Clase 13 MA3705. 30 de octubre 2020.

Tabla

- Aspectos finales de largos conservativos
- Emparejamientos de cardinalidad máxima.

Aspectos finales de largos conservativos

¿Cómo determinar si hay ciclos negativos?

Sea G=(V,E) grafo dirigido, ℓ función de largos en E.

Bellman-Ford calcula para todo $t \in V$,

 $d_{\leq n-1}(s,t) = \min\{\ell(P) \colon \mathsf{s-t} \text{ paseo de largo mínimo, con } \leq n-1 \text{ arcos}\}$

En auxiliar se probó que Lo camino si l fuera conservativos.

Lema

Existe ciclo de largo negativo alcanzable desde s ssi existe $vw \in E$ con $d_{\leq n-1}(s,w) > d_{\leq n-1}(s,v) + \ell(vw)$.

Para determinar si existe ciclo negativo en todo el grafo basta ...

O(nInfm)

Problema presentable: ¿Cómo modificar BF para que entregue la lista de nodos de un ciclo negativo?

Ejemplo

Una casa de cambios ofrece tasas $r_{ij} > 0$ para cambiar de un tipo de monedas i a un tipo de monedas j (es decir 1 unidad de moneda i es igual a r_{ij} unidades de moneda j).

Arbitraje: Secuencia i_1,\ldots,i_k tal que $r_{i_1i_2}\cdot\ldots r_{i_{k-1}}r_{i_k}\cdot r_{i_ki_1}>1$ (significa que podemos invertir 1 unidad de moneda i_1 y recuperar más que 1 unidad de moneda i_1 solo cambiando)

¿Cómo detectar si existe arbitraje?
$$l(ij) := -log(\pi_{ij})$$

$$R_{i_1i_2}, R_{i_2i_3}, \dots, R_{i_ki_1} > 1 \in S$$
 $log(R_{i_1i_2}) + log(R_{i_2i_3}) + \dots + log(R_{i_ki_1}) > 0$
 $+ l(i_ki_1) < 0$

Emparejamientos de cardinalidad máxima

Matching (emparejamientos)

Sea G = (V, E) grafo (simple).

- $M \subseteq E$ es un matching si $\forall e, f \in M, e \neq f$, e y f no comparten vértices. Equivalentemente, $\deg_M(v) \leq 1$, $\forall v \in V$.
- Problema: Encontrar matchings de cardinalidad máxima.

 Ejemplos:
 - Asignación de cupos de ramos a estudiantes.

 Problema de los compañeros de cuarto (roommates).

Dificultad

El sistema (E, matchings) no es una matroide. Luego ... Glotón no sinve $\{\xi_i: \int_{-1}^{2} 3$ $\{z_i\}_{i=1}^{2} \}$ tomano Construir M' con M'= M/+ 1

Paréntesis: Un lema extremadamente útil

Lema

Si G es un grafo con $\deg_G(v) \leq 2$, $\forall v \in V$, entonces las componentes conexas de G son ciclos y caminos.

Sea C componente. Si |C|=1 (un vértice) - es comino Si no, tuene alguna arista.

Sea P comino lo mán largo posible dentro de C · S; deg (a) = 2 => ab G E. P+&b es cido es exactamente la

· Si deg (a) = 1, deg (b)=1 P es exactament

8 / 20

Nomenclatura

2431

Sea G = (V, E) grafo, $M \subseteq E$ matching.

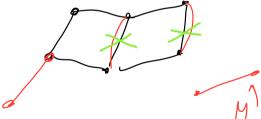
- $lackbox{0} v \in V$ es M-cubierto si ... existe ansta Ce M que la cubre
- $v \in V \text{ es } M ext{-expuesto si } \dots \text{ no } \text{ es } M ext{-arbitration}.$

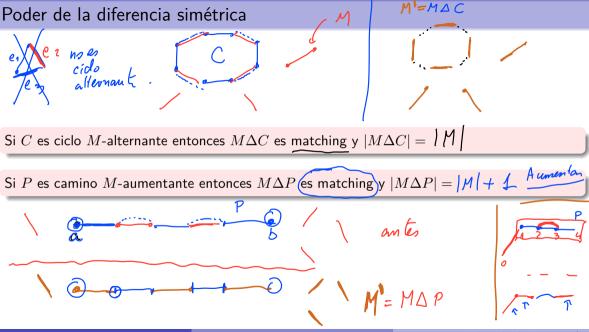
Un camino P es M-aumentante si es M-aumentante y además sus vértices son M-expuestos. En particular:

 $|P \setminus M| = |P \cap M| + 1$.

Diferencia simétrica con un matching

Sea M matching, $F\subseteq E$ ¿Qué es $F'=F\Delta M$? Son las aristas...

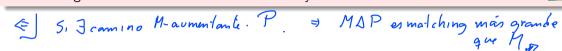




Caracterización de optimalidad I

Teorema (1931 König) Sea M matching.

Un matching M no es de cardinalidad máxima si y solo si \exists camino M-aumentante.



Sea $F = N\Delta M$ deg $(v) \le 2$ (V, F) true grado máximo ≤ 2 .

Componento = 0Componento = 0NAM

Sus componento son cominos y ciclos

M= alternante

IN > H (> H)

No es trivial determinar si existe camino M-aumentante

Idea de un algoritmo.

- ullet Partir de un matching M
- ullet Buscar camino M-aumentante P
- Si lo encuentro. $M \leftarrow M\Delta P$
- Si no lo encuentro ???

¿Cómo certifico que no hay caminos M-aumentantes?