Clase 19 MA3705. 20 de noviembre 2020.

Tabla

• Intersección de matroides.

Intersección de Matroides.

Grafo de intercambio de una matroide

Sea $\mathcal{M}=(S,\mathcal{I})$ matroide e $I\in\mathcal{I}$ un independiente.

Grafo de intercambios de I en \mathcal{M}

 $G_I(\mathcal{M}) = (S, E_I)$ bipartito con partes $I, S \setminus I$: $xy \in E_I \ (x \in I, y \in S \setminus I)$ si y solo si $I + y - x \in \mathcal{I}$.

Teorema: Si $J \subseteq S$, |J| = |I|.

- $J \in \mathcal{I} \implies \exists$ matching perfecto $I \setminus J : J \setminus I$ en $G_I(\mathcal{M})$.
- ② Existe único matching perfecto $I \setminus J : J \setminus I$ en $G_I(\mathcal{M}) \implies J \in \mathcal{I}.$

Corolario: Intercambio fuerte de bases

Sean A y B son bases de una matroide. Existe biyección $\varphi\colon A\to B$ tal que $\forall a\in A,\ A+\varphi(a)-a$ es base.

Teoremas de grafo de intercambio

Teorema (1): Sea $\mathcal{M}=(S,\mathcal{I})$ matroide, $I\in\mathcal{I}$, $J\subseteq S$, |J|=|I|.

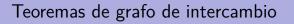
 $J \in \mathcal{I} \implies$ existe matching perfecto entre $I \setminus J$ y $J \setminus I$ en $G_I(\mathcal{M})$.

Dem: Si $H = G_I(\mathcal{M})[I \setminus J \cup J \setminus I]$ no tiene matching perfecto...

Teoremas de grafo de intercambio

```
Teorema (2): Sea \mathcal{M}=(S,\mathcal{I}) matroide, I\in\mathcal{I},\ J\subseteq S,\ |J|=|I|.
```

Dem: Orientemos N en $G_I(\mathcal{M})$ hacia I, el resto hacia $S \setminus I$. ¿Ciclos?



Conclusión:

Si se encuentra matching N en $G_I(\mathcal{M})$ tal que N es el único matching perfecto de sus extremos, entonces podemos intercambiar los extremos manteniendo independencia (camino de intercambio).

Llamémos a N matching de intercambio. ¿Cómo hacer algo similar en dos matroides $\mathcal{M}_1 = (S, \mathcal{I}_1)$, $\mathcal{M}_2 = (S, \mathcal{I}_2)$?

Idea: Usar caminos que **alternen** entre un matching de $G_I(\mathcal{M}_1)$ y un matching $G_I(\mathcal{M}_2)$.

Conclusión:

Si se encuentra matching N en $G_I(\mathcal{M})$ tal que N es el único matching perfecto de sus extremos, entonces podemos intercambiar los extremos manteniendo independencia (camino de intercambio).

Llamémos a N matching de intercambio. ¿Cómo hacer algo similar en dos matroides $\mathcal{M}_1 = (S, \mathcal{I}_1)$, $\mathcal{M}_2 = (S, \mathcal{I}_2)$?

Idea: Usar caminos que **alternen** entre un matching de $G_I(\mathcal{M}_1)$ y un matching $G_I(\mathcal{M}_2)$.

Digrafo de intercambios de 2 matroides

 $D_I(\mathcal{M}_1, \mathcal{M}_2)$ es la superposición de $G_I(\mathcal{M}_1)$ orientado de I a $S \setminus I$. $G_I(\mathcal{M}_2)$ orientado de $S \setminus I$ a I.

Antes de ver el algoritmo... dos conjuntos especiales

Sea
$$I \in \mathcal{I}_1 \cap \mathcal{I}_2$$
, con $\mathcal{M}_1 = (S, \mathcal{I}_1)$; $\mathcal{M}_2 = (S, \mathcal{I}_2)$ matroides.

$$X_1 = \{ y \in S \setminus I \colon I + y \in \mathcal{I}_1 \}, \quad X_2 = \{ y \in S \setminus I \colon I + y \in \mathcal{I}_2 \}$$

¿Qué pasa si
$$X_1 \cap X_2 \neq \emptyset$$
?

Algoritmo/Teorema de Intersección de matroides

```
Algoritmo Intersección de Matroides
(Aigner-Dowling 1975 / Lawler 1975)
Entrada: Oraculos para \mathcal{M}_1 = (S, \mathcal{I}_1), \mathcal{M}_2 = (S, \mathcal{I}_2)
I \leftarrow \emptyset.
Repetir
     Construir D_I(\mathcal{M}_1, \mathcal{M}_2)
     X_1 \leftarrow \{y \in S \setminus I : I + y \in \mathcal{I}_1\}
     X_2 \leftarrow \{y \in S \setminus I \colon I + y \in \mathcal{I}_2\}
     si \exists X_1 - X_2 camino entonces
           Encontrar X_1-X_2 camino más corto P
           I \leftarrow I\Delta V(P)
     en otro caso
           T \leftarrow \{v \in S \colon \exists v \text{-} X_2 \text{ camino}\}\
           devolver (I,T)
     fin
```

Aumento: $|I\Delta V(P)| = |I| + 1$

Teorema: Si P es X_1 - X_2 camino mínimo en $D_I(\mathcal{M}_1,\mathcal{M}_2)$, entonces $I\Delta V(P)\in\mathcal{I}_1\cap\mathcal{I}_2$

Basta probar que $J = I\Delta V(P) \in \mathcal{I}_1$ (el argumento es simétrico pues P reverso es X_2 - X_1 camino mínimo en $D_I(\mathcal{M}_2, \mathcal{M}_1)$).

Aumento: $|I\Delta V(P)| = |I| + 1$

Teorema: Si P es X_1 - X_2 camino mínimo en $D_I(\mathcal{M}_1,\mathcal{M}_2)$, entonces $I\Delta V(P)\in\mathcal{I}_1\cap\mathcal{I}_2$

Basta probar que $J = I\Delta V(P) \in \mathcal{I}_1$ (el argumento es simétrico pues P reverso es X_2 - X_1 camino mínimo en $D_I(\mathcal{M}_2, \mathcal{M}_1)$).

$$\mathcal{M}'_1 = (S + z, \mathcal{I}'_1 = \{W \subseteq S \colon W \setminus \{z\} \in \mathcal{I}_1\}). \ I + z \qquad |J| = |I + z|$$

Aumento: $|I\Delta V(P)| = |I| + 1$

Teorema: Si P es X_1 - X_2 camino mínimo en $D_I(\mathcal{M}_1,\mathcal{M}_2)$, entonces $I\Delta V(P)\in\mathcal{I}_1$

$$\mathcal{M}'_1 = (S + z, \mathcal{I}'_1 = \{W \subseteq S : W \setminus \{z\} \in \mathcal{I}_1\}). \ I + z$$
 $|J| = |I + z|$
 $\mathcal{M}'_2 = (S + z, \mathcal{I}'_2 = \{W \subseteq S : W \in \mathcal{I}_2\}).$

Algoritmo/Teorema de Intersección de matroides

ALGORITMO INTERSECCIÓN DE MATROIDES (AIGNER-DOWLING 1975 / LAWLER 1975)

Entrada: Oraculos para $\mathcal{M}_1 = (S, \mathcal{I}_1), \mathcal{M}_2 = (S, \mathcal{I}_2)$ $I \leftarrow \emptyset$.

Repetir

```
Construir D_I(\mathcal{M}_1,\mathcal{M}_2)
X_1 \leftarrow \{y \in S \setminus I \colon I + y \in \mathcal{I}_1\}
X_2 \leftarrow \{y \in S \setminus I \colon I + y \in \mathcal{I}_2\}
si \exists X_1 \text{-} X_2 camino entonces

| Encontrar X_1 \text{-} X_2 camino más corto P
I \leftarrow I \Delta V(P)
en otro caso

| T \leftarrow \{v \in S \colon \exists v \text{-} X_2 \text{ camino}\}
devolver (I,T)
```

De lo anterior siempre se tiene: $I \in \mathcal{I}_1 \cap \mathcal{I}_2$

Recuerdo: Dualidad débil

$$\max\{|I|: I \in \mathcal{I}_1 \cap \mathcal{I}_2\} \le \min\{r_1(T) + r_2(S \setminus T): T \subseteq S\}$$

Finalización

Teorema: Si no hay X_1 - X_2 camino mínimo en $D_I(\mathcal{M}_1,\mathcal{M}_2)$; y $T=\{v\in S\colon \exists v\text{-}X_2\text{ camino}\}$ entonces $|I|=r_1(T)+r_2(S\setminus T)$

Consecuencias

Algoritmo

El algoritmo de intersección de matroide encuentra un independiente común máximo en tiempo polinomial $(O(|S|^3)$ tiempo y llamadas a oráculos).

Teorema de Intersección de matroides

$$\max\{|I|\colon I\in\mathcal{I}_1\cap\mathcal{I}_2\}=\min\{r_1(T)+r_2(S\setminus T)\colon T\subseteq S\}$$

Comentarios:

- Existen algoritmos polinomiales para calcular conjuntos independientes comunes a dos matroides de peso máximo (similares a algoritmo primal-dual para matching)
- ② Podemos definir una unión de dos matroides como aquella cuyos independientes son todos los $I_1 \cup I_2$ con I_1 independiente en la primera matroide e I_2 independiente en la segunda. Se puede probar que este objeto es una matroide y el teorema de intersección de matroides nos da una fórmula para el rango.