MA3802-1 Teoría de la Medida

Profesor: Sebastián Donoso.

Auxiliares: Benjamín Barrientos, Felipe Flores Ll. y Arie

Wortsman.

Fecha: 22 de Septiembre del 2020

Auxiliar 8

- **P1.** Sean $\{f_n\}, \{g_n\} \subset L^1$, $f, g \in L^1$ tales que $f_n \to f$, $g_n \to g$ puntualmente ctp tales que $|f_n| \le g_n$ y $\int g_n d\mu \to \int g d\mu$. Pruebe que $\int f_n d\mu \to \int f d\mu$.
- **P2.** Suponga que $\{f_n\} \subset L^1$, $f \in L^1$ y $f_n \to f$ puntualmente ctp. Pruebe que $\int |f f_n| d\mu \to 0$ si y sólo si $\int |f_n| d\mu \to \int |f| d\mu$.

Indicación: Utilice el resultado obtenido en la parte anterior.

P3. Sea H una variable aleatoria de un espacio de probabilidad. Se define su función de distribución por $F: \mathbb{R} \to [0, 1]$,

$$F(t) = \mu(\{x \in X \mid H(x) \le t\})$$

- a) Demuestre que F es creciente y continua por la derecha.
- b) Pruebe que para toda función medible $\phi: \mathbb{R} \to \mathbb{R}$ medible,

$$\int_{\mathbb{R}} \phi(t) d\mu_F(t) = \int_X \phi(H(x)) d\mu(x)$$

P4. Sea (X, \mathcal{F}, μ) un espacio de medida finita. Denotamos por \mathcal{L}^0 el espacio de funciones medibles reales y por L^0 a su cociente por la relación de igualdad ctp. Defina $d: \mathcal{L}^0 \times \mathcal{L}^0 \mapsto \mathbb{R}$ por

$$d(f,g) = \int_X \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} d\mu(x)$$

Sabiendo que $t \to \frac{t}{1+t}$ es una función estrictamente creciente y acotada (por 1) en $[0, \infty]$,

- (Propuesto) Muestre que d está bien definida y es una métrica en L^0 .
- Sean $\{f_n\}\subset \mathcal{L}^0$ y $f\in \mathcal{L}^0$. Pruebe que $d(f_n,f)\to 0$ si y sólo si para todo $\epsilon>0$,

$$\lim \mu(\{x \in X \mid |f_n(x) - f(x)| > \epsilon\}) = 0$$

• Pruebe la siguiente versión (mejorada) del TCD: Sean $\{f_n\} \subset \mathcal{L}^0 \text{ y } f \in \mathcal{L}^0$. Si $d(f_n, f) \to 0$ y existe $g \in \mathcal{L}^1$ tal que $|f_n| \leq g$, entonces

$$\lim_{X} \int_{X} |f_n(x) - f(x)| d\mu(x) = 0$$

Nota: Asuma que $|f| \leq g$.