
Alexandre Bergel
Computer Science Department - FCFM
University of Chile
http://bergel.eu abergel@dcc.uchile.cl @AlexBergel

Introduction To Unicode
Making the digital world more inclusive

1

unicode.org2

https://en.wikipedia.org/wiki/Teleprinter#/media/File:WACsOperateTeletype.jpg

https://en.wikipedia.org/wiki/Teleprinter#/media/File:Siemens_t37h_without_cover.jpg4

ASCII

• Supports meaningful exchange of text data

• Proposed in 1963

• Coded on 7-bits => 128 characters

• A = 65

• Very limited, not even adequate for English

• e.g., “résumé” is an English word

• Only letters, digits, and punctuation are considered as printable characters

5

6

Line feed Carriage return

7

“Hello\nWorld” Line feed
Hello
World Carriage return

8

https://www.pxfuel.com/en/free-photo-xcoyx

“Hello\nWorld” Hello
World Line feed Carriage return

9

Many other standards

• ASCII has many limitations

• Many industrials proposed their own improvement

• MacRoman from Apple

• IBM’s EBCDIC-based code pages

• Microsoft, SAP, Oracle, …

10

Unicode

• “Unicode is an information technology standard for the consistent encoding,
representation, and handling of text expressed in most of the world's writing
systems.”

• Designed to improve the mess inherited from telegraph machine

• Enable world-wide interchange of data

• Multilingual

• A single implementation

• Support legacy data
11

Writing direction

12

Character composition

13

Overview of Unicode

14

Unicode

• > 143,859 characters

• > 154 modern and historical scripts

• Script: collection of letters and other written signs used to represent textual
information

15

Character model

• Four layers

• Level 1: Abstract character set => What is a character?

• Level 2: Coded character set => How to name and enumerate abstract
character?

• Level 3: Character encoding forms => How to represent coded characters in a
computer?

• Level 4: Character encoding schemes => how to serialize characters into
bytes?

16

• Character: The smallest component of written language that has semantic value

• Wide variation across scripts:

• Alphabetic => each character is a letter. Both consonant and vowel have equal status

• Syllabary => each character is a syllab

• E.g., Hiragana (あ, せ, ぬ), Cheerokee (Ꭶ, Ꮊ, Ꮚ), Vai (ꔀ, ꔤ, ꕱ)

• Abjad => each character is a consonant, vowel marking is absent

• E.g., Hebrew (ג, ה, ט), Punic (, ,)

• Abugidas => each character is a sequence of consonant - vowel, the vowel notation is secondary

• Logographic => each character is a word

• E.g., Egyptian hieroglyphs, emoji (although still debated)

• Abstract character: a unit of information used for the organization, control, or representation of textual data

Abstract character set (level 1/4)

17

Coded character set (level 2/4)

• Give a name and a code point to each abstract character

• Name: LATIN CAPITAL LETTER A

• Code point: pure number

• Legal value: U+0000 - U+10FFFF

• Space for >1M different characters

• Characters that are specific to a script are mostly grouped

• No connection to the computer

18

The first 256 characters
U+0000

U+00FF
19

The first 256 characters

Digit 0 - 9

20

The first 256 characters

LATIN LETTER A - Z

21

The first 256 characters

LATIN LETTER a - z

22

The first 256 characters

LATIN LETTER a - z

23

The first 256 characters

LATIN LETTER with

Accents: Ú ë í

24

The first 65K characters

25

The first 65K characters

empty

empty
26

The first 65K characters

Yi

(ethnic group in China)

ꀀ

ꀖ

ꀸ

ꁖ

ꁶ

ꂑ

ꂮ

ꃍ

ꃢ

ꄀ

ꄚ

ꄶ

ꅑ

27

The first 65K characters

Hangul

(Korean alphabet)

28

The first 65K characters

Arabic29

The second 65K characters
Cuneiform, invented
by Sumerians in
ancient
Mesopotamia

30

The second 65K characters

emoji31

The second 65K characters

Mathematics

32

The 1 114 111 Unicode characters

17 planes of 65K each

33

The 1 114 111 Unicode characters

CJK (common character between
Chinese, Korean, and Japanese)

34

35

Character encoding forms: UTFs (level 3/4)

• Representation of a scalar value in a computer

• No escape: a simple juxtaposition is a concatenation

36

Character latin A

• abstract character:

• the letter A of the Latin script

• coded character:

• name: LATIN CAPITAL LETTER A

• code point: U+0041

• encoding forms:

• UTF-8: 41

• UTF-16: 0041

37

Character Hiragana MA

• abstract character:

• the letter ま of the Hiragana script (Japanese, each made of 3 strokes)

• coded character:

• name: HIRAGANA LETTER MA

• code point: U+307E

• encoding forms:

• UTF-8: E3 81 BE

• UTF-16: 307E

38

Unicode encodes characters, not glyphs

• The character U+0041 can equally well be displayed as A, A, A, A, A, …

• Sometimes different glyphs may be required

• Egg in French is written œuf

• going from characters to glyphs: shaping

39

Zero Width Joiner (ZWJ)

40

👩 + ❤ + 👩 = 👩👩

👩 + ❤ + 👩 = 👩👩
The invisible glue character is called a Zero Width Joiner (ZWJ)[1] and a sequence of
emojis joined together with a ZWJ character is known as an Emoji ZWJ Sequence.

👁🗨 = 👁+🗨

👨👨 = 👱+❤+💋+👱

👪 = 👱+👩+👧+👦

👯 takes one character (i.e., it has a single code point)

👩👩 includes three emojis but a total of six code points

👯 takes one character (i.e., it has a single code point)

👩👩 includes three emojis but a total of six code points

https://blog.emojipedia.org/emoji-zwj-sequences-three-letters-many-possibilities/

https://www.fluentpython.com/extra/multi-character-emojis/

Common practical issues

47

48

49

public class Test {

 public static void main(String[] args) throws Exception {
 String french = "Les élèves ont des œufs";
 String spanish = "Las ñiñas y los ñiños";
 String japanese = "⽇本語";

 System.out.println(french);
 System.out.println(spanish);
 System.out.println(japanese);

 System.out.println("UTF-8 French: " + new String(french.getBytes("UTF-8")));
 System.out.println("UTF-8 Spanish: " + new String(spanish.getBytes("UTF-8")));
 System.out.println("UTF-8 Japanese: " + new String(japanese.getBytes("UTF-8")));

 System.out.println("ISO-8859-1 French: " + new String(french.getBytes("ISO-8859-1")));
 System.out.println("ISO-8859-1 Spanish: " + new String(spanish.getBytes("ISO-8859-1")));
 System.out.println("ISO-8859-1 japanese: " + new String(japanese.getBytes("ISO-8859-1")));
 }
}

50

public class Test {

 public static void main(String[] args) throws Exception {
 String french = "Les élèves ont des œufs";
 String spanish = "Las ñiñas y los ñiños";
 String japanese = "⽇本語";

 System.out.println(french);
 System.out.println(spanish);
 System.out.println(japanese);

 System.out.println("UTF-8 French: " + new String(french.getBytes("UTF-8")));
 System.out.println("UTF-8 Spanish: " + new String(spanish.getBytes("UTF-8")));
 System.out.println("UTF-8 Japanese: " + new String(japanese.getBytes("UTF-8")));

 System.out.println("ISO-8859-1 French: " + new String(french.getBytes("ISO-8859-1")));
 System.out.println("ISO-8859-1 Spanish: " + new String(spanish.getBytes("ISO-8859-1")));
 System.out.println("ISO-8859-1 japanese: " + new String(japanese.getBytes("ISO-8859-1")));
 }
}

51

52

53

Useful tips

• Never, ever use Windows’ Notepad to write code

• It uses ISO 8859-1, which leads to numerous problems

• Use UTF-8 all the way down:

• For the text files used in your program

• For the source code used in your program

• Make sure that your programming environment is set to UTF-8

• Always specify UTF-8 when opening for reading or writing a textual file

54

Useful tips

Reader reader = new InputStreamReader(new FileInputStream("/tmp/foo.txt", "UTF-8"));
Writer writer = new OutputStreamWriter(new FileOutputStream("/tmp/foo.txt", "UTF-8"));

Text files:

String files:

byte[] bytesInDefaultEncoding = someString.getBytes(); // May generate corrupt bytes.
byte[] bytesInUTF8 = someString.getBytes("UTF-8"); // Correct.
String stringUsingDefaultEncoding = new String(bytesInUTF8); // Unknown bytes becomes "?".
String stringUsingUTF8 = new String(bytesInUTF8, "UTF-8"); // Correct.

55

Fun

\u0070\u0075\u0062\u006C\u0069\u0063\u0020\u0020\u0020\u0063\u006C\u0061\u0073\u0073\u0020\u0020
\u0055\u006E\u0069\u0063\u006F\u0064\u0065\u0020\u007B\u0020\u0070\u0075\u0062\u006C\u0069\u0063
\u0020\u0020\u0073\u0074\u0061\u0074\u0069\u0063\u0020\u0020\u0076\u006F\u0069\u0064\u0020\u0020
\u006D\u0061\u0069\u006E\u0020\u0028\u0020\u0053\u0074\u0072\u0069\u006E\u0067\u0020\u005B\u005D
\u0061\u0072\u0067\u0073\u0020\u0029\u0020\u007B\u0020\u0053\u0079\u0073\u0074\u0065\u006D\u002E
\u006F\u0075\u0074\u002E\u0070\u0072\u0069\u006E\u0074\u006C\u006E\u0028\u0022\u0049\u0022\u002B
\u0022\u0020\u2665\u0020\u0055\u006E\u0069\u0063\u006F\u0064\u0065\u0022\u0029\u003B\u007D\u007D

56

The Unicode Consortium

57

Mission

• “making the digital world more inclusive”

• “Everyone in the world should be able to use their own language on phones
and computers.”

58

Membership

• The effort of the Unicode Consortium is sponsored by membership fees

• Anyone can be a membership (student = 35 USD, corporation up to 21K USD)

• A member

• has access to the technical discussions

• can vote on many aspects of the consortium

• Actual members are large IT companies and some governments

59

Adopt a character

• Do you want your company to be associated with the emoji?

• Do you want to declare your love with a or dedication for your
partner?

60

61

62

Final words

63

Unicode

• Awesome environment to learn about a central aspect to many other cultures

• UTF-8, UTF-8, UTF-8, UTF-8, UTF-8, UTF-8, UTF-8, UTF-8, …

• Make sure you use

• a proper professional programming environment and

• text editing tool

64

http://blog.unicode.org/2021/09/announcing-unicode-standard-version-140.html

References

• https://www.unicode.org

• http://reedbeta.com/blog/programmers-intro-to-unicode/

• https://balusc.omnifaces.org/2009/05/unicode-how-to-get-characters-right.html

• https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-
positively-must-know-about-unicode-and-character-sets-no-excuses/

• https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-
positively-must-know-about-unicode-and-character-sets-no-excuses/

• https://en.wikipedia.org/wiki/Mojibake

• https://www.unicode.org/notes/tn23/Muller-Slides+Narr.pdf

• http://www.unicode.org/versions/Unicode13.0.0/ch02.pdf#G14527

66

Alexandre Bergel
Computer Science Department - FCFM
University of Chile
http://bergel.eu abergel@dcc.uchile.cl @AlexBergel

Introduction To Unicode
Making the digital world more inclusive

67

Overview

• 29 publicly available version

• Version 1.1.5 established in 1995

• Version 14.0.0 defined in March 2020

