FI2002-2 Electromagnetismo

Profesor: Domenico Sapone

Auxiliares: Camila Montecinos & Fernando Vergara

Ayudantes: Paulina Palma & Fernanda Pérez

Tarea #0: Diagnóstico

Fecha de entrega: Lunes 29 de marzo de 2021

- P1. Calcule la divergencia de las siguientes funciones. Utilice las expresiones de los formularios en coordenadas cartesianas y en otro sistema coordenado cuando sea posible.
 - a) $x^2\hat{x} + y^2\hat{y} + z^2\hat{z}$. R: 2(x+y+z)
 - b) $\sqrt{x^2 + y^2} \hat{z}$. R: 0
 - c) $x\hat{x} + y\hat{y} + z\hat{z}$. R: 3
- **P2.** Calcule las integrales de flujo $\int \int_S \vec{F} \cdot \hat{n} dS$, donde \hat{n} corresponde a la normal de la superficie S, para cada caso:
 - a) $\vec{F} = x\hat{x} + y\hat{y} + z\hat{z}$, donde S corresponde a 3 cuadrados de lado b como se muestra en Fig. 1. R: 0
 - b) $\vec{F} = (x\hat{x} + y\hat{y} + z\hat{z})e^{-(x^2+y^2+z^2)}$, donde S corresponde a una esfera de radio R centrada en el origen, como se muestra en Fig. 1. R: $4\pi R^3 e^{-R^2}$

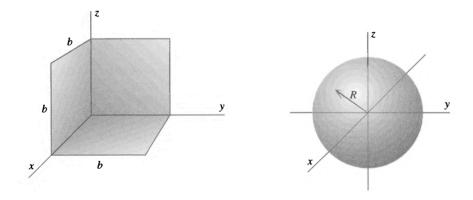


Figura 1: Izquierda: P2-a). Derecha: P2-b).

- **P3.** Una fuerza central puede escribirse como $\vec{F}(r) = f(r)\hat{r}$, donde \hat{r} es el vector unitario en la dirección radial en coordenadas esféricas y f es una función escalar. Muestre (calculando directamente) que el rotor de una función de este tipo es irrotacional, i.e., $\nabla \times \vec{F} = 0$.
- **P4.** Dado que el campo eléctrico generado por una carga puntual q situada en r=0 es

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r},\tag{1}$$

donde $r^2=x^2+y^2+z^2$, muestre (calculando directamente) que $\vec{\nabla}\cdot\vec{E}=0$, para todo $r\neq 0$.