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ASCII

• Supports meaningful exchange of text data


• Proposed in 1963


• Coded on 7-bits => 128 characters


• A = 65


• Very limited, not even adequate for English


• e.g., “résumé” is an English word 


• Only letters, digits, and punctuation are considered as printable characters
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Line feed Carriage return
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“Hello\nWorld” Line feed
Hello
World Carriage return
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“Hello\nWorld” Hello
World Line feed Carriage return
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Many other standards

• ASCII has many limitations


• Many industrials proposed their own improvement 


• MacRoman from Apple


• IBM’s EBCDIC-based code pages


• Microsoft, SAP, Oracle, …
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Unicode

• “Unicode is an information technology standard for the consistent encoding, 
representation, and handling of text expressed in most of the world's writing 
systems.” 

• Designed to improve the mess inherited from telegraph machine 

• Enable world-wide interchange of data 

• Multilingual


• A single implementation


• Support legacy data
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Writing direction
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Character composition
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Overview of Unicode
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Unicode

• > 143,859 characters


• > 154 modern and historical scripts


• Script: collection of letters and other written signs used to represent textual 
information
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Character model

• Four layers


• Level 1: Abstract character set => What is a character?


• Level 2: Coded character set => How to name and enumerate abstract 
character? 

• Level 3: Character encoding forms => How to represent coded characters in a 
computer?


• Level 4: Character encoding schemes => how to serialize characters into 
bytes?
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• Character: The smallest component of written language that has semantic value 

• Wide variation across scripts: 


• Alphabetic => each character is a letter. Both consonant and vowel have equal status


• Syllabary => each character is a syllab


• E.g., Hiragana (あ, せ, ぬ), Cheerokee (Ꭶ, Ꮊ, Ꮚ), Vai (ꔀ, ꔤ, ꕱ)


• Abjad => each character is a consonant, vowel marking is absent


• E.g., Hebrew (ג, ה, ט), Punic ( , , )


• Abugidas => each character is a sequence of consonant - vowel, the vowel notation is secondary


• Logographic => each character is a word 


• E.g., Egyptian hieroglyphs, emoji (although still debated)


• Abstract character: a unit of information used for the organization, control, or representation of textual data

Abstract character set (level 1/4)
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Coded character set (level 2/4)

• Give a name and a code point to each abstract character


• Name: LATIN CAPITAL LETTER A


• Code point: pure number


• Legal value: U+0000 - U+10FFFF


• Space for >1M different characters 


• Characters that are specific to a script are mostly grouped 

• No connection to the computer
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The first 256 characters 
U+0000

U+00FF
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The first 256 characters 

Digit 0 - 9
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The first 256 characters 

LATIN LETTER A - Z
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The first 256 characters 

LATIN LETTER a - z
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The first 256 characters 

LATIN LETTER a - z
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The first 256 characters 

LATIN LETTER with


Accents: Ú ë í
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The first 65K characters 
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The first 65K characters 

empty

empty
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The first 65K characters 

Yi


(ethnic group in China)

ꀀ

ꀖ

ꀸ

ꁖ

ꁶ

ꂑ

ꂮ

ꃍ

ꃢ

ꄀ

ꄚ

ꄶ

ꅑ
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The first 65K characters 

Hangul


(Korean alphabet)
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The first 65K characters 

Arabic29



The second 65K characters 
Cuneiform, invented 
by Sumerians in 
ancient 
Mesopotamia
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The second 65K characters 

emoji31



The second 65K characters 

Mathematics
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The 1 114 111 Unicode characters 

17 planes of 65K each
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The 1 114 111 Unicode characters 

CJK (common character between 
Chinese, Korean, and Japanese)
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Character encoding forms: UTFs (level 3/4)

• Representation of a scalar value in a computer


• No escape: a simple juxtaposition is a concatenation
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Character latin A

• abstract character:


• the letter A of the Latin script 


• coded character:


• name: LATIN CAPITAL LETTER A 


• code point: U+0041


• encoding forms: 


• UTF-8: 41 


• UTF-16: 0041 
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Character Hiragana MA 

• abstract character:


• the letter ま of the Hiragana script (Japanese, each made of 3 strokes)


• coded character:


• name: HIRAGANA LETTER MA 


• code point: U+307E


• encoding forms: 


• UTF-8: E3 81 BE  


• UTF-16: 307E  

38



Unicode encodes characters, not glyphs

• The character U+0041 can equally well be displayed as A, A, A, A, A, … 

• Sometimes different glyphs may be required


• Egg in French is written œuf 


• going from characters to glyphs: shaping  
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Zero Width Joiner (ZWJ)

40



👩 + ❤ + 👩 = 👩👩



👩 + ❤ + 👩 = 👩👩
The invisible glue character is called a Zero Width Joiner (ZWJ)[1] and a sequence of 
emojis joined together with a ZWJ character is known as an Emoji ZWJ Sequence.



👁🗨 = 👁+🗨

👨👨 = 👱+❤+💋+👱

👪 = 👱+👩+👧+👦



👯 takes one character (i.e., it has a single code point)

👩👩 includes three emojis but a total of six code points



👯 takes one character (i.e., it has a single code point)

👩👩 includes three emojis but a total of six code points

https://blog.emojipedia.org/emoji-zwj-sequences-three-letters-many-possibilities/
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Common practical issues
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public class Test {

    public static void main(String[] args) throws Exception {
        String french = "Les élèves ont des œufs";
        String spanish = "Las ñiñas y los ñiños";
        String japanese = "⽇本語";

        System.out.println(french);
        System.out.println(spanish);
        System.out.println(japanese);

        System.out.println("UTF-8 French: " + new String(french.getBytes("UTF-8")));
        System.out.println("UTF-8 Spanish: " + new String(spanish.getBytes("UTF-8")));
        System.out.println("UTF-8 Japanese: " + new String(japanese.getBytes("UTF-8")));

        System.out.println("ISO-8859-1 French: " + new String(french.getBytes("ISO-8859-1")));
        System.out.println("ISO-8859-1 Spanish: " + new String(spanish.getBytes("ISO-8859-1")));
        System.out.println("ISO-8859-1 japanese: " + new String(japanese.getBytes("ISO-8859-1")));
    }
}
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Useful tips

• Never, ever use Windows’ Notepad to write code 


• It uses ISO 8859-1, which leads to numerous problems


• Use UTF-8 all the way down:


• For the text files used in your program


• For the source code used in your program


• Make sure that your programming environment is set to UTF-8


• Always specify UTF-8 when opening for reading or writing a textual file
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Useful tips

Reader reader = new InputStreamReader(new FileInputStream("/tmp/foo.txt", "UTF-8"));
Writer writer = new OutputStreamWriter(new FileOutputStream("/tmp/foo.txt", "UTF-8"));

Text files:

String files:

byte[] bytesInDefaultEncoding = someString.getBytes(); // May generate corrupt bytes.
byte[] bytesInUTF8 = someString.getBytes("UTF-8"); // Correct.
String stringUsingDefaultEncoding = new String(bytesInUTF8); // Unknown bytes becomes "?".
String stringUsingUTF8 = new String(bytesInUTF8, "UTF-8"); // Correct.
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Fun

\u0070\u0075\u0062\u006C\u0069\u0063\u0020\u0020\u0020\u0063\u006C\u0061\u0073\u0073\u0020\u0020
\u0055\u006E\u0069\u0063\u006F\u0064\u0065\u0020\u007B\u0020\u0070\u0075\u0062\u006C\u0069\u0063
\u0020\u0020\u0073\u0074\u0061\u0074\u0069\u0063\u0020\u0020\u0076\u006F\u0069\u0064\u0020\u0020
\u006D\u0061\u0069\u006E\u0020\u0028\u0020\u0053\u0074\u0072\u0069\u006E\u0067\u0020\u005B\u005D
\u0061\u0072\u0067\u0073\u0020\u0029\u0020\u007B\u0020\u0053\u0079\u0073\u0074\u0065\u006D\u002E
\u006F\u0075\u0074\u002E\u0070\u0072\u0069\u006E\u0074\u006C\u006E\u0028\u0022\u0049\u0022\u002B
\u0022\u0020\u2665\u0020\u0055\u006E\u0069\u0063\u006F\u0064\u0065\u0022\u0029\u003B\u007D\u007D
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The Unicode Consortium
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Mission

• “making the digital world more inclusive”


• “Everyone in the world should be able to use their own language on phones 
and computers.”
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Membership

• The effort of the Unicode Consortium is sponsored by membership fees


• Anyone can be a membership (student = 35 USD, corporation up to 21K USD)


• A member 


• has access to the technical discussions


• can vote on many aspects of the consortium


• Actual members are large IT companies and some governments
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Adopt a character

• Do you want your company to be associated with the    emoji?


• Do you want to declare your love with a    or   dedication for your 
partner?
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Final words
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Unicode

• Awesome environment to learn about a central aspect to many other cultures


• UTF-8, UTF-8, UTF-8, UTF-8, UTF-8, UTF-8, UTF-8, UTF-8, …


• Make sure you use 


• a proper professional programming environment and 


• text editing tool

64



http://blog.unicode.org/2021/09/announcing-unicode-standard-version-140.html



References

• https://www.unicode.org


• http://reedbeta.com/blog/programmers-intro-to-unicode/


• https://balusc.omnifaces.org/2009/05/unicode-how-to-get-characters-right.html


• https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-
positively-must-know-about-unicode-and-character-sets-no-excuses/


• https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-
positively-must-know-about-unicode-and-character-sets-no-excuses/


• https://en.wikipedia.org/wiki/Mojibake


• https://www.unicode.org/notes/tn23/Muller-Slides+Narr.pdf


• http://www.unicode.org/versions/Unicode13.0.0/ch02.pdf#G14527

66



Alexandre Bergel 
Computer Science Department - FCFM 
University of Chile 
http://bergel.eu       abergel@dcc.uchile.cl       @AlexBergel

Introduction To Unicode
Making the digital world more inclusive

67



Overview

• 29 publicly available version


• Version 1.1.5 established in 1995


• Version 14.0.0 defined in March 2020






