

Auxiliar Extra 2: Preparación C2

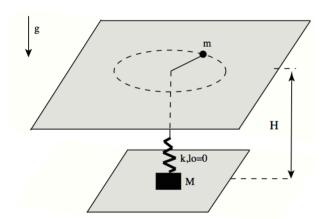
Profesor: César Fuentes G. Auxiliares: Alejandro Bravo G.

Enrique Navarro R.

Ayudantes: Valeria León G.

Lucciano Letelier C.

Erick Pérez F.

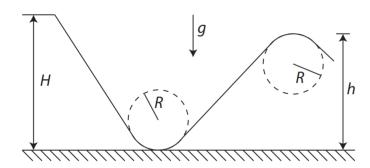

Fecha: 17/06/2021

Conceptos Importantes

Todo dinámica y energía.

P1. Masa girando con ω constante

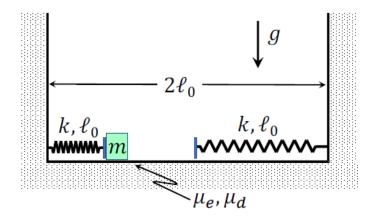
Una partícula de masa m, que se puede mover sin roce sobre una superficie horizontal, está unida por una cuerda ideal de largo L a un resorte ideal de constante elástica k y largo natural l_0 nulo, el cual está unido por el otro extremo a un bloque de masa M. Este bloque está apoyado sobre una superficie que está ubicada a una distancia H abajo del plano que contiene a la primera partícula. Calcule la máxima velocidad angular ω con que la partícula debe girar en un movimiento circular uniforme para que el bloque no se despegue del suelo.


P2. Montaña rusa

Considere una montaña rusa en la cual los carros de masa m parten desde el reposo a una altura H, bajan por una pendiente en un valle cuya forma es circular de radio R y luego suben una montaña de altura h cuya parte superior tambien tiene forma circular de radio R (como se muestra en la figura). Suponga que el contacto entre los carros y el riel de la montana rusa no tiene roce y que las ruedas de los carros corren por un riel que les impide levantarse de este, de manera que los carros deben seguir la forma de la montana rusa.

- a) Encuentre una expresion para la rapidez de los carros en el fondo del valle.
- b) Si en el fondo de los valles la fuerza neta sobre los carros es 8mg, encuentre una expresion para el radio R del círculo que ajusta el fondo del valle.

c) Si, además, en la cima de la montaña de radio R la fuerza normal entre un carro y el riel es cero, ¿cuál es la altura h de la montaña?



P3. Uno distinto de energía

Una partícula de masa m se encuentra entre dos resortes idénticos de constante elástica k y longitud natural l_0 , terminados en placas verticales sin masa. Los resortes están anclados a dos paredes opuestas, separadas entre sí por una distancia $2l_0$. La partícula no está unida a ninguno de los resortes. Entre la partícula y el suelo hay coeficientes de roce estático y dinámico μ_e y μ_d , respectivamente. La partícula se suelta desde el reposo con uno de los resortes comprimido en una longitud δ_0 . El último resorte que se comprime queda con la máxima compresión que permite que la partícula se detenga definitivamente.

- a) Determine el trabajo total realizado por la fuerza de roce.
- b) ¿Cuántas veces se detiene la partícula desde el inicio del movimiento hasta detenerse definitivamente?

Nota: La siguiente igualdad puede serle útil: $a^2 - b^2 = (a + b)(a - b)$

