
More design patterns
Alexandre Bergel
http://bergel.eu

20-10-2021

Roadmap
1.Template

2.Composite

3.Null-Object

4.Factory

5.Singleton

6.Flyweight

2

Template Method Pattern
 How do you implement a generic algorithm, deferring some
parts to subclasses?

 Define it as a Template Method

 A Template Method factors out the common part of similar
algorithms, and delegates the rest to:

 hook methods that subclasses may extend, and

 abstract methods that subclasses must implement

Template Method Pattern
 Example

 The method init() in the AbstractBoardGame that is defined in subclasses

 TestCase.runBare() is a template method that calls the hook method
setUp()

 Consequences

 Template methods lead to an inverted control structure since a parent
classes calls the operations of a subclass and not the other way around.

 Template Method is used in most frameworks to allow
application programmers to easily extend the functionality of
framework classes.

primitiveOperation()
templateMethod()

AbstractClass

primitiveOperation()

ConcreteClass1

primitiveOperation()

ConcreteClass2

Hook method
May be abstract or

simply empty

/** Define the
skeleton of the algorithm
*/
…
this.primitiveOperation()
…

Overrides the base
class method

Template Method Pattern - Example

 Subclasses of TestCase are expected to override hook
method setUp() and possibly tearDown() and
runTest()

Composite Pattern

 How do you manage a part-whole hierarchy of objects in a
consistent way?

 Define a common interface that both parts and composites implement

 Typically composite objects will implement their behavior by
delegating to their parts

Composite Pattern Example

 Composite allows you to treat a single instance of an object
the same way as a group of objects.

 Consider a Tree. It consists of Trees (subtrees) and Leaf
objects.

Leaf

Tree

+operation()

Component

+operation()

Leaf

+operation()
+add()
+remove()
+getChild()

Composite

0..*

1
parent

+operation()

Component

+operation()

Leaf

+operation()
+add()
+remove()
+getChild()

Composite

0..*

1
parent

Using a class as root

+operation()

Component

+operation()

Leaf

+operation()
+add()
+remove()
+getChild()

Composite

0..*

1
parent

Using an interface as root

public interface Component {
int getValue();

}

public class Composite implements Component {
private List<Component> components = new ArrayList<Component>();

@Override
public int getValue() {

int s = 0;
for (Component c : components) s += c.getValue();
return s;

}

public void add(Component component) {
components.add(component);

}
}

public class City implements Component {
private int inhabitant;

public City(int inhabitant) { this.inhabitant = inhabitant; }

@Override
public int getValue() { return inhabitant; }

}

public class Example {
public static void main(String[] arg) {

Composite chile = new Composite();
City santiago = new City(6300000);
City serena = new City(201000);
City vina = new City(289000);

chile.add(santiago);
chile.add(serena);
chile.add(vina);

Composite southAmerica = new Composite();
southAmerica.add(chile);
System.out.println(southAmerica.getValue());

}
}

Null Object Pattern

 How do you avoid cluttering your code with tests for null
object pointers?

 Introduce a Null Object that implements the interface you expect, but
does nothing

 Null Objects may also be Singleton objects, since you never
need more than one instance

14

doAction()

<<interface>>
IElement

doAction()
Element

doAction()
NullElement

Client

Do nothing

Null Object

 Examples

 NullOutputStream extends OutputStream with an empty write() method

 Consequences

 Simplifies client code

 Not worthwhile if there are only few and localized tests for null pointers

16

Factory Pattern - Example

Lara can have
different weapons:

bow, guns, …

How would you make Lara fire arrows, bullets and so on?
17

Factory Pattern

 How do you externalize the creation of multiple objects?
 Use a factory class to build customized objects

 A factory creates objects without exposing the
instantiation logic to the client

 All the burden to initialize objects is hidden

18

Factory Pattern - UML

Client

<<interface>>
Product

Concrete
Product createProduct(): Product

Factory

uses

ask for a new
object

19

Factory Pattern - UML

20

Lara

<<interface>>
Ammo

Bullet Stone

create():Arrow

ArrowFactory

create():Bullet

BulletFactory

create():Stone

StoneFactory

Arrow

Uses

Fire ammo

create(): Ammo

<<interface>>
AmmoFactory

Factory Pattern - Example

public class Lara {

private AmmoFactory ammoFactory;

public Ammo fire() {
return ammoFactory.create();

}

public void ammoFactory(AmmoFactory anAmmoFactory) {
ammoFactory = anAmmoFactory;

}
}

21

Factory Pattern - Example

public class ArrowFactory implements AmmoFactory {
@Override
public Arrow create() {

return new Arrow();
}

}

public class Arrow implements Ammo {
}

public interface Ammo {
}

public interface AmmoFactory {
Ammo create();

}

22

Lara is attacking

@Test
public void test() {

Lara lara = new Lara();
lara.ammoFactory(new ArrowFactory());
assertEquals(lara.fire().getClass(), Arrow.class);

}

A factory has to be set

23

Factory and Object Initialization

 Having constructor accepting many arguments reduces
readability

 A factory may greatly simplify initialization of objects

24

Factory and Object Initialization

public class Arrow implements Ammo {
/* Many arguments */
public Arrow(int pikeSize, Color color, int arrowSize, ArrowMaterial m) {
 …
}

 public Arrow(int arrowSize, ArrowMaterial m) {
 this(5, Color.BROWN, arrowSize, m);

}
...

}

Consider the following class:

A factory may simplify the initialization:
ArcFactory factory = new ArcFactory();
factory.setSize(10);
factory.setColor(Color.BLUE);
factory.createShell();
...

25

Factory and Object Initialization

Consider the following class:

A factory may simplify the initialization:
ArrowFactory factory = new ArrowFactory();
factory.setSize(10);
factory.setColor(Color.BLUE);
factory.create();
...

26

public class Arrow implements Ammo {
/* Many arguments */
public Arrow(int pikeSize, Color color, int arrowSize, ArrowMaterial m) {
 …
}

 public Arrow(int arrowSize, ArrowMaterial m) {
 this(5, Color.BROWN, arrowSize, m);

}
...

}

Terminology

Abstract Factory Pattern

Factory Method Pattern

27

Perspectiva cultural

28

Perspectiva cultural

29

Perspectiva cultural

30

How to prohibit the creation of
more than one object?

Singleton Pattern

 How to forbid more than one instance from a particular
class?

 A singleton pattern makes sure no more than one instance can be
obtained from a class

 Has to be use with care since it introduces a global state

31

Singleton Pattern - Example

 How many Lara Croft? No more than one

public class Lara {
private static Lara uniqueInstance;

private Lara () { }

public static Lara uniqueInstance() {
if(uniqueInstance == null) {

uniqueInstance = new Lara();
}
return uniqueInstance;

}
...

}

+ getInstance() : Singleton
- Singleton()

- instance : Singleton = null
Singleton

32

Flyweight Pattern

 How to support a large number of individual fine-grained
objects efficiently?

 A flyweight pattern enables reusing objects that are qualified as
unnecessary

 Creating many objects may be the cause of poor memory
performance

 Storing short living objects into a table enable one to easily reuse them

33

Flyweight Example - UML

getFlyweight(key): Flyweight
FlyweightFactory

operation(State)
Flyweight

operation(State)
ConcreteFlyweightClient

Flyweight Example - UML

getFlyweight(key): Flyweight
FlyweightFactory

operation(State)
Flyweight

operation(State)
ConcreteFlyweightClient

obj = hashtable.get(key);
if(obj != null)
 return obj;
else {
 obj = new ConcreteFlyweight();
 hashtable.put(key, obj);
 return obj; }

Example without Flyweight
public class ColorFactory {

 public Color getColor(int red, int green, int blue) {
 return new Color(red, green, blue);
 }
}

public class ColorfulTest {
 @Test
 public void testFactory(){
 ColorFactory f = new ColorFactory();
 Color c1 = f.getColor(255, 0, 0);
 Color c2 = f.getColor(255, 0, 0);
 assertEquals(c1, c2);
 assertTrue(c1 == c2);
 }
}

Example without Flyweight
public class ColorFactory {

 public Color getColor(int red, int green, int blue) {
 return new Color(red, green, blue);
 }
}

public class ColorfulTest {
 @Test
 public void testFactory(){
 ColorFactory f = new ColorFactory();
 Color c1 = f.getColor(255, 0, 0);
 Color c2 = f.getColor(255, 0, 0);
 assertEquals(c1, c2);
 assertTrue(c1 == c2);
 }
}

junit.framework.AssertionFailedError

Example without Flyweight
public class ColorFactory {

 public Color getColor(int red, int green, int blue) {
 return new Color(red, green, blue);
 }
}

public class ColorfulTest {
 @Test
 public void testFactory(){
 ColorFactory f = new ColorFactory();
 Color c1 = f.getColor(255, 0, 0);
 Color c2 = f.getColor(255, 0, 0);
 assertEquals(c1, c2);
 assertTrue(c1 == c2);
 }
}

junit.framework.AssertionFailedError

It does not look like to be a serious problem
But if you create millions of colors, then it will be a

serious problem

Example with Flyweight
public class ColorFactory {
 private Hashtable<List<Integer>,Color> hashtable = new Hashtable<>();

 public Color getColor(int red, int green, int blue) {
 Integer[] array = { red, green, blue };
 List<Integer> key = Arrays.asList(array);
 Color color = hashtable.get(key);
 if(color != null)
 return color;
 else {
 color = new Color(red, green, blue);
 hashtable.put(key, color);
 }
 return color;
 }
}

Example with Flyweight (another possibility)
public class ColorFactory {
 private static HashMap<Integer,Color> colorCache = new HashMap<>();

 public static Color getColor(int red, int green, int blue) {
 int key = red * 256 * 256 + green * 256 + blue;

 if(colorCache.containsKey(key))
 return colorCache.get(key);
 else {
 Color c = new Color(red, green, blue);
 colorCache.put(key, c);
 return c;
 }
 }
}

Example with Flyweight

public class ColorfulTest {
 @Test
 public void testFactory(){
 ColorFactory f = new ColorFactory();
 Color c1 = f.getColor(255, 0, 0);
 Color c2 = f.getColor(255, 0, 0);
 assertEquals(c1, c2);
 assertTrue(c1 == c2);
 }
}

The test now passes
The exact same object is reused

Classification

 Creational patterns

 abstract factory, builder, factory method, lazy initialization, singleton

 Structural patterns

 adapter (wrapper), bridge, composite, decorator, façade, flyweight, proxy

 Behavioral patterns

 command, interpreter, iterator, null object, observer, state, template
method, visitor

Classification

 Concurrency patterns

 Active objects, balking, lock, monitor object, thread pool, scheduler, ...

 There design are specific to the concurrency domain, and do not appear
in the GoF book

What you should know!

 How to apply the singleton pattern on a class?
 Can you give examples for which it is beneficial to use a
flyweight pattern?

44

Can you answer these questions?
 How can a Template Method help to eliminate duplicated
code?

 When do I use a Composite Pattern? Do you know any
examples from the Frameworks you know?

 How would you adapt the Singleton pattern to produce not
more than a particular number of instances?

 Can you describe situations where the Flyweight pattern is
not appropriate?

 What is the effect of the Flyweight on the garbage
collector?

45

License

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
-Share: copy and redistribute the material in any medium or format
-Adapt: remix, transform, and build upon the material for any purpose, even
commercially

The licensor cannot revoke these freedoms as long as you follow the license terms

 Attribution: you must give appropriate credit

 ShareAlike: if you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original

Complete license: https://creativecommons.org/licenses/by-sa/4.0/

