Java Performance

Alexandre Bergel
http://bergel.eu
01-12-2021

Source

O'REILLY

(-
-A' x =
?.v;‘}v-\ ‘

!‘
r"g L
. t‘a

Java Performance: The Definitive Guide
O'Reilly Media, 978-14490358457

May 2014

Performance
The Definitive Guide

GETTING THE MOST OUT OF YOUR CODE

Scott Oaks

Source

Java

Performance

Java Performance
: Charlie Hunt, Binu John, 2011

978-0137142521

Objective

Lay out a basic methodology to measure the
performance of an application

Describe the parameters that impact software
execution performance

Outline

1. The complete story
2. An approach to performance testing
3. Specific tools

4. Example: Genetic Algorithm

The complete story

Write better algorithm
Performance is based on how well the application is written

There is no magical -XX:+RunReallyFast option to be provided to
the virtual machine

A good algorithm (or a proper use of an API) is the most important
thing

The complete story

Write less code

A small well-written program will have tendency to run faster than
a large well-written program

More code is poured into an application, harder it is to keep it fast

The complete story

Premature optimization

Donald Knuth said: “We should forget about small efficiencies, say
about 97% of the time; premature optimization is the root of all evil”

Optimizing inevitably makes an application complex. It is important
to make sure that each optimization is _really_ necessary

The complete story

The database is always the bottleneck

If you are developing standalone java applications that use no external
resources, the performance of that application is all that matter

Once a database is added, then the performance of both programs is
important

In a distributed environment, (e.g., Java EE application server), a load
balancer, a database, and a backend enterprise information system,
then the app performance does not matter much

Extracting multiple times the same information from the database is a
common cause of poor performance

Or making too many requests instead of a single (but more complex)
one

The complete story

Optimize the common case
Not all performance aspects are equally important
Focus should be given to the common use case scenario

Write simple algorithms for most common operations

An approach to performance testing

Measuring performance is fundamental in order to
take any action

Here is a simple recipe

1.

Define a set of representative program executions. These
executions are called benchmarks

. ldentify the relevant metrics to measure these executions (time

(e.g., seconds, milliseconds), memory (e.g., used bytes,
number of garbage collections, number of objects
instantiated)

Measure your benchmarks
Modify your application

Measure your benchmarks again and compare. Jump to 4
I

Metrics for measurements

Measuring the time is a natural and intuitive approach

However, time Is a dimension that is difficult to
measure (%)

Not stable: two executions produces two different execution times

Not comparable across different machine: if you buy a new laptop,
then you can throw away all your measurements

Very sensitive to the environment: having no warmup may
significantly impact your measurements

Multiple time: wall-clock time is a natural measurement. However,
execution time is consumed within the application, within the virtual
machine (primitives or garbage collector), within the operating
system. So which notion of time do you need?

(*) Counting Messages as a Proxy for Average Execution Time in Pharo. Alexandre Bergel.
Proceedings of the 25th European Conference on Object-Oriented Programming (ECOOP'11)

Metrics for measurements

In addition to measuring time, it is important to pick a
metric that is likely to drive your optimization effort

Some metrics may greatly simplify the benchmarks
measurement
For example
number of instances of a particular class
number of processed requests

number of accesses to a data base

An approach to performance testing

There are several kinds of benchmarks. \We will revise
the most common kind of benchmarks, micro and
macro

Micro benchmark

Is a test designed to measure a very small unit of performance.

E.g., the time to call a synchronized method versus a non
synchronized method

E.g., the time to execute a recursive algorithm versus an iterative
implementation

Micro-benchmark

public class MicroBenchmark {
private int nlLoops;

public MicroBenchmark(int 1) { nLoops = 1; }

public void doTest() {
long then = System.currentTimeMillis();
for (int 1 = 0; 1 < nLoops; 1++) {
fibImp11(35);
¥
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

Micro-benchmark

public class MicroBenchmark {
private int nlLoops;

public MicroBenchmark(int 1) { nLoops = 1; }

public void doTest() {
long then = System.currentTimeMillis();

O i Qi !)
fibImp11(35)
by

long now = System ()5
System.out.println("Elapsed time: " + (now - then));

Micro-benchmark

private double fibImpll(int n) {
1f (n < @) throw new IllegalArgumentException ("Must be > 0");
1f (n == @) return 0d;
1f (n == 1) return 1d;
double d = fibImpll(n - 2) + fibImpll(n - 1);
1f (Double.isInfinite(d)) throw new ArithmeticException("Overflow");
return d;

}

public static void main(String[] argv) {
new MicroBenchmark(2).doTest();

}
h

Micro-benchmark: Common pitfall

A smart compiler can guess that the expression:

fibImp11(35);

produces a result that is not used (i.e., the result is
not stored somewnhere)

And since this computation does not do any side
effect, the compiler may simply remove it, to actually
have:

public void doTest() {
Llong then = System.currentTimeMillis();
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

}

Micro-benchmark

public class MicroBenchmark {
private int nlLoops;

public MicroBenchmark(int 1) { nLoops = 1; }

public void doTest() {
double 1;
long then = System.currentTimeMillis();
for (int 1 = 0; 1 < nLoops; 1++) {
1 = fibImpl1(35);
}
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

Micro-benchmark: Common pitfall

A smart compiler can guess that the expression:

1 = fibImpl11(35);
IS within a loop

And maybe avoid the multiple executions of that
expression. In such a case, the argument has to vary,
picked from an array for example

As you can see, micro-benchmarking is not a trivial
thing to do

20

Without prior execution

public void doTest() {
double 1;
//f1bImpl1(42);
long then = System.currentTimeMillis();
for (int 1 = 0; 1 < nLoops; 1++) {
1 = fibImpll1l(42);
¥
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

Elapsed time: 4548

21

With a prior execution

public void doTest() {
double 1;
fibImpl1(42);
long then = System.currentTimeMillis();
for (int 1 = 0; 1 < nLoops; 1++) {
1 = fibImpll1l(42);
¥
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

Elapsed time: 3405

22

Warm-up period

public void doTest() {
double 1;
fibImpl1(42);
long then = System.currentTimeMillis();
for (int 1 = 0; 1 < nLoops; 1++) {
1 = fibImpll1l(42);
¥
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

Elapsed time: 3405

Why is there a difference in execution time?

23

Warm-up period

public void doTest() {
double 1;
fibImpl1(42);
long then = System.currentTimeMillis();
for (int 1 = 0; 1 < nLoops; 1++) {
1 = fibImpll1l(42);
¥
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

Elapsed time: 3405

This additional execution
Is called “warm-up”

24

Warm-up

Code performs better the more it is executed
Micro-benchmarks must include a warm-up period

To give the Just-In-Time compiler a chance to
produce optimal code

A warm-up period is required; otherwise, the micro
benchmark is measuring the performance of
compilation rather than the code it is attempting to
measure

25

Warm-up

A warm-up phase is typically designed to make the
compiler optimize code

A warm-up should not involve access to resources

E.g., when an application reads a file, the OS caches the file into
memory. Reading the file a second time will therefore be faster

26

An approach to performance testing

Macro-Benchmark

Complex systems are more than the sum of their part

They will behave quite differently when those parts are assembled

27

Performance Anti-

Patterns

Anti-patterns are certain patterns in software
development that are considered bad programming

practices.

A number of anti-patterns have been identified

Fixing Performance at the End of the Project

Measuring and Comparing the Wrong Things

Algorithmic Antipathy

Reusing Software

lterating Because That’s What Computers Do Well

Performance Anti-Patterns

Premature Optimization

Focusing on What You Can See Rather Than on the Problem
Software Layering

Excessive Numbers of Threads

Asymmetric Hardware Utilization

Not Optimizing for the Common Case

https://queue.acm.org/detail.cim?id=1117403

Specific tools: monitoring system
resource consumption

Outside Java, several tools may be used, accessible
from the command line:

vmstat, top, iostat, nicstat

These tools are useful to check for the disk, memory,
and CPUs consumption

Naturally, graphical tools exists, however, it may be
useful to programmatically get these info

30

The case of web applications

There are many open source and commercial load-

generating tools

Faban (http://faban.org) is used to measure the
performance of a simple URL

Run a simple G

request of logo.gif for 1000 clients:

fhb -J -server -J -Xmx3500m -J -Xms3500m -c 1000 http://localhost:8000/1ogo.gif

Specific tools: monitoring Java
activities

The Java-Development-Kit offers many command
lines tools

jconsole: provide a graphical view of JVM activities, including
thread usage, class usage

jvisualvm: a GUI tool to monitoring a JVM, profile a running
application, and analyze JVM heap

jcmd, jconsole, jhat, map, info, jstack, ...

32

—xample: Genetic Algorithm

Very useful algorithm from the field of Artificial
Intelligence

Mimic the process of natural selection of living
Species:
A population is made of individual
An individual has a genotype, also called ADN

At each generation, only the individual that are the closest of the
problem solution survive

At each generation, individual’s genes may be subject to a cross-
over or a mutation

33

—xample: Profiling GenoTyper

Run Main.java and execute jvisualvm in a terminal

‘o0 @
5w N

Java VisualVM

v =] Local
= Eclipse (pid 1757)
| & Visualvm
p
#aF Remote
(55 VM Coredumps
Snapshots

_
Applications £ StartPage | & genotyper.Main (pid 3838) &

8 Monitor [=] Threads & Sampler (&) Profiler
Z genotyper.Main (pid 3838)

Overview

PID: 3838

Host: localhost

Main class: genotyper.Main
Arguments: <none>

JVM: Java HotSpot(TM) 64-Bit Server VM (25.66-b17, mixed mode)
Java: version 1.8.0_66, vendor Oracle Corporation
Java Home: /Library/Java/JavaVirtualMachines/jdk 1.8.0_66.jdk /Contents /Home/jre

JVM Flags: <none>

Heap dump on OOME: disabled

Saved data X | JVM arguments | System properties

= 110

Saved data Details

Thread Dumps: -Dfile.encoding=UTF-8
Heap Dumps: 0
Profiler Snapsho

34

Uptime: 3 min 14 sec

CPU
CPU usage: 24.6%
100%-

80%-
60%+
40%

20%

—Xample:

GC activity: 0.0%

0% T
11:55:00 AM

Classes

Total loaded: 1,511
Total unloaded: 0

11:55:30 AM

11:56:00 AM 11:56:30 AM 11:57:00 Al
[0 CPU usage M GC activity

X

Shared loaded: 0
Shared unloaded: 0

1,500

1,0004

0 y
11:55:00 AM

11:55:30 AM

11:56:00 AM 11:56:30 AM 11:57:00 Al
[0 Total loaded classes M Shared loaded classes

Metaspace

Profiling GenolTyper

Perform GC Heap Dump

Size: 1,109,393,408 B
Max: 4,294,967,296 B
1,500 MB-

1,000 MBA

500 MBA

Used: 664,190,544 B

0 MB .
11:55:00 AM
Threads

Live: 10
Live peak: 10

11:55:30 AM

11:56:00 AM

Daemon: 9

Total started:

11:56:30 AM 11:57:00 A
[0 Heap size M Used heap

X

10

f
f

101

s

0 T
11:55:00 AM

35

11:55:30 AM

11:56:00 AM

11:56:30 AM 11:57:00 Al
O Live threads B Daemon threads

—xample: Profiling GenoTyper

Uptime: 3 min 14 sec

CPU

Perform GC Heap Dump
x| | Heap i Metaspace x
CPU usage: 24.6% GC activity: 0.0% Size: 1,109,393,408 B Used: 664,190,544 B
100%- Max: 4,294,967,296 B
1,500 MB-
80%-
60% 1,000 MB-
40%
500 ME-
20% /“‘“N“""IMW
O 15500 AM 11:55:30 AM 11:56:00 AM 115630 AM 115700 A O M, 55:00 AM 11:55:30 AM 11:56:00 A : 1:57:00 A
[CPU usage M GC activity O Heap size M Used heap
Classes X Threads Th ' k ' d ' 't 'th
Total loaded: 1,511 Shared loaded: 0 Live: 10 ese pIC S In |Ca e e
Total unloaded: 0 Shared unloaded: 0 Live peak: "
. activity of the garbage
—
8
collector.
64
+ Each time the blue line goes
2
11:55:00 AM 11:55:30 AM 11:56:00 AM

| L down, a garbage collection
[Total loaded classes M Shared loaded classes OCCU rred

36

—Xample:

Uptime: 3 min 14 sec

CPU X

CPU usage: 24.6% GC activity: 0.0%

100%
80% -
60%+
40%

20%+

[T T

11:56:00 AM

0% T T
11:55:00 AM 11:55:30 AM

11:56:30 AM 11:57:00 Al
[CPU usage M GC activity
Classes X
Total loaded: 1,511 Shared loaded: 0
Total unloaded: 0 Shared unloaded: 0
1,500
1,000
500
0
11:55:00 AM 11:55:30 AM 11:56:00 AM 11:56:30 AM 11:57:00 Al

[Total loaded classes M Shared loaded classes

Profiling GenolTyper

Perform GC Heap Dump

Metaspace X

Size: 1,109,393,408 B
Max: 4,294,967,296 B

Used: 664,190,544 B

1,500 MBA

1,000 MBA

500 MBA

MB y y T
11:55:00 AM 11:55:30 AM 11:56:00 AM

11:56:30 AM 11:57:00 A
[0 Heap size M Used heap

e The yellow portion is the
« — amount of free memory used

Y

oo

by the VM. Note that this
amount can grow and shrink

E=N
!

11:57:00 Al
O Live threads B Daemon threads

0 T T T T
11:55:00 AM 11:55:30 AM 11:56:00 AM 11:56:30 AM

37

Uptime: 3 min 14 sec

CPU

CPU usage: 24.6%
100%-

80%-
60%+
40%

20%+

0% T T
11:55:00 AM 11:55:30 AM

Classes

Total lc

1,0004

xample:

GC activity: 0.0%

[CPU usage M GC activity

:57:00 Al

= This graph indicates the CPU
| usage during the program

execution. This application was |
"I run on a quad-core machine

38

i Heap | Metaspace

Profiling GenolTyper

Perform GC Heap Dump

Size: 1,109,393,408 B
Max: 4,294,967,296 B

Used: 664,190,544 B

1,500 MB-
1,000 Mg
o M

11:55:00 AM 11:55:30 AM 11:56:00 AM 11:56:30 AM 11:57:00 A
[0 Heap size M Used heap

eads X
re: 10 Daemon: 9
re peak: 10 Total started: 10

11:55:00 AM 11:55:30 AM 11:56:00 AM 11:56:30 AM

11:57:00 Al
O Live threads B Daemon threads

—xample: Profiling GenoTyper

Uptime: 3 min 14 sec

. .1he number of thread is -
G actvy: 0% constant. Not abit surprise
since Genolyper does not use
o threads n

[0 Heap size M Used heap
X Threads
Total loaded: 1,511

X
Shared loaded: 0 Live: 10 Daemon: 9
Total unloaded: 0 Shared unloaded: 0 i H
1,500
1,000
4.
500
2..
. 0 . , ' r .
11:55:00 AM 11:55:30 AM 11:56:00 AM 11:56:30 AM 11:57:00 Al 11:55:00 AM 11:55:30 AM 11:56:00 AM 11:56:30 AM 11:57:00 Al
[Total loaded classes M Shared loaded classes

O Live threads B Daemon threads

39

—Xample:

Profiling GenolTyper

[‘d overview Monitor
Z genotyper.Main (pid 4115)
Sampler
Sample:) cru (& Memory Stop

Status: CPU sampling in progress

CPU samples | Thread CPU Time

=] Threads &) profiler

(@ [snapshot] 1:15:29 PM @

|| Settings

@ E) Snapshot

Hot Spots - Méthod
org.netbeans.lib.profiler.server.ProfilerServer$SeparateCmdExecutionThread.run ()
org.netbeans.lib.profiler.server.Monitors $SurvGenAndThreadsMonitor.run ()
org.netbeans.lib.profiler.wireprotocol.WirelO.receiveCommandOrResponse ()
org.netbeans.lib.profiler.server.ProfilerServer.getLastResponse ()
org.netbeans.lib.profiler.server.ThreadIinfo.getThreadinfoOrNull ()
org.netbeans.lib.profiler.server.ProfilerRuntimeCPUFulllnstr.methodEXxit ()
org.netbeans.lib.profiler.server.ProfilerRuntimeCPUFullinstr.methodEntry ()
org.netbeans.lib.profiler.global.TransactionalSupport.beginTrans ()
genotyper.problem.FindingBit.computeFitness ()
org.netbeans.lib.profiler.server.ProfilerRuntimeCPU.writeTimeStampedEvent ()
genotyper.Individual.generateGenes ()
org.netbeans.lib.profiler.server.EventBufferManager.eventBufferDumpHook ()
genotyper.Main.printWelcome ()

genotyper.Individual.numberOfGenes ()
org.netbeans.lib.profiler.wireprotocol.WirelO.sendComplexCommand ()
genotyper.Population.evolve ()
org.netbeans.lib.profiler.server.ProfilerServer.setLastResponse ()
org.netbeans.lib.profiler.global.TransactionalSupport.endTrans ()
genotyper.Individual.geneAt ()

genotyper.Individual.crossOverWith ()

genotyper.Individual.geneAtPut ()

ora.netheans_lih nrofiler server svstem Threads aetAllThreadsInativel ()
R Method Name Filter (Contains)

g

If Time [%] »

Self Time

1,679,089 ...(24.8%)
1,678,893 ...(24.8%)
1,678,482 ...(24.8%)

516,828 ms
455,968 ms
353,303 ms
310,244 ms
30,969 ms
25,207 ms
9,539 ms
6,050 ms
4,839 ms
4,105 ms
1,723 ms
1,603 ms
627 ms
503 ms
478 ms
330 ms
277 ms
261 ms

195 ms

(7.6%

(6.
(5.
(4

(O

(0.4%)

b NN

)

)

Self Time (CPU)

0.000 ms
0.000 ms
1,678,482 ms
0.000 ms
455,968 ms
353,303 ms
310,244 ms
0.000 ms
25,207 ms
9,539 ms
6,050 ms
4,839 ms
4,105 ms
1,723 ms
1,603 ms
627 ms
503 ms
478 ms
330 ms
277 ms
261 ms

195 ms

Total Time

1,679,089 ms
1,679,089 ms
1,678,482 ms
516,828 ms
455,968 ms
741,182 ms
762,245 ms
30,969 ms
984,707 ms
533,007 ms
523,691 ms
523,270 ms
4,105 ms
602,658 ms
1,603 ms
1,602,608 ms
503 ms

478 ms
47,196 ms
180,330 ms
43,497 ms
195 ms

Total Time (CPU)

Thread Dump

=]
0.000 ms
195 ms
1,678,482 ms
0.000 ms
455,968 ms
476,195 ms
510,403 ms
0.000 ms
676,703 ms
16,179 ms
367,920 ms
6,442 ms
4,105 ms
420,271 ms
1,603 ms
1,113,598 ms
503 ms
478 ms
33,705 ms
125,319 ms
30,680 ms
195 ms

—Xample:

Profiling GenolTyper

[’d overview Monitor
Z genotyper.Main (pid 4115)
Sampler
Sample:) cru (& Memory Stop
Status: CPU sampling in progress

(@ [snapshot] 1:15:29 PM @

=] Threads &) profiler

ngs

The CPU samples tab give an

CPU samples | Thread CPU Time
@ 0 E Snapshot

Hot Spots - Method

org.netbeans.lib.profiler.server.ProfilerServer$SeparateCmdExecutionThread.run ()
org.netbeans.lib.profiler.server.Monitors $SurvGenAndThreadsMonitor.run ()
org.netbeans.lib.profiler.wireprotocol.WirelO.receiveCommandOrResponse ()

org.netbeans.lib.profiler.server.ProfilerServer.getLastResponse ()
org.netbeans.lib.profiler.server.ThreadIinfo.getThreadinfoOrNull ()

org.netbeans.lib.profiler.server.ProfilerRuntimeCPUFulllnstr.methodEXxit ()
org.netbeans.lib.profiler.server.ProfilerRuntimeCPUFullinstr.methodEntry ()

org.netbeans.lib.profiler.global.TransactionalSupport.beginTrans ()
genotyper.problem.FindingBit.computeFitness ()

org.netbeans.lib.profiler.server.ProfilerRuntimeCPU.writeTimeStampedEvent ()

genotyper.Individual.generateGenes ()

org.netbeans.lib.profiler.server.EventBufferManager.eventBufferDumpHook ()

genotyper.Main.printWelcome ()

genotyper.Individual.numberOfGenes ()
org.netbeans.lib.profiler.wireprotocol.WirelO.sendComplexCommand ()
genotyper.Population.evolve ()
org.netbeans.lib.profiler.server.ProfilerServer.setLastResponse ()
org.netbeans.lib.profiler.global.TransactionalSupport.endTrans ()
genotyper.Individual.geneAt ()

genotyper.Individual.crossOverWith ()

genotyper.Individual.geneAtPut ()

ora.netheans_lih nrofiler server svstem Threads aetAllThreadsInativel ()
R Method Name Filter (Contains)

Self Time

1]
[|
[] 1,6/8,482 ...(24.5%) 1,6/8,482 ms i
[516,828 ms (7.6%) 0.000 ms
[| 455,968 ms (6.7%) 455,968 ms
1 353,303 ms (5.2%) 353,303 ms
| 310,244 ms (4.6%) 310,244 ms
| 30,969 ms (0.5%) 0.000 ms
25,207 ms (0.4%) 25,207 ms
9,539 ms (0.1%) 9,539 ms
6,050 ms (0.1%) 6,050 ms
4,839 ms (0.1%) 4,839 ms
4,105 ms (0.1%) 4,105 ms
1,723 ms (0%) 1,723 ms
1,603 ms (0%) 1,603 ms
627 ms (0%) 627 ms 1,
503 ms (0%) 503 ms
478 ms (0%) 478 ms
330ms (0%) 330 ms
277 ms (0%) 277 ms
261 ms (0%) 261 ms
195 ms (0%) 195 ms

/8,482 ms
516,828 ms
455,968 ms
741,182 ms
762,245 ms
30,969 ms
984,707 ms
533,007 ms
523,691 ms
523,270 ms
4,105 ms
602,658 ms
1,603 ms
602,608 ms
503 ms
478 ms
47,196 ms
180,330 ms
43,497 ms
195 ms

estimation of the consumption
per method

mp

ns
ns

1,678,482 ms
0.000 ms
455,968 ms
476,195 ms
510,403 ms
0.000 ms
676,703 ms
16,179 ms
367,920 ms
6,442 ms
4,105 ms
420,271 ms
1,603 ms
1,113,598 ms
503 ms

478 ms
33,705 ms
125,319 ms
30,680 ms
195 ms

NN

—stimating the CPU consumption

public class Main {
public void foo() {
this.bar();

}
public void bar() { }

public static void main(String[] args) {
new Main().foo();

¥

42

—stimating the CPU consumption

public class Main {
public void foo() {
this.bar();

}
public void bar() { }

public static void main(String[] args) {
new Main().foo();

¥

) bar()
Y fo0() fo0()
_main

main main

main

» Time

—stimating the CPU consumption

bar()
Main() foO() foo()
main

main main main main

» Time

main consumes 100% of the execution time
Main() consumes 25%

foo() 50%

bar() 25%

44

—stimating the CPU consumption

bar()
Main() foO() foo()
main

main main main main

» Time

main consumes 100% of the execution time
Main() consumes 25%

foo() 50%

bar() 25%

This example is a rough approximation

45

—stimating the CPU consumption

Sampling the execution is typically done every 10
milliseconds (approx)

At each sample, info are extracted from the method
call stack

The control flow can also be obtained and used for
analysis

46

—Xample:

Profiling Geno Typer

[’d overview Monitor
Z genotyper.Main (pid 4115)
Sampler
Sample:) cru (&4 Memory Stop

Status: CPU sampling in progress

CPU samples Rl Time

=] Threads &) profiler

(@ [snapshot] 1:15:29 PM @

|| Settings

0o

Hot Spots - Me
org.netbeans.lib.profiler.server.ProfilerServer$SeparateCmdExecutionThread.run ()

| A shapshot of the CPU

Snapshot

org.netbe
org.netbe
org.netbe
org.netbe
org.netbe
org.netbe
genotype
org.netbe
genotype
org.netbe
genotype
genotyper.Individual.numberOfGenes ()
org.netbeans.lib.profiler.wireprotocol.WirelO.sendComplexCommand ()
genotyper.Population.evolve ()
org.netbeans.lib.profiler.server.ProfilerServer.setLastResponse ()

(i.e., invocations betwee
methods)

org.netbeans.lib.profiler.global.TransactionalSupport.endTrans ()
genotyper.Individual.geneAt ()
genotyper.Individual.crossOverWith ()
genotyper.Individual.geneAtPut ()

ora.netheans_lih nrofiler server svstem Threads aetAllThreadsInativel ()
R Method Name Filter (Contains)

Self Time [%] »

samples gives the control flow

N

Self Time

1,679,089 ...(24.8%)
1,678,893 ...(24.8%)
1,678,482 ...(24.8%)
516,828 ms (7.6%)

455,968 ms (6.7%)
353,303 ms (5.2%)
310,244 ms (4.6%)
30,969 ms (0.5%)
25,207 ms (0.4%)
9,539 ms (0.1%)
6,050 ms (0.1%)
4,839 ms (0.1%)
4,105 ms (0.1%)
1,723 ms (0%)
1,603 ms (0%)
627 ms (0%)
503 ms (0%)
478 ms (0%)
330 ms (0%)
277 ms (0%)
261 ms (0%)

195 ms (0%

Self Time (CPU)

0.000 ms
0.000 ms
1,678,482 ms
0.000 ms
455,968 ms
353,303 ms
310,244 ms
0.000 ms
25,207 ms
9,539 ms
6,050 ms
4,839 ms
4,105 ms
1,723 ms
1,603 ms
627 ms
503 ms
478 ms
330 ms
277 ms
261 ms

195 ms

Total Time

1,679,089 ms
1,679,089 ms
1,678,482 ms
516,828 ms
455,968 ms
741,182 ms
762,245 ms
30,969 ms
984,707 ms
533,007 ms
523,691 ms
523,270 ms
4,105 ms
602,658 ms
1,603 ms
1,602,608 ms
503 ms

478 ms
47,196 ms
180,330 ms
43,497 ms
195 ms

Thread Dump

Total Time (CPU)

=]
0.000 ms
195 ms
1,678,482 ms
0.000 ms
455,968 ms
476,195 ms
510,403 ms
0.000 ms
676,703 ms
16,179 ms
367,920 ms
6,442 ms
4,105 ms
420,271 ms
1,603 ms
1,113,598 ms
503 ms
478 ms
33,705 ms
125,319 ms
30,680 ms
195 ms

NN
N

—xample: Profiling GenoTyper

S & e
[‘@ Overview Monitor Threads) Sampler () Profiler RlENELE 21 lohd b b bpras o b

genotyper.Main (pid 4115)

Profiler Snapshot

éView: (7 Methods s Q||IE |5

Call Tree - Method Total Time [%] + Total Time Total Time (CPU) B
v 2 main I 1.679.089 ... (100%) 1,166,321 ms
v ¥ genotyper.Main.main () I 1.679,089 ... (100%) 1,166,321 ms
v ¥ genotyper.Population.evolve () I 1,590,468 ...(94.7%) 1,105,518 ms
» ¥ genotyper.Population.tournamentSelection () I 1,240,980 ...(73.9%) 864,400 ms
v ¥ genotyper.Individual.crossOverWith () . 178,620 ms (10.6%) 124,119 ms
» ¥ genotyper.Individual.geneAt () 1 46,790 ms (2.8%) 33,505 ms
» ¥ genotyper.Individual.<init> () | 45,418 ms (2.7%) 30,707 ms
» ¥ genotyper.Individual.numberOfGenes () | 43,433 ms (2.6%) 29,447 ms
» ¥ genotyper.Individual.geneAtPut () | 42,653 ms (2.5%) 30,134 ms
(@ java.lang.Integer.valueOf () 237 ms (0%) 237 ms
» ¥ org.netbeans.lib.profiler.server.ProfilerRuntimeCPUFulllnstr.rootMethodEntry () 47.2 ms (0%) 47.2 ms
@ Self time 39.8ms (0%) 39.8 ms
» ¥ genotyper.Population.fittestindividual () | 85,318 ms (5.1%) 56,540 ms
» ¥ genotyper.Population.create () | 42,878 ms (2.6%) 30,512 ms
> ¥ genotyper.Individual.mutate () | 42,044 ms (2.5%) 29,318 ms
@® Self time 627 ms (0%) 627 ms
» ¥ genotyper.Population.fittestindividual () | 83,716 ms (5%) 56,306 ms
» ¥ genotyper.Main.printWelcome () 4,105 ms (0.2%) 4,105 ms
» ¥ genotyper.Population.createAndGeneratelndividual () 595 ms (0%) 391 ms
» ¥ genotyper.Individual.fitness () 202 ms (0%) 0.000 ms
@ Self time 0.000 ms (0%) 0.000 ms
» 3 *** Profiler Agent Communication Thread I 1,679,089 ... (100%) 1,679,089 ms
» £ *** JFluid Monitor thread *** I 1679089 ... (100%) 195 ms
» 3 === Profiler Agent Special Execution Thread 6 _ 1,679,089 ... (100%) 0.000 ms
» = RMI TCP Connection(idle) I 31.099ms (100%) 280 ms

R Method Name Filter (Contains)

<]

What you should know!

How to measure an application performance”?
What is a warm up phase?

Why is it important to consider warm up”?

49

Can you answer these questions?

How the garbage collectors and the thread contribute
to the instability of the execution time?

How to measure the number of instances of a
particular class

What are the limitation of CPU sampling profiling?

50

License

http://creativecommons.org/licenses/by-sa/2.5

@creative
commons

C OMMONS DEED

Attribution-ShareAlike 2.5
You are free:

+ to copy, distribute, display, and perform the work
+ to make derivative works
- to make commercial use of the work

Under the following conditions:

@ Attribution. You must attribute the work in the manner specified by the author or licensor.

@ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

* For any reuse or distribution, you must make clear to others the license terms of this work.
+ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

51

