TOWARDS A DISCIPLINE OF EXPERIMENTAL
ALGORITHMICS

BERNARD M.E. MORET

ABSTRACT. The last 20 years have seen enormous progress in the design of al-
gorithms, but very little of it has been put into practice, even within academia;
indeed, the gap between theory and practice has continuously widened over
these years. Moreover, many of the recently developed algorithms are very
hard to characterize theoretically and, as initially described, suffer from large
running-time coefficients. Thus the algorithms and data structures community
needs to return to implementation as the standard of value; we call such an
approach Ezperimental Algorithmics.

Experimental Algorithmics studies algorithms and data structures by join-
ing experimental studies with the more traditional theoretical analyses. Ex-
perimentation with algorithms and data structures is proving indispensable
in the assessment of heuristics for hard problems, in the design of test cases,
in the characterization of asymptotic behavior of complex algorithms, in the
comparison of competing designs for tractable problems, in the formulation
of new conjectures, and in the evaluation of optimization criteria in human-
related activities. Experimentation is also the key to the transfer of research
results from paper to production code, providing as it does a base of well-tested
implementations.

We present our views on what is a suitable problem to investigate with this
approach, what is a suitable experimental setup, what lessons can be learned
from the empirical sciences, and what pitfalls await the experimentalist who
fails to heed these lessons. We illustrate our points with examples drawn
from our research on solutions for NP-hard problems and on comparisons of
algorithms for tractable problems, as well as from our experience as reviewer
and editor.

1. INTRODUCTION

Implementation, although perhaps not rigorous experimentation, was character-
istic of early work in algorithms and data structures. It is only recently, however,
that the algorithms community has shown signs of returning to implementation and
testing as an integral part of algorithm development. Publication outlets remain
rare: the ORSA J. Computing and Math. Programming have published several
strong papers in the area, but the standard journals in the algorithm community,
such as the J. Algorithms, J. ACM, SIAM J. Computing, and Algorithmica, as well
as the more specialized journals in computational geometry and other areas, have
been slow to publish experimental studies. The new on-line ACM J. Experimental
Algorithmics should help, as will two new conferences targeted at experimental work
in algorithms, the Workshop on Algorithm Engineering (WAE) and the Workshop
on Algorithm Engineering and Ezperiments (ALENEX). Support for an experimen-
tal component in algorithms research is growing among funding agencies as well.

The author’s work on various related projects has been supported for the last six years by the
Office of Naval Research.

2 BERNARD M.E. MORET

We may thus be poised for a revival of experimentation as a research methodology
in the development of algorithms and data structures, a most welcome prospect,
but also one that should prompt some reflection.

As we contemplate approaches based on (or at least making extensive use of)
experimentation, we may want to reflect on the meanings of the two adjectives used
to denote such approaches. According to the Collegiate Webster, these adjectives
are defined as follows.

e experimental: 1. relating to or based on experience; 2. founded upon
experiments; 3. serving the ends of experimentation; 4. tentative.

e empirical: 1. relying on experience or observation alone; 2. based on ex-
perience or observation; 3. capable of being verified or disproved through
experience or observation.

Certainly, part (2) of the definition of “experimental” and parts (2) and (3) of the
definition of ‘empirical” capture much of what most of us would agree is essential in
the use of experiments. Unfortunately, both words have problematic connotations:
the “tentative” meaning of “experimental” and the exclusion of theory in the first
definition of “empirical.” An empirical approach may be perfectly suitable for a
natural science, where the final arbiter is nature as revealed to us through experi-
ments and measurements, but it is incomplete in the artificial and mathematically
precise world of computing, where the behavior of an algorithm or data structure
can, at least in principle, be characterized entirely from first principles. Natural
scientists run experiments because they have no other way of learning from nature,
but algorithm designers, again in principle, learn nothing from an experiment that
they did not build in: the results are, by definition, completely predictable. In
other words, we do not so much conduct experiments as use the computer to calcu-
late numerical values for our predictions. Much the same is done by computational
scientists in physics, chemistry, and biology, but their aim is to compare the pre-
dictions given by a model with the measurements made from nature; in contrast,
algorithm designers are measuring the actual algorithm, not a model, and the re-
sults are not assessed against some gold standard (nature), but simply reported as
such or compared with other “experiments” of the same type. (Of course, we do
also build models and gauge them against the real system; typically, our models
are mathematical functions that characterize some aspect of the algorithm, such as
its asymptotic running time.)

Why this epistemological digression? Because it points to the necessity of both
learning from the natural sciences, where experimentation has been used for cen-
turies and where the methodology known as “the scientific method” has been devel-
oped to optimize the use of experiments, and of staying aware of the fundamental
difference between the natural sciences and computer science, since the goal of ex-
perimentation in algorithmic work differs fundamentally from that in the natural
sciences.

2. BACKGROUND AND MOTIVATION

For over thirty years, the standard mode of theoretical analysis (and thus also
the main tool used to guide new designs) has been the asymptotic analysis (“big
Oh” and “big Theta”) of worst-case behavior (running time or quality of solution).
The asymptotic mode eliminates potentially confusing behavior on small instances
due to start-up costs and clearly shows the growth rate of the running time. The

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 3

worst-case mode gives us clear bounds and also simplifies the analysis by removing
the need for any assumptions about the data. The resulting presentation is easy
to communicate and reasonably well understood, as well as machine-independent.
However, we pay a heavy price for these gains:

e The range of values in which the asymptotic behavior is clearly exhibited
(“asymptopia,” as it has been named by many authors) may include only
instance sizes that are well beyond any conceivable application. A typical
example is the algorithm of Fredman and Tarjan for minimum spanning trees.
Its asymptotic worst-case running time is O(|E|5(| E|, |V |))—where §(m,n) is
given by min{i | log("’) n < m/n}, so that, in particular, 3(n,n) is just log* n.
This bound is much better for dense graphs than that of Prim’s algorithm,
which is O(|E|log|V]), but experimentation [20] verifies that the crossover
point occurs for dense graphs with well over a million vertices beyond the
size of any reasonable data set.

e The worst-case behavior may be restricted to a very small subset of instances
and thus not at all characteristic of instances encountered in practice. A
classic example here is the running time of the simplex method for linear
programming; for over thirty years, it has been known that the worst-case
behavior of this method is exponential and also that its practical running
time appears bounded by a low-degree polynomial [1].

e The constants hidden in the asymptotic analysis may prevent any practical
implementation from running to completion, even if the growth rate is quite
reasonable. An extreme example of this problem is provided by the theory of
graph minors: Robertson and Seymour (see [24]) gave a cubic-time algorithm
to determine whether a given graph is a minor of another, but the propor-
tionality constants are gigantic—on the order of 10'°°—and have not been
substantially lowered yet, making the algorithm entirely impractical.

e Even in the absence of any of these problems, deriving tight asymptotic
bounds may be very difficult. Almost all interesting approximation algo-
rithms for NP-hard problems suffer from this drawback: by considering a
large number of parameters and often a substantial slice of recent history,
they create a complex state space which is very hard to analyze with existing
methods, whether to bound the running time or to estimate the quality of
the returned solution.

These are the most obvious drawbacks. A more insidious drawback, yet one that
could prove much more damaging in the long term, is that worst-case asymptotic
analysis tends to promote the development of “paper-and-pencil” algorithms, that
is, algorithms that never get implemented. This problem compounds itself quickly,
as further developments rely on earlier ones, with the result that many of the most
interesting algorithms published over the last five years rely on several layers of
complex, unimplemented algorithms and data structures. In order to implement one
of these recent algorithms, a computer scientist would face the daunting prospect
of developing implementations for all successive layers. Moreover, the “paper-and-
pencil” algorithms often ignore issues critical in making implementations efficient
(from elementary ideas such as the use of sentinels to more elaborate ones such as
the use of “sacks” in sophisticated priority queues [20]); the implementer will have
to resolve these issues “on the fly,” possibly with very poor results.

4 BERNARD M.E. MORET

What can we do to improve this situation? There is no reason to abandon asymp-
totic worst-case analysis: it has served the community very well for over thirty years
and led to major algorithmic advances. But there is a definite need to supplement
it with experimentation, which implies that algorithms should be implemented,
not just designed. Indeed, many algorithms are quite difficult to implement, in
which case the theoretician needs to help the practitioner, because the practitioner
has little chance of completing a successful implementation independently. Many
examples of such can be found in computational geometry: Chazelle’s linear-time
simplicity testing, Chazelle’s convex decomposition algorithm, and Chang and Yap’s
“potato-peeling” algorithm all are very intricate and remain to my knowledge
unimplemented. But the practitioner is not the only one who stands to benefit
from implementation: often an implementation forces the theoretician to face issues
glossed over in the high-level design phase. Resolving these issues may bring about
a deeper understanding of the algorithm and a resulting simplification or more
modestly may lead the theoretician to new conjectures. Major theoretical break-
throughs, such as Chazelle’s linear-time simplicity test or Robertson and Seymour’s
polynomial-time minor test, are their own justification, but many incremental re-
sults should be judged on more practical grounds: do they lead to better, faster,
more robust implementations? Finally, experimentation should also test the very
goals of algorithm design: too many theoreticians spend time solving small puz-
zles of little importance to anyone. Any type of scientific visualization, including
many that have seen considerable efforts in algorithm design, such as automated
map labeling and graph drawing, provides an obvious example; in the case of graph
drawing, there would be little reason to spend years developing algorithms that
draw graphs with a minimum number of crossings, for instance, if we did not have
empirical evidence (see, for instance, [22]) that such drawings are more easily in-
terpreted by humans than drawings with large numbers of crossings.

3. MODES OF EMPIRICAL ASSESSMENT

We can classify modes of empirical assessment into a number of non-exclusive
categories:

e Checking for accuracy or correctness in extreme cases (e.g., standardized test
suites for numerical computing).

e Measuring the running time of exact algorithms on real-world instances of
NP-hard problems.

e Assessing the quality of heuristics for the approximate solution of NP-hard
problems (and, incidentally, generating hard instances).

e Comparing the actual performance of competing algorithms for tractable
problems.

e Discovering the speed-up achieved by parallel algorithms on real machines.

e Investigating and refining optimization criteria directed at human use.

e Testing the quality and robustness of simulations, of optimization strategies
for complex systems, etc.

The first category has reached a high level of maturity in numerical computing,
where standard test suites are used to assess the quality of new numerical codes.
Similarly, the operations research community has developed a number of test cases
for linear program solvers. We have no comparable emphasis to date in combinato-
rial and geometric computing. The last category is the target of large efforts within

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 5

the Department of Defense, whose increasing reliance on modeling and simulation
has placed it at the forefront of a movement to develop validation and verification
tools; the algorithm community can help by providing certification levels for the
various data structures and optimization algorithms embedded within large simu-
lation systems. Studying speed-ups in parallel algorithms remains for now a rather
specialized endeavor, mostly because of the dedicated nature of software (which
typically cannot be run on another machine without major performance losses)
and because of our attending lack of a good model of parallel computation. As to
the study of optimization criteria directed at human use i.e., the assessment of
their value to human users, this is a relatively new area motivated in part by the
renewed attention being paid to human-computer interaction. We discuss the other
three categories, which have seen the bulk of research to date, in some detail below.

3.1. Assessment of Heuristics and Generation of Hard Instances. Here the
goal is to measure the performance of heuristics on real and artificial instances and
to improve the theoretical understanding of the problem, presumably with the aim
of producing yet better heuristics or proving that current heuristics are optimal.
By performance is implied both the running time and the quality of the solution
produced.

Since the behavior of heuristics is very difficult to characterize analytically, exper-
imental studies have been the rule; the Operations Research community first gave
some guidelines for experimentation with integer programming problems (see [1],
Chapter 18). The first large-scale combinatorial study to include both real-world
and generated instances was probably our work on the minimum test set prob-
lem [19], but other large-scale studies were published in the same time frame, most
notably the classic and exemplary study of simulated annealing by David Johnson’s
group [8, 9]. The Second DIMACS Computational Challenge [11] was devoted to
satisfiability, graph coloring, and clique problems and thus saw a large collection
of results in this area. Proceedings of the ACM/SIAM Symposium on Discrete
Algorithms (SODA) have included a few such studies for each of the last few years;
an outstanding recent example is the study of cut algorithms by Chekuri et al. [3].
The Traveling Salesperson problem has seen large numbers of experimental stud-
ies (including the well publicized study of Jon Bentley [2]), made possible in part
by the development of a library of test cases [23]. Graph coloring, whether in its
NP-hard version of chromatic number determination or in its much easier (yet still
challenging) version of planar graph coloring, has seen much work as well; the sec-
ond study of simulated annealing conducted by Johnson’s group [8] discussed many
facets of the problem, while Morgenstern and Shapiro [21] provided a detailed study
of algorithms to color planar graphs.

3.2. Assessment of Competing Algorithms and Data Structures for Tractable
Problems. The goal here is to measure the actual performance of competing algo-
rithms for well-solved problems. This is fairly new work in combinatorial algorithms
and data structures, but common in Operations Research; early (1960s) work in
data structures typically included code and examples, but no systematic study.
More recent and comprehensive work began with Jones’ comparison of data struc-
tures for priority queues [12] and Stasko and Vitter’s combination of analytical
and experimental work in the study of pairing heaps [25]. The first experimental
study on a large scale was that of Moret and Shapiro on sorting algorithms [18]
(Chapter 8), followed by that of the same authors on algorithms for constructing

6 BERNARD M.E. MORET

minimum spanning trees [18, 20]. In 1991, Johnson and others initiated the very
successful DIMACS Computational Challenges, the first of which [10] focused on
network flow and shortest path algorithms, indirectly giving rise to two modern,
thorough studies, by Cherkassky et al. on shortest paths [4] and by Cherkassky et
al. on the implementation of the push-relabel method for network flows [5]. The DI-
MACS Computational Challenges (the fifth, in 1996, focused on another tractable
problem, priority queues and point location data structures) have served to high-
light work in the area, to establish common data formats (particularly formats for
graphs and networks), and to set up the first tailored test suites for a host of prob-
lems. Recent conferences (such as the Workshop on Algorithm Engineering and the
Workshop on Algorithm Enginering and Experiments') have emphasized the need
to develop libraries of robust, well-tested implementations of the basic discrete and
combinatorial algorithms, a task that only the LEDA project [17] has successfully
undertaken to date.

4. WORTHWHILE PROBLEMS

In view of the preceding, what should researchers in the area be working on?
We propose below a partial list and briefly discuss the reasons for our choices.

4.1. Testing and improving algorithms for hard problems. Understanding
how a heuristic works to cut down on computational time is generally too difficult
to achieve through formal derivations; much the same goes for bounding the quality
of approximations obtained with most heuristics. Yet both aspects are crucial in
evaluating performance and in helping us design better heuristics.

In the same vein, understanding when an exact algorithm runs quickly is gen-
erally too difficult for formal methods; experimentation can help us assess its per-
formance on real-world instances (a crucial point) and develop at least ad hoc
boundaries between instances where it runs fast and instances that exhibit the
exponential worst-case behavior.

4.2. Comparing existing algorithms and data structures for tractable
problems. Our task is somewhat easier with algorithms for tractable problems
than with heuristics for intractable problems, yet characterizing the behavior of
either on real-world instances is generally very hard simply because we often lack
the crucial instance parameters with which to correlate running times. Experimen-
tation can quickly pinpoint good and bad implementations and whether theoretical
advantages are retained in practice. In the process, newer insights may be gleaned
that might enable a refinement or simplification of the algorithm. Experimentation
can also enable us to determine the actual constants in the running time analy-
sis; determining such constants beforehand is quite difficult (see [7] for a possible
methodology), but a simple regression analysis from the data can gives us quite
accurate values.

4.3. Supporting and refining conjectures. Any theoretician knows the pangs
of committing to a research question without being too sure of the outcome and
of attempting to prove a statement that might not even be true. Having a means
of testing a conjecture over a range of instances might, in the best case, set one’s

ISee the front page of the ACM J. Ezperimental Algorithmics at www.jea.acm.org for links
to these conferences.

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 7

mind at rest and, in the worst case, avoid a lot of wasted work. More importantly,
good experiments are a rich source of new conjectures and theorems.

4.4. Developing libraries of basic algorithms and data structures. Anyone
contemplating the coding of a library module for some data structure or basic
algorithm must take reasonable precautions to ensure that her implementation will
be as efficient as possible and to document conditions under which it will perform
well or poorly.

4.5. Developing tools to facilitate the design and analysis of algorithms.
Under this category come statistical and graphical tools to analyze experiments,
but also animation tools to visualize the progress of an experiment. We should not
underestimate the value of experimentation with algorithms as a discovery tool; in
order to make such experimentation even more valuable, animation and analysis
tools are urgently needed. Algorithm animations have been shown to communicate
a large amount of information in a very succinct manner but are currently very
hard to develop for lack of suitable tools.

4.6. Conducting human experiments on the value of optimization for
data presentation. The pure theoretician has only one answer when asked why
(s)he worked on a problem: because it was there (and, incidentally, because it
was attractive). But it is fatally easy to generate volumes of intriguing, unsolved
optimization problems; before committing scarce resources to their solution, it be-
hooves us to evaluate their importance and relevance as well as we can. In the
case of various facilities problems, economic analyses may be available that point
out the most important factors; in the case of human interaction, we may have to
conduct experiments to assess the worth of various criteria.

5. EXPERIMENTAL SETUP

How should an experimental study be conducted, once a topic has been identi-
fied? Surely the most important criterion to keep in mind is that an experiment is
run either as a discovery tool or as a means to answer specific questions. Experi-
ments as explorations are common to all endeavors, in computing, in the sciences,
and indeed in any human activity; the setup is essentially arbitrary in particu-
lar it should not be allowed to limit one’s creativity. So we shall focus instead
on experiments as means to answer specific questions—the essence of the scientific
method used in all physical sciences. In this methodology, we begin by formulating
a hypothesis or a question, then set about gathering data to test or answer it, while
ensuring reproducibility and significance. In terms of experiments with algorithms,
these characteristics give rise to the following procedural rules:

e Begin the work with a clear set of objectives: which questions will you be
asking, which statements will you be testing?

e Once the experimental design is complete, simply gather data. (No alterations
are to be made until all data have been gathered, so as to avoid bias or drift.)

e Analyze the data to answer only the original objectives. (Later, consider how
a new cycle of experiments can improve your understanding.)

However, as we noted earlier, the experiments do little more than predict their
own outcomes there is no final arbiter as in the natural sciences. Thus we should
beware of a number of potential pitfalls, including various biases due to:

8 BERNARD M.E. MORET

e The choice of machine (caching, addressing, data movement), of language
(register manipulation, built-in types), or of compiler (quality of optimization
and code generation).

e The quality of the coding (consistency and sophistication of programmers).

e The selection or generation of instances (we must use sufficient size and variety
to ensure significance).

e The method of analysis (to minimize the impact of choice of machine)

Caching, in particular, may have very strong effects when comparing efficient, al-
gorithms. For instance, in our study of MST algorithms, we observed 3:1 ratios
of running time depending on the order in which the adjacency lists were stored.
Recent studies by LaMarca and Ladner [14, 15] have quantified many aspects of
caching and offers suggestions on how to work around caching effects.

Other typical pitfalls that arise in experimental work with algorithms include

e Uninteresting work: comparing programming languages or specific platforms,
in particular unusual ones; comparing algorithms with widely different be-
havior (linear and quadratic, say); etc.

e Bad setup: testing up to some fixed running time or space without verifying
whether the asymptotic behavior has manifested; testing too few instances;
using rough code without any attempt at optimization and measuring running
times; using “found code” without any documentation (a temptation these
days on the net); ignoring existing test suites; ignoring existing libraries and
using only sui generis code; and any other introduction of possible confound-
ing factors.

e Bad analysis or presentation: discarding data that do not fit without any
explanation or even warning; presenting all of the data without analysis; using
comparisons to undefined “standards” (e.g., to the system sort routine).

Most, of these can be avoided with the type of routine care used by experimentalists
in any of the natural sciences; however, we should point out that confounding factors
can assume rather subtle forms, as any cursory study of public health will attest.
Computer systems have not yet reached the level of complexity of human behavior,
but the caution remains valid: it pays to go over the design of an experimental
study a few times just to assess its sensitivity to potential confounding factors.

6. WHAT TO MEASURE?

One of the key elements of an experiment is the metrology. What do we measure,
how do we measure it, and how do we ensure that measurements do not interfere
with the experiments? If there is one universal piece of advice in this area, it
is always look beyond the obvious measures! Obvious measures may include the
value of the solution (for approximation algorithms), the running time (for exact
algorithms and for algorithms for well-solved problems), the running space, etc.
These measures are indeed useful, but a good understanding of the algorithm is
unlikely to emerge from such global quantities. We also need structural measures
of various types (number of iterations; number of calls to a crucial subroutine;
etc.), if only to serve as a scale for determining such things as convergence rates.
Knuth [13] has advocated the use of mems, or memory references, as a structural
substitute for running time. Other authors have used the number of comparisons,
the number of data moves (both classical measures for sorting algorithms), the
number of assignments, etc.

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 9

In our own experience, we have found that there is no substitute, when evaluating
competing algorithms for tractable problems, for measuring the actual running
time; indeed, time and mems measurements, to take one example, may lead one to
entirely different conclusions. However, the obvious measures are often the hardest
to interpret as well as the hardest to measure accurately and reproducibly. Running
time, for instance, is influenced by caching, which in turn is affected by any other
running processes and thus effectively not reproducible exactly. In the case of
competing algorithms for tractable problems, the running time is often extremely
low (we can obtain a minimum spanning tree for a graph of a million vertices
in a second or so on a typical desktop machine), so that the granularity of the
system clock may create problems—this is a case where it pays to repeat the entire
algorithm many times over on the same data, in order to obtain running times
with at least two digits of precision. In a similar vein, measuring the quality of a
solution can be quite difficult, due to the fact that the optimal solution can be very
closely approached on instances of small to medium size or due to the fact that the
solution is essentially a zero-one decision (as in determining the chromatic index of
a graph or the primality of a number), where the appropriate measure is statistical
in nature (how often is the correct answer returned?) and thus requires a very large
number of test instances.

7. How TO PRESENT AND ANALYZE THE DATA

Perhaps the first requirement in data presentation is to ensure reproducibility
by other researchers: we need to describe in detail what instances were used (how
they were generated or collected), what measurements were collected and how,
and, preferably, where the reader can find all of this material on-line. The second
requirement is rather obvious, but often ignored for all that: we cannot just discard
what appear to be anomalies, at least not unless we can explain their presence; an
anomaly without an explanation is not an error, but an indicator that something
unusual (and possibly interesting) is going on. We have already mentioned several
times that every effort should be made to minimize the influence of the environment:
platform, coding, compiling, paging, caching, etc., through cross-checking across
multiple platforms and environments, through the use of normalization routines,
and through environmental precautions (such as running on otherwise quiescent
machines).

The data should then be analyzed with suitable statistical methods. Since at-
taining levels of statistical significance may be quite difficult in the large state spaces
we commonly use, various techniques to make the best use of available experiments
should be applied (see McGeoch’s excellent survey [16] for a discussion of several
such methods). Cross-checking the measurements with any available theoretical
results, especially those that attempt to predict the actual running time (such as
the “equivalent code fragments” approach of [7]), is crucial; any serious discrepancy
needs to be investigated.

Finally, the data need to be presented to the readers in a form that humans can
easily process—not in tabular form, not as raw plots with multiple crossing curves,
but with suitable scaling and normalization and with the use of good graphics, col-
ors, etc. Animations can convey enormous amounts of information very succinctly,
so consider providing such if the work needed to produce them is not excessive.

10 BERNARD M.E. MORET

8. ILLUSTRATION: ALGORITHMS FOR CONSTRUCTING A MINIMUM SPANNING
TREE

We shall not repeat here the results given in [20], but rather highlight the prob-
lems encountered during the study and some of the solutions we found to be effec-
tive. We studied MST algorithms because of their practical importance, because
instances encountered in practice can be very large, and because the implementer
faces a very large number of algorithmic choices, each with its own choice of sup-
porting data structures. In 1989, when we started the study, we had at least the
following choice of algorithms: Kruskal’s (with a priority queue, with prior sorting,
or with sorting on demand), Prim’s (with any of a large number of priority queues,
from binary heaps to rank- and run-relaxed heaps), Cheriton and Tarjan’s (with and
without the lazy variation) Fredman and Tarjan’s, Gabow et al.’s, and the entirely
different algorithm of Fredman and Willard; to this list we could now add newer
algorithms by Klein and Tarjan, by Karger, and by Chazelle. Prim’s algorithm,
the most commonly used (for good reason, as our study demonstrated), could in
turn be implemented with binary heaps, d-heaps, pairing heaps, leftist heaps, skew
heaps, binomial heaps, or splay trees, or with more sophisticated structures such as
Fibonacci heaps, rank-relaxed heaps, or run-relaxed heaps, in each case with heaps
built dynamically or pre-built statically before starting the algorithm. Few of these
choices had been implemented at that time.

We ran an experimental study using three different platforms (two CISC and one
RISC) and multiple languages and compilers, but with one programmer writing all
of the code, so as to keep the level of coding consistent throughout. We explored low-
level decisions (pointers vs. array indices, data moves vs. indirection, etc.) before
committing to specific implementations. We used five different graph families in
the tests and also constructed specific worst-case families with adversaries; all of
our families included very large graphs (up to a million vertices and over a million
edges). We ran at least 20 instances at each size, checking independent series of
experiments for consistency in the results. Finally, we took precautions from the
start to minimize the effects of paging (easy) and of caching (hard).

Our data collection and analysis had four goals: (i) to eliminate any residual
effects of caching and any other machine dependencies; (ii) to normalize running
times across machines; (iii) to gauge the influence of lower-order terms and to ver-
ify the asymptotic behavior; and (iv) to visualize quickly the relative efficiency of
each algorithm for each type and size of graph. We realized all four goals at once
by the simple strategy of normalizing, independently on each platform, the run-
ning times measured for the various MST algorithms by the running times of a
simple, linear-time procedure with roughly similar memory reference patterns—in
our case a procedure that counted the number of edges of the graph by traversing
the adjacency lists. The similar memory addressing patterns canceled out most of
the caching effects; the similar work in dereferencing pointers canceled out most of
the CISC machines peculiarities; and the direct comparison to the (then unattain-
able) lower bound of a linear-time procedure immediately showed the asymptotic
behavior and highlighted the relative efficiency of each algorithm.

Early in the implementation phase, we realized that Fibonacci heaps and relaxed
heaps were not competitive. We then took a suggestion made in the original paper
of Driscoll et al. [6] for implementing relaxed heaps: to group nodes into larger
units so that changes in key would most often be resolved within a unit and not

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 11

require restructuring the heap. We then decided to implement this idea, which we
called sacks, for other types of heaps; it turned out that it was a crucial decision
for Fibonacci heaps, which became much more competitive with the addition of
sacks a new result that could only have come about through implementation.

At the conclusion of our work, we had comforting findings for the practitioner,
if not for the theoretician: the fastest algorithm by far was Prim’s, implemented
with pairing heaps or simple binary heaps. The more sophisticated implementa-
tions could not pay off for reasonable graph sizes, nor could the more sophisticated
algorithms. But we also had a sobering report: our last implementations of Prim’s
with Fibonacci heaps were nearly ten times faster than our first! Thus even ex-
perienced programmers who understand the details of their data structures and
algorithms can refine implementations to the point of evolving entirely new conclu-
sions. In our case, we could conclude that Prim’s algorithm with Fibonacci heaps,
which had appeared entirely and hopelessly impractical at first, might in fact be-
come competitive at the extreme end of sizes for dense graphs. The somewhat
obvious conclusion for theoreticians was that polylogarithmic factors are unlikely
to be worth much effort: the difference between |E|log |V| and |E| is not sufficient
to make up for significant differences in leading coefficients.

This study, along with an earlier study on sorting algorithms, enables us to
draw some conclusions regarding experimental studies of algorithms for well-solved
problems:

e Multi-machine, multi-compiler trials are needed. The preference of one ar-
chitecture for data moves over indirection, for instance, could easily mask
other effects. The first DIMACS challenge proposed some simple measures to
assess the effect of compilers and code optimization; these measures form a
good starting point, but will often need to be supplemented.

e A very large range of sizes is indispensable. Since the algorithms compared
are all efficient and since sophisticated algorithms tend to demonstrate their
asymptotic behavior for larger sizes than simpler algorithms, we should run
our tests up to the largest sizes that can be accommodated on our platforms,
even if these sizes may exceed any likely to be encountered in practice. A
large range of sizes will also help visualizing the asymptotic behavior and
may uncover unexpected problems attributable to caching.

e Extreme care must be used when generating instances. This problem is partic-
ularly acute when instances are defined by multiple parameters, as in graphs
and networks: large numbers of different families can be defined, with poten-
tially very different behaviors. We should ensure that realistic instances are
being generated, that large instances generated with pseudo-random num-
ber generators do not present artificial patterns caused by problems with the
generator, and also that some worst-case families are included in the study.

e Normalization by a suitable baseline routine is very successful in smoothing
out variations in architecture and caching, as well as in highlighting the as-
ymptotic behavior and relative efficiency of the competing algorithms. When-
ever our competing algorithms are closely tied, data presentation is of crucial
importance.

12

BERNARD M.E. MORET

9. CONCLUSIONS

Experimentation should become once again the “gold standard” in algorithm

design, for several compelling reasons:

e Experimentation can lead to the establishment of well tested and well docu-
mented libraries of routines and instances.

e Experimentation can bridge the gap between practitioner and theoretician.

e Experimentation can help theoreticians develop new conjectures and new al-
gorithms, as well as a deeper understanding (and thus perhaps a cleaner
version) of existing algorithms.

e Experimentation can point out areas where additional research is most needed.

However, experimentation in algorithm design needs some methodological develop-
ment. While it can and, to a large extent, should follow guidelines from the physical
sciences, its different setting (a purely artificial one in which the experimental pro-
cedure and the subject under test are unavoidably mixed) requires at least extra
precautions. Fortunately, a number of authors have blazed what appear to be a
good trail to follow; hallmarks of good experiments include:

e clearly defined goals;

e large-scale testing, both in terms of a range of instance sizes and in terms of
the number of instances used at each size;

e a mix of real-world instances and generated instances, including any signifi-
cant test suites in existence;

e clearly articulated parameters, including those defining artificial instances,
those governing the collection of data, and those establishing the test envi-
ronment (machines, compilers, etc.);

e statistical analysis of the results and attempts at relating them to the nature
of the algorithms and test instances; and

e public availability of instances and instance generators to allow other re-
searchers to run their algorithms on the same instances and, preferably, public
availability of the code for the algorithms themselves.

REFERENCES

] Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. Network Flows. Prentice Hall, NJ, 1993.

[2] Bentley, J.L.. Experiments on geometric traveling salesman heuristics. AT&T Bell Laborato-

ries, CS TR 151, 1990.

[3] Chekuri, C.S., Goldberg, A.V., Karger, D.R., Levine, M.S., and Stein, C., “Experimental

study of minimum cut algorithms,” Proc. 8th ACM/SIAM Symp. on Discrete Algs. (1997),
324-333.

[4] Cherkassky, B.V., Goldberg, A.V., and Radzik, T., “Shortest paths algorithms: theory and

experimental evaluation,” Math. Progr. 73 (1996), 129-174.

[5] Cherkassky, B.V., and Goldberg, A.V., “On implementing the push-relabel method for the

maximum flow problem,” Algorithmica 19 (1997), 390-410.

[6] Driscoll, J.R., Gabow, H.N., Shrairman, R., and Tarjan, R.E., “Relaxed heaps: an alternative

to Fibonacci heaps with applications to parallel computation,” Commun. ACM 11 (1988),
1343 1354.

[7] Finkler, U., and Mehlhorn, K., “Runtime prediction of real programs on real machines,”

Proc. 8th ACM/SIAM Symp. on Discrete Algs. (1997), 380-389.

[8] Johnson, D.S., Aragon, C.R., McGeoch, L.A., and Schevon, C., “Optimization by simu-

”»

lated annealing: an experimental evaluation. 1. Graph partitioning,
37 (1989), 865 892.

Operations Research

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 13

[9] Johnson, D.S., Aragon, C.R., McGeoch, L..A.; and Schevon, C., “Optimization by simulated
annealing: an experimental evaluation. 2. Graph coloring and number partitioning,” Opera-
tions Research 39 (1991), 378-406.

[10] Johnson, D.S., and McGeoch, C.C., eds. Network Flows and Matching: First DIMACS Im-
plementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 12, 1993.

[11] Johnson, D.S., and Trick, M., eds. Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science 26, to appear.

[12] Jones, D.W., “An empirical comparison of priority queues and event-set implementations,”
Commun. ACM 29 (1986), 300-311.

[13] Knuth, D.E. The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-
Wesley, Reading Mass., 1993 (p. 460).

[14] LaMarca, A., and Ladner, R.., “The influence of caches on the performance of heaps,” ACM J.
of Experimental Algorithmics 1, Article 4 (1996), www.jea.acm.org/1996/LaMarcalnfluence.

[15] LaMarca, A., and Ladner, R., “The influence of caches on the performance of sorting,” Proc.
8th ACM/SIAM Symp. on Discrete Algs. (1997), 370 379.

[16] McGeoch, C.C., “Analysis of algorithms by simulation: variance reduction techniques and
simulation speedups,” ACM Comput. Surveys 24 (1992), 195 212.

[17] Mehlhorn, K., and Néaher, S., “LEDA, a platform for combinatorial and geometric comput-
ing,” Commun. ACM 38 (1995), 96 102.

[18] Moret, B.M.E., and H.D. Shapiro. Algorithms from P to NP, Volume I: Design and FEffi-
ciency. Benjamin-Cummings Publishing Co., Menlo Park, CA, 1991.

[19] Moret, B.M.E., and Shapiro, H.D., “On minimizing a set of tests,” SIAM J. Scientific &
Statistical Comput. 6 (1985), 983 1003.

[20] Moret, B.M.E., and Shapiro, H.D., “An empirical assessment of algorithms for constructing
a minimal spanning tree,” in Computational Support for Discrete Mathematics, N. Dean
and G. Shannon, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 15 (1994), 99 117.

[21] Morgenstern, C., and Shapiro, H.D., “Heuristics for rapidly four-coloring large planar
graphs,” Algorithmica 6 (1991), 869 891.

[22] Purchase, H.C., Cohen, R.F., and James, M.I, “An experimental study of the basis for
graph drawing algorithms,” ACM J. of Ezperimental Algorithmics 2, Article 2 (1997),
www.jea.acm.org/1997/PurchaseDrawing.

[23] Reinelt, G. The Traveling Salesman: Computational Solutions for TSP Applications. Lecture
Notes in Computer Science 840 (1994), Springer Verlag, Berlin.

[24] Robertson, N., and Seymour, P., “Graph minors a survey,” in Surveys in Combinatorics,
J. Anderson, ed., Cambridge U. Press, Cambridge, UK (1985), 153-171.

[25] Stasko, J.T., and Vitter, J.S., “Pairing heaps: experiments and analysis,” Commun. ACM
30 (1987), 234-249.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NM
87131-1836
FE-mail address: moret@cs.unm.edu

