
Java Performance
Alexandre Bergel
http://bergel.eu

01-12-2021

Source

Java Performance: The Definitive Guide
O'Reilly Media, 978-1449358457

May 2014

2

Java Performance
Charlie Hunt, Binu John, 2011

978-0137142521

Source

3

Objective

 Lay out a basic methodology to measure the
performance of an application

 Describe the parameters that impact software
execution performance

4

Outline

1. The complete story

2. An approach to performance testing

3. Specific tools

4. Example: Genetic Algorithm

5

The complete story

 Write better algorithm

 Performance is based on how well the application is written

 There is no magical -XX:+RunReallyFast option to be provided to
the virtual machine

 A good algorithm (or a proper use of an API) is the most important
thing

6

The complete story

 Write less code

 A small well-written program will have tendency to run faster than
a large well-written program

 More code is poured into an application, harder it is to keep it fast

7

The complete story

 Premature optimization

 Donald Knuth said: “We should forget about small efficiencies, say
about 97% of the time; premature optimization is the root of all evil”

 Optimizing inevitably makes an application complex. It is important
to make sure that each optimization is _really_ necessary

8

The complete story

 The database is always the bottleneck

 If you are developing standalone java applications that use no external
resources, the performance of that application is all that matter

 Once a database is added, then the performance of both programs is
important

 In a distributed environment, (e.g., Java EE application server), a load
balancer, a database, and a backend enterprise information system,
then the app performance does not matter much

 Extracting multiple times the same information from the database is a
common cause of poor performance

 Or making too many requests instead of a single (but more complex)
one

9

The complete story

 Optimize the common case

 Not all performance aspects are equally important

 Focus should be given to the common use case scenario

 Write simple algorithms for most common operations

10

An approach to performance testing

 Measuring performance is fundamental in order to
take any action

 Here is a simple recipe
1. Define a set of representative program executions. These

executions are called benchmarks

2. Identify the relevant metrics to measure these executions (time
(e.g., seconds, milliseconds), memory (e.g., used bytes,
number of garbage collections, number of objects
instantiated)

3. Measure your benchmarks

4. Modify your application

5. Measure your benchmarks again and compare. Jump to 4
11

Metrics for measurements

 Measuring the time is a natural and intuitive approach

 However, time is a dimension that is difficult to
measure (*)

 Not stable: two executions produces two different execution times

 Not comparable across different machine: if you buy a new laptop,
then you can throw away all your measurements

 Very sensitive to the environment: having no warmup may
significantly impact your measurements

 Multiple time: wall-clock time is a natural measurement. However,
execution time is consumed within the application, within the virtual
machine (primitives or garbage collector), within the operating
system. So which notion of time do you need?

(*) Counting Messages as a Proxy for Average Execution Time in Pharo. Alexandre Bergel.
Proceedings of the 25th European Conference on Object-Oriented Programming (ECOOP'11)

Metrics for measurements

 In addition to measuring time, it is important to pick a
metric that is likely to drive your optimization effort

 Some metrics may greatly simplify the benchmarks
measurement

 For example

 number of instances of a particular class

 number of processed requests

 number of accesses to a data base

13

An approach to performance testing

 There are several kinds of benchmarks. We will revise
the most common kind of benchmarks, micro and
macro

 Micro benchmark

 Is a test designed to measure a very small unit of performance.

 E.g., the time to call a synchronized method versus a non
synchronized method

 E.g., the time to execute a recursive algorithm versus an iterative
implementation

14

Micro-benchmark

public class MicroBenchmark {
private int nLoops;

public MicroBenchmark(int l) { nLoops = l; }

public void doTest() {
long then = System.currentTimeMillis();
for (int i = 0; i < nLoops; i++) {

fibImpl1(35);
}
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

}
 …

15

Micro-benchmark

public class MicroBenchmark {
private int nLoops;

public MicroBenchmark(int l) { nLoops = l; }

public void doTest() {
long then = System.currentTimeMillis();
for (int i = 0; i < nLoops; i++) {

fibImpl1(35);
}
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

}
 …

This is what we are interested
in measuring

16

Micro-benchmark

…
private double fibImpl1(int n) {

if (n < 0) throw new IllegalArgumentException ("Must be > 0");
if (n == 0) return 0d;
if (n == 1) return 1d;
double d = fibImpl1(n - 2) + fibImpl1(n - 1);
if (Double.isInfinite(d)) throw new ArithmeticException("Overflow");
return d;

}

public static void main(String[] argv) {
new MicroBenchmark(2).doTest();

}
}

17

Micro-benchmark: Common pitfall

 A smart compiler can guess that the expression:
fibImpl1(35);

 produces a result that is not used (i.e., the result is
not stored somewhere)

 And since this computation does not do any side
effect, the compiler may simply remove it, to actually
have:
public void doTest() {

long then = System.currentTimeMillis();
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

}
 …

18

Micro-benchmark

public class MicroBenchmark {
private int nLoops;

public MicroBenchmark(int l) { nLoops = l; }

public void doTest() {
double l;
long then = System.currentTimeMillis();
for (int i = 0; i < nLoops; i++) {

l = fibImpl1(35);
}
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

}
 …

19

Micro-benchmark: Common pitfall

 A smart compiler can guess that the expression:
l = fibImpl1(35);

 is within a loop

 And maybe avoid the multiple executions of that
expression. In such a case, the argument has to vary,
picked from an array for example

 As you can see, micro-benchmarking is not a trivial
thing to do

20

Without prior execution

public void doTest() {
double l;
//fibImpl1(42);
long then = System.currentTimeMillis();
for (int i = 0; i < nLoops; i++) {

l = fibImpl1(42);
}
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

}

Elapsed time: 4548

21

With a prior execution

public void doTest() {
double l;
fibImpl1(42);
long then = System.currentTimeMillis();
for (int i = 0; i < nLoops; i++) {

l = fibImpl1(42);
}
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

}

Elapsed time: 3405

22

Warm-up period

public void doTest() {
double l;
fibImpl1(42);
long then = System.currentTimeMillis();
for (int i = 0; i < nLoops; i++) {

l = fibImpl1(42);
}
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

}

Elapsed time: 3405

Why is there a difference in execution time?
23

Warm-up period

Elapsed time: 3405

This additional execution
is called “warm-up”

public void doTest() {
double l;
fibImpl1(42);
long then = System.currentTimeMillis();
for (int i = 0; i < nLoops; i++) {

l = fibImpl1(42);
}
long now = System.currentTimeMillis();
System.out.println("Elapsed time: " + (now - then));

}

24

Warm-up

 Code performs better the more it is executed

 Micro-benchmarks must include a warm-up period

 To give the Just-In-Time compiler a chance to
produce optimal code

 A warm-up period is required; otherwise, the micro
benchmark is measuring the performance of
compilation rather than the code it is attempting to
measure

25

Warm-up

 A warm-up phase is typically designed to make the
compiler optimize code

 A warm-up should not involve access to resources

 E.g., when an application reads a file, the OS caches the file into
memory. Reading the file a second time will therefore be faster

26

An approach to performance testing

 Macro-Benchmark

 Complex systems are more than the sum of their part

 They will behave quite differently when those parts are assembled

27

Performance Anti-Patterns

 Anti-patterns are certain patterns in software
development that are considered bad programming
practices.

 A number of anti-patterns have been identified

 Fixing Performance at the End of the Project

 Measuring and Comparing the Wrong Things

 Algorithmic Antipathy

 Reusing Software

 Iterating Because That’s What Computers Do Well

 …

Performance Anti-Patterns

 …

 Premature Optimization

 Focusing on What You Can See Rather Than on the Problem

 Software Layering

 Excessive Numbers of Threads

 Asymmetric Hardware Utilization

 Not Optimizing for the Common Case

 https://queue.acm.org/detail.cfm?id=1117403

Specific tools: monitoring system
resource consumption

 Outside Java, several tools may be used, accessible
from the command line:

 vmstat, top, iostat, nicstat

 These tools are useful to check for the disk, memory,
and CPUs consumption

 Naturally, graphical tools exists, however, it may be
useful to programmatically get these info

30

The case of web applications

 There are many open source and commercial load-
generating tools

 Faban (http://faban.org) is used to measure the
performance of a simple URL

 Run a simple GET request of logo.gif for 1000 clients:
 fhb -J -server -J -Xmx3500m -J -Xms3500m -c 1000 http://localhost:8000/logo.gif

Specific tools: monitoring Java
activities

 The Java-Development-Kit offers many command
lines tools

 jconsole: provide a graphical view of JVM activities, including
thread usage, class usage

 jvisualvm: a GUI tool to monitoring a JVM, profile a running
application, and analyze JVM heap

 jcmd, jconsole, jhat, map, info, jstack, …

32

Example: Genetic Algorithm

 Very useful algorithm from the field of Artificial
Intelligence

 Mimic the process of natural selection of living
species:

 A population is made of individual

 An individual has a genotype, also called ADN

 At each generation, only the individual that are the closest of the
problem solution survive

 At each generation, individual’s genes may be subject to a cross-
over or a mutation

33

Example: Profiling GenoTyper

 Run Main.java and execute jvisualvm in a terminal

34

Example: Profiling GenoTyper

35

Example: Profiling GenoTyper

These picks indicate the
activity of the garbage

collector.
Each time the blue line goes
down, a garbage collection

occurred
36

Example: Profiling GenoTyper

The yellow portion is the
amount of free memory used

by the VM. Note that this
amount can grow and shrink

37

Example: Profiling GenoTyper

This graph indicates the CPU
usage during the program

execution. This application was
run on a quad-core machine

38

Example: Profiling GenoTyper

The number of thread is
constant. Not a bit surprise

since GenoTyper does not use
threads

39

Example: Profiling GenoTyper

40

Example: Profiling GenoTyper

The CPU samples tab give an
estimation of the consumption

per method

41

Estimating the CPU consumption

public class Main {
 public void foo() {
 this.bar();
 }
 public void bar() { }

 public static void main(String[] args) {
 new Main().foo();
 }

}

42

Estimating the CPU consumption

public class Main {
 public void foo() {
 this.bar();
 }
 public void bar() { }

 public static void main(String[] args) {
 new Main().foo();
 }

}

main main main
Main() foo()

main
foo()
bar()

Time43

Estimating the CPU consumption

main main main
Main() foo()

main
foo()
bar()

Time

main consumes 100% of the execution time
Main() consumes 25%
foo() 50%
bar() 25%

44

Estimating the CPU consumption

main main main
Main() foo()

main
foo()
bar()

Time

main consumes 100% of the execution time
Main() consumes 25%
foo() 50%
bar() 25%

This example is a rough approximation
45

Estimating the CPU consumption

 Sampling the execution is typically done every 10
milliseconds (approx)

 At each sample, info are extracted from the method
call stack

 The control flow can also be obtained and used for
analysis

46

Example: Profiling GenoTyper

A snapshot of the CPU
samples gives the control flow

(i.e., invocations between
methods)

47

Example: Profiling GenoTyper

48

What you should know!

 How to measure an application performance?

 What is a warm up phase?

 Why is it important to consider warm up?

49

Can you answer these questions?

 How the garbage collectors and the thread contribute
to the instability of the execution time?

 How to measure the number of instances of a
particular class

 What are the limitation of CPU sampling profiling?

50

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

51

