Introducción al Álgebra MA1101

Guía 4: Conjuntos y Funciones

Definiciones básicas:

- $\forall X \subseteq E, X \in \mathcal{P}(A) \iff X \subseteq E.$
- $\forall a \in A, \forall b \in B, (a, b) \in A \times B \iff a \in A \land b \in B.$
- $f \in B^A \iff f : A \to B$ es función.

En lo que sigue, $E \neq \emptyset$ denota un conjunto de referencia.

P1. Sean $A, B \subseteq E$ y $a, b, c, d \in E$. ¿Cuáles de las siguientes afirmaciones son Verdaderas y cuáles Falsas?

(i).-
$$a \subseteq \{a\}$$
.

(vi).-
$$\mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\}.$$

(ii).-
$$\{a\} \subseteq \{a, b\}$$
.

(vii).-
$$a \in (a, b)$$
.

(iii).-
$$\emptyset \subseteq \emptyset$$
.

(viii).-
$$(a,b) \not\in A \times B \iff a \not\in A \land b \not\in B$$
.

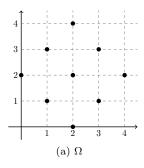
(iv).-
$$\emptyset \subseteq \{\emptyset\}$$
.

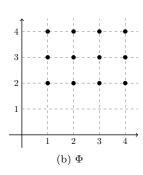
(ix).-
$$\{(a,b),(c,d)\}\subseteq A\times B\iff \{(a,d),(c,b)\}\subseteq A\times B.$$

(v).-
$$\{a\} \subseteq \mathcal{P}(\{a,b\})$$
.

(x).-
$$(\{0,1,2\}, E, \{(0,a), (1,b), (0,c), (2,a)\})$$
 es función.

- **P2.** Sean $A, B \subseteq E$.
 - (i).- Pruebe que $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
 - (ii).- Muestre que si E tiene al menos dos elementos, entonces $\exists A, B \subseteq E, \mathcal{P}(A \cup B) \neq \mathcal{P}(A) \cup \mathcal{P}(B)$.
 - (iii).- Pruebe que $\mathcal{P}(A) \subseteq \mathcal{P}(B) \iff A \subseteq B$.
- **P3.** Sean Ω y Φ subconjuntos de $\mathbb{N} \times \mathbb{N}$ cuyos elementos están dados por los círculos negros de las Figuras (a) y (b). Si es posible exprese Ω y/o Φ en la forma $A \times B$ para algún $A, B \subseteq \mathbb{N}$, y en caso de no ser posible, argumente por qué no.





- **P4.** Sean $A, B \subseteq E$.
 - (i).- Probar que $A^c \times B^c \subseteq (A \times B)^c$ donde $(A \times B)^c$ denota $(E \times E) \setminus (A \times B)$.
 - (ii).- Muestre con un contraejemplo¹ que no se cumple que $A^c \times B^c = (A \times B)^c$.
 - (iii).- Muestre que para cualquier conjunto $E \neq \emptyset$, existen $A, B \subseteq E$ tales que $A^c \times B^c \neq (A \times B)^c$. ¿Qué pasa si $E = \emptyset$?
- **P5.** Sea $F: \mathbb{R}^{\mathbb{R}} \to \mathbb{R}$ tal que F(g) = g(1). Para $f, g \in \mathbb{R}^{\mathbb{R}}$ se define la función $h = f \cdot g$ por $h: \mathbb{R} \to \mathbb{R}$ tal que $h(x) = f(x) \cdot g(x)$. Para $f, g \in \mathbb{R}^{\mathbb{R}}$ se define la función h = f + g por $h: \mathbb{R} \to \mathbb{R}$ tal que h(x) = f(x) + g(x).
 - (i).- Encuentre funciones f y g para las que $F(f \cdot g) = 2$.
 - (ii).- Pruebe que F(f + g) = F(f) + F(g).

 $^{^{1}}$ Es decir, proponga conjuntos $A,\,B,\,E$ con A y B subconjuntos de E.