MA3101-1 Elementos de Álgebra 2020

Profesor: Angel Pardo.

Auxiliares: Felipe Flores Ll., Pablo Paredes, Benjamín

Jauregui.

Fecha: 28 de octubre de 2020

Auxiliar 6

- **Definición:** (ideal minimal) Un ideal izquierdo (resp. derecho) $I \leq R$ se dice minimal si para todo ideal izquierdo (resp. derecho) $J, J \leq I \Rightarrow J \in \{\{0\}, I\}$.
- **Definición:** (ideal maximal) Un ideal izquierdo (resp. derecho) $I \leq R$ se dice maximal si para todo ideal izquierdo (resp. derecho) $J, I \leq J \Rightarrow J \in \{R, I\}$.
- **P1.** Lema de Brauer: Sea R un anillo con unidad y J un ideal izquierdo minimal tal que $J^2 \neq \{0\}$. Entonces existe un elemento idempotente $e \in J$ tal que J = Re y además eRe es un anillo de división.

Hint: Notar que $J^2 \neq \{0\}$ implica que $Jb \neq \{0\}$ para algún b. Considerar además $I := \{x \in R \mid xb = 0\}$.

- **P2.** Un anillo conmutativo se dice *noetheriano* si toda cadena creciente de ideales es estacionara, es decir, para toda sucesión creciente $I_1 \leq I_2 \leq \ldots \leq I_n \leq \ldots$, existe $k \in \mathbb{N}$ tal que $I_{n+k} = I_k$, $\forall n \in \mathbb{N}$. Pruebe que las siguientes son equivalentes:
 - a) R es noetheriano
 - b) Todo ideal de R es finitamente generado.
 - c) Cualquier colección de ideales de R tiene un elemento maximal.
- **P3.** Sea X un conjunto compacto y $\mathcal{C}(X)$ el anillo de funciones continuas a valores reales con dominio X.
 - a) Muestre que, para cada $x \in X$, $I_x := \{ f \in \mathcal{C}(X) \mid f(x) = 0 \}$ es un ideal maximal.
 - b) Muestre que todo ideal maximal es de la forma I_x para algún $x \in X$.
 - c) Concluya que existe una correspondencia biunívoca entre los puntos de X y los ideales maximales de $\mathcal{C}(X)$.
 - d) ¿Cuales son los ideales maximales de \mathbb{R}^n ? (con la multiplicación $(a_1,\ldots,a_n)(b_1,\ldots,b_n)=(a_1b_1,\ldots,a_nb_n)$)