
GUI construction
Alexandre Bergel
http://bergel.eu

17-11-2021

1

Source

 David Flanagan, Java Foundation Classes in a
Nutshell, O’Reilly

 http://docs.oracle.com/javase/8/javase-
clienttechnologies.htm

2

Roadmap

1.Model-View-Controller (MVC)

2.JavaFX Components, Containers and Layout
Managers

3.Events and Listeners

4.Observers and Observables

5.AWT, Swing, SWT

6.Jar files

3

Roadmap

1.Model-View-Controller (MVC)

2.JavaFX Components, Containers and Layout
Managers

3.Events and Listeners

4.Observers and Observables

5.AWT, Swing, SWT

6.Jar files

4

A Graphical TicTacToe?

 Our existing TicTacToe implementation is very limited:

 single-user at a time

 textual input and display

 We would like to migrate it towards an interactive
game:

 running the game with graphical display and mouse input

5

Model-View-Controller

 Version 6 of our game implements a model of the
game, without a GUI

 The GameGUI class will implement a graphical view
and a controller for GUI events

6

Model-View-Controller

7

Controller

View Model

Model-View-Controller is a software architecture. The MVC pattern
separates an application from its GUI so that multiple views can be

dynamically connected and updated.

direct association
indirect association via an observer

Model-View-Controller

8

Roadmap

1.Model-View-Controller (MVC)

2.JavaFX Components, Containers and Layout
Managers

3.Events and Listeners

4.Observers and Observables

5.AWT, Swing, SWT

6.Jar files

9

JavaFX Components and Containers

 The javafx package defines GUI components,
containers, widgets

10

There are also many graphics classes to define colors,
fonts, images etc.

Node

Parent

Group A Group node contains
an ObservableList of
children that are
rendered in order
whenever this node is
rendered.

Base class for scene
graph nodes.

children

Button

…

JavaFX Components and Containers

 The javafx package defines GUI components,
containers, widgets

11

Node

Parent

Group A Group node contains
an ObservableList of
children that are
rendered in order
whenever this node is
rendered.

Base class for scene
graph nodes.

children

Button

…

 Button button = new Button();
 button.setText("Say 'Hello World'");
 Group root = new Group();
 root.getChildren().add(button);

JavaFX top level container & window

 A JavaFX UI has to subclass Application and override
start(Stage)

12

Application

Entry point for JavaFX
applications.
Application class from
which JavaFX
applications extend.

Window

Stage
top level JavaFX
container

start(Stage)

public class HelloWorld extends Application {
 @Override
 public void start(Stage stage) {
 stage.setTitle("Hello World!");

 . . .
 stage.setScene(new Scene(root, 300, 250));
 stage.show();
 }
}

Layout Management

 The Pane defines how the nodes are arranged in a
container (size and position)

13

Node

Parent

Region

Pane

VBox

HBox

BorderPane

GridPane

GridPane grid = new GridPane();
grid.setHgap(5); //horizontal gap between nodes
grid.setVgap(5); //vertical gap
grid.add(new Button("Hello"), 0, 1);
grid.add(new Button("World"), 0, 2);

The GameGUI

 The GameGUI is an Application using a BorderPane
(with a centre and up to four border components), and
containing a Button (“top”), a GridPane (“center”) and a
Text (“bottom”).

14

The central Panel itself contains
a grid of squares (Group) and

uses a GridPane.

:GameGUI

:BorderPane

:Text:Button :GridPane

:Group :Group…

Laying out the GameGUI

15

public class GameGUI extends Application implements Observer {
public void start(Stage stage) {

stage.setTitle("Tic Tac Toe");

game = makeGame();
BorderPane borderpane = new BorderPane();
borderpane.setTop(makeControls());
borderpane.setCenter(makeGrid());
statusbar = new Text();
borderpane.setBottom(statusbar);

// Create a JavaFX scene
Scene scene = new Scene(borderpane, … , …));
stage.setScene(scene);
stage.show();

}
…

}

Helper methods

 As usual, we introduce helper methods to hide the
details of GUI construction ...

16

private Node makeControls() {
Button again = new Button("New game");

again.setPrefSize(CELL_SIZE*game.getCols(),20);
again.setOnAction(. . .);
return again;

}

Roadmap

1.Model-View-Controller (MVC)

2.JavaFX Components, Containers and Layout
Managers

3.Events and Listeners

4.Observers and Observables

5.AWT, Swing, SWT

6.Jar files

17

Interactivity with Events

 To make your GUI do something you need to handle
events

 An event is typically a user action - mouse click, key
stroke, etc

 Java Event model is provided by the package
javafx.event

18

Concurrency and JavaFX

 The program is always responsive to user interaction,
no matter what it is doing

 The runtime of the JavaFX framework creates threads

 you do not explicitly create them

 remember the difference between a framework and a library?

 The Event Dispatch thread is responsible for event
handling

19

Events and Listeners (I)

 Instead of actively checking for GUI events, you can
define callback methods that will be invoked when
your GUI objects receive events:

20

JavaFX Framework

callback methodsHardware events ...
(MouseEvent, KeyEvent, ...)

Nodes publish events and (possibly multiple) Listeners subscribe
interest in them

Events and Listeners (II)

 Every Node publishes a variety of different events with
associated Listener interfaces

21

User Action Event Type Class

Key on the keyboard is pressed. KeyEvent Node, Scene

Mouse is moved or a button on the
mouse is pressed.

MouseEvent Node, Scene

Full mouse press-drag-release
action is performed.

MouseDragEvent Node, Scene

Swipe gesture is performed on an
object

SwipeEvent Node, Scene

Context menu is requested ContextMenuEvent Node, Scene

Button is pressed, combo box is
shown or hidden, or a menu item
is selected.

ActionEvent ButtonBase, ComboBoxBase,
ContextMenu, MenuItem,
TextField

Window is closed, shown, or
hidden.

WindowEvent Window

Events and Listeners (III)

 Convenience methods for registering event handlers have
the following format:

 setOnEvent-type(EventHandler<? super event-class> value)

Event-type is the type of event that the handler processes,
for example, setOnKeyTyped for KEY_TYPED events or
setOnMouseClicked for MOUSE_CLICKED events. event-
class is the class that defines the event type, for example,
KeyEvent for events related to keyboard input or
MouseEvent for events related to mouse input.

22

Listening for Button events

 When we create the “New game” Button, we attach
an ActionListener with the Button.setOnAction()
method:

 We instantiate an anonymous inner class to avoid
defining a named subclass of EventHandler

23

private Node makeControls() {
Button again = new Button("New game");

again.setPrefSize(horizontalSize(), 20);
again.setOnAction(new EventHandler<ActionEvent>() {

@Override
public void handle(ActionEvent event) {

showFeedBack("starting new game ...");
newGame();

}
});
return again;

}

Listening for Button events

 When we create the “New game” Button, we attach
an ActionListener with the Button.setOnAction()
method:

 We instantiate an anonymous inner class to avoid
defining a named subclass of EventHandler

24

private Node makeControls() {
Button again = new Button("New game");

again.setPrefSize(horizontalSize(), 20);
again.setOnAction(new EventHandler<ActionEvent>() {

@Override
public void handle(ActionEvent event) {

showFeedBack("starting new game ...");
newGame();

}
});
return again;

}

Instance an unnamed
subclass of EventHandler()

About inner classes

 Inner classes are useful when you want to punctually
create a particular objects

 Consider the following example on creating
operations

25

public interface Operation {
int apply(Counter counter);

}

26

public class Counter {
private int value;
public Counter (int value) { this.value = value; }

public int getValue() {
return value;

}

public int apply(Operation op) {
return op.apply(this);

}

public static void main(String[] argv) {
Counter c = new Counter(10);
System.out.println(c.apply(new Operation() {

public int apply(Counter c) {
return c.getValue() * 10;

}
}));

}
}

Nested classes in Java

 A nested class is a class defined within another class

 Nested classes are divided into two categories: static
and non static

27

class OuterClass {
 ...
 static class StaticNestedClass {
 ...
 }
 class InnerClass {
 ...
 }
}

Nested classes in Java

28

class OuterClass {
 static class StaticNestedClass {
 }
 class InnerClass {
 }
}

OuterClass.StaticNestedClass nestedObject =
 new OuterClass.StaticNestedClass();

new OuterClass.StaticNestedClass()The class OuterClass does not need to be
instantiated.
StaticNestedClass can access any static fields and
methods from OuterClass.

Nested classes in Java

29

class OuterClass {
 static class StaticNestedClass {
 }
 class InnerClass {
 }
}

OuterClass outerObject = new OuterClass();
OuterClass.InnerClass innerObject =
 outerObject.new InnerClass();

new OuterClass.StaticNestedClass()

An instance of OuterClass is needed to instantiate InnerClass.
InnerClass has direct access to the methods and fields of its
enclosing instance.

Why Use Nested Classes?

 It is a way of logically grouping classes that are only
used in one place

 It increases encapsulation

 It can lead to more readable code

30

Listening for mouse clicks

 We also attach a MouseListener to each Place on the board

31

private Node makeGrid() {
int cols = game.getCols();
int rows = game.getRows();

GridPane grid = new GridPane();
grid.setHgap(5);
grid.setVgap(5);

places = new Place[cols][rows];
for (int row = rows - 1; row >= 0; row--) {

for (int col = 0; col < cols; col++) {
Place p = new Place(col, row);
p.setOnMouseClicked(new PlaceListener(p, this));
grid.add(p, col, row);
places[col][row] = p;

}
}
return grid;

}

The PlaceListener

 MouseAdapter is another convenience class that
defines empty MouseListener methods

32

public class PlaceListener implements EventHandler<MouseEvent> {
private final Place place;
private final GameGUI gui;

public PlaceListener(Place myPlace, GameGUI myGui) {
place = myPlace;
gui = myGui;

}
…

}

The PlaceListener ...

33

@Override
public void handle(MouseEvent event) {

…
if (game.notOver()) {

try {
((GUIplayer) game.currentPlayer()).move(col,row);
gui.showFeedBack(game.currentPlayer().mark() + " plays");

} catch (AssertionError err) {
gui.showFeedBack(err.getMessage());

} catch (InvalidMoveException err) {
gui.showFeedBack(err.getMessage());

}
if (!game.notOver()) {

gui.showFeedBack("Game over -- " + game.winner() + " wins!");
}

} else {
gui.showFeedBack("The game is over!");

}
}

We only have to define the handle() method:

Roadmap

1.Model-View-Controller (MVC)

2.JavaFX Components, Containers and Layout
Managers

3.Events and Listeners

4.Observers and Observables

5.AWT, Swing, SWT

6.Jar files

34

The Observer Pattern (remember?)

 Also known as the publish/subscribe design pattern -
to observe the state of an object in a program

 One or more objects (called observers) are registered
to observe an event which may be raised in an
observable object (the observable object or subject)

 The observable object or subject which may raise an
event maintains a collection of observers

35

Our BoardGame Implementation

36

game: BoardGame
label: Text
places: Place[][]

GameGUI

Application propertyChange(PropertyChangeEvent evt)
PropertyChangeListener

AbstractBoardGame

TicTacToe Gomuku

BoardGame
<<interface>>

PropertyChangeSupport

Observable

Observable

Observers and Observables (< Java 9)

 A class can implement the
java.util.Observer interface when it
wants to be informed of changes
in Observable objects.

 An Observable object can have
one or more Observers.

 After an observable instance
changes, calling notifyObservers()
causes all observers to be notified
by means of their update()
method.

37

*

Observable

addObserver()
deleteObserver()
notifyObservers(Object)

«interface»

Observer

update(Observable, Object)

Adding Observers to the Observable

38

public class GameGUI extends Application implements PropertyChangeListener {
public void start(Stage stage) {

stage.setTitle("Tic Tac Toe");

game = makeGame();

// notify GameGui if change of state
game.addObserver(this);

…

Observing the BoardGame

 In our case, the GameGUI represents a View, so
plays the role of an Observer of the BoardGame
TicTacToe:

39

public class GameGUI extends Application implements PropertyChangeListener {
. . .
public void propertyChange (PropertyChangeEvent evt) {

Move move = (Move) arg;
showFeedBack("got an update: " + move);
places[move.col][move.row].setMove(move.player);

}

}

Observing the BoardGame ...

 The BoardGame represents the Model, so plays the
role of an Observable (i.e. the subject being observed):

40

public abstract class AbstractBoardGame implements BoardGame
{ protected PropertyChangeSupport changes;

 public AbstractBoardGame(Player playerX, Player playerO){

 … changes = new PropertyChangeSupport(this);

 … }

 public void move(int col, int row, Player p) {
 …

changes.firePropertyChange(new
PropertyChangeEvent(this, "update", null, new Move(col, row,
p)));

}
}

Handy way of Communicating
changes

 A Move instance bundles together information about
a change of state in a BoardGame:

41

public class Move {
public final int col, row; // NB: public, but final
public final Player player;
public Move(int col, int row, Player player) {

this.col = col; this.row = row;
this.player = player;

}
public String toString() {

return "Move(" + col + "," + row + "," + player + ")";
}

}

Setting up the connections

 When the GameGUI is created, the model (BoardGame),
view (GameGui) and controller (Place) components are
instantiated

 The GameGUI subscribes itself as an Observer to the game
(observable), and subscribes a PlaceListener to MouseEvents
for each Place on the view of the BoardGame.

42

Playing the game

 Mouse clicks are propagated from a Place (controller)
to the BoardGame (model):

 If the corresponding move is valid, the model’s state
changes, and the GameGUI updates the Place (view).

43

Checking user errors

 Assertion failures are generally a sign of errors in our
program

 However we cannot guarantee the user will respect our contracts!

 We need special always-on assertions to check user errors

44

public void move(int col, int row, Player p) throws InvalidMoveException
{

assert this.notOver();
assert p == currentPlayer();
userAssert(this.get(col, row).isNobody(), "That square is occupied!");
...

}

private void userAssert(Boolean condition, String message) throws InvalidMoveException {
if (!condition) {

throw new InvalidMoveException(message);
}

}

Refactoring the BoardGame

 Adding a GUI to the game affects many classes. We
iteratively introduce changes, and rerun our tests after
every change ...

 Shift responsibilities between BoardGame and Player
(both should be passive!)

 introduce Player interface, InactivePlayer and StreamPlayer
classes

 move getRow() and getCol() from BoardGame to Player

 move BoardGame.update() to GameDriver.playGame()

 change BoardGame to hold a matrix of Player, not marks

45

Refactoring the BoardGame

 Introduce GUI classes (GameGUI, Place,
PlaceListener)

 Introduce GUIplayer

 PlaceListener triggers GUIplayer to move

 BoardGame must be observable

 Introduce Move class to communicate changes from BoardGame
to Observer

 Check user assertions!

46

Roadmap

1.Model-View-Controller (MVC)

2.JavaFX Components, Containers and Layout
Managers

3.Events and Listeners

4.Observers and Observables

5.AWT, Swing, SWT

6.Jar files

47

AWT & Swing

 There are many existing libraries for doing GUI in Java

 In 1995, Java 1.0 was released with AWT

 AWT is very limited: few widgets are supported, no look and feel

 In 1996, Swing was released

 Swing has a better event mechanism, look and feel

 Again, very limited: unclear architecture as it is built on top of AWT,
and more importantly, widgets are not native and said to be slow

 Both are still supported in the last version of Java

 However, Oracle is making JavaFX standard

48

SWT

 Standard Widget Toolkit (SWT) is a competing toolkit
originally developed by IBM and now maintained by
the Eclipse community

 If you need to program an Eclipse plugin, then you
probably need SWT

49

JavaFX

 JavaFX is likely to be the new mainstream UI
framework for Java

 An application made with JavaFX looks like native

 JavaFX can also export a UI to the web

 http://docs.oracle.com/javafx/2/webview/jfxpub-webview.htm

 JavaFX is nicely integrated with OpenGL

50

Roadmap

1.Model-View-Controller (MVC)

2.JavaFX Components, Containers and Layout
Managers

3.Events and Listeners

4.Observers and Observables

5.AWT, Swing, SWT

6.Jar files

51

JAR File

 A JAR (Java ARchive) is a package file format used to
aggregate many java class files and their resources
(text, images, …) into one file for distribution

 A JAR file is typically used as a deployment unit

 The following slides show how to create a JAR file for
the TicTacToe game using IntelliJ and Eclipse

52

53

IntelliJ

54

IntelliJ

55

IntelliJ

56

IntelliJ

57

IntelliJ

58

IntelliJ

59

Eclipse

60

Eclipse

61

Eclipse

JAR file

 You can now double click on the icon

 No need to have IntelliJ or Eclipse to run your
application

62

What you should know!

 What are models, view and controllers?

 What is a Container, Component?

 What does a layout manager do?

 What are events and listeners? Who publishes and
who subscribes to events?

 How does the Observer Pattern work?

 What Ant, javadoc are for?

 The TicTacToe game knows nothing about the
GameGUI or Places. How is this achieved? Why is this
a good thing?

63

Can you answer to these questions?

 How could you make the game start up in a new
Window?

 What is the difference between an event listener and
an observer?

 The Move class has public instance variables — isn’t
this a bad idea?

 What kind of tests would you write for the GUI code?

64

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

