MA2002-2 Cálculo Avanzado y Aplicaciones

Profesor: Argenis Mendez. Auxiliar: Patricio Yáñez A.

Auxiliar 1: Repaso de Curvas y Campos

Resumen

- [Curva]: Un conjunto Γ se llama curva si existe una función continua $\overrightarrow{r}:[a,b] \longrightarrow \mathbb{R}^3$, llamada parametrización de la curva, tal que $\Gamma = \overrightarrow{r}([a,b])$. Además, la curva Γ puede ser:
 - Suave, si $\overrightarrow{r} \in \mathcal{C}^1$.
 - Regular, si $||\overrightarrow{r}|| > 0$.
 - Simple, si \overrightarrow{r} es inyectiva.
 - Cerrada, si $\overrightarrow{r}(a) = \overrightarrow{r}(b)$.
- [Parametrizaciones equivalentes] Sea $\overrightarrow{r}_1:[a,b]\to\mathbb{R}^n$ y $\overrightarrow{r}_2:[c,d]\to\mathbb{R}^n$ dos parametrizaciones de una curva Γ . \overrightarrow{r}_1 y \overrightarrow{r}_2 son equivalentes si existe una función biyectiva $\varphi:[a,b]\to[c,d]$ de clase \mathcal{C}^1 tal que

$$\overrightarrow{r}_1(t) = \overrightarrow{r}_2(\varphi(t)), \forall t \in [a, b]$$

En este caso φ se llamará reparametrización.

 \bullet [Longitud de Curva]: Se define la longitud de curva en el tiempo t como:

$$s(t) = \int_{a}^{t} || \frac{d\overrightarrow{r}(\tau)}{d\tau} || d\tau$$

• Sea Γ una curva regular y simple, con parametrización $\overrightarrow{r}(t)$ y parametrización natural $\sigma(s)$. Se tiene que:

	En función de s	En función de t
Velocidad $\overrightarrow{v}(t)$		$\frac{d\overrightarrow{r}(t)}{dt}$
Rapidez $v(t)$	$\frac{ds}{dt}$	$\left\ \frac{d\overrightarrow{r'}(t)}{dt} \right\ $
Vector Tangente \hat{T}	$\frac{d\sigma(s)}{ds}$	$\frac{\frac{d\overrightarrow{r}(t)}{dt}}{\left\ \frac{d\overrightarrow{r}(t)}{dt}\right\ }$
Curvatura k	$\left\ \frac{d\hat{T}(s)}{ds} \right\ $	$\begin{bmatrix} \frac{d\hat{T}}{dt} \\ \frac{d\vec{r}'(t)}{dt} \end{bmatrix}$
Radio de Curvatura ${\cal R}$	$\frac{1}{k(s)}$	$\frac{1}{k(t)}$
Vector Normal \hat{N}	$\frac{\frac{d\hat{T}(s)}{ds}}{\left\ \frac{d\hat{T}(s)}{ds}\right\ }$	$\frac{\frac{d\tilde{T}(t)}{dt}}{\left\ \frac{d\hat{T}(t)}{dt}\right\ }$
Vector Binormal \hat{B}	$\hat{T}(s) \times \hat{N}(s)$	$\hat{T}(t) \times \hat{N}(t)$
Torción $ au$	$-\hat{N}(s) \cdot \frac{d\hat{B}(s)}{ds}$	$-\hat{N}(t) \cdot \left(\frac{\frac{d\hat{B}(t)}{dt}}{\left\ \frac{d\overrightarrow{r}'(t)}{dt}\right\ }\right)$

■ [Parametrización natural] Para obtener la parametrización natural (o de longitud de curva). Es necesario obtener la función de longitud de arco (s(t)) y luego desde esta relación despejar t en función s, para finalmente encontrar:

$$\overrightarrow{\sigma}(s) = \overrightarrow{r}(t(s))$$

- [Observaciones] Cualquier otra parametrización regular conduce a la misma parametrización natural solo que puede variar el sentido (dependiendo del sentido de la parametrización). También se cumple que: $\|\frac{d\sigma}{ds}\|=1$
- [Coordenadas Cilíndricas]: La relación entre las coordenadas cartesianas y cilíndricas viene dada principalmente por:

$$T(\rho, \theta, k) = (\rho \cos \theta, \rho \sin \theta, k)$$

• [Coordenadas Esféricas]: La relación entre las coordenadas cartesianas y esféricas viene dada principalmente por:

$$T(r, \theta, \phi) = (r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi)$$

Propuestos curvas en el espacio

- **A.** Sea la parametrización $r(t) = \left(a\cos(t), a\sin(t), \frac{ht}{2\pi}\right), t \in [0, 2\pi]$. Determine si esta parametrización¹ es suave, regular, simple, cerrada y/o cerrada simple.
- B. Encuentre alguna parametrización para las siguientes curvas
 - a) La parabola dada por $y=x^2, x \in [0,a]$ en sentido antihorario.
 - b) El segmento que une el punto $\overrightarrow{p} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ y el punto $\overrightarrow{q} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.
 - $c) \;\; {\rm El}$ triangulo cuyos vértices son $(0,0),\, (0,1)$ y (3,3).
 - d) La elipse dada por $\frac{x^2}{9} + \frac{y^2}{4} = 1$.
 - e) La curva que se obtiene de intersectar un casquete esférico unitario y la superficie de ecuación $z^2 = x^2 + y^2$.
- C. [Recuerdo de Vietnam]

Considere la curva
$$\Gamma$$
 parametrizada por $\overrightarrow{r}(t) = \begin{pmatrix} \int_0^t \phi(u) sen(u) du \\ \int_0^t \phi(u) cos(u) du \\ \int_0^t \phi(u) tan(u) du \end{pmatrix}, \ t \in [0, \frac{\pi}{2}), \ \text{donde } \phi(t) > 0 \text{ es una}$

función continua en $[0,\frac{\pi}{2})$

a) Demuestre que Γ es regular. Calcule T(t), N(t) y la curvatura $\kappa(t)$ en términos de $\phi(t)$. Use estos resultados para determinar $\phi(t)$ de modo que κ sea constante e igual 1.

¹En estricto rigor la cualidad de ser suave, simple, regular, etc. Es de las curvas, sin embargo, usaremos estas propiedades para referirnos de igual forma a las parametrizaciones. Se ruega comprender la diferencia entre curva y parametrización.

- b) Calcule B(t). Además, sabiendo que (no lo demuestre) $\frac{dB}{dt} = s(1+c^2)^{\frac{-3}{2}} \begin{pmatrix} (c^2-s^2)(2+c^2) \\ -2sc(2+c^2) \\ c(2+c^2) \end{pmatrix},$ donde s = sen(t) y c = cos(t), calcule la torsión τ de Γ en términos de $\phi(t)$ y determine $\phi(t)$ de modo que τ sea constante e igual a -1
- **D.** Sea r(s) una parametrización en longitud de arco de una curva Γ. Demuestre que

$$\frac{dr}{ds} \cdot \left(\frac{d^2r}{ds^2} \times \frac{d^3r}{ds^3} \right) = \tau \kappa^2$$

E. Sea la curva que se forma al intersectar:

$$x^2 - y^2 = 1$$
 y $x tanh(z) = y$

con $0 \le z \le 1$ y $x, y \ge 0$. Se pide:

- a) Parametrizar la curva y calcular su longitud.
- b) Encontrar su parametrización en longitud de arco.
- c) Calcule el vector Tangente, Normal y Binormal.
- **F.** El objetivo de esta pregunta es encontrar el plano osculador de un curva para esto necesita las siguientes definiciones:

Una de las formas de obtener un plano Π es encontrar su ecuación normal $\langle \overrightarrow{v} - \overrightarrow{p}, \overrightarrow{n} \rangle$ donde $\overrightarrow{v} \in \Pi$ arbitrario, $\overrightarrow{p} \in \Pi$ fijo o conocido y \overrightarrow{n} es un vector normal.

Dada la curva definida por:

$$\overrightarrow{r}(t) = (\cos(t), \sin(t), t), \quad t \in [0, 2\pi]$$

■ [Teorema de Fubini]: Sean $R_1 \subseteq \mathbb{R}^n$, $R_2 \subseteq \mathbb{R}^m$, $R = R_1 \times R_2$, y $f : R \longrightarrow R$ una función integrable, tal que las funciones

$$x \in R_1 \to \int_{R_2} f(x, y) dy$$
 , $y \in R_2 \to \int_{R_1} f(x, y) dx$

están bien definidas y son integrables. Entonces se tiene la validez de las igualdades

$$\int_{R} f = \int_{R_{1}} (\int_{R_{2}} f(x, y) dy) dx = \int_{R_{2}} (\int_{R_{1}} f(x, y) dx) dy$$

■ [Teorema del Cambio de Variable]: Sea $\Omega \subseteq \mathbb{R}^n$ un abierto y $T: \Omega \to \mathbb{R}^n$ una función de clase \mathcal{C}^1 . Sea D' una región abierta y acotada con $Adh(D') \subseteq \Omega$ y supongamos además que T es inyectiva en D', que la matriz T'(u) es invertible para todo $u \in D'$ y que D = T(D') es un abierto. Sea $f: \overline{D} \longrightarrow \mathbb{R}$ una función continua. Se tiene entonces la validez de la igualdad

$$\int_{D} f(x)dx = \int_{D'} f(T(u)) \cdot |det(T'(u))| du$$

- \bullet [Campos]: Sea $\Omega \subseteq \mathbb{R}^3$ un abierto no vacío. Definimos:
 - Campo Escalar sobre Ω a toda función a valores reales, es decir, a toda función $f:\Omega\longrightarrow\mathbb{R}$.
 - Campo Vectorial sobre Ω a toda función $f:\Omega \longrightarrow \mathbb{R}^3$.

Citado Cálculo diferencial e Integral Uchile y Cálculo en varias variables coordinado 2019.

P1. Las coordenadas de una partícula en el tiempo vienen dadas por:

$$\overrightarrow{r}(t) = (\sin t - t\cos t, \cos t + t\sin t, t^2)$$

Calcule \overrightarrow{T} , \overrightarrow{N} , $k \vee R$.

- P2. Demuestre que una curva sin curvatura, corresponde a una recta.
- **P3.** a) Sea $\rho = f(\theta)$ la ecuación en coordenadas polares de una curva Γ. Demuestre que el largo de Γ en el intervalo $[\theta_1, \theta_2]$ es

$$L = \int_{\theta_1}^{\theta_2} \sqrt{(f(\theta))^2 + (f'(\theta))^2} d\theta$$

b) Demuestre que para el caso en que se cumpla $f'(\theta) = af(\theta)$, con a un número real, la curvatura de Γ en cualquier θ está dada por

$$\kappa(\theta) = \frac{1}{\sqrt{(f(\theta))^2 + (f'(\theta))^2}}$$

- P4. Dibuje las líneas de corriente/flujo de los siguientes campos vectoriales.
 - a) $\overrightarrow{F}(x,y) = (x,y)$
 - b) $\vec{F}(x,y) = (1, y^2 y)$
 - c) $\overrightarrow{F}(x,y,z) = (\frac{-y}{x^2+y^2+z^2}, \frac{x}{x^2+y^2+z^2}, \frac{-z}{x^2+y^2+z^2})$

- d) $\overrightarrow{F}(r,\theta,\phi) = \frac{K}{r^2} \hat{r}$, para los casos K < 0 y K > 0.
- **P5.** En esta pregunta se pide calcular $\int_0^1 \int_z^1 \int_y^1 e^{x^3} dx dy dz$ y se sugiere utilizar el teorema de Fubini dos veces.
- **P6.** La siguiente integral, llamada **Integral de Gauss** posee una variedad de aplicaciones, principalmente en la teoría de probabilidades, esta corresponde a la integración a lo largo de la recta real de la función gaussiana e^{-x^2} , posee un valor relativamente sencillo de calcular a lo largo de \mathbb{R} . El objetivo de esta pregunta es calcular el valor de:

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

- a) Calcule el determinante de la transformación de coordenadas cartesianas a polares, es decir, de $(x,y) = P(\rho,\theta) = (\rho\cos\theta,\rho\sin\theta)$.
- b) Utilizando Fubini logre la siguiente igualdad:

$$I = \iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dA = (\int_{\mathbb{R}} e^{-x^2} dx)^2$$

- c) Utilizando lo encontrado en (a) llegue a que $I = \pi$.
- d) Concluya y entregue el valor de la integral de Gauss.

Pucho²: "Hoy comienzan las auxiliares de CAA muchacho"

 $^{^{2}}$ Pucho = Pato + Lucho