MA2001-6 Cálculo en Varias Variables

Profesor: Sebastián Tapia G.

Auxiliares: Luis Fuentes C., Matias B. Yañez

Auxiliar 2: Conjuntos Abiertos, Cerrados y Compactos. Sucesiones de Cauchy

P1. Sea $A \subseteq \mathbb{R}^n$ un conjunto. Muestre que A es cerrado si y sólo si para toda sucesión $\{x_n\}_{n\in \subseteq} A$ tal que $x_n \to \overline{x} \in \mathbb{R}^n$, se tiene que $\overline{x} \in A$.

obs: Una de las implicancias fue hecha en cátedra.

- **P2.** Consideremos el espacio \mathbb{R}^n junto con una sucesión numerable de abiertos $A_1, A_2, A_3, ... \subseteq \mathbb{R}^n$
 - a) Demuestre que \mathbb{R}^n y \emptyset son abiertos.
 - b) Pruebe que $\bigcap_{i=1}^{n_0} A_i$ es un conjunto abierto.
 - c) Pruebe que $\cup_{i\in\mathbb{N}}A_i$ es un conjunto abierto.
 - d) ¿Es cierto también que la intersección numerable (infinita) de conjuntos abiertos es un conjunto abierto? Encuentre un contraejemplo que muestre que la respuesta es negativa.
 - e) Usando las leyes de De Morgan, obtenga las propiedades para conjuntos cerrados.
- P3. Encuentre en forma explícita interior, adherencia y frontera de los siguientes conjuntos; justificando brevemente sus respuestas. Indique además si alguno de ellos se trata de un conjunto abierto o cerrado.
 - a) $A = \{(x, y) \in \mathbb{R}^2 : |y| < |x|, x^2 + y^2 \le 1\}$
 - b) $B = \{(x, y) \in \mathbb{R}^2 : x = y, x > 0\}$
 - c) $C = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\} \cup \{(0, 0)\}$
 - d) $D = \{(x, y) \in \mathbb{R}^2 : x \in (-\frac{\pi}{2}, \frac{\pi}{2}), y > \tan(x)\}$
 - e) $E = \{(\frac{1}{n}, \frac{1}{m}) : n, m \in \mathbb{N}\}$
- **P4.** Sean $A, B \subseteq \mathbb{R}^n$ considerando la norma euclidiana $\|\cdot\|$. Muestre que
 - a) Si $A \subseteq B$ entonces $int(A) \subseteq int(B)$.
 - b) $int(A \cap B) = int(A) \cap int(B)$.
 - c) $\operatorname{int}(A) \cup \operatorname{int}(B) \subseteq \operatorname{int}(A \cup B)$, y la igualdad no siempre cierta.
 - d) Si $A \subseteq B$ entonces $adh(A) \subseteq adh(B)$.
 - e) $adh(A \cup B) = adh(A) \cup adh(B)$.
 - f) $adh(A \cap B) \subseteq adh(A) \cap adh(B)$ y la igualdad no siempre cierta.
 - g) $\operatorname{Fr}(A) = \operatorname{adh}(A) \cap \operatorname{adh}(A^c)$
 - h) $adh(A) = A \cap Fr(A)$
 - i) $int(A) = adh(A) \setminus Fr(A)$
- **P5.** Sea $A \subset \mathbb{R}^n$. Muestre que $x \in \text{Fr}(A)$ si y sólo si para todo r > 0, se tiene que $B(x,r) \cap A \neq \emptyset$ y $B(x,r) \cap A^c \neq \emptyset$.
- **P6.** Sean $F \subseteq \mathbb{R}^n$ cerrado y $C, K \subseteq \mathbb{R}^n$ compactos.
 - a) Demuestre que el conjunto F + K es cerrado, donde

$$F + K = \{f + k : f \in F, k \in K\}$$

b) Demuestre que el conjunto C + K es compacto.

- **P7.** Considere \mathbb{R}^n con la norma euclidiana $\|\cdot\|$, pruebe que si $A\subseteq\mathbb{R}^n$ es un conjunto que es abierto y cerrado, entonces necesariamente $A=\mathbb{R}^n$ o $A=\varnothing$.
- **P8.** [Propuesto] Considere el espacio vectorial de las matrices $\mathcal{M}^{N\times N}(\mathbb{R})$ de tamaño $N\times N$
 - a) Pruebe que la función

$$\|\cdot\|: \mathcal{M}^{N\times N}(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$A \longmapsto \|A\| := \sup_{\substack{x \in \mathbb{R}^N \\ \|x\|_2 = 1}} \|Ax\|_2$$

está bien definida, es decir, el supremo es finito.

Hint: Puede ser útil considerar que si $||x||_2 = 1$, entonces $|x_k| \le 1$ para todo k = 1, ..., N.

- b) Pruebe que $\|\cdot\|$ es una norma en $\mathcal{M}^{N\times N}(\mathbb{R})$.
- c) Muestre que para $A \in \mathcal{M}^{N \times N}(\mathbb{R})$, se tiene que $||A^n|| \leq ||A||^n$.
- d) Sea $A \in \mathcal{M}^{N \times N}(\mathbb{R})$, demuestre que

$$e^A := \sum_{n=0}^{\infty} \frac{A^n}{n!}$$

existe en $\mathcal{M}^{N\times N}(\mathbb{R})$.

Resumen y Cosas Útiles

- [Unicidad del Límite]: Sea $(x_k)_k \subseteq \mathbb{R}^n$ una sucesión y $\bar{x}, \bar{y} \in \mathbb{R}^n$. Si $(x_k)_k$ converge a \bar{x} e \bar{y} , entonces necesariamente $\bar{x} = \bar{y}$.
- [Álgebra de Límites]: Sean $(x_k)_k, (y_k)_k \subseteq \mathbb{R}^n$ dos sucesiones, y $\alpha, \beta \in \mathbb{R}$. Si $(x_k)_k$ converge a \bar{x} e $(y_k)_k$ converge a \bar{y} , entonces $(\alpha x_k + \beta y_k)_k$ converge a $(\alpha \bar{x} + \beta \bar{y})$.
- [Conjuntos Abiertos]: Sea $A \subseteq \mathbb{R}^n$. Decimos que A es un conjunto abierto (o es abierto) si:

$$\forall x \in A, \exists r > 0, B(x, r) \subseteq A$$

■ [Conjuntos Cerrados]: Sea $A \subseteq \mathbb{R}^n$. Diremos que A es conjunto cerrado (o cerrado) si:

$$\mathbb{R}^n \backslash A = A^c$$
 es abierto

■ [Caracterización de Cerrados]: Sea $A \subseteq \mathbb{R}^n$ un conjunto. Entonces

$$A \text{ es cerrado } \Leftrightarrow \forall (x_k)_k \subseteq A, x_k \to \bar{x} \Rightarrow \bar{x} \in A$$

■ [Interior]: Sea $A \subseteq \mathbb{R}^n$ un conjunto. Definimos su interior como:

$$Int(A) = \{x \in \mathbb{R}^n : \exists r > 0, B(x,r) \subseteq A\}$$

■ [Adherencia]: Sea $A \subseteq \mathbb{R}^n$ un conjunto. Definimos su adherencia como:

$$Adh(A) = \{ x \in \mathbb{R}^n : \exists (x_n)_n \in A, x_n \to x \}$$

• [Frontera]: Sea $A \subseteq \mathbb{R}^n$ un conjunto. Definimos su frontera como:

$$Fr(A) = Adh(A) \backslash Int(A)$$

- [Propiedades]: Sea $A \subseteq \mathbb{R}^n$. Entonces:
 - 1.- $Int(A) \subseteq A \subseteq Adh(A)$
 - 2.- A es abierto $\Leftrightarrow A = Int(A)$
 - 3.- A es cerrado $\Leftrightarrow A = Adh(A)$
 - 4.- Int(A) es siempre un conjunto abierto.
 - 5.- Adh(A) es siempre un conjunto cerrado.

■ [Punto de Acumulación]: Sea $A \subseteq \mathbb{R}^n$. Decimos que $\bar{x} \in \mathbb{R}^n$ es punto de acumulación de A si

$$\exists (x_k)_k \subseteq A, \forall k, x_k \neq \bar{x}, \text{ tal que } x_k \to \bar{x}$$

■ [Conjunto Acotado]: Decimos que un conjunto $A \subseteq \mathbb{R}^n$ es acotado si existe R > 0 tal que:

$$A \subseteq B(0,R)$$

■ [Sucesión Acotada]: Decimos que una sucesión $(x_k)_k \subseteq \mathbb{R}^n$ es acotada si existe M > 0 tal que:

$$\forall k \in \mathbb{N}, ||x_k|| \leq M$$

- [Subsucesión]: Sea $(x_k)_k \subseteq \mathbb{R}^n$ una sucesión, y $\varphi : \mathbb{N} \to \mathbb{N}$ una función inyectiva y creciente. Decimos entonces que $(x_{\varphi(k)})_k$ corresponde a una subsucesión de $(x_k)_k$. Además toda subsucesión de una sucesión convergente converge al mismo punto.
- [Bolzano-Weierstrass]: Sea $(x_k)_k$ una sucesión acotada. Entonces existe una subsucesión de $(x_k)_k$ convergente.
- [Conjunto Compacto]: Decimos que un conjunto $A \subseteq \mathbb{R}^n$ es un conjunto compacto si es cerrado y acotado.
- [Teorema]: Sea $A \subseteq \mathbb{R}^n$. Son equivalentes:
 - 1. A es compacto.
 - 2. Toda sucesión $(x_k)_k \subseteq A$ posee una subsucesión $(x_{\varphi(k)})_k$ convergente a $\bar{x} \in A$.
- [Sucesión de Cauchy]: Una sucesión $(x_k)_k \subseteq \mathbb{R}^n$ se dice sucesión de Cauchy si:

$$\forall \epsilon > 0, \exists \bar{k} \in \mathbb{N}, \forall k, l \in \mathbb{N}, ||x_k - x_l|| < \epsilon$$

- [**Propiedad**]: Toda sucesión convergente en \mathbb{R}^n es de Cauchy.
- [Teorema]: Toda sucesión de Cauchy en \mathbb{R}^n converge.