Introducción al Álgebra MA1101

Guía 12: Subgrupos, Anillos, y Cuerpos

Resumen:

• Sea (A,*) un grupo, y $\emptyset \neq H \subseteq A$. Diremos que (H,*) es **subgrupo**, si (H,*) es un grupo, o equivalentemente $\forall x,y \in H \ x * y^{-1} \in H$.

Sea $(A, +, \cdot)$ un conjunto con dos estructuras:

- Se dice **anillo** si (A, +) es grupo abeliano, y además · es asosciativa, distribuye con respecto a +, y tiene neutro (distinto del de +).
- Se dice **anillo conmutativo** si es un anillo, y es conmutativo.
- Sean x, y ambos no nulos. Si $x \cdot y = 0$ se dice que $x \in y$ son **divisores del cero.** Notar que en este caso $x \cdot a = x \cdot b \not\Rightarrow a = b$.
- Se dice **cuerpo** si es un anillo conmutativo y $\forall x \in A \setminus \{0\}$ es invertible para ·.
- A cuerpo \Rightarrow A no tiene divisores del cero (cuidado que no es una equivalencia).
- **P1.** Sea $f:(\mathbb{Z},+)\to(\mathbb{Z},+)$, dada por f(m)=6m.
 - (a) Demuestre que f es homomorfismo.
 - (b) Para $n \in \mathbb{N}$, demuestre que $n\mathbb{Z} = \{nz : z \in \mathbb{Z}\}$ es subgrupo de \mathbb{Z} .
 - (c) Demuestre que $f(5\mathbb{Z})$ es subgrupo de lo que corresponda.
 - (d) Demuestre que $f^{-1}(12\mathbb{Z})$ es subgrupo de lo que corresponda.
- **P2.** Sean $G = \mathbb{Z} \times \mathbb{Z}$, y $G' = \{2^a 3^b \mid a, b \in \mathbb{Z}\}$.
 - (i) Demuestre que G' es subgrupo de $(\mathbb{R} \setminus \{0\},\cdot)$ donde \cdot es el producto usual en \mathbb{R} .
 - (ii) Considere + la suma por componentes en G, y observe que con ello (G, +) es grupo. Demuestre que (G, +) es isomorfo a (G', \cdot) .
 - (iii) ¿Se mantiene el resultado anterior si se reemplaza 3 por 4 en la definición de G'?
- **P3.** Sean $(A, +_A, \cdot_A)$, $(B, +_B, \cdot_B)$ dos anillos, y considere $(A \times B, +, \cdot)$, donde las operaciones consisten en:

$$(a,b) + (c,d) = (a +_A c, b +_B d)$$

 $(a,b) \cdot (c,d) = (a \cdot_A c, b \cdot_B d).$

- a) Demuestre que $(A \times B, +, \cdot)$ es un anillo.
- b) Demuestre que $A \times B$ tiene divisores del cero, incluso si $A \times B$ no tienen.
- c) Sea F un cuerpo. ¿Es $F \times F$ un cuerpo?
- **P4.** Sea E un conjunto no vacío.
 - a) Demuestre que $(\mathcal{P}(E), \Delta, \cap)$ es un anillo. Para cada operación especifique cuál es el neutro, y cuál es el inverso de un conjunto A.
 - b) Utilizando lo demostrado en la **P3**, demuestre que para $\emptyset \neq A \subseteq E$, $\mathcal{P}(E)$ es isomorfo a $\mathcal{P}(A) \times \mathcal{P}(A^c)$, con las operaciones utilizadas en el ítem anterior, componente a componente.

P5. Sea (G, *) un grupo con neutro e. Para $g \in G$, se define $\langle \{g\} \rangle = \{kg : k \in \mathbb{Z}\}$, donde kg es el producto iterado, es decir:

$$kg = \begin{cases} e & \text{si } k = 0, \\ (k-1)g * g & \text{si } k \ge 1, \\ |k|(-g) & \text{si } k < 1. \end{cases}$$

- a) Sea G un grupo cualquiera, y $g \in G.$ Demuestre que $(\langle \{g\} \rangle, *)$ es un subgrupo de G.
- b) Demuestre que si $f:(\langle \{g\}\rangle,*)\to (B,\Delta)$ es isomorfismo, entonces $\exists b\in B$ tal que $B=\langle \{b\}\rangle.$
- c) Encuentre $g \in \mathbb{Z}$ tal que $\mathbb{Z} = \langle \{g\} \rangle$, donde * sería la suma usual de \mathbb{Z} .