Lab1: Fundamentals
 Statistical and Geostatistical Data Analysis

Assistant Professor : Fabián Soto F.
Chair Professor: Xavier Emery

Graduate and postgraduate course meALGES

Laboratory organization

- Laboratory/Auxiliar classes are practical
- We Will use Excel and ANDES software
- Communications Will be by email, u-cursos or Microsoft Teams (access provided by uchile email). My mail is fachotto at uchile.cl
- There is a Google calendar with a brief description of every class (subscription by mail)
- Videos will be available in Google Drive

Laboratory organization

- I Will help you during all the semester to develop the projects
- Classes are written in English and spoken in Spanish
- Solutions will be written in English (postgraduate) and Spanish (graduate)

Concept summary

- Inferential statistics: is the process to obtain generalizations on the total (called the population) by examining only a part (called the sample).
- Random variable: This is a function, denoted by X , that takes values over a sample space Ω associated with a random experiment.
- Examples:

1. Heads or tails
2. Dice throwing
3. Lotto
4. Element grade

Concept summary

- Expectation

$$
\mu=E(X)=\int x p(x) d x \quad \mu=E(X)=\sum_{n \in N} n p(n)
$$

- Variance

$$
\sigma^{2}=\operatorname{var}(X)=E\left\{(X-\mu)^{2}\right\}=E\left(X^{2}\right)-\mu
$$

- Standard deviation

$$
\sqrt{\sigma^{2}}
$$

Concept summary

- Experimental Mean

$$
m=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- Experimental Variance

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Properties

$$
E(\bar{X})=\mu \quad \operatorname{var}(\bar{X})=\frac{\sigma^{2}}{n} \quad E\left(S^{2}\right)=\sigma^{2}
$$

- Parameters of the population and sample are different

Population	Sample
μ	m
$\boldsymbol{\sigma}^{2}$	s^{2}

Problem 1:

- The copper grade has been measured on 20 samples taken in a stock pile.
- It is of interest to know how many samples are necessary in order to estimate the average copper grade of the stock pile with a typical error less than 0.01\%Cu.
- File: "Leyes de stock"

GEOSTATISTICAL SUPERCOMPUTINC

Problem 1:

- The copper grade has been measured on 20 samples taken in a stock pile.
- It is of interest to know how many samples are necessary in order to estimate the average copper grade of the stock pile with a typical error less than $0.01 \% \mathrm{Cu}$.
$\vdots \quad$ - Typical error is the square of: the variance divided by the number of data: $\sqrt{\frac{\sigma^{2}}{n}}$
: - File: "Leyes de stock"

Problem 2:

- Let X be a Normal random variable $N(m, s)$ and $Y=e^{X}$ a lognormal random variable.
- Calculate the expectation and median of Y.
- (*) Determine the expectation of geometric mean of a sample of Y of size n.

