
Exceptions in Java
Alexandre Bergel
http://bergel.eu

29-11-2021

The Java programming language uses exceptions
to handle errors and other exceptional events

This lecture is about learning
when, how, why to use exceptions

Source

https://docs.oracle.com/javase/tutorial/essential/exceptions/

Roadmap

1.Why an exception mechanism?

2.What is an exception?

3.The Catch or Specify Requirement

4.How to throw exception

5.Operations on an exception

6.Exception to abort recursion

Roadmap

1.Why an exception mechanism?

2.What is an exception?

3.The Catch or Specify Requirement

4.How to throw exception

5.Operations on an exception

6.Exception to abort recursion

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

What happens if the
file can’t be opened?

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

What happens if the length
of the file can’t be

determined?

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

What happens if enough
memory can’t be allocated?

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

What happens if the read
fails?

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

What happens if the file can’t
be closed?

errorCodeType readFile {
 initialize errorCode = 0;

 open the file;
 if (theFileIsOpen) {
 determine the length of the file;
 if (gotTheFileLength) {
 allocate that much memory;
 if (gotEnoughMemory) {
 read the file into memory;
 if (readFailed) {
 errorCode = -1;
 }
 } else {
 errorCode = -2;
 }
 } else {
 errorCode = -3;
 }
 close the file;
 if (theFileDidntClose && errorCode == 0) {
 errorCode = -4;
 } else {
 errorCode = errorCode and -4;
 }
 } else {
 errorCode = -5;
 }
 return errorCode;
}

Without
exception

With
exceptionreadFile {

 try {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
 } catch (fileOpenFailed) {
 doSomething;
 } catch (sizeDeterminationFailed) {
 doSomething;
 } catch (memoryAllocationFailed) {
 doSomething;
 } catch (readFailed) {
 doSomething;
 } catch (fileCloseFailed) {
 doSomething;
 }
}

Roadmap

1.Why an exception mechanism?

2.What is an exception?

3.The Catch or Specify Requirement

4.How to throw exception

5.Operations on an exception

6.Exception to abort recursion

What is an exception?

 When an error occurs in a method, the method
creates an object, and hands it to the runtime system

 An exception is an event that occurs during the
execution of a program that disrupts the normal flow of
instructions

 Creating an exception object and handling it to the
system is called throwing an exception

Creating a file with an empty path

 package java.io;
 public class File implements Serializable, Comparable<File> {
 public File(String pathname) {

 if (pathname == null) {
 throw new NullPointerException();
 }
 this.path = fs.normalize(pathname);
 this.prefixLength = fs.prefixLength(this.path);

 }
 ...
 }

Creating a file with an empty path

 package java.io;
 public class File implements Serializable, Comparable<File> {
 public File(String pathname) {

 if (pathname == null) {
 throw new NullPointerException();
 }
 this.path = fs.normalize(pathname);
 this.prefixLength = fs.prefixLength(this.path);

 }
 ...
 }

new File(“/tmp/foo”) => OK

new File(null) => throws a NullPointerException

Defining an exception class

 package java.lang;
 public class NullPointerException extends RuntimeException {
 ...
 }

Looking for an handler

 After a method throws an exception, the runtime
system attempts to find something to handle it

 The set of possible "somethings" to handle the
exception is the ordered list of methods that had been
called to get to the method where the error occurred

 The list of methods is known as the call stack

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

Where the
program
started

Where the
error occured

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

processed in an
exception
handler

Searching the call stack

 The application execution continue in the frame that
contains the handler. The frames above the handler are
discarded.

main

method with handler

processed in an
exception
handler

Searching the call stack

 The block of code handling an exception is called an
exception handler

 The search begins with the method in which the error
occurred and proceeds through the call stack in the
reverse order in which the methods were called

 The exception handler chosen is said to catch the
exception

And if there is no handler?

main

method with no handler

method with no handler

method with error

And if there is no handler?

main

method with no handler

method with no handler

method with error

And if there is no handler?

main

method with no handler

method with no handler

method with error

And if there is no handler?

main

method with no handler

method with no handler

method with error

And if there is no handler?

main

method with no handler

method with no handler

method with error

And if there is no handler?

main

method with no handler

method with no handler

method with error

The program prints the stack and terminates

And if there is no handler?

 If the runtime system exhaustively searches all the
methods on the call stack without finding an
appropriate exception handler the runtime system
(and, consequently, the program) terminates.

Roadmap

1.Why an exception mechanism?

2.What is an exception?

3.The Catch or Specify Requirement

4.How to throw exception

5.Operations on an exception

6.Exception to abort recursion

The Catch or Specify Requirement

 Valid Java programming language code must honor
the Catch or Specify Requirement

 This means that code that might throw certain
exceptions must be enclosed:

 a try statement that catches the exception. The try must provide a
handler for the exception

 a method that specifies that it can throw the exception. The
method must provide a throws clause that lists the exception

 Code that fails to honor the Catch or Specify
Requirement will not compile

package java.io;
public abstract class OutputStream implements Closeable, Flushable {
 ...

 public void write(byte b[]) throws IOException {

 write(b, 0, b.length);
 }

public void write(byte[] b, int off, int len) throws IOException {
 ... throw new IOException() ...
}

}

Marked as “throws”

The Three Kinds of Exceptions

 Not all exceptions are subject to the Catch or Specify
Requirement

 1 - Checked exception

 exceptional condition that a well-written application should
anticipate and recover from

 subject to the catch or specify requirement

 all exceptions are checked exceptions, except for those indicated
by Error, RuntimeException, and their subclasses

 Need to specify the exception in a throws clause when defining the
method that can throw it

The Three Kinds of Exceptions

 2 - Error

 exception conditions that are external to the application

 the application usually cannot anticipate or recover from

 e.g., hardware or system malfunction, java.lang.IOError

 Error are not subject to the Catch or Specify Requirement

 No need to specify the exception when defining the method

 Classes that models errors are subclasses of java.lang.Error

The Three Kinds of Exceptions

 3 - Runtime exception

 exceptional conditions that are internal to the application

 the application usually cannot anticipate or recover from

 e.g., bugs, logic error, improper use of an API, NullPointerException

 The application can catch this exception, but it makes more sense
to eliminate the bug that caused the exception to occur

 Runtime exceptions are not subject to the Catch or Specify
Requirement

 Runtime exceptions are those indicated by RuntimeException and
its subclasses.

 Errors and runtime exceptions are collectively known
as unchecked exceptions.

Which kind of exception should I use?

 It is likely that you have to use checked exception in
your application

 Create a subclass of java.lang.Exception

 Use throw, try and catch to raise an exception and add the
proper handler in case of something goes as not expected

 Except in some rare cases, you can define an handler
for error (i.e., a subclass of Error)

 This could be the case for example that in your application you
consume a lot of memory, and telling the user when no memory is
left

 You will probably never have to create a subclass of
Error or RuntimeError

Roadmap

1.Why an exception mechanism?

2.What is an exception?

3.The Catch or Specify Requirement

4.How to throw exception

5.Operations on an exception

6.Exception to abort recursion

Throwing an exception

 Use the Java keyword “throw”

 Throwing an exception is realized with the instruction:
 throw object

 where object is an object having the type Throwable

More than one catch is possible

 try {
 ...
 } catch (ExceptionType1 name) {
 ...
 } catch (ExceptionType2 name) {
 ...
 }

The catch clauses are ordered. The first handler that matches for
the class of the exception is used.

Example

class Example {
 static class E extends Exception {}
 static class E2 extends E {}
 static void foo() throws E {
 throw new E();
 }
 public static void main(String[] argv) {
 try {
 foo();
 }
 catch(E2 e){System.out.println("Handler E2");}
 catch(E e){System.out.println("Handler E");}
 }
}

class Example {
 static class E extends Exception {}
 static class E2 extends E {}
 static void foo() throws E {
 throw new E();
 }
 public static void main(String[] argv) {
 try {
 foo();
 }
 catch(E2 e){System.out.println("Handler E2");}
 catch(E e){System.out.println("Handler E");}
 }
}

Dynamic type of the exception is used
to look for the hander

The execution prints “Handler E” because foo() throws an
instance of E

class Example {
 static class E extends Exception {}
 static class E2 extends E {}
 static void foo() throws E {
 throw new E();
 }
 public static void main(String[] argv) {
 try {
 foo();
 }
 catch(E e){System.out.println("Handler E");}
 catch(E2 e){System.out.println("Handler E2");}
 }
}

Not compiling example

class Example {
 static class E extends Exception {}
 static class E2 extends E {}
 static void foo() throws E {
 throw new E();
 }
 public static void main(String[] argv) {
 try {
 foo();
 }
 catch(E e){System.out.println("Handler E");}
 catch(E2 e){System.out.println("Handler E2");}
 }
}

Not compiling example

E is caught before E2

class Example {
 static class E extends Exception {}
 static class E2 extends E {}
 static void foo() throws E {
 throw new E();
 }
 public static void main(String[] argv) {
 try {
 foo();
 }
 catch(E e){System.out.println("Handler E");}
 catch(E2 e){System.out.println("Handler E2");}
 }
}

Not compiling example

This code does not compile because catch(E2) cannot be used. The
handler catch(E) comes before catch(E2), and E is a supertype of E2

Dynamic type of the exception is used
to look for the hander

class Example {
 static class E extends Exception {}
 static class E2 extends E {}
 static void foo() throws E {
 throw new E2();
 }
 public static void main(String[] argv) {
 try {
 foo();
 }
 catch(E2 e){System.out.println("Handler E2");}
 catch(E e){System.out.println("Handler E");}
 }
}

The execution prints “Handler E2” because foo() throws an

instance of E2, independently if foo is declared as “throws E”

Dynamic type of the exception is used
to look for the hander

The execution prints “Handler E2” because foo() throws an
instance of E2, independently if foo is declared as “throws E”

class Example {
 static class E extends Exception {}
 static class E2 extends E {}
 static void foo() throws E {
 throw new E2();
 }
 public static void main(String[] argv) {
 try {
 foo();
 }
 catch(E2 e){System.out.println("Handler E2");}
 catch(E e){System.out.println("Handler E");}
 }
}

throws and try/catch combined

class Ex1 extends Exception {}
class Ex2 extends Exception {}
class Example3 {
 static void foo() throws Ex1 { throw new Ex1();}
 static void bar() throws Ex2 { throw new Ex2();}

 static void zork() throws Ex2 {
 try {
 foo();
 bar();
 }
 catch(Ex1 e) { }
 }
}

throws and try/catch combined

class Ex1 extends Exception {}
class Ex2 extends Exception {}
class Example3 {
 static void foo() throws Ex1 { throw new Ex1();}
 static void bar() throws Ex2 { throw new Ex2();}

 static void zork() throws Ex2 {
 try {
 foo();
 bar();
 }
 catch(Ex1 e) { }
 }
}

Sequentially calling foo and bar may
throws exception Ex1 and Ex2

throws and try/catch combined

class Ex1 extends Exception {}
class Ex2 extends Exception {}
class Example3 {
 static void foo() throws Ex1 { throw new Ex1();}
 static void bar() throws Ex2 { throw new Ex2();}

 static void zork() throws Ex2 {
 try {
 foo();
 bar();
 }
 catch(Ex1 e) { }
 }
}

Ex1 is caught

Ex2 is may be
thrown. The

caller of zork()
should take care

of this then

Exception may be thrown again

class Ex1 extends Exception {}
class Ex2 extends Exception {}
class Example3 {
 static void foo() throws Ex1 { throw new Ex1();}
 static void bar() throws Ex2 { throw new Ex2();}

 static void zork() throws Ex2, Ex1 {
 try {
 foo();
 bar();
 }
 catch(Ex1 e) { throw e; }
 }
}

Exception may be thrown again

class Ex1 extends Exception {}
class Ex2 extends Exception {}
class Example3 {
 static void foo() throws Ex1 { throw new Ex1();}
 static void bar() throws Ex2 { throw new Ex2();}

 static void zork() throws Ex2, Ex1 {
 try {
 foo();
 bar();
 }
 catch(Ex1 e) { throw e; }
 }
}

We throw the same

exception again

zork() may throw
either a Ex1 or

an Ex2

The Finally block

 The finally block always executes when the try block
exits

 Putting cleanup code in a finally block is always a
good practice, even when no exceptions are
anticipated
 try {
 ...
 }
 catch (ExceptionType1 name) {}
 catch (ExceptionType2 name) {}
 finally {
 // cleaning code here
 }

The Finally block

 The finally block is a key tool for preventing resource
leaks

 When closing a file or otherwise recovering resources,
place the code in a finally block to ensure that
resource is always recovered

Exiting the try block...

class Example2 {
 static int foo() {
 try {
 return 5;
 }
 finally {
 return 10;
 }
 }
 public static void main(String[] argv) {
 System.out.println(foo());
 }
}

What does the following print?

Exiting the try block...

class Example2 {
 static int foo() {
 try {
 return 5;
 }
 finally {
 return 10;
 }
 }
 public static void main(String[] argv) {
 System.out.println(foo());
 }
}

It prints 10, since the finally is
executed after the control flow

has exited the try block

Specifying the Exceptions Thrown by
a Method

 It is appropriate to early catch exceptions

 Sometimes, however, it's better to let a method
further up the call stack handle the exception

 You need to use the throws keyword to delegate the
responsibility of handling the error

 Exception are thrown using the throw keyword

 throw takes an expression as argument

Roadmap

1.Why an exception mechanism?

2.What is an exception?

3.The Catch or Specify Requirement

4.How to throw exception

5.Operations on an exception

6.Exception to abort recursion

Operations on an exception

 Defined in the Throwable class

Creating a file with an empty path

 package java.io;
 public class File implements Serializable, Comparable<File> {
 public File(String pathname) {

 if (pathname == null) {
 throw new NullPointerException();
 }
 this.path = fs.normalize(pathname);
 this.prefixLength = fs.prefixLength(this.path);

 }
 ...
 }

new File(“/tmp/foo”) => OK

new File(null) => throws a NullPointerException

Why having this check in File(String)?

Operations on an exception

 In Java, exceptions can only be thrown, caught and
re-thrown

 Java is quite limited in that respect

 Other operations are possible

 For example, in Pharo

 retry: to re-evaluate the protected block

 retryUsing: to provide a value in place and re-evaluate the
protected block

 resume: resume the execution at the failure point

Roadmap

1.Why an exception mechanism?

2.What is an exception?

3.The Catch or Specify Requirement

4.How to throw exception

5.Operations on an exception

6.Exception to abort recursion

Aborting recursion

 Exiting deep recursions may be complicated time to
time

 Checks may be necessary at different places

Aborting recursion

public class Matrix3D {
private int[][][] table;

Matrix3D() {
int[] line0 = { 0, 0, 0 };
int[] line1 = { 1, 0, 0 };
int[][] mat1 = new int[][] { line0, line0, line0 };
int[][] mat2 = new int[][] { line1, line0, line0 };
int[][] mat3 = new int[][] { line0, line1, line0 };
table = new int[][][] { mat1, mat2, mat3 };

}
…
public static void main(String[] argv) {

Matrix3D m = new Matrix3D();
System.out.println(m.numberOf2DMatricesWith(1));

}
}

Aborting recursion

int numberOf2DMatricesWith(int v) {
int nbOfMatching = 0;
for (int z = 0; z < table.length; z++) {

boolean doesContain = false;

for (int y = 0; y < table.length; y++) {
for (int x = 0; x < table[y].length; x++) {

if (table[z][y][x] == v)
doesContain = true;

}
}
if (doesContain)

nbOfMatching++;
}
return nbOfMatching;

}

What do you think about this method?

Aborting recursion

int numberOf2DMatricesWith(int v) {
int nbOfMatching = 0;
for (int z = 0; z < table.length; z++) {

try {
for (int y = 0; y < table.length; y++) {

for (int x = 0; x < table[y].length; x++) {
if (table[z][y][x] == v)

throw new Throwable();
}

}
} catch (Throwable e) {

nbOfMatching++;
}

}
return nbOfMatching;

}

With this version, no unnecessary iteration is done

Aborting recursion

 Could be handy in some case.

 But don’t abuse it!

Things we did not see

 Try with resources

 Multiple exceptions declaration

What you should know

 Why an exception mechanism help managing errors?

 How to throw an exception?

 What are the different kinds of exceptions?

 How does the system look for an handler?

 What is the difference between a checked and
unchecked exception?

 Why the finally block is appropriate for clean-up
code?

Can you answer these questions?

 Why the static type of the throw exception is not
taken into account when looking for a handler?

 Can you provide an example for each the 3 kind of
exceptions?

 How to decide the kind of exception when designing
a class exception?

 How exceptions and the program execution flow are
related?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

