circle: ', self._id)

@property
def id(self):

""" the id property """
return self._id

304 26 Abstract Base Classes

26.5 Virtual Subclasses

In most object-oriented programming languages, for one class to be treated as a
subclass of another class it is necessary for the subclass to extend the parent class.
However, Python has a more relaxed approach to typing, as is illustrated by the idea
of Duck Typing (discussed in the next chapter).

In some situations however, it is useful to be able to confirm that one type is a
subclass of another or that an instance is an instance of a specific type (which may
come from the object’s class hierarchy) at runtime.

Indeed, in Python, it is not necessary to be an actual subclass of a parent class to
be considered a subclass—instead Virtual subclasses allow one class to be treated
as a subclass of another even though there is no direct inheritance relationship
between them. The key here is that the virtual subclass must match the required
interface presented by the virtual parent class.

This is done by registering one class as a Virtual Subclass of an Abstract Base
Class. That is, the virtual parent class must be an ABC and then the subclass can be
registered (at runtime) as a virtual subclass of the ABC. This is done using a
method called register().

Once a class is registered as a subclass of an ABC the issubclass() and
isintance() methods will return True for that class with respect to the virtual
parent class.

For example, given the following two currently independent classes:

from abc import ABCMeta

class Person(metaclass=ABCMeta):
def __init__(self, name, age):

self.name = name
self.age = age

def birthday(self):
print('Happy Birthday')

class Employee(object):
def __init__(self, name, age, id):

self.name = name
self.age = age
self.id = id

def birthday(self):
print('Its your birthday')

If we now check to see if Employee is a subclass of Person we will get the
value False returned. We will of course also get False if we check to see an
instance of Employee is actually an instance of the class Person:

26.5 Virtual Subclasses 305

This will generate the output:

False
False

However, if we now register the class Employee as a virtual subclass of the
class Person, the two test methods will return True:

Person.register(Employee)
print(issubclass(Employee, Person))
e = Employee('Megan', 21, 'MS123')
print(isinstance(e, Person))

Which now generates the output:

True
True

This provides a very useful level of flexibility that can be exploited when using
existing libraries and frameworks.

26.6 Mixins

A mixin is a class that represents some (typically concrete) functionality that has the
potentially to be useful in multiple situations but on its own is not something that
would be instantiated.

However, a mixin can be mixed into other classes and can extend the data and
behavior of that type and can access data and methods provided by those classes.

Mixins are a common category of Abstract Base Classes; although they are
implicit in their use (and naming) rather than being a concrete construct within the
Python language itself.

For example, let us define a PrinterMixing class that provides a utility
method to be used with other classes. It is not something that we want developers to
instantiate itself so we will make it an ABC but it does not define any abstract
methods or properties (so there is nothing for a subclass to have to implement).

print(issubclass(Employee, Person))
e = Employee('Megan', 21, 'MS123')
print(isinstance(e, Person))

306 26 Abstract Base Classes

We can now use this with a class Employee that extends the class Person and
mixes in the PrinterMixin class:

This now means that when we instantiate the class Employee we can call the
print_me() method on the Employee object:

e = Employee('Megan', 21, 'MS123')
e.print_me()

which will print out

Employee(MS123)Megan[21]

One point to note about the PrinterMixin is that it is completely independent
of the class it is mixed into. However, mixins can also impose some constraints on the
classes they will be mixed into. For example, the IDPrinterMixin shown below
assumes that the class it will be mixed into has an attribute or property called id.

class IDPrinterMixin(metaclass=ABCMeta):
def print_id(self):

print(self.id)

This means that it cannot be mixed successfully into the class Person—if it
was then when the print_id() method was called an error would be generated.

However, the class Employee does have an id attribute and thus the
IDPrinterMixin can be mixed into the Employee class:

from abc import ABCMeta

class PrinterMixin(metaclass=ABCMeta):
def print_me(self):

print(self)

class Person(object):
def __init__(self, name):

self.name = name

class Employee(Person, PrinterMixin):
def __init__(self, name, age, id):

super().__init__(name)
self.age = age
self.id = id

def __str__(self):
return 'Employee(' + self.id + ')' + self.name + '['

+ str(self.age) + ']'

26.6 Mixins 307

Which means that we can now call write:

e = Employee('Megan', 21, 'MS123')
e.print_me()
e.print_id()

Which will generate:

Employee(MS123)Megan[21]
MS123

26.7 Online Resources

Some online references for Abstract Base Classes include:

• https://docs.python.org/3/library/abc.html The standard Library documentation
on Abstract Base Classes.

• https://pymotw.com/3/abc/index.html The Python Module of the Week page for
Abstract Base Classes.

• https://www.python.org/dev/peps/pep-3119/ Python PEP 3119 that introduced
Abstract Base Classes.

26.8 Exercises

The aim of this exercise is to use an Abstract Base Class.
The Account class of the project you have been working on throughout the last

few chapters is currently a concrete class and is indeed instantiated in our test
application.

Modify the Account class so that it is an Abstract Base Class which will force
all concrete examples to be a subclass of Account.

class Employee(Person, PrinterMixin, IDPrinterMixin):

def __init__(self, name, age, id):
super().__init__(name)
self.age = age
self.id = id

def __str__(self):
return 'Employee(' + self.id + ')' + self.name + '['

+ str(self.age) + ']'

308 26 Abstract Base Classes

https://docs.python.org/3/library/abc.html
https://pymotw.com/3/abc/index.html
https://www.python.org/dev/peps/pep-3119/

The account creation code element might now look like:

acc1 = accounts.CurrentAccount('123', 'John', 10.05, 100.0)
acc2 = accounts.DepositAccount('345', 'John', 23.55, 0.5)
acc3 = accounts.InvestmentAccount('567', 'Phoebe', 12.45,
'risky')

26.8 Exercises 309

Chapter 27
Protocols, Polymorphism
and Descriptors

27.1 Introduction

In this chapter we will explore the idea of an implicit contract between an object
and the code that uses that object. As part of this discussion we will explore what is
meant by Duck Typing. Following this we will introduce the Python concept called
a protocol. We will explore its role within Python programming and look at two
commonly occurring protocols; the Context Manager Protocol and the Descriptor
Protocol.

27.2 Implicit Contracts

Some programming languages (most notable Java and C#) have the idea of an
explicit contract between a class and the user of that class; this contract provides a
guarantee of the methods that will be provided and the types that will be used for
parameters and return values from these methods. In these languages it helps to
guarantee that a method is only called with the appropriate type of values and only
in appropriate situations. Slightly confusingly these contracts are referred to as
interfaces in Java and C#; but are intended to describe the application programming
interface presented by the class.

Python is a much more flexible and free flowing language than either Java or C#
and so has no explicit concept of an interface. This can however make things more
complex at times; for example, consider the very simple Calculator class given
below:

class Calculator:
def add(self, x, y):

return x + y

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_27

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_27

What are the valid values that can be passed into the add method and used for
the parameters x and y?

Initially it might seem that numeric values such as 1, 2 and 3.4, 5.77 etc. would
be the only things that can be used with the add method:

This generates the following output:

However, this actually represents a contract that the values passed into the
Calculator.add() method will support the plus operator. In an earlier chapter
we explored a class Quantity which implemented this operator (among others)
and thus we can also use Quantity objects with the Calculator’s add() method:

Which prints out:

This implied contract says that the Calculator.add() method will work
with anything that supports the numeric add operator (or to put it another); any-
thing that is numeric like.

This is also known as Duck Typing; this is described in the next section.

calc = Calculator()

print('calc.add(3, 4):', calc.add(3, 4))
print('calc.add(3, 4.5):', calc.add(3, 4.5))
print('calc.add(4.5, 6.2):', calc.add(4.5, 6.2))
print('calc.add(2.3, 7):', calc.add(2.3, 7))
print('calc.add(-1, 4):', calc.add(-1, 4))

calc.add(3, 4): 7
calc.add(3, 4.5): 7.5
calc.add(4.5, 6.2): 10.7
calc.add(2.3, 7): 9.3
calc.add(-1, 4): 3

q1 = Quantity(5)
q2 = Quantity(10)
print(calc.add(q1, q2))

Quantity[15]

312 27 Protocols, Polymorphism and Descriptors

27.3 Duck Typing

This rather strange term comes from an old saying:

If it walks like a duck, swims like a duck and quacks like a duck then it’s a Duck!

In Python Duck Typing (also known as shape typing or structural typing) implies
that if a object can perform the required set of operations then it’s a suitable thing to
use for what you want. For example, if your type can be used with the add, multiply,
divide and subtract operators than it can be treated as a Numeric type (even if it isn’t).

This is a very powerful feature of Python and allows code originally written to
work with a specific set of types, to also be used with a completely new set of types;
as long as they meet the implicit contract defined within the code.

It is also interesting to note, that a particular set of methods may have a super set
of requirements on a particular type, but you only need to implement as much as is
required for the functionality you will actually use.

For example, let us modify the Calculator class a bit and add some more
methods to it:

At first sight this may indicate that anything being used with the Calculator
must implement all four operators '+', '−', '/' and '*'. However, this is only true if you
need to execute all four of the methods defined in the class.

For example, consider the type Distance:

class Calculator:
""" Simple Calculator class"""
def add(self, x, y):

return x + y

def subtract(self, x, y):
return x - y

def multiply(self, x, y):
return x * y

def divide(self, x, y):
return x / y

class Distance:
def __init__(self, d):

self.value = d
def __add__(self, other):

return Distance(self.value + other.value)
def __sub__(self, other):

return Distance(self.value - other.value)
def __str__(self):

return 'Distance[' + str(self.value) + ']'

27.3 Duck Typing 313

This defines a class that implements only the __add__() and __sub__()
methods and will thus only support the '+' and '−' operators.

Can instances of Distance be used with the Calculator class? The answer is
that they can but only with the add and subtractmethods (as they onlymeet part of
the implied contract between the Calculator class and any types used with that
class).

We can thus write:

And obtain the output:

However, if we try to use the multiply() or divide() methods, we will
get an error, for example:

Basically, it is telling you that the operator '/' is not supported when used with
the Distance type.

27.4 Protocols

As mentioned above, Python does not have any formal mechanism for stating what
is required between the supplier of some functionality and the user or consumer of
that functionality. Instead the far less formal approach termed Duck Typing is
adopted instead.

d1 = Distance(6)
d2 = Distance(3)
print(calc.add(d1, d2))
print(calc.subtract(d1, d2))

Distance[9]
Distance[3]

Traceback (most recent call last):
 File "Calculator.py", line 46, in <module>
 print(calc.divide(d1, d2))
 File "Calculator.py", line 15, in divide
 return x / y
TypeError: unsupported operand type(s) for /: 'Distance' and
'Distance'

314 27 Protocols, Polymorphism and Descriptors

This however, raises the question; how do you know what is required? How do
you know that you must provide the numeric operators for an object to be used with
the Calculator class?

The answer is that a concept known as a Protocol is used.
A Protocol is an informal description of the programmer interface provided by

something in Python (for example a class but it could also be a module or a set of
stand-alone functions).

It is defined solely via documentation (and thus the Calculator class should
have a class documentation string defining its protocol).

Based on the information provided by the protocol if a function or method
requires an object to provide a specific operation (or method) then if it all works
great; if not an error will be thrown, and the type is not compatible.

It is one of the key elements in Python which allows the Object-Oriented concept
of Polymorphism to operate.

27.5 An Protocol Example

There are numerous commonly occurring Protocols that can be found in Python.
For example, there is a protocol for defining Sequences, such as a container that can
be accessed an item at a time.

This protocol requires that any type that will be held in the container must
provide the __len__() and __getitem__() methods.

Thus any class that implements these two methods meets the requirements of the
protocol.

However, because protocols are informal and unenforced in Python it is not
actually necessary to implement all the methods in a protocol (as we saw in the
previous section). For example, if it is known that a class will only be used with
iteration then it may only be necessary to implement the __getitem__()method.

27.6 The Context Manager Protocol

Another concrete example is that of the Context Manager Protocol. This protocol
was introduced in Python 2.5 so is very well established by now.

It is associated with the 'with as' statement. This statement is typically used
with classes which will need to allocate, and release so called resources.

These resources could be files, or database connections etc. In each of these
cases a connection needs to be made (for example to a file or a database) before the
associated object can be used.

However, the connection should then be closed and released before we finish
using the object. This is because dangling connections to things such as files and
databases can hang around and cause problems later on (for example typically only
a limited number of concurrent connections are allowed to a file or a database at one

27.4 Protocols 315

time and if they are not closed properly a program can run out of available
connections).

The 'with as' statement ensures that any set up steps are performed before an
object is available for use and that any shut down behaviour is invoked when it is
finished with.

The syntax for the use of the 'with as' statement is

For example:

Note that in this case the object referenced by cmc is only in scope within the
lines indented after the 'with as' statement; after this the cmc variable is no
longer accessible.

How does this work? In fact what the 'with as' statement does is to call a
special method when the 'with as' statement is entered (just after the ':' above);
this method is the __enter__() method. It then also calls another special method
just as the 'with as' statement is exited (just after the last indented statement).
This second method is the __exit__() method.

• The __enter__() method is expected to do any setup/resource allocation/
making connections etc. It is expected to return an object that will be used
within the block of statements that form that 'with as' statement. It is
common to return self although it is not a requirement to do so (this flexibility
allows the managed object to act as a factory for other objects if required).

• The __exit__() method is called on the managed object and is passed
information about any exceptions that might have been generated during the
body of the 'with as' statement. Note that the __exit__() method is
called whether an exception has been thrown or not. The __exit__() method
returns a bool, if it returns True then any exception that has been generated is
swallowed (that is it is suppressed and not passed onto the calling code). If it
returns False then if there is an exception it is also passed back to whatever
code called the 'with as' statement.

An example class that can be used with the 'with as' statement (that meets
the Context Manager Protocol requirements) is given below:

with <managed object> as <localname>:
 Code to use managed object via <localname>

with ContextManagedClass() as cmc:
 print('In with block', cmc)
 print('Existing')

316 27 Protocols, Polymorphism and Descriptors

The above class implements the Context Manager Protocol in that it defines both
the __enter__() method and the __exit__() method.

We can now use this class with the with as statement:

class ContextManagedClass(object):
def __init__(self):

print('__init__')

def __enter__(self):
print('__enter__')
return self

 # Args exception type, exception value and traceback
def __exit__(self, *args):

 print('__exit__:', args)
return True

def __str__(self):
return 'ContextManagedClass object'

print('Starting')

with ContextManagedClass() as cmc:
 print('In with block', cmc)
 print('Exiting')

print('Done')

Theoutput from this is:
Starting
__init__
__enter__
In with block ContextManagedClass object
Exiting
__exit__: (None, None, None)
Done

From this you can see that the __enter__() method is called before the code
in the block and __exit__() is called after the code in the block.

27.7 Polymorphism

Polymorphism is the ability to send the same message (request to run a method) to
different objects, each of which appear to perform the same function. However, the
way in which the message is handled depends on the object’s class.

Polymorphism is a strange sounding word, derived from Greek, for a relatively
simple concept. It is essentially the ability to request that the same operation be

27.6 The Context Manager Protocol 317

performed by a wide range of different types of things. How the request is pro-
cessed depends on the thing that receives the request. The programmer need not
worry about how the request is handled, only that it is. This is illustrated below.

In this example, the parameter passed into the night_out() function expects
to be given something that will respond to the methods eat(), drink() and
sleep(). Any object that meets this requirement can be used with the function.

We can define multiple classes that meet this informal contract, for example we
can define a class hierarchy that provides these methods, or completely separate
classes that implement the methods. In the case of the class hierarchy the methods
may or may not override those from the parent class.

Effectively, this means that you can ask many different things to perform the same
action. For example, you might ask a range of objects to provide a printable string
describing themselves. In fact in Python this is exactly what happens. For exmaple, if
you ask an instance of a Manager class, a compiler object or a database object to
return such a string, you use the same method (__str__(), in Python).

The name polymorphism is unfortunate and often leads to confusion. It makes
the whole process sound rather grander than it actually is.

Note this is one of the most significant and flexible features of Python; it does
not tie a variable to a specific type; instead via Duck Typing as long as the object
provided meets the implied contract, then we are good.

The following classes all meet the contract implied by thenight_out() function:

def night_out(p):
 p.eat()
 p.drink()
 p.sleep()

class Person:
def eat(self): print('Person - Eat')
def drink(self): print('Person - Drink')
def sleep(self): print('Person - Sleep')

class Employee(Person):
def eat(self): print('Employee - Eat')
def drink(self): print('Employee - Drink')
def sleep(self): print('Employee - Sleep')

class SalesPerson(Employee):
def eat(self): print('SalesPerson - Eat')
def drink(self): print('SalesPerson - Drink')

class Dog:
def eat(self): print('Dog - Eat')
def drink(self): print('Dog - Drink')
def sleep(self): print('Dog - Sleep')

318 27 Protocols, Polymorphism and Descriptors

This means that instances of all of these classes can be used with the
night_out() function.

Note that the SalesPerson class meets the implied contract partly via
inheritance (the sleep() method is inherited from Employee).

27.8 The Descriptor Protocol

Another protocol is the descriptor protocol that was introduced back in Python 2.2.
Descriptors can be used to create what are known as managed attributes.

A managed attribute is an object attributes that is managed (or protected) from
direct access by external code via the descriptor. The descriptor can then take
whatever action is appropriate such as validating the data, checking the format,
logging the action, updating a related attribute etc.

The descriptor protocol defines four methods (as usual they are considered
special methods and thus start with a double underbar '__'):

• __get__(self, instance, owner) This method is called when the
value of an attribute is accessed. The instance is the instance being modified
and the owner is the class defining the object. This method should return the
(computed) attribute value or raise an AttributeError exception.

• __set__(self, instance, value) This is called when the value of an
attribute is being set. The parameter value is the new value being set.

• __delete__(self, instance) Called to delete the attribute.
• __set_name__(self, owner, name) Called at the time the owning

class owner is created. The descriptor has been assigned to name. This
method was added to the protocol in Python 3.6.

The following class Logger implements the Descriptor protocol. It can
therefore be used with other classes to log the creation, access and update of
whatever attribute it is applied on.

27.7 Polymorphism 319

Each of the methods defined for the protocol prints out a message so that access
can be monitored.

The Logger class is used with the following Cursor class.

class Cursor(object):
Set up the descriptors at the class level
x = Logger('x')

 y = Logger('y')

def __init__(self, x0, y0):
Initialise the attributes

 # Note use of __dict__ to avoid using self.x notation
 # which would invoke the descriptor behaviour

self.__dict__['x'] = x0
 self.__dict__['y'] = y0

def move_by(self, dx, dy):
 print('move_by', dx, ',', dy)
 self.x = self.x + dx
 self.y = self.y + dy

def __str__(self):
return 'Point[' + str(self.__dict__['x']) +

', ' + str(self.__dict__['y']) + ']'

class Logger(object):
""" Logger class implementing the descriptor protocol"""
def __init__(self, name):

self.name = name

def __get__(self, inst, owner):
 print('__get__:', inst, 'owner', owner,

', value', self.name, '=',
 str(inst.__dict__[self.name]))

return inst.__dict__[self.name]

def __set__(self, inst, value):
 print('__set__:', inst, '-', self.name, '=', value)
 inst.__dict__[self.name] = value

def __delete__(self, instance):
 print('__delete__', instance)

def __set_name__(self, owner, name):
 print('__set_name__', 'owner', owner, 'setting', name)

320 27 Protocols, Polymorphism and Descriptors

There are several points to note about this class definition including:
The Descriptors must be defined at the class level not at the object/instance

level. This the x and y attributes of Cursor object are defined as having Logger
descriptors within the class (not within the __init__() method). If you try to
define them using self.x and self.y the descriptors will not be registered.

The Cursor __init__()method uses the __dict__ dictionary to initialise the
instance/object attributes x and y. This is an alternative approach to accessing an
objects’ attributes; it is used internally by an object to hold the actual attribute values.
It by passes the normal attribute look up mechanism invoked when you use the
dot notation (such as curser.x = 10). This means that it will not be intercepted by
the Descriptor. This has been done because the logger uses the __str__()method
to print out the instance holding the attribute which uses the current values of x and y.
When the value of x is initially set there will be no value for y and thus an error would
be generated by the __str__().

The __str__() method also uses the __dict__ dictionary to access the
attributes as it is not necessary to log this access. It would also become recursive if
the Logger also used the method to print out the instance.

We can now use instances of the Cursor object without knowing that the
descriptor will intercept access to the attributes x and y:

The output from this illustrates how the descriptors have intercepted access to
the attributes. Note that the move_by() method accesses both the getter and the
setter descriptor methods as this method reads the current value of the attributes and
then updates them.

print('p1:', cursor)
cursor.x = 20
cursor.y = 35
print('p1 updated:', cursor)
print('p1.x:', cursor.x)
print('-' * 25)

cursor.move_by(1, 1)
print('-' * 25)

del cursor.x

cursor = Cursor(15, 25)
print('-' * 25)

27.8 The Descriptor Protocol 321

27.9 Online Resources

The following online resources focussing on Python protocols are available:

• https://ref.readthedocs.io/en/latest/understanding_python/interfaces/existing_
protocols.html Documentation on Pythons default (native) protocols including
the comparison, hash, attribute access and sequence protocols.

• https://docs.python.org/3/library/stdtypes.html#context-manager-types for Context
manager types.

• https://pymotw.com/3/contextlib/index.html The Python Module of the Week
for Context Manager Utilities.

• https://en.wikipedia.org/wiki/Polymorphism_(computer_science) Wikipedia
page on Polymorphism.

27.10 Exercises

This exercise involves implementing the Context Manager Protocol.
Return to your Account related classes.
Modify the Account class such that it implements the Context Manager

Protocol. This means that you will need to implement the __enter__() and
__exit__() methods.

Place printmessages within the methods so that you can see when they are run.

__set_name__ owner <class '__main__.Cursor'> setting x
__set_name__ owner <class '__main__.Cursor'> setting y

p1: Point[15, 25]
__set__: Point[15, 25] - x = 20
__set__: Point[20, 25] - y = 35
p1 updated: Point[20, 35]
__get__: Point[20, 35] owner <class '__main__.Cursor'> , value
x = 20
p1.x: 20

move_by 1 , 1
__get__: Point[20, 35] owner <class '__main__.Cursor'> , value
x = 20
__set__: Point[20, 35] - x = 21
__get__: Point[21, 35] owner <class '__main__.Cursor'> , value
y = 35
__set__: Point[21, 35] - y = 36

__delete__ Point[21, 36]

322 27 Protocols, Polymorphism and Descriptors

https://ref.readthedocs.io/en/latest/understanding_python/interfaces/existing_protocols.html
https://ref.readthedocs.io/en/latest/understanding_python/interfaces/existing_protocols.html
https://docs.python.org/3/library/stdtypes.html#context-manager-types
https://pymotw.com/3/contextlib/index.html
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)

The new methods you have defined will be inherited by each of the subclasses
you have created; namely CurrentAccount, DepositAccount and
InvestmentAccount.

Now test out your modified calculator using:

Which should produce output similar to:

Creating new Account
__enter__
15.5
__exit__: (None, None, None)

with accounts.CurrentAccount ('891', 'Adam', 5.0, 50.0) as acc:
 acc.deposit(23.0)
 acc.withdraw(12.33)
 print(acc.balance)

27.10 Exercises 323

Chapter 28
Monkey Patching and Attribute Lookup

28.1 Introduction

Monkey Patching is a term you might well come across when looking into the
Python further or when searching the web for Python related concepts. It relates to
the ability in Python to extend the functionality associated with a class/type at
runtime.

Although not directly related to Monkey Patching; how Python looks up attri-
butes and how this process can be managed is a useful aspect to understand. In
particular, how to handle unknown attributes can be very useful in managing sit-
uations in which Monkey Patching might be used to solve an initial attribute
incompatibility.

This chapter explores both Monkey Patching and Python Attribute lookup.

28.2 What Is Monkey Patching?

Monkey Patching is the idea that it is possible to add behaviour to an existing
object, at runtime, to meet some requirement that originally the type did not meet.
This can happen for example as there is no fixed requirement for a class to
implement all of a protocol; in many cases a class may only implement as much of a
protocol as is required to meet the current needs; if at a later stage, other elements of
a protocol are required then they can be added.

Of course, if this is likely to be a common occurrence then the features can be
added to the class for use by everyone; but if not, then those features can be added
dynamically at runtime to an object itself. This avoids the public interface of the
type becoming cluttered with rarely used features/functionality.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_28

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_28

28.2.1 How Does Monkey Patching Work?

Python is a dynamic language which allows the definition of a type to change at
runtime. As methods on objects are in essence just another attribute of a class, albeit
one that can be executed, it is possible to add new functionality to a class by
defining new attributes that will hold references to the new behaviour.

28.2.2 Monkey Patching Example

The following class, Bag, implements an initialisation method __init__(),
__str__() and the __getitem__() method used to support indexed access to
a container (or collection) type.

class Bag():
def __init__(self):

self.data = ['a', 'b', 'c']

def __getitem__(self, pos):
return self.data[pos]

def __str__(self):
return 'Bag(' + str(self.data) + ')'

b = Bag()
print(b)

This creates a Bag object and prints out the contents of the Bag:

Bag(['a', 'b', 'c'])

However, if we try to run

print(len(b))

We will get a runtime error:

Traceback (most recent call last):
File "Bag.py", line 12, in <module>
print(len(b))

TypeError: object of type 'Bag' has no len()

This is because the len() function expects the object passed to it will imple-
ment the __len__() method that is be used to obtain its length. In this case the
class Bag does not implement this method.

326 28 Monkey Patching and Attribute Lookup

However, we can define a stand-alone function that behaves in the way we
would need the Bag to calculate its length, for example:

def get_length(self):
return len(self.data)

This function takes a single parameter which we have called self. It then uses
this parameter to reference an attribute called data which itself uses len() to
return the length of the associated data items.

At present this function has no relationship to the Bag class other than the fact
that it assumes that whatever is passed into it will have an attribute called data—
which the Bag class does.

In fact, the get_length() function is compatible with any class that has an
attribute data that can be used to determine its length.

We can now associate it with the Bag class; this can be done by assigning the
function reference (in practice the function name) to an appropriate attribute on theBag
class. Since thelen() function expects a class to implement the__len__()method
we can assign the get_length() function to the __len__() attribute. This
effectively adds a newmethod to the Bag class with the signature __len__(self):

Monkey patching
Bag.__len__ = get_length

Now when we invoke

print(len(b))

We get the value 3 being printed out.
We have now Monkey Patched the class Bag so that the missing method

becomes available.

28.2.3 The Self Parameter

One of the reasons that Monkey Patching works is because all methods receive the
special first parameter (called self by convention) representing the object itself.
This means that any function that treats the first parameter as being a reference to an
object can potentially be used to define a method on a class.

If a function does not assume that the first parameter is a reference to an object
(the one holding the method) then it cannot be used to add new functionality to a
class.

28.2 What Is Monkey Patching? 327

28.2.4 Adding New Data to a Class

Monkey patching is not just limited to functionality; it is also possible to add new
data attributes to a class. For example, if we wanted each Bag to have a name then
we could add a new attribute to the class to hold its name:

Bag.name = 'My Bag'
print(b.name)

Which prints out the string 'My Bag' which now acts as a default value of the
name of any Bag. Once the attribute is added we can then change the name of this
particular instance of a Bag:

For example, if we extend the above example:

Bag.name = 'My Bag'
print(b.name)

b.name = 'Johns Bag'
print(b.name)

b2 = Bag()
print(b2.name)

We can now generate:

My Bag
Johns Bag
My Bag

28.3 Attribute Lookup

As shown above, Python is very dynamic and it is easy to add attributes and
methods to a class, but how does this work. It is worth considering how Python
manages attribute and method lookup for an object.

Python classes can have both class and instance oriented attributes, for example
the following class Student has a class attribute count (that is associated with
the class itself) and an instance or object attribute name. Thus each instance of the
class Student will have its own name attribute.

class Student:
count = 0

def __init__(self, name):
self.name = name
Student.count += 1

328 28 Monkey Patching and Attribute Lookup

Whenever an instance of the class Student is created the Student.count
attribute will be incremented b y 1.

To manage these attributes Python maintains internal dictionaries; one for class
attributes and one for object attributes. These dictionaries are called __dict__ and can
be accessed either from the class <class>.__dict__ (for class attributes) or from an
instance of the class <instance.>__dict__ (for object attributes). For example:

student = Student('John')

Class attribute dictionary
print('Student.__dict__:', Student.__dict__)
Instance / Object dictionary
print('student.__dict__:', student.__dict__)

Which produces the output shown below (note that the class dictionary holds
more information than just the class attribute count):

Student.__dict__: {'__module__': '__main__', 'count': 1,
'__init__': <function Student.__init__ at
0x10d515158>, '__dict__': <attribute
'__dict__' of 'Student' objects>,
'__weakref__': <attribute '__weakref__' of
'Student' objects>, '__doc__': None}

student.__dict__: {'name': 'John'}

To look up an attribute, Python does the following for class attributes:

1. Search the class Dictionary for an attribute
2. If the attribute is not found in step 1 then search the parent class(es) dictionaries

For object attributes, Python first searches the instance dictionary and repeats the
above steps, it thus performs these steps:

1. Search the object/instance dictionary
2. If the attribute was not found in step 1, then search the class Dictionary for an

attribute
3. If the attribute is not found in step 2, then search the parent class(es) dictionaries

Thus given the following statements, different steps are taken each time:

student = Student('John')

print('Student.count:', Student.count) # class lookup
print('student.name:', student.name) # instance lookup
print('student.count:', student.count) # lookup finds class
attribute

28.3 Attribute Lookup 329

The output as expected is that either attempt to access the class attribute count
will result in the value 1 where as the object attribute name returns 'John'.

Student.count: 1
student.name: John
student.count: 1

As the dictionaries used to hold the class and object attributes are just that
dictionaries, they provide another way to access the attributes of a class such as
Student. That is you can write code that will access an attribute value using the
appropriate __dict__ rather than the more usual dot notation, for example the
following are equivalent:

class lookup
print('Student.count:', Student.count)
print("Student.__dict__['count']:", Student.__dict__['count'])

Instance / Object Lookup
print('student.name:', student.name)
print("student.__dict__['name']:", student.__dict__['name'])

In both cases the end result is the same, either the class attribute count is
accessed or the object/instance attribute name is accessed:

Student.count: 1
Student.__dict__['count']: 1
student.name: John
student.__dict__['name']: John

However, accessing attributes via the __dict__ does not trigger a search
process; it is instead a direct lookup in the associated dictionary container. Thus if
you try to access a class variable via the objects __dict__ then you will get an
error. This is illustrated below where we attempt to access the count class variable
via the student object:

Attempt to look up class variable via object
print('student.name:', student.name)
print("student.__dict__['count']:", student.__dict__['count'])

This will generate a KeyError indicating that the object __dict__ does not
hold a key called 'count':

Traceback (most recent call last):
File "Student.py", line 60, in <module>
print("student.__dict__['count']:",

student.__dict__['count'])
KeyError: 'count'

330 28 Monkey Patching and Attribute Lookup

28.4 Handling Unknown Attribute Access

Monkey patching is of course very flexible and very useful when you know what
you need to provide; however what happens when an attribute reference (or method
invocation) occurs when it is not expected? By default an error is generated such as
the AttributeError below:

student = Student('John')

res1 = student.dummy_attribute
print('p.dummy_attribute:', res1)

This generates an AttributeError for the dummy_attribute

Traceback (most recent call last):
File "Student.py", line 51, in <module>
res1 = student.dummy_attribute

AttributeError: 'Student' object has no attribute
'dummy_attribute'

Youcan of course catch theAttributeError if youwant; but themeanswrapping
your code in a try block. An alternative approach is to define a method called
__getattr__(); this method will be called when an attribute is not found in the
objects (and classes) __dict__ dictionary. This method can then perform whatever
action is appropriate such as logging a message or providing a default value etc.

For example, if we modify the definition of the Student class to include a
__getattr__() method such that a default value is returned:

class Student:
count = 0

def __init__(self, name):
self.name = name
Student.count += 1

Method called if attribute is unknown

def __getattr__(self, attribute):
print('__getattr__: ', attribute)
return 'default'

Now when we try and access the dummy_attribute on a student object we
will get the string 'default' returned:

student = Student('John')

res1 = student.dummy_attribute
print('p.dummy_attribute:', res1)

28.4 Handling Unknown Attribute Access 331

Now generates:

__getattr__: dummy_attribute
p.dummy_attribute: default

Note that the __getattr__() method is only called for unknown attributes as
Python first looks in __dict__ and thus if the attribute is found, no call is made to
the __getattr__() method.

Also note that if an attribute is accessed directly from the __dict__ (for
example student.__dict__['name']) then the __getattr__() method
is never invoked.

28.5 Handling Unknown Method Invocations

The __getattr__() method is also invoked if an unknown method is called.
For example, if we call the method dummy_method() on a Student object then
an error is raised (in fact this is again an AttributeError). However, if we
define a __getattr__() method we can return a reference to a method to use as
a default. For example, if we modify the __getattr__() method to return a
method reference (i.e. the name of a method in the Student class):

class Student:
count = 0

def __init__(self, name):
self.name = name
Student.count += 1

Method called if attribute is unknown
def __getattr__(self, attribute):

print('__getattr__: ', attribute)
return self.my_default

def my_default(self):
return 'default'

Now when a undefined method is invoked (such as dummy-method())
__getattr__() will be called. This method will return a reference to the
method my_default(). This will be run and the value returned as a side effect of
the method invocation as indicated by the round baskets (the '()') after the call to
the original method:

student = Student('John')

res2 = student.dummy_method()
print(‘student.dummy_method():', res2)

332 28 Monkey Patching and Attribute Lookup

Which produces the following output: rather than an error message

__getattr__: dummy_method
student.dummy_method(): default

28.6 Intercepting Attribute Lookup

It is also possible to always intercept attribute lookups using the dot nation (e.g.
student.name) by implementing the __getattribute__() method. This
method will always be called instead of looking the attribute up in the objects
dictionary. The __getattr__() method will only be called if an
AttributeError is raised or the __getattribute__() method explicitly
calls the __getattr__() method.

The __getattribute__() method should therefore return an attribute value
(which may be a default value) or raise an AttributeError if appropriate.

It is important to avoid implementing code that will recursively call itself (for
example calling self.name within __getattribute__() will result in a
recursive call back to __getattribute__()!). To avoid this the implementa-
tion of the method should either access the __dict__ directory or call the base
classes __getattribute__() method.

An example is given below of a simple __getattribute__() method that
logs the call to a method and then passes the invocation onto the base class
implementation:

class Student:
count = 0

def __init__(self, name):
self.name = name
Student.count += 1

Method called if attribute is unknown
def __getattr__(self, attribute):

print('__getattr__: ', attribute)
return 'default'

Method will always be called when an attribute
is accessed, will only called __getattr__ if it
does so explicitly or if an AttributeError is raised
def __getattribute__(self, name):

print('__getattribute__()', name)
return object.__getattribute__(self, name)

def my_default(self):
return 'default'

28.5 Handling Unknown Method Invocations 333

We can use this version of the class with the following code snippet

student = Student('Katie')

print('student.name:', student.name) # instance lookup

res1 = student.dummy_attribute # invoke missing attribute

print('student.dummy_attribute:', res1)

The output from this is now:

__getattribute__() name
student.name: Katie
__getattribute__() dummy_attribute
__getattr__: dummy_attribute
student.dummy_attribute: default

As you can see from this the __getattribute__() method is called for
both student.name and student.dummy_attribute. However the
__getattr__() method is only called when the dummy_attribute is
accessed.

Note that __getattribute__() is only invoked for attribute access and not
for method invocation (unlike __getattr__()).

28.7 Intercepting Setting an Attribute

It is also possible to intercept object/instance attribute assignment when the dot
notation (e.g. student.name = 'Bob') is being used. This can be done by
implementing the __setattr__() method. This method is invoked instead of
the assignment.

The __setattr() method can perform any action required including storing
the value supplied. However, to do this it should either insert the value directly into the
objects dictionary (e.g. student.__dict__['name'] = 'Bob') or preferably
call the base class __setattr__() method, for example object.__
setattr__(self, name, value) as shown below for the Student class:

class Student:
count = 0

def __init__(self, name):
self.name = name
Student.count += 1

Method will always be called when an attribute is set
def __setattr__(self, name, value):

print('__setattr__:', name, value)
object.__setattr__(self, name, value)

334 28 Monkey Patching and Attribute Lookup

If we now define the follow program that uses the Student class:

student = Student('John')

student.name = 'Bob'
print('student.name:', student.name) # instance lookup

Running this could we generate the following output:

__setattr__: name John
__setattr__: name Bob
student.name: Bob

There are a few things to note about this output:

• Firstly the assignment of the Student’s name within the __init__() method
also invokes the __setattr__() method.

• Secondly, the assignment to the class variable count does not invoke the
__setattr__() method.

• Thirdly the student.name assignment does of course invoke the
__setattr__() method.

28.8 Online Resources

For further information on Monkey Patching the following resources may be of
interest:

• https://en.wikipedia.org/wiki/Monkey_patch Wikipedia page on Monkey
Patching.

• http://net-informations.com/python/iq/patching.htm A discussion on whether
Monkey Patching should be considered good or bad practice.

28.9 Exercises

This exercises focusses on attribute look up.
You should add a method to the Account class that can be used to handle how

accounts should behave when an attempt is made to access an undefined attribute.
In this case you should log the attempt to access the attribute (which means print

out a warning message) then return a default value of −1.
For example, if you had the following line to your application:

print('acc1.branch:', acc1.branch)

28.7 Intercepting Setting an Attribute 335

https://en.wikipedia.org/wiki/Monkey_patch
http://net-informations.com/python/iq/patching.htm

Then this should invoke the __getattr__() method for the undefined
attribute branch. Print a warning message and then return the value −1 which will
be printed by the above statement.

The output of this statement should be something like:

__getattr__: unknown attribute accessed - branch
acc1.branch: -1

336 28 Monkey Patching and Attribute Lookup

Chapter 29
Decorators

29.1 Introduction

The idea behind Decorators comes from the Gang of Four Design Patterns book
(so-called as there were four people involved in defining these design patterns). In
this book numerous commonly occurring object oriented design patterns are pre-
sented. One of these design patterns is the Decorator design pattern.

The Decorator pattern addresses the situation where it is necessary to add
additional behaviour to specific objects. One way to add such additional behaviour
is to decorate the objects created with types that provide the extra functionality.
These decorators wrap the original element but present exactly the same interface to
the user of that element. Thus the Decorator Design pattern extends the behaviour
of an object without using sub classing. This decoration of an object is transparent
to the decorators’ clients.

In Python Decorators are functions that take another function (or other callable
object such as a method) and return a third function representing the decorated
behaviour.

This chapter introduces decorators, how they are defined, how they are used and
presents built-in decorators.

29.2 What Are Decorators?

A Decorator is a piece of code, that is used to mark a callable object (such as a
function, method, class or object) typically to enhance or modify its behaviour
(potentially replacing it). It thus decorates the original behaviour.

Decorators are in fact callable objects themselves and as such behave more like
macros in other languages that can be applied to callable objects that then return a
new callable object (typically a new function).

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_29

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_29&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_29

The basic idea is illustrated in the following diagram:

This diagram illustrates a decorator wrapping a callable object (in this case a
function). Note that the decorator presents exactly the same interface to the user of
the decorator as the original function would present; that is, it takes the same
parameters and either returns nothing (None) or something.

It should also be noted that the decorator is also at liberty to completely replace a
callable object rather than to wrap it; it’s a design decision made by the imple-
mentor of the decorator.

29.3 Defining a Decorator

To define a decorator you need to define a callable object such as a function that
takes another function as a parameter and returns a new function.

An example of the definition of a very simple logger decorator function is given
below.

In this case the logger decorator wraps the original function within a new
function, here called inner. When this function is executed, a statement is logged
before and after the original function is executed.

Every function has an attribute __name__ that provides the functions name and
this is used in the inner() function above to printout the actual function about to
be invoked.

def logger(func):
def inner():

print('calling ', func.__name__)
func()
print('called ', func.__name__)

return inner

338 29 Decorators

Note that the function inner() is defined inside the logger() function (this is
completely legal). A reference to the inner() function is then returned as the result
of the logger() function. The inner() function is not executed at this point!

29.4 Using Decorators

To see what the effect of applying a decorator is; it is useful to explore the basic
(explicit) approach to it use. This can be done by defining a function (we will call
target) that prints out a simple message:

We can explicitly apply the logger decorator to this function by passing the
reference to the target function (without invoking it), for example:

When we run this code, we actually execute the inner() function which was
returned by the decorator. This function in turn prints out a message and then calls
the function passed into the logger. Once this passed in function has executed, it
prints another message. The effect of executing the t1() function is this to call the
inner() function which calls the target function, thus printing out:

This illustrates what happens when a decorator style function is executed.
Python provides some syntactic sugar that allows the definition of the function

and the association with the decorator to be declared together using the '@' syntax,
for example:

def target():
print('In target function')

t1 = logger(target)
t1()

calling target
In target function
called target

@logger
def target():

print('In target function')

target()

29.3 Defining a Decorator 339

This has the same effect as passing target into the logger function; but
illustrates the role of the logger in a rather more Pythonic way. It is thus the more
common use of Decorators.

The output of this function is the same as the previous version.

29.5 Functions with Parameters

Decorators can be applied to functions that take parameters; however the decorator
function must also take these parameters as well.

For example, if you have a function such as

Then the function returned form the decorator must also take two parameters, for
example:

29.6 Stacked Decorators

Decorators can be stacked; that is more than one decorator can be applied to the
same callable object. When this occurs, each function is wrapped inside another
function; this idea is illustrated by the following code:

@logger
def my_func(x, y):

print(x, y)

my_func(4, 5)

def logger(func):
def inner(x, y):

print('calling ', func.__name__, 'with', x, 'and', y)
func(x, y)
print('returned from ', func.__name__)

return inner

340 29 Decorators

In this example, the function hello() is marked with two decorators,
@make_bold and @make_italic.

This means that the function hello() is first passed into the make_italic()
function and wrapped by the makeitalic_wrapped function. This function is
then returned from the make_italic decorator.

The makeitalic_wrapped is then passed into the make_bold() function
which then wraps it inside the makebold_wrapped function; which is returned
by the make_bold decorator.

This means that the function invoked when hello() is called is the
makebold_wrapped function which calls two further functions as shown
below:

Define the decorator functions
def make_bold(fn):

def makebold_wrapped():
return "" + fn() + ""

return makebold_wrapped

def make_italic(fn):
def makeitalic_wrapped():

return "<i>" + fn() + "</i>"
return makeitalic_wrapped

Apply decorators to function hello
@make_bold
@make_italic
def hello():

return 'hello world'

Call function hello
print(hello())

29.6 Stacked Decorators 341

The end result is that the string returned by the function passed in is first
wrapped by <i> and </i> (indicating italics) and then by and
(indicating bold) in HTML.

Thus the output from print(hello()) is:

29.7 Parameterised Decorators

Decorators can also take parameters however the syntax for such decorators is a
little different; there is essentially an extra layer of indirection. The decorator
function takes one or more parameters and returns a function that can use the
parameter and takes the callable object that is being wrapped. For example:

In this example, the wrapped function will only be called if the active parameter
is True. This is the default and so for func1() it is not necessary to specify the
parameter (although note that it is now necessary to provide the round brackets).

For func2() the @register decorator is defined with the active parameter set
to False. This means that the wrapper function will not call the provided function.

<i>hello world</i>

def register(active=True):
def wrap(func):

def wrapper():
print('Calling ', func.__name__, ' decorator param

', active)
if active:

func()
print('Called ', func.__name__)

else:
print('Skipped ', func.__name__)

return wrapper
return wrap

@register()
def func1():

print('func1')

@register(active=False)
def func2():

print('func2')

func1()
print('-' * 10)
func2()

342 29 Decorators

Note that the usage of the decorator only differs in the need to include the round
brackets even if no parameters are being specified; even though there are now two
inner functions defined within the register decorator.

29.8 Method Decorators

29.8.1 Methods Without Parameters

It is also possible to decorate methods as well as functions (as they are also callable
objects). However, it is important to remember that methods take the special
parameter self as the first parameter which is used to reference the object that the
method is being applied to. It is therefore necessary for the decorator to take this
parameter into account; i.e. the inner wrapped function must take at least one
parameter representing self:

Thepretty_print decorator defines an inner function that takes as its first (and
in this case only) parameter the reference to the object (which by convention uses the
parameter self). This is then passed into the actual method when it is called.

The pretty_print decorator can now be used with any method that only
takes the self parameter, for example:

In the above class the get_fullname() method is decorated with
pretty_print. If we now call get_fullname() on an object, the resulting
string will bewrapped in <p> and </p> (which is HTMLmarkup for a paragraph):

def pretty_print(method):
def method_wrapper(self):

return "<p>{0}</p>".format(method(self))

return method_wrapper

class Person:
def __init__(self, name, surname, age):

self.name = name
self.surname = surname
self.age = age

def print_self(self):
print('Person - ', self.name, ', ', self.age)

@pretty_print
def get_fullname(self):

return self.name + " " + self.surname

29.7 Parameterised Decorators 343

This generates the output:

29.8.2 Methods with Parameters

As with functions, methods that take parameters in addition to self can also be
decorated. In this case the function returned form the decorator must take not only
the self parameter but also any parameters passed to the method. For example:

Now this trace decorator defines an inner function that takes the parameter
self and two additional parameters. It can be used with any method that also takes
two parameters such as the method move_to() below:

print('Starting')
p = Person('John', 'Smith', 21)
p.print_self()
print(p.get_fullname())
print('Done')

Starting
Person - John , 21
<p>John Smith</p>
Done

def trace(method):
def method_wrapper(self, x, y):

print('Calling', method, 'with', x, y)
method(self, x, y)
print('Called', method, 'with', x, y)

return method_wrapper

class Point:
def __init__(self, x, y):

self.x = x
self.y = y

@trace
def move_to(self, x, y):

self.x = x
self.y = y

def __str__(self):
return 'Point - ' + str(self.x) + ',' + str(self.y)

344 29 Decorators

When a Point object is created below, we can call the move_to() method
and see the result:

The output from this is:

29.9 Class Decorators

As well as being able to decorate functions and methods; it is possible to decorate
classes.

A class can be decorated to add required functionality that may be external to
that class.

As an example, a common class level operation is to want to indicate that a class
should implement the singleton design pattern. The Singleton Design Pattern (again
from the Gang of Four Design Patterns book) describes a type that can only have
one object constructed for it. That is, unlike other objects it should not be possible
to obtain more than one instance within the same program. Thus, the Singleton
design pattern ensures that only one instance of a class is created. All objects that
use an instance of that type use the same instance.

We can define a decorator that implements the singleton design pattern, for
example:

p = Point(1, 1)
print(p)
p.move_to(5, 5)
print(p)

Point - 1,1
Calling <function Point.move_to at 0x110288b70> with 5 5
Called <function Point.move_to at 0x110288b70> with 5 5
Point - 5,5

def singleton(cls):
print('In singleton for: ', cls)
instance = None

def get_instance():
nonlocal instance
if instance is None:

instance = cls()
return instance

return get_instance

29.8 Method Decorators 345

This decorator returns the get_instance() function. This function checks to
see if the variable instance is set to None or not; if it is set to None it instantiates
the class passed into the decorator and stores this in the instance variable. It then
returns the instance. If the instance is already set it merely returns the instance.

We can apply this decorator to whole classes such as Service and Foo below:

We can nowuse the classesService andFoo as normal; however only one instance
of Service and one instance of Foo will ever be created in the same program:

In the above code snippet, it looks as if we have created two new Service
objects and two Foo objects; however, the @singleton decorator will restrict the
number of instances created to one and will reuse that instance whenever a request
is made to instantiate the given class. Thus when we run this example, we can see
that the hexadecimal number representing the location of the object in memory is
the same for the two Service objects and the same for the two Foo objects:

@singleton
class Service(object):

def print_it(self):
print(self)

@singleton
class Foo(object):

pass

print('Starting')
s1 = Service()
print(s1)
s2 = Service()
print(s2)
f1 = Foo()
print(f1)
f2 = Foo()
print(f2)
print('Done')

In singleton for: <class '__main__.Service'>
In singleton for: <class '__main__.Foo'>
Starting
<__main__.Service object at 0x10ac3f780>
<__main__.Service object at 0x10ac3f780>
<__main__.Foo object at 0x10ac3f7b8>
<__main__.Foo object at 0x10ac3f7b8>
Done

346 29 Decorators

29.10 When Is a Decorator Executed?

An important feature of decorators is that they are executed right after the decorator
function is defined. This is usually at import time (i.e. when a module is loaded by
Python).

For example, the decorator logger shown above, prints out 'In Logger' and
'Finished Logger' when it is executed. If the output is examined, it can be seen that
this output occurs before the program prints ‘Start’.

Note that the decorated function and the wrapped function only execute when
they are explicitly invoked.

This highlights the difference between what Pythonistas call import time and
runtime.

def logger(func):
print('In Logger')
def inner():

print('In inner calling ', func.__name__)
func()
print('In inner called ', func.__name__)

print('Finishing Logger')
return inner

@logger
def print_it():

print('Print It')

print('Start')
print_it()
print('Done')

In Logger
Finishing Logger
Start
In inner calling print_it
Print It
In inner called print_it
Done

29.10 When Is a Decorator Executed? 347

29.11 Built-in Decorators

There are numerous built-in decorators in Python 3; some of which we have already
seen such as @classmethod, @staticmethod and @property. We also saw
some decorators when talking about abstract methods and properties. There are also
decorators associated with unit testing and asynchronous operations.

29.12 FuncTools Wrap

One issue with decorated functions may become apparent when debugging or
trying to trace what is happening. The problem is that by default the attributes
associated with the function being called are actually those of the inner function
returned by the decorator function. That is the name, doc and module of the
function are those of the function returned by the decorator. The name and doc-
umentation of the original, decorated function, have been lost.

For example, returning to the original logger decorator we have:

When we run this code we get:

return inner

@logger
def get_text(name):

"""returns some text"""
return "Hello "+name

print('name:', get_text.__name__)
print('doc: ', get_text.__doc__)
print('module; ', get_text.__module__)

def logger(func):
def inner():

print('calling ', func.__name__)
func()
print('called ', func.__name__)

name: inner
doc: None
module; __main__

348 29 Decorators

It appears that the get_text function is called inner and has no docstring
associated with it. However, if we look at the function it should be called
get_text() and does have a docstring of ‘returns some text’!

Python (since version 2.5) has included the functools module which contains
the functools.wraps decorator which can be used to overcome this problem.

Wraps is a decorator for updating the attributes of the wrapping function(inner)
to those of the original function (in this case get_text()). This is as simple as
decorating the 'inner' function with @wraps(func).

The end result is that in the above example the name and doc are now updated
to the name of the wrapped function and the documentation associated with that
function.

If we now rerun the earlier example, we get:

29.13 Online Resources

For further information on decorators see:

• https://www.python-course.eu/python3_decorators.php a short introduction to
Python decorators

• https://www.python.org/dev/peps/pep-0318/ PEP 318 considering decorators for
functions and methods.

• https://www.python.org/dev/peps/pep-3129/ PEP 3129 introducing class
decorators.

• https://docs.python.org/3.7/library/functools.html Python Standard Library
documentation for functoools.

• https://pymotw.com/3/functools/index.html Python module of the Week for
functoools.

from functools import wraps

def logger(func):
@wraps(func)
def inner():

print('calling ', func.__name__)
func()
print('called ', func.__name__)

return inner

name: get_text
doc: returns some text
module; __main__

29.12 FuncTools Wrap 349

https://www.python-course.eu/python3_decorators.php
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-3129/
https://docs.python.org/3.7/library/functools.html
https://pymotw.com/3/functools/index.html

• https://github.com/lord63/awesome-python-decorator A useful page that lists
many Python decorators as well as third party contributions.

• https://wiki.python.org/moin/PythonDecoratorLibrary which provides a central
repository for decorator examples.

29.14 Book Reference

For more information on the Decorator and Singleton design patterns see the
“Patterns” book by the Gang of Four (E. Gamma, R. Helm, R. Johnson and
J. Vlissades, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995).

29.15 Exercises

The aim of this exercise its to develop your own decorator.
You will write a timer decorator to be used with methods in a class that take

the first parameter self, followed by one other parameter.
The decorator should log how long a method takes to execute.
To do this you can use the time module and import the default_timer.

You can then obtain a default_timer object for the start and end of a
function call and use these values to generate the time taken, for example:

You can then apply the decorator to the deposit() and withdraw()
methods defined in the Account class. For example,

from timeit import default_timer

start = default_timer()
func(self, value)
end = default_timer()
print('returned from ', func, 'it took', end - start,
'seconds')

@timer
def deposit(self, amount):

self._balance += amount

@timer
def withdraw(self, amount):

self._balance -= amount

350 29 Decorators

https://github.com/lord63/awesome-python-decorator
https://wiki.python.org/moin/PythonDecoratorLibrary

These methods will be inherited by the DepositAccount and
InvestmentAccout classes. In the CurrentAccount class the withdraw
method is over written so you will also need to decorate that method with @timer
as well.

Now when you run your sample application you should get timing information
printed out for the deposit and withdraw methods:

calling deposit on Account[123] - John, current account =
10.05overdraft limit: -100.0 with 23.45
returned from deposit it took 8.009999999999268e-07 seconds
calling withdraw on Account[123] - John, current account =
33.5overdraft limit: -100.0 with 12.33
returned from withdraw it took 1.141999999999116e-06 seconds

29.15 Exercises 351

Chapter 30
Iterables, Iterators, Generators
and Coroutines

30.1 Introduction

There are two protocols that you are very likely to use, or will possibly need to
implement at some point or other; these are the Iterable protocol and the Iterator
protocols.

These two closely related protocols are very widely used and supported by a
large number of types.

One of the reasons that Iterators and Iterables are import is that they can be usedwith
for statements in Python; this makes it very easy to integrate an iterable into code
which needs to process a sequence of values in turn. Two further iteration like Python
features are Generators and Coroutines which are discussed at the end of this chapter.

30.2 Iteration

30.2.1 Iterables

The Iterable protocol is used by types where it is possible to process their contents
one at a time in turn. An Iterable is something that will supply an Iterator that can be
used to perform this processing. As such it is not the iterator itself; but the provider
of the iterator.

There are many iterable types in Python including Lists, Sets, Dictionaries,
tuples etc. These are all iterable containers that will supply an iterator.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_30

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_30&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_30

To be an iterable type; it is necessary to implement the __iter__() method
(which is the only method in the Iterable protocol). This method must supply a
reference to the iterator object. This reference could be to the data type itself or it
could be to another type that implements the iterator protocol.

30.2.2 Iterators

An iterator is an object that will return a sequence of values. Iterators may be finite
in length or infinite (although many container-oriented iterators provide a fixed set
of values).

The iterator protocol specifies the __next__() method. This method is
expected to return the next item in the sequence to return or to raise the
StopIteration exception. This is used to indicate that the iterator has finished
supplying values.

30.2.3 The Iteration Related Methods

To summarise then we have

• __iter__() from the Iterable protocol which is used to return the iterator
object,

• __next__() from the Iterator protocol which is used to obtain the next value
in a sequence of values.

Any data type can be both an Iterable and an Iterator; but that is not required. An
Iterable could return a different object that will be used to implement the iterator or
it can return itself as the iterator—it’s the designers choice.

30.2.4 The Iterable Evens Class

To illustrate the ideas behind iterables and iterators we will implement a simple
class; this class will be an Evens class that is used to supply a set of even values
from 0 to some limit. This illustrates that it is not only data containers that can be
iterable/iterators.

It also illustrates a type that is both an Iterable and an Iterator.

354 30 Iterables, Iterators, Generators and Coroutines

There are a few things to note about this class

• The __iter__() method returns self; this is a very common pattern and
assumes that the class also implements the iterator protocol

• The __next__() method either returns the next value in the sequence or it
raises the StopIteration exception to indicate that there are no more values
available.

30.2.5 Using the Evens Class with a for Loop

Now that we have implemented both the iterable and iterator protocols for the class
Evens we can use it with a for statement:

Which generates the output:

Makes this class iterable
def __iter__(self):

return self

Makes this class an iterator
def __next__(self):

if self.val > self.limit:
raise StopIteration

else:
return_val = self.val
self.val += 2
return return_val

class Evens(object):

def __init__(self, limit):
self.limit = limit
self.val = 0

print('Start')
for i in Evens(6):

print(i, end=', ')

print('Done')

Start
0, 2, 4, 6, Done

30.2 Iteration 355

This makes it look as if the Evens type is a built-in type as it can be used with
an existing Python structure; however the for loop merely expects to be given an
iterable; as such Evens is compatible with the for loop.

30.3 The Itertools Module

The itertools module provides a number of useful functions that return iter-
ators constructed in various ways. It can be used to provide an iterator over a
selection of values from a data type that is iterable; it can be used to combine
iterables together etc.

30.4 Generators

In many cases it is not appropriate (or possible) to obtain all the data to be pro-
cessed up front (for performance reasons, for memory reasons etc.). Instead lazily
creating the data to be iterated over based on some underlying dataset, may be more
appropriate.

Generators are a special function that can be used to generate a sequence of
values to be iterated over on demand (that is when the values are needed) rather
than produced up front.

The only thing that makes a generator a generator function is the use of the
yield keyword (which was introduced in Python 2.3).

The yield keyword can only be used inside a function or a method. Upon its
execution the function is suspended, and the value of the yield statement is
returned as the current cycle value. If this is used with a for loop, then the loop
runs once for this value. Execution of the generator function is then resumed after
the loop has cycled once and the next cycle value is obtained.

The generator function will keep supplying values until it returns (which means
that an infinite sequence of values can be generated).

30.4.1 Defining a Generator Function

A very simple example of a generator function is given below. This function is
called the gen_numbers() function:

def gen_numbers():
yield 1
yield 2
yield 3

356 30 Iterables, Iterators, Generators and Coroutines

This is a generator function as it has at least one yield statement (in fact it has
three). Each time the gen_numbers() function is called within a for statement
it will return one of the values associated with a yield statement; in this case the
value 1, then the value 2 and finally the value 3 before it returns (terminates).

30.4.2 Using a Generator Function in a for Loop

We can use the gen_numbers() function with a for statement as shown below:
Which produces 1, 2 and 3 as output.

It is common for the body of a generator to have some form of loop itself. This
loop is typically used to generate the values that will be yielded. However, as is
shown above that is not necessary and here a yield statement is repeated three
times.

Note that gen_numbers() is a function but it is a special function as it returns
a generator object.

This is a generator function returns a generator object which wraps up the
generation of the values required but this is hidden from the developer.

30.4.3 When Do the Yield Statements Execute?

It is interesting to consider what happens within the generator function; it is actually
suspended each time a yield statement supplies a value and is only resumed when
the next request for a value is received. This can be seen by adding some additional
print statements to the gen_numbers() function:

for i in gen_numbers():
print(i)

def gen_numbers2():
print('Start')
yield 1
print('Continue')
yield 2
print('Final')
yield 3
print('End')

for i in gen_numbers():
print(i)

30.4 Generators 357

When we run this code snippet, we get

Thus the generator executes the yield statements on an as needed basis and not
all at once.

30.4.4 An Even Number Generator

We could have used a generator to produce a set of even numbers up to a specific limit,
as we did earlier with the Evens class, but without the need to create a class (and
implement the two special methods __iter__() and __next__()). For example:

This produces

This illustrates the potential benefit of a generator over an iterator; the
evens_up_to() function is a lot simpler and concise then the Evens iterable
class.

30.4.5 Nesting Generator Functions

You can even nest generator functions as each call to the generator function is
encapsulated in its own generator object which captures all the state information
needed by that generator invocation. For example:

Start
1
Continue
2
Final
3
End

def evens_up_to(limit):
value = 0
while value <= limit:

yield value
value += 2

for i in evens_up_to(6):
print(i, end=', ')

0, 2, 4, 6,

358 30 Iterables, Iterators, Generators and Coroutines

Which generates:

As you can see from this the loop variable i is bound to the values produced by
the first call to evens_up_to() (which produces a sequence up to 4)
while the j loop variable is bound to the values produced by the second call to
evens_up_to() (which produces a sequence of values up to 6).

30.4.6 Using Generators Outside a for Loop

You do not need a for loop to work with a generator function; the generator object
actually returned by the generator function supports the next() function. This
function takes a generator object (returned from the generator function) and returns
the next value in sequence.

This produces

Subsequent calls to next(evens) return no value; if required the generator
can throw an error/exception.

for i in evens_up_to(4):
print('i:', i)

for j in evens_up_to(6):
print('j:', j, end=', ')

print('')

evens = evens_up_to(4)
print(next(evens), end=', ')
print(next(evens), end=', ')
print(next(evens))

0, 2, 4

i: 0
j: 0, j: 2, j: 4, j: 6,
i: 2
j: 0, j: 2, j: 4, j: 6,
i: 4
j: 0, j: 2, j: 4, j: 6,

30.4 Generators 359

30.5 Coroutines

Coroutines were introduced in Python 2.5 but are still widely misunderstood.
Much documentation introduces Coroutines by saying that they are similar to

Generators, however there is a fundamental difference between Generators and
Coroutines:

• generators are data producers,
• coroutines are data consumers.

That is coroutines consume data produced by something else; where as a gen-
erator produces a sequence of values that something else can process.

The send() function is used to send values to a coroutine. These data items are
made available within the coroutine; which will wait for values to be supplied to it.
When a value is supplied then some behaviour can be triggered. Thus, when a
coroutine consumes a value it triggers some behaviour to be processed.

Part of the confusion between generators and coroutines is that the yield
keyword is reused within a coroutine; it is used within a coroutine to cause the
coroutine to wait until a value has been sent. It will then supply this value to the
coroutine.

It is also necessary to prime a Coroutine using with next() or send(None)
functions. This advances the Coroutine to the call to yield where it will then wait
until a value is sent to it.

A coroutine may continue forever unless close() is sent to it. It is possible to
pick up on the coroutine being closed by catching the GeneratorExit excep-
tion; you can then trigger some shut down behaviour if required.

An example of a coroutine is given by the grep() function below:

This coroutine will wait for input data; when data is sent to the coroutine, then
that data will be assigned to the line variable. It will then check to see if the
pattern used to initialise the coroutine function is present in the line; if it is it will
print the line; it will then loop and wait for the next data item to be sent to the
coroutine. If while it is waiting the coroutine is closed, then it will catch the
GeneratorExit exception and print out a suitable message.

def grep(pattern):
print('Looking for', pattern)
try:

while True:
line = (yield)
if pattern in line:

print(line)
except GeneratorExit:

print('Exiting the Co-routine')

360 30 Iterables, Iterators, Generators and Coroutines

The grep() coroutine is used below, notice that the coroutine function returns
a coroutine object that can be used to submit data:

The output from this is:

30.6 Online Resources

See the following for further information

• https://docs.python.org/3/library/stdtypes.html#iterator-types for iterator types.

30.7 Exercises

These exercises focusses on the creation of a generator.
Write a prime number generator; you can use the prime number program you

wrote earlier in the book but convert it into a generator. The generator should take a
limit to give the maximum size of the loop you use to generate the prime numbers.
You could call this prime_number_generator().

You should be able to run the following code:

print('Starting')
Initialise the coroutine
g = grep('Python')

prime the coroutine
next(g)

Send data to the coroutine
g.send('Java is cool')
g.send('C++ is cool')
g.send('Python is cool')

now close the coroutine
g.close()
print('Done')

Starting
Looking for Python
Python is cool
Exiting the Co-routine
Done

30.5 Coroutines 361

https://docs.python.org/3/library/stdtypes.html#iterator-types

Now create the infinite_prime_number_generator(); this generator
does not have a limit andwill keep generating prime numbers until it is no longer used.

You should be able to use this prime number generator as follows:

number = input('Please input the number:')
if number.isnumeric():

num = int(number)
if num <= 2:

print('Number must be greater than 2')
else:

for prime in prime_number_generator(num):
print(prime, end=', ')

else:
print('Must be a positive integer')

If the user enters 27 then the output would be:

Please input the number:27
2, 3, 5, 7, 11, 13, 17, 19, 23,

prime = infinite_prime_number_generator()
print(next(prime))
print(next(prime))
print(next(prime))
print(next(prime))
print(next(prime))

362 30 Iterables, Iterators, Generators and Coroutines

Chapter 31
Collections, Tuples and Lists

31.1 Introduction

Earlier in this book we looked at some Python built-in types such as string, int
and float as well as bools. These are not the only built-in types in Python; another
group of built-in types are collectively known as collection types. This is because they
represent a collection of other types (such as a collection of strings, or integers).

A collection is a single object representing a group of objects (such as a list or
dictionary). Collections may also be referred to as containers (as they contain other
objects). These collection classes are often used as the basis for more complex or
application specific data structures and data types.

These collection types support various types of data structures (such as lists and
maps) and ways to process elements within those structures. This chapter introduces
the Python Collection types.

31.2 Python Collection Types

There are four classes in Python that provide container like behaviour; that is data
types for holding collections of other objects, these are

• Tuples A Tuple represents a collection of objects that are ordered and immu-
table (cannot be modified). Tuples allow duplicate members and are indexed.

• Lists Lists hold a collection of objects that are ordered and mutable (change-
able), they are indexed and allow duplicate members.

• Sets Sets are a collection that is unordered and unindexed. They are mutable
(changeable) but do not allow duplicate values to be held.

• Dictionary A dictionary is an unordered collection that is indexed by a key
which references a value. The value is returned when the key is provided. No

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_31

363

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_31&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_31

duplicate keys are allowed. Duplicate values are allowed. Dictionaries are
mutable containers.

Remember that everything in Python is actually a type of object, integers are
instances/objects of the type int, strings are instances of the type string etc. Thus,
container types such as Set can hold collections of any type of thing in Python.

31.3 Tuples

Tuples, along with Lists, are probably one of Pythons most used container types.
They will be present in almost any non-trivial Python program.

Tuples are an immutable ordered collection of objects; that is each element in a
tuple has a specific position (its index) and that position does not change over time.
Indeed, it is not possible to add or remove elements from the tuple once it has been
created.

31.3.1 Creating Tuples

Tuples are defined using parentheses (i.e. round brackets '()') around the elements
that make up the tuple, for example:

This defines a new Tuple which is referenced by the variable tup1. The
Tuple contains exactly 4 elements (in this case integers) with the first element in
the tuple (the integer 1) having the index 0 and the last element in the Tuple (the
integer 7) having the index 3. This is illustrated below:

31.3.2 The tuple() Constructor Function

The tuple() function can also be used to create a new tuple from an iterable. An
iterable is something that implements the iterable protocol (see the last chapter).

tup1 = (1, 3, 5, 7)

364 31 Collections, Tuples and Lists

This means that a new tuple can be created from a Set, a List, a Dictionary
(as these are all iterable types) or any type that implements the iterable protocol.

The syntax of the tuple() function is:

For example:

which generates the output:

Note that in the above the square brackets are used to represent a list of things
(the List container type is described in more detail later in this chapter).

31.3.3 Accessing Elements of a Tuple

The elements of a Tuple can be accessed using an index in square brackets. The
index returns the object at that position, for example:

which generates the output

31.3.4 Creating New Tuples from Existing Tuples

It is also possible to return what is known as a slice from a Tuple. This is a new
Tuple which is comprised of a subset of the original Tuple. This is done by

tuple(iterable)

list1 = [1, 2, 3]
t1 = tuple(list1)
print(t1)

(1, 2, 3)

print('tup1[0]:\t', tup1[0])
print('tup1[1]:\t', tup1[1])
print('tup1[2]:\t', tup1[2])
print('tup1[3]:\t', tup1[3])

tup1[0]: 1
tup1[1]: 3
tup1[2]: 5
tup1[3]: 7

31.3 Tuples 365

providing the start and end indexes for the slice, separated by a colon, within the
index square brackets. For example:

Which returns a new Tuple of two elements containing the elements from
index 1 up to (but not including) element 3. Note that the original Tuple is not
affected in any way (remember its immutable so cannot be modified). The output of
the above is thus:

There are in fact numerous variations on the use of the slicing indices. For
example, if the first index is omitted it indicates that the slice should start from the
beginning of the tuple, while omitting the last index indicates it should go to the end
of the Tuple.

which generates:

You can reverse a Tuple using the :: − 1 notation (again this returns a new
Tuple and has no effect on the original Tuple):

This thus produces:

31.3.5 Tuples Can Hold Different Types

Tuples can also contain a mixture of different types; that is they are not restricted to
holding elements all of the same type. You can therefore write a Tuple such as:

print('tup1[1:3]:\t', tup1[1:3])

tup1[1:3]: (3, 5)

print('tup1[:3]:\t', tup1[:3])
print('tup1[1:]:\t', tup1[1:])

tup1[:3]: (1, 3, 5)
tup1[1:]: (3, 5, 7)

print('tup1[::-1]:\t', tup1[::-1])

tup1[::-1]: (7, 5, 3, 1)

tup2 = (1, 'John', Person('Phoebe', 21), True, -23.45)
print(tup2)

366 31 Collections, Tuples and Lists

Which produces the output:

31.3.6 Iterating Over Tuples

You can iterate over the contents of a Tuple (that is process each element in the
Tuple in turn). This is done using the for loop that we have already seen; however,
it is the Tuple that is used for the value to which the loop variable will be applied:

This prints out each of the elements in the Tuple tup3 in turn:

Note that again the order of the elements in the Tuple is persevered.

31.3.7 Tuple Related Functions

You can also find out the length of a Tuple

You can count how many times a specified value appears in a Tuple (remember
Tuples allow duplicates);

You can also find out the (first) index of a value in a Tuple:

tup3 = ('apple', 'pear', 'orange', 'plum', 'apple')
for x in tup3:
 print(x)

apple
pear
orange
plum
apple

(1, 'John', <__main__.Person object at 0x105785080>, True,
-23.45)

print('len(tup3):\t', len(tup3))

print(tup3.count('apple')) # returns 2

print(tup3.index('pear')) # returns 1

31.3 Tuples 367

Note that both index() and count() are methods defined on the class Tuple
where as len() is a function that the tuple is passed into. This is because len() is a
generic function and can be used with other types as well such as strings.

31.3.8 Checking if an Element Exists

You can check to see if a specific element exists in a Tuple using the in operator,
for example:

31.3.9 Nested Tuples

Tuples can be nested within Tuples; that is a Tuple can contain, as one of its
elements, another Tuple. For example, the following diagram illustrates the
nesting of a tree of Tuples:

In code we could define this structure as:

The output from this is:

if 'orange' in tup3:
 print('orange is in the Tuple')

tuple1 = (1, 3, 5, 7)
tuple2 = ('John', 'Denise', 'Phoebe', 'Adam')
tuple3 = (42, tuple1, tuple2, 5.5)
print(tuple3)

(42, (1, 3, 5, 7), ('John', 'Denise', 'Phoebe', 'Adam'), 5.5)

368 31 Collections, Tuples and Lists

Note the nesting of round brackets in the printout illustrating where one Tuple is
contained within another.

This feature of Tuples (and other containers) allows for arbitrarily complex data
structures to be constructed as required by an application.

In fact, a Tuple can have nested within it not just other Tuples but any type of
container, and thus it can contain Lists, Sets, Dictionaries etc. This provides for a
huge level of flexibility when constructing data structures for use in Python
programs.

31.3.10 Things You Can’t Do with Tuples

It is not possible to add or remove elements from a Tuple; they are immutable. It
should be particularly noted that none of the functions or methods presented above
actual change the original tuple they are applied to; even those that return a subset
of the original Tuple actually return a new instance of the class Tuple and have no
effect on the original Tuple.

31.4 Lists

Lists are mutable ordered containers of other objects. They support all the features
of the Tuple but as they are mutable it is also possible to add elements to a List,
remove elements and modify elements. The elements in the list maintain their order
(until modified).

31.4.1 Creating Lists

Lists are created using square brackets positioned around the elements that make up
the List. For example:

In this case we have created a list of four elements with the first element being
indexed from Zero, we thus have:

list1 = ['John', 'Paul', 'George', 'Ringo']

31.3 Tuples 369

As with Tuples we can have nested lists and lists containing different types of
elements.

We can thus create the following structure of nested Lists:

In code this can be defined as:

When the root_list is printed we get

Note the square brackets inside the outer square brackets indicating nested lists.
We can of course also nest Tuples in lists and lists in Tuples. For example, the

following structure shows Tuples (the ovals) hold references to Lists (the rectan-
gles) and vice versa:

l1 = [1, 43.5, Person('Phoebe', 21), True]
l2 = ['apple', 'orange', 31]
root_list = ['John', l1, l2, 'Denise']
print(root_list)

['John', [1, 43.5, <tuples.Person object at 0x1042ba4a8>,
True], ['apple', 'orange', 31], 'Denise']

370 31 Collections, Tuples and Lists

In code this would look like:

which produces

31.4.2 List Constructor Function

The list() function can be used to construct a list from an iterable; this means
that it can construct a list from a Tuple, a Dictionary or a Set. It can also
construct a list from anything that implements the iterable protocol.

The signature of the list() function is

For example:

t1 = (1, 'John', 34.5)
l1 = ['Smith', 'Jones']
l2 = [t1, l1]
t2 = (l2, 'apple')
print(t2)

([(1, 'John', 34.5), ['Smith', 'Jones']], 'apple')

list(iterable)

vowelTuple = ('a', 'e', 'i', 'o', 'u')
print(list(vowelTuple))

31.4 Lists 371

produces

31.4.3 Accessing Elements from a List

You can access elements from a list using an index (within square brackets). The
index returns the object at that position, for example:

This will print out the element at index 1 which is Paul (lists are indexed from
Zero so the first element is the zeroth element).

If you use a negative index such as −1 then the index is reversed so an index of
−1 starts from the end of the list (−1 returns the last element, −2 the second to last
etc.).

It is also possible to extract a slice (or sublist) from a list. This is done by
providing a starting and end index to within the square brackets separated by a
colon. For example [1:4] indicates a slice starting at the oneth element and
extending up to (but not including) the fourth element. If either of the indexes is
missed for a slice then that indicates the start or end of the list respective.

The following illustrates some of these ideas:

Which produces:

list1 = ['John', 'Paul', 'George', 'Ringo']
print(list1[1])

['a', 'e', 'i', 'o', 'u']

list1 = ['John', 'Paul', 'George', 'Ringo']
print('list1[1]:', list1[1])
print('list1[-1]:', list1[-1])
print('list1[1:3]:', list1[1:3])
print('list[:3]:', list1[:3])
print('list[1:]:', list1[1:])

list1[1]: Paul
list1[-1]: Ringo
list1[1:3]: ['Paul', 'George']
list[:3]: ['John', 'Paul', 'George']
list[1:]: ['Paul', 'George', 'Ringo']

372 31 Collections, Tuples and Lists

31.4.4 Adding to a List

You can add an item to a list using the append() method of the List class (this
changes the actual list; it does not create a copy of the list). The syntax of this
method is:

As an example, consider the following list of strings, to which we append a fifth
string:

this will generate the output:

You can also add all the items in a list to another list. There are several options
here, we can use the extend() method which will add the items passed to it to the
end of the list or we can use the += operator which does the same thing:

The output from this code snippet is:

Which approach you prefer to use is up to you.
Note that strictly speaking both extend() and += take an iterable.

<alist>.append(<object>)

['John', 'Paul', 'George', 'Ringo', 'Pete']
['John', 'Paul', 'George', 'Ringo', 'Pete', 'Albert', 'Bob']
['John', 'Paul', 'George', 'Ringo', 'Pete', 'Albert', 'Bob',
'Ginger', 'Sporty']

list1 = ['John', 'Paul', 'George', 'Ringo']
list1.append('Pete')
print(list1)

['John', 'Paul', 'George', 'Ringo', 'Pete']

list1 = ['John', 'Paul', 'George', 'Ringo', 'Pete']
print(list1)
list1.extend(['Albert', 'Bob'])
print(list1)
list1 += ['Ginger', 'Sporty']
print(list1)

31.4 Lists 373

31.4.5 Inserting into a List

You can also insert elements into an existing list. This is done using the insert()
method of the List class. The syntax of this method is:

The insert() method takes an index indicating where to insert the element
and an object to be inserted.

For example, we can insert the string 'Paloma' in between the Zeroth and oneth
item in the following list of names:

The result is:

In other words, we have inserted the string 'Paloma' into the index position 1
pushing 'Madonna' and 'Cher’ up one in the index within the List.

31.4.6 List Concatenation

It is possible to concatenate two lists together using the concatenation operator '+':

generates

a_list = ['Adele', 'Madonna', 'Cher']
print(a_list)
a_list.insert(1, 'Paloma')
print(a_list)

<list>.insert(<index>, <object>)

['Adele', 'Madonna', 'Cher']
['Adele', 'Paloma', 'Madonna', 'Cher']

list1 = [3, 2, 1]
list2 = [6, 5, 4]
list3 = list1 + list2
print(list3)

[3, 2, 1, 6, 5, 4]

374 31 Collections, Tuples and Lists

31.4.7 Removing from a List

We can remove an element from a List using the remove() method. The syntax
for this method is:

This will remove the object from the list; if the object is not in the list then an
error will be generated by Python.

The output from this is:

31.4.8 The pop() Method

The syntax of the pop() method is:

It removes an element from the List; however, it differs from the remove()
method in two ways:

• It takes an index which is the index of the item to remove from the list rather
than the object itself.

• The method returns the item that was removed as its result.

An example of using the pop() method is given below:

['Gary', 'Mark', 'Robbie', 'Jason', 'Howard']
['Gary', 'Mark', 'Jason', 'Howard']

a.pop(index=-1)

<list>.remove(<object>)

another_list = ['Gary', 'Mark', 'Robbie', 'Jason', 'Howard']
print(another_list)
another_list.remove('Robbie')
print(another_list)

list6 = ['Once', 'Upon', 'a', 'Time']
print(list6)
print(list6.pop(2))
print(list6)

31.4 Lists 375

Which generates:

An overload of this method is just

Which removes the last item in the list. For example:

with the output:

31.4.9 Deleting from a List

It is also possible to use the del keyword to delete elements from a list.
The del keyword can be used to delete a single element or a slice from a list.
To delete an individual element from a list use del and access the element via

its index:

which outputs:

To delete a slice from within a list use the del keyword and the slice returned
from the list.

['Once', 'Upon', 'a', 'Time']
a
['Once', 'Upon', 'Time']

<list>.pop()

['Once', 'Upon', 'a', 'Time']
Time
['Once', 'Upon', 'a']

my_list = ['A', 'B', 'C', 'D', 'E']
print(my_list)
del my_list[2]
print(my_list)

list6 = ['Once', 'Upon', 'a', 'Time']
print(list6)
print(list6.pop())
print(list6)

['A', 'B', 'C', 'D', 'E']
['A', 'B', 'D', 'E']

376 31 Collections, Tuples and Lists

which deletes the slice from index 1 up to (but not including) index 3:

31.4.10 List Methods

Python has a set of built-in methods that you can use on lists.

31.5 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/tutorial/datastructures.html Python Tutorial on data
structures.

• https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
for lists and tuples.

• https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences the
online tuples tutorial.

• https://docs.python.org/3/tutorial/datastructures.html#lists the online List
tutorial.

['A', 'B', 'C', 'D', 'E']
['A', 'D', 'E']

my_list = ['A', 'B', 'C', 'D', 'E']
print(my_list)
del my_list[1:3]
print(my_list)

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

31.4 Lists 377

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/tutorial/datastructures.html#lists

31.6 Exercises

The aim of this exercise is to work with a collection/container such as a list.
To do this we will return to your Account related classes.
You should modify your Account class such that it is able to keep a history of

transactions.
A Transaction is a record of a deposit or withdrawal along with an amount.
Note that the initial amount in an account can be treated as an initial deposit.
The history could be implemented as a list containing an ordered sequence to

transactions. A Transaction itself could be defined by a class with an action (deposit
or withdrawal) and an amount.

Each time a withdrawal or a deposit is made a new transaction record should be
added to a transaction history list.

Now provide support for iterating through the transaction history of the account
such that each deposit or withdrawal can be reviewed. You can do this by imple-
menting the Iterable protocol—refer to the last chapter if you need to check how to
do this. Note that it is the transaction history that we want to be able to iterate
through—so you can use the history list as the basis of your iterable.

You should be able to run this following code at the end of your Accounts
application:

Depending upon the exact set of transactions you have performed (deposits and
withdrawals) you should get a list of those transactions being printed out:

for transaction in acc1:
 print(transaction)

Transaction[deposit: 10.05]
Transaction[deposit: 23.45]
Transaction[withdraw: 12.33]

378 31 Collections, Tuples and Lists

Chapter 32
Sets

32.1 Introduction

In the last chapter we looked at Tuples and Lists; in this chapter we will look at a
further container (or collection) types; the Set type. A Set is an unordered (un
indexed) collection of immutable objects that does not allow duplicates.

32.2 Creating a Set

A Set is defined using curly brackets (e.g. ‘{}’).
For example,

When run this code will show that apple is only added once to the set:

Note that because a Set is unordered it is not possible to refer to elements of the
set using an index.

basket = {'apple', 'orange', 'apple', 'pear',
'orange', 'banana'}

print(basket)

{'banana', 'orange', 'pear', 'apple'}

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_32

379

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_32&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_32

32.3 The Set() Constructor Function

As with tuples and lists Python provides a predefined function that can convert any
iterable type into a Set. The function signature is:

Given an iterable object, this function returns a new Set based on the values
obtained from the iterable. This means that a Set can be easily created from a List,
Tuple or Dictionary as well as any other data type that implements the iterable
protocol. For example, the following code snippet converts a Tuple into a Set:

which prints out

32.4 Accessing Elements in a Set

Unlike Lists it is not possible to access elements from a Set via an index; this is
because they are unordered containers and thus there are no indexes available.
However, they are Iterable containers.

Elements of a Set can be iterated over using the for statement:

This applies the print function to each item in the list in turn.

32.5 Working with Sets

32.5.1 Checking for Presence of an Element

You can check for the presence of an element in a set using the in keyword, for
example:

set(iterable)

set1 = set((1, 2, 3)
print(set1)

{1, 2, 3}

for item in basket:
print(item)

380 32 Sets

This will print True if ‘apple’ is a member of the set basket.

32.5.2 Adding Items to a Set

It is possible to add items to a set using the add() method:

This generates:

If youwant to addmore than one item to aSet you can use theupdate()method:

Generating

The argument to update can be a set, a list, a tuple or a dictionary. The method
automatically converts the parameter into a set if it is not a set already and then adds
the value to the original set.

32.5.3 Changing Items in a Set

It is not possible to change the items already in a Set.

print('apple' in basket)

basket = {'apple', 'orange', 'banana'}

basket.add('apricot')
print(basket)

{'orange', 'apple', 'banana', 'apricot', 'pear'}

basket = {'apple', 'orange', 'banana'}
basket.update(['apricot', 'mango', 'grapefruit'])
print(basket)

{'orange', 'apple', 'mango', 'banana', 'apricot', 'grapefruit'}

32.5 Working with Sets 381

32.5.4 Obtaining the Length of a Set

As with other collection/container classes; you can find out the length of a Set
using the len() function.

32.5.5 Obtaining the Max and Min Values in a Set

You can also obtain the maximum or minimum values in a set using the max() and
min() functions:

32.5.6 Removing an Item

To remove an item from a set, use the remove() or discard() functions. The
remove() function removes a single item from a Set but generates an error if
that item was not initialling the set. The remove() function also removes a single
item from a set but does not throw an error if it was not initially present in the set.

This generates:

There is also a method pop() that can be used to remove an item (and return
that item as a result of running the method); however it removes the last item in the
Set (although as a set is unordered you will not know which item that will be).

The method clear() is used to remove all elements from a Set:

print(max(a_set))
print(min(a_set))

basket = {'apple', 'orange', 'apple', 'pear', 'orange',
'banana'}
print(basket)
basket.remove('apple')
basket.discard('apricot')
print(basket)

{'pear', 'banana', 'orange', 'apple'}
{'pear', 'banana', 'orange'}

basket = {'apple', 'orange', 'apple', 'pear', 'orange',
'banana'}
print(len(basket)) # generates 4

382 32 Sets

which prints out

Which is used to represent an empty set.

32.5.7 Nesting Sets

It is possible to hold any immutable object within a set. This means that a set can
contain a reference to a Tuple (as that is immutable). We can thus write:

This prints out:

However, we cannot nest Lists or other Sets within a Set as these are not
immutable types. The following would both generate a runtime error in Python:

However we can use Frozensets and nest these within sets. A Frozenset
is exactly like a Set except that it is immutable (it cannot be modified) and thus it
can be nested within a Set. For example:

basket = {'apple', 'orange', 'banana'}
basket.clear()
print(basket)

set()

s1 = { (1, 2, 3)}
print(s1)

{(1, 2, 3)}

Can't have the following
s2 = { {1, 2, 3} }
print(s2)

s3 = { [1, 2, 3] }
print(s3)

32.5 Working with Sets 383

This generates:

32.6 Set Operations

The Set container also supports set like operations such as (|), intersection (&),
difference (−) and symmetric difference (^). These are based on simple Set theory.

Given the two sets:

For example, the Union of two sets represents the combination of all the values
in the two sets:

This would print out:

The intersection of two sets represents the common values between two sets:

{frozenset({1, 2, 3})}
{frozenset({1, 2, 3})}

Need to convert sets and lists into frozensets
s2 = { frozenset({1, 2, 3}) }
print(s2)

s3 = { frozenset([1, 2, 3]) }
print(s3)

print('Union:', s1 | s2)

s1 = {'apple', 'orange', 'banana'}
s2 = {'grapefruit', 'lime', 'banana'}

Union: {'apple', 'lime', 'banana', 'grapefruit', 'orange'}

384 32 Sets

This generates

The difference between two sets is the set of values in the first set that are not in
the second set:

which produces the output

The symmetric difference represents all the unique values in the two sets (that is
it is the inverse of the intersection:

The output from this final operation is

print('Intersection:', s1 & s2)

Intersection: {'banana'}

print('Difference:', s1 - s2)

Difference: {'apple', 'orange'}

print('Symmetric Difference:', s1 ^ s2)

Symmetric Difference: {'orange', 'apple', 'lime', 'grapefruit'}

32.6 Set Operations 385

In addition to the operators there are also method versions:

• s1.union(s2) is the equivalent of s1 | s2
• s1.interaction(s2) is the equivalent of s1 & s2
• s1.difference(s2) is the equivalent of s1 − s2
• s1.symmetric_difference(s2) is the equivalent of s1 ^ s2

32.7 Set Methods

Python has a set of built-in methods that you can use on sets.

32.8 Online Resources

Online resources on sets are listed below:

• https://docs.python.org/3/tutorial/datastructures.html Python Tutorial on data
structures.

• https://docs.python.org/3/tutorial/datastructures.html#sets the online Set tutorial.

Method Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

difference() Returns a set containing the difference between two or more
sets

difference_update() Removes the items in this set that are also included in another,
specified set

discard() Remove the specified item

intersection() Returns a set, that is the intersection of two other sets

intersection_update() Removes the items in this set that are not present in other,
specified set(s)

isdisjoint() Returns whether two sets have a intersection or not

issubset() Returns whether another set contains this set or not

issuperset() Returns whether this set contains another set or not

pop() Removes an element from the set

remove() Removes the specified element

symmetric_difference() Returns a set with the symmetric differences of two sets

symmetric_difference_update
()

inserts the symmetric differences from this set and another

union() Return a set containing the union of sets

update() Update the set with the union of this set and others

386 32 Sets

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html#sets

• https://www.python-course.eu/python3_sets_frozensets.php A tutorial on sets
and frozen sets.

• https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset for sets

32.9 Exercises

The aim of this exercise is to use a Set.
Create two sets of students, one for those who took an exam and one for those

that submitted a project. You can use simple strings to represent the students, for
example:

Using these sets answer the following questions:

• Which students took both the exam and submitted a project?
• Which students only took the exam?
• Which students only submitted the project?
• List all students who took either (or both) of the exam and the project.
• List all students who took either (but not both) of the exam and the project.

Set up sets
exam = {'Andrew', 'Kirsty', 'Beth', 'Emily', 'Sue'}
project = {'Kirsty', 'Emily', 'Ian', 'Stuart'}

Output the basic sets
print('exam:', exam)
print('project:', project)

32.8 Online Resources 387

https://www.python-course.eu/python3_sets_frozensets.php
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

Chapter 33
Dictionaries

33.1 Introduction

A Dictionary is a set of associations between a key and a value that is unor-
dered, changeable (mutable) and indexed. Pictorially we might view a Dictionary as
shown below for a set of countries and their capital cities. Note that in a Dictionary
the keys must be unique but the values do not need to be unique.

33.2 Creating a Dictionary

A Dictionary is created using curly brackets ('{}') where each entry in the
dictionary is a key:value pair:

cities = {'Wales': 'Cardiff',
 'England': 'London',
 'Scotland': 'Edinburgh',
 'Northern Ireland': 'Belfast',
 'Ireland': 'Dublin'}
print(cities)

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_33

389

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_33&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_33

This creates a dictionary referenced by the variable cities which holds a set of
key:value pairs for the Capital cities of the UK and Ireland. When this code is run
we see:

33.2.1 The dict() Constructor Function

The dict() function can be used to create a new dictionary object from an
iterable or a sequence of key:value pairs. The signature of this function is:

This is an overloaded function with three version that can take different types of
arguments:

• The first option takes a sequence of key:value pairs.
• The second takes a mapping and (optionally) a sequence of key:value pairs.
• The third version takes an iterable of key:value pairs and an optional sequence

of key:value pairs.

Some examples are given below for reference:

The output printed by these examples is:

{'Wales': 'Cardiff', 'England': 'London', 'Scotland':
'Edinburgh', 'Northern Ireland': 'Belfast', 'Ireland':
'Dublin'}

dict(**kwarg)
dict(mapping, **kwarg)
dict(iterable, **kwarg)

note keys are not strings
dict1 = dict(uk='London', ireland='Dublin', france='Paris')
print('dict1:', dict1)
key value pairs are tuples
dict2 = dict([('uk', 'London'), ('ireland', 'Dublin'),
('france', 'Paris')])
print('dict2:', dict2)
key value pairs are lists
dict3 = dict((['uk', 'London'], ['ireland', 'Dublin'],
['france', 'Paris']))
print('dict3:', dict3)

dict1: {'uk': 'London', 'ireland': 'Dublin', 'france': 'Paris'}
dict2: {'uk': 'London', 'ireland': 'Dublin', 'france': 'Paris'}
dict3: {'uk': 'London', 'ireland': 'Dublin', 'france': 'Paris'}

390 33 Dictionaries

33.3 Working with Dictionaries

33.3.1 Accessing Items via Keys

You can access the values held in a Dictionary using their associated key. This
is specified using either the square bracket ('[]') notation (where the key is within
the brackets) or the get() method:

The output of this is:

33.3.2 Adding a New Entry

A new entry can be added to a dictionary by providing the key in square brackets
and the new value to be assigned to that key:

33.3.3 Changing a Keys Value

The value associated with a key can be changed by reassigning a new value using
the square bracket notation, for example:

which would now show 'Swansea' as the capital of wales:

cities[Wales]: Cardiff
cities.get(Ireland): Dublin

print('cities[Wales]:', cities['Wales'])
print('cities.get(Ireland):', cities.get('Ireland'))

cities['France'] = 'Paris'

cities['Wales'] = 'Swansea'
print(cities)

{'Wales': 'Swansea', 'England': 'London', 'Scotland':
'Edinburgh', 'Northern Ireland': 'Belfast', 'Ireland':
'Dublin'}

33.3 Working with Dictionaries 391

33.3.4 Removing an Entry

An entry into the dictionary can be removed using one of the methods pop() or
popitem() method or the del keyword.

• The pop(<key>) method removes the entry with the specified key. This
method returns the value of the key being deleted. If the key is not present then a
default value (if it has been set using setdefault()) will be returned. If no
default value has been set an error will be generated.

• The popitem() method removes the last inserted item in the dictionary
(although prior to Python 3.7 a random item in the dictionary was deleted
instead!). The key:value pair being deleted is returned from the method.

• The del keyword removes the entry with the specified key from the dictionary.
This keyword just deletes the item; it does not return the associated value. It is
potentially more efficient than pop(<key>).

Examples of each of these are given below:

The output from this code snippet is thus:

In addition the clear() method empties the dictionary of all entries:

cities = {'Wales': 'Cardiff',
 'England': 'London',
 'Scotland': 'Edinburgh',
 'Northern Ireland': 'Belfast',
 'Ireland': 'Dublin'}
print(cities)
cities.popitem() # Deletes 'Ireland' entry
print(cities)
cities.pop('Northern Ireland')
print(cities)
del cities['Scotland']
print(cities)

{'Wales': 'Cardiff', 'England': 'London', 'Scotland':
'Edinburgh', 'Northern Ireland': 'Belfast', 'Ireland':
'Dublin'}
{'Wales': 'Cardiff', 'England': 'London', 'Scotland':
'Edinburgh', 'Northern Ireland': 'Belfast'}
{'Wales': 'Cardiff', 'England': 'London', 'Scotland':
'Edinburgh'}
{'Wales': 'Cardiff', 'England': 'London'}

392 33 Dictionaries

Which generates the following output:

Note that the empty dictionary is represented by the '{}' above which as the
empty set was represented as set().

33.3.5 Iterating over Keys

You can loop through a dictionary using the for loop statement. The for loop
processes each of the keys in the dictionary in turn. This can be used to access each
of the values associated with the keys, for example:

Which generates the output:

If you want to iterate over all the values directly, you can do so using the
values() method. This returns a collection of all the values, which of course you
can then iterate over:

cities = {'Wales': 'Cardiff',
 'England': 'London',
 'Scotland': 'Edinburgh',
 'Northern Ireland': 'Belfast',
 'Ireland': 'Dublin'}
print(cities)
cities.clear()
print(cities)

{'Wales': 'Cardiff', 'England': 'London', 'Scotland':
'Edinburgh', 'Northern Ireland': 'Belfast', 'Ireland':
'Dublin'}
{}

for country in cities:
 print(country, end=', ')
 print(cities[country])

Wales, Cardiff
England, London
Scotland, Edinburgh
Northern Ireland, Belfast
Ireland, Dublin

33.3 Working with Dictionaries 393

33.3.6 Values, Keys and Items

There are three methods that allow you to obtain a view onto the contents of a
dictionary, these are values(), keys() and items().

• The values() method returns a view onto the dictionary’s values.
• The keys() method returns a view onto a dictionary’s keys.
• The items() method returns a view onto the dictionary’s items

((key, value) pairs).

A view provides a dynamic window onto the dictionary’s entries, which means
that when the dictionary changes, the view reflects these changes.

The following code iuses the cities dictionaries with these three methods:

The output makes it clear that these are all related to a dictionary by indicating
that the type is dict_values, dict_keys or dict_items etc:

33.3.7 Checking Key Membership

You can check to see if a key is a member of a dictionary using the in syntax (and
that it is not in a dictionary using the not in syntax), for example:

Which both print out True for the cities dictionary.

for e in d.values():
print(e)

print(cities.values())
print(cities.keys())
print(cities.items())

dict_values(['Cardiff', 'London', 'Edinburgh', 'Belfast',
'Dublin'])
dict_keys(['Wales', 'England', 'Scotland', 'Northern Ireland',
'Ireland'])
dict_items([('Wales', 'Cardiff'), ('England', 'London'),
('Scotland', 'Edinburgh'), ('Northern Ireland', 'Belfast'),
('Ireland', 'Dublin')])

print('Wales' in cities)
print('France' not in cities)

394 33 Dictionaries

33.3.8 Obtaining the Length of a Dictionary

Once again, as with other collection classes; you can find out the length of a
Dictionary (in terms of its key:value pairs) using the len() function.

33.3.9 Nesting Dictionaries

The key and value in a dictionary must be an object; however, everything in Python
is an object and thus anything can be used as a key or a value.

One common pattern is where the value in a dictionary is itself a container such
as a List, Tuple, Set or even another Dictionary.

The following example uses Tuples to represent the months that make up the
seasons:

The output is:

Each season has a Tuple for the value element of the entry. When this Tuple
is returned using the key it can be treated just like any other Tuple.

Note in this case we could easily have used a List or indeed a Set instead of a
Tuple.

cities = {'Wales': 'Cardiff',
 'England': 'London',
 'Scotland': 'Edinburgh',
 'Northern Ireland': 'Belfast',
 'Ireland': 'Dublin'}
print(len(cities)) # prints 5

seasons = {'Spring': ('Mar', 'Apr', 'May'),
 'Summer': ('June', 'July', 'August'),
 'Autumn': ('September', 'October', 'November'),
 'Winter': ('December', 'January', 'February')}
print(seasons['Spring'])
print(seasons['Spring'][1])

('Mar', 'Apr', 'May')
Apr

33.3 Working with Dictionaries 395

33.4 A Note on Dictionary Key Objects

A class whose objects are to be used as the key within a dictionary should consider
implementing two special methods, these are __hash__() and __eq__(). The
hash method is used to generate a hash number that can be used by the dictionary
container and the equals method is used to test if two objects are equal. For example:

The output from these two lines for an example run is:

Python has two rules associated with these methods:

• If two objects are equal, then their hashes should be equal.
• In order for an object to be hashable, it must be immutable.

It also has two properties associated with the hashcodes of an object that should
be adhered to:

• If two objects have the same hash, then they are likely to be the same object.
• The hash of an object should be cheap to compute.

Why do you need to care about these methods?
For built in type you do not need to worry; however for user defined c lasses/

types then if these types are to be used as keys within a dictionary then you should
consider implementing these methods.

This is because a Dictionary uses

• the hashing method to manage how values are organised and
• the equals method to check to see if a key is already present in the dictionary.

As an aside if you want to make a class something that cannot be used as a key
in a dictionary, that is it is not hashable, then you can define this by setting the
__hash__() method to None.

print('key.__hash__():', key.__hash__())
print("key.__eq__('England'):", key.__eq__('England'))

key.__hash__(): 8507681174485233653
key.__eq__('England'): True

class NotHashableThing(object):
 __hash__ = None

396 33 Dictionaries

33.5 Dictionary Methods

Python has a set of built-in methods that you can use on dictionaries.

33.6 Online Resources

Online resources on dictionaries are listed below:

• https://docs.python.org/3/tutorial/datastructures.html Python Tutorial on data
structures.

• https://www.python-course.eu/python3_dictionaries.php A tutorial on dic-
tionaries in Python.

• https://docs.python.org/3/library/stdtypes.html#mapping-types-dict for Dictionaries.
• https://docs.python.org/3/tutorial/datastructures.html#dictionaries the online

dictionary tutorial.
• https://en.wikipedia.org/wiki/Hash_table For more information on defining hash

functions and how they are used in containers such as Dictionary.

Method Description

clear() Removes all the elements from the dictionary

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and values

get() Returns the value of the specified key

items() Returns a list containing the tuple for each key value pair

keys() Returns a list containing the dictionary’s keys

pop() Removes the element with the specified key

popitem() Removes the last inserted key-value pair

setdefault() Returns the value of the specified key. If the key does not exist: insert
the key, with the specified value

update() Updates the dictionary with the specified key-value pairs

values() Returns a list of all the values in the dictionary

33.5 Dictionary Methods 397

https://docs.python.org/3/tutorial/datastructures.html
https://www.python-course.eu/python3_dictionaries.php
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://en.wikipedia.org/wiki/Hash_table

33.7 Exercises

The aim of this exercise is to use a Dictionary as a simple form of data cache.
Calculating the factorial for a very large number can take some time. For

example calculating the factorial of 150,000 can take several seconds. We can
verify this using a timer decorator similar to that we created back in chapter on
Decorators.

The following program runs several factorial calculations on large numbers and
prints out the time taken for each:

from timeit import default_timer

def timer(func):
def inner(value):

 print('calling ', func.__name__, 'with', value)
 start = default_timer()

 func(value)
 end = default_timer()
 print('returned from ', func.__name__, 'it took',
int(end - start), 'seconds')

return inner

@timer
def factorial(num):

if num == 0:
return 1

else:
Factorial_value = 1
for i in range(1, num + 1):

 Factorial_value = factorial_value * i
return factorial_value

print(factorial(150000))
print(factorial(80000))
print(factorial(120000))
print(factorial(150000))
print(factorial(120000))
print(factorial(80000))

398 33 Dictionaries

An example of the output generated by this program is given below:

As can be seen from this, in this particular run, calculating the factorial of
150,000 took 5 s, while the factorial of 80,000 took just over 1 1/4 s etc.

In this particular case we have decided to re run these calculations so that we
have actually calculated the factorial of 150,000, 80,000 and 120,000 at least twice.

The idea of a cache is that it can be used to save previous calculations and reuse
those if appropriate rather than have to perform the same calculation multiple times.
The use of a cache can greatly improve the performance of systems in which these
repeat calculations occur.

There are many commercial caching libraries available for a wide variety of
languages including Python. However, at their core they are all somewhat dic-
tionary like; that is there is a key which is usually some combination of the oper-
ation invoked and the parameter values used. In turn the value element is the result
of the calculation.

These caches usually also have eviction policies so that they do not become
overly large; these eviction policies can usually be specified so that they match the
way in which the cache is used. One common eviction policy is the Least Recently
Used (or LRU) policy. When using this policy once the size of the cache reaches a
predetermined limit the Least Recently Used value is evicted etc.

For this exercise you should implement a simple caching mechanism using a
dictionary (but without an eviction policy).

The cache should use the parameter passed into the factorial() function as
the key and return the stored value if one is present.

The logic for this is usually:

calling factorial with 150000
returned from factorial it took 5 seconds
None
calling factorial with 80000
returned from factorial it took 1 seconds
None
calling factorial with 120000
returned from factorial it took 3 seconds
None
calling factorial with 150000
returned from factorial it took 5 seconds
None
calling factorial with 120000
returned from factorial it took 3 seconds
None
calling factorial with 80000
returned from factorial it took 1 seconds
None

33.7 Exercises 399

1. Look in the cache to see if the key is present
2. If it is return the value
3. If not perform the calculation
4. Store the calculated result for future use
5. Return the value

Note as the factorial() function is exactly that a function; you will need to
think about using a global variable to hold the cache.

Once the cache is used with the factorial() function, then each subsequent
invocation of the function using a previous value should return almost immediately.
This is shown in the sample output before where subsequent method calls return in
less than a second.

returned from factorial it took 5 seconds
None
calling factorial with 80000
returned from factorial it took 1 seconds
None
calling factorial with 120000
returned from factorial it took 3 seconds
None
calling factorial with 150000
returned from factorial it took 0 seconds
None
calling factorial with 120000
returned from factorial it took 0 seconds
None
calling factorial with 80000
returned from factorial it took 0 seconds
None

calling factorial with 150000

400 33 Dictionaries

Chapter 34
Collection Related Modules

34.1 Introduction

The chapter introduces a feature known as a list comprehension in Python.
It then introduces the collections and itertools modules.

34.2 List Comprehension

This is a very powerful mechanism that can be used to generate new lists.
The syntax of the List Comprehension is:

The new list is formed of the results from the expression. Note that the whole
for statement and expression is surrounded by the square brackets normally used
to create a List.

When a List Comprehension is executed it generates a new list by applying the
expression to the items in another collection.

For example, given one list of integers, another (new) list can be created using
the List Comprehension format:

[<expression> for item in iterable <if optional_condition>]

list1 = [1, 2, 3, 4, 5,6]
print('list1:', list1)

list2 = [item + 1 for item in list1]
print('list2:', list2)

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_34

401

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_34&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_34

which produces the output:

Here the new list is generated by adding 1 to each element in the initial list
list1. Essentially, we iterate (loop) over all the elements in the initial list and bind
each element in the list to the item variable in turn. The result of the expression
item + 1 is then captured, in order, in the new list.

This feature is not limited to processing values in a list; any iterable collection
can be used such as Tuples or Sets as the source of the values to process.

Another feature of the List Comprehension is the ability to filter the values
passed to the expression using the optional if condition.

For example, if we wish to only consider even numbers for the expression then
we can use the optional if statement to filter out all odd numbers:

The output from these two lines of code is:

Thus only the even numbers were passed to the expression item + 1 resulting
in only the values 3, 5 and 7 being generated for the new list.

34.3 The Collections Module

The collections module extends that basic features of the collection-oriented
data types within Python with high performance container data types. It provides
many useful containers such as:

list3 = [item + 1 for item in list1 if item % 2 == 0]
print('list3:', list3)

list3: [3, 5, 7]

list1: [1, 2, 3, 4, 5, 6]
list2: [2, 3, 4, 5, 6, 7]

Name Purpose

namedtuple() Factory function for creating tuple subclasses with named fields

deque List-like container with fast appends and pops on either end

ChainMap Dict-like class for creating a single view of multiple mappings

Counter Dict subclass for counting hashable objects

OrderedDict Dict subclass that remembers the order entries were added

Defaultdict Dict subclass that calls a factory function to supply missing values

UserDict Wrapper around dictionary objects for easier dict subclassing

UserList Wrapper around list objects for easier list subclassing

UserString Wrapper around string objects for easier string subclassing

402 34 Collection Related Modules

As this is not one of the default modules that are automatically loaded for you by
Python; you will need to import the collection.

As an example, we will use the Counter type to efficiently hold multiple
copies of the same element. It is efficient because it only holds one copy of each
element but keeps a count of the number of times that element has been added to the
collection:

The output of this is:

Which makes the counting behaviour associated with the Counter class quite
clear.

There are many uses of such a class, for example, it can be used to find out the
most frequently used word in an essay; all you have to do is add each word in an
essay to the Counter and then retrieve the word with the highest count. This can
be done using the Counter class’s most_common() method. This method takes
a parameter n that indicates how many of the most common elements should be
returned. If n is ommitted (or None) then the method returns an ordered list of
elements. Thus to obtain the most common fruit from the above Counter col-
lection we can use:

Which generates:

You can also perform some mathematical operations with multiple Counter
objects. For example, you can add and subtract Counter objects. You can also
obtain a combination of Counters that combines the maximum values from two
Counter objects. You can also generate an intersection of two Counters. These
are all illustrated below:

import collections

fruit = collections.Counter(['apple', 'orange', 'pear',
'apple', 'orange', 'apple'])
print(fruit)
print(fruit['orange'])

Counter({'apple': 3, 'orange': 2, 'pear': 1})
2

print('fruit.most_common(1):', fruit.most_common(1))

fruit.most_common(1): [('apple', 3)]

34.3 The Collections Module 403

Which produces:

Once a Counter object has been created you can test it to see if an item is
present using the in keyword, for example:

You can also add items to a Counter object by accessing the value using the
item as the key, for example:

fruit1 = collections.Counter(['apple', 'orange', 'pear',
'orange'])
fruit2 = collections.Counter(['banana', 'apple', 'apple'])

print('fruit1:', fruit1)
print('fruit2:', fruit2)

print('fruit1 + fruit2:', fruit1 + fruit2)
print('fruit1 - fruit2:', fruit1 - fruit2)
Union (max(fruit1[n], fruit2[n])
print('fruit1 | fruit2:', fruit1 | fruit2)
Intersection (min(fruit1[n], fruit2[n])
print('fruit1 & fruit2:', fruit1 & fruit2)

fruit1: Counter({'orange': 2, 'apple': 1, 'pear': 1})
fruit2: Counter({'apple': 2, 'banana': 1})
fruit1 + fruit2: Counter({'apple': 3, 'orange': 2, 'pear': 1,
'banana': 1})
fruit1 - fruit2: Counter({'orange': 2, 'pear': 1})
fruit1 | fruit2: Counter({'apple': 2, 'orange': 2, 'pear': 1,
'banana': 1})
fruit1 & fruit2: Counter({'apple': 1})

print('apple' in fruit)

fruit['apple'] = 1 # initialises the number of apples
fruit['apple'] =+ 1 # Adds one to the number of apples
fruit['apple'] =- 1 # Subtracts 1 from the number of apples

404 34 Collection Related Modules

34.4 The Itertools Module

The itertools module is another module that it is worth being familiar with.
This module provides a number of useful functions that return iterators constructed
in various ways. As there are many different options available it is worth looking at
the documentation for a complete list of available functions.

To give you a flavour of some of the facilities available look at the following
listing:

The output from this code is:

import itertools

Connect two iterators together
r1 = list(itertools.chain([1, 2, 3], [2, 3, 4]))
print(r1)

Create iterator with element repeated specified number of
times (possibly infinite)
r2 = list(itertools.repeat('hello', 5))
print(r2)

Create iterator with elements from first iterator starting
where predicate function fails
values = [1, 3, 5, 7, 9, 3, 1]
r3 = list(itertools.dropwhile(lambda x: x < 5, values))
print(r3)

Create iterator with elements from supplied iterator between
the two indexes (use ‘None’ for second index to go to end)
r4 = list(itertools.islice(values, 3, 6))
print(r4)

[1, 2, 3, 2, 3, 4]
['hello', 'hello', 'hello', 'hello', 'hello']
[5, 7, 9, 3, 1]
[7, 9, 3]

34.4 The Itertools Module 405

34.5 Online Resources

Online resources on the itertools library are listed below:

• https://docs.python.org/3.7/library/itertools.html The standard library docu-
mentation on the itertools module.

• https://pymotw.com/3/itertools/index.html The Python module of the week page
for itertools.

34.6 Exercises

The aim of this exercise is to create a concordance program in Python using the
collections.Counter class.

For the purposes of this exercise a concordance is an alphabetical list of the
words present in a text or texts with a count of the number of times that the word
occurs.

Your concordance program should include the following steps:

• Ask the user to input a sentence.

• Slit the sentence into individual words (you can use the split() method of
the string class for this.

• Use the Counter class to generate a list of all the words in the sentence and the
number of times they occur.

• Produce an alphabetic list of the words with their counts. You can obtain a
sorted list of the keys using the sorted() function. You can then use a
collection. OrderedDict to generate a dictionary that maintains the order in
which keys were added.

• Print out the alphabetically ordered list.

An example of how the program might operate is given below:

Please enter text to be analysed: cat sat mat hat cat hat cat
Unordered Counter
Counter({'cat': 3, 'hat': 2, 'sat': 1, 'mat': 1})
Ordered Word Count
OrderedDict([('cat', 3), ('hat', 2), ('mat', 1), ('sat', 1)])

406 34 Collection Related Modules

https://docs.python.org/3.7/library/itertools.html
https://pymotw.com/3/itertools/index.html

Chapter 35
ADTs, Queues and Stacks

35.1 Introduction

There are a number of common data structures that are used within computer
programs that you might expect to see within Python’s list of collection or container
classes; these include Queues and Stacks. However, in the basic collection classes
these are missing. However, we can either create our own implementations or use
one of the extension libraries that provide such collections. In this chapter we will
explore implementing our own versions.

35.2 Abstract Data Types

The Queue and Stack are concrete examples of what are known as Abstract Data
Types (or ADTs).

An Abstract Data Type (or ADT) is a model for a particular type of data, where a
data type is defined by its behaviour (or semantics) from the point of view of the
user of that data type. This behaviour is typically defined in terms of possible
values, possible operations on the data of this type and behaviour of the operations
provided by the data type.

An ADT is used to define a common concept that can be implemented by one or
more concrete data structures. These implementations may use different internal
representations of the data or different algorithms to provide the behaviour; by
semantically they meet the descriptions provided by the ADT.

For example, a List ADT may be defined that defines the operations and
behaviour that a List like data structure must provide. Concrete implementations
may meet the semantics of a List using an underlying array of elements, or by
linking elements together with pointers or using some form of hash table (all of
which are different internal representations that could be used to implement a list).

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_35

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_35&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_35&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_35&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_35

35.3 Data Structures

We will look at how the Python collection types can be used as both a Queue and a
Stack but first we need to define both these ADTs:

• Queue is an ADT that defines how a collection of entities are managed and
maintained. Queues have what is known as a First-In-First-Out (or FIFO)
behaviour that is the first entity added to a queue is the first thing removed from
the queue. Within the queue the order in which the entities were added is
maintained.

• Stack is another ADT but this time it has a Last-In-First-Out (or LIFO) beha-
viour. That is the most recently added entity to the Stack will be the next entity
to be removed. Within the stack the order that the entities were added in is
maintained.

35.4 Queues

Queues are very widely used within Computer Science and in Software
Engineering. They allow data to be held for processing purposes where the guar-
antee is that the earlier elements added will be processed before later ones.

There are numerous variations on the basic queue operations but in essence all
queues provide the following features:

• Queue creation.
• Add an element to the back of the queue (known as enqueuing).
• Remove an element from the front of the queue (known as dequeuing).
• Find out the length of the queue.
• Check to see if the queue is empty.
• Queues can be of fixed size or variable (growable) in size.

The basic behaviour of a queue is illustrated by:

In the above diagram there are five elements in the queue, one element has
already been removed from the front and another is being added at the back. Note
that when one element is removed from the front of the queue all other element
move forward one position. Thus, the element that was the second to the front of the
queue becomes the front of the queue when the first element is dequeued.

408 35 ADTs, Queues and Stacks

Many queues also allow features such as:

• Peek at the element at the front of the queue (that is see what the element is but
do not remove it from the queue).

• Provide priorities so that elements with a higher priority are not added to the
back of the queue but to a point in the middle of the queue related to their
priority.

35.4.1 Python List as a Queue

The Python List container can be used as a queue using the existing operations
such as append() and pop(), for example:

queue = [] # Create an empty queue
queue.append('task1')
print('initial queue:', queue)
queue.append('task2')
queue.append('task3')
print('queue after additions:', queue)
element1 = queue.pop(0)
print('element retrieved from queue:', element1)
print('queue after removal', queue)

The output of which is

initial queue: ['task1']
queue after additions: ['task1', 'task2', 'task3']
element retrieved from queue: task1
queue after removal ['task2', 'task3']

Note that each task was added to the end of the queue, but the first task obtained
from the queue was task 1.

35.4.2 Defining a Queue Class

In the last section we used the List class as a way of providing a queue; this
approach does work but it is not obvious that we are using the list as a queue (with the
exception of the name of the variable that we are holding the List in). For example
we have used pop(0) to dequeue an element from the queue and we have used
append() to enqueue an element. In addition there is nothing to stop a programmer
forgetting to use pop(0) and instead using pop()which is an easy mistake to make
and which will remove the most recently added item from the queue.

It would be better to create a new data type and ensure that this data provides the
queue like behaviour and hide the list inside this data type.

35.4 Queues 409

We can do this by defining our own Queue class in Python.

class Queue:

def __init__(self):
self._list = [] # initial internal data

def enqueue(self, element):
self._list.append(element)

def dequeue(self):
return self._list.pop(0)

def __len__(self):
""" Supports the len protocol """
return len(self._list)

def is_empty(self):
return self.__len__() == 0

def peek(self):
return self._list[0]

def __str__(self):
return 'Queue: ' + str(self._list)

This Queue class internally holds a list. Note we are using the convention that the
internal list instance variable name is preceded by an underbar ('_') thereby
indicating that no one should access it directly.

We have also defined methods for dequeuing and enqueuing elements to the
queue. To complete the definition, we have also defined methods for checking
the current length of the queue, whether the queue is empty or not, allowing the
element at the front of the queue to be peeked at and of course proving a string
version of the queue for printing.

Note that the is_empty() method uses the __len__() method when
determining if the queue is empty; this is an example of an important idea; only
define something once. As we want to use the length of the queue to help determine
if the queue is empty, we reuse the __len__() method rather than the code
implementing the length method; thus, if the internal representation changes we will
not affect the is_empty() method.

The following short program illustrate show the Queue class can be used:

queue = Queue()
print('queue.is_empty():', queue.is_empty())
queue.enqueue('task1')
print('len(queue):', len(queue))
queue.enqueue('task2')
queue.enqueue('task3')
print('queue:', queue)

410 35 ADTs, Queues and Stacks

The output from this is:

initial queue: ['task1']
queue after additions: ['task1', 'task2', 'task3']
element retrieved from queue: task1
queue after removal ['task2', 'task3']
queue.is_empty(): True
len(queue): 1
queue: Queue: ['task1', 'task2', 'task3']
queue.peek(): task1
queue.dequeue(): task1
queue: Queue: ['task2', 'task3']

This provides a far more explicit and semantically more meaningful imple-
mentation of a Queue than the use of the raw List data structure.

Of course, Python understands this and provides a queue container class in the
collections module called deque. This implementation is optimised to be
more efficient than the basic List which is not very efficient when it comes to
popping elements from the front of the list.

35.5 Stacks

Stacks are another very widely used ADT within computer science and in software
applications. They are often used for evaluating mathematical expressions, parsing
syntax, for managing intermediate results etc.

The basic facilities provided by a Stack include:

• Stack creation.
• Add an element to the top of the stack (known as pushing onto the stack).
• Remove an element from the top of the stack (known as popping from the

stack).
• Find out the length of the stack.
• Check to see if the stack is empty.
• Stacks can be of fixed size or a variable (growable) stack.

print('queue.peek():', queue.peek())
print('queue.dequeue():', queue.dequeue())
print('queue:', queue)

35.4 Queues 411

The basic behaviour of a stack is illustrated by:

This diagram illustrates the behaviour of a Stack. Each time a new element is
pushed onto the Stack, it forces any existing elements further down the stack. Thus
the most recent element is at the top of the stack and the oldest element is at the bottom
of the stack. To get to older elements youmust first pop newer elements off the top etc.

Many stacks also allow features such as

• Top which is often an operation that allows you to peek at the element at the top
of the stack (that is see what the element is but do not remove it from the queue).

35.5.1 Python List as a Stack

A List may initially appear particularly well suited to being used as a Stack as
the basic append() and pop() methods can be used to emulate the stack
behaviour. Whatever was most recently appended to the list is the element that will
be next returned from the pop() method, for example:

stack = [] # create an empty stack
stack.append('task1')
stack.append('task2')
stack.append('task3')
print('stack:', stack)
top_element = stack.pop()
print('top_element:', top_element)
print('stack:', stack)

412 35 ADTs, Queues and Stacks

Which produces the output:

stack: ['task1', 'task2', 'task3']
top_element: task3
stack: ['task1', 'task2']

This certainly works although when we print out the stack it does not make it
clear that ‘task3’ is at the front of the stack.

In addition, as when using the List as a queue ADT it is still possible to apply
any of the other methods defined on a List to this stack and thus we can still write
stack.pop(0) which would remove the very first element added to the stack.

We could therefore implement a Stack class to wrap the list and provide
suitable stack like behaviour as we did for the Queue class.

35.6 Online Resources

For more information on ADTs, Queues and Stacks see:

• https://en.wikipedia.org/wiki/Abstract_data_type Wikipedia page on ADTs
(Abstract Data Types).

• https://en.wikipedia.org/wiki/Queue_(abstract_data_type) Wikipedia page on
the Queue data structure.

• https://en.wikipedia.org/wiki/Stack_(abstract_data_type) Wikipedia page on
Stacks.

• https://en.wikibooks.org/wiki/Data_Structures/Stacks_and_Queues Wikibooks
tutorial on Stack and Queue data structures.

35.7 Exercises

Implement your own Stack class following the pattern used for the Queue class.
The Stack class should provide

• A push(element) method used to add an element to the Stack.
• A pop() method to retrieve the top element of the Stack (this method

removes that element from the stack).
• A top() method that allows you to peek at the top element on the stack (it does

not remove the element from the stack).
• A __len__() method to return the size of the stack. This method also meets

the len protocol requirements.
• An is_empty() method that checks to see if the stack is empty.
• A __str__() method used to convert the stack into a string.

35.5 Stacks 413

https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Queue_(abstract_data_type
https://en.wikipedia.org/wiki/Stack_(abstract_data_type
https://en.wikibooks.org/wiki/Data_Structures/Stacks_and_Queues

Once completed you should be able to run the following test application:

stack = Stack()
stack.push('T1')
stack.push('T2')
stack.push('T3')
print('stack:', stack)
print('stack.is_empty():', stack.is_empty())
print('stack.length():', stack.length())
print('stack.top():', stack.top())
print('stack.pop():', stack.pop())
print('stack:', stack)

An example of the type of output this might produce is

stack: ['task1', 'task2', 'task3']
top_element: task3
stack: ['task1', 'task2']
stack: Stack: ['T1', 'T2', 'T3']
stack.is_empty(): False
stack.length(): 3
stack.top(): T3
stack.pop(): T3
stack: Stack: ['T1', 'T2']

414 35 ADTs, Queues and Stacks

Chapter 36
Map, Filter and Reduce

36.1 Introduction

Python provides three functions that are widely used to implement functional
programming style solutions in combination with collection container types.

These functions are what are known as higher-order functions that take both a
collection and a function that will be applied in various ways to that collection.

This chapter introduces three functions filter(), map() and reduce().

36.2 Filter

The filter() function is a higher order function that takes a function to be used to
filter out elements from a collection. The result of the filter() function is a new
iterable containing only those elements selected by the test function.

That is, the function passed into filter() is used to test all the elements in the
collection that is also passed into filter. Those where the test filter returns True are
included in the list of values returned. The result returned is a new iterable con-
sisting of all elements of this list that satisfy the given test function. Note that the
order of the elements is preserved.

The syntax of the filter() function is

filter(function, iterable)

Note that the second argument to the filter function is anything that imple-
ments the iterable protocol which includes all Lists, Tuples, Sets and dictionaries or
and many other types etc.

The function passed in as the first argument is the test function; it can be a
lambda (a function defined in line) or the name of an existing function. The result
returned will be an iterable that can be used to create an appropriate collection.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_36

415

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_36&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_36

Here are some examples of using filter with a simple list of integers:

data = [1, 3, 5, 2, 7, 4, 10]
print('data:', data)

Filter for even numbers using a lambda function
d1 = list(filter(lambda i: i % 2 == 0, data))
print('d1:', d1)

def is_even(i):
return i % 2 == 0

Filter for even numbers using a named function
d2 = list(filter(is_even, data))
print('d2:', d2)

The output from this is:

Data: [1, 3, 5, 2, 7, 4, 10]
d1: [2, 4, 10]
d2: [2, 4, 10]

One difference between the two examples is that it is more obvious what the role is
of the test function in the second example as it is explicitly named (i.e. is_even()),
that is the function is testing the integer to see whether it is even or not. The in-line
lambda function does exactly the same, but it is necessary to understand the test
function itself to work out what it is doing.

It is also worth pointing out that defining a named function such as is_even()
may actually pollute the namespace of the module as there is now a function that
others might decide to use even though the original designer of this code never
expected anyone else to use the is_even() function. This is why lambda
functions are often used with filter() (and indeed map() and reduce()).

Of course, you are not just limited to fundamental built in types such as integers,
or real numbers or indeed strings; any type can be used. For example, if we have a
class Person such as:

class Person:

def __init__(self, name, age):
 self.name = name
 self.age = age

def __str__(self):
return 'Person(' + self.name +

 ', ' + str(self.age) + ')'

416 36 Map, Filter and Reduce

Then we can create a list of instances of the class Person and then filter out all
those over 21:

data = [Person('Alun', 54), Person('Niki', 21), Person('Megan',
19)]
for p in data:
 print(p, end=', ')

print('\n-----')

Use a lambda to filter out People over 21
d3 = list(filter(lambda p: p.age <= 21, data))
for p in d3:
 print(p, end=', ')

The output from this is:

Person(Alun, 54), Person(Niki, 21), Person(Megan, 19),

Person(Niki, 21), Person(Megan, 19),

36.3 Map

Map is another higher order function available in Python. Map applies the supplied
function to all items in the iterable(s) passed to it. It returns a new iterable of the
results generated by the applied function.

It is the functional equivalent of a for loop applied to an iterable where the
results of each iteration round the for loop are gathered up.

The map function is very widely used within the functional programming world
and it is certainly worth becoming familiar with it.

The function signature of map is

map(function, iterable, ...)

Note that the second argument to the map function is anything that implements
the iterable protocol.

The function passed into the map function is applied to each item in the iterable
passed as the second argument. The result returned from the function is then
gathered up into the iterable object returned from map.

The following example applies a function that adds one to a number, to a list of
integers:

36.2 Filter 417

data = [1, 3, 5, 2, 7, 4, 10]
print('data:', data)

Apply the lambda function to each element in the list
using the map function
d1 = list(map(lambda i: i + 1, data))
print('d1', d1)

def add_one(i):
 return i + 1

Apply the add_one function to each element in the
list using the map function
d2 = list(map(add_one, data))
print('d2:', d2)

The output of the above example is:

data: [1, 3, 5, 2, 7, 4, 10]
d1 [2, 4, 6, 3, 8, 5, 11]
d2: [2, 4, 6, 3, 8, 5, 11]

As with the filter() function, the function to be applied can either be defined in
line as a lambda or it can be named function as inadd_one(). Either can be used, the
advantage of the add_one() named function is that it makes the intent of the
function explicit; however, it does pollute the namespace of functions defined.

Note that more than one iterable can be passed to the map function. If multiple
iterables are passed to map, then the function passed in must take as many
parameters as there are iterables. This feature is useful if you want to merge data
held in two or more collections into a single collection.

For example, let us assume that we want to add the numbers in one list to the
numbers in another list, we can write a function that takes two parameters and
returns the result of adding these two numbers together:

data1 = [1, 3, 5, 7]
data2 = [2, 4, 6, 8]

result = list(map(lambda x, y: x + y, data1, data2))
print(result)

The output printed by this is:

[3, 7, 11, 15]

As with the filter function, it is not only built-in types such as numbers that
can be processed by the function supplied to map; we can also use user defined
types such as the class Person. For example, if we wanted to collect all the ages
for a list of Person we could write:

418 36 Map, Filter and Reduce

data = [Person('John', 54), Person('Phoebe', 21),
Person('Adam', 19)]
ages = list(map(lambda p: p.age, data))
print(ages)

Which creates a list of the ages of the three people:

[54, 21, 19]

36.4 Reduce

The reduce() function is the last higher order function that can be used with
collections of data that we will look at.

The reduce() function applies a function to an iterable and combines the
result returned for each element together into a single result.

This function was part of the core Python 2 language but was not included into
the core of Python 3. This is partly because Guido van Rossum believed (probably
correctly) that the applicability of reduce is quite limited, but where it is useful it
is very useful. Although it has to be said that some developers try and shoe horn
reduce() into situations that just make the implementation very hard to under-
stand—remember always aim to keep it simple.

To usereduce() in Python 3 you need to import it from thefunctoolsmodule.
One point that is sometimesmisunderstoodwithreduce() is that the function passed
into reduce takes two parameters, which are the previous result and the next value in the
sequence; it then returns the result of applying some operation to these parameters.

The signature of the functools.reduce function is:

functools.reduce(function, iterable[, initializer])

Note that optionally you can provide an initialiser that is used to provide an
initial value for the result.

One obvious use of reduce() is to sum all the values in a list:

from functools import reduce

data = [1, 3, 5, 2, 7, 4, 10]
result = reduce(lambda total, value: total + value, data)
print(result)

The result printed out for this is 32.
Although it might appear that reduce() is only useful for numbers such as

integers; it can be used with other types as well. For example, let us assume that we
want to calculate the average age for a list of people, we could use reduce to add
together all the ages and then divide by the length of the data list we are processing:

36.3 Map 419

data = [Person('John', 54), Person('Phoebe', 21),
 Person('Adam', 19)]

total_age = reduce(lambda running_total, person: running_total
+ person.age, data, 0)

average_age = total_age // len(data)
print('Average age:', average_age)

In this code example, we have a data list of three people. We then use the reduce
function to apply a lambda to the data list. The lambda takes a running_total
and adds a person’s age to that total. The value zero is used to initialise this running
total. When the lambda is applied to the data list, we will add 54, 21 and 19 together.
We then divide the final result returned by the length of the data list (3) using the
// operator which will use floor() division to return a whole integer (rather than a
real number such as 3.11). Finally, we print out the average age:

Average age: 31

36.5 Online Resources

More information on map, filter and reduce can be found using the following online
resources:

• http://book.pythontips.com/en/latest/map_filter.html Summary of map, filter and
reduce.

• https://www.w3schools.com/python/ref_func_map.asp The W3C schools map()
function tutorial.

• https://www.w3schools.com/python/ref_func_filter.asp The W3 schools filter()
function tutorial.

• https://pymotw.com/3/functools/index.html The Python Module of the Week
page including reduce().

• https://docs.python.org/3.7/library/functools.html The Python Standard Library
documentation for functors including reduce().

36.6 Exercises

This exercise aims to allow you to use map and filter with your Stack class.
Take the Stack that you developed in the last chapter and make it iterable. This

can be done by implementing the __iter__() method from the iterable protocol.
As a list is held internally to the Stack this could be implemented by returning an
iterable wrapper around the list, for example:

420 36 Map, Filter and Reduce

http://book.pythontips.com/en/latest/map_filter.html
https://www.w3schools.com/python/ref_func_map.asp
https://www.w3schools.com/python/ref_func_filter.asp
https://pymotw.com/3/functools/index.html
https://docs.python.org/3.7/library/functools.html

def __iter__(self):
 return iter(self._list)

Now define a function that will check to see if a string passed to it starts with 'Job';
if it does return True if not return False. Call this function is_job().

Also define a function that will prepend the string 'item': to the string passed in and
will then return this as the result of the function. Call this function add_item().

You should now be able to use the filter() and map() functions with the
Stack class as shown below:

stack = Stack()
stack.push('Task1')
stack.push('Task2')
stack.push('Job1')
stack.push('Task3')
stack.push('Job2')
print('stack contents:', stack)

Apply functions to stack contents using map and filter
new_list = list(map(add_item, stack))
print('new_list:', new_list)

filtered_list = list(filter(is_job, stack))
print('filtered_list: ', filtered_list)

36.6 Exercises 421

Chapter 37
TicTacToe Game

37.1 Introduction

In this chapter we will explore the creation of a simple TicTacToe (or Noughts and
Crosses) game using an Object Oriented approach. This example utilises:

• Python classes, methods and instance variables/attributes.
• Abstract Base Classes and an abstract method.
• Python Properties.
• Python lists.
• A simple piece of game playing logic.
• While loops, for loops and if statements for flow of control behaviour.

The aim of the game is to make a line of 3 counters (either X or O) across a 3 by
3 grid. Each player takes a turn to place a counter. The first player to achieve a line
of three (horizontal, vertically or diagonally) wins.

37.2 Classes in the Game

We will begin by identifying the key classes in the game. Note that there is not
necessarily a right or wrong answer here; although one set of classes may be more
obvious or easier to understand than another.

In our case we will start with what data we will need to represent for our
TicTacToe game as recommended back in the ‘Introduction to Object Orientation’
chapter.

Our key data elements include:

• the tic-tac-toe board itself,
• the players involved in the game (both computer and human),
• the state of the game, i.e. whose go it is and whether someone has won,

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_37

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_37&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_37

• the moves being made by the players etc.
• the counters used which are traditionally O and X (hence the alternative name

‘Noughts and Crosses’).

Based on an analysis of the data one possible set of classes is shown below:

In this diagram we have

• Game the class that will hold the board, players and the core game playing logic,
• Board this is a class that represents the current state of the TicTacToe board or

grid within the game,
• Human Player this class represents the human player involved in the game,
• Computer Player this class represents the computer playing the game,
• Move this class represents a particular move made by a player,
• Counter which can be used to represent the counters to play with; this will be

either X or Y.

We can refine this a little further. For example, much of what constituents a
player will be common for both the human and the computer player. We can
therefore introduce a new class Player, with both Computer Player and
Human Player inheriting from this class, for example:

In terms of the data held by the classes we can say:

• Game has a board, a human and a computer player. It also has links to the
current player and an attribute indicating whether a player has won.

• Board holds a 3 by 3 grid of cells. Each cell can be empty or contains a
counter.

• Player Each player has a current counter and can see the board.

424 37 TicTacToe Game

• Move represent a players selected move; it therefore holds the counter being
played and the location to put the counter in.

• Counter holds a label indicating either X or O.

We can now update the class diagram with data and links between the classes:

At this point it looks as though the HumanPlayer and ComputerPlayer
classes are unnecessary as they do not hold any data of there own. However, in this
case the behaviour for the HumanPlayer and the ComputerPlayer are quite
different.

The HumanPlayer class will prompt the human user to select the next move.
In contrast the ComputerPlayer class must implement an algorithm which will
allow the next move to be generated within the program.

Other behavioural aspects of the classes are:

• Game this must hold the overall logic of the game. It must also be able to select
which player will go first. We will also allow the human player to select which
counter they will play with (X or O). This logic will also be placed within the
Game class.

• Board The Board class must allow a move to be made but it must also be able
to verify that a move is legal (as cell is empty) and whether a game has been
won or whether there is a draw. This latter logic could be located within the
game instead; however the Board holds the data necessary to determine a win
or a draw and thus we are locating the logic with the data.

We can now add the behavioural aspects of the classes to the diagram. Note we
have followed the convention here for separating the data and behaviour into dif-
ferent areas within a class box:

37.2 Classes in the Game 425

We are now ready to look at the Python implementation of our class design.

37.3 Counter Class

TheCounter class is given below; it is a data oriented class, sometimes referred to as
a value type. This is because it holds values but does not include any behaviour.

We have also defined two constants X and Y to represent the X and O counters
used in the game.

class Counter:
 """ Represents a Counter used on the board """

def __init__(self, string):
 self.label = string

def __str__(self):
return self.label

Set up Counter Globals
X = Counter('X')
O = Counter('O')

426 37 TicTacToe Game

37.4 Move Class

The Move class is given below; it is another a data oriented class or value type.

37.5 The Player Class

The root of the Player class hierarchy is presented below. This class is an
abstract class in which the get_move() method is marked as being abstract. The
class maintains a reference to the board and to a counter.

Note that counter is defined as a Python property.
The class Player is extended by the classes HumanPlayer and

ComputerPlayer.

class Player(metaclass=ABCMeta):
""" Abstract class representing a Player

 and their counter """

def __init__(self, board):
 self.board = board

 self._counter = None

@property
def counter(self):

""" Represents Players Counter - may be X or Y"""
return self._counter

 @counter.setter
def counter(self, value):

 self._counter = value

 @abstractmethod
def get_move(self): pass

 def __str__(self):
return self.__class__.__name__ + '[' +

str(self.counter) + ']'

class Move:
""" Represents a move made by a player """

def __init__(self, counter, x, y):
 self.x = x
 self.y = y
 self.counter = counter

37.4 Move Class 427

37.6 The HumanPlayer Class

This class extends the abstract Player class and defines the get_move()
method. This method returns a Move object representing the counter to be placed
and the location in the 3 � 3 grid in which to place the counter. Note that the
get_move() method relies on a reference being maintained by the player to the
board so that it can check that the selected location is empty.

To support the get_move() method a _get_user_input() method has
been defined. This method could have been defined as a stand alone function as it is
really independent of the HumanPlayer; however it has been defined within this
class to keep the related behaviour together. It also follows the Python convention
by starting the method name with an underbar (_) which indicates that the method
is private and should not be accessed from outside of the class.

class HumanPlayer(Player):
""" Represents a Human Player and their behaviour """

def __init__(self, board):
 super().__init__(board)

def _get_user_input(self, prompt):
 invalid_input = True

 while invalid_input:
 print(prompt)
 user_input = input()
if not user_input.isdigit():

 print('Input must be a number')
else:

 user_input_int = int(user_input)
if user_input_int < 1 or user_input_int > 3:

 print('input must be a number in the range
1 to 3')

else:
invalid_input = False

 return user_input_int - 1

def get_move(self):
""" Allow the human player to enter their move """
while True:

 row = self._get_user_input('Please input the row:
')
 column = self._get_user_input('Please input the
column: ')

if self.board.is_empty_cell(row, column):
return Move(self.counter, row, column)

else:
 print('That position is not free')
 print('Please try again')

428 37 TicTacToe Game

37.7 The ComputerPlayer Class

This class provides an algorithmic implementation of the get_move() method.
This algorithm tries to find the best empty grid location in which to place the
counter. If it cannot find one of these locations free then it randomly finds an empty
cell to fill. The get_move() method could be replaced with whatever game
playing logic you want.

class ComputerPlayer(Player):
""" Implements algorithms for playing game """

def __init__(self, board):
 super().__init__(board)

def randomly_select_cell(self):
""" Use a simplistic random selection approach

 to find a cell to fill. """
while True:

Randomly select the cell
row = random.randint(0, 2)

 column = random.randint(0, 2)
Check to see if the cell is empty
if self.board.is_empty_cell(row, column):

return Move(self.counter, row, column)

def get_move(self):
""" Provide a very simple algorithm for selecting a

move"""
if self.board.is_empty_cell(1, 1):

Choose the center
return Move(self.counter, 1, 1)

elif self.board.is_empty_cell(0, 0):
Choose the top left
return Move(self.counter, 0, 0)

elif self.board.is_empty_cell(2, 2):
Choose the bottom right
return Move(self.counter, 2, 2)

elif self.board.is_empty_cell(0, 2):
Choose the top right
return Move(self.counter, 0, 2)

elif self.board.is_empty_cell(0, 2):
Choose the top right
return Move(self.counter, 2, 0)

else:
return self.randomly_select_cell()

37.7 The ComputerPlayer Class 429

37.8 The Board Class

TheBoard class holds a 3 by 3 grid of cells in the formof a list of lists. It also defines the
methods used to verify or make a move on the board. The check_for_winner()
method determines if there is a winner given the current board positions.

class Board:
""" The ticTacToe board"""

def __init__(self):

Set up the 3 by 3 grid of cells
self.cells = [[' ', ' ', ' '], [' ', ' ', ' '], [' ', '

', ' ']]
self.separator = '\n' + ('-' * 11) + '\n'

 def __str__(self):
 row1 = ' ' + str(self.cells[0][0]) + ' | ' +
str(self.cells[0][1]) + ' | ' + str(self.cells[0][2])
 row2 = ' ' + str(self.cells[1][0]) + ' | ' +
str(self.cells[1][1]) + ' | ' + str(self.cells[1][2])
 row3 = ' ' + str(self.cells[2][0]) + ' | ' +
str(self.cells[2][1]) + ' | ' + str(self.cells[2][2])

return row1 + self.separator + row2 + self.separator +
row3

def add_move(self, move):
""" A a move to the board """
row = self.cells[move.x]

 row[move.y] = move.counter

def is_empty_cell(self, row, column):
""" Check to see if a cell is empty or not"""
return self.cells[row][column] == ' '

 def cell_contains(self, counter, row, column):
""" Check to see if a cell contains the provided

counter """
return self.cells[row][column] == counter

def is_full(self):
""" Check to see if the board is full or not """
for row in range(0, 3):

for column in range(0, 3):
if self.is_empty_cell(row, column):

return False
 return True

 def check_for_winner(self, player):
""" Check to see if a player has won or not """
c = player.counter
return (# across the top

(self.cell_contains(c, 0, 0) and

430 37 TicTacToe Game

37.9 The Game Class

The Game class implements the main game playing loop. The play() method will
loop until a winner is found. Each time round the loop one of the players takes a
turn and makes a move. A check is then made to see if the game has been won.

self.cell_contains(c, 0, 1) and self.cell_contains(c, 0, 2)) or
across the middle
(self.cell_contains(c, 1, 0) and

self.cell_contains(c, 1, 1) and self.cell_contains(c, 1, 2)) or
across the bottom
(self.cell_contains(c, 2, 0) and

self.cell_contains(c, 2, 1) and self.cell_contains(c, 2, 2)) or
down the left side
(self.cell_contains(c, 0, 0) and

self.cell_contains(c, 1, 0) and self.cell_contains(c, 2, 0)) or
down the middle
(self.cell_contains(c, 0, 1) and

self.cell_contains(c, 1, 1) and self.cell_contains(c, 2, 1)) or
down the right side
(self.cell_contains(c, 0, 2) and

self.cell_contains(c, 1, 2) and self.cell_contains(c, 2, 2)) or
diagonal
(self.cell_contains(c, 0, 0) and

self.cell_contains(c, 1, 1) and self.cell_contains(c, 2, 2)) or
other diagonal
(self.cell_contains(c, 0, 2) and

self.cell_contains(c, 1, 1) and self.cell_contains(c, 2, 0)))

class Game:
""" Contains the Game Playing Logic """

def __init__(self):
 self.board = Board()
 self.human = HumanPlayer(self.board)
 self.computer = ComputerPlayer(self.board)

self.next_player = None
self.winner = None

 def select_player_counter(self):
""" Let the player select their counter """
counter = ''

 while not (counter == 'X' or counter == 'O'):
 print('Do you want to be X or O?')

counter = input().upper()
if counter != 'X' and counter != 'O':

 print('Input must be X or O')
if counter == 'X':

 self.human.counter = X
 self.computer.counter = O

37.8 The Board Class 431

def play(self):
""" Main game playing loop """
print('Welcome to TicTacToe')
self.select_player_counter()
self.select_player_to_go_first()
print(self.next_player, 'will play first first')
while self.winner is None:

Human players move
if self.next_player == self.human:

print(self.board)
print('Your move')
 move = self.human.get_move()
 self.board.add_move(move)
if self.board.check_for_winner(self.human):

self.winner = self.human
else:
 self.next_player = self.computer

Computers move
else:

print('Computers move')
move = self.computer.get_move()

 self.board.add_move(move)
if self.board.check_for_winner(self.computer):

self.winner = self.computer
else:
 self.next_player = self.human

Check for a winner or a draw
if self.winner is not None:

print('The Winner is the ' + str(self.winner))
elif self.board.is_full():

print('Game is a Tie')
break

print(self.board)

else:
self.human.counter = O
self.computer.counter = X

def select_player_to_go_first(self):
""" Randomly selects who will play first -
the human or the computer."""
if random.randint(0, 1) == 0:

self.next_player = self.human
else:

self.next_player = self.computer

37.10 Running the Game

To run the game we need to instantiate the Game class and then call the play()
method on the object obtained. For example:

432 37 TicTacToe Game

A sample output from running the game is given below in which the human
users goes first.

def main():
 game = Game()
 game.play()

if __name__ == '__main__':
 main()

Welcome to TicTacToe
Do you want to be X or O? X
ComputerPlayer[Y] will play first first
Computers move
Y

 | |
Your move
Please input the row: 1
Please input the column: 1
Computers move
 X | |

Y
Your move
Please input the row: 2
Please input the column: 1
Computers move
 X | | Y

 X | Y |

 | | Y
Your move
Please input the row: 3
Please input the column: 1
The Winner is the HumanPlayer[X]
 X | | Y

 X | Y |

 X | | Y

37.10 Running the Game 433

Correction to: Functions in Python

Correction to:
Chapter 11 in: J. Hunt,
A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_11

In the original version of the book, the text “Rugby” has been replaced with
“Python” in Chapter 11 page 126. The corrections have been carried out in the
chapter. The erratum chapter and the book have been updated with the change.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-20290-3_11

© Springer Nature Switzerland AG 2020
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_38

C1

https://doi.org/10.1007/978-3-030-20290-3_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_38&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_11
https://doi.org/10.1007/978-3-030-20290-3_38

	Preface
	Chapter Organization
	What You Need
	Using an IDE
	Downloading the PyCharm IDE
	Setting Up the IDE
	Conventions
	Example Code and Sample Solutions

	Contents
	1 Introduction
	1.1 What Is Python?
	1.2 Python Versions
	1.3 Python Programming
	1.4 Python Libraries
	1.5 Python Execution Model
	1.6 Running Python Programs
	1.6.1 Interactively Using the Python Interpreter
	1.6.2 Running a Python File
	1.6.3 Executing a Python Script
	1.6.4 Using Python in an IDE

	1.7 Useful Resources

	2 Setting Up the Python Environment
	2.1 Introduction
	2.2 Check to See If Python Is Installed
	2.3 Installing Python on a Windows PC
	2.4 Setting Up on a Mac
	2.5 Online Resources

	3 A First Python Program
	3.1 Introduction
	3.2 Hello World
	3.3 Interactive Hello World
	3.4 Variables
	3.5 Naming Conventions
	3.6 Assignment Operator
	3.7 Python Statements
	3.8 Comments in Code
	3.9 Scripts Versus Programs
	3.10 Online Resources
	3.11 Exercises

	4 Python Strings
	4.1 Introduction
	4.2 What Are Strings?
	4.3 Representing Strings
	4.4 What Type Is String
	4.5 What Can You Do with Strings?
	4.5.1 String Concatenation
	4.5.2 Length of a String
	4.5.3 Accessing a Character
	4.5.4 Accessing a Subset of Characters
	4.5.5 Repeating Strings
	4.5.6 Splitting Strings
	4.5.7 Counting Strings
	4.5.8 Replacing Strings
	4.5.9 Finding Sub Strings
	4.5.10 Converting Other Types into Strings
	4.5.11 Comparing Strings
	4.5.12 Other String Operations

	4.6 Hints on Strings
	4.6.1 Python Strings Are Case Sensitive
	4.6.2 Function/Method Names
	4.6.3 Function/Method Invocations

	4.7 String Formatting
	4.8 String Templates
	4.9 Online Resources
	4.10 Exercises

	5 Numbers, Booleans and None
	5.1 Introduction
	5.2 Types of Numbers
	5.3 Integers
	5.3.1 Converting to Ints

	5.4 Floating Point Numbers
	5.4.1 Converting to Floats
	5.4.2 Converting an Input String into a Floating Point Number

	5.5 Complex Numbers
	5.6 Boolean Values
	5.7 Arithmetic Operators
	5.7.1 Integer Operations
	5.7.2 Negative Number Integer Division
	5.7.3 Floating Point Number Operators
	5.7.4 Integers and Floating Point Operations
	5.7.5 Complex Number Operators

	5.8 Assignment Operators
	5.9 None Value
	5.10 Online Resources
	5.11 Exercises
	5.11.1 General Exercise
	5.11.2 Convert Kilometres to Miles

	6 Flow of Control Using If Statements
	6.1 Introduction
	6.2 Comparison Operators
	6.3 Logical Operators
	6.4 The If Statement
	6.4.1 Working with an If Statement
	6.4.2 Else in an If Statement
	6.4.3 The Use of elif

	6.5 Nesting If Statements
	6.6 If Expressions
	6.7 A Note on True and False
	6.8 Hints
	6.9 Online Resources
	6.10 Exercises
	6.10.1 Check Input Is Positive or Negative
	6.10.2 Test if a Number Is Odd or Even
	6.10.3 Kilometres to Miles Converter

	7 Iteration/Looping
	7.1 Introduction
	7.2 While Loop
	7.3 For Loop
	7.4 Break Loop Statement
	7.5 Continue Loop Statement
	7.6 For Loop with Else
	7.7 A Note on Loop Variable Naming
	7.8 Dice Roll Game
	7.9 Online Resources
	7.10 Exercises
	7.10.1 Calculate the Factorial of a Number
	7.10.2 Print All the Prime Numbers in a Range

	8 Number Guessing Game
	8.1 Introduction
	8.2 Setting Up the Program
	8.2.1 Add a Welcome Message
	8.2.2 Running the Program

	8.3 What Will the Program Do?
	8.4 Creating the Game
	8.4.1 Generate the Random Number
	8.4.2 Obtain an Input from the User
	8.4.3 Check to See If the Player Has Guessed the Number
	8.4.4 Check They Haven’t Exceeded Their Maximum Number of Guess
	8.4.5 Notify the Player Whether Higher or Lower
	8.4.6 End of Game Status

	8.5 The Complete Listing
	8.6 Hints
	8.6.1 Initialising Variables
	8.6.2 Blank Lines Within a Block of Code

	8.7 Exercises

	9 Recursion
	9.1 Introduction
	9.2 Recursive Behaviour
	9.3 Benefits of Recursion
	9.4 Recursively Searching a Tree
	9.5 Recursion in Python
	9.6 Calculating Factorial Recursively
	9.7 Disadvantages of Recursion
	9.8 Online Resources
	9.9 Exercises

	10 Introduction to Structured Analysis
	10.1 Introduction
	10.2 Structured Analysis and Function Identification
	10.3 Functional Decomposition
	10.3.1 Functional Decomposition Terminology
	10.3.2 Functional Decomposition Process
	10.3.3 Calculator Functional Decomposition Example

	10.4 Functional Flow
	10.5 Data Flow Diagrams
	10.6 Flowcharts
	10.7 Data Dictionary
	10.8 Online Resources

	11 Functions in Python
	11.1 Introduction
	11.2 What Are Functions?
	11.3 How Functions Work
	11.4 Types of Functions
	11.5 Defining Functions
	11.5.1 An Example Function

	11.6 Returning Values from Functions
	11.7 Docstring
	11.8 Function Parameters
	11.8.1 Multiple Parameter Functions
	11.8.2 Default Parameter Values
	11.8.3 Named Arguments
	11.8.4 Arbitrary Arguments
	11.8.5 Positional and Keyword Arguments

	11.9 Anonymous Functions
	11.10 Online Resources
	11.11 Exercises

	12 Scope and Lifetime of Variables
	12.1 Introduction
	12.2 Local Variables
	12.3 The Global Keyword
	12.4 Nonlocal Variables
	12.5 Hints
	12.6 Online Resources
	12.7 Exercise

	13 Implementing a Calculator Using Functions
	13.1 Introduction
	13.2 What the Calculator Will Do
	13.3 Getting Started
	13.4 The Calculator Operations
	13.5 Behaviour of the Calculator
	13.6 Identifying Whether the User Has Finished
	13.7 Selecting the Operation
	13.8 Obtaining the Input Numbers
	13.9 Determining the Operation to Execute
	13.10 Running the Calculator
	13.11 Exercises

	14 Introduction to Functional Programming
	14.1 Introduction
	14.2 What Is Functional Programming?
	14.3 Advantages to Functional Programming
	14.4 Disadvantages of Functional Programming
	14.5 Referential Transparency
	14.6 Further Reading

	15 Higher Order Functions
	15.1 Introduction
	15.2 Recap on Functions in Python
	15.3 Functions as Objects
	15.4 Higher Order Function Concepts
	15.4.1 Higher Order Function Example

	15.5 Python Higher Order Functions
	15.5.1 Using Higher Order Functions
	15.5.2 Functions Returning Functions

	15.6 Online Resources
	15.7 Exercises

	16 Curried Functions
	16.1 Introduction
	16.2 Currying Concepts
	16.3 Python and Curried Functions
	16.4 Closures
	16.5 Online Resources
	16.6 Exercises

	17 Introduction to Object Orientation
	17.1 Introduction
	17.2 Classes
	17.3 What Are Classes for?
	17.3.1 What Should a Class Do?
	17.3.2 Class Terminology

	17.4 How Is an OO System Constructed?
	17.4.1 Where Do We Start?
	17.4.2 Identifying the Objects
	17.4.3 Identifying the Services or Methods
	17.4.4 Refining the Objects
	17.4.5 Bringing It All Together

	17.5 Where Is the Structure in an OO Program?
	17.6 Further Reading

	18 Python Classes
	18.1 Introduction
	18.2 Class Definitions
	18.3 Creating Examples of the Class Person
	18.4 Be Careful with Assignment
	18.5 Printing Out Objects
	18.5.1 Accessing Object Attributes
	18.5.2 Defining a Default String Representation

	18.6 Providing a Class Comment
	18.7 Adding a Birthday Method
	18.8 Defining Instance Methods
	18.9 Person Class Recap
	18.10 The del Keyword
	18.11 Automatic Memory Management
	18.12 Intrinsic Attributes
	18.13 Online Resources
	18.14 Exercises

	19 Class Side and Static Behaviour
	19.1 Introduction
	19.2 Class Side Data
	19.3 Class Side Methods
	19.3.1 Why Class-Side Methods?

	19.4 Static Methods
	19.5 Hints
	19.6 Online Resources
	19.7 Exercises

	20 Class Inheritance
	20.1 Introduction
	20.2 What Is Inheritance?
	20.3 Terminology Around Inheritance
	20.4 The Class Object and Inheritance
	20.5 The Built-in Object Class
	20.6 Purpose of Subclasses
	20.7 Overriding Methods
	20.8 Extending Superclass Methods
	20.9 Inheritance Oriented Naming Conventions
	20.10 Python and Multiple Inheritance
	20.11 Multiple Inheritance Considered Harmful
	20.12 Summary
	20.13 Online Resources
	20.14 Exercises

	21 Why Bother with Object Orientation?
	21.1 Introduction
	21.2 The Procedural Approach
	21.2.1 Procedures for the Data Structure
	21.2.2 Packages

	21.3 Does Object Orientation Do Any Better?
	21.3.1 Packages Versus Classes
	21.3.2 Inheritance

	21.4 Summary

	22 Operator Overloading
	22.1 Introduction
	22.2 Operator Overloading
	22.2.1 Why Have Operator Overloading?
	22.2.2 Why Not Have Operator Overloading?
	22.2.3 Implementing Operator Overloading

	22.3 Numerical Operators
	22.4 Comparison Operators
	22.5 Logical Operators
	22.6 Summary
	22.7 Online Resources
	22.8 Exercises

	23 Python Properties
	23.1 Introduction
	23.2 Python Attributes
	23.3 Setter and Getter Style Methods
	23.4 Public Interface to Properties
	23.5 More Concise Property Definitions
	23.6 Online Resources
	23.7 Exercises

	24 Error and Exception Handling
	24.1 Introduction
	24.2 Errors and Exceptions
	24.3 What Is an Exception?
	24.4 What Is Exception Handling?
	24.5 Handling an Exception
	24.5.1 Accessing the Exception Object
	24.5.2 Jumping to Exception Handlers
	24.5.3 Catch Any Exception
	24.5.4 The Else Clause
	24.5.5 The Finally Clause

	24.6 Raising an Exception
	24.7 Defining an Custom Exception
	24.8 Chaining Exceptions
	24.9 Online Resources
	24.10 Exercises

	25 Python Modules and Packages
	25.1 Introduction
	25.2 Modules
	25.3 Python Modules
	25.4 Importing Python Modules
	25.4.1 Importing a Module
	25.4.2 Importing from a Module
	25.4.3 Hiding Some Elements of a Module
	25.4.4 Importing Within a Function

	25.5 Module Properties
	25.6 Standard Modules
	25.7 Python Module Search Path
	25.8 Modules as Scripts
	25.9 Python Packages
	25.9.1 Package Organisation
	25.9.2 Sub Packages

	25.10 Online Resources
	25.11 Exercise

	26 Abstract Base Classes
	26.1 Introduction
	26.2 Abstract Classes as a Concept
	26.3 Abstract Base Classes in Python
	26.3.1 Subclassing an ABC
	26.3.2 Defining an Abstract Base Class

	26.4 Defining an Interface
	26.5 Virtual Subclasses
	26.6 Mixins
	26.7 Online Resources
	26.8 Exercises

	27 Protocols, Polymorphism and Descriptors
	27.1 Introduction
	27.2 Implicit Contracts
	27.3 Duck Typing
	27.4 Protocols
	27.5 An Protocol Example
	27.6 The Context Manager Protocol
	27.7 Polymorphism
	27.8 The Descriptor Protocol
	27.9 Online Resources
	27.10 Exercises

	28 Monkey Patching and Attribute Lookup
	28.1 Introduction
	28.2 What Is Monkey Patching?
	28.2.1 How Does Monkey Patching Work?
	28.2.2 Monkey Patching Example
	28.2.3 The Self Parameter
	28.2.4 Adding New Data to a Class

	28.3 Attribute Lookup
	28.4 Handling Unknown Attribute Access
	28.5 Handling Unknown Method Invocations
	28.6 Intercepting Attribute Lookup
	28.7 Intercepting Setting an Attribute
	28.8 Online Resources
	28.9 Exercises

	29 Decorators
	29.1 Introduction
	29.2 What Are Decorators?
	29.3 Defining a Decorator
	29.4 Using Decorators
	29.5 Functions with Parameters
	29.6 Stacked Decorators
	29.7 Parameterised Decorators
	29.8 Method Decorators
	29.8.1 Methods Without Parameters
	29.8.2 Methods with Parameters

	29.9 Class Decorators
	29.10 When Is a Decorator Executed?
	29.11 Built-in Decorators
	29.12 FuncTools Wrap
	29.13 Online Resources
	29.14 Book Reference
	29.15 Exercises

	30 Iterables, Iterators, Generators and Coroutines
	30.1 Introduction
	30.2 Iteration
	30.2.1 Iterables
	30.2.2 Iterators
	30.2.3 The Iteration Related Methods
	30.2.4 The Iterable Evens Class
	30.2.5 Using the Evens Class with a for Loop

	30.3 The Itertools Module
	30.4 Generators
	30.4.1 Defining a Generator Function
	30.4.2 Using a Generator Function in a for Loop
	30.4.3 When Do the Yield Statements Execute?
	30.4.4 An Even Number Generator
	30.4.5 Nesting Generator Functions
	30.4.6 Using Generators Outside a for Loop

	30.5 Coroutines
	30.6 Online Resources
	30.7 Exercises

	31 Collections, Tuples and Lists
	31.1 Introduction
	31.2 Python Collection Types
	31.3 Tuples
	31.3.1 Creating Tuples
	31.3.2 The tuple() Constructor Function
	31.3.3 Accessing Elements of a Tuple
	31.3.4 Creating New Tuples from Existing Tuples
	31.3.5 Tuples Can Hold Different Types
	31.3.6 Iterating Over Tuples
	31.3.7 Tuple Related Functions
	31.3.8 Checking if an Element Exists
	31.3.9 Nested Tuples
	31.3.10 Things You Can’t Do with Tuples

	31.4 Lists
	31.4.1 Creating Lists
	31.4.2 List Constructor Function
	31.4.3 Accessing Elements from a List
	31.4.4 Adding to a List
	31.4.5 Inserting into a List
	31.4.6 List Concatenation
	31.4.7 Removing from a List
	31.4.8 The pop() Method
	31.4.9 Deleting from a List
	31.4.10 List Methods

	31.5 Online Resources
	31.6 Exercises

	32 Sets
	32.1 Introduction
	32.2 Creating a Set
	32.3 The Set() Constructor Function
	32.4 Accessing Elements in a Set
	32.5 Working with Sets
	32.5.1 Checking for Presence of an Element
	32.5.2 Adding Items to a Set
	32.5.3 Changing Items in a Set
	32.5.4 Obtaining the Length of a Set
	32.5.5 Obtaining the Max and Min Values in a Set
	32.5.6 Removing an Item
	32.5.7 Nesting Sets

	32.6 Set Operations
	32.7 Set Methods
	32.8 Online Resources
	32.9 Exercises

	33 Dictionaries
	33.1 Introduction
	33.2 Creating a Dictionary
	33.2.1 The dict() Constructor Function

	33.3 Working with Dictionaries
	33.3.1 Accessing Items via Keys
	33.3.2 Adding a New Entry
	33.3.3 Changing a Keys Value
	33.3.4 Removing an Entry
	33.3.5 Iterating over Keys
	33.3.6 Values, Keys and Items
	33.3.7 Checking Key Membership
	33.3.8 Obtaining the Length of a Dictionary
	33.3.9 Nesting Dictionaries

	33.4 A Note on Dictionary Key Objects
	33.5 Dictionary Methods
	33.6 Online Resources
	33.7 Exercises

	34 Collection Related Modules
	34.1 Introduction
	34.2 List Comprehension
	34.3 The Collections Module
	34.4 The Itertools Module
	34.5 Online Resources
	34.6 Exercises

	35 ADTs, Queues and Stacks
	35.1 Introduction
	35.2 Abstract Data Types
	35.3 Data Structures
	35.4 Queues
	35.4.1 Python List as a Queue
	35.4.2 Defining a Queue Class

	35.5 Stacks
	35.5.1 Python List as a Stack

	35.6 Online Resources
	35.7 Exercises

	36 Map, Filter and Reduce
	36.1 Introduction
	36.2 Filter
	36.3 Map
	36.4 Reduce
	36.5 Online Resources
	36.6 Exercises

	37 TicTacToe Game
	37.1 Introduction
	37.2 Classes in the Game
	37.3 Counter Class
	37.4 Move Class
	37.5 The Player Class
	37.6 The HumanPlayer Class
	37.7 The ComputerPlayer Class
	37.8 The Board Class
	37.9 The Game Class
	37.10 Running the Game

	38 Correction to: Functions in Python
	Correction to: Chapter 11 in: J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics in Computer Science, https://doi.org/10.1007/978-3-030-20290-3_11

