
TOWARDS A DISCIPLINE OF EXPERIMENTALALGORITHMICSBERNARD M.E. MORETAbstra
t. The last 20 years have seen enormous progress in the design of al-gorithms, but very little of it has been put into pra
ti
e, even within a
ademia;indeed, the gap between theory and pra
ti
e has
ontinuously widened overthese years. Moreover, many of the re
ently developed algorithms are veryhard to
hara
terize theoreti
ally and, as initially des
ribed, su�er from largerunning-time
oeÆ
ients. Thus the algorithms and data stru
tures
ommunityneeds to return to implementation as the standard of value; we
all su
h anapproa
h Experimental Algorithmi
s.Experimental Algorithmi
s studies algorithms and data stru
tures by join-ing experimental studies with the more traditional theoreti
al analyses. Ex-perimentation with algorithms and data stru
tures is proving indispensablein the assessment of heuristi
s for hard problems, in the design of test
ases,in the
hara
terization of asymptoti
 behavior of
omplex algorithms, in the
omparison of
ompeting designs for tra
table problems, in the formulationof new
onje
tures, and in the evaluation of optimization
riteria in human-related a
tivities. Experimentation is also the key to the transfer of resear
hresults from paper to produ
tion
ode, providing as it does a base of well-testedimplementations.We present our views on what is a suitable problem to investigate with thisapproa
h, what is a suitable experimental setup, what lessons
an be learnedfrom the empiri
al s
ien
es, and what pitfalls await the experimentalist whofails to heed these lessons. We illustrate our points with examples drawnfrom our resear
h on solutions for NP-hard problems and on
omparisons ofalgorithms for tra
table problems, as well as from our experien
e as reviewerand editor. 1. Introdu
tionImplementation, although perhaps not rigorous experimentation, was
hara
ter-isti
 of early work in algorithms and data stru
tures. It is only re
ently, however,that the algorithms
ommunity has shown signs of returning to implementation andtesting as an integral part of algorithm development. Publi
ation outlets remainrare: the ORSA J. Computing and Math. Programming have published severalstrong papers in the area, but the standard journals in the algorithm
ommunity,su
h as the J. Algorithms, J. ACM, SIAM J. Computing, and Algorithmi
a, as wellas the more spe
ialized journals in
omputational geometry and other areas, havebeen slow to publish experimental studies. The new on-line ACM J. ExperimentalAlgorithmi
s should help, as will two new
onferen
es targeted at experimental workin algorithms, the Workshop on Algorithm Engineering (WAE) and the Workshopon Algorithm Engineering and Experiments (ALENEX). Support for an experimen-tal
omponent in algorithms resear
h is growing among funding agen
ies as well.The author's work on various related proje
ts has been supported for the last six years by theOÆ
e of Naval Resear
h. 1

2 BERNARD M.E. MORETWe may thus be poised for a revival of experimentation as a resear
h methodologyin the development of algorithms and data stru
tures, a most wel
ome prospe
t,but also one that should prompt some re
e
tion.As we
ontemplate approa
hes based on (or at least making extensive use of)experimentation, we may want to re
e
t on the meanings of the two adje
tives usedto denote su
h approa
hes. A

ording to the Collegiate Webster, these adje
tivesare de�ned as follows.� experimental: 1. relating to or based on experien
e; 2. founded uponexperiments; 3. serving the ends of experimentation; 4. tentative.� empiri
al: 1. relying on experien
e or observation alone; 2. based on ex-perien
e or observation; 3.
apable of being veri�ed or disproved throughexperien
e or observation.Certainly, part (2) of the de�nition of \experimental" and parts (2) and (3) of thede�nition of `empiri
al"
apture mu
h of what most of us would agree is essential inthe use of experiments. Unfortunately, both words have problemati

onnotations:the \tentative" meaning of \experimental" and the ex
lusion of theory in the �rstde�nition of \empiri
al." An empiri
al approa
h may be perfe
tly suitable for anatural s
ien
e, where the �nal arbiter is nature as revealed to us through experi-ments and measurements, but it is in
omplete in the arti�
ial and mathemati
allypre
ise world of
omputing, where the behavior of an algorithm or data stru
ture
an, at least in prin
iple, be
hara
terized entirely from �rst prin
iples. Naturals
ientists run experiments be
ause they have no other way of learning from nature,but algorithm designers, again in prin
iple, learn nothing from an experiment thatthey did not build in: the results are, by de�nition,
ompletely predi
table. Inother words, we do not so mu
h
ondu
t experiments as use the
omputer to
al
u-late numeri
al values for our predi
tions. Mu
h the same is done by
omputationals
ientists in physi
s,
hemistry, and biology, but their aim is to
ompare the pre-di
tions given by a model with the measurements made from nature; in
ontrast,algorithm designers are measuring the a
tual algorithm, not a model, and the re-sults are not assessed against some gold standard (nature), but simply reported assu
h or
ompared with other \experiments" of the same type. (Of
ourse, we doalso build models and gauge them against the real system; typi
ally, our modelsare mathemati
al fun
tions that
hara
terize some aspe
t of the algorithm, su
h asits asymptoti
 running time.)Why this epistemologi
al digression? Be
ause it points to the ne
essity of bothlearning from the natural s
ien
es, where experimentation has been used for
en-turies and where the methodology known as \the s
ienti�
 method" has been devel-oped to optimize the use of experiments, and of staying aware of the fundamentaldi�eren
e between the natural s
ien
es and
omputer s
ien
e, sin
e the goal of ex-perimentation in algorithmi
 work di�ers fundamentally from that in the naturals
ien
es. 2. Ba
kground and MotivationFor over thirty years, the standard mode of theoreti
al analysis (and thus alsothe main tool used to guide new designs) has been the asymptoti
 analysis (\bigOh" and \big Theta") of worst-
ase behavior (running time or quality of solution).The asymptoti
 mode eliminates potentially
onfusing behavior on small instan
esdue to start-up
osts and
learly shows the growth rate of the running time. The

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 3worst-
ase mode gives us
lear bounds and also simpli�es the analysis by removingthe need for any assumptions about the data. The resulting presentation is easyto
ommuni
ate and reasonably well understood, as well as ma
hine-independent.However, we pay a heavy pri
e for these gains:� The range of values in whi
h the asymptoti
 behavior is
learly exhibited(\asymptopia," as it has been named by many authors) may in
lude onlyinstan
e sizes that are well beyond any
on
eivable appli
ation. A typi
alexample is the algorithm of Fredman and Tarjan for minimum spanning trees.Its asymptoti
 worst-
ase running time is O(jEj�(jEj; jV j))|where �(m;n) isgiven by minfi j log(i) n � m=ng, so that, in parti
ular, �(n; n) is just log� n.This bound is mu
h better for dense graphs than that of Prim's algorithm,whi
h is O(jEj log jV j), but experimentation [20℄ veri�es that the
rossoverpoint o

urs for dense graphs with well over a million verti
es|beyond thesize of any reasonable data set.� The worst-
ase behavior may be restri
ted to a very small subset of instan
esand thus not at all
hara
teristi
 of instan
es en
ountered in pra
ti
e. A
lassi
 example here is the running time of the simplex method for linearprogramming; for over thirty years, it has been known that the worst-
asebehavior of this method is exponential and also that its pra
ti
al runningtime appears bounded by a low-degree polynomial [1℄.� The
onstants hidden in the asymptoti
 analysis may prevent any pra
ti
alimplementation from running to
ompletion, even if the growth rate is quitereasonable. An extreme example of this problem is provided by the theory ofgraph minors: Robertson and Seymour (see [24℄) gave a
ubi
-time algorithmto determine whether a given graph is a minor of another, but the propor-tionality
onstants are giganti
|on the order of 10150|and have not beensubstantially lowered yet, making the algorithm entirely impra
ti
al.� Even in the absen
e of any of these problems, deriving tight asymptoti
bounds may be very diÆ
ult. Almost all interesting approximation algo-rithms for NP-hard problems su�er from this drawba
k: by
onsidering alarge number of parameters and often a substantial sli
e of re
ent history,they
reate a
omplex state spa
e whi
h is very hard to analyze with existingmethods, whether to bound the running time or to estimate the quality ofthe returned solution.These are the most obvious drawba
ks. A more insidious drawba
k, yet one that
ould prove mu
h more damaging in the long term, is that worst-
ase asymptoti
analysis tends to promote the development of \paper-and-pen
il" algorithms, thatis, algorithms that never get implemented. This problem
ompounds itself qui
kly,as further developments rely on earlier ones, with the result that many of the mostinteresting algorithms published over the last �ve years rely on several layers of
omplex, unimplemented algorithms and data stru
tures. In order to implement oneof these re
ent algorithms, a
omputer s
ientist would fa
e the daunting prospe
tof developing implementations for all su

essive layers. Moreover, the \paper-and-pen
il" algorithms often ignore issues
riti
al in making implementations eÆ
ient(from elementary ideas su
h as the use of sentinels to more elaborate ones su
h asthe use of \sa
ks" in sophisti
ated priority queues [20℄); the implementer will haveto resolve these issues \on the
y," possibly with very poor results.

4 BERNARD M.E. MORETWhat
an we do to improve this situation? There is no reason to abandon asymp-toti
 worst-
ase analysis: it has served the
ommunity very well for over thirty yearsand led to major algorithmi
 advan
es. But there is a de�nite need to supplementit with experimentation, whi
h implies that algorithms should be implemented,not just designed. Indeed, many algorithms are quite diÆ
ult to implement, inwhi
h
ase the theoreti
ian needs to help the pra
titioner, be
ause the pra
titionerhas little
han
e of
ompleting a su

essful implementation independently. Manyexamples of su
h
an be found in
omputational geometry: Chazelle's linear-timesimpli
ity testing, Chazelle's
onvex de
omposition algorithm, and Chang and Yap's\potato-peeling" algorithm all are very intri
ate and remain|to my knowledge|unimplemented. But the pra
titioner is not the only one who stands to bene�tfrom implementation: often an implementation for
es the theoreti
ian to fa
e issuesglossed over in the high-level design phase. Resolving these issues may bring abouta deeper understanding of the algorithm and a resulting simpli�
ation or moremodestly may lead the theoreti
ian to new
onje
tures. Major theoreti
al break-throughs, su
h as Chazelle's linear-time simpli
ity test or Robertson and Seymour'spolynomial-time minor test, are their own justi�
ation, but many in
remental re-sults should be judged on more pra
ti
al grounds: do they lead to better, faster,more robust implementations? Finally, experimentation should also test the verygoals of algorithm design: too many theoreti
ians spend time solving small puz-zles of little importan
e to anyone. Any type of s
ienti�
 visualization, in
ludingmany that have seen
onsiderable e�orts in algorithm design, su
h as automatedmap labeling and graph drawing, provides an obvious example; in the
ase of graphdrawing, there would be little reason to spend years developing algorithms thatdraw graphs with a minimum number of
rossings, for instan
e, if we did not haveempiri
al eviden
e (see, for instan
e, [22℄) that su
h drawings are more easily in-terpreted by humans than drawings with large numbers of
rossings.3. Modes of Empiri
al AssessmentWe
an
lassify modes of empiri
al assessment into a number of non-ex
lusive
ategories:� Che
king for a

ura
y or
orre
tness in extreme
ases (e.g., standardized testsuites for numeri
al
omputing).� Measuring the running time of exa
t algorithms on real-world instan
es ofNP-hard problems.� Assessing the quality of heuristi
s for the approximate solution of NP-hardproblems (and, in
identally, generating hard instan
es).� Comparing the a
tual performan
e of
ompeting algorithms for tra
tableproblems.� Dis
overing the speed-up a
hieved by parallel algorithms on real ma
hines.� Investigating and re�ning optimization
riteria dire
ted at human use.� Testing the quality and robustness of simulations, of optimization strategiesfor
omplex systems, et
.The �rst
ategory has rea
hed a high level of maturity in numeri
al
omputing,where standard test suites are used to assess the quality of new numeri
al
odes.Similarly, the operations resear
h
ommunity has developed a number of test
asesfor linear program solvers. We have no
omparable emphasis to date in
ombinato-rial and geometri

omputing. The last
ategory is the target of large e�orts within

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 5the Department of Defense, whose in
reasing relian
e on modeling and simulationhas pla
ed it at the forefront of a movement to develop validation and veri�
ationtools; the algorithm
ommunity
an help by providing
erti�
ation levels for thevarious data stru
tures and optimization algorithms embedded within large simu-lation systems. Studying speed-ups in parallel algorithms remains for now a ratherspe
ialized endeavor, mostly be
ause of the dedi
ated nature of software (whi
htypi
ally
annot be run on another ma
hine without major performan
e losses)and be
ause of our attending la
k of a good model of parallel
omputation. As tothe study of optimization
riteria dire
ted at human use|i.e., the assessment oftheir value to human users, this is a relatively new area motivated in part by therenewed attention being paid to human-
omputer intera
tion. We dis
uss the otherthree
ategories, whi
h have seen the bulk of resear
h to date, in some detail below.3.1. Assessment of Heuristi
s and Generation of Hard Instan
es. Here thegoal is to measure the performan
e of heuristi
s on real and arti�
ial instan
es andto improve the theoreti
al understanding of the problem, presumably with the aimof produ
ing yet better heuristi
s or proving that
urrent heuristi
s are optimal.By performan
e is implied both the running time and the quality of the solutionprodu
ed.Sin
e the behavior of heuristi
s is very diÆ
ult to
hara
terize analyti
ally, exper-imental studies have been the rule; the Operations Resear
h
ommunity �rst gavesome guidelines for experimentation with integer programming problems (see [1℄,Chapter 18). The �rst large-s
ale
ombinatorial study to in
lude both real-worldand generated instan
es was probably our work on the minimum test set prob-lem [19℄, but other large-s
ale studies were published in the same time frame, mostnotably the
lassi
 and exemplary study of simulated annealing by David Johnson'sgroup [8, 9℄. The Se
ond DIMACS Computational Challenge [11℄ was devoted tosatis�ability, graph
oloring, and
lique problems and thus saw a large
olle
tionof results in this area. Pro
eedings of the ACM/SIAM Symposium on Dis
reteAlgorithms (SODA) have in
luded a few su
h studies for ea
h of the last few years;an outstanding re
ent example is the study of
ut algorithms by Chekuri et al. [3℄.The Traveling Salesperson problem has seen large numbers of experimental stud-ies (in
luding the well publi
ized study of Jon Bentley [2℄), made possible in partby the development of a library of test
ases [23℄. Graph
oloring, whether in itsNP-hard version of
hromati
 number determination or in its mu
h easier (yet still
hallenging) version of planar graph
oloring, has seen mu
h work as well; the se
-ond study of simulated annealing
ondu
ted by Johnson's group [8℄ dis
ussed manyfa
ets of the problem, while Morgenstern and Shapiro [21℄ provided a detailed studyof algorithms to
olor planar graphs.3.2. Assessment of Competing Algorithms and Data Stru
tures for Tra
tableProblems. The goal here is to measure the a
tual performan
e of
ompeting algo-rithms for well-solved problems. This is fairly new work in
ombinatorial algorithmsand data stru
tures, but
ommon in Operations Resear
h; early (1960s) work indata stru
tures typi
ally in
luded
ode and examples, but no systemati
 study.More re
ent and
omprehensive work began with Jones'
omparison of data stru
-tures for priority queues [12℄ and Stasko and Vitter's
ombination of analyti
aland experimental work in the study of pairing heaps [25℄. The �rst experimentalstudy on a large s
ale was that of Moret and Shapiro on sorting algorithms [18℄(Chapter 8), followed by that of the same authors on algorithms for
onstru
ting

6 BERNARD M.E. MORETminimum spanning trees [18, 20℄. In 1991, Johnson and others initiated the verysu

essful DIMACS Computational Challenges, the �rst of whi
h [10℄ fo
used onnetwork
ow and shortest path algorithms, indire
tly giving rise to two modern,thorough studies, by Cherkassky et al. on shortest paths [4℄ and by Cherkassky etal. on the implementation of the push-relabel method for network
ows [5℄. The DI-MACS Computational Challenges (the �fth, in 1996, fo
used on another tra
tableproblem, priority queues and point lo
ation data stru
tures) have served to high-light work in the area, to establish
ommon data formats (parti
ularly formats forgraphs and networks), and to set up the �rst tailored test suites for a host of prob-lems. Re
ent
onferen
es (su
h as the Workshop on Algorithm Engineering and theWorkshop on Algorithm Enginering and Experiments1) have emphasized the needto develop libraries of robust, well-tested implementations of the basi
 dis
rete and
ombinatorial algorithms, a task that only the LEDA proje
t [17℄ has su

essfullyundertaken to date. 4. Worthwhile ProblemsIn view of the pre
eding, what should resear
hers in the area be working on?We propose below a partial list and brie
y dis
uss the reasons for our
hoi
es.4.1. Testing and improving algorithms for hard problems. Understandinghow a heuristi
 works to
ut down on
omputational time is generally too diÆ
ultto a
hieve through formal derivations; mu
h the same goes for bounding the qualityof approximations obtained with most heuristi
s. Yet both aspe
ts are
ru
ial inevaluating performan
e and in helping us design better heuristi
s.In the same vein, understanding when an exa
t algorithm runs qui
kly is gen-erally too diÆ
ult for formal methods; experimentation
an help us assess its per-forman
e on real-world instan
es (a
ru
ial point) and develop at least ad ho
boundaries between instan
es where it runs fast and instan
es that exhibit theexponential worst-
ase behavior.4.2. Comparing existing algorithms and data stru
tures for tra
tableproblems. Our task is somewhat easier with algorithms for tra
table problemsthan with heuristi
s for intra
table problems, yet
hara
terizing the behavior ofeither on real-world instan
es is generally very hard simply be
ause we often la
kthe
ru
ial instan
e parameters with whi
h to
orrelate running times. Experimen-tation
an qui
kly pinpoint good and bad implementations and whether theoreti
aladvantages are retained in pra
ti
e. In the pro
ess, newer insights may be gleanedthat might enable a re�nement or simpli�
ation of the algorithm. Experimentation
an also enable us to determine the a
tual
onstants in the running time analy-sis; determining su
h
onstants beforehand is quite diÆ
ult (see [7℄ for a possiblemethodology), but a simple regression analysis from the data
an gives us quitea

urate values.4.3. Supporting and re�ning
onje
tures. Any theoreti
ian knows the pangsof
ommitting to a resear
h question without being too sure of the out
ome andof attempting to prove a statement that might not even be true. Having a meansof testing a
onje
ture over a range of instan
es might, in the best
ase, set one's1See the front page of the ACM J. Experimental Algorithmi
s at www.jea.a
m.org for linksto these
onferen
es.

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 7mind at rest and, in the worst
ase, avoid a lot of wasted work. More importantly,good experiments are a ri
h sour
e of new
onje
tures and theorems.4.4. Developing libraries of basi
 algorithms and data stru
tures. Anyone
ontemplating the
oding of a library module for some data stru
ture or basi
algorithm must take reasonable pre
autions to ensure that her implementation willbe as eÆ
ient as possible and to do
ument
onditions under whi
h it will performwell or poorly.4.5. Developing tools to fa
ilitate the design and analysis of algorithms.Under this
ategory
ome statisti
al and graphi
al tools to analyze experiments,but also animation tools to visualize the progress of an experiment. We should notunderestimate the value of experimentation with algorithms as a dis
overy tool; inorder to make su
h experimentation even more valuable, animation and analysistools are urgently needed. Algorithm animations have been shown to
ommuni
atea large amount of information in a very su

in
t manner but are
urrently veryhard to develop for la
k of suitable tools.4.6. Condu
ting human experiments on the value of optimization fordata presentation. The pure theoreti
ian has only one answer when asked why(s)he worked on a problem: be
ause it was there (and, in
identally, be
ause itwas attra
tive). But it is fatally easy to generate volumes of intriguing, unsolvedoptimization problems; before
ommitting s
ar
e resour
es to their solution, it be-hooves us to evaluate their importan
e and relevan
e as well as we
an. In the
ase of various fa
ilities problems, e
onomi
 analyses may be available that pointout the most important fa
tors; in the
ase of human intera
tion, we may have to
ondu
t experiments to assess the worth of various
riteria.5. Experimental SetupHow should an experimental study be
ondu
ted, on
e a topi
 has been identi-�ed? Surely the most important
riterion to keep in mind is that an experiment isrun either as a dis
overy tool or as a means to answer spe
i�
 questions. Experi-ments as explorations are
ommon to all endeavors, in
omputing, in the s
ien
es,and indeed in any human a
tivity; the setup is essentially arbitrary|in parti
u-lar it should not be allowed to limit one's
reativity. So we shall fo
us insteadon experiments as means to answer spe
i�
 questions|the essen
e of the s
ienti�
method used in all physi
al s
ien
es. In this methodology, we begin by formulatinga hypothesis or a question, then set about gathering data to test or answer it, whileensuring reprodu
ibility and signi�
an
e. In terms of experiments with algorithms,these
hara
teristi
s give rise to the following pro
edural rules:� Begin the work with a
lear set of obje
tives: whi
h questions will you beasking, whi
h statements will you be testing?� On
e the experimental design is
omplete, simply gather data. (No alterationsare to be made until all data have been gathered, so as to avoid bias or drift.)� Analyze the data to answer only the original obje
tives. (Later,
onsider howa new
y
le of experiments
an improve your understanding.)However, as we noted earlier, the experiments do little more than predi
t theirown out
omes|there is no �nal arbiter as in the natural s
ien
es. Thus we shouldbeware of a number of potential pitfalls, in
luding various biases due to:

8 BERNARD M.E. MORET� The
hoi
e of ma
hine (
a
hing, addressing, data movement), of language(register manipulation, built-in types), or of
ompiler (quality of optimizationand
ode generation).� The quality of the
oding (
onsisten
y and sophisti
ation of programmers).� The sele
tion or generation of instan
es (we must use suÆ
ient size and varietyto ensure signi�
an
e).� The method of analysis (to minimize the impa
t of
hoi
e of ma
hine)Ca
hing, in parti
ular, may have very strong e�e
ts when
omparing eÆ
ient al-gorithms. For instan
e, in our study of MST algorithms, we observed 3:1 ratiosof running time depending on the order in whi
h the adja
en
y lists were stored.Re
ent studies by LaMar
a and Ladner [14, 15℄ have quanti�ed many aspe
ts of
a
hing and o�ers suggestions on how to work around
a
hing e�e
ts.Other typi
al pitfalls that arise in experimental work with algorithms in
lude� Uninteresting work:
omparing programming languages or spe
i�
 platforms,in parti
ular unusual ones;
omparing algorithms with widely di�erent be-havior (linear and quadrati
, say); et
.� Bad setup: testing up to some �xed running time or spa
e without verifyingwhether the asymptoti
 behavior has manifested; testing too few instan
es;using rough
ode without any attempt at optimization and measuring runningtimes; using \found
ode" without any do
umentation (a temptation thesedays on the net); ignoring existing test suites; ignoring existing libraries andusing only sui generis
ode; and any other introdu
tion of possible
onfound-ing fa
tors.� Bad analysis or presentation: dis
arding data that do not �t without anyexplanation or even warning; presenting all of the data without analysis; using
omparisons to unde�ned \standards" (e.g., to the system sort routine).Most of these
an be avoided with the type of routine
are used by experimentalistsin any of the natural s
ien
es; however, we should point out that
onfounding fa
tors
an assume rather subtle forms, as any
ursory study of publi
 health will attest.Computer systems have not yet rea
hed the level of
omplexity of human behavior,but the
aution remains valid: it pays to go over the design of an experimentalstudy a few times just to assess its sensitivity to potential
onfounding fa
tors.6. What to Measure?One of the key elements of an experiment is the metrology. What do we measure,how do we measure it, and how do we ensure that measurements do not interferewith the experiments? If there is one universal pie
e of advi
e in this area, itis always look beyond the obvious measures! Obvious measures may in
lude thevalue of the solution (for approximation algorithms), the running time (for exa
talgorithms and for algorithms for well-solved problems), the running spa
e, et
.These measures are indeed useful, but a good understanding of the algorithm isunlikely to emerge from su
h global quantities. We also need stru
tural measuresof various types (number of iterations; number of
alls to a
ru
ial subroutine;et
.), if only to serve as a s
ale for determining su
h things as
onvergen
e rates.Knuth [13℄ has advo
ated the use of mems, or memory referen
es, as a stru
turalsubstitute for running time. Other authors have used the number of
omparisons,the number of data moves (both
lassi
al measures for sorting algorithms), thenumber of assignments, et
.

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 9In our own experien
e, we have found that there is no substitute, when evaluating
ompeting algorithms for tra
table problems, for measuring the a
tual runningtime; indeed, time and mems measurements, to take one example, may lead one toentirely di�erent
on
lusions. However, the obvious measures are often the hardestto interpret as well as the hardest to measure a

urately and reprodu
ibly. Runningtime, for instan
e, is in
uen
ed by
a
hing, whi
h in turn is a�e
ted by any otherrunning pro
esses and thus e�e
tively not reprodu
ible exa
tly. In the
ase of
ompeting algorithms for tra
table problems, the running time is often extremelylow (we
an obtain a minimum spanning tree for a graph of a million verti
esin a se
ond or so on a typi
al desktop ma
hine), so that the granularity of thesystem
lo
k may
reate problems|this is a
ase where it pays to repeat the entirealgorithm many times over on the same data, in order to obtain running timeswith at least two digits of pre
ision. In a similar vein, measuring the quality of asolution
an be quite diÆ
ult, due to the fa
t that the optimal solution
an be very
losely approa
hed on instan
es of small to medium size or due to the fa
t that thesolution is essentially a zero-one de
ision (as in determining the
hromati
 index ofa graph or the primality of a number), where the appropriate measure is statisti
alin nature (how often is the
orre
t answer returned?) and thus requires a very largenumber of test instan
es.7. How to Present and Analyze the DataPerhaps the �rst requirement in data presentation is to ensure reprodu
ibilityby other resear
hers: we need to des
ribe in detail what instan
es were used (howthey were generated or
olle
ted), what measurements were
olle
ted and how,and, preferably, where the reader
an �nd all of this material on-line. The se
ondrequirement is rather obvious, but often ignored for all that: we
annot just dis
ardwhat appear to be anomalies, at least not unless we
an explain their presen
e; ananomaly without an explanation is not an error, but an indi
ator that somethingunusual (and possibly interesting) is going on. We have already mentioned severaltimes that every e�ort should be made to minimize the in
uen
e of the environment:platform,
oding,
ompiling, paging,
a
hing, et
., through
ross-
he
king a
rossmultiple platforms and environments, through the use of normalization routines,and through environmental pre
autions (su
h as running on otherwise quies
entma
hines).The data should then be analyzed with suitable statisti
al methods. Sin
e at-taining levels of statisti
al signi�
an
e may be quite diÆ
ult in the large state spa
eswe
ommonly use, various te
hniques to make the best use of available experimentsshould be applied (see M
Geo
h's ex
ellent survey [16℄ for a dis
ussion of severalsu
h methods). Cross-
he
king the measurements with any available theoreti
alresults, espe
ially those that attempt to predi
t the a
tual running time (su
h asthe \equivalent
ode fragments" approa
h of [7℄), is
ru
ial; any serious dis
repan
yneeds to be investigated.Finally, the data need to be presented to the readers in a form that humans
aneasily pro
ess|not in tabular form, not as raw plots with multiple
rossing
urves,but with suitable s
aling and normalization and with the use of good graphi
s,
ol-ors, et
. Animations
an
onvey enormous amounts of information very su

in
tly,so
onsider providing su
h if the work needed to produ
e them is not ex
essive.

10 BERNARD M.E. MORET8. Illustration: Algorithms for Constru
ting a Minimum SpanningTreeWe shall not repeat here the results given in [20℄, but rather highlight the prob-lems en
ountered during the study and some of the solutions we found to be e�e
-tive. We studied MST algorithms be
ause of their pra
ti
al importan
e, be
auseinstan
es en
ountered in pra
ti
e
an be very large, and be
ause the implementerfa
es a very large number of algorithmi

hoi
es, ea
h with its own
hoi
e of sup-porting data stru
tures. In 1989, when we started the study, we had at least thefollowing
hoi
e of algorithms: Kruskal's (with a priority queue, with prior sorting,or with sorting on demand), Prim's (with any of a large number of priority queues,from binary heaps to rank- and run-relaxed heaps), Cheriton and Tarjan's (with andwithout the lazy variation) Fredman and Tarjan's, Gabow et al.'s, and the entirelydi�erent algorithm of Fredman and Willard; to this list we
ould now add neweralgorithms by Klein and Tarjan, by Karger, and by Chazelle. Prim's algorithm,the most
ommonly used (for good reason, as our study demonstrated),
ould inturn be implemented with binary heaps, d-heaps, pairing heaps, leftist heaps, skewheaps, binomial heaps, or splay trees, or with more sophisti
ated stru
tures su
h asFibona

i heaps, rank-relaxed heaps, or run-relaxed heaps, in ea
h
ase with heapsbuilt dynami
ally or pre-built stati
ally before starting the algorithm. Few of these
hoi
es had been implemented at that time.We ran an experimental study using three di�erent platforms (two CISC and oneRISC) and multiple languages and
ompilers, but with one programmer writing allof the
ode, so as to keep the level of
oding
onsistent throughout. We explored low-level de
isions (pointers vs. array indi
es, data moves vs. indire
tion, et
.) before
ommitting to spe
i�
 implementations. We used �ve di�erent graph families inthe tests and also
onstru
ted spe
i�
 worst-
ase families with adversaries; all ofour families in
luded very large graphs (up to a million verti
es and over a millionedges). We ran at least 20 instan
es at ea
h size,
he
king independent series ofexperiments for
onsisten
y in the results. Finally, we took pre
autions from thestart to minimize the e�e
ts of paging (easy) and of
a
hing (hard).Our data
olle
tion and analysis had four goals: (i) to eliminate any residuale�e
ts of
a
hing and any other ma
hine dependen
ies; (ii) to normalize runningtimes a
ross ma
hines; (iii) to gauge the in
uen
e of lower-order terms and to ver-ify the asymptoti
 behavior; and (iv) to visualize qui
kly the relative eÆ
ien
y ofea
h algorithm for ea
h type and size of graph. We realized all four goals at on
eby the simple strategy of normalizing, independently on ea
h platform, the run-ning times measured for the various MST algorithms by the running times of asimple, linear-time pro
edure with roughly similar memory referen
e patterns|inour
ase a pro
edure that
ounted the number of edges of the graph by traversingthe adja
en
y lists. The similar memory addressing patterns
an
eled out most ofthe
a
hing e�e
ts; the similar work in dereferen
ing pointers
an
eled out most ofthe CISC ma
hines pe
uliarities; and the dire
t
omparison to the (then unattain-able) lower bound of a linear-time pro
edure immediately showed the asymptoti
behavior and highlighted the relative eÆ
ien
y of ea
h algorithm.Early in the implementation phase, we realized that Fibona

i heaps and relaxedheaps were not
ompetitive. We then took a suggestion made in the original paperof Dris
oll et al. [6℄ for implementing relaxed heaps: to group nodes into largerunits so that
hanges in key would most often be resolved within a unit and not

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 11require restru
turing the heap. We then de
ided to implement this idea, whi
h we
alled sa
ks, for other types of heaps; it turned out that it was a
ru
ial de
isionfor Fibona

i heaps, whi
h be
ame mu
h more
ompetitive with the addition ofsa
ks|a new result that
ould only have
ome about through implementation.At the
on
lusion of our work, we had
omforting �ndings for the pra
titioner,if not for the theoreti
ian: the fastest algorithm by far was Prim's, implementedwith pairing heaps or simple binary heaps. The more sophisti
ated implementa-tions
ould not pay o� for reasonable graph sizes, nor
ould the more sophisti
atedalgorithms. But we also had a sobering report: our last implementations of Prim'swith Fibona

i heaps were nearly ten times faster than our �rst! Thus even ex-perien
ed programmers who understand the details of their data stru
tures andalgorithms
an re�ne implementations to the point of evolving entirely new
on
lu-sions. In our
ase, we
ould
on
lude that Prim's algorithm with Fibona

i heaps,whi
h had appeared entirely and hopelessly impra
ti
al at �rst, might in fa
t be-
ome
ompetitive at the extreme end of sizes for dense graphs. The somewhatobvious
on
lusion for theoreti
ians was that polylogarithmi
 fa
tors are unlikelyto be worth mu
h e�ort: the di�eren
e between jEj log jV j and jEj is not suÆ
ientto make up for signi�
ant di�eren
es in leading
oeÆ
ients.This study, along with an earlier study on sorting algorithms, enables us todraw some
on
lusions regarding experimental studies of algorithms for well-solvedproblems:� Multi-ma
hine, multi-
ompiler trials are needed. The preferen
e of one ar-
hite
ture for data moves over indire
tion, for instan
e,
ould easily maskother e�e
ts. The �rst DIMACS
hallenge proposed some simple measures toassess the e�e
t of
ompilers and
ode optimization; these measures form agood starting point, but will often need to be supplemented.� A very large range of sizes is indispensable. Sin
e the algorithms
omparedare all eÆ
ient and sin
e sophisti
ated algorithms tend to demonstrate theirasymptoti
 behavior for larger sizes than simpler algorithms, we should runour tests up to the largest sizes that
an be a

ommodated on our platforms,even if these sizes may ex
eed any likely to be en
ountered in pra
ti
e. Alarge range of sizes will also help visualizing the asymptoti
 behavior andmay un
over unexpe
ted problems attributable to
a
hing.� Extreme
are must be used when generating instan
es. This problem is parti
-ularly a
ute when instan
es are de�ned by multiple parameters, as in graphsand networks: large numbers of di�erent families
an be de�ned, with poten-tially very di�erent behaviors. We should ensure that realisti
 instan
es arebeing generated, that large instan
es generated with pseudo-random num-ber generators do not present arti�
ial patterns
aused by problems with thegenerator, and also that some worst-
ase families are in
luded in the study.� Normalization by a suitable baseline routine is very su

essful in smoothingout variations in ar
hite
ture and
a
hing, as well as in highlighting the as-ymptoti
 behavior and relative eÆ
ien
y of the
ompeting algorithms. When-ever our
ompeting algorithms are
losely tied, data presentation is of
ru
ialimportan
e.

12 BERNARD M.E. MORET9. Con
lusionsExperimentation should be
ome on
e again the \gold standard" in algorithmdesign, for several
ompelling reasons:� Experimentation
an lead to the establishment of well tested and well do
u-mented libraries of routines and instan
es.� Experimentation
an bridge the gap between pra
titioner and theoreti
ian.� Experimentation
an help theoreti
ians develop new
onje
tures and new al-gorithms, as well as a deeper understanding (and thus perhaps a
leanerversion) of existing algorithms.� Experimentation
an point out areas where additional resear
h is most needed.However, experimentation in algorithm design needs some methodologi
al develop-ment. While it
an and, to a large extent, should follow guidelines from the physi
als
ien
es, its di�erent setting (a purely arti�
ial one in whi
h the experimental pro-
edure and the subje
t under test are unavoidably mixed) requires at least extrapre
autions. Fortunately, a number of authors have blazed what appear to be agood trail to follow; hallmarks of good experiments in
lude:�
learly de�ned goals;� large-s
ale testing, both in terms of a range of instan
e sizes and in terms ofthe number of instan
es used at ea
h size;� a mix of real-world instan
es and generated instan
es, in
luding any signi�-
ant test suites in existen
e;�
learly arti
ulated parameters, in
luding those de�ning arti�
ial instan
es,those governing the
olle
tion of data, and those establishing the test envi-ronment (ma
hines,
ompilers, et
.);� statisti
al analysis of the results and attempts at relating them to the natureof the algorithms and test instan
es; and� publi
 availability of instan
es and instan
e generators to allow other re-sear
hers to run their algorithms on the same instan
es and, preferably, publi
availability of the
ode for the algorithms themselves.Referen
es[1℄ Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. Network Flows. Prenti
e Hall, NJ, 1993.[2℄ Bentley, J.L. Experiments on geometri
 traveling salesman heuristi
s. AT&T Bell Laborato-ries, CS TR 151, 1990.[3℄ Chekuri, C.S., Goldberg, A.V., Karger, D.R., Levine, M.S., and Stein, C., \Experimentalstudy of minimum
ut algorithms," Pro
. 8th ACM/SIAM Symp. on Dis
rete Algs. (1997),324{333.[4℄ Cherkassky, B.V., Goldberg, A.V., and Radzik, T., \Shortest paths algorithms: theory andexperimental evaluation," Math. Progr. 73 (1996), 129{174.[5℄ Cherkassky, B.V., and Goldberg, A.V., \On implementing the push-relabel method for themaximum
ow problem," Algorithmi
a 19 (1997), 390{410.[6℄ Dris
oll, J.R., Gabow, H.N., Shrairman, R., and Tarjan, R.E., \Relaxed heaps: an alternativeto Fibona

i heaps with appli
ations to parallel
omputation," Commun. ACM 11 (1988),1343{1354.[7℄ Finkler, U., and Mehlhorn, K., \Runtime predi
tion of real programs on real ma
hines,"Pro
. 8th ACM/SIAM Symp. on Dis
rete Algs. (1997), 380{389.[8℄ Johnson, D.S., Aragon, C.R., M
Geo
h, L.A., and S
hevon, C., \Optimization by simu-lated annealing: an experimental evaluation. 1. Graph partitioning," Operations Resear
h37 (1989), 865{892.

TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 13[9℄ Johnson, D.S., Aragon, C.R., M
Geo
h, L.A., and S
hevon, C., \Optimization by simulatedannealing: an experimental evaluation. 2. Graph
oloring and number partitioning," Opera-tions Resear
h 39 (1991), 378{406.[10℄ Johnson, D.S., and M
Geo
h, C.C., eds. Network Flows and Mat
hing: First DIMACS Im-plementation Challenge, DIMACS Series in Dis
rete Mathemati
s and Theoreti
al ComputerS
ien
e 12, 1993.[11℄ Johnson, D.S., and Tri
k, M., eds. Cliques, Coloring, and Satis�ability: Se
ond DIMACSImplementation Challenge, DIMACS Series in Dis
rete Mathemati
s and Theoreti
al Com-puter S
ien
e 26, to appear.[12℄ Jones, D.W., \An empiri
al
omparison of priority queues and event-set implementations,"Commun. ACM 29 (1986), 300{311.[13℄ Knuth, D.E. The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, Reading Mass., 1993 (p. 460).[14℄ LaMar
a, A., and Ladner, R., \The in
uen
e of
a
hes on the performan
e of heaps," ACM J.of Experimental Algorithmi
s 1, Arti
le 4 (1996), www.jea.a
m.org/1996/LaMar
aInfluen
e.[15℄ LaMar
a, A., and Ladner, R., \The in
uen
e of
a
hes on the performan
e of sorting," Pro
.8th ACM/SIAM Symp. on Dis
rete Algs. (1997), 370{379.[16℄ M
Geo
h, C.C., \Analysis of algorithms by simulation: varian
e redu
tion te
hniques andsimulation speedups," ACM Comput. Surveys 24 (1992), 195{212.[17℄ Mehlhorn, K., and N�aher, S., \LEDA, a platform for
ombinatorial and geometri

omput-ing," Commun. ACM 38 (1995), 96{102.[18℄ Moret, B.M.E., and H.D. Shapiro. Algorithms from P to NP, Volume I: Design and EÆ-
ien
y. Benjamin-Cummings Publishing Co., Menlo Park, CA, 1991.[19℄ Moret, B.M.E., and Shapiro, H.D., \On minimizing a set of tests," SIAM J. S
ienti�
 &Statisti
al Comput. 6 (1985), 983{1003.[20℄ Moret, B.M.E., and Shapiro, H.D., \An empiri
al assessment of algorithms for
onstru
tinga minimal spanning tree," in Computational Support for Dis
rete Mathemati
s, N. Deanand G. Shannon, eds., DIMACS Series in Dis
rete Mathemati
s and Theoreti
al ComputerS
ien
e 15 (1994), 99{117.[21℄ Morgenstern, C., and Shapiro, H.D., \Heuristi
s for rapidly four-
oloring large planargraphs," Algorithmi
a 6 (1991), 869{891.[22℄ Pur
hase, H.C., Cohen, R.F., and James, M.I, \An experimental study of the basis forgraph drawing algorithms," ACM J. of Experimental Algorithmi
s 2, Arti
le 2 (1997),www.jea.a
m.org/1997/Pur
haseDrawing.[23℄ Reinelt, G. The Traveling Salesman: Computational Solutions for TSP Appli
ations. Le
tureNotes in Computer S
ien
e 840 (1994), Springer Verlag, Berlin.[24℄ Robertson, N., and Seymour, P., \Graph minors|a survey," in Surveys in Combinatori
s,J. Anderson, ed., Cambridge U. Press, Cambridge, UK (1985), 153{171.[25℄ Stasko, J.T., and Vitter, J.S., \Pairing heaps: experiments and analysis," Commun. ACM30 (1987), 234{249.Department of Computer S
ien
e, University of New Mexi
o, Albuquerque, NM87131-1836E-mail address: moret�
s.unm.edu

