Linear regression model

• The sample regression model is:

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{1i} + \hat{\beta}_{2}X_{2i} + \dots + \hat{\beta}_{k}X_{ki} + \hat{u}_{i}$$

$$Y_{i} = \hat{Y}_{i} + \hat{u}_{i}$$

$$\hat{Y}_{i} = \hat{Y}_{i} + \hat{u}_{i}$$

- What's the meaning of these estimators?
- Method of Ordinary Least Squares (OLS): It minimizes residual sum of squares (RSS):

$$\min \sum_{i} \hat{u}_{i}^{2} \rightarrow \min_{\hat{\beta}} \hat{u}' \hat{u} \rightarrow \hat{\beta} = (X'X)^{-1} X'Y$$

• How do we obtain this?

Prof. Daniel Schwartz

Course: Applied Statistics for Management

Linear regression model

• Simple example:

 $house_price(in \ thousands)_i = \beta_0 + \beta_1 bedrooms_i + \beta_2 sq_f ti + u_i$

 $house_price = -19.3 + 15.2 \times bedrooms + 0.13 \times sq_ft$

Linear regression model: Assumptions (again, review)

- 1) Model is *linear in the parameters*
- 2) Random sampling
- 3) No multicollinearity, or no perfect linear relationships among the *X* variables
- 4) Given *X*, the expected value of the error term is zero $E(u_i|X) = 0$
- 5) Homoscedastic, or constant, variance of u_i , or $var(u_i|X) = \sigma^2$

• What's the meaning of these assumptions?

(we will come back to these assumptions)

Prof. Daniel Schwartz

Course: Applied Statistics for Management

Linear regression model: Gauss-Markov Theorem

- On the basis of assumptions, the OLS method gives the Best Linear Unbiased Estimators (BLUE)
 - 1) Estimators are *linear* functions of the dependent variable *Y*.
 - 2) The estimators are *unbiased*; in repeated applications of the method, the estimators approach their true values.
 - 3) In the class of linear estimators, OLS estimators have **minimum variance**; i.e., they are **efficient**, or the "*best*" estimators.

Assumptions violations

- Implications of the violations of the following assumptions (as review, as you saw this in the previous course), solutions, and applications
 - -Independence of error terms Autocorrelation
 - -No perfect collinearity vs. Multicolllinearity
 - -Variance of u_i does not depend on the value of x_i -Heteroskedasticity
 - $-Cov(X_i, u_i) = 0$
 - Omitted variables bias (we will cover several solutions about this one in this course)
 - Also, measurement error and simultaneous equation models
- What are the consequences and potential solutions?

```
Prof. Daniel Schwartz
```

```
Course: Applied Statistics for Management
```

Omitted variable bias

• What if we say that people who play golf are more prone to heart disease and arthritis? (example from "Naked Statistics)

- Are we missing something?

• Assume that the true model is given by

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \quad \Rightarrow \quad \hat{\beta}_1$$

- But you estimate: $y = \beta_0 + \beta_1 x_1 + u \rightarrow \tilde{\beta}_1$
- Remember that *u* and *x* must be uncorrelated. Show that
- $\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \ \tilde{\delta}_1$, where $\tilde{\delta}_1$ is the slope coefficient for regressing x_2 on x_1
- This means that $\tilde{\beta}_1$ is biased. Let's see an example.

Omitted variable bias: direction of bias

	$\operatorname{Corr}(x_1, x_2) > 0$	$\operatorname{Corr}(x_1, x_2) < 0$
$\beta_2 > 0$	Positive bias	Negative bias
$\beta_2 < 0$	Negative bias	Positive bias

- When the bias is equal to 0?
- So, adding more variables is the solution? No. Why?

Prof. Daniel Schwartz

Course: Applied Statistics for Management

Example

• Restaurant new location for a established restaurant chain based on volume of customers (Y), using competition (N), population (P) and average household income (I) from nearby places (from Stundenmund, 2016)

	estl	est2	
	b/t	b/t	
N	-9074.674***	-1487.344	
	(-4.42)	(-0.84)	
P	0.355***		
	(4.88)		
I	1.288*	2.322**	
	(2.37)	(3.50)	
Constant	102192.428***	84438.590***	
	(7.98)	(5.19)	
N	33.000	33.000	
r2	0.618	0.305	
r2_a	0.579	0.258	
* p<0.05, ** p<0.01, *** p<0.001			

- What would you expect about Corr(N,P)?
 - Actually, we know it in this case
- So, what would it be the direction of the bias?
- Is it consistent with the results?

Model specification errors

- One of the assumptions of the classical linear regression (CLRM) is that the model is correctly specified. For example:
 - The model does not exclude any "core" variables
 - The model does not include superfluous variables
 - The functional form of the model is suitably chosen
- If you have a model (called "restricted"), and add (a relevant) variable, how can you compare this new "unrestricted" model with the original one?
 - -Ramsey RESET test (about functional form)

Prof. Daniel Schwartz

Course: Applied Statistics for Management

Model specification: Choosing "the right" variables

- You may have many potential covariates and many ways to specify the right hand side
- Think about the theoretical and economic relevance of each variable
 - -Researchers may end up using many predictors (including exponents and interactions)
 - -Don't use variables just because they are available
 - Some variables may be statistically significant due to random chance – they may also affect other predictors (think about multicollinearity)
 - (sadly a real example) Does a bad grade in chemistry predict that you will work in a big company?