

Fundamentals

Statistical and Geostatistical Data Analysis September 8th 2020

Assistant Professor : Fabián Soto F. Chair Professor: Xavier Emery

Ingeniería de Minas

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

Concept summary

- Inferential statistics: is the process to obtain generalizations on the total (called the population) by examining only a part (called the sample).
- Random variable: This is a function, denoted by X, that takes values over a sample space Ω associated with a random experiment.
- Examples:
- 1. Heads or tails
- 2. Dice throwing
- 3. Lotto
- 4. Element grade

Concept summary

• Expectation

$$\mu = E(X) = \int xp(x)dx \qquad \mu = E(X) = \sum_{n \in N} np(n)$$

• Variance $\sigma^{2} = var(X) = E\{(X - \mu)^{2}\} = E(X^{2}) - \mu$

Standard deviation

 $\sqrt{\sigma^2}$

Concept summary

Experimental Mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• Experimental Variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Properties

$$E(\overline{X}) = \mu$$
 $var(\overline{X}) = \frac{\sigma^2}{n}$ $E(S^2) = \sigma^2$

 Parameters of the population and sample are different

Population	Sample
μ	\overline{x}
σ^2	s ²

Problem 1:

- The copper grade has been measured on 20 samples taken in a stock pile.
- It is of interest to know how many samples are necessary in order to estimate the average copper grade of the stock pile with a typical error less than 0.01%Cu.

Problem 1:

- The copper grade has been measured on 20 samples taken in a stock pile.
- It is of interest to know how many samples are necessary in order to estimate the average copper grade of the stock pile with a typical error less than 0.01%Cu.

Problem 2:

- Let X be a Normal random variable N(m,s) and $Y=e^X$ a lognormal random variable.
- Calculate the expectation and median of *Y*. Determine the expectation of geometric mean of a sample of *Y* of size n.

