Repaso para Tarea#1

1. Ley de Coulomb

Dos cargas puntuales q_1 y q_2 , separadas por una distancia r, en el vacío, se atraen o repelen entre sí con una fuerza cuya magnitud está dada por:

$$|\vec{F}| = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2},$$
 (1)

donde $\epsilon_0 = 8.85 \times 10^{-12} \mathrm{C^2/(Nm^2)}$ es la permitividad del vacío. La fuerza es de repulsión si las cargas son de igual signo, y de atracción si son de signo contrario.

1.1. Principio se superposición

Dado un sistema de cargas puntuales, la fuerza eléctrica sobre cada una de ellas es la suma vectorial de las fuerzas debidas a cada una de las demás cargas.

2. Campo Eléctrico

El campo eléctrico en la posición \vec{r} , de una carga puntual q ubicada en \vec{r}' , está dado por:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{|\vec{r} - \vec{r'}|^3} (\vec{r} - \vec{r'})$$
 (2)

El campo eléctrico en la posición \vec{r} , de una distribución de carga, está dado por:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{dq'}{|\vec{r} - \vec{r'}|^3} (\vec{r} - \vec{r'})$$
 (3)

$$dq' = \lambda (\vec{r}') dl'(\lambda: linea)$$

$$dq' = \sigma (\vec{r}') dS'(\sigma: superficie)$$

$$dq' = \rho (\vec{r}') dV'(\rho: volumen)$$

2.1. Fuerza eléctrica

La fuerza eléctrica que ejerce una carga q_1 , posicionada en \vec{r}_1 , sobre una carga q_2 , posicionada en \vec{r}_2 , viene dada por:

$$\vec{F}_{1,2} = q_2 E_{q_1}(\vec{r}_2), \tag{4}$$

donde:

$$E_{q_1}(\vec{r}_2) = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\vec{r}_2 - \vec{r}_1|^3} (\vec{r}_2 - \vec{r}_1)$$
 (5)

3. Potencial Electrostático

El potencial electrostático en la posición \vec{r} se define como:

$$V(\vec{r}) = -\int_{O}^{\vec{r}} \vec{E} \cdot d\vec{l} \tag{6}$$

La diferencia de potencial electrostático entre dos posiciones $\vec{r_b}$ y $\vec{r_a}$ es:

$$V(\vec{r}_b) - V(\vec{r}_a) = \Delta V = -\int_{\vec{r}_a}^{\vec{r}_b} E \cdot d\vec{l}$$
 (7)

Relación entre \vec{E} y V:

$$\vec{E} = -\vec{\nabla}V\tag{8}$$

Nota: Las cargas positivas se desplazan en la dirección de \vec{E} , que es lo mismo que decir que van en la dirección decreciente de V (desde zonas de mayor a menor potencial eléctrico). Lo opuesto ocurre para cargas negativas. Es por esto que podemos pensar que V es el análogo a la altura en la energía potencial gravitatoria.

Si el punto de referencia se toma en infinito, $O=\infty$, entonces el potencial en \vec{r} debido a una carga q ubicada en \vec{r}' está dado por

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{|\vec{r} - \vec{r'}|} \tag{9}$$

Si la distribución de carga es continua, entonces

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{dq'}{|\vec{r} - \vec{r'}|},\tag{10}$$

con las mismas opciones de dq' discutidas para el campo eléctrico.

4. Trabajo y Energía Almacenada

Para mover una carga q desde una posición \vec{r}_a a otra posición \vec{r}_b se debe aplicar una fuerza externa que es justamente el contrario de la que se ejercen entre ellas $(\vec{F} = q\vec{E})$, por lo tanto el trabajo a realizar es:

$$W = \int_{\vec{r}_a}^{\vec{r}_b} \vec{F}_{ext} \cdot \vec{dl} = -\int_{\vec{r}_a}^{\vec{r}_b} q\vec{E} \cdot \vec{dl} = q\Delta V$$
 (11)

Este movimiento, a su vez, implicará un incremento en la energía potencial:

$$\Delta U_e = U_e(\vec{r}_b) - U_e(\vec{r}_a) = q\Delta V \tag{12}$$