

PROGRAMA DE CURSO

Código	Nombre				
ME5300		MÁQUINAS			
					_
Nombre en	Inglés				
TURBOMA	CHINES	& BOILERS			
SCT		Unidades	Horas de	Horas Docencia	Horas de Trabajo
301	1	Docentes	Cátedra	Auxiliar	Personal
6		10	4,5	1,5	4,0
	Requisitos Carácter del Curso				del Curso
ME4302: Ti	ME4302: Transferencia de Calor			Obligatorio de la Carrera	
			Ingeniería Civil Mecánica		
	Doculto dos de Assessica				

Resultados de Aprendizaje

El estudiante al término del curso demuestra que:

- 1. Aplica conceptos básicos del fenómeno de Combustión, en los factores que intervienen en dicho fenómeno y su relación con la emisión de contaminantes para evaluar y seleccionar los combustibles más apropiados (gaseosos, líquidos y sólidos), en base a sus ventajas e inconvenientes, especialmente en relación con las emisiones contaminantes.
- 2. Aplica la Termodinámica, Transferencia de calor y Mecánica de Fluidos en el análisis del funcionamiento, dimensionamiento, selección y diseño de turbomáquinas de vapor, a gas e hidráulicas, de uso frecuente en la industria y en centrales generadoras de energía, para diseñar anteproyectos de plantas de vapor, de gas e hidráulicas.
- 3. Calcula y dimensiona equipos generadores de vapor en el proyecto de plantas de potencia.

Metodología Docente	Evaluación General	
La estrategia metodológica utilizada es	Las instancias de evaluación serán:	
expositiva.	• Controles (3), Ejercicios (4 a 6) y un Examen.	
Se utilizan como herramientas metodológicas:	Controles y Ejercicios contendrán una parte	
1. La exposición oral.	de materia y una de aplicación numérica. La	
Ejercicios prácticos de aplicación.	evaluación de las lecturas se hará en la parte	
3. Lecturas de artículos de divulgación y	de materia de los Ejercicios y Controles	
científicos.	Habrá también Ejercicios para realizar en	
	casa.	

UNIDADES TEMÁTICAS

Número Nombro	e de la Unidad	Duración en Semanas
1 COMBUSTIBI	LES Y COMBUSTION	18.0 hrs.
		3,0 Semanas
Contenidos	Resultados de Aprendizajes d	le la Referencias a
Contenidos	Unidad	la Bibliografía
1. Clasificación de los Combustibles:	El estudiante demuestra que:	
1.1 Gaseosos (gas natural, gases	 Aplica conceptos básic 	os [1, 2, 3]
manufacturados,	sobre combustibles y	
composición).	combustión.	
1.2 Líquidos (hidrocarburos,		
alcoholes, métodos de		
refinación, calidad de los		
hidrocarburos, índices de		
octano y cetano, densidad, viscosidad)		
1.3 Sólidos (carbón mineral,		
coque, clasificación y análisis		
de carbones, coquificación)		
2 Poder Calorífico de los		
Combustibles:		
2.1 Superior (PCS, HHV)		
2.2 Inferior (PCI, LHV)		
3 Fundamentos de Combustión:		
3.1 Conservación de la masa y		
principios de la		
termodinámica)		
3.2 Combustión real (aire teórico,		
relación Aire/Fuel, riqueza,		
exceso de aire, análisis de		
gases de combustión).		
3.3 Ecuación de combustión generalizada.		
3.4 Calor de reacción,		
temperatura de llama		
adiabática.		

	físicas y ma UNIVERSIDAD Número		de la Unidad	Dura	ción en Semanas	
			AS DE VAPOR		21.0 hrs.	
				:	3,5 Semanas	
			Resultados de Aprendizajes		Referencias a	
		Contenidos	Unidad	ac ia	la Bibliografía	
1.	Ciclos Tér	micos:	El estudiante demuestra que		4, 8, 1, 2, 7, 6,	
		t, Rankine, Hirn.	Selecciona, dimensio		13	
		mientos: térmico de la	diseña turbinas de va	•		
	turbin		para la generación			
		nico; global.	termoeléctrica.			
		ción de rendimiento del				
	ciclo F	Rankine.				
2	Clasificaci	ón de turbomáquinas y				
	Turbinas o					
3	Principio	de funcionamiento de				
	las Turb	inas de vapor de:				
	reacción,	Acción, Mixtas y de				
	grado de l	reacción.				
4		general de Energía del				
		nanente de un fluido:				
	·-	sión adiabática y real en				
	tobera	•				
_	tobera	•				
5	Turbina d					
		ión general y de Euler,				
	poten	•				
	perifé					
	5.2 Turbir único	na de Laval o de rodete				
		nas con flujo reversible e				
		rsible.				
		gulos de velocidades				
	_	is y cálculo de pérdidas:				
		uperficie y de forma;				
		das Internas y externas;				
		nergía cinética residual;				
	inters	ticiales; radiativas y				
	condu	ıctivas; mecánicas.				
	5.6 Rendi	mientos: periférico,				
	volum	nétrico, interno,				
	efectivo, indicado, térmico,					
	económico.					
	5.7 Escalonamientos o etapas: de					
	presión o térmicos; de					
	velocidad; mixtos; ventajas e					
,	inconvenientes)					
6		de Reacción:				
		odete único; grado de				
	reacci					
	6.2 Triángulos de velocidades.					

UNIVERSIDAD DE CHILE	
6.3 Pérdidas.	
6.4 Rendimientos y Potencias.	
6.5 Escalamientos.	
6.6 Comparación entre Turbinas de Acción y de Reacción	
6.7 Diseño de las Turbinas de Vapor.	

N	lúmero	No	ombre de la Unidad	Duración en
			'	Semanas
	3	TURBINAS A GA	S Y COMPRESORES ROTATORIOS	15.0 hrs.
				2,5 Semanas
	Contenidos		Resultados de Aprendizajes de la Unidad	Referencias a la Bibliografía
1.		e las Turbinas a Gas:	El estudiante demuestra que:	4, 5, 6
		teórico Brayton: no-	1. Selecciona, dimensiona y diseña	
	_	nerativo; regenerativo;	turbinas de gas y compresores para	
		refrigeración intermedia; combustión escalonada.	la generación termoeléctrica y propulsión de vehículos.	
		dimiento térmico (teórico)	propulsion de veniculos.	
		Ciclo Brayton: relación de		
		presión, temperatura de		
	"Firi			
	1.3 Ciclo	Real abierto de una		
	Turb	ina a Gas.		
		lidas internas y externas.		
		inas a Gas estacionarias y		
	dinámicas			
		dimiento real		
		diciones a la entrada del ocompresor.		
		nce térmico de turbina a		
		estacionaria (plantas de		
	_	encia)		
2	•	ción Turbocompresores:		
	2.1 Axia	les y Centrífugos.		
	2.2 Com	paración de		
		ocompresores versus		
		presores Alternativos.		
		paración de		
	Turbocompresores Axiales y			
3	Turbocompresores Radiales.			
3	3 Principio de funcionamiento de los Turbocompresores Axiales:			
		cepto de difusión y grado		
		Pifusión.		
	3.2 Dife			
	turbocompresor axial y una			

turbina de reacción.

- 3.3 Triángulos de velocidades.
- 3.4 Concepción de Flujos en turbocompresores (torbellino; con álabes de reacción constante)
- 3.5 Trabajo y aumento de presión.
- 3.6 Trabajo periférico real versus trabajo periférico deducido del triángulo de velocidades.
- 3.7 Coeficientes de Diseño (de presión, de caudal, relación de cubo, N° específico de revoluciones, N° de Mach)
- 3.8 Forma de grupo de álabes y carcasa.
- 3.9 Rendimiento Politrópico.
- 3.10 Diagrama *de Performances* de un turbocompresor axial (curvas características).
- 3.18 Rendimiento Politrópico.
- 3.20 Diagrama *de Performances* de un turbocompresor axial (curvas características).
- 3.21 Combustibles utilizados en Turbogas.
- 4. Turbocompresor Supersónico
- 5. Fenómenos de inestabilidad de flujo en Turbocompresores ("Surging" o Bombeo)
- 6. Turbina a Gas dinámica o de Aviación.
 - 6.1 Algunos conceptos de diseño.
 - 6.2 Turbofan.
- 7 Cámaras de combustión de Turbogas:
 - 7.1 Tipos de cámara de combustión (individuales o tubulares, anulares, industriales)
 - 7.2 Exigencias que debe satisfacer una cámara de combustión.
- 8 Compresores de desplazamiento positivo

		Nombre	e de la Unidad Duración en Sema		ción en Semanas
4 TURBOMAQUIN		TURBOMAQUII	NARIAS HIDRAULICAS		21.0 hrs
					3,5 Semanas.
	(Contenidos	Resultados de Aprendizajes de la		Referencias a
	Contenidos		Unidad		la Bibliografía
1.		ón de turbomáquinas	El estudiante demuestra que:		9, 10, 11, 12
	hidráulica		1. Selecciona, dimensiona y		
	1.1 Turbinas de Acción o Impulsión		diseña turbomáquinas		
	(Pelton	•	hidráulicas para impulsión	de	
		ón (Francis, Kaplán)	fluidos o recuperación de		
		os de Estudio: analítico,	energía desde fluidos.		
	•	mental y dimensional.			
		nentes de la velocidad			
	absolut	, , ,			
		tangencial, etc.)			
		ón de Euler.			
		de Reacción. ente de utilización.			
	1.6 Coeffci	ente de utilización.			
2.	Similitud (en Turbomáquinas:			
۷.	2.1 geomé	•			
	•	ca, física total.			
	2.2 leyes de funcionamiento:				
	coeficie				
		namiento, coeficiente			
		ocidad de arrastre o			
	periféri				
	inyecci	<u>-</u>			
	•	ad específica.			
	2.3 Ensayo	<u>-</u>			
	diagrar				
		áficos, transposición,			
	rendimientos.				
3.	-	rica y carga neta:			
		ientos (hidráulico o			
		nétrico, volumétrico,			
	mecánico, global)				
_	Ó	Datastaslas			
4.	•	Principales de una			
	Turbina H	iaraulica.			
5.	Turhings	le Acción (Pelton):			
Э.		, ,			
	5.1 Órganos principales de una				

- turbina Pelton (Inyector, alabes, distribuidor, rotor)
- 5.2 Variación de la presión y de la velocidad.
- 5.3 Características constructivas, forma, dimensión, N° de álabes.
- 5.4 Diagrama de velocidad.
- 5.5 Condición de máxima utilización de energía.
- 5.6 Coeficientes de velocidad.
- 5.7 Correlaciones prácticas para diseñar (D, N)

6 Turbinas de Reacción Francis:

- 6.1 Pura o de flujo radial; mixta o de flujo radial-axial).
- 6.2 Ecuación de Transferencia, Grado de reacción, factor de utilización.
- 6.3 Órganos principales (caracol, distribuidor, rotor, difusor).
- 6.4 Variación de la presión y de la velocidad.
- 6.5 Diagrama de velocidad a la entrada y a la salida del rotor.
- 6.6 Caracterización y proporción en dimensiones de turbina Francis de acuerdo a la velocidad específica.
- 6.7 Cavitación, parámetro de cavitación (Thoma)
- 6.8 Correlaciones prácticas para diseñar (D, N, etc.)

7 Turbina de Reacción de Flujo axial (Kaplán, Hélice y Bulbo):

- 7.1Definición
- 7.2Ecuación de Transferencia, Grado de reacción, factor de utilización.
- 7.3Órganos principales (cámara de alimentación, distribuidor, rotor, álabes, difusor).
- 7.4Variación de la presión y de la velocidad.
- 7.5Diagrama de velocidad a la entrada y a la salida del rotor.
- 7.6Diseño de los álabes para 80% del caudal nominal.

	UNIVERSIDAD DE CHILE	
	7.7Caracterización y Proporción	
	en dimensiones de las	
	turbinas Kaplán y Hélice de	
	acuerdo a la velocidad	
	específica.	
	7.8Correlaciones prácticas para	
	diseñar (D, N)	
	7.9Turbinas Bulbo, Straflo,	
	Tubular y Pozo.	
8	Bombas Centrífugas	
	8.1Clasificación y	
	funcionamiento.	
	8.2Proporción en dimensiones	
	del impulsor.	
	8.3Condiciones de buen	
	rendimiento; N° de álabes.	
	8.4Diagrama de velocidad y	
	grado de reacción.	
	8.5Curva ideal Carga v/s Caudal	
	(H-Q)	
	8.6Curvas características reales	
	de las Bombas centrífugas	
	(carga dinámica total TDH,	
	pérdidas)	
	8.7Carga en la succión y	
	parámetro de cavitación	
	(NPSH, velocidad específica	
	de succión)	
9	Otras bombas (pozo profundo,	
	altas cargas, desplazamiento	
10	positivo, axiales) Ventiladores.	
10	ventilauutes.	

Número Nombre		Nombre	e de la Unidad		Duración en Semanas	
	5 PLANTAS GENER		RADORAS DE ENERGIA	15.0 hrs.		
				2	2,5 Semanas	
	(Contenidos	Resultados de Aprendizajes d	e la	Referencias a	
		Contemacs	Unidad		la Bibliografía	
1.	Plantas de	e Generación	El estudiante demuestra que:		1, 2, 3, 4, 8, 13	
			 Analiza los componentes d 	e		
2.		res de Vapor	una planta de generación			
		pción general.	termoeléctrica a vapor, pa	ra su		
		ación y transferencia	selección en proyectos.			
		or en la caldera				
		calentadores,				
		entadores,				
		tadores de aire;				
		mizadores,				
		ensadores.				
		las de carga.				
	2.5 Balance de energía en el					
	generador de vapor.					
	2.6 Tratamiento del agua de					
2	alimentación. 3. Plantas Nucleares.					
3.	riantas Ni	ucieai es.				

Bibliografía General

- 1. W.H. SEVERNS, H.E. DEGLER & J.C. MILES (1973), "La Producción de la Energía Mediante el Vapor de Agua, el Aire y los Gases", Ed. Reverté.
- 2. H. SORENSEN (1983), "Energy Conversion Systems", Nueva York: John Wiley & Sons.
- 3. H.DUBBEL (1975), "Manual del constructor de máquinas", 2 Tomos, Ed. Labor.
- 4. M.J. MORAN & H.N. SHAPIRO (2006), "Fundamentals of Engineering Thermodynamics", Fifth Edition, John Wiley & Sons, Inc.
- 5. C. MATAIX (1973), "Turbomáquinas térmicas: Turbinas de Vapor, Turbinas de Gas, Turbocompresores", Ed. Dossat S.A., Madrid.
- 6. L. VIVIER (1968), "Turbinas de vapor y de gas: Teoría, Construcción y Empleo"; Ed. URMO, Bilbao, España.
- 7. W.J. KEARTON (1973), "Steam Turbine Theory and Practice", Pitman Publishing Co.,.
- 8. E. ARNOLD (1970), "U.K. Steam Tables in S.I. units".
- 9. S.L. DIXON (2010), "Fluid Mechanics and Thermodynamics of Turbomachinery", Sixth Edition, Elsevier.
- 10. M. POLO ENCINAS (1988), "Turbomáquinas hidráulicas: principios fundamentales", Ed. Limusa, Mexico.
- 11. L. VIVIER (1966), "Turbines hydrauliques et leur régulation: théorie, construction, regulation", Ed. Albin Michel, Paris.
- 12. C. MATAIX (1986), "Mecánica de fluidos y máquinas hidráulicas", 2° Edición, Ed. Del Castillo S A
- 13. BABCOCK AND WILCOX (1978), "Steam Its Generation and Use", New York: Babcock and Wilcox Co.

Vigencia desde:	Otoño 2011
Elaborado por:	Juan-Carlos ELICER
Revisado por:	Ramón Frederick Área de Desarrollo Docente(ADD)