MA3403-4. Probabilidades y Estadística

Profesor: Alexis Fuentes

Auxiliares: María José Alfaro y Vicente Salinas

Fecha: Jueves 17 de Diciembre, 2020

Auxiliar 11

P1. En Economía se dice que un agente, con función de utilidad U, frente a una v.a X, con media finita es:

Adverso al Riesgo ssi $U(\mathbb{E}(X)) > \mathbb{E}(U(X))$

Favorable al Riesgo ssi $U(\mathbb{E}(X)) < \mathbb{E}(U(X))$

Neutro al Riesgo ssi $U(\mathbb{E}(X)) = \mathbb{E}(U(X))$

Su dinero para invertir cumple que $X \sim Unif(0,1)$ y usted es un inversioniste que solo invierte en un negocio cuando este es arriesgado.

Si tiene 3 opciones de negocios, con funciones de utilidad dadas por:

- a) $U_1(t) = t^2$
- b) $U_2(t) = ln(t)$
- c) $U_3(t) = a + bt$

En que negocios invertiría? Justifique con cálculos su elección

- **P2.** Los gastos mensuales en la entrega de un producto que sigue la variable aleatoria X, con fgm dada por $\varphi_X(t) = e^{3(e^t 1)}$, viene dados por $G(X) = X^2 + X 1$. Calcular la esperanza de los gastos mensuales.
- **P3.** Recuerde que la función $\Gamma(z) = \int_0^\infty t^{z-1} e^t dt$.

Sea z > 0 y X v.a con distribución $\Gamma(1, z)$, es decir, con función de densidad: $f_X(x) = \frac{e^{-x}x^{z-1}1_{x>0}}{\Gamma(z)}$.

- a) Encuentre $E(X^n)$ para $n \ge 1$ y deduzca la Var(X). Recuerde que: $\Gamma(x+1) = x\Gamma(x)$
- b) Calcule la función generadora de momentos $E(e^{-sX})$ para s > 0.
- c) Pruebe usando la función generadora de momentos que si las variables X e Y son independientes, $X \sim Gamma(1, \alpha)$ e $Y \sim Gamma(1, \beta)$, con α y β positivos, entonces $X + Y \sim Gamma(1, \gamma)$ y encuentre γ .

Prop1. La densidad conjunta de X e Y esta dada por:

$$f(x,y) = c(y^2 - x^2)e^{-y}$$
 para $-y \le x \le y \land 0 < y < \infty$

- . En cualquier otro caso la densidad es 0. Encuentre:
 - a) El valor de c
 - b) Las densidades marginales de X e Y . ¿Son independientes?
 - c) La esperanza de X

hint: puede usar sin demostrar que $\Gamma(n)=(n-1)!$ donde $\Gamma(z)=\int_0^\infty t^{z-1}e^tdt$