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Classification:
Basic Concepts,
Decision Trees, and
Model Evaluation

Classification, which is the task of assigning objects to one of several predefined
categories, is a pervasive problem that encompasses many diverse applications.
Examples include detecting spam email messages based upon the message
header and content, categorizing cells as malignant or benign based upon the
results of MRI scans, and classifying galaxies based upon their shapes (see
Figure 4.1).

(a) A spiral galaxy. (b) An elliptical galaxy.

Figure 4.1. Classification of galaxies. The images are from the NASA website.
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Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

This chapter introduces the basic concepts of classification, describes some
of the key issues such as model overfitting, and presents methods for evaluating
and comparing the performance of a classification technique. While it focuses
mainly on a technique known as decision tree induction, most of the discussion
in this chapter is also applicable to other classification techniques, many of
which are covered in Chapter 5.

4.1 Preliminaries

The input data for a classification task is a collection of records. Each record,
also known as an instance or example, is characterized by a tuple (x, y), where
x is the attribute set and y is a special attribute, designated as the class label
(also known as category or target attribute). Table 4.1 shows a sample data set
used for classifying vertebrates into one of the following categories: mammal,
bird, fish, reptile, or amphibian. The attribute set includes properties of a
vertebrate such as its body temperature, skin cover, method of reproduction,
ability to fly, and ability to live in water. Although the attributes presented
in Table 4.1 are mostly discrete, the attribute set can also contain continuous
features. The class label, on the other hand, must be a discrete attribute.
This is a key characteristic that distinguishes classification from regression,
a predictive modeling task in which y is a continuous attribute. Regression
techniques are covered in Appendix D.

Definition 4.1 (Classification). Classification is the task of learning a tar-
get function f that maps each attribute set x to one of the predefined class
labels y.

The target function is also known informally as a classification model.
A classification model is useful for the following purposes.

Descriptive Modeling A classification model can serve as an explanatory
tool to distinguish between objects of different classes. For example, it would
be useful—for both biologists and others—to have a descriptive model that
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Table 4.1. The vertebrate data set.

Name Body Skin Gives Aquatic Aerial Has Hiber- Class
Temperature Cover Birth Creature Creature Legs nates Label

human warm-blooded hair yes no no yes no mammal
python cold-blooded scales no no no no yes reptile
salmon cold-blooded scales no yes no no no fish
whale warm-blooded hair yes yes no no no mammal
frog cold-blooded none no semi no yes yes amphibian
komodo
dragon

cold-blooded scales no no no yes no reptile

bat warm-blooded hair yes no yes yes yes mammal
pigeon warm-blooded feathers no no yes yes no bird
cat warm-blooded fur yes no no yes no mammal
leopard
shark

cold-blooded scales yes yes no no no fish

turtle cold-blooded scales no semi no yes no reptile
penguin warm-blooded feathers no semi no yes no bird
porcupine warm-blooded quills yes no no yes yes mammal
eel cold-blooded scales no yes no no no fish
salamander cold-blooded none no semi no yes yes amphibian

summarizes the data shown in Table 4.1 and explains what features define a
vertebrate as a mammal, reptile, bird, fish, or amphibian.

Predictive Modeling A classification model can also be used to predict
the class label of unknown records. As shown in Figure 4.2, a classification
model can be treated as a black box that automatically assigns a class label
when presented with the attribute set of an unknown record. Suppose we are
given the following characteristics of a creature known as a gila monster:

Name Body Skin Gives Aquatic Aerial Has Hiber- Class
Temperature Cover Birth Creature Creature Legs nates Label

gila monster cold-blooded scales no no no yes yes ?

We can use a classification model built from the data set shown in Table 4.1
to determine the class to which the creature belongs.

Classification techniques are most suited for predicting or describing data
sets with binary or nominal categories. They are less effective for ordinal
categories (e.g., to classify a person as a member of high-, medium-, or low-
income group) because they do not consider the implicit order among the
categories. Other forms of relationships, such as the subclass–superclass re-
lationships among categories (e.g., humans and apes are primates, which in
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turn, is a subclass of mammals) are also ignored. The remainder of this chapter
focuses only on binary or nominal class labels.

4.2 General Approach to Solving a Classification
Problem

A classification technique (or classifier) is a systematic approach to building
classification models from an input data set. Examples include decision tree
classifiers, rule-based classifiers, neural networks, support vector machines,
and näıve Bayes classifiers. Each technique employs a learning algorithm
to identify a model that best fits the relationship between the attribute set and
class label of the input data. The model generated by a learning algorithm
should both fit the input data well and correctly predict the class labels of
records it has never seen before. Therefore, a key objective of the learning
algorithm is to build models with good generalization capability; i.e., models
that accurately predict the class labels of previously unknown records.

Figure 4.3 shows a general approach for solving classification problems.
First, a training set consisting of records whose class labels are known must
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Figure 4.3. General approach for building a classification model.
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Table 4.2. Confusion matrix for a 2-class problem.

Predicted Class
Class = 1 Class = 0

Actual Class = 1 f11 f10

Class Class = 0 f01 f00

be provided. The training set is used to build a classification model, which is
subsequently applied to the test set, which consists of records with unknown
class labels.

Evaluation of the performance of a classification model is based on the
counts of test records correctly and incorrectly predicted by the model. These
counts are tabulated in a table known as a confusion matrix. Table 4.2
depicts the confusion matrix for a binary classification problem. Each entry
fij in this table denotes the number of records from class i predicted to be
of class j. For instance, f01 is the number of records from class 0 incorrectly
predicted as class 1. Based on the entries in the confusion matrix, the total
number of correct predictions made by the model is (f11 + f00) and the total
number of incorrect predictions is (f10 + f01).

Although a confusion matrix provides the information needed to determine
how well a classification model performs, summarizing this information with
a single number would make it more convenient to compare the performance
of different models. This can be done using a performance metric such as
accuracy, which is defined as follows:

Accuracy =
Number of correct predictions

Total number of predictions
=

f11 + f00

f11 + f10 + f01 + f00
. (4.1)

Equivalently, the performance of a model can be expressed in terms of its
error rate, which is given by the following equation:

Error rate =
Number of wrong predictions

Total number of predictions
=

f10 + f01

f11 + f10 + f01 + f00
. (4.2)

Most classification algorithms seek models that attain the highest accuracy, or
equivalently, the lowest error rate when applied to the test set. We will revisit
the topic of model evaluation in Section 4.5.
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4.3 Decision Tree Induction

This section introduces a decision tree classifier, which is a simple yet widely
used classification technique.

4.3.1 How a Decision Tree Works

To illustrate how classification with a decision tree works, consider a simpler
version of the vertebrate classification problem described in the previous sec-
tion. Instead of classifying the vertebrates into five distinct groups of species,
we assign them to two categories: mammals and non-mammals.

Suppose a new species is discovered by scientists. How can we tell whether
it is a mammal or a non-mammal? One approach is to pose a series of questions
about the characteristics of the species. The first question we may ask is
whether the species is cold- or warm-blooded. If it is cold-blooded, then it is
definitely not a mammal. Otherwise, it is either a bird or a mammal. In the
latter case, we need to ask a follow-up question: Do the females of the species
give birth to their young? Those that do give birth are definitely mammals,
while those that do not are likely to be non-mammals (with the exception of
egg-laying mammals such as the platypus and spiny anteater).

The previous example illustrates how we can solve a classification problem
by asking a series of carefully crafted questions about the attributes of the
test record. Each time we receive an answer, a follow-up question is asked
until we reach a conclusion about the class label of the record. The series of
questions and their possible answers can be organized in the form of a decision
tree, which is a hierarchical structure consisting of nodes and directed edges.
Figure 4.4 shows the decision tree for the mammal classification problem. The
tree has three types of nodes:

• A root node that has no incoming edges and zero or more outgoing
edges.

• Internal nodes, each of which has exactly one incoming edge and two
or more outgoing edges.

• Leaf or terminal nodes, each of which has exactly one incoming edge
and no outgoing edges.

In a decision tree, each leaf node is assigned a class label. The non-
terminal nodes, which include the root and other internal nodes, contain
attribute test conditions to separate records that have different characteris-
tics. For example, the root node shown in Figure 4.4 uses the attribute Body
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Figure 4.4. A decision tree for the mammal classification problem.

Temperature to separate warm-blooded from cold-blooded vertebrates. Since
all cold-blooded vertebrates are non-mammals, a leaf node labeled Non-mammals

is created as the right child of the root node. If the vertebrate is warm-blooded,
a subsequent attribute, Gives Birth, is used to distinguish mammals from
other warm-blooded creatures, which are mostly birds.

Classifying a test record is straightforward once a decision tree has been
constructed. Starting from the root node, we apply the test condition to the
record and follow the appropriate branch based on the outcome of the test.
This will lead us either to another internal node, for which a new test condition
is applied, or to a leaf node. The class label associated with the leaf node is
then assigned to the record. As an illustration, Figure 4.5 traces the path in
the decision tree that is used to predict the class label of a flamingo. The path
terminates at a leaf node labeled Non-mammals.

4.3.2 How to Build a Decision Tree

In principle, there are exponentially many decision trees that can be con-
structed from a given set of attributes. While some of the trees are more accu-
rate than others, finding the optimal tree is computationally infeasible because
of the exponential size of the search space. Nevertheless, efficient algorithms
have been developed to induce a reasonably accurate, albeit suboptimal, de-
cision tree in a reasonable amount of time. These algorithms usually employ
a greedy strategy that grows a decision tree by making a series of locally op-
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Figure 4.5. Classifying an unlabeled vertebrate. The dashed lines represent the outcomes of applying
various attribute test conditions on the unlabeled vertebrate. The vertebrate is eventually assigned to
the Non-mammal class.

timum decisions about which attribute to use for partitioning the data. One
such algorithm is Hunt’s algorithm, which is the basis of many existing de-
cision tree induction algorithms, including ID3, C4.5, and CART. This section
presents a high-level discussion of Hunt’s algorithm and illustrates some of its
design issues.

Hunt’s Algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion by parti-
tioning the training records into successively purer subsets. Let Dt be the set
of training records that are associated with node t and y = {y1, y2, . . . , yc} be
the class labels. The following is a recursive definition of Hunt’s algorithm.

Step 1: If all the records in Dt belong to the same class yt, then t is a leaf
node labeled as yt.

Step 2: If Dt contains records that belong to more than one class, an at-
tribute test condition is selected to partition the records into smaller
subsets. A child node is created for each outcome of the test condi-
tion and the records in Dt are distributed to the children based on the
outcomes. The algorithm is then recursively applied to each child node.
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Figure 4.6. Training set for predicting borrowers who will default on loan payments.

To illustrate how the algorithm works, consider the problem of predicting
whether a loan applicant will repay her loan obligations or become delinquent,
subsequently defaulting on her loan. A training set for this problem can be
constructed by examining the records of previous borrowers. In the example
shown in Figure 4.6, each record contains the personal information of a bor-
rower along with a class label indicating whether the borrower has defaulted
on loan payments.

The initial tree for the classification problem contains a single node with
class label Defaulted = No (see Figure 4.7(a)), which means that most of
the borrowers successfully repaid their loans. The tree, however, needs to be
refined since the root node contains records from both classes. The records are
subsequently divided into smaller subsets based on the outcomes of the Home

Owner test condition, as shown in Figure 4.7(b). The justification for choosing
this attribute test condition will be discussed later. For now, we will assume
that this is the best criterion for splitting the data at this point. Hunt’s
algorithm is then applied recursively to each child of the root node. From
the training set given in Figure 4.6, notice that all borrowers who are home
owners successfully repaid their loans. The left child of the root is therefore a
leaf node labeled Defaulted = No (see Figure 4.7(b)). For the right child, we
need to continue applying the recursive step of Hunt’s algorithm until all the
records belong to the same class. The trees resulting from each recursive step
are shown in Figures 4.7(c) and (d).
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Figure 4.7. Hunt’s algorithm for inducing decision trees.

Hunt’s algorithm will work if every combination of attribute values is
present in the training data and each combination has a unique class label.
These assumptions are too stringent for use in most practical situations. Ad-
ditional conditions are needed to handle the following cases:

1. It is possible for some of the child nodes created in Step 2 to be empty;
i.e., there are no records associated with these nodes. This can happen
if none of the training records have the combination of attribute values
associated with such nodes. In this case the node is declared a leaf
node with the same class label as the majority class of training records
associated with its parent node.

2. In Step 2, if all the records associated with Dt have identical attribute
values (except for the class label), then it is not possible to split these
records any further. In this case, the node is declared a leaf node with
the same class label as the majority class of training records associated
with this node.
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Design Issues of Decision Tree Induction

A learning algorithm for inducing decision trees must address the following
two issues.

1. How should the training records be split? Each recursive step
of the tree-growing process must select an attribute test condition to
divide the records into smaller subsets. To implement this step, the
algorithm must provide a method for specifying the test condition for
different attribute types as well as an objective measure for evaluating
the goodness of each test condition.

2. How should the splitting procedure stop? A stopping condition is
needed to terminate the tree-growing process. A possible strategy is to
continue expanding a node until either all the records belong to the same
class or all the records have identical attribute values. Although both
conditions are sufficient to stop any decision tree induction algorithm,
other criteria can be imposed to allow the tree-growing procedure to
terminate earlier. The advantages of early termination will be discussed
later in Section 4.4.5.

4.3.3 Methods for Expressing Attribute Test Conditions

Decision tree induction algorithms must provide a method for expressing an
attribute test condition and its corresponding outcomes for different attribute
types.

Binary Attributes The test condition for a binary attribute generates two
potential outcomes, as shown in Figure 4.8.

Body
Temperature

Warm-
blooded

Cold-
blooded

Figure 4.8. Test condition for binary attributes.
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Figure 4.9. Test conditions for nominal attributes.

Nominal Attributes Since a nominal attribute can have many values, its
test condition can be expressed in two ways, as shown in Figure 4.9. For
a multiway split (Figure 4.9(a)), the number of outcomes depends on the
number of distinct values for the corresponding attribute. For example, if
an attribute such as marital status has three distinct values—single, married,
or divorced—its test condition will produce a three-way split. On the other
hand, some decision tree algorithms, such as CART, produce only binary splits
by considering all 2k−1 − 1 ways of creating a binary partition of k attribute
values. Figure 4.9(b) illustrates three different ways of grouping the attribute
values for marital status into two subsets.

Ordinal Attributes Ordinal attributes can also produce binary or multiway
splits. Ordinal attribute values can be grouped as long as the grouping does
not violate the order property of the attribute values. Figure 4.10 illustrates
various ways of splitting training records based on the Shirt Size attribute.
The groupings shown in Figures 4.10(a) and (b) preserve the order among
the attribute values, whereas the grouping shown in Figure 4.10(c) violates
this property because it combines the attribute values Small and Large into
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Figure 4.10. Different ways of grouping ordinal attribute values.

the same partition while Medium and Extra Large are combined into another
partition.

Continuous Attributes For continuous attributes, the test condition can
be expressed as a comparison test (A < v) or (A ≥ v) with binary outcomes, or
a range query with outcomes of the form vi ≤ A < vi+1, for i = 1, . . . , k. The
difference between these approaches is shown in Figure 4.11. For the binary
case, the decision tree algorithm must consider all possible split positions v,
and it selects the one that produces the best partition. For the multiway
split, the algorithm must consider all possible ranges of continuous values.
One approach is to apply the discretization strategies described in Section
2.3.6 on page 57. After discretization, a new ordinal value will be assigned to
each discretized interval. Adjacent intervals can also be aggregated into wider
ranges as long as the order property is preserved.
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Figure 4.11. Test condition for continuous attributes.
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Figure 4.12. Multiway versus binary splits.

4.3.4 Measures for Selecting the Best Split

There are many measures that can be used to determine the best way to split
the records. These measures are defined in terms of the class distribution of
the records before and after splitting.

Let p(i|t) denote the fraction of records belonging to class i at a given node
t. We sometimes omit the reference to node t and express the fraction as pi.
In a two-class problem, the class distribution at any node can be written as
(p0, p1), where p1 = 1 − p0. To illustrate, consider the test conditions shown
in Figure 4.12. The class distribution before splitting is (0.5, 0.5) because
there are an equal number of records from each class. If we split the data
using the Gender attribute, then the class distributions of the child nodes are
(0.6, 0.4) and (0.4, 0.6), respectively. Although the classes are no longer evenly
distributed, the child nodes still contain records from both classes. Splitting
on the second attribute, Car Type, will result in purer partitions.

The measures developed for selecting the best split are often based on the
degree of impurity of the child nodes. The smaller the degree of impurity, the
more skewed the class distribution. For example, a node with class distribu-
tion (0, 1) has zero impurity, whereas a node with uniform class distribution
(0.5, 0.5) has the highest impurity. Examples of impurity measures include

Entropy(t) = −
c−1∑
i=0

p(i|t) log2 p(i|t), (4.3)

Gini(t) = 1 −
c−1∑
i=0

[p(i|t)]2, (4.4)

Classification error(t) = 1 − max
i

[p(i|t)], (4.5)

where c is the number of classes and 0 log2 0 = 0 in entropy calculations.
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Figure 4.13. Comparison among the impurity measures for binary classification problems.

Figure 4.13 compares the values of the impurity measures for binary classi-
fication problems. p refers to the fraction of records that belong to one of the
two classes. Observe that all three measures attain their maximum value when
the class distribution is uniform (i.e., when p = 0.5). The minimum values for
the measures are attained when all the records belong to the same class (i.e.,
when p equals 0 or 1). We next provide several examples of computing the
different impurity measures.

Node N1 Count
Class=0 0
Class=1 6

Gini = 1 − (0/6)2 − (6/6)2 = 0
Entropy = −(0/6) log2(0/6) − (6/6) log2(6/6) = 0
Error = 1 − max[0/6, 6/6] = 0

Node N2 Count
Class=0 1
Class=1 5

Gini = 1 − (1/6)2 − (5/6)2 = 0.278
Entropy = −(1/6) log2(1/6) − (5/6) log2(5/6) = 0.650
Error = 1 − max[1/6, 5/6] = 0.167

Node N3 Count
Class=0 3
Class=1 3

Gini = 1 − (3/6)2 − (3/6)2 = 0.5
Entropy = −(3/6) log2(3/6) − (3/6) log2(3/6) = 1
Error = 1 − max[3/6, 3/6] = 0.5
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The preceding examples, along with Figure 4.13, illustrate the consistency
among different impurity measures. Based on these calculations, node N1 has
the lowest impurity value, followed by N2 and N3. Despite their consistency,
the attribute chosen as the test condition may vary depending on the choice
of impurity measure, as will be shown in Exercise 3 on page 198.

To determine how well a test condition performs, we need to compare the
degree of impurity of the parent node (before splitting) with the degree of
impurity of the child nodes (after splitting). The larger their difference, the
better the test condition. The gain, ∆, is a criterion that can be used to
determine the goodness of a split:

∆ = I(parent) −
k∑

j=1

N(vj)

N
I(vj), (4.6)

where I(·) is the impurity measure of a given node, N is the total number of
records at the parent node, k is the number of attribute values, and N(vj)
is the number of records associated with the child node, vj . Decision tree
induction algorithms often choose a test condition that maximizes the gain
∆. Since I(parent) is the same for all test conditions, maximizing the gain is
equivalent to minimizing the weighted average impurity measures of the child
nodes. Finally, when entropy is used as the impurity measure in Equation 4.6,
the difference in entropy is known as the information gain, ∆info.

Splitting of Binary Attributes

Consider the diagram shown in Figure 4.14. Suppose there are two ways to
split the data into smaller subsets. Before splitting, the Gini index is 0.5 since
there are an equal number of records from both classes. If attribute A is chosen
to split the data, the Gini index for node N1 is 0.4898, and for node N2, it
is 0.480. The weighted average of the Gini index for the descendent nodes is
(7/12) × 0.4898 + (5/12) × 0.480 = 0.486. Similarly, we can show that the
weighted average of the Gini index for attribute B is 0.375. Since the subsets
for attribute B have a smaller Gini index, it is preferred over attribute A.

Splitting of Nominal Attributes

As previously noted, a nominal attribute can produce either binary or multi-
way splits, as shown in Figure 4.15. The computation of the Gini index for a
binary split is similar to that shown for determining binary attributes. For the
first binary grouping of the Car Type attribute, the Gini index of {Sports,
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Figure 4.15. Splitting nominal attributes.

Luxury} is 0.4922 and the Gini index of {Family} is 0.3750. The weighted
average Gini index for the grouping is equal to

16/20 × 0.4922 + 4/20 × 0.3750 = 0.468.

Similarly, for the second binary grouping of {Sports} and {Family, Luxury},
the weighted average Gini index is 0.167. The second grouping has a lower
Gini index because its corresponding subsets are much purer.
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Figure 4.16. Splitting continuous attributes.

For the multiway split, the Gini index is computed for every attribute value.
Since Gini({Family}) = 0.375, Gini({Sports}) = 0, and Gini({Luxury}) =
0.219, the overall Gini index for the multiway split is equal to

4/20 × 0.375 + 8/20 × 0 + 8/20 × 0.219 = 0.163.

The multiway split has a smaller Gini index compared to both two-way splits.
This result is not surprising because the two-way split actually merges some
of the outcomes of a multiway split, and thus, results in less pure subsets.

Splitting of Continuous Attributes

Consider the example shown in Figure 4.16, in which the test condition Annual

Income ≤ v is used to split the training records for the loan default classifica-
tion problem. A brute-force method for finding v is to consider every value of
the attribute in the N records as a candidate split position. For each candidate
v, the data set is scanned once to count the number of records with annual
income less than or greater than v. We then compute the Gini index for each
candidate and choose the one that gives the lowest value. This approach is
computationally expensive because it requires O(N) operations to compute
the Gini index at each candidate split position. Since there are N candidates,
the overall complexity of this task is O(N2). To reduce the complexity, the
training records are sorted based on their annual income, a computation that
requires O(N log N) time. Candidate split positions are identified by taking
the midpoints between two adjacent sorted values: 55, 65, 72, and so on. How-
ever, unlike the brute-force approach, we do not have to examine all N records
when evaluating the Gini index of a candidate split position.

For the first candidate, v = 55, none of the records has annual income less
than $55K. As a result, the Gini index for the descendent node with Annual
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Income < $55K is zero. On the other hand, the number of records with annual
income greater than or equal to $55K is 3 (for class Yes) and 7 (for class No),
respectively. Thus, the Gini index for this node is 0.420. The overall Gini
index for this candidate split position is equal to 0 × 0 + 1 × 0.420 = 0.420.

For the second candidate, v = 65, we can determine its class distribution
by updating the distribution of the previous candidate. More specifically, the
new distribution is obtained by examining the class label of the record with
the lowest annual income (i.e., $60K). Since the class label for this record is
No, the count for class No is increased from 0 to 1 (for Annual Income ≤ $65K)
and is decreased from 7 to 6 (for Annual Income > $65K). The distribution
for class Yes remains unchanged. The new weighted-average Gini index for
this candidate split position is 0.400.

This procedure is repeated until the Gini index values for all candidates are
computed, as shown in Figure 4.16. The best split position corresponds to the
one that produces the smallest Gini index, i.e., v = 97. This procedure is less
expensive because it requires a constant amount of time to update the class
distribution at each candidate split position. It can be further optimized by
considering only candidate split positions located between two adjacent records
with different class labels. For example, because the first three sorted records
(with annual incomes $60K, $70K, and $75K) have identical class labels, the
best split position should not reside between $60K and $75K. Therefore, the
candidate split positions at v = $55K, $65K, $72K, $87K, $92K, $110K, $122K,
$172K, and $230K are ignored because they are located between two adjacent
records with the same class labels. This approach allows us to reduce the
number of candidate split positions from 11 to 2.

Gain Ratio

Impurity measures such as entropy and Gini index tend to favor attributes that
have a large number of distinct values. Figure 4.12 shows three alternative
test conditions for partitioning the data set given in Exercise 2 on page 198.
Comparing the first test condition, Gender, with the second, Car Type, it
is easy to see that Car Type seems to provide a better way of splitting the
data since it produces purer descendent nodes. However, if we compare both
conditions with Customer ID, the latter appears to produce purer partitions.
Yet Customer ID is not a predictive attribute because its value is unique for
each record. Even in a less extreme situation, a test condition that results in a
large number of outcomes may not be desirable because the number of records
associated with each partition is too small to enable us to make any reliable
predictions.
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There are two strategies for overcoming this problem. The first strategy is
to restrict the test conditions to binary splits only. This strategy is employed
by decision tree algorithms such as CART. Another strategy is to modify the
splitting criterion to take into account the number of outcomes produced by
the attribute test condition. For example, in the C4.5 decision tree algorithm,
a splitting criterion known as gain ratio is used to determine the goodness
of a split. This criterion is defined as follows:

Gain ratio =
∆info

Split Info
. (4.7)

Here, Split Info = −∑k
i=1 P (vi) log2 P (vi) and k is the total number of splits.

For example, if each attribute value has the same number of records, then
∀i : P (vi) = 1/k and the split information would be equal to log2 k. This
example suggests that if an attribute produces a large number of splits, its
split information will also be large, which in turn reduces its gain ratio.

4.3.5 Algorithm for Decision Tree Induction

A skeleton decision tree induction algorithm called TreeGrowth is shown
in Algorithm 4.1. The input to this algorithm consists of the training records
E and the attribute set F . The algorithm works by recursively selecting the
best attribute to split the data (Step 7) and expanding the leaf nodes of the

Algorithm 4.1 A skeleton decision tree induction algorithm.

TreeGrowth (E, F )
1: if stopping cond(E,F ) = true then
2: leaf = createNode().
3: leaf.label = Classify(E).
4: return leaf .
5: else
6: root = createNode().
7: root.test cond = find best split(E, F ).
8: let V = {v|v is a possible outcome of root.test cond }.
9: for each v ∈ V do

10: Ev = {e | root.test cond(e) = v and e ∈ E}.
11: child = TreeGrowth(Ev, F ).
12: add child as descendent of root and label the edge (root → child) as v.
13: end for
14: end if
15: return root.
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tree (Steps 11 and 12) until the stopping criterion is met (Step 1). The details
of this algorithm are explained below:

1. The createNode() function extends the decision tree by creating a new
node. A node in the decision tree has either a test condition, denoted as
node.test cond, or a class label, denoted as node.label.

2. The find best split() function determines which attribute should be
selected as the test condition for splitting the training records. As pre-
viously noted, the choice of test condition depends on which impurity
measure is used to determine the goodness of a split. Some widely used
measures include entropy, the Gini index, and the χ2 statistic.

3. The Classify() function determines the class label to be assigned to a
leaf node. For each leaf node t, let p(i|t) denote the fraction of training
records from class i associated with the node t. In most cases, the leaf
node is assigned to the class that has the majority number of training
records:

leaf.label = argmax
i

p(i|t), (4.8)

where the argmax operator returns the argument i that maximizes the
expression p(i|t). Besides providing the information needed to determine
the class label of a leaf node, the fraction p(i|t) can also be used to es-
timate the probability that a record assigned to the leaf node t belongs
to class i. Sections 5.7.2 and 5.7.3 describe how such probability esti-
mates can be used to determine the performance of a decision tree under
different cost functions.

4. The stopping cond() function is used to terminate the tree-growing pro-
cess by testing whether all the records have either the same class label
or the same attribute values. Another way to terminate the recursive
function is to test whether the number of records have fallen below some
minimum threshold.

After building the decision tree, a tree-pruning step can be performed
to reduce the size of the decision tree. Decision trees that are too large are
susceptible to a phenomenon known as overfitting. Pruning helps by trim-
ming the branches of the initial tree in a way that improves the generalization
capability of the decision tree. The issues of overfitting and tree pruning are
discussed in more detail in Section 4.4.
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Session IP Address Timestamp Protocol Status Referrer User AgentNumber
of Bytes

Requested Web PageRequest
Method

08/Aug/2004
10:15:21

160.11.11.111 GET http://www.cs.umn.edu/
~kumar

HTTP/1.1 200 6424 Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)

08/Aug/2004
10:15:34

160.11.11.111 GET http://www.cs.umn.edu/
~kumar/MINDS

http://www.cs.umn.edu/
~kumar

http://www.cs.umn.edu/
~kumar

HTTP/1.1 200 41378 Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)

08/Aug/2004
10:15:41

160.11.11.111 GET

08/Aug/2004
10:16:11

160.11.11.111 GET

08/Aug/2004
10:16:15

35.9.2.22 GET

http://www.cs.umn.edu/
~kumar/MINDS/MINDS
_papers.htm
http://www.cs.umn.edu/
~kumar/papers/papers.
html
http://www.cs.umn.edu/
~steinbac

http://www.cs.umn.edu/
~kumar/MINDS

HTTP/1.1 200

HTTP/1.1 200

HTTP/1.0

Attribute Name Description

200

1018516

7463

3149

Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)
Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)
Mozilla/5.0 (Windows; U;
Windows NT 5.1; en-US;
rv:1.7) Gecko/20040616

(a) Example of a Web server log.

http://www.cs.umn.edu/~kumar

MINDS
papers/papers.html

MINDS/MINDS_papers.htm

(b) Graph of a Web session. (c) Derived attributes for Web robot detection.

totalPages Total number of pages retrieved in a Web session
Total number of image pages retrieved in a Web session
Total amount of time spent by Web site visitor
The same page requested more than once in a Web session
Errors in requesting for Web pages

Breadth of Web traversal
Depth of Web traversal
Session with multiple IP addresses
Session with multiple user agents

Percentage of requests made using GET method
Percentage of requests made using POST method
Percentage of requests made using HEAD method

TotalTime
RepeatedAccess
ErrorRequest

Breadth
Depth
MultilP
MultiAgent

GET
POST
HEAD

ImagePages

Figure 4.17. Input data for Web robot detection.

4.3.6 An Example: Web Robot Detection

Web usage mining is the task of applying data mining techniques to extract
useful patterns from Web access logs. These patterns can reveal interesting
characteristics of site visitors; e.g., people who repeatedly visit a Web site and
view the same product description page are more likely to buy the product if
certain incentives such as rebates or free shipping are offered.

In Web usage mining, it is important to distinguish accesses made by hu-
man users from those due to Web robots. A Web robot (also known as a Web
crawler) is a software program that automatically locates and retrieves infor-
mation from the Internet by following the hyperlinks embedded in Web pages.
These programs are deployed by search engine portals to gather the documents
necessary for indexing the Web. Web robot accesses must be discarded before
applying Web mining techniques to analyze human browsing behavior.
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This section describes how a decision tree classifier can be used to distin-
guish between accesses by human users and those by Web robots. The input
data was obtained from a Web server log, a sample of which is shown in Figure
4.17(a). Each line corresponds to a single page request made by a Web client
(a user or a Web robot). The fields recorded in the Web log include the IP
address of the client, timestamp of the request, Web address of the requested
document, size of the document, and the client’s identity (via the user agent
field). A Web session is a sequence of requests made by a client during a single
visit to a Web site. Each Web session can be modeled as a directed graph, in
which the nodes correspond to Web pages and the edges correspond to hyper-
links connecting one Web page to another. Figure 4.17(b) shows a graphical
representation of the first Web session given in the Web server log.

To classify the Web sessions, features are constructed to describe the char-
acteristics of each session. Figure 4.17(c) shows some of the features used
for the Web robot detection task. Among the notable features include the
depth and breadth of the traversal. Depth determines the maximum dis-
tance of a requested page, where distance is measured in terms of the num-
ber of hyperlinks away from the entry point of the Web site. For example,
the home page http://www.cs.umn.edu/∼kumar is assumed to be at depth
0, whereas http://www.cs.umn.edu/kumar/MINDS/MINDS papers.htm is lo-
cated at depth 2. Based on the Web graph shown in Figure 4.17(b), the depth
attribute for the first session is equal to two. The breadth attribute measures
the width of the corresponding Web graph. For example, the breadth of the
Web session shown in Figure 4.17(b) is equal to two.

The data set for classification contains 2916 records, with equal numbers
of sessions due to Web robots (class 1) and human users (class 0). 10% of the
data were reserved for training while the remaining 90% were used for testing.
The induced decision tree model is shown in Figure 4.18. The tree has an
error rate equal to 3.8% on the training set and 5.3% on the test set.

The model suggests that Web robots can be distinguished from human
users in the following way:

1. Accesses by Web robots tend to be broad but shallow, whereas accesses
by human users tend to be more focused (narrow but deep).

2. Unlike human users, Web robots seldom retrieve the image pages asso-
ciated with a Web document.

3. Sessions due to Web robots tend to be long and contain a large number
of requested pages.
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Decision Tree:
depth = 1:
|  breadth> 7 :   class 1
|  breadth<= 7:
|  |  breadth <= 3:
|  |  |  ImagePages> 0.375:   class 0
|  |  |  ImagePages<= 0.375:
|  |  |  |  totalPages<= 6:   class 1
|  |  |  |  totalPages> 6:
|  |  |  |  |  breadth <= 1:   class 1
|  |  |  |  |  breadth > 1:   class 0
|  |  width > 3:
|  |  |  MultilP = 0:
|  |  |  |  ImagePages<= 0.1333:   class 1
|  |  |  |  ImagePages> 0.1333:
|  |  |  |  breadth <= 6:   class 0
|  |  |  |  breadth > 6:   class 1
|  |  |  MultilP = 1:
|  |  |  |  TotalTime <= 361:   class 0
|  |  |  |  TotalTime > 361:   class 1
depth> 1:
|  MultiAgent = 0:
|  |  depth > 2:   class 0
|  |  depth < 2:
|  |  |  MultilP = 1:   class 0
|  |  |  MultilP = 0:
|  |  |  |  breadth <= 6:   class 0
|  |  |  |  breadth > 6:
|  |  |  |  |  RepeatedAccess <= 0.322:   class 0
|  |  |  |  |  RepeatedAccess > 0.322:   class 1
|  MultiAgent = 1:
|  |  totalPages <= 81:   class 0
|  |  totalPages > 81:   class 1

Figure 4.18. Decision tree model for Web robot detection.

4. Web robots are more likely to make repeated requests for the same doc-
ument since the Web pages retrieved by human users are often cached
by the browser.

4.3.7 Characteristics of Decision Tree Induction

The following is a summary of the important characteristics of decision tree
induction algorithms.

1. Decision tree induction is a nonparametric approach for building classifi-
cation models. In other words, it does not require any prior assumptions
regarding the type of probability distributions satisfied by the class and
other attributes (unlike some of the techniques described in Chapter 5).
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2. Finding an optimal decision tree is an NP-complete problem. Many de-
cision tree algorithms employ a heuristic-based approach to guide their
search in the vast hypothesis space. For example, the algorithm pre-
sented in Section 4.3.5 uses a greedy, top-down, recursive partitioning
strategy for growing a decision tree.

3. Techniques developed for constructing decision trees are computationally
inexpensive, making it possible to quickly construct models even when
the training set size is very large. Furthermore, once a decision tree has
been built, classifying a test record is extremely fast, with a worst-case
complexity of O(w), where w is the maximum depth of the tree.

4. Decision trees, especially smaller-sized trees, are relatively easy to inter-
pret. The accuracies of the trees are also comparable to other classifica-
tion techniques for many simple data sets.

5. Decision trees provide an expressive representation for learning discrete-
valued functions. However, they do not generalize well to certain types
of Boolean problems. One notable example is the parity function, whose
value is 0 (1) when there is an odd (even) number of Boolean attributes
with the value True. Accurate modeling of such a function requires a full
decision tree with 2d nodes, where d is the number of Boolean attributes
(see Exercise 1 on page 198).

6. Decision tree algorithms are quite robust to the presence of noise, espe-
cially when methods for avoiding overfitting, as described in Section 4.4,
are employed.

7. The presence of redundant attributes does not adversely affect the ac-
curacy of decision trees. An attribute is redundant if it is strongly cor-
related with another attribute in the data. One of the two redundant
attributes will not be used for splitting once the other attribute has been
chosen. However, if the data set contains many irrelevant attributes, i.e.,
attributes that are not useful for the classification task, then some of the
irrelevant attributes may be accidently chosen during the tree-growing
process, which results in a decision tree that is larger than necessary.
Feature selection techniques can help to improve the accuracy of deci-
sion trees by eliminating the irrelevant attributes during preprocessing.
We will investigate the issue of too many irrelevant attributes in Section
4.4.3.
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8. Since most decision tree algorithms employ a top-down, recursive parti-
tioning approach, the number of records becomes smaller as we traverse
down the tree. At the leaf nodes, the number of records may be too
small to make a statistically significant decision about the class rep-
resentation of the nodes. This is known as the data fragmentation
problem. One possible solution is to disallow further splitting when the
number of records falls below a certain threshold.

9. A subtree can be replicated multiple times in a decision tree, as illus-
trated in Figure 4.19. This makes the decision tree more complex than
necessary and perhaps more difficult to interpret. Such a situation can
arise from decision tree implementations that rely on a single attribute
test condition at each internal node. Since most of the decision tree al-
gorithms use a divide-and-conquer partitioning strategy, the same test
condition can be applied to different parts of the attribute space, thus
leading to the subtree replication problem.

0 1

0 1

0

0

1

P

R

Q

S

Q

S

Figure 4.19. Tree replication problem. The same subtree can appear at different branches.

10. The test conditions described so far in this chapter involve using only a
single attribute at a time. As a consequence, the tree-growing procedure
can be viewed as the process of partitioning the attribute space into
disjoint regions until each region contains records of the same class (see
Figure 4.20). The border between two neighboring regions of different
classes is known as a decision boundary. Since the test condition in-
volves only a single attribute, the decision boundaries are rectilinear; i.e.,
parallel to the “coordinate axes.” This limits the expressiveness of the
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Figure 4.20. Example of a decision tree and its decision boundaries for a two-dimensional data set.
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Figure 4.21. Example of data set that cannot be partitioned optimally using test conditions involving
single attributes.

decision tree representation for modeling complex relationships among
continuous attributes. Figure 4.21 illustrates a data set that cannot be
classified effectively by a decision tree algorithm that uses test conditions
involving only a single attribute at a time.
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An oblique decision tree can be used to overcome this limitation
because it allows test conditions that involve more than one attribute.
The data set given in Figure 4.21 can be easily represented by an oblique
decision tree containing a single node with test condition

x + y < 1.

Although such techniques are more expressive and can produce more
compact trees, finding the optimal test condition for a given node can
be computationally expensive.

Constructive induction provides another way to partition the data
into homogeneous, nonrectangular regions (see Section 2.3.5 on page 57).
This approach creates composite attributes representing an arithmetic
or logical combination of the existing attributes. The new attributes
provide a better discrimination of the classes and are augmented to the
data set prior to decision tree induction. Unlike the oblique decision tree
approach, constructive induction is less expensive because it identifies all
the relevant combinations of attributes once, prior to constructing the
decision tree. In contrast, an oblique decision tree must determine the
right attribute combination dynamically, every time an internal node is
expanded. However, constructive induction can introduce attribute re-
dundancy in the data since the new attribute is a combination of several
existing attributes.

11. Studies have shown that the choice of impurity measure has little effect
on the performance of decision tree induction algorithms. This is because
many impurity measures are quite consistent with each other, as shown
in Figure 4.13 on page 159. Indeed, the strategy used to prune the
tree has a greater impact on the final tree than the choice of impurity
measure.

4.4 Model Overfitting

The errors committed by a classification model are generally divided into two
types: training errors and generalization errors. Training error, also
known as resubstitution error or apparent error, is the number of misclas-
sification errors committed on training records, whereas generalization error
is the expected error of the model on previously unseen records.

Recall from Section 4.2 that a good classification model must not only fit
the training data well, it must also accurately classify records it has never
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Figure 4.22. Example of a data set with binary classes.

seen before. In other words, a good model must have low training error as
well as low generalization error. This is important because a model that fits
the training data too well can have a poorer generalization error than a model
with a higher training error. Such a situation is known as model overfitting.

Overfitting Example in Two-Dimensional Data For a more concrete
example of the overfitting problem, consider the two-dimensional data set
shown in Figure 4.22. The data set contains data points that belong to two
different classes, denoted as class o and class +, respectively. The data points
for the o class are generated from a mixture of three Gaussian distributions,
while a uniform distribution is used to generate the data points for the + class.
There are altogether 1200 points belonging to the o class and 1800 points be-
longing to the + class. 30% of the points are chosen for training, while the
remaining 70% are used for testing. A decision tree classifier that uses the
Gini index as its impurity measure is then applied to the training set. To
investigate the effect of overfitting, different levels of pruning are applied to
the initial, fully-grown tree. Figure 4.23(b) shows the training and test error
rates of the decision tree.
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Figure 4.23. Training and test error rates.

Notice that the training and test error rates of the model are large when the
size of the tree is very small. This situation is known as model underfitting.
Underfitting occurs because the model has yet to learn the true structure of
the data. As a result, it performs poorly on both the training and the test
sets. As the number of nodes in the decision tree increases, the tree will have
fewer training and test errors. However, once the tree becomes too large, its
test error rate begins to increase even though its training error rate continues
to decrease. This phenomenon is known as model overfitting.

To understand the overfitting phenomenon, note that the training error of
a model can be reduced by increasing the model complexity. For example, the
leaf nodes of the tree can be expanded until it perfectly fits the training data.
Although the training error for such a complex tree is zero, the test error can
be large because the tree may contain nodes that accidently fit some of the
noise points in the training data. Such nodes can degrade the performance
of the tree because they do not generalize well to the test examples. Figure
4.24 shows the structure of two decision trees with different number of nodes.
The tree that contains the smaller number of nodes has a higher training error
rate, but a lower test error rate compared to the more complex tree.

Overfitting and underfitting are two pathologies that are related to the
model complexity. The remainder of this section examines some of the poten-
tial causes of model overfitting.



4.4 Model Overfitting 175

x1 < 13.29 x2 < 17.35
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(a) Decision tree with 11 leaf
nodes.
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(b) Decision tree with 24 leaf nodes.

Figure 4.24. Decision trees with different model complexities.

4.4.1 Overfitting Due to Presence of Noise

Consider the training and test sets shown in Tables 4.3 and 4.4 for the mammal
classification problem. Two of the ten training records are mislabeled: bats
and whales are classified as non-mammals instead of mammals.

A decision tree that perfectly fits the training data is shown in Figure
4.25(a). Although the training error for the tree is zero, its error rate on

Table 4.3. An example training set for classifying mammals. Class labels with asterisk symbols repre-
sent mislabeled records.

Name Body Gives Four- Hibernates Class
Temperature Birth legged Label

porcupine warm-blooded yes yes yes yes
cat warm-blooded yes yes no yes
bat warm-blooded yes no yes no∗

whale warm-blooded yes no no no∗

salamander cold-blooded no yes yes no
komodo dragon cold-blooded no yes no no
python cold-blooded no no yes no
salmon cold-blooded no no no no
eagle warm-blooded no no no no
guppy cold-blooded yes no no no
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Table 4.4. An example test set for classifying mammals.

Name Body Gives Four- Hibernates Class
Temperature Birth legged Label

human warm-blooded yes no no yes
pigeon warm-blooded no no no no
elephant warm-blooded yes yes no yes
leopard shark cold-blooded yes no no no
turtle cold-blooded no yes no no
penguin cold-blooded no no no no
eel cold-blooded no no no no
dolphin warm-blooded yes no no yes
spiny anteater warm-blooded no yes yes yes
gila monster cold-blooded no yes yes no

Warm-blooded Cold-blooded

Gives Birth

Yes No

Non-
mammals

Non-
mammals

Non-
mammals

Mammals

Non-
mammals

MammalsFour-
legged

Yes No

Body
Temperature

Warm-blooded Cold-blooded

Gives Birth

Yes No

Non-
mammals

Body
Temperature

(a) Model M1 (b) Model M2

Figure 4.25. Decision tree induced from the data set shown in Table 4.3.

the test set is 30%. Both humans and dolphins were misclassified as non-
mammals because their attribute values for Body Temperature, Gives Birth,
and Four-legged are identical to the mislabeled records in the training set.
Spiny anteaters, on the other hand, represent an exceptional case in which the
class label of a test record contradicts the class labels of other similar records
in the training set. Errors due to exceptional cases are often unavoidable and
establish the minimum error rate achievable by any classifier.
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In contrast, the decision tree M2 shown in Figure 4.25(b) has a lower test
error rate (10%) even though its training error rate is somewhat higher (20%).
It is evident that the first decision tree, M1, has overfitted the training data
because there is a simpler model with lower error rate on the test set. The
Four-legged attribute test condition in model M1 is spurious because it fits
the mislabeled training records, which leads to the misclassification of records
in the test set.

4.4.2 Overfitting Due to Lack of Representative Samples

Models that make their classification decisions based on a small number of
training records are also susceptible to overfitting. Such models can be gener-
ated because of lack of representative samples in the training data and learning
algorithms that continue to refine their models even when few training records
are available. We illustrate these effects in the example below.

Consider the five training records shown in Table 4.5. All of these training
records are labeled correctly and the corresponding decision tree is depicted
in Figure 4.26. Although its training error is zero, its error rate on the test
set is 30%.

Table 4.5. An example training set for classifying mammals.

Name Body Gives Four- Hibernates Class
Temperature Birth legged Label

salamander cold-blooded no yes yes no
guppy cold-blooded yes no no no
eagle warm-blooded no no no no
poorwill warm-blooded no no yes no
platypus warm-blooded no yes yes yes

Humans, elephants, and dolphins are misclassified because the decision tree
classifies all warm-blooded vertebrates that do not hibernate as non-mammals.
The tree arrives at this classification decision because there is only one training
record, which is an eagle, with such characteristics. This example clearly
demonstrates the danger of making wrong predictions when there are not
enough representative examples at the leaf nodes of a decision tree.
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Figure 4.26. Decision tree induced from the data set shown in Table 4.5.

4.4.3 Overfitting and the Multiple Comparison Procedure

Model overfitting may arise in learning algorithms that employ a methodology
known as multiple comparison procedure. To understand multiple comparison
procedure, consider the task of predicting whether the stock market will rise
or fall in the next ten trading days. If a stock analyst simply makes random
guesses, the probability that her prediction is correct on any trading day is
0.5. However, the probability that she will predict correctly at least eight out
of the ten times is (

10
8

)
+

(
10
9

)
+

(
10
10

)
210

= 0.0547,

which seems quite unlikely.
Suppose we are interested in choosing an investment advisor from a pool of

fifty stock analysts. Our strategy is to select the analyst who makes the most
correct predictions in the next ten trading days. The flaw in this strategy is
that even if all the analysts had made their predictions in a random fashion, the
probability that at least one of them makes at least eight correct predictions
is

1 − (1 − 0.0547)50 = 0.9399,

which is very high. Although each analyst has a low probability of predicting
at least eight times correctly, putting them together, we have a high probability
of finding an analyst who can do so. Furthermore, there is no guarantee in the



4.4 Model Overfitting 179

future that such an analyst will continue to make accurate predictions through
random guessing.

How does the multiple comparison procedure relate to model overfitting?
Many learning algorithms explore a set of independent alternatives, {γi}, and
then choose an alternative, γmax, that maximizes a given criterion function.
The algorithm will add γmax to the current model in order to improve its
overall performance. This procedure is repeated until no further improvement
is observed. As an example, during decision tree growing, multiple tests are
performed to determine which attribute can best split the training data. The
attribute that leads to the best split is chosen to extend the tree as long as
the observed improvement is statistically significant.

Let T0 be the initial decision tree and Tx be the new tree after inserting an
internal node for attribute x. In principle, x can be added to the tree if the
observed gain, ∆(T0, Tx), is greater than some predefined threshold α. If there
is only one attribute test condition to be evaluated, then we can avoid inserting
spurious nodes by choosing a large enough value of α. However, in practice,
more than one test condition is available and the decision tree algorithm must
choose the best attribute xmax from a set of candidates, {x1, x2, . . . , xk}, to
partition the data. In this situation, the algorithm is actually using a multiple
comparison procedure to decide whether a decision tree should be extended.
More specifically, it is testing for ∆(T0, Txmax) > α instead of ∆(T0, Tx) > α.
As the number of alternatives, k, increases, so does our chance of finding
∆(T0, Txmax) > α. Unless the gain function ∆ or threshold α is modified to
account for k, the algorithm may inadvertently add spurious nodes to the
model, which leads to model overfitting.

This effect becomes more pronounced when the number of training records
from which xmax is chosen is small, because the variance of ∆(T0, Txmax) is high
when fewer examples are available for training. As a result, the probability of
finding ∆(T0, Txmax) > α increases when there are very few training records.
This often happens when the decision tree grows deeper, which in turn reduces
the number of records covered by the nodes and increases the likelihood of
adding unnecessary nodes into the tree. Failure to compensate for the large
number of alternatives or the small number of training records will therefore
lead to model overfitting.

4.4.4 Estimation of Generalization Errors

Although the primary reason for overfitting is still a subject of debate, it
is generally agreed that the complexity of a model has an impact on model
overfitting, as was illustrated in Figure 4.23. The question is, how do we
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determine the right model complexity? The ideal complexity is that of a
model that produces the lowest generalization error. The problem is that the
learning algorithm has access only to the training set during model building
(see Figure 4.3). It has no knowledge of the test set, and thus, does not know
how well the tree will perform on records it has never seen before. The best it
can do is to estimate the generalization error of the induced tree. This section
presents several methods for doing the estimation.

Using Resubstitution Estimate

The resubstitution estimate approach assumes that the training set is a good
representation of the overall data. Consequently, the training error, otherwise
known as resubstitution error, can be used to provide an optimistic estimate
for the generalization error. Under this assumption, a decision tree induction
algorithm simply selects the model that produces the lowest training error rate
as its final model. However, the training error is usually a poor estimate of
generalization error.

Example 4.1. Consider the binary decision trees shown in Figure 4.27. As-
sume that both trees are generated from the same training data and both
make their classification decisions at each leaf node according to the majority
class. Note that the left tree, TL, is more complex because it expands some
of the leaf nodes in the right tree, TR. The training error rate for the left
tree is e(TL) = 4/24 = 0.167, while the training error rate for the right tree is
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–: 2
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–: 2

+: 3
–: 1
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–: 2
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+: 3
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+: 3
–: 0

Decision Tree, TL Decision Tree, TR

Figure 4.27. Example of two decision trees generated from the same training data.
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e(TR) = 6/24 = 0.25. Based on their resubstitution estimate, the left tree is
considered better than the right tree.

Incorporating Model Complexity

As previously noted, the chance for model overfitting increases as the model
becomes more complex. For this reason, we should prefer simpler models, a
strategy that agrees with a well-known principle known as Occam’s razor or
the principle of parsimony:

Definition 4.2. Occam’s Razor: Given two models with the same general-
ization errors, the simpler model is preferred over the more complex model.

Occam’s razor is intuitive because the additional components in a complex
model stand a greater chance of being fitted purely by chance. In the words of
Einstein, “Everything should be made as simple as possible, but not simpler.”
Next, we present two methods for incorporating model complexity into the
evaluation of classification models.

Pessimistic Error Estimate The first approach explicitly computes gener-
alization error as the sum of training error and a penalty term for model com-
plexity. The resulting generalization error can be considered its pessimistic
error estimate. For instance, let n(t) be the number of training records classi-
fied by node t and e(t) be the number of misclassified records. The pessimistic
error estimate of a decision tree T , eg(T ), can be computed as follows:

eg(T ) =

∑k
i=1[e(ti) + Ω(ti)]∑k

i=1 n(ti)
=

e(T ) + Ω(T )

Nt
,

where k is the number of leaf nodes, e(T ) is the overall training error of the
decision tree, Nt is the number of training records, and Ω(ti) is the penalty
term associated with each node ti.

Example 4.2. Consider the binary decision trees shown in Figure 4.27. If
the penalty term is equal to 0.5, then the pessimistic error estimate for the
left tree is

eg(TL) =
4 + 7 × 0.5

24
=

7.5

24
= 0.3125

and the pessimistic error estimate for the right tree is

eg(TR) =
6 + 4 × 0.5

24
=

8

24
= 0.3333.
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Figure 4.28. The minimum description length (MDL) principle.

Thus, the left tree has a better pessimistic error rate than the right tree. For
binary trees, a penalty term of 0.5 means a node should always be expanded
into its two child nodes as long as it improves the classification of at least one
training record because expanding a node, which is equivalent to adding 0.5
to the overall error, is less costly than committing one training error.

If Ω(t) = 1 for all the nodes t, the pessimistic error estimate for the left
tree is eg(TL) = 11/24 = 0.458, while the pessimistic error estimate for the
right tree is eg(TR) = 10/24 = 0.417. The right tree therefore has a better
pessimistic error rate than the left tree. Thus, a node should not be expanded
into its child nodes unless it reduces the misclassification error for more than
one training record.

Minimum Description Length Principle Another way to incorporate
model complexity is based on an information-theoretic approach known as the
minimum description length or MDL principle. To illustrate this principle,
consider the example shown in Figure 4.28. In this example, both A and B are
given a set of records with known attribute values x. In addition, person A

knows the exact class label for each record, while person B knows none of this
information. B can obtain the classification of each record by requesting that
A transmits the class labels sequentially. Such a message would require Θ(n)
bits of information, where n is the total number of records.

Alternatively, A may decide to build a classification model that summarizes
the relationship between x and y. The model can be encoded in a compact
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form before being transmitted to B. If the model is 100% accurate, then the
cost of transmission is equivalent to the cost of encoding the model. Otherwise,
A must also transmit information about which record is classified incorrectly
by the model. Thus, the overall cost of transmission is

Cost(model, data) = Cost(model) + Cost(data|model), (4.9)

where the first term on the right-hand side is the cost of encoding the model,
while the second term represents the cost of encoding the mislabeled records.
According to the MDL principle, we should seek a model that minimizes the
overall cost function. An example showing how to compute the total descrip-
tion length of a decision tree is given by Exercise 9 on page 202.

Estimating Statistical Bounds

The generalization error can also be estimated as a statistical correction to
the training error. Since generalization error tends to be larger than training
error, the statistical correction is usually computed as an upper bound to the
training error, taking into account the number of training records that reach
a particular leaf node. For instance, in the C4.5 decision tree algorithm, the
number of errors committed by each leaf node is assumed to follow a binomial
distribution. To compute its generalization error, we must determine the upper
bound limit to the observed training error, as illustrated in the next example.

Example 4.3. Consider the left-most branch of the binary decision trees
shown in Figure 4.27. Observe that the left-most leaf node of TR has been
expanded into two child nodes in TL. Before splitting, the error rate of the
node is 2/7 = 0.286. By approximating a binomial distribution with a normal
distribution, the following upper bound of the error rate e can be derived:

eupper(N, e, α) =
e +

z2
α/2

2N + zα/2

√
e(1−e)

N +
z2
α/2

4N2

1 +
z2
α/2

N

, (4.10)

where α is the confidence level, zα/2 is the standardized value from a standard
normal distribution, and N is the total number of training records used to
compute e. By replacing α = 25%, N = 7, and e = 2/7, the upper bound for
the error rate is eupper(7, 2/7, 0.25) = 0.503, which corresponds to 7× 0.503 =
3.521 errors. If we expand the node into its child nodes as shown in TL, the
training error rates for the child nodes are 1/4 = 0.250 and 1/3 = 0.333,
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respectively. Using Equation 4.10, the upper bounds of these error rates are
eupper(4, 1/4, 0.25) = 0.537 and eupper(3, 1/3, 0.25) = 0.650, respectively. The
overall training error of the child nodes is 4× 0.537+3× 0.650 = 4.098, which
is larger than the estimated error for the corresponding node in TR.

Using a Validation Set

In this approach, instead of using the training set to estimate the generalization
error, the original training data is divided into two smaller subsets. One of
the subsets is used for training, while the other, known as the validation set,
is used for estimating the generalization error. Typically, two-thirds of the
training set is reserved for model building, while the remaining one-third is
used for error estimation.

This approach is typically used with classification techniques that can be
parameterized to obtain models with different levels of complexity. The com-
plexity of the best model can be estimated by adjusting the parameter of the
learning algorithm (e.g., the pruning level of a decision tree) until the empir-
ical model produced by the learning algorithm attains the lowest error rate
on the validation set. Although this approach provides a better way for esti-
mating how well the model performs on previously unseen records, less data
is available for training.

4.4.5 Handling Overfitting in Decision Tree Induction

In the previous section, we described several methods for estimating the gen-
eralization error of a classification model. Having a reliable estimate of gener-
alization error allows the learning algorithm to search for an accurate model
without overfitting the training data. This section presents two strategies for
avoiding model overfitting in the context of decision tree induction.

Prepruning (Early Stopping Rule) In this approach, the tree-growing
algorithm is halted before generating a fully grown tree that perfectly fits the
entire training data. To do this, a more restrictive stopping condition must
be used; e.g., stop expanding a leaf node when the observed gain in impurity
measure (or improvement in the estimated generalization error) falls below a
certain threshold. The advantage of this approach is that it avoids generating
overly complex subtrees that overfit the training data. Nevertheless, it is
difficult to choose the right threshold for early termination. Too high of a
threshold will result in underfitted models, while a threshold that is set too low
may not be sufficient to overcome the model overfitting problem. Furthermore,
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Figure 4.29. Post-pruning of the decision tree for Web robot detection.

even if no significant gain is obtained using one of the existing attribute test
conditions, subsequent splitting may result in better subtrees.

Post-pruning In this approach, the decision tree is initially grown to its
maximum size. This is followed by a tree-pruning step, which proceeds to
trim the fully grown tree in a bottom-up fashion. Trimming can be done by
replacing a subtree with (1) a new leaf node whose class label is determined
from the majority class of records affiliated with the subtree, or (2) the most
frequently used branch of the subtree. The tree-pruning step terminates when
no further improvement is observed. Post-pruning tends to give better results
than prepruning because it makes pruning decisions based on a fully grown
tree, unlike prepruning, which can suffer from premature termination of the
tree-growing process. However, for post-pruning, the additional computations
needed to grow the full tree may be wasted when the subtree is pruned.

Figure 4.29 illustrates the simplified decision tree model for the Web robot
detection example given in Section 4.3.6. Notice that the subtrees rooted at
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depth = 1 have been replaced by one of the branches involving the attribute
ImagePages. This approach is also known as subtree raising. The depth >
1 and MultiAgent = 0 subtree has been replaced by a leaf node assigned to
class 0. This approach is known as subtree replacement. The subtree for
depth > 1 and MultiAgent = 1 remains intact.

4.5 Evaluating the Performance of a Classifier

Section 4.4.4 described several methods for estimating the generalization error
of a model during training. The estimated error helps the learning algorithm
to do model selection; i.e., to find a model of the right complexity that is
not susceptible to overfitting. Once the model has been constructed, it can be
applied to the test set to predict the class labels of previously unseen records.

It is often useful to measure the performance of the model on the test set
because such a measure provides an unbiased estimate of its generalization
error. The accuracy or error rate computed from the test set can also be
used to compare the relative performance of different classifiers on the same
domain. However, in order to do this, the class labels of the test records
must be known. This section reviews some of the methods commonly used to
evaluate the performance of a classifier.

4.5.1 Holdout Method

In the holdout method, the original data with labeled examples is partitioned
into two disjoint sets, called the training and the test sets, respectively. A
classification model is then induced from the training set and its performance
is evaluated on the test set. The proportion of data reserved for training and
for testing is typically at the discretion of the analysts (e.g., 50-50 or two-
thirds for training and one-third for testing). The accuracy of the classifier
can be estimated based on the accuracy of the induced model on the test set.

The holdout method has several well-known limitations. First, fewer la-
beled examples are available for training because some of the records are with-
held for testing. As a result, the induced model may not be as good as when all
the labeled examples are used for training. Second, the model may be highly
dependent on the composition of the training and test sets. The smaller the
training set size, the larger the variance of the model. On the other hand, if
the training set is too large, then the estimated accuracy computed from the
smaller test set is less reliable. Such an estimate is said to have a wide con-
fidence interval. Finally, the training and test sets are no longer independent
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of each other. Because the training and test sets are subsets of the original
data, a class that is overrepresented in one subset will be underrepresented in
the other, and vice versa.

4.5.2 Random Subsampling

The holdout method can be repeated several times to improve the estimation
of a classifier’s performance. This approach is known as random subsampling.
Let acci be the model accuracy during the ith iteration. The overall accuracy
is given by accsub =

∑k
i=1 acci/k. Random subsampling still encounters some

of the problems associated with the holdout method because it does not utilize
as much data as possible for training. It also has no control over the number of
times each record is used for testing and training. Consequently, some records
might be used for training more often than others.

4.5.3 Cross-Validation

An alternative to random subsampling is cross-validation. In this approach,
each record is used the same number of times for training and exactly once
for testing. To illustrate this method, suppose we partition the data into two
equal-sized subsets. First, we choose one of the subsets for training and the
other for testing. We then swap the roles of the subsets so that the previous
training set becomes the test set and vice versa. This approach is called a two-
fold cross-validation. The total error is obtained by summing up the errors for
both runs. In this example, each record is used exactly once for training and
once for testing. The k-fold cross-validation method generalizes this approach
by segmenting the data into k equal-sized partitions. During each run, one of
the partitions is chosen for testing, while the rest of them are used for training.
This procedure is repeated k times so that each partition is used for testing
exactly once. Again, the total error is found by summing up the errors for
all k runs. A special case of the k-fold cross-validation method sets k = N ,
the size of the data set. In this so-called leave-one-out approach, each test
set contains only one record. This approach has the advantage of utilizing
as much data as possible for training. In addition, the test sets are mutually
exclusive and they effectively cover the entire data set. The drawback of this
approach is that it is computationally expensive to repeat the procedure N
times. Furthermore, since each test set contains only one record, the variance
of the estimated performance metric tends to be high.
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4.5.4 Bootstrap

The methods presented so far assume that the training records are sampled
without replacement. As a result, there are no duplicate records in the training
and test sets. In the bootstrap approach, the training records are sampled
with replacement; i.e., a record already chosen for training is put back into
the original pool of records so that it is equally likely to be redrawn. If the
original data has N records, it can be shown that, on average, a bootstrap
sample of size N contains about 63.2% of the records in the original data. This
approximation follows from the fact that the probability a record is chosen by
a bootstrap sample is 1 − (1 − 1/N)N . When N is sufficiently large, the
probability asymptotically approaches 1 − e−1 = 0.632. Records that are not
included in the bootstrap sample become part of the test set. The model
induced from the training set is then applied to the test set to obtain an
estimate of the accuracy of the bootstrap sample, εi. The sampling procedure
is then repeated b times to generate b bootstrap samples.

There are several variations to the bootstrap sampling approach in terms
of how the overall accuracy of the classifier is computed. One of the more
widely used approaches is the .632 bootstrap, which computes the overall
accuracy by combining the accuracies of each bootstrap sample (εi) with the
accuracy computed from a training set that contains all the labeled examples
in the original data (accs):

Accuracy, accboot =
1

b

b∑
i=1

(0.632 × εi + 0.368 × accs). (4.11)

4.6 Methods for Comparing Classifiers

It is often useful to compare the performance of different classifiers to deter-
mine which classifier works better on a given data set. However, depending
on the size of the data, the observed difference in accuracy between two clas-
sifiers may not be statistically significant. This section examines some of the
statistical tests available to compare the performance of different models and
classifiers.

For illustrative purposes, consider a pair of classification models, MA and
MB. Suppose MA achieves 85% accuracy when evaluated on a test set con-
taining 30 records, while MB achieves 75% accuracy on a different test set
containing 5000 records. Based on this information, is MA a better model
than MB?
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The preceding example raises two key questions regarding the statistical
significance of the performance metrics:

1. Although MA has a higher accuracy than MB, it was tested on a smaller
test set. How much confidence can we place on the accuracy for MA?

2. Is it possible to explain the difference in accuracy as a result of variations
in the composition of the test sets?

The first question relates to the issue of estimating the confidence interval of a
given model accuracy. The second question relates to the issue of testing the
statistical significance of the observed deviation. These issues are investigated
in the remainder of this section.

4.6.1 Estimating a Confidence Interval for Accuracy

To determine the confidence interval, we need to establish the probability
distribution that governs the accuracy measure. This section describes an ap-
proach for deriving the confidence interval by modeling the classification task
as a binomial experiment. Following is a list of characteristics of a binomial
experiment:

1. The experiment consists of N independent trials, where each trial has
two possible outcomes: success or failure.

2. The probability of success, p, in each trial is constant.

An example of a binomial experiment is counting the number of heads that
turn up when a coin is flipped N times. If X is the number of successes
observed in N trials, then the probability that X takes a particular value is
given by a binomial distribution with mean Np and variance Np(1 − p):

P (X = v) =

(
N

p

)
pv(1 − p)N−v.

For example, if the coin is fair (p = 0.5) and is flipped fifty times, then the
probability that the head shows up 20 times is

P (X = 20) =

(
50

20

)
0.520(1 − 0.5)30 = 0.0419.

If the experiment is repeated many times, then the average number of heads
expected to show up is 50×0.5 = 25, while its variance is 50×0.5×0.5 = 12.5.
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The task of predicting the class labels of test records can also be consid-
ered as a binomial experiment. Given a test set that contains N records, let
X be the number of records correctly predicted by a model and p be the true
accuracy of the model. By modeling the prediction task as a binomial experi-
ment, X has a binomial distribution with mean Np and variance Np(1 − p).
It can be shown that the empirical accuracy, acc = X/N , also has a binomial
distribution with mean p and variance p(1−p)/N (see Exercise 12). Although
the binomial distribution can be used to estimate the confidence interval for
acc, it is often approximated by a normal distribution when N is sufficiently
large. Based on the normal distribution, the following confidence interval for
acc can be derived:

P

(
− Zα/2 ≤ acc − p√

p(1 − p)/N
≤ Z1−α/2

)
= 1 − α, (4.12)

where Zα/2 and Z1−α/2 are the upper and lower bounds obtained from a stan-
dard normal distribution at confidence level (1−α). Since a standard normal
distribution is symmetric around Z = 0, it follows that Zα/2 = Z1−α/2. Rear-
ranging this inequality leads to the following confidence interval for p:

2 × N × acc + Z2
α/2 ± Zα/2

√
Z2

α/2 + 4Nacc − 4Nacc2

2(N + Z2
α/2)

. (4.13)

The following table shows the values of Zα/2 at different confidence levels:

1 − α 0.99 0.98 0.95 0.9 0.8 0.7 0.5

Zα/2 2.58 2.33 1.96 1.65 1.28 1.04 0.67

Example 4.4. Consider a model that has an accuracy of 80% when evaluated
on 100 test records. What is the confidence interval for its true accuracy at a
95% confidence level? The confidence level of 95% corresponds to Zα/2 = 1.96
according to the table given above. Inserting this term into Equation 4.13
yields a confidence interval between 71.1% and 86.7%. The following table
shows the confidence interval when the number of records, N , increases:

N 20 50 100 500 1000 5000

Confidence 0.584 0.670 0.711 0.763 0.774 0.789
Interval − 0.919 − 0.888 − 0.867 − 0.833 − 0.824 − 0.811

Note that the confidence interval becomes tighter when N increases.
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4.6.2 Comparing the Performance of Two Models

Consider a pair of models, M1 and M2, that are evaluated on two independent
test sets, D1 and D2. Let n1 denote the number of records in D1 and n2 denote
the number of records in D2. In addition, suppose the error rate for M1 on
D1 is e1 and the error rate for M2 on D2 is e2. Our goal is to test whether the
observed difference between e1 and e2 is statistically significant.

Assuming that n1 and n2 are sufficiently large, the error rates e1 and e2

can be approximated using normal distributions. If the observed difference in
the error rate is denoted as d = e1 − e2, then d is also normally distributed
with mean dt, its true difference, and variance, σ2

d. The variance of d can be
computed as follows:

σ2
d � σ̂2

d =
e1(1 − e1)

n1
+

e2(1 − e2)

n2
, (4.14)

where e1(1 − e1)/n1 and e2(1 − e2)/n2 are the variances of the error rates.
Finally, at the (1 − α)% confidence level, it can be shown that the confidence
interval for the true difference dt is given by the following equation:

dt = d ± zα/2σ̂d. (4.15)

Example 4.5. Consider the problem described at the beginning of this sec-
tion. Model MA has an error rate of e1 = 0.15 when applied to N1 = 30
test records, while model MB has an error rate of e2 = 0.25 when applied
to N2 = 5000 test records. The observed difference in their error rates is
d = |0.15 − 0.25| = 0.1. In this example, we are performing a two-sided test
to check whether dt = 0 or dt �= 0. The estimated variance of the observed
difference in error rates can be computed as follows:

σ̂2
d =

0.15(1 − 0.15)

30
+

0.25(1 − 0.25)

5000
= 0.0043

or σ̂d = 0.0655. Inserting this value into Equation 4.15, we obtain the following
confidence interval for dt at 95% confidence level:

dt = 0.1 ± 1.96 × 0.0655 = 0.1 ± 0.128.

As the interval spans the value zero, we can conclude that the observed differ-
ence is not statistically significant at a 95% confidence level.
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At what confidence level can we reject the hypothesis that dt = 0? To do
this, we need to determine the value of Zα/2 such that the confidence interval
for dt does not span the value zero. We can reverse the preceding computation
and look for the value Zα/2 such that d > Zα/2σ̂d. Replacing the values of d
and σ̂d gives Zα/2 < 1.527. This value first occurs when (1−α) � 0.936 (for a
two-sided test). The result suggests that the null hypothesis can be rejected
at confidence level of 93.6% or lower.

4.6.3 Comparing the Performance of Two Classifiers

Suppose we want to compare the performance of two classifiers using the k-fold
cross-validation approach. Initially, the data set D is divided into k equal-sized
partitions. We then apply each classifier to construct a model from k − 1 of
the partitions and test it on the remaining partition. This step is repeated k
times, each time using a different partition as the test set.

Let Mij denote the model induced by classification technique Li during the
jth iteration. Note that each pair of models M1j and M2j are tested on the
same partition j. Let e1j and e2j be their respective error rates. The difference
between their error rates during the jth fold can be written as dj = e1j − e2j .
If k is sufficiently large, then dj is normally distributed with mean dcv

t , which
is the true difference in their error rates, and variance σcv. Unlike the previous
approach, the overall variance in the observed differences is estimated using
the following formula:

σ̂2
dcv =

∑k
j=1(dj − d)2

k(k − 1)
, (4.16)

where d is the average difference. For this approach, we need to use a t-
distribution to compute the confidence interval for dcv

t :

dcv
t = d ± t(1−α),k−1σ̂dcv .

The coefficient t(1−α),k−1 is obtained from a probability table with two input
parameters, its confidence level (1−α) and the number of degrees of freedom,
k − 1. The probability table for the t-distribution is shown in Table 4.6.

Example 4.6. Suppose the estimated difference in the accuracy of models
generated by two classification techniques has a mean equal to 0.05 and a
standard deviation equal to 0.002. If the accuracy is estimated using a 30-fold
cross-validation approach, then at a 95% confidence level, the true accuracy
difference is

dcv
t = 0.05 ± 2.04 × 0.002. (4.17)
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Table 4.6. Probability table for t-distribution.

(1 − α)
k − 1 0.99 0.98 0.95 0.9 0.8

1 3.08 6.31 12.7 31.8 63.7
2 1.89 2.92 4.30 6.96 9.92
4 1.53 2.13 2.78 3.75 4.60
9 1.38 1.83 2.26 2.82 3.25
14 1.34 1.76 2.14 2.62 2.98
19 1.33 1.73 2.09 2.54 2.86
24 1.32 1.71 2.06 2.49 2.80
29 1.31 1.70 2.04 2.46 2.76

Since the confidence interval does not span the value zero, the observed dif-
ference between the techniques is statistically significant.

4.7 Bibliographic Notes

Early classification systems were developed to organize a large collection of
objects. For example, the Dewey Decimal and Library of Congress classifica-
tion systems were designed to catalog and index the vast number of library
books. The categories are typically identified in a manual fashion, with the
help of domain experts.

Automated classification has been a subject of intensive research for many
years. The study of classification in classical statistics is sometimes known as
discriminant analysis, where the objective is to predict the group member-
ship of an object based on a set of predictor variables. A well-known classical
method is Fisher’s linear discriminant analysis [117], which seeks to find a lin-
ear projection of the data that produces the greatest discrimination between
objects that belong to different classes.

Many pattern recognition problems also require the discrimination of ob-
jects from different classes. Examples include speech recognition, handwritten
character identification, and image classification. Readers who are interested
in the application of classification techniques for pattern recognition can refer
to the survey articles by Jain et al. [122] and Kulkarni et al. [128] or classic
pattern recognition books by Bishop [107], Duda et al. [114], and Fukunaga
[118]. The subject of classification is also a major research topic in the fields of
neural networks, statistical learning, and machine learning. An in-depth treat-
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ment of various classification techniques is given in the books by Cherkassky
and Mulier [112], Hastie et al. [120], Michie et al. [133], and Mitchell [136].

An overview of decision tree induction algorithms can be found in the
survey articles by Buntine [110], Moret [137], Murthy [138], and Safavian et
al. [147]. Examples of some well-known decision tree algorithms include CART
[108], ID3 [143], C4.5 [145], and CHAID [125]. Both ID3 and C4.5 employ the
entropy measure as their splitting function. An in-depth discussion of the
C4.5 decision tree algorithm is given by Quinlan [145]. Besides explaining the
methodology for decision tree growing and tree pruning, Quinlan [145] also
described how the algorithm can be modified to handle data sets with missing
values. The CART algorithm was developed by Breiman et al. [108] and uses
the Gini index as its splitting function. CHAID [125] uses the statistical χ2

test to determine the best split during the tree-growing process.
The decision tree algorithm presented in this chapter assumes that the

splitting condition is specified one attribute at a time. An oblique decision tree
can use multiple attributes to form the attribute test condition in the internal
nodes [121, 152]. Breiman et al. [108] provide an option for using linear
combinations of attributes in their CART implementation. Other approaches
for inducing oblique decision trees were proposed by Heath et al. [121], Murthy
et al. [139], Cantú-Paz and Kamath [111], and Utgoff and Brodley [152].
Although oblique decision trees help to improve the expressiveness of a decision
tree representation, learning the appropriate test condition at each node is
computationally challenging. Another way to improve the expressiveness of a
decision tree without using oblique decision trees is to apply a method known
as constructive induction [132]. This method simplifies the task of learning
complex splitting functions by creating compound features from the original
attributes.

Besides the top-down approach, other strategies for growing a decision tree
include the bottom-up approach by Landeweerd et al. [130] and Pattipati and
Alexandridis [142], as well as the bidirectional approach by Kim and Landgrebe
[126]. Schuermann and Doster [150] and Wang and Suen [154] proposed using
a soft splitting criterion to address the data fragmentation problem. In
this approach, each record is assigned to different branches of the decision tree
with different probabilities.

Model overfitting is an important issue that must be addressed to ensure
that a decision tree classifier performs equally well on previously unknown
records. The model overfitting problem has been investigated by many authors
including Breiman et al. [108], Schaffer [148], Mingers [135], and Jensen and
Cohen [123]. While the presence of noise is often regarded as one of the
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primary reasons for overfitting [135, 140], Jensen and Cohen [123] argued
that overfitting is the result of using incorrect hypothesis tests in a multiple
comparison procedure.

Schapire [149] defined generalization error as “the probability of misclas-
sifying a new example” and test error as “the fraction of mistakes on a newly
sampled test set.” Generalization error can therefore be considered as the ex-
pected test error of a classifier. Generalization error may sometimes refer to
the true error [136] of a model, i.e., its expected error for randomly drawn
data points from the same population distribution where the training set is
sampled. These definitions are in fact equivalent if both the training and test
sets are gathered from the same population distribution, which is often the
case in many data mining and machine learning applications.

The Occam’s razor principle is often attributed to the philosopher William
of Occam. Domingos [113] cautioned against the pitfall of misinterpreting
Occam’s razor as comparing models with similar training errors, instead of
generalization errors. A survey on decision tree-pruning methods to avoid
overfitting is given by Breslow and Aha [109] and Esposito et al. [116]. Some
of the typical pruning methods include reduced error pruning [144], pessimistic
error pruning [144], minimum error pruning [141], critical value pruning [134],
cost-complexity pruning [108], and error-based pruning [145]. Quinlan and
Rivest proposed using the minimum description length principle for decision
tree pruning in [146].

Kohavi [127] had performed an extensive empirical study to compare the
performance metrics obtained using different estimation methods such as ran-
dom subsampling, bootstrapping, and k-fold cross-validation. Their results
suggest that the best estimation method is based on the ten-fold stratified
cross-validation. Efron and Tibshirani [115] provided a theoretical and empir-
ical comparison between cross-validation and a bootstrap method known as
the 632+ rule.

Current techniques such as C4.5 require that the entire training data set fit
into main memory. There has been considerable effort to develop parallel and
scalable versions of decision tree induction algorithms. Some of the proposed
algorithms include SLIQ by Mehta et al. [131], SPRINT by Shafer et al. [151],
CMP by Wang and Zaniolo [153], CLOUDS by Alsabti et al. [106], RainForest
by Gehrke et al. [119], and ScalParC by Joshi et al. [124]. A general survey
of parallel algorithms for data mining is available in [129].
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4.8 Exercises

1. Draw the full decision tree for the parity function of four Boolean attributes,
A, B, C, and D. Is it possible to simplify the tree?

2. Consider the training examples shown in Table 4.7 for a binary classification
problem.

(a) Compute the Gini index for the overall collection of training examples.

(b) Compute the Gini index for the Customer ID attribute.

(c) Compute the Gini index for the Gender attribute.

(d) Compute the Gini index for the Car Type attribute using multiway split.

(e) Compute the Gini index for the Shirt Size attribute using multiway
split.

(f) Which attribute is better, Gender, Car Type, or Shirt Size?

(g) Explain why Customer ID should not be used as the attribute test con-
dition even though it has the lowest Gini.

3. Consider the training examples shown in Table 4.8 for a binary classification
problem.

(a) What is the entropy of this collection of training examples with respect
to the positive class?
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Table 4.7. Data set for Exercise 2.

Customer ID Gender Car Type Shirt Size Class
1 M Family Small C0
2 M Sports Medium C0
3 M Sports Medium C0
4 M Sports Large C0
5 M Sports Extra Large C0
6 M Sports Extra Large C0
7 F Sports Small C0
8 F Sports Small C0
9 F Sports Medium C0
10 F Luxury Large C0
11 M Family Large C1
12 M Family Extra Large C1
13 M Family Medium C1
14 M Luxury Extra Large C1
15 F Luxury Small C1
16 F Luxury Small C1
17 F Luxury Medium C1
18 F Luxury Medium C1
19 F Luxury Medium C1
20 F Luxury Large C1

Table 4.8. Data set for Exercise 3.

Instance a1 a2 a3 Target Class
1 T T 1.0 +
2 T T 6.0 +
3 T F 5.0 −
4 F F 4.0 +
5 F T 7.0 −
6 F T 3.0 −
7 F F 8.0 −
8 T F 7.0 +
9 F T 5.0 −

(b) What are the information gains of a1 and a2 relative to these training
examples?

(c) For a3, which is a continuous attribute, compute the information gain for
every possible split.
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(d) What is the best split (among a1, a2, and a3) according to the information
gain?

(e) What is the best split (between a1 and a2) according to the classification
error rate?

(f) What is the best split (between a1 and a2) according to the Gini index?

4. Show that the entropy of a node never increases after splitting it into smaller
successor nodes.

5. Consider the following data set for a binary class problem.

A B Class Label
T F +
T T +
T T +
T F −
T T +
F F −
F F −
F F −
T T −
T F −

(a) Calculate the information gain when splitting on A and B. Which at-
tribute would the decision tree induction algorithm choose?

(b) Calculate the gain in the Gini index when splitting on A and B. Which
attribute would the decision tree induction algorithm choose?

(c) Figure 4.13 shows that entropy and the Gini index are both monotonously
increasing on the range [0, 0.5] and they are both monotonously decreasing
on the range [0.5, 1]. Is it possible that information gain and the gain in
the Gini index favor different attributes? Explain.

6. Consider the following set of training examples.

X Y Z No. of Class C1 Examples No. of Class C2 Examples
0 0 0 5 40
0 0 1 0 15
0 1 0 10 5
0 1 1 45 0
1 0 0 10 5
1 0 1 25 0
1 1 0 5 20
1 1 1 0 15
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(a) Compute a two-level decision tree using the greedy approach described in
this chapter. Use the classification error rate as the criterion for splitting.
What is the overall error rate of the induced tree?

(b) Repeat part (a) using X as the first splitting attribute and then choose the
best remaining attribute for splitting at each of the two successor nodes.
What is the error rate of the induced tree?

(c) Compare the results of parts (a) and (b). Comment on the suitability of
the greedy heuristic used for splitting attribute selection.

7. The following table summarizes a data set with three attributes A, B, C and
two class labels +, −. Build a two-level decision tree.

A B C
Number of
Instances
+ −

T T T 5 0
F T T 0 20
T F T 20 0
F F T 0 5
T T F 0 0
F T F 25 0
T F F 0 0
F F F 0 25

(a) According to the classification error rate, which attribute would be chosen
as the first splitting attribute? For each attribute, show the contingency
table and the gains in classification error rate.

(b) Repeat for the two children of the root node.

(c) How many instances are misclassified by the resulting decision tree?

(d) Repeat parts (a), (b), and (c) using C as the splitting attribute.

(e) Use the results in parts (c) and (d) to conclude about the greedy nature
of the decision tree induction algorithm.

8. Consider the decision tree shown in Figure 4.30.

(a) Compute the generalization error rate of the tree using the optimistic
approach.

(b) Compute the generalization error rate of the tree using the pessimistic
approach. (For simplicity, use the strategy of adding a factor of 0.5 to
each leaf node.)

(c) Compute the generalization error rate of the tree using the validation set
shown above. This approach is known as reduced error pruning.
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1

Figure 4.30. Decision tree and data sets for Exercise 8.

9. Consider the decision trees shown in Figure 4.31. Assume they are generated
from a data set that contains 16 binary attributes and 3 classes, C1, C2, and
C3.

(a) Decision tree with 7 errors (b) Decision tree with 4 errors

C1 C2 C3

C1

C2 C3

C1 C2

Figure 4.31. Decision trees for Exercise 9.
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Compute the total description length of each decision tree according to the
minimum description length principle.

• The total description length of a tree is given by:

Cost(tree, data) = Cost(tree) + Cost(data|tree).

• Each internal node of the tree is encoded by the ID of the splitting at-
tribute. If there are m attributes, the cost of encoding each attribute is
log2 m bits.

• Each leaf is encoded using the ID of the class it is associated with. If
there are k classes, the cost of encoding a class is log2 k bits.

• Cost(tree) is the cost of encoding all the nodes in the tree. To simplify the
computation, you can assume that the total cost of the tree is obtained
by adding up the costs of encoding each internal node and each leaf node.

• Cost(data|tree) is encoded using the classification errors the tree commits
on the training set. Each error is encoded by log2 n bits, where n is the
total number of training instances.

Which decision tree is better, according to the MDL principle?

10. While the .632 bootstrap approach is useful for obtaining a reliable estimate of
model accuracy, it has a known limitation [127]. Consider a two-class problem,
where there are equal number of positive and negative examples in the data.
Suppose the class labels for the examples are generated randomly. The classifier
used is an unpruned decision tree (i.e., a perfect memorizer). Determine the
accuracy of the classifier using each of the following methods.

(a) The holdout method, where two-thirds of the data are used for training
and the remaining one-third are used for testing.

(b) Ten-fold cross-validation.

(c) The .632 bootstrap method.

(d) From the results in parts (a), (b), and (c), which method provides a more
reliable evaluation of the classifier’s accuracy?

11. Consider the following approach for testing whether a classifier A beats another
classifier B. Let N be the size of a given data set, pA be the accuracy of classifier
A, pB be the accuracy of classifier B, and p = (pA + pB)/2 be the average
accuracy for both classifiers. To test whether classifier A is significantly better
than B, the following Z-statistic is used:

Z =
pA − pB√

2p(1−p)
N

.

Classifier A is assumed to be better than classifier B if Z > 1.96.
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Table 4.9 compares the accuracies of three different classifiers, decision tree
classifiers, näıve Bayes classifiers, and support vector machines, on various data
sets. (The latter two classifiers are described in Chapter 5.)

Table 4.9. Comparing the accuracy of various classification methods.

Data Set Size Decision näıve Support vector
(N) Tree (%) Bayes (%) machine (%)

Anneal 898 92.09 79.62 87.19
Australia 690 85.51 76.81 84.78
Auto 205 81.95 58.05 70.73
Breast 699 95.14 95.99 96.42
Cleve 303 76.24 83.50 84.49
Credit 690 85.80 77.54 85.07
Diabetes 768 72.40 75.91 76.82
German 1000 70.90 74.70 74.40
Glass 214 67.29 48.59 59.81
Heart 270 80.00 84.07 83.70
Hepatitis 155 81.94 83.23 87.10
Horse 368 85.33 78.80 82.61
Ionosphere 351 89.17 82.34 88.89
Iris 150 94.67 95.33 96.00
Labor 57 78.95 94.74 92.98
Led7 3200 73.34 73.16 73.56
Lymphography 148 77.03 83.11 86.49
Pima 768 74.35 76.04 76.95
Sonar 208 78.85 69.71 76.92
Tic-tac-toe 958 83.72 70.04 98.33
Vehicle 846 71.04 45.04 74.94
Wine 178 94.38 96.63 98.88
Zoo 101 93.07 93.07 96.04

Summarize the performance of the classifiers given in Table 4.9 using the fol-
lowing 3 × 3 table:

win-loss-draw Decision tree Näıve Bayes Support vector
machine

Decision tree 0 - 0 - 23
Näıve Bayes 0 - 0 - 23
Support vector machine 0 - 0 - 23

Each cell in the table contains the number of wins, losses, and draws when
comparing the classifier in a given row to the classifier in a given column.
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12. Let X be a binomial random variable with mean Np and variance Np(1 − p).
Show that the ratio X/N also has a binomial distribution with mean p and
variance p(1 − p)/N .


