Clase 14 MA3705. 2 de noviembre 2020.

Tabla

- Emparejamientos y Cubrimientos.
- Teorema de König en grafos bipartitos.
- Teorema de Hall.

Emparejamientos y cubrimientos

De la clase pasada:

 ${\cal M}$ es matching de tamaño máximo en ${\cal G}$ si y solo si no existen caminos ${\cal M}$ -aumentantes.

Idea de un algoritmo para encontrar un matching de tamaño máximo.

- ullet Partir de un matching M (ejemplo $M=\emptyset$)
- Repetir
 - lacktriangle Buscar camino M-aumentante P
 - ② Si lo encuentro. $M \leftarrow M\Delta P$
 - 3 Si no lo encuentro, certificar que no existen y terminar.

¿Cómo se certifica que no hay caminos M-aumentantes?

Un segundo problema importante: cubrimiento por vértices

Vertex-cover (Cubrimiento por vértices)

Decimos que $C \subseteq V$ es cubrimiento por vértices de un grafo G = (V, E) si toda arista $e \in E$ es cubierta (incidente) por un vértice de C.

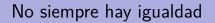
: Problema de los guardias del museo.

Un guardia parado en una esquina (vértice) de un museo puede vigilar los pasillos adyacentes. ¿Cuántos guardias necesitamos para proteger todo el museo?

Dualidad débil

Sea G un grafo cualquiera. Sea M un matching de G y C un cubrimiento de G.

$$|M| \leq |C|$$



¿Por qué se llama dualidad débil?

Un pequeño recuerdo de programación lineal.

$$\max |M| \quad \leq \quad \max \sum_{e \in E} x_e \qquad \qquad = \qquad \qquad \min \sum_{v \in V} y_v \quad \leq \quad \min |C|$$

Teorema de König para grafos bipartitos

Teorema de König: Si G=(V,E) es un grafo bipartito entonces

 $\max\{|M|\colon M \text{ matching}\} = \min\{|C|\colon C \text{ cubrimiento}\}$

Ejemplo de teorema max-min.

Basta demostrar que existe M matching y C cover con |M| = |C|.

Demostraremos este teorema algorítmicamente encontrando simultáneamente ${\cal M}$ y ${\cal C}$

¿Por qué grafos bipartitos?

Recuerdo de tarea 1:

- No es difícil encontrar paseos que alternen entre 2 colores, en grafos generales. Lamentablemente, encontrar caminos es más complicado.
- En grafos bipartitos, resulta que los paseos alternantes más cortos son también caminos alternantes.
- ullet Una construcción auxiliar hace más sencillo encontrar estos caminos M-alternantes (necesitamos que sean M-aumentantes)

Construcción auxiliar para encontrar caminos M-aumentantes

Sea $G=(L\cup R,E)$ grafo bipartito, M matching. Digrafo auxiliar $D(G,M)=(L\cup R+s+t,\vec{E})$ con arcos:

- **1** Cada $e \in M$ se dirige hacia L.
- ② Cada $e \in E \setminus M$ se dirige hacia R.
- 3 Arcos sv para cada nodo $v \in L$ M-expuesto
- **1** Arcos wt para cada nodo $w \in R$, M-expuesto.

Lema (directo por construcción)

Cada s-t camino en D(G, M) está en correspondencia con un camino M-aumentante en G.

Teorema importante

Teorema

Sea Q el conjunto de los nodos alcanzables desde s en D(G,M). Si M es máximo entonces $C:=(Q\setminus L)\cup (Q\cap R)$ es cubrimiento por vértices de G y $|C|\leq |M|$.

(continuación)

Teorema

Sea Q el conjunto de los nodos alcanzables desde s en G_M . Si M es máximo entonces $C:=(Q\setminus L)\cup (Q\cap R)$ es cubrimiento por vértices de G y $|C|\leq |M|$.

Algoritmo matching máximo, cubrimiento mínimo

```
Algoritmo (König 1931)
Entrada: G = (L \cup R, E) bipartito.
M \leftarrow \emptyset.
Repetir
    Construir D(G, M) y árbol BFS desde s.
    Q \leftarrow \{ \text{nodos alcanzables desde } s \text{ en } D(G, M) \}.
    si t \in Q entonces
         M \leftarrow M\Delta P, con P el camino M-aumentante
          encontrado.
    en otro caso
         C = (L \setminus Q) \cup (R \cap Q)
        devolver (M, C)
    fin
```

Teorema de Hall

Consecuencia: Teorema de(I matrimonio de) Hall

Hall (1935)

Sea
$$G=(L\cup R,E)$$
 grafo bipartito. Existe un matching que cubre L si y solo si: $\forall X\subseteq L, |N(X)|\geq |X|$

Demostración