
Essential of Object
Oriented Programming

Alexandre Bergel
http://bergel.eu

23-08-2021

Today

 The goal of today is to put in practice what we have seen
last week

 We will see a small exercise, but it is essential

 I recommend that to redo the exercise on your own,
without looking at the solution

Point example

 A point is defined as having a X and Y components

 First, we need a way to create point. You should therefore
think in at least one constructor

 Second, we could be able to do some operations between
points. Summing and resting are two simple operations.

 Write

 A class that model points

 An example that performs some operations between points

package cc3002.point;

/**
 * Model a 2D point and offer simple operations to manipulate points
 */
public class Point {
 private double x;
 private double y;

 /**
 * Create a point from two coordinate
 * @param anX
 * @param anY
 */
 public Point(double anX, double anY) { this.x = anX; this.y = anY; }

 /**
 * Create a point at (0, 0)
 */
 public Point() { this.x = 0; this.y = 0; }
 …

 /**
 * Create a point from another point.
 * This has the effect to copy a point
 * @param anotherPoint
 */
 public Point(Point anotherPoint) { this.x = anotherPoint.x; this.y = anotherPoint.y; }

 /**
 * Return the X coordinate
 * @return this point X
 */
 public double getX() { return x; }

 /**
 * Return the Y coordinate
 * @return this point Y
 */
 public double getY() { return y; }

 /**
 * Return a string representation of a point
 * @return the string that correspond to this point
 */
 public String toString() {
 return "(" + this.getX() + ", " + this.getY() + ")";
 }

 /**
 * Sum two points, this and the provided argument point
 * @param anotherPoint
 * @return this summed with anotherPoint
 */
 public Point add(Point anotherPoint) {
 return new Point(this.getX() + anotherPoint.getX(), this.getY() + anotherPoint.getY());
 }

 /**
 * Substracte two points, this and the provided argument point
 * @param anotherPoint
 * @return this substracted from anotherPoint
 */
 public Point sub(Point anotherPoint) {
 return new Point(this.getX() - anotherPoint.getX(), this.getY() - anotherPoint.getY());
 }
}

package cc3002.point;

/**
 * Example on how to use points
 */
public class PointExample {
 public static void main(String[] args) {
 Point p1 = new Point(3, 4);
 Point p2 = new Point(-4, 7);
 Point p3 = new Point();

 System.out.println("Value of p1 = " + p1.toString());
 System.out.println("Value of p2 = " + p2.toString());
 System.out.println("Value of p3 = " + p3.toString());
 System.out.println("Value of point copy = " + new Point(p2).toString());

 System.out.println("p1 + p2 = " + p1.add(p2).toString());
 System.out.println("p1 - p2 = " + p1.sub(p2).toString());
 System.out.println("(p1 - p2) + (p3 - p2) = " + (p1.sub(p2).add(p3.sub(p2))).toString());
 }
}

License

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
-Share: copy and redistribute the material in any medium or format
-Adapt: remix, transform, and build upon the material for any purpose, even
commercially

The licensor cannot revoke these freedoms as long as you follow the license terms

 Attribution: you must give appropriate credit

 ShareAlike: if you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original

Complete license: https://creativecommons.org/licenses/by-sa/4.0/

www.dcc.uchile.cl

