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T H E C O S M I C M I C R O W A V E B A C K G R O U N D

The cosmic microwave background (CMB) is the radiation left over from the big
bang. Recent analysis of the fluctuations in this radiation has given us valuable
insights into our Universe and its parameters.

This textbook examines the theory of CMB and its recent progress. It starts with a
brief introduction to modern cosmology and its main successes, followed by a thor-
ough derivation of cosmological perturbation theory. It then explores the generation
of initial fluctuations by inflation. In the following chapters the Boltzmann equa-
tion, which governs the evolution of CMB anisotropies, and polarization are derived
using the total angular momentum method. Cosmological parameter estimation is
discussed in detail. The lensing of CMB fluctuations and spectral distortions are
also treated.

The book is the first to contain a full derivation of the theory of CMB anisotropies
and polarization. Ideal for graduate students and researchers in this field, the text-
book includes end-of-chapter exercises, and solutions to selected exercises are
provided.

Ruth Durrer is Professor of Theoretical Physics at the Université de Genève.
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Preface

Cosmology, the quest concerning the Universe as a whole, has been a primary
interest of human study since the beginnings of mankind. For a long time our ideas
about the Universe were dominated by religious beliefs – tales of creation. Only
since the advent of general relativity in 1915 have we had a scientific theory at
hand that might be capable of describing the Universe. Soon after Einstein’s first
attempt of a static universe, Hubble and collaborators (Hubble, 1929) discovered
that the observable Universe is expanding. This together with the discovery of the
cosmic microwave background (CMB) by Penzias and Wilson (Nobel prize 1978)
has established the theory of an expanding and cooling universe which started in a
‘big bang’.

For a long time observations that have led to the determination of cosmological
parameters, such as the rate of expansion, the so-called Hubble parameter, the mean
matter density of the Universe, or its curvature, have been very sparse and we could
only determine the order of magnitude of these parameters.

During the last decade this situation has changed significantly and cosmology
has entered an era of precision measurements. This major breakthrough is to a
large extent due to precise measurement and analysis of the CMB. In this book
I develop the theory which is used to analyse and understand measurements of
the CMB, especially of its anisotropies and polarization, but also its frequency
spectrum. The Nobel prize was awarded to George Smoot and John Mather, in
2006, for the discovery of these anisotropies and for precise measurements of the
CMB spectrum.

The book is directed mainly towards graduate students and researchers who want
to obtain an overview of the main developments in CMB physics, and who want
to understand the state-of-the-art techniques which are used to analyse CMB data.
I believe that the theory of CMB physics is now sufficiently mature for a book on this
topic to be useful. I shall not enter into any details concerning CMB experiments.
This is by no means because I consider them less interesting, but rather that they
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x Preface

are still in full development and will hopefully make significant progress in the
near future. Of course, my background is also that of a theoretical physicist and
my main interest lies in the theoretical aspects of CMB physics. I hope, however,
that this book will also be useful to CMB experimentalists who want to know what
happens inside their cosmic parameter estimation routines.

It is assumed that the reader is familiar with undergraduate physics including
the basics of general relativity, and has an elementary knowledge of quantum field
theory and particle physics. The beauty of cosmology lies in the fact that it employs
more or less all fields of physics starting with general relativity over thermody-
namics and statistical physics to electrodynamics, quantum mechanics and particle
physics. In this book I do not want to present an introduction to these topics as well
since, first of all, there exist wonderful textbooks on all of them and second you
have learned them in your undergraduate physics courses.

Before we start, let me sketch the content of the different chapters and give you
a guide on how to read this book.

The first chapter is an overview of the homogeneous and isotropic universe. We
present and discuss the Friedmann equations, recombination, nucleosynthesis and
inflation. Readers familiar with cosmology may skip this chapter or just skim it.

In Chapter 2 we develop cosmological perturbation theory. This is the basics
of CMB physics. The main reason why the CMB allows such an accurate deter-
mination of cosmological parameters lies in the fact that its anisotropies are small
and can be determined within first-order perturbation theory. In Fourier space the
linear perturbation equations become a series of ordinary linear differential equa-
tions, which can be solved numerically to high precision without any difficulty. We
derive the perturbations of Einstein’s equations and the energy–momentum con-
servation equations and solve them for simple but relevant cases. We also discuss
the perturbation equation for light-like geodesics. This is sufficient to calculate the
CMB anisotropies in the so-called instant recombination approximation. The main
physical effects which are missed in such a treatment are Silk damping on small
scales and polarization. We then introduce the CMB power spectrum and draw our
first conclusions for its dependence on cosmological and primordial parameters.
For example, we derive an approximate formula for the position of the acoustic
peaks. An experimentalist mainly interested in parameter estimation may jump,
after Chapter 2, directly to Chapter 6 and skip the more theoretical parts between.

The third chapter is devoted to the initial condition. There we explain how the
unavoidable quantum fluctuations are amplified during an inflationary phase and
lead to a nearly scale-invariant spectrum of scalar and tensor perturbations. We also
discuss the initial conditions for mixed adiabatic and iso-curvature perturbations.

In Chapter 4 we derive the perturbed Boltzmann equation for CMB photons.
After a brief introduction to relativistic kinetic theory, we first derive the Liouville
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equation, i.e. the Boltzmann equation without a collision term. We also discuss the
connection between the distribution function and the energy–momentum tensor. We
then derive the collision term, i.e. the right-hand side of the Boltzmann equation,
due to Thomson scattering of photons and electrons. In this first attempt we neglect
the polarization dependence of Thomson scattering. The chapter ends with a list of
the full system of perturbation equations for a �CDM universe.

In Chapter 5 we discuss polarization. Here we derive the total angular momen-
tum method that is perfectly adapted to the problem of CMB anisotropies and
polarization, taking into account its symmetry, which allows a decomposition into
modes with fixed total angular momentum. The representation theory of the rota-
tion group and the spin weighted spherical harmonics which are extensively used
in this chapter are deferred to an appendix. We interpret some results using the flat
sky approximation, which is valid on small angular scales.

Chapter 6 is devoted to parameter estimation. We first discuss the physical depen-
dence of CMB anisotropies on cosmological parameters. After a section on CMB
data we then treat in some detail statistical methods for CMB data analysis. We
discuss especially the Fisher matrix and explain Markov chain Monte Carlo meth-
ods. We also address degeneracies, combinations of cosmological parameters on
which CMB anisotropies do not, or only very weakly, depend. Because of these de-
generacies, cosmological parameter estimation also makes use of other, non-CMB
related, observations. We summarize them in a separate section. We finish the
chapter with a discussion of ‘sources’, i.e. inhomogeneously distributed contribu-
tions to the energy–momentum tensor, such as topological defects, which may also
contribute to the CMB anisotropies and thereby affect the estimated cosmological
parameters.

In Chapter 7 we treat lensing of CMB anisotropies and polarization. This second-
order effect is especially important on small scales but also has to be taken into
account for � >∼ 500 if we want to achieve an accuracy of better than 0.5%. We
first derive the deflection angle and the lensing power spectrum. Then we discuss
lensing of CMB fluctuations and polarization in the flat sky approximation, which
is sufficiently accurate for angular harmonics with � >∼ 50. We conclude the chapter
with an overview on other second-order effects.

In the final chapter spectral distortions of the CMB are discussed. We first
introduce the three relevant collision processes in a universe with photons and
non-relativistic electrons: elastic Compton scattering, Bremsstrahlung and double
Compton scattering. We derive the corresponding collision terms and Boltzmann
equations. For elastic Compton scattering this leads us to the Kompaneets equation
for which we present a detailed derivation. We introduce the timescales corre-
sponding to these three collision processes and determine at which redshift a given
process freezes – becomes slower than cosmic expansion. Finally, we discuss the
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possible generation of a chemical potential in the CMB spectrum and the Sunyaev–
Zel’dovich effect.

All chapters are complemented with some exercises at the end.
In the appendices we collect useful constants and formulae, information on

special functions and some more technical derivations. The solutions to a selection
of exercises are also given in an appendix.

This book has grown out of a graduate course on CMB anisotropies that I have
given on several occasions. Thanks are due to the students of these courses, who have
motivated me to write it up in the form of a textbook. I am also indebted to many
collaborators and colleagues with whom I have discussed various aspects of the
book and who have helped me to clarify many issues. Especially I want to mention
Chiara Caprini, Martin Kunz, Toni Riotto, Uros Seljak and Norbert Straumann. I am
also immensely grateful to students and colleagues who have read parts of the draft
and helped me correct numerous typographical errors and other mistakes: Camille
Bonvin, Jean-Pierre Eckmann, Alice Gasparini, Sandro Scodeller and others. Of
course all the remaining mistakes are entirely my responsibility. Marcus Ruser and
Martin Kunz have also helped me with some of the figures. I also wish to thank
Susan Staggs who provided me with a most useful dataset of the CMB spectrum.

Ruth Durrer
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The homogeneous and isotropic universe

Notation

In this book we denote the derivative with respect to physical time by a prime, and
the derivative with respect to conformal time by a dot,

τ = physical (cosmic) time
d X

dτ
≡ X ′ , (1.1)

t = conformal time
d X

dt
≡ Ẋ . (1.2)

Spatial 3-vectors are denoted by a bold face symbol such as k or x whereas
four-dimensional spacetime vectors are denoted as x = (xµ).

We use the metric signature (−, +, +, +) throughout the book.
The Fourier transform is defined by

f (k) =
∫

d3x f (x) eik·x , (1.3)

so that

f (x) = 1

(2π )3

∫
d3k f (k) e−ik·x . (1.4)

We use the same letter for f (x) and for its Fourier transform f (k). The spectrum
Pf (k) of a statistically homogeneous and isotropic random variable f is given by

〈 f (k) f ∗(k′)〉 = (2π )3 δ(k − k′)Pf (k) . (1.5)

Since it is isotropic, Pf (k) is a function only of the modulus k = |k|. If f is Gaussian,
the Dirac delta function implies that different k′s are uncorrelated.

Throughout this book we use units where the speed of light, c, Planck’s constant, h̄
and Boltzmann’s constant, kB are unity, c = h̄ = kB = 1. Length and time therefore
have the same units and energy, mass and momentum also have the same units,
which are inverse to the unit of length. Temperature has the same units as energy.

1



2 The homogeneous and isotropic universe

We may use cm−1 to measure energy, mass, temperature, or eV−1 to measure
distances or times. We shall use whatever unit is convenient to discuss a given
problem. Conversion factors can be found in Appendix 1.

1.1 Homogeneity and isotropy

Modern cosmology is based on the hypothesis that our Universe is to a good ap-
proximation homogeneous and isotropic on sufficiently large scales. This relatively
bold assumption is often called the ‘cosmological principle’. It is an extension of
the Copernican principle stating that not only should our place in the solar system
not be a special one, but also that the position of the Milky Way in the Universe
should be in no way statistically distinguishable from the position of other galaxies.
Furthermore, no direction should be distinguished. The Universe looks statistically
the same in all directions. This, together with the hypothesis that the matter den-
sity and geometry of the Universe are smooth functions of the position, implies
homogeneity and isotropy on sufficiently large scales. Isotropy around each point
together with analyticity actually already implies homogeneity of the Universe.1 A
formal proof of this quite intuitive result can be found in Straumann (1974).

But which scale is ‘sufficiently large’? Certainly not the solar system or our
galaxy. But also not the size of galaxy clusters. (In cosmology, distances are usually
measured in Mpc (Megaparsec). 1 Mpc = 3.2615 × 106 light years = 3.0856 ×
1024 cm is a typical distance between galaxies, the distance between our neighbour
Andromeda and the Milky Way is about 0.7 Mpc. These and other connections
between frequently used units can be found in Appendix 1.)

It turns out that the scale at which the galaxy distribution becomes homogeneous
is difficult to determine. From the analysis of the Sloan Digital Sky Survey (SDSS)
it has been concluded that the irregularities in the galaxy density are still on the
level of a few per cent on scales of 100 h−1 Mpc (Hogg et al., 2005). Fortunately,
we know that the geometry of the Universe shows only small deviations from
the homogeneous and isotropic background, already on scales of a few Mpc. The
geometry of the Universe can be tested with the peculiar motion of galaxies, with
lensing, and in particular with the cosmic microwave background (CMB).

The small deviations from homogeneity and isotropy in the CMB are of uttermost
importance since, most probably, they represent the ‘seeds’, which, via gravitational
instability, have led to the formation of large-scale structure, galaxies and eventually
solar systems with planets that support life in the Universe.

1 If ‘analyticity’ is not assumed, the matter distribution could also be fractal and still statistically isotropic around
each point. For a detailed elaboration of this idea and its comparison with observations see Sylos Labini et al.
(1998).



1.2 The background geometry of the Universe 3

Furthermore, we suppose that the initial fluctuations needed to trigger the process
of gravitational instability stem from tiny quantum fluctuations that have been
amplified during a period of inflationary expansion of the Universe. I consider this
connection of the microscopic quantum world with the largest scales of the Universe
to be of breathtaking philosophical beauty.

In this chapter we investigate the background Universe. We shall first discuss the
geometry of a homogeneous and isotropic spacetime. Then we investigate two im-
portant events in the thermal history of the Universe. Finally, we study the paradigm
of inflation. This chapter lays the basis for the following ones where we shall inves-
tigate fluctuations on the background, most of which can be treated in first-order
perturbation theory.

1.2 The background geometry of the Universe

1.2.1 The Friedmann equations

In this section we assume a basic knowledge of general relativity. The notation
and sign convention for the curvature tensor that we adopt are specified in Ap-
pendix A2.1.

Our Universe is described by a four-dimensional spacetime (M, g) given by
a pseudo-Riemannian manifold M with metric g. A homogeneous and isotropic
spacetime is one that admits a slicing into homogeneous and isotropic, i.e., maxi-
mally symmetric, 3-spaces. There is a preferred geodesic time coordinate τ , called
‘cosmic time’ such that the 3-spaces of constant time, �τ = {x|(τ, x) ∈ M} are
maximally symmetric spaces, hence spaces of constant curvature. The metric g is
therefore of the form

ds2 = gµν dxµ dxν = −dτ 2 + a2(τ )γi j dxi dx j . (1.6)

The function a(τ ) is called the scale factor and γi j is the metric of a 3-space of
constant curvature K . Depending on the sign of K this space is locally isometric to
a 3-sphere (K > 0), a three-dimensional pseudo-sphere (K< 0) or flat, Euclidean
space (K = 0). In later chapters of this book we shall mainly use ‘conformal time’
t defined by a dt = dτ , so that

ds2 = gµν dxµ dxν = a2(t)
(−dt2 + γi j dxi dx j

)
. (1.7)

The geometry and physics of homogeneous and isotropic solutions to Einstein’s
equations was first investigated mathematically in the early twenties by Friedmann
(1922) and physically as a description of the observed expanding Universe in 1927
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by Lemaı̂tre.2 Later, Robertson (1936), Walker (1936) and others rediscovered
the Friedmann metric and studied several additional aspects. However, since we
consider the contributions by Friedmann and Lemaı̂tre to be far more fundamental
than the subsequent work, we shall call a homogeneous and isotropic solution to
Einstein’s equations a ‘Friedmann–Lemaı̂tre universe’ (FL universe) in this book.

It is interesting to note that the Friedmann solution breaks Lorentz invariance.
Friedmann universes are not invariant under boosts, there is a preferred cosmic
time τ , the proper time of an observer who sees a spatially homogeneous and
isotropic universe. Like so often in physics, the Lagrangian and therefore also the
field equations of general relativity are invariant under Lorentz transformations, but
a specific solution in general is not. In that sense we are back to Newton’s vision of
an absolute time. But on small scales, e.g. the scale of a laboratory, this violation
of Lorentz symmetry is, of course, negligible.

The topology is not determined by the metric and hence by Einstein’s equations.
There are many compact spaces of negative or vanishing curvature (e.g. the torus),
but there are no infinite spaces with positive curvature. A beautiful treatment of the
fascinating, but difficult, subject of the topology of spaces with constant curvature
and their classification is given in Wolf (1974). Its applications to cosmology are
found in Lachieze-Rey & Luminet (1995).

Forms of the metric γ , which we shall often use are

γi j dxi dx j = δi j dxi dx j

(1 + 1
4 Kρ2)2

, (1.8)

γi j dxi dx j = dr2 + χ2(r )
(
dθ2 + sin2(θ ) dϕ2

)
, (1.9)

γi j dxi dx j = d R2

1 − K R2
+ R2

(
dθ2 + sin2(θ ) dϕ2

)
, (1.10)

where in Eq. (1.8)

ρ2 =
3∑

i, j=1

δi j x
i x j , and δi j =

{
1 if i = j ,

0 else ,
(1.11)

and in Eq. (1.9)

χ (r ) =


r in the Euclidean case, K = 0 ,

1√
K

sin(
√

Kr ) in the spherical case, K > 0 ,
1√|K | sinh(

√|K |r ) in the hyperbolic case, K < 0 .

(1.12)

Often one normalizes the scale factor such that K = ±1 whenever K 
= 0. One has,
however, to keep in mind that in this case r and K become dimensionless and the

2 In the English translation of (Lemaı̂tre, 1927) from 1931 Lemaı̂tre’s somewhat premature but pioneering argu-
ments that the observed Universe is actually expanding have been omitted.



1.2 The background geometry of the Universe 5

scale factor a has the dimension of length. If K = 0 we can normalize a arbitrarily.
We shall usually normalize the scale factor such that a0 = 1 and the curvature is
not dimensionless. The coordinate transformations which relate these coordinates
are determined in Ex. 1.1.

Due to the symmetry of spacetime, the energy–momentum tensor can only be
of the form

(
Tµν

) =
(−ρg00 0

0 Pgi j

)
. (1.13)

There is no additional assumption going into this ansatz, such as the matter content
of the Universe being an ideal fluid. It is a simple consequence of homogeneity and
isotropy and is also verified for scalar field matter, a viscous fluid or free-streaming
particles in a FL universe. As usual, the energy density ρ and the pressure P are
defined as the time- and space-like eigenvalues of (T µ

ν ).
The Einstein tensor can be calculated from the definition (A2.12) and

Eqs. (A2.31)–(A2.38),

G00 = 3

[(
a′

a

)2

+ K

a2

]
(cosmic time) , (1.14)

Gi j = −
(

2a′′a + a′2 + K
)

γi j (cosmic time) , (1.15)

G00 = 3

[(
ȧ

a

)2

+ K

]
(conformal time) , (1.16)

Gi j = −
(

2

(
ȧ

a

)•
+

(
ȧ

a

)2

+ K

)
γi j (conformal time) . (1.17)

The Einstein equations relate the Einstein tensor to the energy–momentum con-
tent of the Universe via Gµν = 8πGTµν − gµν�. Here � is the so-called cosmo-
logical constant. In a FL universe the Einstein equations become(

a′

a

)2

+ K

a2
= 8πG

3
ρ + �

3
(cosmic time) , (1.18)

2
a′′

a
+ (a′)2

a2
+ K

a2
= −8πG P + � (cosmic time) , (1.19)(

ȧ

a

)2

+ K = 8πG

3
a2ρ + a2�

3
(conformal time) , (1.20)

2

(
ȧ

a

)•
+

(
ȧ

a

)2

+ K = −8πGa2 P + a2� (conformal time) . (1.21)
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Energy ‘conservation’, T µν
;µ = 0 yields

ρ̇ = −3(ρ + P)

(
ȧ

a

)
or, equivalently ρ ′ = −3(ρ + P)

(
a′

a

)
. (1.22)

This equation can also be obtained by differentiating Eq. (1.18) or (1.20) and
inserting (1.19) or (1.21); it is a consequence of the contracted Bianchi identities
(see Appendix A2.1). Eqs. (1.18)–(1.21) are the Friedmann equations. The quantity

H (τ ) ≡ a′

a
= ȧ

a2
≡ Ha−1 , (1.23)

is called the Hubble rate or the Hubble parameter, where H is the comoving Hubble
parameter. At present, the Universe is expanding, so that H0 > 0. We parametrize
it by

H0 = 100 h km s−1 Mpc
−1 � 3.241 × 10−18 h s−1 � 1.081 × 10−28 h cm−1 .

Observations show (Freedman et al., 2001) that h � 0.72 ± 0.1. Eq. (1.22) is easily
solved in the case w = P/ρ = constant. Then one finds

ρ = ρ0(a0/a)3(1+w) , (1.24)

where ρ0 and a0 denote the value of the energy density and the scale factor at present
time, τ0. In this book cosmological quantities indexed by a ‘0’ are evaluated today,
X0 = X (τ0). For non-relativistic matter, Pm = 0, we therefore have ρm ∝ a−3 while
for radiation (or any kind of massless particles) Pr = ρr/3 and hence ρr ∝ a−4. A
cosmological constant corresponds to P� = −ρ� and we obtain, as expected ρ� =
constant. If the curvature K can be neglected and the energy density is dominated
by one component with w = constant, inserting Eq. (1.24) into the Friedmann
equations yields the solutions

a ∝ τ 2/3(1+w) ∝ t2/(1+3w) w = constant 
= −1 , (1.25)

a ∝ τ 2/3 ∝ t2 w = 0, (dust) , (1.26)

a ∝ τ 1/2 ∝ t w = 1/3, (radiation) , (1.27)

a ∝ exp(Hτ ) ∝ 1/|t | w = −1, (cosmol. const.) . (1.28)

It is interesting to note that if w < −1, so-called ‘phantom matter’, we have
to choose τ < 0 to obtain an expanding universe and the scale factor diverges in
finite time, at τ = 0. This is the so-called ‘big rip’. Phantom matter has many
problems but it is discussed in connection with the supernova type 1a (SN1a) data,
which are compatible with an equation of state with w < −1 or with an ordinary
cosmological constant (Caldwell et al., 2003). For w < − 1

3 the time coordinate t
has to be chosen as negative for the Universe to expand and spacetime cannot be
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continued beyond t = 0. But t = 0 corresponds to a cosmic time, the proper time of
a static observer, τ = ∞; this is not a singularity. (The geodesics can be continued
until affine parameter ∞.)

We also introduce the adiabatic sound speed cs determined by

c2
s = P ′

ρ ′ = Ṗ

ρ̇
. (1.29)

From this definition and Eq. (1.22) it is easy to see that

ẇ = 3H(1 + w)
(
w − c2

s

)
. (1.30)

Hence w = constant if and only if w = c2
s or w = −1. Note that already in a simple

mixture of matter and radiation w 
= c2
s 
= constant (see Ex. 1.3).

Eq. (1.18) implies that for a critical value of the energy density given by

ρ(τ ) = ρc(τ ) = 3H 2

8πG
(1.31)

the curvature and the cosmological constant vanish. The value ρc is called the
critical density. The ratio 
X = ρX/ρc is the ‘density parameter’ of the component
X . It indicates the fraction that the component X contributes to the expansion of
the Universe. We shall make use especially of


r ≡ 
r (τ0) = ρr (τ0)

ρc(τ0)
, (1.32)


m ≡ 
m(τ0) = ρm(τ0)

ρc(τ0)
, (1.33)


K ≡ 
K (τ0) = −K

a2
0 H 2

0

, (1.34)


� ≡ 
�(τ0) = �

3H 2
0

. (1.35)

1.2.2 The ‘big bang’ and ‘big crunch’ singularities

We can absorb the cosmological constant into the energy density and pressure by
redefining

ρeff = ρ + �

8πG
, Peff = P − �

8πG
.

Since � is a constant and ρeff + Peff = ρ + P , the conservation equation (1.22)
still holds. A first interesting consequence of the Friedmann equations is obtained
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when subtracting Eq. (1.18) from (1.19). This yields

a′′

a
= −4πG

3
(ρeff + 3Peff) . (1.36)

Hence if ρeff + 3Peff > 0, the Universe is decelerating. Furthermore, Eqs. (1.22)
and (1.36) then imply that in an expanding and decelerating universe

ρ ′
eff

ρeff
< −2

a′

a
,

so that ρ decays faster than 1/a2. If the curvature is positive, K > 0, this implies
that at some time in the future, τmax, the density has dropped down to the value of the
curvature term, K/a2(τmax) = 8πGρeff(τmax). Then the Universe stops expanding
and recollapses. Furthermore, this is independent of curvature, as a′ decreases the
curve a(τ ) is concave and thus cuts the a = 0 line at some finite time in the past.
This moment of time is called the ‘big bang’. The spatial metric vanishes at this
value of τ , which we usually choose to be τ = 0; and spacetime cannot be continued
to earlier times. This is not a coordinate singularity. From the Ricci tensor given in
Eqs. (A2.31) and (A2.32) one obtains the Riemann scalar

R = 6

[
a′′

a
+

(
a′

a

)2

+ K

a2

]
,

which also diverges if a → 0. Also the energy density, which grows faster than
1/a2 as a → 0 diverges at the big bang.

If the curvature K is positive, the Universe contracts after τ = τmax and, since
the graph a(τ ) is convex, reaches a = 0 at some finite time τc, the time of the
‘big crunch’. The big crunch is also a physical singularity beyond which spacetime
cannot be continued.

It is important to note that this behaviour of the scale factor can only be implied
if the so-called ‘strong energy condition’ holds, ρeff + 3Peff > 0. This is illustrated
in Fig. 1.1.

1.2.3 Cosmological distance measures

It is notoriously difficult to measure distances in the Universe. The position of an
object in the sky gives us its angular coordinates, but how far away is the object
from us? This problem has plagued cosmology for centuries. It was only Hubble,
who discovered around 1915–1920 that the ‘spiral nebulae’ are actually not situated
inside our own galaxy but much further away. This then led to the discovery of the
expansion of the Universe.
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Fig. 1.1. The kinematics of the scale factor in a Friedmann–Lemaı̂tre universe
which satisfies the strong energy condition, ρeff + 3Peff > 0.

For cosmologically distant objects, a third coordinate, which is nowadays rela-
tively easy to obtain, is the redshift z experienced by the photons emitted from the
object. A given spectral line with intrinsic wavelength λ is redshifted due to the
expansion of the Universe. If it is emitted at some time τ , it reaches us today with
wavelength λ0 = λa0/a(τ ) = (1 + z)λ. This leads to the definition of the cosmic
redshift

z(τ ) + 1 = a0

a(τ )
. (1.37)

On the other hand, an object at physical distance d = a0r away from us, at redshift
z � 1, recedes with speed v = H0d. To the lowest order in z, we have τ0 − τ ≈ d
and a0 ≈ a(τ ) + a′(τ0 − τ ), so that

1 + z ≈ 1 + a′

a
(τ0 − τ ) ≈ 1 + H0d .

For objects that are sufficiently close, z � 1 we therefore have v ≈ z and hence
H0 = v/d. This is the method usually applied to measure the Hubble constant.

There are different ways to measure distances in cosmology all of which give
the same result in a Minkowski universe but differ in an expanding universe. They
are, however, simply related as we shall see.

One possibility is to define the distance DA to a certain object of given physical
size � seen at redshift z1 such that the angle subtended by the object is given by

ϑ = �/DA , DA = �/ϑ . (1.38)

This is the angular diameter distance, see Fig. 1.2.
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t
0
, z = 0

t = t
1
, z = z

1
A

B

∆

Fig. 1.2. The two ends of the object emit a flash simultaneously from A and B at
z1 which reaches us today. The angular diameter distance to A (or B) is defined
by DA = �/ϑ .

We now derive the expression

DA(z) = 1√|
K |H0(1 + z)
χ

(√
|
K |H0

∫ z

0

dz′

H (z′)

)
, (1.39)

for the angular diameter distance to redshift z. In a given cosmological model, this
allows us to express the angular diameter distance for a given redshift as a function
of the cosmological parameters.

To derive Eq. (1.39) we use the coordinates introduced in Eq. (1.9). Without loss
of generality we set r = 0 at our position. We consider an object of physical size
� at redshift z1 simultaneously emitting a flash at both of its ends A and B. Hence
r = r1 = t0 − t1 at the position of the flashes, A and B at redshift z1. If � denotes the
physical arc length between A and B we have � = a(t1)χ (r1)ϑ = a(t1)χ (t0 − t1)ϑ ,
i.e.,

ϑ = �

a(t1)χ (t0 − t1)
. (1.40)

According to Eq. (1.38) the angular diameter distance to t1 or z1 is therefore given
by

a(t1)χ (t0 − t1) ≡ DA(z1) . (1.41)

To obtain an expression for DA(z) in terms of the cosmic density parameters and
the redshift, we have to calculate (t0 − t1)(z1).

Note that in the case K = 0 we can normalize the scale factor a as we want, and
it is convenient to choose a0 = 1, so that comoving scales become physical scales
today. However, for K 
= 0, we have already normalized a such that K = ±1 and
χ (r ) = sin r or sinh r . In this case, we have no normalization constant left and a0

has the dimension of a length. The present spatial curvature of the Universe then is
±1/a2

0 .
The Friedmann equation Eq. (1.20) reads

ȧ2 = 8πG

3
a4ρ + 1

3
�a4 − K a2, (1.42)
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where ȧ = da/dt . To be specific, we assume that ρ is a combination of dust, cold,
non-relativistic ‘matter’ of Pm = 0 and radiation of Pr = ρr/3.

Since ρr ∝ a−4 and ρm ∝ a−3, we can express the terms on the r.h.s. of (1.42)
as

8πG

3
a4ρ = H 2

0

(
a4

0
r + 
maa3
0

)
, (1.43)

1

3
�a4 = H 2

0 
�a4 , (1.44)

−K a2 = H 2
0 
K a2a2

0 . (1.45)

The Friedmann equation then implies

da

dt
= H0a2

0

(

r + a

a0

m + a4

a4
0


� + a2

a2
0


K

)1/2

, (1.46)

so that

t0 − t1 = 1

H0a0

∫ z1

0

dz[

r (z + 1)4 + 
m(z + 1)3 + 
� + 
K (z + 1)2

]1/2 .

(1.47)
Here we have used z + 1 = a0/a so that da = −dza0/(1 + z)2.

In principle, we could of course also add other matter components like, e.g.
‘quintessence’ (Caldwell et al., 1998), which would lead to a somewhat different
form of the integral (1.47), but for definiteness, we remain with matter, radiation
and a cosmological constant.

From −K/H 2
0 a2

0 = 
K we obtain H0a0 = 1/
√|
K | for 
K 
= 0. The expres-

sion for the angular diameter distance thus becomes

DA(z) =



1√|
K |H0(z+1)
χ

(√|
K | ∫ z
0

dz′

[
r (z′+1)4+
m (z′+1)3+
�+
K (z′+1)2]1/2

)
if K 
= 0

1
H0(z+1)

∫ z
0

dz′

[
r (z′+1)4+
m (z′+1)3+
�]1/2

if K = 0 .

(1.48)
Using the Friedmann equation, this formula can also be written in the more general
form of Eq. (1.39).

In general, the above integral has to be solved numerically. It determines the
angle ϑ(�, z) = �/DA(z) under which an object of size � placed at redshift z is
seen (see Figs. 1.3 and 1.4).

If we are able to measure the redshifts and the angular extensions of a certain class
of objects at different redshifts, of which we know the intrinsic size �, comparing
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Fig. 1.3. The functionχ (t0 − t1) as a function of the redshift z for different values of
the cosmological parameters 
K (left, with 
� = 0) and 
� (right, with 
K = 0),
namely −0.8 (dotted), −0.3 (short-dashed), 0 (solid), 0.3 (dot-dashed), 0.8 (long-
dashed).

Fig. 1.4. ϑH (z1) (in degrees) for different values of the cosmological parameters

K and 
� the line styles are as in Fig. 1.3.

with Eq. (1.48) allows us, in principle, to determine the parameters 
m , 
�, 
K

and H0.
Observationally we know for certain that 10−5 < 
r ≤ 10−4 as well as 0.1 ≤


m <∼ 1, |
�| <∼ 1 and |
K | <∼ 1.
If we are interested in small redshifts, z1 <∼ 10, we may therefore safely neglect


r . In this region, Eq. (1.48) is very sensitive to 
� and provides an excellent mean
to constrain the cosmological constant.
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At high redshift, z1 >∼ 1000, neglecting radiation is no longer a good approxima-
tion.

We shall later also need the opening angle of the horizon distance,

ϑH (z1) = t1
χ (t0 − t1)

, (1.49)

t1 = 1

H0a0

∫ ∞

z1

dz[

r (z + 1)4 + 
m(z + 1)3 + 
� + 
K (z + 1)2

]1/2 .

(1.50)

(Clearly this integral diverges if 
r = 
m = 0. This is exactly what happens during
an inflationary period and leads there to the solution of the horizon problem, see
Section 1.5.)

Neglecting 
r , for 
� = 0 and small curvature, 0 < |
K | < 
mz1 at
high enough redshift, z1 ≥ 10, one has t0 − t1 � 2

√|
K |/
m = 2/(H0a0
√


m).
With χ (x) � x , which is valid for small curvature, this yields ϑ(�, z1) �√


m H0a0�/(2a1) = 1
2

√

m H0�/(z1 + 1) (see also Ex. 1.8).

Another important distance measure in cosmology is the luminosity distance. It is
defined as follows. Let L be the luminosity (energy emitted per second) of a source
at redshift z1 and F its flux (energy received per second per square centimetre)
arriving at the observer position. We define the luminosity distance to the source
by

DL (z1) ≡
(

L

4π F

)1/2

. (1.51)

We now want to show that DL (z1) = (1 + z1)2 DA(z1).
In a proper time interval of the emitter, dτ1 = a(t1) dt , the source emits the

energy La(t1) dt . This energy is redshifted by a factor of (1 + z1)−1 = a(t1)/a(t0).
It is then distributed over a sphere with radius a(t0)χ (t0 − t1). So that the flux per
proper time of the observer dτ0 = a(t0) dt becomes

F = La2(t1)

4πa4(t0)χ2(t0 − t1)
,

leading to

DL (z1) = a(t0)2

a(t1)
χ (t0 − t1) = (1 + z1)2 DA(z1) . (1.52)

The luminosity distance hence contains two additional factors (1 + z) compared to
the angular diameter distance. One of them is due to the ‘redshift’ of proper time
and the other is due to the redshift of photon energy.
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1.3 Recombination and decoupling

We assume that, at sufficiently early times, reaction rates for particle interactions
are much faster than the expansion rate, so that the cosmic fluid is in thermal
equilibrium. During its expansion, the Universe then cools adiabatically. At early
times, it is dominated by a relativistic radiation background with

ρ = C/a4 = geffaSB T 4 . (1.53)

This behaviour implies that T ∝ a−1. Here geff is the effective number of degrees
of freedom, which we define below and aSB is the Stefan–Boltzmann constant,
aSB = π2/30 in our units. For massless (or extremely relativistic) fermions and
bosons in thermal equilibrium at temperature T with Nb respectively N f spin
degrees of freedom we have (remember that we use units such that h̄ = kB = c = 1)

ρb = Nb4π

(2π )3

∫ ∞

0

p3 dp

exp(p/T ) − 1
= NbT 4

2π2

∫ ∞

0

x3 dx

exp(x) − 1

= NbT 4

2π2
�(4)ζ (4) = NbT 4π2

30
, (1.54)

ρ f = N f 4π

(2π )3

∫ ∞

0

p3 dp

exp(p/T ) + 1
= N f T 4

2π2

∫ ∞

0

x3 dx

exp(x) + 1

= N f T 4

2π2
�(4)ζ (4)

7

8
= 7

8

N f T 4π2

30
, (1.55)

where � denotes the Gamma-function and ζ is the Riemann zeta-function and we
make use of the integrals (Gradshteyn & Ryzhik, 2000)

Ib(α) =
∫ ∞

0

xα dx

exp(x) − 1
= �(α + 1)ζ (α + 1) , (1.56)

I f (α) =
∫ ∞

0

xα dx

exp(x) + 1
=

[
1 −

(
1

2

)α]
�(α + 1)ζ (α + 1) . (1.57)

Furthermore, ζ (2) = π2/6, ζ (4) = π4/90, and �(n) = (n − 1)! for n ∈ N,
see Abramowitz & Stegun (1970).

Hence ρ = ρb + ρ f = geffaSB T 4 for aSB = π2k4
B/(30 h̄3c2) = π2/30 and

geff = Nb + 7/8N f , if all the particles are at the same temperature T . If the tem-
peratures are different, like e.g., the neutrino temperature after electron–positron
annihilation, this has to be taken into account with a factor (Tν/Tγ )4.

At temperatures below the electron mass, T < me ∼ 0.5 MeV only neutrinos
and photons are still relativistic. Very recently, T <∼ 0.01 eV the neutrinos also
become non-relativistic so that the density parameter of relativistic particles today
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is given only by the photon density,


rel = 
γ = 16πG

3H 2
0

aSB T 4
0 = 2.49 × 10−5h−2 . (1.58)

Here we have set T0 = 2.725 K (see Particle Data Group, 2006).
The pressure of relativistic particles is given by P = T i

i /3 = ρ/3. The thermody-
namic relation d E = T d S − P dV therefore gives for entropy density s = d S/dV

s = d S

dV
= 1

T

(
d E

dV
+ P

)
= ρ + P

T
= 4ρ

3T
. (1.59)

Using the expression for the energy density (1.54) and (1.55) this gives for each
particle species X

sX =
{

2π2

45 NX T 3 for bosons ,

7π2

180 NX T 3 for fermions .
(1.60)

The particle density for relativistic particles is given by

nX = NX

2π2

∫
p2

exp(p/T ) ± 1
dp =

{
T 3 NX

π2 ζ (3) for bosons ,

T 3 NX
π2 ζ (3) 3

4 for fermions .
(1.61)

The particle and entropy densities both scale like T 3. Using ζ (3) � 1.202 057 we
obtain

sX �
{

3.6 · nX for bosons ,
4.2 · nX for fermions .

(1.62)

The photons obey a Planck distribution (ε = ap = the photon energy),

f (ε) = 1

eε/T − 1
. (1.63)

At a temperature of about T ∼ 4000 K ∼ 0.4 eV, the number density of pho-
tons with energies above the hydrogen ionization energy (= � = 1 Ry = 13.6 eV)
drops below the baryon density of the Universe, and the protons begin to
(re)combine to neutral hydrogen. (Helium has already recombined earlier.) Photons
and baryons are tightly coupled before (re)combination by Thomson scattering of
electrons. During recombination the free electron density drops sharply and the
mean free path of the photons grows larger than the Hubble scale. At the tem-
perature Tdec ∼ 3000 K (corresponding to the redshift zdec � 1100 and the physical
time tdec � adecηdec � 105 yr) photons decouple from the electrons and the Universe
becomes transparent. We now want to study this process in somewhat more detail.
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1.3.1 The physics of recombination

As we have seen above, the photon entropy is given by

sγ = 4π2

45
T 3 � 3.6nγ .

The conserved baryon number nB satisfies a3nB = constant, hence nB ∝ a−3 ∝
T 3. The entropy per baryon is therefore a constant,

σ = sγ /nB =
4π2

45 T 3
0


Bρc(τ0)/m p
= 1.4 × 108 T 3

2.7


Bh2
. (1.64)

Here we have used (see Appendix 1)

ρc(τ0) = 1.88h2 × 10−29 g cm−3 = 8.1h2 × 10−11 (eV)4 ,

m p = 9.38 × 108 eV , (proton mass),

T (τ0) = 2.3T2.7 × 10−4 eV , T2.7 = T (τ0)/2.7 K .

As we shall see in the next section, the baryon density is approximately 
Bh2 �
2 × 10−2 so that σ � 1010. Correspondingly the ratio between photon and baryon
density is

ηB = nB/nγ = 2.7 × 10−8

(

Bh2

T 3
2.7

)
. (1.65)

As long as hydrogen is ionized, the timescale of interaction between photons
and electrons (Thomson scattering) and between electrons and protons (Rutherford
scattering) is much faster than expansion and we may therefore consider the latter
as adiabatic. At every moment, the electron, proton, photon plasma is in thermal
equilibrium. As long as the temperature is above the ionization energy of neutral
hydrogen, T > 1 Ry = � = α2me/2 = 13.6 eV all hydrogen atoms that form are
rapidly dissociated. Most electrons and protons are free and the neutral hydrogen
density is very low. At some sufficiently low temperature, however, there will no
longer be sufficiently many energetic photons around to disrupt neutral hydrogen
and the latter becomes more and more abundant. To determine the temperature at
which this transition, called ‘recombination’,3 happens, we apply the standard rules
of equilibrium statistical mechanics to the reaction

e− + p ←→ H + γ (13.6 eV) . (1.66)

Supposing that pressure and temperature are fixed and only the number of free
electrons, Ne, free protons, Np, hydrogen atoms, NH , and photons, Nγ , can change,

3 The expression ‘combination’ would be more adequate, since this is the first time that neutral hydrogen forms,
but it is difficult to change historical mis-namings. . . .
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the second law of thermodynamics implies that the Gibbs potential G is constant,

0 = dG = µp d Np + µe d Ne + µH d NH + µγ d Nγ ,

Here µX denotes the chemical potential of species X . The different d NX are not
independent. Particle number conservation implies

d Np + d NH = d Ne + d NH = 0 . (1.67)

As there is no conservation of photons, the chemical potential of photons is thus
µγ = 0. With this and Eq. (1.67) the Gibbs equation, dG = 0 implies

µe + µp − µH = 0 . (1.68)

In this discussion, where we are more interested in the basic concepts than in
accuracy we neglect helium which has recombined earlier. We shall set n p + nH =
nB which induces an error of about 25%. For an accurate calculation of the final
ionization fraction, one would have to take into account both, the recombination
of helium and the recombination into excited states of hydrogen. It is actually
interesting to note that recombination into the ground state (1S) is not efficient at
all since the ionization cross section is very high for resonant Lyα photons so that
most of these just ionize another hydrogen atom leading to no net recombination.
The same is true for recombination into the 2P excited state. It is more efficient if
electrons are captured into the 2S level from which they can decay into the ground
state via the emission of two photons. By angular momentum conservation, the
emission of a single photon is not possible. The inverse process, excitation from
1S to 2S is a three-body process and therefore highly unlikely. Even though the
rate of the transition (e, p) → H2S → H1S is relatively low, it wins against direct
recombination into the ground state and subsequent cosmological redshifting of the
photon before the next ionization can take place. More details are found in Peebles
(1993), Mukhanov (2005), Rubino-Martin et al. (2006) and Wong et al. (2006).
Despite this fact, a discussion of recombination into the ground state captures the
main features of the process and the correct recombination and decoupling redshifts
do not significantly differ from those obtained here.

In thermal equilibrium, electrons, protons and hydrogen atoms obey a Maxwell–
Boltzmann distribution. Their number densities are given by (see Ex. 1.5)

ne = 2

(2π )3
(2πmeT )3/2 exp

(
− me − µe

T

)
, (1.69)

n p = 2

(2π )3
(2πm pT )3/2 exp

(
− m p − µp

T

)
, (1.70)

nH = 4

(2π )3
(2πm H T )3/2 exp

(
− m H − µH

T

)
. (1.71)
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We now make use of the fact that the Universe is globally neutral, ne = n p.
Furthermore, the binding energy of hydrogen � = α2me/2 (here α � 1/137 is the
fine structure constant) is given by � = me + m p − m H . With this we obtain

n2
e

nH
= nen p

nH
=

(
meT

2π

)3/2

e−�/T . (1.72)

Here we have neglected the small difference between the hydrogen and the proton
mass in the second factor of Eqs. (1.70) and (1.71) but not in the exponential.

We now define the ionization fraction xe by xe ≡ ne/(ne + nH ). Eq. (1.72) then
leads to

x2
e

1 − xe
= n2

e

nH (n p + nH )
= 1

nB

(
meT

2π

)3/2

e−�/T . (1.73)

Inserting the entropy per baryon, σ = (4π2/45)T 3/nB, in this equation yields

x2
e

1 − xe
= 45σ

4π2

( me

2πT

)3/2
e−�/T . (1.74)

This is the Saha equation. At very high temperatures, T � �, the ionization fraction
xe is close to 1. Recombination happens roughly when σ exp(−�/T ) is of the order
of unity. If σ ∼ 1 this corresponds to T ∼ �. The fact that the entropy per baryon
is very large, σ = 1.4 × 108(
Bh2)−1 ∼ 10+10 delays recombination significantly.
Since there are so many more photons than baryons in the Universe, even at a
temperature much below � = 13.6 eV there are still enough photons in the high-
energy tail of the Planck distribution to keep the Universe ionized.

To be more specific we define the recombination temperature Trec as the tem-
perature when xe = 0.5 (as we shall see, the precise value is of little importance).
Eq. (1.74) then leads to(

Trec

1 eV

)−3/2

e−�/Trec = 1.3 × 10−16 
Bh2. (1.75)

For 
Bh2 � 0.02 we obtain

Trec = 3757 K = 0.32 eV, zrec = 1376 .

The function xe(T ) is shown in Fig. 1.5. Clearly, this function grows very steeply
from xe ∼ 0 to xe ∼ 1 at T ∼ 3700 K and Trec depends only weakly on the value
chosen for xe(Trec).

Interestingly, at temperature Trec the baryon and photon densities are of the
same order, ργ (Trec) � ρB(Trec). This seems to be a complete coincidence. More
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X
e

Fig. 1.5. The ionization fraction xe as a function of the temperature is obtained via
the Saha equation for 
Bh2 = 0.02 (solid curve), for 
Bh2 = 0.03 (long-dashed
curve) and for 
Bh2 = 0.01 (short-dashed curve). Our definition of recombination,
xrec = 0.5, is indicated. Note that x decays from xe � 1 to � 0 between T = 4000
and 3400 K.

precisely, the ratio of these two densities is given by

ργ

ρB
= (π2/15)T 4

nBm p
= π2T 4

0

15nB(t0)m p
(z + 1)

� 2 × 10−5
(

Bh2

)−1
(z + 1) . (1.76)

This ratio is equal to 1 at redshift zrb given by

(1 + zrb) = 103

(

Bh2

2 × 10−2

)
� 103 ∼ 1 + zrec . (1.77)

1.3.2 Final ionization and photon decoupling

We have determined the temperature at which electrons and protons recombine to
neutral hydrogen. As the free electron fraction drops, the interaction rate between
electrons and protons decreases and at some point, the remaining free electrons
and protons are too sparse to find each other, so that the number of free electrons
remains constant. But also the photon–electron interaction rate decreases. Whenever
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an interaction rate � drops below the expansion rate of the Universe,

� < H ,

one considers the correponding reaction as ‘frozen’. It becomes negligible. When
the recombination rate drops below the expansion rate, recombination freezes and
the ionization fraction remains constant. When the scattering rate of photons on
electrons falls below the expansion rate of the Universe, photons become free to
propagate without further scattering. We want to calculate both, the final ionization,
xR , and the redshift zdec of the decoupling of photons. Let us first determine the
temperature Tg at which the process of reionization freezes out. The cross section
of the reaction p+ + e− → H + γ is (see, e.g. Rybicki & Lightman, 1979)

〈σRv〉 � 4.7 × 10−24

(
T

1 eV

)−1/2

cm2 . (1.78)

Here v is the thermal electron velocity and we have used the fact that 3T = mev
2.

The reaction rate is therefore

�R = n p〈σRv〉 = xe

(
nB

nγ

)
nγ 〈σRv〉

� 2.4 × 10−10 cm−1

(
T

1 eV

)7/4

exp(−�/2T )(
Bh2)1/2 ,

where we have inserted the Saha equation, assuming that the ionization fraction is
much smaller than 1, i.e.,

xe � (
√

45σ/2π )(me/2πT )3/4 exp(−�/2T ) � 1 .

We have also used Eq. (1.65).
To determine the expansion rate H (T ), we neglect curvature or a possible cos-

mological constant, which is certainly a good approximation for all redshifts larger
than, say, 5. We also assume that the Universe is matter dominated at freeze-out,
which induces an error of about 15% in H . The Friedmann equation (1.18) then
gives

H 2 � 8πG

3
ρ � 8πG

3
ρ0(a0/a)3

= 8πG

3

mρc(t0)(T/T0)3 ,

so that

H � 3 × 10−23 cm−1(
mh2)1/2

(
T

1 eV

)3/2

. (1.79)
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T
g,

 T
de

c

Fig. 1.6. The freeze-out temperatures of recombination (solid curve) and of
Thomson scattering (dashed curve) as functions of 
B/
m .

Eq. (1.79) is a very useful formula, valid whenever the Universe is dominated by
non-relativistic matter, dust, P � ρ, and curvature or a cosmological constant are
negligible.

The temperature Tg is defined by �R(Tg) = H (Tg), which finally leads to(
Tg

1 eV

)1/4

e−�/2Tg = 1.2 × 10−13

(

m


B

)1/2

. (1.80)

This result is independent of h. For 
m � 7
B (the value inferred from observa-
tions (Spergel et al., 2003)), we obtain Tg � 0.24 eV and zg � 1010 (see Fig. 1.6).
Tg depends only weakly on the ratio 
B/
m .

The final ionization fraction is given by

xR � xe(Tg) � 7.3 × 10−6

(
Tg

1 eV

)−1


1/2
m /(
Bh) � 3 × 10−5
1/2

m /(
Bh) .

(1.81)
A more detailed numerical analysis, taking into account the contribution from
radiation to the expansion rate and the recombination into excited states of
the hydrogen atoms and the presence of helium (see next section) gives xR ∼
1.2 × 10−5


1/2
m /(
Bh) (Peebles, 1993; Mukhanov, 2005). We can use this result

to calculate the optical depth τ to Thomson scattering of photons by free electrons
up to a redshift z < zg in a recombined universe. The optical depth to z is the
scattering probability of a photon integrated from z until today. With the Thomson
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cross section

σT = 8π

3
α2m−2

e � 6.65 × 10−25 cm2 , (1.82)

one finds

τ (z) ≡
∫ t0

t(z)
σT ne

dt

a
� 0.046xR(1 + z)3/2
B
−1/2

m h . (1.83)

With the residual ionization above we find τ (z = 800) � 0.01. As we shall
see in Section 6.3 the Universe is reionized at low redshift z ∼ 10, which in-
creases the optical depth by roughly a factor of 10. This rescattering of CMB
photons is relevant for the evolution of fluctuations as we shall discuss in
Section 6.3.

As long as the temperature is larger than Tg, the reaction p + e ←→ H + γ is
in thermal equilibrium. When the temperature drops below Tg, the recombination
process freezes out and the degree of ionization remains nearly constant.

Let us also note that in deriving the Saha equation (1.74), we used the fact that
the process of recombination is in thermal equilibrium, which we have verified only
now since freeze-out happens after recombination, Tg < Trec.

We finally calculate the redshift of the decoupling of photons. The process which
remains effective longest is elastic Thomson scattering. Its rate is given by

�T = σT ne = σT xe

(
nB

nγ

)
nγ

� 3.4 × 10−11 cm−1(
Bh2)1/2

(
T

1 eV

)9/4

exp(−�/2T ) . (1.84)

Comparing it to the expansion rate, we find Tdec which is defined by H (Tdec) =
�T (Tdec). A rough estimate gives Tdec ∼ 0.26 eV (see Fig. 1.6) which corresponds
to zdec ∼ 1100. Again we have assumed xe � 1 in Eq. (1.84) which is justified
since Tdec ∼ 3000 K (see Fig. 1.5).

Even though after zdec photons decouple from electrons, the latter are still cou-
pled to photons. The scattering rate of electrons, given by �e = σT xenγ � σT ne,
is sufficient to keep the electrons and with them the matter in thermal equilib-
rium with the photons until very low redshift. Therefore, even after recombina-
tion the matter temperature is equal to the temperature of the CMB and does
not decay like 1/a2 as would be expected from a pure thermal gas of massive
particles (see page 25).
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1.3.3 Propagation of free photons and the CMB

After tdec, photons cease any interaction with the cosmic fluid and propagate freely.
It is straight forward to estimate that the cross section for Rayleigh scattering with
hydrogen atoms is much too weak to be relevant.

The free propagation of photons after decoupling is described with the Liouville
equation for the photon distribution function, which we now develop. Since photons
do not interact anymore, they simply move along geodesics. The Liouville equation
translates this to a differential equation for the 1-particle distribution function f of
the photons. The function f describes the particle density in the phase space P0,
the photon mass-shell, given by

P0 = {(x, p) ∈ TM | gµν(x)pµ pν = 0}, f : P0 → R .

The distribution function f gives the number of particles per phase space volume
|g| d3x d3 p at fixed time t . In some general geometry a specific space-like hyper-
surface � has to be chosen and one then has to show that f does not depend on this
choice (more details are found in Ehlers (1971) and Stewart (1971)). In cosmology,
due to the symmetries present, we simply use the hypersurfaces of constant time,
� = �t .

We choose the coordinates (xµ, pi ) on the seven-dimensional mass-shell (0 ≤
µ ≤ 3 and 1 ≤ i ≤ 3). The energy p0 is then determined by the mass-shell condi-
tion gµν(x)pµ pν = 0. Liouville’s equation now says that the 1-particle distribution
remains unchanged if we follow the geodesic motion of the particles, i.e.,

0 = d f

dt
= ẋµ∂µ f + ṗi ∂ f

∂pi
,

0 = pµ∂µ f − �i
µν pµ pν ∂ f

∂pi
≡ L Xg f . (1.85)

A particle distribution obeying this equation is often also called a geodesic spray
(see Abraham & Marsden, 1982). If the particles are not free, but collisions are
so rare that an equilibrium description is not adequate, one uses the Boltzmann
equation,

L Xg f = C[ f ] , (1.86)

where C[ f ] is the so-called ‘collision integral’ which depends on the details of the
interactions.

It may be disturbing to some readers that we take over these concepts from non-
relativistic physics so smoothly to the relativistic case. In cosmology, this does not
cause any problems. But in general, it is true that the collision integral is not always
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well defined and certain conditions have to be posed to the nature of the spacetime
and of the interaction. This problem has been studied in detail by Ehlers (1971).

Since the photons are massless, |p|2 = γi j pi pi = (p0)2. Here p0 is the 0-
component of the momentum 4-vector in conformal time so that ε = ap0 is the
physical photon energy. Isotropy of the distribution implies that f depends on pi

only via p ≡ |p| = p0, and so

∂ f

∂pi
= ∂p

∂pi

∂ f

∂p
= pi

p

∂ f

∂p
. (1.87)

Furthermore, f depends on xi only through p = √
γi j pi pi . Spatial derivatives are

therefore given by

pi∂i f = piγlm,i
pl pm

p

∂ f

∂p
= p jγ

i jγlm,i
pl pm

p

∂ f

∂p

= 1

2
γ i j

(
γli,m + γmi,l − γlm,i

) p j pl pm

p

∂ f

∂p

= �
j
lm

pl pm p j

p

∂ f

∂p
.

This leads to

pi∂i f − �i
µν

pµ pν pi

p

∂ f

∂p
= −(

�i
j0 + �i

0 j

) p j ppi

p

∂ f

∂p
= −2p2 ȧ

a

∂ f

∂p
,

where we have used the expressions in Appendix A2.3 for�i
µν and p = p0. Inserting

this result into (1.85) we obtain, with Eq. (1.87),

∂t f − 2p
ȧ

a

∂ f

∂p
= 0 , (1.88)

which is satisfied by an arbitrary function f = f (pa2) = f (aε). Hence the distri-
bution of free-streaming photons changes only by redshifting the physical energy
ε = ap0 or the physical momentum a|p| = ε. Therefore, setting T ∝ a−1 even after
recombination, the blackbody shape of the photon distribution remains unchanged.
This radiation of free photons with a perfect blackbody spectrum is the CMB. Its
physics, especially its fluctuation and polarization are the main topic of this book.

The same result is also obtained for massive particles,

∂t f − 2p
ȧ

a

∂ f

∂p
= 0 , (1.89)

where p = |p|; hence the momentum is simply redshifted. Therefore, massive par-
ticles which decouple when they are still relativistic, keep their extremely rela-
tivistic Fermi–Dirac (or Bose–Einstein) distribution, f = (exp(ap/T ) ± 1), with a
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temperature which simply scales as T ∝ 1/a. This is especially important for the
cosmic neutrinos which probably have masses in the range of a few eV > mν

>∼
0.01 eV. But, as we shall see in the next section, they decouple at T ∼ 1.4 MeV.
We therefore expect them to be distributed according to an extremely relativistic
Fermi–Dirac distribution.

Note however, that after decoupling the particles are no longer in thermal equi-
librium and the T in their distribution function is not a temperature in the ther-
modynamical sense but merely a parameter, representing a measure of the mean
kinetic energy.

The situation is different for the electron–proton–hydrogen plasma. The free
electrons still scatter with photons and keep the same temperature as the latter. In
other words: even though most photons are no longer interacting with the electrons,
the latter are still interacting with the photons. (To have one collision with all the
remaining electrons, only a fraction of about 10−14 of the photons have to be
involved!)

Soon after recombination, the baryon energy density exceeds the photon en-
ergy density and one might expect that this would change the evolution of the
temperature. To investigate this we use the energy conservation equation of the
baryon–photon system. We neglect the tiny number of free electrons. The energy
density and pressure are then given by

ρ = nBm B + (3/2)nB T + π2

15
T 4 , (1.90)

p = nB T + π2

45
T 4 . (1.91)

The energy conservation equation, dρ/da = −3(ρ + p)/a now gives

a

T

dT

da
= − 3nB + 4π2

15 T 3

(3/2)nB + 4π2

15 T 3
= − σ + 1

σ + 1/2
. (1.92)

Since σ � 1, the photons are so much more numerous than the baryons that the
latter have no influence on the temperature which keeps evolving as 1/a. Note,
however, that in the absence of photons, the temperature of a mono-atomic gas
would decrease like 1/a2 (just consider the limit σ → 0).

The blackbody spectrum of the CMB photons is extremely well verified observa-
tionally (see Fig. 1.7 and Chapter 8). The limits on deviations are often parametrized
in terms of three parameters: the chemical potential µ, the Compton-y parameter
(which quantifies a well defined change in the spectrum arising from interactions
with a non-relativistic electron gas at a different temperature, see Chapter 8) and
Yff (describing a contamination by free–free emission).
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-

Fig. 1.7. The spectrum of the cosmic background radiation. The data are from many
different measurements which are all compiled in Kogut et al. (2006). The points
around the top are the measurements from the FIRAS experiment on COBE (Fixsen
et al., 1996). The line traces a blackbody spectrum at a temperature of 2.728 K
(the data are courtesy of Susan Staggs).

The present 95% confidence limits on these parameters are (Particle Data Group,
2006)

|µ| < 9 × 10−5, |y| < 1.2 × 10−5, |Yff| < 1.9 × 10−5. (1.93)

The CMB photons not only have a very thermal spectrum, but they are also
distributed very isotropically, apart from a dipole which is (most probably) mainly
due to our motion relative to the surface of last scattering.

Indeed, an observer moving with velocity v relative to a source in direction n
emitting a photon with proper momentum p = −εn sees this photon redshifted
with frequency

ε′ = γ ε (1 − nv) , (1.94)

where γ = 1/
√

1 − v2 is the relativistic γ -factor. For an isotropic emission of
photons coming from all directions n this leads to a dipole anisotropy to first order
in v. This dipole anisotropy, which is of the order of(

�T

T

)
dipole

� 1.2 × 10−3 ,
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has already been discovered in the seventies (Conklin, 1969; Henry, 1971). Inter-
preting it as due to our motion with respect to the last scattering surface implies
a velocity for the solar system barycentre of v = 371 ± 0.5 km s−1 at 68% CL
(Particle Data Group, 2006).

In addition to the dipole, the COBE4 DMR experiment (differential microwave
radiometer) has found fluctuations of order√√√√〈(

�T

T

)2
〉

∼ (a few) × 10−5 , (1.95)

on all angular scales θ ≥ 7◦ (Smoot et al., 1992). On smaller angular scales many
experiments found fluctuations (we shall describe the experimental results in more
detail later), but all of them satisfy |�T /T | <∼ 10−4.

As we shall see in Chapter 2, the CMB fluctuations on large scales provide a
measure for the deviation of the geometry from the Friedmann–Lemaı̂tre one. The
geometry perturbations are thus small, and we may calculate their effects by linear
perturbation theory. On smaller scales, �T/T reflects the fluctuations in the energy
density in the baryon/radiation plasma prior to recombination. Their amplitude is
just about right to allow the formation of the presently observed non-linear structures
(like galaxies, clusters, etc.) by gravitational instability.

These findings strongly support our hypothesis that the large-scale structure
(i.e., the galaxy distribution) observed in the Universe has been formed by grav-
itational instability from small (∼ 10−4) initial fluctuations. As we shall see in
Chapters 2, 4 and 5, such initial fluctuations leave an interesting ‘fingerprint’ on
the cosmic microwave background.

1.4 Nucleosynthesis

1.4.1 Expansion dynamics at T ∼ a few MeV

At high temperatures, T > 30 MeV, none of the light nuclei (deuterium, 2H, helium-
4, 4He, helium-3, 3He or lithium, 7Li) are stable. At these temperatures, we expect
the baryons to form a simple mixture of protons and neutrons in thermal equilibrium
with each other and with electrons, photons and neutrinos. The highest binding
energy is the one of 4He which is about 28 MeV. Nevertheless, 4He cannot form
at this temperature since the baryon density of the Universe is not high enough for
three- or even four-body interactions to occur in thermal equilibrium. Therefore,
before any nucleosynthesis can occur, the temperature has to drop below the binding
energy of deuterium which is about 2.2 MeV. But even at this temperature there

4 Cosmic Background Explorer, NASA satellite launched 1990.
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are still far too many high-energy photons around for deuterium to be stable. This
is due to the very low baryon to photon ratio ηB � 10−10. Just as recombination is
delayed from the naively expected temperature T = 13.7 eV to about Trec ∼ 0.3 eV,
nucleosynthesis does not happen at T ∼ 2.2 MeV but around Tnuc ∼ 0.1 MeV. Most
of the neutrons present at that temperature are converted into 4He. Only small traces
remain as deuterium or are burned into 3He and 7Li.

Let us study this in some more detail. At the time of recombination, the relativistic
particle species are the photon and, probably three types of neutrinos. As we shall
see in the next paragraph, the neutrino temperature is actually a factor of (4/11)1/3

lower than the temperature of the photons. With Eqs. (1.54) and (1.55), the energy
density of these particles while they are relativistic is given by

ρrel(t) = [
ργ (t) + ρν(t)

] =
[

1 + 3
7

8
(4/11)4/3

]
π2

15
T 4 , (1.96)

� 10−33 g cm−3

(
T

T0

)4

, (1.97)

� ρc(t0)
relh
2(1 + z)4 , where


relh
2 � 4.4 × 10−5 . (1.98)

Note that at temperatures below the highest neutrino mass, this is no longer the
energy density of relativistic particles, therefore 
rel is not the density parameter
of relativistic particles today. Above the neutrino mass threshold and below the
electron mass threshold we have

ρrel

ρm
= 
rel


m
(1 + z) � 4.4 × 10−5

(
1


mh2

)
(1 + z) , (1.99)

Since 
mh2 � 0.15, the redshift zeq above which the Universe is dominated by
relativistic particles is about

zeq � 3.4 × 103 , Teq � 1 eV . (1.100)

At temperatures significantly above Teq, we can also neglect a possible contribution
from curvature or a cosmological constant to the expansion of the Universe, so that
for

z � zeq P = 1

3
ρ , a ∝ τ 1/2 ∝ t . (1.101)

At these high temperatures the energy density of the Universe is given by

ρ = geff
π2

30
T 4 where geff = NB(T ) + 7

8
NF (T ) . (1.102)
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Here, NB and NF denote the number of bosonic and fermionic degrees of free-
dom of relativistic particles (i.e., particles with mass m < T ) which are in thermal
equilibrium at temperature T .

To discuss the physical processes at work at some temperature T , we need to
know the spectrum of relativistic particles and their interactions at this temperature.
Here, we shall study the Universe at 10 keV < T < 100 MeV where the physics
is well known. The only relativistic particles present at these temperatures are
electrons, positrons, photons and three types of neutrinos. Even if the individual
neutrino masses are not very well constrained, the oscillation experiments (Particle
Data Group, 2004) imply that their masses are below 1 eV if there is no degeneracy.
Therefore, we may neglect the neutrino masses in our treatment. The baryon number
is well conserved at these temperatures, so that we may set ηB equal to its present
value, ηB = nB/nγ � 2.7 × 10−8
Bh2 = constant. We neglect the small contri-
bution from muon/anti-muon pairs which decay exponentially ∝ exp(−mµ/T ) via
the reaction

µ + ν̄µ → e + ν̄e .

Thermal equilibrium between photons and electron/positrons is maintained mainly
via the process e− + e+ ←→ 2γ (or 3γ . . . ). The conservation of the chemical
potential during this reaction implies

µe + µ̄e = 2µγ = 0 . (1.103)

The last equals sign comes from the fact that photons can be generated and de-
stroyed, their number is not conserved, and hence their chemical potential vanishes
in thermal equilibrium. Here we use the notation e+ = ē and µē = µ̄e. The differ-
ence in the density of electrons and positrons is therefore

ne − n̄e = 1

π2

∫
p2 dp

 1

exp
(

E−µe

T

)
+ 1

− 1

exp
(

E+µe

T

)
+ 1

 . (1.104)

At low temperatures this number is dictated by the neutrality of the Universe,
ne − n̄e ∼ nB is much smaller than ne + n̄e ∼ nγ . Therefore, the chemical potential
is much smaller than the electron mass, µe � me. At high temperatures, T � me

we may therefore approximate the electron number density by

ne − n̄e � 2µe

π2T

∫
p2 dp

exp (p/T )[
exp (p/T ) + 1

]2 = 2µeT 2

π2
ζ (2) . (1.105)
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With nγ = 2T 3ζ (3)/π2 this yields

ne − n̄e

nγ

� 1.4
µe

T
∼ nB

nγ

� 1.4 × 10−8
Bh2. (1.106)

We can therefore neglect the small chemical potential of the electrons and positrons.
The interaction e + ē ←→ ν + ν̄ also implies that µν = −µ̄ν . But unfortunately,
the number nν − n̄ν which determines, together with ne − n̄e, the lepton number
of the Universe is not known from observations. We suppose that the lepton num-
ber, like the baryon number, is small and that we may also neglect the chemical
potential of the neutrinos. Comparing our results with observations, we can check
this hypothesis later.

At T <∼ 100 MeV photons, electron/positrons and neutrinos are still relativistic,
so that NB = 2 and NF = 4 + 6, hence

geff(T ∼ 100 MeV) = 43

4
= 10.75 . (1.107)

The Hubble parameter is therefore given by(
a′

a

)2

= H 2 = 1

4τ 2
= 8πG

3
ρ = 8π3G

90
geffT

4 .

With the Planck mass, m P defined by G = 1/m2
P = 1/(1.22 × 1019 GeV)2, this

gives

H 2(T ) � 2.76geff(T )

(
T 2

m P

)2

, (1.108)

H � 0.21
√

geff

(
T

1 MeV

)2

s−1 , (1.109)

τ = 1

2H
� 0.3geff(T )−1/2

(m P

T 2

)
� 2.3 s

(
1 MeV

T

)2

geff(T )−1/2 . (1.110)

The temperature of T ∼ 100 MeV corresponds thus to an age of τ ∼ 7 × 10−5 s,
and T = 1 MeV corresponds to τ ∼ 0.7 s. The relations (1.109) and (1.110) can
be applied as long as the Universe is dominated by relativistic particles.

1.4.2 Neutrino decoupling

Neutrinos are kept in thermal equilibrium via the exchange of a W -boson,
e + ν̄ ←→ e + ν̄ and ν + ē ←→ ν + ē, or a Z -boson, e + ē ←→ ν + ν̄. At low
energies E � m Z ,W ∼ 100 GeV, we can determine the cross sections within the
4-fermion theory of weak interaction. Within this approximation, the effective
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interaction Langrangian is given by

L int = G F√
2

J †
µ Jµ + hermitean conjugate

= G F√
2

(
ūeγµ

1

2
(1 − γ 5)uν

) (
u∗νγ

µ 1

2
(1 − γ 5)ue

)
+ h.c. , (1.111)

where the coupling parameter, G F is the Fermi constant,

G F = 1.166 × 10−5 GeV−2 = (293 GeV)−2. (1.112)

The fermion V − A current Jµ is expressed in terms of the electron and neutrino
spinors ue,ν and the Dirac γ -matrices, γµ and γ5.

The cross section of the different processes above are identical within this ap-
proximation and they are given by

σF � G2
F E2 ∼ G2

F T 2 ,

The involved particle density is nF (T ) = gF (T )ζ (3)T 3/π2 ∼ 1.3T 3 where we have
set gF (T ) = 3/4NF (T ) = 30/4 for the three types of left-handed neutrinos and the
e± s. Since the particles are relativistic, we can set v ∼ 1 so that we obtain an
interaction rate of

�F = 〈σFv〉nF � 1.3G2
F T 5 .

Comparing this with the expansion rate H obtained in (1.109), we find

�F

H
� 0.24T 3m P G2

F �
(

T

1.4 MeV

)3

. (1.113)

At temperatures below TF ∼ 1.4 MeV the probability for a neutrino to interact
within one Hubble time, H−1, becomes less than unity and the neutrinos effectively
decouple. The plasma becomes transparent to neutrinos which are no longer in
thermal equilibrium with electrons and positrons and hence photons and baryons.

As we have discussed in the previous section, even at temperatures far below
their mass mν

>∼ 0.01 eV, their particle distribution remains an extremely relativistic
Fermi–Dirac distribution with temperature

Tν = TF
aF

a
,

since they are no longer in thermal equilibrium and their distribution is affected
solely by redshifting of the momenta.

As long as the photon/electron/baryon temperature also scales like 1/a, the
neutrinos conserve the same temperature as the thermal plasma, but when the
number of degrees of freedom, geff, changes, the plasma temperature decays for
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a brief period of time less rapidly than 1/a and therefore remains higher than
the neutrino temperature. This is exactly what happens at the electron–positron
mass threshold, T = me � 0.5 MeV. Below that temperature, only the process e +
ē → 2γ remains in equilibrium while 2γ → e + ē is exponentially suppressed.
We calculate the reheating of the photons gas by electron–positron annihilation
assuming that the process takes place in thermal equilibrium and that the entropy
remains unchanged. This is well justified since the cross section of this process
is very high. Denoting the entropy inside a volume of size V a3 before and after
electron–positron annihilation by Si and S f we therefore have Si = S f . Hence

Si = 4

3
aSB geff,i (T a)3

i V, S f = 4

3
aSB geff, f (T a)3

f V .

The electron–positron degrees of freedom disappear in this process so that
geff, f = 2 while geff,i = 2 + 4( 7

8 ) = 11/2. From Si = S f we therefore conclude

(T a) f = (T a)i

(
11

4

)1/3

.

The neutrino temperature is not affected by e± annihilation, so that (Tνa) f =
(Tνa)i = (T a)i . For the last equals sign we have used that the neutrino and pho-
ton temperatures are equal before e± annihilation. At temperatures T � me we
therefore have

T =
(

11

4

)1/3

Tν . (1.114)

Since there are no further annihilation processes, this relation remains valid until
today and the present Universe not only contains a thermal distribution of photons,
but also a background of cosmic neutrinos which have an extremely relativistic
Fermi–Dirac distribution with temperature

Tν(τ0) = (4/11)1/3T0 = 1.95 K . (1.115)

We set

g0 = 2 + 7

8
6

(
4

11

)4/3

� 3.36 , and (1.116)

g0S = 2 + 7

8
6

(
4

11

)
� 3.91 . (1.117)

These are respectively the effective degrees of freedom of the energy and entropy
densities as long as all the neutrinos are relativistic. Until then we therefore have

ρrel(T ) = π2

30
g0T 4 � 8.1 × 10−34 g cm−3

(
T

T0

)4

, (1.118)

s(T ) = 2π2

45
g0ST 3 � 3 × 103 cm−3

(
T

T0

)3

. (1.119)
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The neutrino cross section at low energies is extremely weak, and so far the neutrino
background has not been observed directly (see Ex. 1.7).

1.4.3 The helium abundance

The observed abundance of helium is universally about

nHe m He

nH m H
≡ Y � 0.24. (1.120)

It is well known that this amount of helium cannot have been produced in stars. We
now want to investigate how much helium is produced in the primordial Universe.
At temperatures of a few MeV nuclei and baryons are non-relativistic and the
equilibrium distribution for a nucleus with atomic mass (i.e., number of protons
and neutrons) A and proton number Z is given by

n A = NA

(
m AT

2π

)3/2

exp

(
−m A − µA

T

)
. (1.121)

The proton density is given in Eq. (1.70). The neutron density is correspondingly

nn = 2

(
m B T

2π

)3/2

exp

(
−mn − µn

T

)
. (1.122)

Here, we neglect the small difference Q = mn − m p = 1.293 MeV in the pre-
factor, setting mn ∼ m p ∼ m B . The conservation of the chemical potentials in
nuclear reactions implies

µA = Zµp + (A − Z )µn ,

so that

exp

(
−m A − µA

T

)
= (

eµp/T
)Z (

eµn/T
)(A−Z )

e−m A/T ,

= 1

2A

(
2π

m B T

)3A/2

exp(BA/T )nZ
p n A−Z

n .

Here, BA = Zm p + (A − Z )mn − m A is the binding energy of the nucleus (A, Z ).
In thermal equilibrium, the density of this ion is then given by

n A = NA

2A
A3/2

(
2π

m B T

)3(A−1)/2

nZ
p n A−Z

n exp(BA/T ). (1.123)

Here we have again neglected the nucleon mass difference Q and the binding energy
BA in the pre-factor by setting m A ∼ Am B , but not in the exponential.
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We define the various mass abundances by

YA ≡ An A

nB
= An A

ηB nγ

,

Yp ≡ n p

nB
= n p

ηB nγ

,

Yn ≡ nn

nB
= nn

ηB nγ

.

Hence the thermal abundance of the nucleus (A, Z ) is given by

YA = F(A)

(
T

m B

)3(A−1)/2

ηA−1
B Y Z

p Y A−Z
n eBA/T , (1.124)

where F(A) = NA A5/2ζ (3)A−1π−(A−1)/22(3A−5)/2 . (1.125)

This equation shows nicely the influence of the radiation entropy on nucleosyn-
thesis. If we had ηB ∼ 1, the nucleus (A, Z ) would become stable and relatively
abundant at T ∼ BA. At this temperature the formation of (A, Z ) (controlled by the
factor exp(BA/T )) is sufficiently important to counterbalance photo-dissociation
(controlled by the factor ηA−1

B ). In equilibrium, the exponential exp(BA/T ) is then
of the order of η1−A

B ∼ 1 and the ratio YA then approaches the value YA ∼ Y Z
p Y A−Z

n .
However, if ηB is very small, the equilibrium between production of (A, Z ) and
photo-dissociation is delayed until exp(−BA/T ) ∼ ηA−1

B � 1, i.e., to much lower
temperatures. Neglecting the numerical factor F(A), the temperature TA, defined
by YA(TA) ∼ Yp(TA)Z Yn(TA)A−Z , is

TA ∼ BA

(A − 1)
[
ln(η−1

B ) + 3/2 ln(m B/TA)
] .

For the deuteron with binding energy B2 = 2.22 MeV we find

T2 ∼ 0.085 MeV . (1.126)

The reaction rate �np of the process n + p ←→ 2H + γ is given by

�np = 〈σnpv〉n p � 1.8 × 10−17(T/T0)3ηB s−1 � 1012ηB

(
T

MeV

)3

s−1 ,

where we have used 〈σnpv〉 = constant = 4.55 × 10−20 cm3 s−1 at tempera-
tures 1 keV ≤ T ≤ 10 MeV, and n p = ηBnγ � 420ηB(T/T0)3 cm−3. Using H �
0.4(T/MeV)2 s−1, we conclude that this interaction remains in thermal equilibrium
as long as T >∼ 0.004 MeV. So the assumption of a thermal deuterium abundance
is justified. As already mentioned, three-body interactions are not in thermal equi-
librium, their reaction rate contains an additional factor nB/nγ = ηB � 1.
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Therefore, at temperature T2 only deuterium can form and subsequently virtually
all the neutrons present are burned into 4He. To determine the helium abundance,
we have to determine the neutron density at this temperature. Let us first determine
the temperature at which β and inverse β processes drop out of equilibrium,

ν + n ←→ p + e, ē + n ←→ p + ν̄, n → p + e + ν̄ .

On one hand, particle conservation imposes

µn − µp = µe − µν .

On the other hand, the neutrality of the Universe requires n p = ne. Since me � m p,
the Eqs. (1.69) and (1.70) imply µe � µp. Finally, setting µν ∼ 0, the chemical
potentials of the neutron and the proton are approximately equal, i.e., µn � µp. The
ratio of their densities is thus simply given by the mass difference Q = mn − m p,

nn

n p
= Yn

Yp
= exp(−Q/T ) .

This ratio remains constant as long as the reactions n ←→ p are sufficiently rapid.
At the decoupling temperature of these reactions,

�(TD) = H (TD) � 3
T 2

D

m P
,

the ratio (nn/n p) is hence given by(
nn

n p

)
(TD) = exp(−Q/TD) .

Afterwards, the neutron density decays exponentially by β-decay, n → p + e + ν̄,

nn(τ ) = nn(τD) exp

(
−τ − τD

τn

)
for τ > τD, (1.127)

where τn � 886 s is the neutron lifetime.
We now want to determine the temperature TD. We can again use Fermi theory

to determine the different cross sections. For nucleons, the pure V − A current,
ψ̄γµ(1 − γ5)ψ , is replaced by ψ̄γµ(gV + gAγ5)ψ which takes into account the
internal structure of the nucleons. In the Born approximation the cross section
becomes, see e.g., Maggiore (2005)

σ (ν + n → p + e) = G2
F

π
(g2

V + 3g2
A)ve E2

e .

The constants gV and gA are determined experimentally (e.g., by measuring the
neutron lifetime), gV � 1.00 and gA � 1.25. The interaction rate per neutron is
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obtained by multiplying the above result with vνnν ,

�(ν + n → p + e) = 〈σvν〉nν = 1

2π2

∫
p2

ν dpν

epν/Tν + 1
vνσ

(
1 − 1

eEe/T + 1

)
.

The factor 1 − 1/[exp(Ee/T ) + 1] is the probability that the electron state with
energy Ee is free (it implements the Pauli principle). To simplify the integral we
first use energy conservation, Eν + En = E p + Ee. Since all the energies involved
are of the order of MeV, we can set En − E p ∼ mn − m p = Q = 1.293 MeV
and Ee = pν + Q. Furthermore, Ee = meγ = me/

√
1 − v2

e which implies ve =√
(pν + Q)2 − m2

e/Ee. Inserting these simplifications, we obtain finally

�(ν + n → p + e) = G2
F (g2

V + 3g2
A)m5

e

2π3

×
∫ ∞

0

eα(x+q)x2(x + q)
√

(x + q)2 − 1

(1 + eα(x+q))(1 + eβx )
dx , (1.128)

where we have set x = pν/me, α = me/Tγ , β = me/Tν and q = Q/me � 2.5. To
compute the other processes we note that the matrix element M(pν, pn, pp, pe)
which appears in the amplitude for ν + n ←→ p + e is invariant under the
transformations (pν, pn, pp, pe) → (−pν, pn, pp, −pe) and (pν, pn, pp, pe) →
(−pν, pn, pp, pe), where pν , pn , pp and pe are the momenta of the neutrino, neu-
tron, proton and electron respectively,

M(pν, pn, pp, pe) = M(−pν, pn, pp, −pe) ,

M(pν, pn, pp, pe) = M(−pν, pn, pp, pe) .

This observation allows us immediately to determine the reaction rates of the other
processes. We simply have to take into account the different phase space constraints.
With x = Ee/me, (the other parameters as above) we obtain

�(e + p → n + ν) = G2
F (g2

V + 3g2
A)m5

e

2π3

×
∫ ∞

q

eβ(x−q)x(x − q)2
√

x2 − 1 dx

(1 + eβ(x−q))(1 + eαx )
, (1.129)

and

�(n → p + e + ν̄) � G2
F (g2

V + 3g2
A)m5

e

2π3

×
∫ q

1

eαx eβ(q−x)(x − q)2x
√

x2 − 1 dx

(1 + eβ(q−x))(1 + eαx )
, (1.130)

�(n → p + e + ν̄)|T �me � 1.6
G2

F

2π3
(g2

V + 3g2
A)m5

e = τ−1
n (1.131)

τ−1
n = 1

886 s

for the β-decay of the neutron at low temperature.
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Fig. 1.8. The weak interaction rates, τn�(p → n) and τn�(n → p), are shown as
functions of the temperature. The expansion rate, τn H , is also indicated.

The products τn� are functions of the temperature T . When T � Q, the kinetic
energy in the system e + ν̄ is much higher than the electron mass. Hence x ± q � x
at the positions which contribute most to the above integrals and the reaction rates
go like

τn�(n → p)
τn�(p → n)

}
∝ T 5 , for T � Q .

In the regime 0.1 MeV ≤ T ≤ 1 MeV, the product τn�(n → p) is roughly pro-
portional to T 4.4. The same is true for τn�(p → n). But the phase space for β-
decay is larger than for the reaction p → n, so that τn�(n → p) > τn�(p → n).
Once the temperature drops below about 0.1 MeV, τn�(p → n) decays ex-
ponentially while τn�(n → p) converges to 1 (see Fig. 1.8, where τn�(n →
p), τn�(p → n) and the expansion rate τn H are shown as functions of the
temperature).

According to Fig. 1.8, the line τn H intersects the lines τn�(n → p) and
τn�(p → n) around T = 0.8 MeV. A more detailed analysis gives a decoupling
temperature of TD � 0.7 MeV, below which the three reactions are no longer in
thermal equilibrium.

Another way to see this dropping out of the thermal equilibrium of weak interac-
tion is to compare the true neutron abundance, Yn , with the one obtained in thermal
equilibrium. A semi-analytical calculation gives (see Bernstein et al., 1989) the
behaviour plotted in Fig. 1.9.
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Fig. 1.9. The true neutron abundance as a function of �m/T (solid line) is com-
pared with the equilibrium abundance (dotted line). Clearly, weak interaction
freezes out around T ∼ 0.6 × �m ∼ 0.7 MeV.

At decoupling, the ratio of the neutron to proton density is(
nn

n p

)
(TD) = exp(−Q/TD) � 1/6 , (1.132)

so that

Yn = 1/7 and Yp = 6/7 . (1.133)

Since T2, the temperature of deuterium formation, is lower than TD, in the interval
TD > T > T2, neutrons simply β-decay. At τ2 given by T2 = T (τ2) = 0.085 MeV
their density is(

nn

n p

)
(T2) = e−Q/TD exp(−τ2/τn) � 0.8/6 � 1/7 , (1.134)

and therefore

Yn = 1/8 and Yp = 7/8 . (1.135)
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For this we have used t2 � 1.3 s (1/0.085)2 � 180 s. Once deuterium is formed,
helium-4 is very rapidly synthesized via the reactions

2H + 2H −→ n + 3He
3He + 2H −→ p + 4He

2H + 2H −→ p + 3H
3H + 2H −→ n + 4He

2H + 2H −→ γ + 4He

and essentially all deuterium is transformed in 4He. The helium abundance is thus
in good approximation, given by half the neutron abundance at temperature T2 �
0.085 MeV. With this approximation we obtain a helium-4 abundance of

Y4 He = 4(nn/2)

nn + n p
= 2(nn/n p)

nn/n p + 1
� 1

4
. (1.136)

In this expression we have used the neutron abundance from Eq. (1.135). Consider-
ing that t2 scales like

√
log ηB while TD depends strongly on the expansion rate H

which is proportional to
√

geff ∝
√

Nν(4/11)4/3 + 1. We conclude that the helium-
4 abundance is very sensitive on the number of neutrino families, but does not
change very rapidly with ηB . Historically, the cosmological helium-4 abundance
has been the first experimental data to determine the number of (light) neutrino
families in the range Nν = 3.24 ± 1.2, when allowing for very generous error
bars in the measurements (Fields & Sarkar, 2006). Presently, the Z -boson decay
width, which has been measured very accurately with the LEP accelerator at CERN,
gives the tightest value (see Particle Data Group, 2006), Nν = 3.07 ± 0.12 at 95%
confidence.

1.4.4 Deuterium, helium-3 and lithium-7

Nucleosynthesis starts at T ∼ 0.1 MeV, corresponding to t ∼ 130 s and terminates
after a few minutes. Apart from 4He very small amounts of all other elements up to
lithium-7 are formed (some deuterium, tritium and helium-3 remain unprocessed).
All these elements except deuterium, helium-3 and lithium-7 decay radioactively
and their primordial abundance can no longer be observed today.

The amount of deuterium and helium-3 which is not burned into helium-4 is
a steep function of the baryon abundance in the Universe. The higher the baryon
density, the more efficient is the conversion of deuterium and helium-3 into helium-
4 (see Fig. 1.10). This can be used to determine the baryon density in the Universe
very accurately. Measuring the primordial deuterium abundance is an art by itself
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Fig. 1.10. The primordial element abundance as function of the parameter ηB =
nB/nγ . The bands compatible with the observations of the different nuclei are
indicated. The wide vertical band shows the range of ηB (or equivalently 
Bh2)
compatible with the nucleosynthesis data while the narrower dashed range is com-
patible with CMB anisotropies (see Chapter 6). Figure from Fields & Sarkar (2006).

on which we shall not dwell here. Most recent results are obtained by measuring
it from the absorption lines in hydrogen (Ly-α) clouds intervening in the line of
sight between us and quasars. Within generous error bars one obtains 2 × 10−5 <

Y2 H/Yp < 2 × 10−4. This gives 4.7 × 10−10 < ηB < 6.5 × 10−10 (for more details
see Olive et al. (2000), Burles et al. (2001) and Particle Data Group (2006)).

As one sees in Fig. 1.10, the lithium abundance is not a monotone function
of ηB . This is so since, depending on the value of ηB , two different processes
lead to lithium formation. If the baryon density is small, ηB < 3 × 10−10, lithium
abundance is determined by the competition between the production process 4He +
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3H → 7Li + γ and the destruction process 7Li + p → 4He + 4He. In this regime,
the abundance decays with growing ηB . For ηB > 3 × 10−10, the dominant channel
goes over beryllium production 4He + 3He → 7Be + γ which is then converted into
lithium-7 via the reaction 7Be + e → 7Li + γ . The destruction process is the same
as at low density. Since the conversion of beryllium into lithium increases with
increasing baryon density, lithium abundance grows with ηB , for ηB > 3 × 10−10.
The lithium abundance has a minimum around ηB � 3 × 10−10. Inference of the
primordial lithium abundance is still a matter of considerable debate. It nevertheless
allows us to constrain 10−10 < ηB < 10−9.

Finally, in the regime 10−10 < ηB < 10−9 the helium-4 abundance is well ap-
proximated by the formula

Y4He = 0.23 + 0.011 ln(η10) + 0.013(Nν − 3) , (1.137)

where we have introduced η10 = ηB/10−10. All the present observations of light
elements taken together limit 4.7 < η10 < 6.5, leading to 0.017 < 
Bh2 < 0.024
(a constantly updated review can be found in Particle Data Group (2006)). It is
remarkable that this value is in very good agreement with the result obtained from
measurements of the fluctuations in the CMB which are based on completely dif-
ferent physics (see Chapter 6).

This value is much larger than the density of luminous baryons which make up
the stars and gas in the galaxies, and which lead only to 
Lh2 � 0.004. Hence
most baryons in the Universe are not luminous. On the other hand, dynamical
measurements and, more accurately the anisotropies in the CMB (see Chapter 6)
require an energy density of non-relativistic matter today of about 
mh2 � 0.13.
To satisfy both constraints, the matter density of the Universe has to be dominated
to about 80% by non-baryonic, so-called dark matter (dark in this context means
that this matter does not interact with photons). So far, this dark matter has not
been observed directly, but many experiments are underway and are starting to
reach promising sensitivities. There are several candidates for dark matter particles.
Most notably the lightest super-symmetric particle, but also the gravitino, axion or
primordial black holes are viable candidates.

The good agreement of Nν and 
Bh2 obtained from the study of primordial
nucleosynthesis with other experiments, confirms that the Universe has been in
a thermal state, expanding adiabatically back to temperatures of the order of
T ∼ 1 MeV. For earlier times we have no experimental evidence. However, if the
Universe has been in a thermal state at a temperature of T ∼ 200 MeV, τ ∼ 0.1 s, it
has then undergone a confinement transition leading from a quark gluon plasma at
higher temperatures to baryons (such as the proton and neutron) and mesons (such
as pions). If it has also been in thermal equilibrium at temperatures of up to T ∼ 200
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GeV, τ ∼ 0.001 s, it has then undergone the electroweak transition giving masses
to the W ± and Z bosons. At even higher temperatures we have no experimen-
tally confirmed theory of fundamental interactions. Maybe, at T ∼ a few TeV the
Universe becomes super-symmetric. Maybe, at T ∼ 1016 GeV a phase transition
from a previous grand unified symmetry to the (super-symmetric) standard model
symmetries took place. At this or higher energies the Universe may also have gone
through (or emerged from) a super-string phase. To date such questions remain en-
tirely speculative. Their quantitative investigation, especially possible observable
signatures of a super-string phase is an active field of research.

1.5 Inflation

1.5.1 Cosmological problems

We first discuss the motivation for, and some consequences of a so-called ‘infla-
tionary phase’. We then exemplify the idea with a cosmology dominated by a scalar
field. It is, however, clear that this realization has to be regarded as a toy model since
the actual physical degrees of freedom relevant in the very early Universe, where
such a period has most probably to be situated (see Chapter 3), are not known. In
that sense this section is on a different level from the previous ones. We do not
have any direct evidence that an inflationary phase has taken place in our Uni-
verse. Such a period just addresses several otherwise mysterious initial conditions
of the observed Universe. The most significant observed ‘prediction’ of inflation is
a nearly scale-invariant spectrum of initial fluctuations which we shall discuss in
Chapter 3. What is more serious is that we have no ‘direct’ experimental evidence
of the existence of an ‘inflaton field’.

We include a possible cosmological constant into the energy density and the
pressure, so that Eqs. (1.20) and (1.21) reduce to

H2 = 8πG

3
a2ρ − K , (1.138)

Ḣ = −4πG

3
a2 (ρ + 3P) =

(
ä

a

)
− H2 . (1.139)

If ρ + 3P > 0 at all times, the homogeneous and isotropic cosmological model
has several important problems.

First, as we have discussed in Section 1.2.2, there is the big bang singularity in
the finite past, t = 0. At this time a = 0 and the curvature diverges.

Furthermore, the causal horizon at (conformal) time t , i.e., the distance a photon
has travelled from t = τ = 0 until time t , is given by a(t)t = a(t)

∫ τ (t)
0 a−1 dτ . Since
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for ρ + 3P > 0, a grows slower than linear in τ , the above integral converges, is
finite. As we have seen [Eq. (1.25)], a(τ ) ∝ τ

2
3(1+w) if w = P/ρ is constant.

For example, the size of the causal horizon at recombination is seen today under
the angle of about 1◦, if the Universe was radiation (w = 1/3) and matter (w = 0)
dominated up to recombination, see Ex. 1.8. It is therefore very mysterious that we
see the same microwave background temperature on patches separated by much
more than 1◦, which have never been in causal contact before the microwave photons
have been emitted. This is the ‘horizon problem’.

Another problem is the following: the Friedmann equations, (1.138) and (1.139),
allow us to derive an evolution equation for 
(t) ≡ 8πGρa4/3ȧ2 ≡ 1 + K/H2,

d

dt
(
(t) − 1) = (
(t) − 1)

8πGa2

3

(
ρ + 3P

H

)
. (1.140)

This shows, that in an expanding universe with ρ + 3P > 0, 
 = 1 is an unstable
fixed point of evolution: If 
(t) > 1, the derivative is positive and 
(t) increases
while for 
(t) < 1, the derivative is negative and 
(t) decreases. For a present value
of 0.1 < 
 < 2 we need |
(ηnuc) − 1| ∼ (zeq/z2

nuc)|
0 − 1| ≤ 10−15 at nucleosyn-
thesis, or |
(tP ) − 1| ≤ 10−60 at the Planck time, τP =

√
h̄G/c5 � 5.4 × 10−44 s.

Why is 
(t) still of order unity so long after the only timescale in the problem
which is τP?

This ‘flatness problem’ can also be formulated as an ‘entropy problem’. The
entropy inside the curvature radius is already of the order of SK ≥ 1088 at the Planck
time.

Another problem is the ‘monopole problem’ or more generically the problem
of unwanted ‘relics’. Most particle physics models produce some stable ‘relics’ at
very high temperatures, which are not observed in the present Universe. A very
rapid phase of expansion can help to dilute such relics.

To resolve these problems one introduces an ‘inflationary phase’. Inflation is
a phase during which the strong energy condition, ρ + 3P > 0, is violated and
expansion can therefore be much more rapid than linear in τ .

1.5.2 Scalar field inflation

We now study the most common solution of the above mentioned problems, namely
the introduction of a period where the dynamics of the Universe is dominated by a
scalar field, φ which is usually called the ‘inflaton’. The scalar field Lagrangian is
given by

Lφ = −1

2
∂µφ ∂µφ − W (φ) . (1.141)
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The sign of the kinetic term in the above Lagrangian differs from what we are
used to from quantum field theory. This comes from the fact that we use the metric
signature (−, +, +, +) .

The field φ can, in principle, interact with other fields such as fermions, gauge
bosons, etc., but we assume that this interaction can be neglected during inflation,
and that energy and pressure are dominated by the contribution from the inflaton.
The energy–momentum tensor of φ is given by

Tµν = −2√−g

∂

∂gµν
(
√−gLφ) ,

where g = det(gµν). This yields

Tµν = ∂µφ ∂νφ − gµνLφ

= ∂µφ ∂νφ − 1

2
gµν ∂λφ ∂λφ − gµνW (φ) .

Here we have used that the derivatives of the determinant A of an arbitrary matrix
Aab with respect to the elements of its inverse, Aab, are given by ∂ A/∂ Aab =
AAab.

For the energy density and pressure we thus obtain

ρφ = −T 0
0 = 1

2a2
φ̇2 + 1

2a2
(∇φ)2 + W (φ) , (1.142)

and

Pφ = 1

3
T i

i = 1

2a2
φ̇2 − 1

6a2
(∇φ)2 − W (φ) . (1.143)

We now assume that there exists some region of space within which we may
neglect the spatial derivatives ofφ, at some initial time τi , and the temporal derivative
is much smaller than the potential,

∇φ(x, τi ) � φ̇(x, τi ) � W (φ) . (1.144)

Furthermore, we assume that the potential is positive,

W (φ(x, τi )) > 0 . (1.145)

We then have,

3H 2

8πG
= ρ = ρφ = 1

2a2
φ̇2 + W (φ) � W (φ) , (1.146)

P = Pφ = 1

2a2
φ̇2 − W (φ) � −W (φ) . (1.147)



1.5 Inflation 45

so that Pφ � −ρφ and ρφ + 3Pφ � −2W (φ) < 0. (We have neglected a possible
curvature term. Qualitatively nothing changes if we include it, since it soon becomes
subdominant.)

This is the basic idea of inflation: at some early time, in some sufficiently large
patch, the Universe is dominated by the potential of a slowly varying (slow rolling)
scalar field, and hence it is in an inflationary phase. During inflation this patch
expands rapidly, the causal horizon becomes very large and 
(t) tends to 1, so
that the curvature term is soon negligible. As time goes on, the scalar field starts
evolving faster and inflation eventually comes to an end when the time derivative
φ′2 grows to the order of W . The scalar field then soon reaches the minimum of
the potential and starts to oscillate. We suppose that at large values of a−1φ̇, the
coupling of the inflaton to other fields becomes significant so that it decays into
a thermal mix of elementary particles, leading to a radiation dominated universe.
There are many detailed realizations of this basic picture which can be found in
the literature, see e.g., Liddle & Lyth (2000). It is, however very difficult to deduce
them from a serious high-energy physics theory such as string theory.

Let us study slow roll inflation in somewhat more detail. When neglecting spatial
derivatives, the equation of motion of the scalar field becomes (W,φ ≡ dW/dφ)

φ′′ + 3

(
a′

a

)
φ′ + W,φ = 0 . (1.148)

During slow rolling, the first term of this equation is negligible with respect to the
two others, so that

3

(
a′

a

)
φ′ � −W,φ . (1.149)

The slow roll conditions are therefore

1

2
φ′2 � W and |φ′′| � 3H |φ′| . (1.150)

With H = a′/a, slow rolling also implies that H ′ � H 2. Taking the time derivative
of Eq. (1.146) and replacing φ′ by (1.149), this yields the slow roll conditions

ε1 ≡ − H ′

H 2
= H2 − Ḣ

H2
= m2

P

16π

(
W,φ

W

)2

� 3

2

φ′2

W
� 1 . (1.151)

The second condition of Eq. (1.150) gives∣∣∣∣ φ′′

3Hφ′

∣∣∣∣ � 1 .
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We now set

ε2 ≡ − m2
P

24π

(
W,φφ

W

)
and require |ε2| � 1 . (1.152)

Note that ε1 is always positive while ε2 can have either sign. With H 2 �
8π/(3m2

P )W , and the derivative of φ′ = −W,φ/(3H ), one finds that the inequal-
ities (1.151) and (1.152) are equivalent to the slow roll conditions (1.150). The
parameters ε1 and ε2 are the slow roll parameters. Inflation terminates when ε1

approaches unity.
Taking the derivative (w.r.t. t) of Eq. (1.151) in the last equals sign, one obtains,

ε̇1 = 2ε1(3ε2 + 2ε1)H , ε2 = 1

6

(
ε̇1

ε1
H−1 − ε1

)
. (1.153)

The last equation can also be used as a definition of ε2. The advantage of this
definition is its independence of the realization of slow roll inflation by means of a
scalar field. A more systematic procedure is to define ε̃1 ≡ ε1 and ε̃2 = ( ˙̃ε1/ε̃1)H−1,
ε̃3 = ( ˙̃ε2/ε̃2)H−1 and so forth. Our parameter ε2 is related to ε̃2 via

ε2 = −1

3
ε1 + 1

6
ε̃2 . (1.154)

While ε2 is usually of the same order of magnitude as ε1, we expect ε̃2 to be
significantly smaller.

As an example we consider power law expansion, a ∝ tq . In this case we have

H = q

t
, ε1 = 1 + 1

q
, ε2 = −1

3
ε1 , ε̃2 = ε̃n = 0 . (1.155)

During slow roll inflation, q ∼ −1, the parameters ε1 and ε2 are small. Also note
that ε2 = −(1/3)ε1 during power law expansion. The parameters ε̃i , i > 1 describe
the deviation from power law expansion. They have been used in the literature to
derive a systematic slow roll expansion to higher orders (Schwarz et al., 2001). In
this book we shall not go beyond the first order and we use the standard parameters
ε1 and ε2 to make contact with the standard literature.

There are two principally different possibilities for slow roll inflation.

(i) We first consider a potential which is simply ∝ φn , so that W,φφ/W ∼ (W,φ/W )2 ∼
φ−2. The slow roll conditions then require φ � m P and inflation stops when the inflaton
becomes of order the Planck mass. These models are termed large-field inflation.
Setting W = (λ/n)m4

P (φ/m P )n , during the inflationary phase Eq. (1.149) together with
Eq. (1.146) implies√

24πλ

n
m P (φ/m P )n/2 φ′ = −λm3

P

(
φ

m P

)n−1

. (1.156)
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Dividing by φn−1, if n 
= 4 the left-hand side becomes the derivative of (φ/m P )2−n/2,
which hence is a constant. If n = 4, the left-hand side is ∝ 1/φ, i.e., the derivative of
log(φ/m P ). The general solution is therefore given by

φ(τ )(4−n)/2 = φ
(4−n)/2
i + 4 − n

2

√
nλ/24πm P (τ − τi ) if n 
= 4 , (1.157)

φ(τ ) = φi exp

(
−

√
λ

6π
m P (τ − τi )

)
if n = 4 . (1.158)

Inserting now φ′ = −√
λn/24πm2

P (φ/m P )n/2−1 in the Friedmann equation,

(log(a))′ =
√

8πλ

3n
m P (φ/m P )n/2 , we obtain

d log(a)

dφ
= −8π

n

φ

m2
P

,

with solution

a(τ ) = ai exp

(
4π

nm2
P

(φ2
i − φ2)

)
. (1.159)

This case is illustrated in Fig. 1.11.
(ii) If the potential is more complicated and has a very flat regime in the vicinity of its

maximum φ = σ � m P , like, e.g., the Coleman–Weinberg potential (Kolb & Turner,
1990),

W (φ) = 1

2
σ 4 + φ4

[
ln

(
φ2

σ 2

)
− 1

2

]
,

we speak of small-field inflation. This potential passes through 0 at φ = σ . In this case,
the slow roll conditions are satisfied for field values |φ| <∼ σ , which are much smaller
than the Planck mass.

During a potential dominated phase where ρ ∼ −P ∼ W ∼ constant, the solu-
tions of the Friedmann equations are

a = a0 exp(τ H ) = 1

H |t | (−∞ < t < 0, − ∞ < τ < ∞) , (1.160)

H 2 = 8πG

3
W = constant , (1.161)

H = aH = 1

|t | . (1.162)
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Fig. 1.11. Large-field inflation for W = λm2
Pφ2/2. The bottom panel shows the

inflaton φ in units of m P rolling linearly in time. In the upper panel the evolution
of the slow roll parameter, ε1(t) is indicated. As long as φ > m P , ε1 = −2ε2 stays
small. At φ ∼ m P , ε1 starts to grow and inflation stops.

The limit τ → ∞ corresponds to t → 0. The above solution is a portion of de Sitter
spacetime.5

Denoting by indices i and f the beginning and the end of inflation, the number
of e-foldings of expansion during inflation is given by

N (φ f , φi ) = ln

(
a(τ f )

a(τi )

)
.

Using

N (φ f , φi ) = ln a f − ln ai =
∫ a f

ai

da

a
,

we obtain

N (φ f , φi ) =
∫ a f

ai

1

a
da =

∫ τ f

τi

a′

a
dτ =

∫ τ f

τi

H dτ. (1.163)

5 de Sitter spacetime is the solution to the Einstein equation Gµν = �gµν with � > 0. The solution with � < 0
is called anti-de Sitter, see Hawking & Ellis (1973).
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With Eq. (1.149) we can write

H dτ = H
dτ

dφ
dφ = H

dφ

φ′ = −3H 2 dφ

W,φ

.

The number of e-foldings is hence given by

N (φ f , φi ) = −3
∫ φ f

φi

H 2

W,φ

dφ � − 8π

m2
P

∫ φ f

φi

W

W,φ

dφ = −2
√

π

∫ φ f

φi

1√
ε1

dφ

m P

∼ 8π

n

φ2
i

m2
P

. (1.164)

The last ∼ sign is valid only for large-field inflation, where W ∝ φn and we suppose

φ f ∼ m P � φi .

The slow roll conditions imply

Ntot = N (φ f , φi ) � 1. (1.165)

For w = P/ρ = constant we have

|
(τ ) − 1| = 3|K |
8πGa2ρ

∝ a1+3w .

During an inflationary phase, w = −1, |
(τ ) − 1| decreases like 1/a2. To reduce it
from a value of order unity down to ∼ 10−60 we therefore need about 30 ln(10) ∼ 70
e-foldings of inflation.

1.5.3 Pre-heating and reheating

When inflation ends, φ decays rapidly and starts oscillating about its minimum.
The details of this process depend on the couplings of the inflaton to other degrees
of freedom, which eventually decay into the degrees of freedom of the standard
model. For this discussion we consider a simple toy model withLφ = − 1

2∂µφ∂µφ −
1
2 m2

φφ2. At the end of inflation the inflaton oscillates as

φ = φ0(τ ) cos(mφτ )

with a slowly varying amplitude φ0(τ ) � m P . The inflatons have vanishing mo-
mentum and their number density is

nφ = ρφ

mφ

= 1

2mφ

((φ′)2 + m2
φφ2) � mφm2

P . (1.166)

For example for mφ = 1015 GeV this amounts to the huge number density of nφ ∼
1095 cm−3.
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Independent of the detailed form of the potential, to lowest order, φ is a harmonic
oscillator with frequency mφ = √

W,φφ(σ ) (as long as the quadratic term in the
potential does not vanish). For a harmonic oscillator, when averaging over one
period we have

〈W 〉 = 1

2a2
〈φ̇2〉 ,

so that

〈pφ〉 =
〈

1

2a2
φ̇2 − W

〉
= 0, and hence 〈ρφ〉 ∝ a−3 .

We assume that during these oscillations, the coupling of φ to other degrees of
freedom becomes relevant and the inflaton finally decays into a mix of elementary
particles. In a first approximation we can describe the coupling with the other
degrees of freedom by means of a term of dissipation of the form �φ̇ in the equation
of motion for φ,

φ′′ + 3Hφ′ + �φ′ = −W,φ(φ) . (1.167)

As long as H � � (during inflation), particle production is negligible. When H �
�, reheating takes place and the inflaton energy is rapidly dissipated into other
particles which couple to the inflaton.

In order to discuss the decay of the inflaton in somewhat more detail, we consider
a toy model where the interaction is dominated by the coupling of φ to a scalar field
χ with Lagrangian

Lχ = −1

2
∂µχ ∂µχ − 1

2
m2

χχ2 . (1.168)

The interaction between the inflaton φ and the matter field χ is supposed to be of
the form

Lint = −1

2
gφχ2 , (1.169)

where g is a coupling constant with the dimension of mass. The full Lagrangian is
then given by

L = Lφ + Lint + Lχ . (1.170)

The decay rate of the φ particles in Born approximation is

�φ ∼ g2

mφ

.

However, inserting this into Eq. (1.167) is only a good approximation, when the
mean number of χ particles already present in a given momentum mode k is small
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so that we may neglect stimulated emission. The effective mass of χ -particles is√
m2

χ + gφ(t) so that their momentum is

k =
(

m2
φ

4
− m2

χ − gφ(t)

)1/2

.

Here we have taken into account that each inflaton decays into two χ -particles. Now,
φ(t) ∈ [−m P , m P ]. Hence, if m2

φ � m2
χ + gm P , the band of possible momenta is

given by k ∈ [k0 − �k, k0 + �k] with

k0 =
√

m2
φ

4
− m2

χ � mφ

2
and �k � gm P

mφ

� k0 .

Because �k � k0 this situation is called ‘narrow band pre-heating’. As we shall
see below, this process leads to resonant amplification.

The number of χ -particles with momentum k is roughly given by the total number
of χ -particles divided by the number of ‘elemetary phase space volumes’, (2π )3,
in the allowed volume of phase space, 4πk2

0(2�k). This yields

Nk � 4π2nχ

gmφm P
� 2π2m Pnχ

gnφ

.

For the second � sign we made use of Eq. (1.166). This occupation number exceeds
unity as soon as a fraction g/m P of φ-particles is converted into χ -particles. After
that moment, stimulated emission can no longer be neglected.

To calculate the evolution of χ -particles in more detail we vary the Lagrangian
with respect to χ to obtain the χ -equation of motion,

χ ′′ + 3Hχ ′ − a−2∇2χ + (m2
χ + gφ0 cos(mφτ ))χ = 0 .

To study qualitatively the decay of the φ-particles into χ , we neglect expansion by
setting H = 0, a = 1 and φ0 = constant. Fourier transforming the above equation,
we then obtain for the mode χk

χ ′′
k + [

ω2
k + 2µ cos(mφτ )

]
χk = 0, µ = gφ0

2
, ω2

k = k2 + m2
χ .

This equation is known as the Mathieu equation. Its solutions are characterized by
resonance bands of widths �ω

(n)
k centred at the frequencies

ω
(n)
k = n

2
mφ .
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The widths are of the order of

�ω
(n)
k

ω
(n)
k

�
(

2µ

ω
(n)2
k

)n

= �k(n)

k(n)
∝ gn .

For frequencies within these bands, χk is amplified exponentially fast (for more
details see Arnol’d (1978)). Since the width of the nth resonance is proportional to
gn , it appears only in nth-order perturbation theory. For small couplings, g only,
the first resonance ω

(1)
k = mφ/2 with �ω

(1)
k = �k is relevant. When we take into

account the expansion of the Universe, the frequency ωk becomes time dependent.
A given frequency therefore spends only a finite time in the resonance band and the
energy transfer from φ into χ remains perfectly finite. Nevertheless, this parametric
resonance is much more efficient than the decay obtained by some effective damping
rate �.

After parametric resonance, χ is not yet in a thermal state. This period is there-
fore called ‘pre-heating’. After pre-heating, the coupling of χ to other degrees of
freedom leads to thermalization; this process is called reheating. The importance
of pre-heating lies in its efficiency in transferring energy. If the χ -field couples
strongly to the standard-model particles, reheating and thermalization can proceed
much faster over resonant decay than over the necessarily weak average coupling
of the inflaton to other particles.

If the condition m2
φ > m2

χ + gφ(t) is not satisfied, �ω
(1)
k = �k is not small and

we have ‘broad-band’ resonance. In this case, the mass of the χ -particles can be
larger than the mass of the φ-particles and only the coherent decay of several
inflatons can lead to χ -production. For a discussion of the main physical processes
in this case see Mukhanov (2005). One of the most interesting consequences of
broad-band resonance is that it can lead to the production of particles that are
heavier than the inflaton.

The temperature at the end of reheating depends on the details of the model. It
can go from 1 TeV < T < 1013 GeV.

1.5.4 Resolution of the ‘cosmological problems’

At the end of the reheating process, τ = τrh, all the energy is supposed to be
thermalized and the Universe is dominated by relativistic particles, satisfying P =
ρ/3 such that

ρ ∝ a−4 .

To determine the duration of inflation necessary in order to solve the horizon prob-
lem, we consider the entropy, SH , contained in a volume which corresponds to
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one Hubble scale, H−1
i , at the beginning of inflation. Since expansion is adiabatic

after inflation, the entropy inside a given physical volume remains constant. The
requirement that the present Hubble scale, H−1

0 , be smaller than the size of the
causal horizon is therefore equivalent to SH > SH0 , where SH0 denotes the entropy
inside the volume H−3

0 . The entropy inside a causal volume, H−3
i (a/ai )3 is given

by its value

SH � H−3
i

(
arh

ai

)3

T 3
rh ,

after reheating. The Hubble parameter at the beginning of inflation is

H 2
i � 8π

3m2
P

W (φi ) ,

so that

SH � H−3
i

(
a f

ai

)3 (
arh

a f

)3

T 3
rh � m3

P

W 3/2
i

e3Ntot
ρ f

Trh
.

For the last � sign we have assumed that the Universe was roughly matter dominated
from the end of inflation until the end of reheating, ρ ∝ a−3 and ρrh ∼ T 4

rh. With
ρ f ∼ W f , this yields

SH � m3
P W f

TrhW 3/2
i

e3Ntot .

In order to solve the entropy problem, we require that this entropy is at least as
large at the entropy in the present Hubble horizon, SH > SH0 � T 3

0 H−3
0 � 1088.

This now results in

Ntot ≥ Nmin = 88

3
ln(10) + ln

(
T 1/3

rh W 1/2
i

m P W 1/3
f

)
. (1.171)

For example, in a model with W = 1
2 m2

φφ2, we have large-field inflation which
stops roughly when φ = φ f � m P so that W f = 1

2 (mφm P )2 and Wi = 1
2 (mφφi )2.

Hence

Nmin = 88

3
ln(10) + 1

3
ln

(
Trhmφ

m2
P

)
+ ln

(
φi

m P

)
.

If Ntot ≥ Nmin the horizon problem is also solved. Indeed, since the entropy inside
a comoving volume is conserved after inflation, the present volume of radius H−1

0

has grown out of a radius which was smaller than H−1
i at the beginning of inflation,

and therefore was already in causal contact before the beginning of inflation.
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To solve the flatness problem we must enlarge the curvature scale to RK (τ0) ≥
H−1

0 . This is equivalent to SK (τ0) ≥ SH (τ0) � 1088. With

R3
K (τrh) = R3

K (τi )

(
a f

ai

)3

= H−3
i

|
i − 1|3/2

(
a f

ai

)3

,

this leads to

Ntot ≥ Nmin + 1

2
log |
i − 1| . (1.172)

Comparing Nmin with Eq. (1.164), we find that successful inflation with a simple
1
2 m2

φφ2 potential requires φi >∼ a few times m P . After an inflationary period which
is sufficiently long, so that the conditions (1.171) and (1.172) are satisfied, both,
the horizon and flatness problems are resolved. During such an inflationary phase
also all unwanted relics are diluted by a factor of exp(3Ntot).

Finally, it is important to note that we do not require a perfectly homogeneous
and isotropic universe, or even thermal equilibrium prior to inflation. We just need a
small ‘patch’ in an otherwise arbitrary, chaotic, universe, within which the gradient
and kinetic energy are much smaller than the potential energy, so that the slow roll
conditions are satisfied. This patch then inflates to encompass the entire present
Hubble volume. This idea of ‘chaotic inflation’ goes back to Linde (1989) and it is
of course much more satisfactory than a model where the Universe has to start out
with homogeneous and isotropic spatial sections before inflation.

When discussing inflation, one of the most mysterious problems of gravity be-
comes apparent: while adding a constant to the potential W of the scalar field
does not affect any of the other interactions, it severely alters gravity. It modifies
cosmic expansion in the same way as adding a cosmological constant. What deter-
mines the correct level of a potential? This question is equivalent to the problem
of the cosmological constant. Why is the present cosmological constant so small,
�/(8πG) � (2 × 10−3 eV)4, much smaller than any fundamental energy scale?
The problem is even more serious when we remember that in quantum field theory
we use the freedom to add or subtract a constant from the potential by absorbing the
infinite zero-point energy into it. Furthermore, at each phase transition this zero-
point energy changes by a finite, calculable amount. Before the discovery of the
accelerated expansion of the Universe which is most simply interpreted as a cosmo-
logical constant, �/(8πG) � (2 × 10−3 eV)4 
= 0, it was justifiable to assume that
the freedom of the cosmological constant has to be used in order to annihilate any
vacuum energy contribution from quantum field theory, so that the effective cos-
mological constant would vanish, �eff = � + 8πGW0 = 0. Present observations,
however, indicate that this compensation takes place only approximately, leaving
a small but non-vanishing effective cosmological constant, �eff 
= 0, which starts
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to dominate the expansion of the Universe just at present time, when there are
sufficiently developed intelligent beings in the Universe which wonder about it. In
all the cosmic past, this cosmological constant was completely negligible, and in
all the cosmic future, it will be the only relevant contribution to expansion. Only at
present it is comparable with the mean mass density of the Universe. Apart from
the bizarre value of �eff, we thus also have a strange coincidence problem.

This is presently one of the deepest problems of physics. Ordinary quantum
field theory does not determine the vacuum energy of quantum fields, but only
changes which may happen depending on the external conditions. We may hope
that a quantum theory of gravity addresses the cosmological constant problem. The
cosmological constant may even represent our first observational data related to
quantum gravity.

Exercises

(The exercises marked with an asterisk are solved in Appendix A10.1.)

Ex. 1.1 Coordinates
Find the coordinate transformation leading from the coordinates used in Eq. (1.9)
to those of Eq. (1.10) and finally of Eq. (1.8).

Ex. 1.2 FL universes are conformally flat
Show that FL universes are conformally flat (also when the curvature does not
vanish) and find the coordinate transformation (τ, r ) → (σ, ρ) such that

− dτ 2 + a2(σ )γi j dxi dx j = A2(σ, ρ)ηµν d Xµ d X ν , (1.173)

with σ = X0 and ρ2 = ∑3
i=1(Xi )2.

Ex. 1.3 Matter and radiation mixture
Consider a FL universe containing a mixture of non-relativistic matter (dust) and
radiation with vanishing curvature. The respective densities and pressures areρm ,ρr

and Pm = 0, Pr = ρr/3. We denote the ratio of radiation to matter by R = ρr/ρm .
(a) Determine w and c2

s as functions of R. What is the time dependence of R?
(b) For a given redshift zeq � 1 of matter and radiation equality determine the

scale factor as a function of conformal and of physical time; normalize the
scale factor to 1 at equality, aeq = 1.

(c) Determine teq and τeq as functions of zeq, and H0.
Ex. 1.4 Cosmological constant∗

Investigate the dynamics of a FL universe with matter (P = 0) and a cosmological
constant �.

(i) Show for a sufficiently small cosmological constant and positive curvature
that the Universe recollapses in a ‘big crunch’, while for a larger cosmological
constant or non-positive curvature, the Universe expands forever.
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(ii) Show furthermore that for an even higher cosmological constant there are
solutions which have no big bang in the past, but issue from a previous con-
tracting phase. The transition from the contracting to an expanding phase is
called the ‘bounce’.

(iii) Make a plot in the plane (
m, 
�) distinguishing the regimes determined
above.

(iv) For case (ii), determine (numerically) the redshift of the bounce as a function
of 
� for fixed 
m = 0.1. Discuss.

Ex. 1.5 Distribution functions
Show that in the non-relativistic limit, m � T both, the Fermi–Dirac and the Bose–
Einstein distributions reduce to a Maxwell–Boltzmann distribution and the number
and energy density are given by

n = 2

(2π )3
exp(−(m − µ)/T )(2πmT )3/2 , ρ = mn , (1.174)

where µ is the chemical potential.
Ex. 1.6 Liouville equation

Using that, in a FL universe the distribution function f only depends on (conformal)
time t and p = √

γi j pi p j , derive equation (1.87).
Ex. 1.7 The neutrino background

Determine the neutrino cross section for the reaction e− + ν̄ → e− + ν̄ at energy
Eν = Tν(t0). Compare it with the cross section of the neutrinos detected in the
super-Kamiokande experiment. Keeping the efficiency of super-Kamiokande, how
large a water tank would you need to detect neutrinos from the cosmic background?

Ex. 1.8 Angular diameter distance
Determine the angular diameter distance to the last scattering surface under the
assumptions K = � = 0. Under which angle do we presently see the causal horizon
of this time, a(trec)trec ? How does this result change if one admits a cosmological
constant so that 
m = 0.3 and 
� = 0.7?
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Perturbation theory

2.1 Introduction

In this chapter we develop in detail the theory of linear perturbations of a
Friedmann–Lemaı̂tre universe. This theory is of utmost importance, since we as-
sume that the observed structure in the Universe (galaxies, cluster voids, etc.) have
grown out of small initial fluctuations. Their entire evolution from the generation
of the fluctuations until the time when they become of order unity can be studied
within linear perturbation theory. This is especially relevant for the fluctuations
in the CMB which are still very small today. It is also one of the main reasons
why CMB anisotropies are so important for observational cosmology: they can be
calculated to very good accuracy within linear perturbation theory, which is simple
and lends itself to highly accurate and fast computations.

The idea that the large-scale structure of our Universe might have grown out of
small initial fluctuations via gravitational instability goes back to Newton (letter
to Bentley, 1692 (Newton, 1958)). The first relativistic treatment of linear pertur-
bations in a Friedmann–Lemaı̂tre universe was given by Lifshitz (1946). There he
found that the gravitational potential cannot grow within linear perturbation theory
and he concluded that galaxies have not been formed by gravitational instability.

Today we know that in order to form structures it is sufficient that matter density
fluctuations can grow. Nevertheless, considerable initial fluctuations with ampli-
tudes of the order of 10−5 are needed in order to reproduce the cosmic structures
observed today. These are much larger than typical statistical fluctuations on scales
of galaxies and we have to suggest a mechanism to generate them. Furthermore,
the measurements of anisotropies in the cosmic microwave background show that
the amplitude of fluctuations in the gravitational potential is constant over a wide
range of scales, i.e., the fluctuation spectrum is scale independent.

As we shall see in Chapter 3, inflation generically produces such a spectrum of
nearly scale-invariant fluctuations.

57
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We begin this chapter by defining gauge-invariant perturbation variables. Then
we present the basic perturbation equations. As examples for the matter equa-
tions we shall consider perfect fluids and scalar fields. Then we discuss light-like
geodesics, which present a good approximation for CMB anisotropies on suffi-
ciently large scales and are important for discussing the effect of lensing. The final
section is devoted to the definition of the power spectrum and an elementary dis-
cussion of statistical issues. Due to their complexity and importance for the goal
of this book, we devote special chapters to the perturbed Boltzmann equation for
CMB anisotropies, Chapter 4, and for polarization Chapter 5.

2.2 Gauge-invariant perturbation variables

The observed Universe is not perfectly homogeneous and isotropic. Matter is ar-
ranged in galaxies and clusters of galaxies and there are large voids in the distribution
of galaxies. Let us assume, however, that these inhomogeneities grew out of small
variations of the geometry and of the energy–momentum tensor which we shall
treat in first-order perturbation theory. For this we define the perturbed geometry
by

gµν = ḡµν + εa2hµν , (2.1)

ḡµν being the unperturbed Friedmann metric defined in the previous chapter. We
conventionally set (absorbing the ‘smallness’ parameter ε into hµν)

gµν = ḡµν + a2hµν , ḡ00 = −a2 , ḡi j = a2γi j , |hµν | � 1 ,

T µ
ν = T

µ

ν + θµ
ν , T

0
0 = −ρ̄ , T

i
j = P̄δi

j , |θµ
ν |/ρ̄ � 1 .

(2.2)

2.2.1 Gauge transformation, gauge invariance

The first fundamental problem we want to discuss is the choice of gauge in cosmo-
logical perturbation theory.

For linear perturbation theory to apply, the spacetime manifold M with metric
g and the energy–momentum tensor T of the real, observable Universe must be
in some sense close to a FL universe, i.e., the manifold M with a Robertson–
Walker metric ḡ and a homogeneous and isotropic energy–momentum tensor T . It
is an interesting, non-trivial unsolved problem how to construct ‘the best’ ḡ and T
from the physical fields g and T in practice. There are two main difficulties: first,
spatial averaging procedures depend on the choice of a hypersurface of constant
time and they do not commute with derivatives, so that averaged fields ḡ and T
will, in general, not satisfy Einstein’s equations. Second, averaging is in practice
impossible over super-horizon scales.
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Even though we cannot give a constructive prescription of how to define the
nearly homogeneous and isotropic spatial slices from the physical spacetime, or
the spatially averaged metric and energy–momentum tensor, we now assume that
there exists an averaging procedure which leads to a FL universe with spatially
averaged tensor fields S, such that the deviations are small,

|Tµν − T µν |
max{αβ}{|T αβ |} � 1 and

|gµν − gµν |
max{αβ}{gαβ} � 1,

and where ḡ and T satisfy Friedmann’s equations. The latter condition can be
achieved, e.g., by defining T via the Friedmann equations. Let us call such an
averaging procedure ‘admissible’. There may be many different admissible aver-
aging procedures (e.g., over different hypersurfaces) leading to slightly different
FL backgrounds. But since |g − ḡ| is small of order ε, the difference of the two
FL backgrounds must also be small of order ε and we can interpret it as part of the
perturbation.

We now consider a fixed admissible FL background (ḡ, T ) as chosen. Since
the theory is invariant under diffeomorphisms (coordinate transformations), the
perturbations are not unique. For an arbitrary diffeomorphismφ and its push forward
φ∗, the two metrics g and φ∗(g) describe the same geometry. Since we have chosen
the background metric ḡ we only allow diffeomorphisms which leave ḡ invariant
i.e., which deviate only in first order from the identity. Such an ‘infinitesimal’
diffeomorphism can be represented as the infinitesimal flow of a vector field X ,
φ = φX

ε . Remember the definition of the flow: for the integral curve, γx (s), of X
with starting point x , i.e., γx (s = 0) = x we have φX

s (x) = γx (s). In terms of the
vector field X , to first order in ε, its push forward is then of the form

φ∗ = id + εL X + O(ε2) ,

where L X denotes the Lie derivative in direction X (see Appendix A2.2). The trans-
formation g → φ∗(g) is equivalent to ḡ + εa2h → ḡ + ε(a2h + L X ḡ) + O(ε2).
Under an ‘infinitesimal coordinate transformation’ the metric perturbation h there-
fore transforms as

h → h + a−2L X ḡ . (2.3)

In the context of cosmological perturbation theory, infinitesimal coordinate trans-
formations are called ‘gauge transformations’. The perturbation of an arbitrary
tensor field S = S̄ + εS(1) obeys the gauge transformation law

S(1) → S(1) + L X S̄ . (2.4)



60 Perturbation theory

Since every vector field X generates a gauge transformation φ = φX
ε , we can

conclude that only perturbations of tensor fields with L X S = 0 for all vector fields
X , i.e., with vanishing (or constant) ‘background contribution’ are gauge invariant.
This result is called the ‘Stewart–Walker Lemma’ (Stewart & Walker, 1974).

The gauge dependence of perturbations has caused many controversies in the lit-
erature, since it is often difficult to extract the physical meaning of gauge-dependent
perturbations, especially on super-horizon scales. This problem is solved by gauge-
invariant perturbation theory which we are going to use throughout this book. The
advantage of the gauge-invariant formalism is that the variables used have simple
geometric and physical meanings and are not plagued by gauge modes. Although the
derivation requires somewhat more work, the final system of perturbation equations
is usually simple and well suited for numerical treatment. We shall also see, that on
subhorizon scales, the gauge-invariant matter perturbation variables approach the
usual, gauge-dependent ones. Since one of the gauge-invariant geometrical pertur-
bation variables corresponds to the Newtonian potential, the Newtonian limit can
be performed easily.

First we note that all relativistic equations are covariant and can therefore be
written in the form S = 0 for some tensor field S. The corresponding background
equation is S = 0, hence S(1) is gauge invariant. It is thus always possible to express
the corresponding perturbation equations in terms of gauge-invariant variables.

The principal sources of this chapter are the following reviews on gauge-
invariant cosmological perturbation theory (Bardeen, 1980; Kodama & Sasaki,
1984; Mukhanov et al., 1992; Durrer, 1994).

2.2.2 Harmonic decomposition of perturbation variables

Since the {t = constant} hypersurfaces are homogeneous and isotropic, it is reason-
able to perform a harmonic analysis: a (spatial) tensor field on these hypersurfaces
can be decomposed into components which transform irreducibly under translations
and rotations. All such components evolve independently. Decomposition into ir-
reducible components of the translation symmetry corresponds to a harmonic anal-
ysis, i.e., decomposition into eigenfunctions of the Laplacian. For a scalar quantity
f in the case K = 0 this is nothing else than its Fourier decomposition:

f (x, t) = 1

(2π )3

∫
d3k f (k, t) e−ikx . (2.5)

(The exponentials Qk(x) = eikx are the unitary irreducible representations of the
Euclidean translation group.) For K = 1 such a decomposition also exists, but the
values k are the discrete eigenvalues of the Laplacian on the 3-sphere, k2 = �(� + 2)



2.2 Gauge-invariant perturbation variables 61

and for K = −1, they are bounded from below, k2 > 1. Of course, the functions
Qk depend on the curvature K .

They form the complete orthogonal set of eigenfunctions of the Laplacian,

�Q(S)
k = −k2 Q(S)

k . (2.6)

In addition, a tensorial variable (at fixed position x) can be decomposed into
irreducible components under the rotation group SO(3).

For a spatial vector field, this is its decomposition into a gradient and a curl,

Vi = ∇iϕ + Bi , (2.7)

where

Bi
|i = 0 , (2.8)

where we used X |i to denote the three-dimensional covariant derivative of X . Here
ϕ is the spin-0 and B is the spin-1 component of the vector field V.

For a spatial symmetric tensor field we have

Hi j = HLγi j +
(

∇i∇ j − 1

3
�γi j

)
HT + 1

2

(
H (V )

i | j + H (V )
j |i

)
+ H (T )

i j , (2.9)

where

H (V )|i
i = H (T )i

i = H (T ) j

i | j = 0 . (2.10)

Here HL and HT are spin-0 components, H (V )
i is the spin-1 component and H (T )

i j

is the spin-2 component of the tensor field H .
We shall not need higher tensors (or spinors). As a basis for vector and tensor

modes we use the vector- and tensor-type eigenfunctions of the Laplacian,

�Q(V )
j = −k2 Q(V )

j and (2.11)

�Q(T )
j i = −k2 Q(T )

j i , (2.12)

where Q(V )
j is a transverse vector, Q(V )| j

j = 0 and Q(T )
j i is a symmetric transverse

traceless tensor, Q(T ) j
j = Q(T )|i

j i = 0. Both, Q(V )
j and Q(T )

j i have two degrees of
freedom. In the case of vanishing curvature we can use an orthonormal basis e(1), e(2)

in the plane normal to k and define helicity basis vectors,

e± = 1√
2

(e(1) ± ie(2)) . (2.13)

In curved spaces the definition of the helicity basis is analogous, but somewhat
more involved. Since we shall never need the explicit form of this basis, we shall
not enter into this. Vector perturbations can be expanded in terms of this basis,



62 Perturbation theory

while tensor perturbations are expanded either in terms of the standard tensor basis
given by

ed
i j = 1

2

[
e(1)

i e(1)
j − e(2)

i e(2)
j

]
, (2.14)

e×
i j = 1

2

[
e(1)

i e(2)
j + e(2)

i e(1)
j

]
, (2.15)

or also in terms of a helicity basis defined by

e(+2)
i j = e+

i e+
j = ed

i j + ie×
i j , (2.16)

e(−2)
i j = e−

i e−
j = ed

i j − ie×
i j . (2.17)

We can develop the vector and tensor basis functions as

Q(V )
j = Q(1)e(1)

j + Q(2)e(2)
j , (2.18)

= Q(+)e(+)
j + Q(−)e(−)

j , (2.19)

Q(T )
j i = Q(d)e(d)

i j + Q(×)e(×)
i j , (2.20)

= Q(+2)e(+2)
i j + Q(−2)e(−2)

i j . (2.21)

The components in the ‘helicity basis’, e(±) and e(±2)
i j simply transform with a phase

e±iϕ , and e±2iϕ respectively under rotations around k with angle ϕ. Hence vector
perturbations are spin-1 fields while tensor perturbations are spin-2 fields. The
functions Q(+) and Q(+2) have spin up, m = +1 and m = +2 respectively while
Q(−) and Q(−2) have spin down. Scalar perturbations of course have spin zero. We
shall make use of this spin structure especially in Chapters 4 and 5.

As in Eqs. (2.7) and (2.9), we can construct scalar-type vectors and symmetric,
traceless tensors and vector-type symmetric tensors. To this goal we define

Q(S)
j ≡ −k−1 Q(S)

| j , (2.22)

Q(S)
i j ≡ k−2 Q(S)

|i j + 1

3
γi j Q(S) and (2.23)

Q(V )
i j ≡ − 1

2k

(
Q(V )

i | j + Q(V )
j |i

)
. (2.24)

In the following we shall extensively use this decomposition and write down the
perturbation equations for a given mode k.

The decomposition of the k-mode of a vector field is then of the form

Vi = V Q(S)
i + V (V ) Q(V )

i . (2.25)

The decomposition of a tensor field is given by (compare Eq. (2.9))

Hi j = HL Q(S)γi j + HT Q(S)
i j + H (V ) Q(V )

i j + H (T ) Q(T )
i j . (2.26)

Here B, B(V ), HL , HT , H (V ) and H (T ) are functions of t and k.
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This decomposition is very useful since scalar vector and tensor amplitudes
of each mode k evolve independently obeying ordinary differential equations in
time.

2.2.3 Metric perturbations

Perturbations of the metric are of the form

gµν = ḡµν + a2hµν . (2.27)

We parametrize them as

hµν dxµ dxν = −2A dt2 − 2Bi dt dxi + 2Hi j dxi dx j , (2.28)

and we decompose the perturbation variables Bi and Hi j according to (2.25) and
(2.26).

Let us consider the behaviour of hµν under gauge transformations. We set the
vector field defining the gauge transformation to

X = T ∂t + Li∂i . (2.29)

Using the definition of the Lie derivative, we obtain (for details see exercises)

LXḡ = a2
[−2

(
HT + Ṫ

)
dt2 + 2

(
L̇ i − T,i

)
dt dxi

+ (
2HT γi j + Li | j + L j |i

)
dxi dx j

]
. (2.30)

Comparing this with (2.28) and using (2.4), we obtain

A → A + HT + Ṫ ,

Bi → Bi − L̇ i + T,i ,

Hi j → Hi j + 1

2

(
Li | j + L j |i

) + HT γi j .

Using the decompositions (2.25) for Bi and (2.26) this implies the following be-
haviour of the perturbation variables under gauge transformations (we also decom-
pose the vector Li = L Q(S)

i + L (V ) Q(V )
i ):

A → A + HT + Ṫ , (2.31)

B → B − L̇ − kT , (2.32)

B(V ) → B(V ) − L̇ (V ) , (2.33)

HL → HL + HT + k

3
L , (2.34)

HT → HT − kL , (2.35)
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H (V ) → H (V ) − kL (V ) , (2.36)

H (T ) → H (T ) . (2.37)

Two scalar and one vector variable can be set to zero by gauge transformations.
We shall use this below to choose the longitudinal gauge for scalar perturbations,
B = HT = 0.

An interesting variable is also the ‘shear’ on the t = constant hypersurfaces.
We first introduce the normal to this hypersurface which is given by nµ dxµ =
−a(1 + A)dt , so that to first order

(nµ) = (−gµνa(1 + A)δ0
ν ) = a−1(1 − A, Bi ) . (2.38)

This vector field is normalized, nµnµ = −1 and its scalar product with any vector
field tangent to the t = constant hypersurfaces and hence of the form X = Xi∂i

vanishes. We now introduce its covariant derivative, setting

nµ;ν = Pµνθ + aµnν + σµν + ωµν (2.39)

where

Pµν = nµnν + gµν (2.40)

is the projection tensor onto the subspace of tangent space normal to n, θ ≡ nµ
;µ

is called the ‘expansion’, aµ = nνnµ;ν is the acceleration, and σµν and ωµν are the
shear and vorticity of the vector field n respectively. They are defined as

σµν = 1

2
Pλ

µ Pρ
ν (nλ;ρ + nρ;λ) − Pµνθ and (2.41)

ωµν = 1

2
Pλ

µ Pρ
ν (nλ;ρ − nρ;λ) . (2.42)

This split of the covariant derivative of a vector field onto expansion, accelera-
tion, shear and vorticity is standard and sometimes very convenient. For example,
Frobenius’ theorem from differential geometry (see, e.g., Wald (1984), Appendix B)
implies, that there exists a hypersurface which is normal to a given vector field if
and only if its vorticity vanishes. The direction of the theorem which we use here,
namely that the vorticity vanishes if n is (locally) orthogonal to a hypersurface fol-
lows from a simple calculation (see Ex. 2.2). The other direction is more involved.
In three dimensions it boils down to the well known result that each vector field
with vanishing curl can (locally) be written as the gradient of some function.
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In the background FL universe, without perturbations, only the expansion, θ =
3H/a = 3H is non-zero. In the presence of scalar perturbations we obtain

θ = 3

a
H[1 + KQ] , K = −A + 1

3
H−1k B + H−1 ḢL , (2.43)

σ00 = σ0i = σi0 = 0 , (2.44)

σi j = ak
(
k−1 ḢT − B

)
Qi j = akσ Qi j , (2.45)

ai = −k AQi , a0 = 0 , (2.46)

ωµν = 0 . (2.47)

Another interesting variable is the spatial curvature on the hypersurface of con-
stant time. It is easily calculated to first order and one finds

(δR)s = 4
k2 − 3K

a2

(
HL + 1

3
HT

)
= 4

k2 − 3K

a2
R . (2.48)

Since these variables depend only on the time coordinate, they transform only with
T under coordinate transformation. Inserting the transformation laws found above,
Eqs. (2.31)–(2.35), we obtain

K → K −
(
H − Ḣ

H + k2

3H

)
T , (2.49)

σ → σ + kT , (2.50)

R → R + HT . (2.51)

For vector and tensor perturbations only the perturbation of the shear does not
vanish and we have

σ
(V )
i j = ak

(
k−1 Ḣ (V ) − B(V )

)
Q(V )

i j = akσ (V ) Q(V )
i j , (2.52)

σ
(T )
i j = aḢ (T ) Q(T )

i j . (2.53)

Since there are no vector-type gauge transformations of the constant time hypersur-
faces and no tensor-type gauge transformations at all, the quantities σ (V ) and H (T )

are gauge invariant.
One often chooses the gauge transformation kL = HT and kT = B − L̇ , so that

the transformed variables HT and B vanish. In this gauge (longitudinal gauge),
scalar perturbations of the metric are of the form (HT |long = B|long = 0):

h(S)
µν = −2� dt2 − 2�γi j dxi dx j . (2.54)



66 Perturbation theory

� and � are the so-called Bardeen potentials. In a generic gauge the Bardeen
potentials are given by

� = A − Hk−1σ − k−1σ̇ , (2.55)

� = −HL − 1

3
HT + Hk−1σ = −R + Hk−1σ , (2.56)

where σ = k−1 ḢT − B, is the scalar potential for the shear of the hypersurface of
constant time defined in Eq. (2.45). A short calculation using Eqs. (2.31), (2.50)
and (2.51) shows that � and � are indeed invariant under gauge transformations.

In a FL universe the Weyl tensor (see Appendix A2.1) vanishes. It therefore is a
gauge-invariant perturbation. For scalar perturbations one finds

Ei j ≡ Cµ

iν j uµuν = −C0
i0 j = −1

2

[
(� + �)|i j − 1

3
�(� + �)γi j

]
, (2.57)

All other components are also given by Ei j , see Appendix 3.1.
For vector perturbations it is convenient to set kL (V ) = H (V ) so that H (V ) vanishes

and we have

h(V )
µν dxµ dxν = 2σ (V ) Q(V )

i dt dxi . (2.58)

We shall call this gauge the ‘vector gauge’.
The Weyl tensor from vector perturbation is given by

Ei j = −C0
i0 j = −k

2
σ̇ (V ) Q(V )

i j , (2.59)

Bi j ≡ 1

2
εiν

ρσ Cρσ
jαuνuα = εilmC0

jlm ,

= 1 − k

2
σ (V )εilm

[
Q(V )

l| jm − Q(V )
m| jl − k2

2
γ jl Q(V )

m + k2

2
γ jm Q(V )

l

]
. (2.60)

Note that from their definition Ei j and Bi j are symmetric and since u = (u0, 0) to
lowest order, only C0

i0 j and C0
ilm respectively contribute. The tensors Ei j and Bi j ,

constructed as given above from the Weyl tensor for an arbitrary 4-velocity field
uµ are normal to uµ and they determine the Weyl tensor fully (see Appendix 3).

Clearly there are no tensorial (spin-2) gauge transformations and hence H (T )
i j is

gauge invariant. The expression for the Weyl tensor from tensor perturbation is

Bi j = −Ḣ (T )εilm

[
Q(T )

jl|m − Q(T )
jm|l

]
. (2.61)

2.2.4 Perturbations of the energy–momentum tensor

Let T µ
ν = T

µ

ν + θµ
ν be the full energy–momentum tensor. We define its energy

density ρ and its energy flux 4-vector u as the time-like eigenvalue and eigenvector
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of T µ
ν :

T µ
ν uν = −ρuµ, u2 = −1 . (2.62)

We then parametrize their perturbations by

ρ = ρ̄ (1 + δ) , u = u0∂t + ui∂i . (2.63)

The component u0 is fixed by the normalization condition,

u0 = 1

a
(1 − A) . (2.64)

We further set

ui = 1

a
vi = 1

a

(
vQ(S)i + v(V ) Q(V )i

)
. (2.65)

Pµ
ν ≡ uµuν + δµ

ν is the projection tensor onto the subspace of tangent space normal
to u. We define the stress tensor

τµν = Pµ
α Pν

β T αβ. (2.66)

With this we can write

T µ
ν = ρuµuν + τµ

ν . (2.67)

In the unperturbed case we have τ 0
µ = τ

µ

0 = 0 and τ i
j = P̄δi

j . Including first-order
perturbations, the components τ0µ are determined by the perturbation variables
which we have already introduced. We obtain

τ 0
0 = 0 , and τ

j
0 = −P̄v j , τ 0

j = P̄(v j − B j ) . (2.68)

But τ i
j contains in general new perturbations. We define

τ i
j = P̄

[
(1 + πL ) δi

j + �i
j

]
, with �i

i = 0 . (2.69)

From our definitions we can determine the perturbations of the energy–momentum
tensor. A short calculation gives

T 0
0 = −ρ̄(1 + δ) , (2.70)

T 0
j = (ρ̄ + P̄)(v j − B j ) , (2.71)

T j
0 = −(ρ̄ + P̄)v j , (2.72)

T i
j = P̄

[
(1 + πL )δi

j + �i
j
]

. (2.73)

The traceless part of the stress tensor, �i
j , is called the anisotropic stress tensor. We

decompose it as

�i
j = �Q(S) i

j + �(V ) Q(V ) i
j + �(T ) Q(T ) i

j . (2.74)
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We now study the gauge transformation properties of these perturbation vari-
ables. First we note that ρ is a scalar and L X ρ̄ = ˙̄ρT = −3(1 + w)Hρ̄T . Here
we made use of Eq. (1.22). The same is true for P̄(1 + πL ) which is 1/3 of the

trace of τµ
ν . With Eq. (1.29), we obtain L X P̄ = ˙̄PT = −3 c2

s
w

(1 + w)H P̄T . The
background contribution to the anisotropic stress tensor, �µ

ν = τµ
ν − 1

3τ
α
α δµ

ν , van-
ishes, hence �µ

ν is gauge invariant (the Stewart–Walker lemma). For perfect fluids
�µ

ν = 0. For the velocity we use L X ū = [X, ū] = (−T ȧa−2 − a−1Ṫ )∂t − a−1 L̇ i∂i .
Inserting our decomposition into scalar, vector and tensor perturbation variables for
a fixed mode k, we obtain finally the following transformation behaviour

δ → δ − 3(1 + w)HT , (2.75)

πL → πL − 3
c2

s

w
(1 + w)HT , (2.76)

v → v − L̇ , (2.77)

� → � , (2.78)

v(V ) → v(V ) − L̇ (V ) , (2.79)

�(V ) → �(V ) , (2.80)

�(T ) → �(T ) . (2.81)

Apart from the anisotropic stress perturbations, there is only one gauge-invariant
variable which can be obtained from the energy–momentum tensor alone, namely

� = πL − c2
s

w
δ . (2.82)

One can show (see Appendix 5) that � is proportional to the divergence of the
entropy flux of the perturbations. Adiabatic perturbations are characterized by
� = 0.

Gauge-invariant density and velocity perturbations can be found by combining
δ, v and v

(V )
i with metric perturbations. We shall use

V ≡ v − 1

k
ḢT = vlong , (2.83)

Ds ≡ δ + 3(1 + w)H(k−2 ḢT − k−1 B) ≡ δlong , (2.84)

D ≡ δlong + 3(1 + w)
H
k

V = δ + 3(1 + w)
H
k

(v − B)

= Ds + 3(1 + w)
H
k

V , (2.85)

Dg ≡ δ + 3(1 + w)

(
HL + 1

3
HT

)
= δlong − 3(1 + w)�

= Ds − 3(1 + w)� , (2.86)
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V (V ) ≡ v(V ) − 1

k
Ḣ (V ) = v(vec) , (2.87)


 ≡ v(V ) − B(V ) = v(vec) − B(V ) , (2.88)


 − V (V ) = σ (V ) . (2.89)

Here vlong, δlong and v(vec) are the velocity (and density) perturbations in the longi-
tudinal and vector gauge respectively, and σ (V ) is the metric perturbation in vector
gauge and the shear of the t = constant hypersurfaces (see Eqs. (2.52) and (2.58)).

These variables can be interpreted nicely in terms of gradients of the energy
density and the shear and vorticity of the velocity field (Ellis & Bruni, 1989). Here
we just calculate the covariant derivative of the velocity field uµ and decompose
it like the normal field nµ. In a non-perturbed FL universe these two vector fields
coincide. With our definition of variables, a short calculation using uµ;ν = uµ,ν −
�β

µνuβ gives

uµ;ν = P ( f )
µν θ ( f ) + a( f )

µ uν + σ ( f )
µν + ω( f )

µν , (2.90)

where the projection, P ( f ), expansion, θ ( f ), acceleration, a( f ), shear, σ ( f ) and vor-
ticity, ω( f ) are defined as in Eqs. (2.40)–(2.42), just the normal field nµ is replaced
by uµ, the energy flux of the fluid. We indicate this by the superscript ( f ). For scalar
perturbations one finds

θ ( f ) = 3

a
H[1 + K( f ) Q] , K( f ) = −A + H−1

(
ḢL + k

3
v

)
, (2.91)

σ
( f )
00 = σ

( f )
0i = σ

( f )
i0 = 0 , (2.92)

σ
( f )
i j = ak(k−1 ḢT − v)Qi j = akσ ( f ) Qi j , (2.93)

a( f )
i = −A( f ) Qi , A( f ) = k A − H(v − B) + (v̇ − Ḃ) , a0 = 0 , (2.94)

ωµν = 0 . (2.95)

Contrary to nµ, the vector field uµ is defined independently of the coordinate
system. Therefore, and since a( f )

µ and σ
( f )
µν vanish in the background FL universe,

the variables A( f ) and V are gauge invariant. For V we have already noticed this
before. Furthermore, it is easy to check that

A( f ) = k� − HV + V̇ ,

which is a gauge-invariant variable called the ‘peculiar acceleration’.
For vector perturbations we obtain

σ
( f )
00 = σ

( f )
0i = σ

( f )
i0 = 0 , (2.96)

σ
( f )
i j = ak

(
k−1 Ḣ (V ) − v(V )

)
Q(V )

i j = − akV (V ) Qi j , (2.97)
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ω
( f )
i0 = ω

( f )
0i = 0 , (2.98)

ω
( f )
i j = a

(
v(V ) − B(V )

) [
Q(V )

i | j − Q(V )
j |i

]
= a


[
Q(V )

i | j − Q(V )
j |i

]
, (2.99)

ai = V̇ (V ) Q(V )
i . (2.100)

It is interesting to note that the energy flux of scalar perturbations is hypersur-
face orthogonal, ω(S) = 0, while vector perturbations do have non-vanishing curl
if v(V ) 
= B(V ). A coordinate system with v = B is called ‘comoving’.

Tensor perturbations do not admit a perturbed energy flux so that for them the
above perturbation variables vanish.

We now want to show that on scales much smaller than the Hubble scale,
k � H ∼ t−1, the metric perturbations are much smaller than δ and v and we
can thus neglect the difference between different gauges and/or gauge-invariant
variables. This is especially important when comparing experimental results with
gauge-invariant calculations. Let us neglect spatial curvature in the following or-
der of magnitude argument. Then, the perturbations of the Einstein tensor are a
combination of the second derivatives of the metric perturbations, H times the first
derivatives and H2 or Ḣ times metric perturbations. The first-order perturbation of
Einstein’s equations therefore generically yield the following order of magnitude
estimate 8πGδTµν = δGµν :

O
(

δTµν

ρ

)
O (8πGρ)︸ ︷︷ ︸

O(a′/a)2=O(a2/t2)

= O
(

1

t2
a2h + k

t
a2h + k2a2h

)
, (2.101)

O
(

δTµν

ρ

)
= O

(
h + kth + (kt)2h

)
. (2.102)

For kt � 1 this gives O(δ, v) = O
(
δTµν/ρ

) � O(h). Therefore, on subhorizon
scales the differences between δ, δlong, Dg and D are negligible as are the differences
between v and V or v(V ), V (V ) and 
(V ). Since measurements of density and velocity
perturbations can only be made on subhorizon scales, we may therefore use any of
the gauge-invariant perturbation variables to compare with measurements.

2.3 The perturbation equations

We do not derive the first-order perturbations of Einstein’s equations. By elemen-
tary algebraic methods, this is quite lengthy and cumbersome. However, we rec-
ommend that the student simply determines δGµν in longitudinal (vector) gauge
using some algebraic package like Maple or Mathematica and then writes down the
resulting Einstein equations using gauge-invariant variables. Since we know that
these variables do not depend on the coordinates chosen, the equations obtained
in this way are valid in any gauge. Here, we just present the resulting equations in
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gauge-invariant form. A rapid derivation by hand is possible using the 3 + 1 for-
malism of general relativity and working with Cartan’s formalism for the Riemann
curvature (see Durrer & Straumann, 1988). In order to simplify the notation, we sup-
press the overbar on background quantities whenever this does not lead to confusion.

2.3.1 Einstein’s equations

The constraints

The Einstein equations G0iµ = 8πGT0iµ lead to two scalar and one vector con-
straint equations,

4πGa2ρD = −(k2 − 3K )� (00)
4πGa2(ρ + P)V = k

(
H� + �̇

)
(0i)

}
(scalar) , (2.103)

8πGa2(ρ + P)
 = 1

2

(
2K − k2

)
σ (V ) (0i) (vector) . (2.104)

The dynamical equations

The Einstein equations Gi j = 8πGTi j provide two scalar, one vector and one tensor
perturbation equations,
scalar:

k2 (� − �) = 8πGa2 P�(S) (i 
= j) , (2.105)

�̈ + 2H�̇ + H�̇ +
[

2Ḣ + H2 − k2

3

]
�

= 4πGa2ρ

[
1

3
D + c2

s Ds + w�

]
(ii) , (2.106)

vector:

k
(
σ̇ (V ) + 2Hσ (V )

) = 8πGa2 P�(V ) , (2.107)

tensor:

Ḧ (T ) + 2HḢ (T ) + (
2K + k2

)
H (T ) = 8πGa2 P�(T ) . (2.108)

The second dynamical scalar equation is somewhat cumbersome and not often
used, since we may use one of the conservation equations given below instead.
For the derivation of the perturbed Einstein equation the following relations are
useful. They can be derived from the Friedmann equations (1.20)–(1.22); a possible
cosmological constant is included in ρ and P .

4πGa2ρ(1 + w) = H2 − Ḣ + K , (2.109)

Ḣ = −1 + 3w

2

(
H2 + K

)
, (2.110)
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4πGa2ρ(1 + w)3c2
s = Ḧ

H − Ḣ − H2 − K , (2.111)

c2
s =

Ḧ
H − Ḣ − H2 − K

3[H2 − Ḣ + K ]
. (2.112)

For the calculations below we shall also make use of

ẇ = 3(w − c2
s )(1 + w)H . (2.113)

Note that for perfect fluids, where �i
j ≡ 0, we have � = �. As we shall see

below, for perfect fluids with � = � = 0, the behaviour of scalar perturbations is
given by �, which describes a damped wave propagating with speed c2

s .
Tensor perturbations are given by H (T ), which for perfect fluids also obeys a

damped wave equation propagating with the speed of light. On small scales (over
short time periods) when t−2 <∼ 2K + k2, the damping term can be neglected and
Hi j represents propagating gravitational waves. For vanishing curvature or k2 � K ,
small scales are just the sub-Hubble scales, kt >∼ 1. For K < 0, waves oscillate with
a somewhat smaller frequency, ω = √

2K + k2 < k, while for K > 0 the frequency
is somewhat higher than k.

Vector perturbations of a perfect fluid are determined by the σ (V ) equation,
Eq. (2.107), which impliesσ (V ) ∝ 1/a2. Hence vector perturbations do not oscillate,
they simply decay.

2.3.2 Energy–momentum conservation

The conservation equations, T µν
;ν = 0 lead to the following perturbation equations:

Ḋg + 3
(
c2

s − w
)
HDg + (1 + w)kV + 3wH� = 0

V̇ + H
(
1 − 3c2

s

)
V = k

(
� + 3c2

s �
) + c2

s k
1+w

Dg

+ wk
1+w

[
� − 2

3

(
1 − 3K

k2

)
�

]
 (scalar) , (2.114)


̇ + (
1 − 3c2

s

)
H
 = − w

2(1 + w)

(
k − 2K

k

)
�(V ) (vector) . (2.115)

It is sometimes also useful to express the scalar conservation equations in terms
of the variable pair (D, V ). Using D = Dg + 3(1 + w)

[
Hk−1V + �

]
in (2.114)

one obtains after some algebra and making use of the (0i) constraint equation
(2.103)

Ḋ − 3wHD = −
(

1 − 3K

k2

)
[(1 + w)kV + 2Hw�] , (2.116)

V̇ + HV = k

[
� + c2

s

1 + w
D + w

1 + w
� − 2

3

(
1 − 3K

k2

)
w

1 + w
�

]
. (2.117)
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Replacing � in Eq. (2.117) via the (00) and (ij) Einstein equations, (2.103) and
(2.105), and replacing V via Eq. (2.116) we can derive a second-order equation for
D. A lengthy but straightforward calculation gives

D̈ + (1 + 3c2
s − 6w)HḊ +

[(
9

2
w2 − 12w + 9c2

s − 3

2

)
H2

+ 3

2
(3w2 − 1)K + (k2 − 3K )c2

s

]
D = −(k2 − 3K )w� − 2

(
1 − 3K

k2

)
Hw�̇

+ 2
[
(3w2 + 3c2

s − 2w)H2 + w(3w + 2)K

+ k2 − 3K

3
w

] (
1 − 3K

k2

)
� . (2.118)

The conservation equations can, of course, also be obtained from the Einstein
equations since they are equivalent to the contracted Bianchi identities (see
Appendix A2.1). For scalar perturbations we have four independent equations and
six variables. For vector perturbations we have two equations and three variables,
while for tensor perturbations we have one equation and two variables. To close
the system we must add some matter equations. The simplest prescription is to set
� = �i j = 0. This matter equation, which describes adiabatic perturbations of a
perfect fluid gives us exactly two additional equations for scalar perturbations and
one each for vector and tensor perturbations. In this simple case, the tensor equa-
tion simply describes free gravitational waves propagating in a FL background. If
c2

s 
= 0 also the scalar equation (2.118) is a wave equation. It describes what we
shall call ‘acoustic oscillations’ of the fluid where the fluid pressure counter-acts
gravitational collapse. The vector perturbation equation, however, is of first order.
�(V ) = 0 implies σ (V ) ∝ 1/a2 and 
 ∝ a−1+3c2

s . Hence vector perturbations of the
metric simply decay if there are no anisotropic stresses to source them.

Another simple example is a universe with matter content given by a scalar
field. We shall discuss this case in the next section. More complicated are several
interacting particle species of which some have to be described by a Boltzmann
equation. This is the actual universe at late times, z <∼ 107.

2.3.3 Mixtures of several fluids

Here we only consider fluid components that are non-interacting, so that their
energy–momentum tensor is separately conserved, i.e., equations (2.114) and
(2.115) hold for each α component separately. The Einstein equations, however
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determine the metric perturbations induced by the full perturbations,

ρDg =
∑

α

ρα Dgα , (2.119)

(ρ + P)V =
∑

α

(ρα + Pα)Vα , (2.120)

P� =
∑

α

Pα�α , (2.121)

P� = πL − c2
s δρ =

∑
α

Pα�α +
∑

α

(c2
α − c2

s )δρα

=
∑

α

Pα�α + P�rel . (2.122)

In order to see that �rel is gauge invariant we use Eq. (1.29)

c2
s = Ṗ

ρ̇
=

∑
β

(1 + wβ)ρβc2
β

(1 + w)ρ
.

Also using
∑

β(1 + wβ)ρβ = (1 + w)ρ we find

P�rel =
∑

α

(c2
α − c2

s )δρα =
∑
αβ

(1 + wβ)ρβ(1 + wα)ρα

ρ + P
(c2

α − c2
β)

δα

1 + wα

= 1

2

∑
αβ

(1 + wβ)(1 + wα)ρβρα

ρ + P
(c2

α − c2
β)

[
δα

1 + wα

− δβ

1 + wβ

]
= 1

2

∑
αβ

(1 + wβ)(1 + wα)ρβρα

ρ + P
(c2

α − c2
β)

[
Dgα

1 + wα

− Dgβ

1 + wβ

]
= 1

2

∑
αβ

(1 + wβ)ρβ(1 + wα)ρα

ρ + P
(c2

α − c2
β)Sαβ, (2.123)

where we define

Sαβ =
[

Dgα

1 + wα

− Dgβ

1 + wβ

]
. (2.124)

For the third equal sign above we have used the fact that the expression
[(1 + wβ)(1 + wα)ρβρα/(ρ + P)](c2

α − c2
β) is anti-symmetric in α and β and we

therefore may also anti-symmetrize the remaining factor.
The individual components of the gauge-invariant velocity and density pertur-

bations are defined via their energy–momentum tensors. Note that

Vα = vα − k−1 ḢT , and (2.125)

Dgα = δα + 3(1 + wα)R , (2.126)

Dα = δα + 3(1 + wα)Hk−1(vα − B) , (2.127)

= Dgα + 3(1 + wα)
[
Hk−1Vα + �

]
. (2.128)
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It is easy to check that the conservation equations (2.114) are also valid for a mixture
of conserved components, so that we have

Ḋgα + 3
(
c2
α − wα

)
HDgα = −(1 + wα)kVα − 3wαH�α , (2.129)

V̇α + H
(
1 − 3c2

α

)
Vα = k

(
� + 3c2

α�
) + c2

αk

1 + wα

Dgα

+ wαk

1 + wα

[
�α − 2

3

(
1 − 3K

k2

)
�α

]
. .(2.130)

However, if we rewrite the conservation equations in terms of the variables (Dα, Vα)
new terms appear since we have to use the Einstein equations in the derivation. A
somewhat tedious but straightforward calculation, replacing Dgα with the help of
Eq. (2.128) and then eliminating �̇ with the Einstein equation (0i) gives

Ḋα − 3wαHDα = 9

2
(H2 + K )k−1(1 + w)(1 + wα)[V − Vα]

−
(

1 − 3K

k2

)
[(1 + wα)kVα + 2Hw�α] , (2.131)

V̇α + HVα = k

[
� + c2

α

1 + wα

Dα + wα

1 + wα

�α

− 2

3

(
1 − 3K

k2

)
wα

1 + wα

�α

]
. (2.132)

It is sometimes more useful to describe mixed systems in terms of variables related
to differences of individual components. With Sαβ given in Eq. (2.124) and defining

Vαβ = Vα − Vβ , (2.133)

�αβ = wα

1 + wα

�α − wβ

1 + wβ

�β , (2.134)

�αβ = wα

1 + wα

�α − wβ

1 + wβ

�β , (2.135)

one can derive the following system of equations from Eqs. (2.129) and (2.130)

Ṡαβ = −kVαβ − 3H�αβ , (2.136)

V̇αβ + HVαβ − 3

2
H(c2

α + c2
β)Vαβ − 3

2
H(c2

α − c2
β)

∑
γ

ργ + Pγ

ρ + P

(
Vαγ + Vβγ

)
= k

[
c2
α − c2

β

1 + w
D + c2

α + c2
β

2
Sαβ + c2

α − c2
β

2

∑
γ

ργ + Pγ

ρ + P

(
Sαγ + Sβγ

)
+ �αβ − 3

2

(
1 − 3K

k2

)
�αβ

]
. (2.137)

We present a detailed derivation of these equations in Appendix 6.
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We shall use these equations when we discuss mixtures of cold dark matter and
radiation. More details on mixed systems which also include interactions can be
found in Kodama & Sasaki (1984). In Ex. 2.3, we discuss a simple example of a
mixed system. Interacting mixed systems are not very relevant for us, since we shall
describe them with a Boltzmann equation approach that we develop in Chapter 4.

2.3.4 The Bardeen equation

The systems of equations which we have presented here are, of course, not closed.
To close them one needs to add evolution equations for the matter variables, such
as �(T ) for tensor perturbations, a relation between �(V ) and 
(V ) for vector per-
turbations, and expressions for � and � = �(S) for scalar perturbations.

For scalar perturbations we can actually derive an evolution equation for �,
where � and � enter only as source terms. Replacing D and Ds in (2.106) by use
of (2.85) and (2.103) and replacing � by � and � via Eq. (2.105) leads to

�̈ + 3H(1 + c2
s )�̇ + [

3(c2
s − w)H2 − (2 + 3w + 3c2

s )K + c2
s k2

]
�

= 8πGa2 P

k2

[
H�̇ + [2Ḣ + 3H2(1 − c2

s /w)]� − 1

3
k2� + k2

2
�

]
. (2.138)

This is the Bardeen equation. To derive it we also made use of (2.110) to replace
Ḣ.

This equation is especially useful in terms of another gauge-invariant variable
which we now introduce: the scalar curvature on the comoving hypersurface. The
comoving hypersurface is defined by having the normal n on the constant time
hypersurface equal to the particle 4-velocity u. Using (nν) = a−1(1 − A, B j ) and
(uν) = a−1(1 − A, v j ) this implies v = B. From the definitions of σ and V we thus
have V = −σco in this coordinate system. In comoving gauge we therefore have
(see Eqs. (2.84)–(2.86))

Ds = δco − 3(1 + w)k−1HV , (2.139)

D = δco , (2.140)

Dg = δco + 3(1 + w)Rco = D − 3(1 + w)[k−1HV + �] , (2.141)

so that

− Rco = 1

3(1 + w)
[D − Dg] = k−1HV + � . (2.142)
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Here the index ‘co’ indicates comoving coordinates. Using the (0i) Einstein equa-
tion, Eq. (2.103), we obtain

− Rco = 2

3(1 + w)

[
� + H−1�̇

] + � ≡ ζ . (2.143)

We are especially interested in the evolution of the curvature perturbation variable ζ

in situations where we can neglect anisotropic stresses. Then the right-hand side of
Eq. (2.138) simply becomes 4πGa2 P� and � = �. The definition (2.143) together
with the Bardeen equation then yields in the spatially flat case, k = 0

ζ̇ = H
H2 − Ḣ

[
3w

2
H2� − c2

s k2�

]
, (2.144)

= w

w + 1
H� − 2

3(w + 1)
H−1 − c2

s k2� . (2.145)

For adiabatic perturbations, � = 0 the curvature perturbation ζ is therefore con-
served on super-Hubble scales, k/H � 1 at early times when curvature is certainly
negligible. This will be very useful when we want to specify initial conditions in
Chapter 3.

Also note that for constant w and constant Bardeen potential � = �, the cur-
vature perturbation ζ differs from the Bardeen potential only by a multiplicative
constant.

2.3.5 A special case

Here we want to discuss the scalar perturbation equations for a simple, but important,
special case. We consider adiabatic perturbations of a perfect fluid. In this case there
are no anisotropic stresses,� = 0. Furthermore, the pressure fluctuation δP = πL P
is related to the density fluctuation δρ by δP = c2

s δρ, hence � = 0. Eq. (2.138) then
becomes simply a second-order equation for the Bardeen potential � = �, which
is, in this case the only dynamical degree of freedom,

�̈ + 3H(1 + c2
s )�̇ + [

(1 + 3c2
s )(H2 − K ) − (1 + 3w)(H2 + K ) + c2

s k2
]
� = 0 .

(2.146)
This is a damped wave equation. When we may neglect curvature, and if w =
constant so that c2

s = w, the time-dependent mass term m2(t) = −(1 + 3c2
s )(H2 −

K ) + (1 + 3w)(H2 + K ) vanishes. Eq. (2.146) then reduces to

�̈ + 6
1 + w

(1 + 3w)t
�̇ + wk2� = 0 , (2.147)
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where we have used that

a ∝ t2/(1+3w) = tq and H = 2

1 + 3w

1

t
= q

t
q = 2

1 + 3w
.

Eq. (2.147) has an exact solution of the form

� = 1

a

(
Ajq(

√
wkt) + Byq(

√
wkt)

)
, (2.148)

where jq and yq denote the spherical Bessel functions of order q. Using jq(x) ∝
xq and yq(x) ∝ x−q−1 for x � 1, we find that the A-mode is constant while the
B-mode decays like 1/(a2t) on super-Hubble scales. If both modes are generated
with similar amplitudes, the B-mode is therefore negligible after a few expansion
times. On sub-Hubble scales,

√
wkt � 1, the solution oscillates with frequency√

wk and decay like 1/(at). The only exception is the case of cosmic dust (CDM)
with w = 0. In this case the oscillatory term drops and the solution is of the form

� = A + B

(kt)5
. (2.149)

For later use we collect the main results in the following equation: for power law
expansion a ∝ tq we find

� =
{

constant for
√

wkt � 1
A

a
√

wkt
sin(

√
wkt − q

2 π ) for
√

wkt � 1 , w 
= 0 .
(2.150)

We now consider a universe which starts out in a radiation dominated era with
a spectrum (see Section 2.6) 〈|�|2〉k3 = AS(k/H0)n−1 and which becomes matter
dominated at some time teq. Late in the matter dominated era the spectrum of � is
therefore approximately given by (see Fig. 2.1)

〈|�|2〉k3 = AS(k/H0)n−1

{
1 for kteq < 1
(kteq)−4 cos2(kteq) for kteq > 1 .

(2.151)

As we shall see in Chapter 3, inflation generically leads to a spectrum which is
close to scale invariant1 n � 1. A formal definition of the spectrum, interpreting
�, or more precisely the amplitude A as a random variable is given in Section 2.6.
Here we may just consider it as the square of the Fourier transform of � and ignore
the expectation value 〈· · ·〉.

Another interesting case (especially when discussing inflation) is the scalar field.
There, as we shall see in Chapter 3,� = 0, but in general� 
= 0 since δp/δρ 
= ṗ/ρ̇.
Nevertheless, since this case again has only one dynamical degree of freedom, we

1 The reason for the definition of n, such that 〈|�|2〉k3 ∝ kn−1 is purely historical and not very logical, but as
always, it is difficult to change conventions without leading to confusion. For compatibility with the literature
we therefore keep this convention.
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Fig. 2.1. The approximate form of the power spectrum 〈|�|2〉k3 for a scale-
invariant initial spectrum, n = 1 is plotted.

can express the perturbation equations in terms of one single second-order equation
for �. In Chapter 3 we shall find the following equation for a perturbed scalar field
cosmology

�̈ + 3H(1 + c2
s )�̇ + [(1 + 3c2

s )(H2 − K ) − (1 + 3w)(H2 + K ) + k2]� = 0 .

(2.152)
The only difference between the perfect fluid and scalar field perturbation equation
is that the latter is missing the factor c2

s in front of the oscillatory k2 term. It is useful
to define also the variable (Mukhanov et al., 1992)

u = a[4πG(H2 − Ḣ + K )]−1/2� , (2.153)

which satisfies the equation

ü + (c2
s k2 − θ̈/θ )u = 0 , (2.154)

where

θ = 3H
2a

√
H2 − Ḣ + K

. (2.155)

A second-order linear differential equation of the form (2.152) can always be trans-
formed into one of the form of Eq. (2.154) by a suitable transformation of variables.
We show this in Ex. 2.5.
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In terms of the curvature variable

ζ ≡ 2(H−1�̇ + �)

3(1 + w)
+ � , (2.156)

Eq. (2.145) is equivalent to

ζ̇ = 2

3(1 + w)H

{[
(2 + 3w + 3c2

s )K − c2
s k2

]
� + 1 + 3w

2

K

H �̇

}
. (2.157)

If K is negligible, this implies again that ζ is conserved on super-Hubble scales,
k/H � 1.

The evolution of ζ is closely related to the canonical variable v defined by

v = −a
√
H2 − Ḣ√

4πGcsH
ζ , (2.158)

if K = 0. It satisfies the equation

v̈ + (c2
s k2 − z̈/z)v = 0 , (2.159)

for

z = a
√
H2 − Ḣ
csH

. (2.160)

The significance of the canonical variablev which has been introduced in Mukhanov
et al. (1992) will be discussed in Chapter 3.

2.4 Simple examples

We first discuss two simple applications which are important to understand the
CMB anisotropy spectrum.

2.4.1 The pure dust fluid for K = 0,Λ = 0

We assume the dust to have w = c2
s = p = 0 and � = � = 0. Equation (2.146)

then reduces to

�̈ + 6

t
�̇ = 0 , (2.161)

with the general solution,

� = �0 + �1
1

t5
, (2.162)

with arbitrary constants �0 and �1. Since the perturbations are supposed to be small
initially, they cannot diverge for t → 0, and we have therefore to choose the decay-
ing mode, �1 = 0. Another way to argue is as follows: if the mode �1 has to be small
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already at some early initial time tin, it will be much smaller later and may hence be
neglected at late times. But also the �0 mode is only constant and not growing. This
fact led Lifshitz, who was the first to analyse relativistic cosmological perturbations,
to the conclusions that linear perturbations do not grow in a FL universe and cosmic
structure cannot have evolved by gravitational instability (Lifshitz, 1946). However,
the important point to note here is that, even if the gravitational potential remains
constant, matter density fluctuations do grow on subhorizon scales and therefore
inhomogeneities can evolve on scales that are smaller than the Hubble scale. To
see this we consider the conservation equations (2.114), (2.105) and the Poisson
equation (2.103). For the pure dust case, w = c2

s = � = � = 0, they reduce to

Ḋg = −kV (energy conservation) , (2.163)

V̇ + HV = k� (gravitational acceleration) , (2.164)

− 2k2

3H2
� = (

Dg + 3
(
� + Hk−1V

))
(Poisson) , (2.165)

where we have used the relation

D = Dg + 3(1 + w)
(
� + Hk−1V

)
. (2.166)

The Friedmann equation for dust gives H = 2/t . Setting kt = x and a prime =
d/dx , the system (2.163)–(2.165) becomes

D′
g = −V , (2.167)

V ′ + 2

x
V = � , (2.168)

6

x2

(
Dg + 3

(
� + 2

x
V

))
= −� . (2.169)

We use (2.169) to eliminate � and (2.167) to eliminate Dg, leading to(
18 + x2

)
V ′′ +

(
72

x
+ 4x

)
V ′ −

(
72

x2
+ 4

)
V = 0 . (2.170)

The general solution of Eq. (2.170) is

V = V0x + V1

x4
. (2.171)

The V1 mode is the decaying mode (corresponding to �1) which we neglect. The
perturbation variables are then given by

V = V0x , (2.172)

Dg = −15V0 − 1

2
V0x2 , (2.173)

V0 = �0/3 . (2.174)
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We distinguish two regimes.
(i) Super-horizon, x � 1, where we have

V = 1

3
�0x , (2.175)

Dg = −5�0 , (2.176)

� = �0 . (2.177)

Note that even though V is growing, it always remains much smaller than � or
Dg on super-horizon scales. Hence the largest fluctuations are of order �, which is
constant.
(ii) Subhorizon, x � 1, where the solution is dominated by the terms

V = 1

3
�0x , (2.178)

Dg = −1

6
�0x2 , (2.179)

� = �0 = constant . (2.180)

Note that for dust

D = Dg + 3� + 6

x
V = −1

6
�0x2 .

In the variable D the constant term has disappeared and we have D � � on super-
horizon scales, x � 1.

On subhorizon scales, the density fluctuations grow like the scale factor ∝ x2 ∝
a. Nevertheless, Lifshitz’ conclusion (Lifshitz, 1946) that pure gravitational insta-
bility cannot be the cause of structure formation has some truth. If we start from tiny
thermal fluctuations of the order of 10−35, they can only grow to about 10−30 due
to this mild, power law instability during the matter dominated regime. Or, to put it
differently, if we want to form structure by gravitational instability, we need initial
fluctuations of the order of at least 10−5, much larger than thermal fluctuations.
One possibility for creating such fluctuations is quantum particle production in the
classical gravitational field during inflation. The rapid expansion of the Universe
during inflation quickly expands microscopic scales at which quantum fluctuations
are important to cosmological scales where these fluctuations are then ‘frozen in’
as classical perturbations in the energy density and the geometry. We will discuss
the induced spectrum of fluctuations in Chapter 3.
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2.4.2 The pure radiation fluid, K = 0,Λ = 0

In this limit we set w = c2
s = 1

3 and � = � = 0 so that � = �. We conclude from
ρ ∝ a−4 that a ∝ t . For radiation, the general solution (2.148) becomes

�(x) = 1

x
[Aj1(x) + By1(x)] , (2.181)

where we have set x = kt/
√

3 = cskt and used the fact that a ∝ x . On super-
horizon scales, x � 1, we have (see Appendix A4.3)

�(x) � A

3
+ B

x3
. (2.182)

We assume that the perturbations have been initialized at some early time xin � 1
and that at this time the two modes have been comparable. If this is the case then
B � A and we may neglect the B-mode at later times, so that (see Abramowitz &
Stegun, 1970)

�(x) = A

x
j1(x) = A

(
sin(x)

x3
− cos(x)

x2

)
. (2.183)

To determine the density and velocity perturbations, we use the energy conservation
and Poisson equations for radiation, with a prime denoting d/dx these become, for
radiation,

D′
g = − 4√

3
V , (2.184)

−2x2� = Dg + 4� + 4√
3x

V . (2.185)

Inserting the solution (2.183) for �, we obtain

Dg = 2A

[
cos(x) − 2

x
sin(x)

]
, (2.186)

V = −
√

3

4
D′

g , (2.187)

� = −
Dg + 4√

3x
V

4 + 2x2
. (2.188)

In the super-horizon regime, x � 1, we obtain

� = A

3
, Dg = −2A

(
1 + 1

6
x2

)
, V = A

2
√

3
x . (2.189)
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On subhorizon scales, x � 1, we find oscillating solutions with constant amplitude
and with frequency k/

√
3:

V =
√

3A

2
sin(x) , (2.190)

Dg = 2A cos(x) , � = −A cos(x)/x2 . (2.191)

The radiation fluid cannot simply ‘collapse’ under gravity. As in acoustic waves,
the restoring force provided by the pressure leads to oscillations with constant
amplitude. These are called the ‘acoustic oscillations’ of the radiation fluid. As we
shall see in the next section, they are responsible for the acoustic peaks in the CMB
fluctuation spectrum.

Also for radiation perturbations

D = −2A

3
x2 � �

is small on super-horizon scales, x � 1.
The perturbation amplitude is given by the largest gauge-invariant perturbation

variable. We conclude therefore that perturbations outside the Hubble horizon are
frozen to first order. Once they enter the horizon they start to collapse, but pressure
resists the gravitational force and the radiation fluid fluctuations oscillate at constant
amplitude. The perturbations of the gravitational potential oscillate and decay like
1/a2 inside the horizon.

2.4.3 The mixed dust and radiation fluid for K = 0 ,Λ = 0

We now consider a mixed matter (also called ‘dust’ since we neglect its pressure)
and radiation fluid with comparable perturbation amplitudes in the fluid variables.
At early times we are in the radiation dominated era, and radiation perturbations
will not be affected at all by the subdominant gravitational potential from mat-
ter fluctuations. As before, the radiation variables and the gravitational potential
perform acoustic oscillations,

� = A

x
j1(x) = A

[
sin(x)

x3
− cos(x)

x2

]
, (2.192)

Dgr = 2A

[
cos(x) − 2

x
sin(x)

]
, (2.193)

Vr =
√

3A

2

[(
1 + 2

x2

)
sin(x) − 2

x
cos(x)

]
. (2.194)
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In the radiation era the matter equations become (x = kt√
3
)

D′
gm +

√
3Vm = 0 , (2.195)

(aVm)′ = a
√

3� = a
√

3A

x
j1(x) . (2.196)

These equations can be solved simply by integration leading to

Vm = −√
3A

x
j0(x) + V1/x = −

√
3A

sin(x)

x2
+ V1/x , (2.197)

Dgm = −3A

[
sin(x)

x
+ Ci(x) − ln(x) + z0

]
−

√
3V1 ln(x) . (2.198)

Here Ci is the integral cosine function defined by Ci(x) = ∫ x
0

1−cos(z)
z dz

(see Abramowitz & Stegun, 1970). The condition that V be small at very early
times, x � 1 requires V1 = √

3A. The constant z0 is an arbitrary integration con-
stant. With this the above solutions become

Vm =
√

3A

x

[
1 − sin(x)

x

]
, (2.199)

Dgm = −3A

[
sin(x)

x
− Ci(x) + z0

]
. (2.200)

On large scales, x � 1, we obtain the behaviour

� = A

3
, (2.201)

Dgr = −2A , (2.202)

Vr = A

2
√

3
x , (2.203)

Vm = A

2
√

3
x , (2.204)

Dgm = −3A(1 + z0) . (2.205)

The most natural condition to fix the constant z0 is the requirement that at very
early times perturbations are adiabatic, �tot = πL − (c2

s /w)δ = 0. We use πL =
δPr/Pr = δρr/ρr and

c2
s /w = 4

R + 3
, where R ≡ ρr

ρm + ρr
.
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Here we have used the fact that P = Pr = ρr/3 and ρr ∝ a−4, while ρm ∝ a−3.
For the entropy production we then obtain

�tot = 4
1 − R

R + 3

(
3

4
δr − δm

)
, (2.206)

so that �tot = 0 implies δm = 3
4δr . According to the definition of Dg, Eq. (2.85) this

is equivalent to Dgm = (3/4)Dgr . To achieve this we have to set z0 = − 1
2 so that

Dgm = −3

2
A . (2.207)

With this choice, perturbations are adiabatic on super-Hubble scales. But since
Dgm and Dgr evolve differently on sub-Hubble scales, there clearly �tot 
= 0. We
shall use the notion ‘adiabatic’ in the sense that the initial conditions are such that
�tot(tin) = 0 for some early initial time tin such that ktin � 1.

On sub-Hubble scales, x � 1, the radiation perturbations oscillate as in the
ordinary radiation universe, but the matter perturbations grow logarithmically,
Dgm � 3ACi(x) � 3A ln(x) for x � 1. This severe suppression of growth of
matter perturbations during the radiation dominated era is called the ‘Mészáros
effect’ (Mészáros, 1974). Physically, the reason for this suppression is that matter
self-gravity ∝ 4πGρm is too weak during the radiation dominated regime to over-
come damping which (in the same units) is ∝ H2 ∝ Gρr . Neglecting self-gravity
in the matter equation would yield Dgm = constant, which is nearly correct.

We now go over to the matter dominated regime. There, the matter perturbations
are not affected by radiation and behave as given in Eqs. (2.172)–(2.174),

� = �0 , (2.208)

Vm = 1√
3
�0x , (2.209)

Dgm = −5�0

(
1 + 1

10
x2

)
. (2.210)

Keeping in mind that x = kt/
√

3, these solutions correspond exactly to
Eqs. (2.172)–(2.174). The radiation perturbation equations reduce to

D′
gr = − 4√

3
Vr , (2.211)

D′′
gr + Dgr = −8�0 , (2.212)

with the general solution

Dgr = B sin(x) + C cos(x) − 8�0 ,

Vr = −
√

3

4
(B cos(x) − C sin(x)) .
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Requiring that these solutions be connected smoothly to the radiation dominated
solutions fixes the constants B and C . Therefore, on large scales, x � 1, V has
to grow like x which implies B ≡ 0. The constant C is then determined by the
condition that the perturbations be adiabatic for x � 1. This implies

Dgr � C − 8�0 = 4

3
Dgm = −20

3
�0 so that C = 4

3
�0 . (2.213)

This leads to the following solution for the radiation perturbations in the matter
dominated era

Dgr = 4�0

(
1

3
cos(x) − 2

)
, (2.214)

Vr = 1√
3
�0 sin(x) . (2.215)

These are the exact solutions for decoupled but adiabatic matter and radiation
fluctuations in the matter dominated era. To connect them to the solutions in the
radiation dominated era, we require that Dgm be continuous at the transition, x =
xeq = kteq/

√
3. This implies

�0 = A

{ 3
10 for xeq � 1

6 ln(xeq)
x2

eq
for xeq � 1 .

(2.216)

This approximation is of course relatively crude, since the radiation to matter tran-
sition is very gradual and not as abrupt as it is implemented here. It is also easy
to see that we would not obtain exactly the same condition when requiring � to
be continuous at the transition. The main difference is that we do not obtain the
logarithmic growth of the potential in the radiation dominated era from the con-
tinuity of �. But this is clearly a failure since the log growth of Dgm leads to a
larger gravitational potential in the matter era. For xeq � 1 both approximations are
bad and should be taken simply as order of magnitude estimates. More details on
the coupled matter radiation system are found in Section 3.3. In Fig. 2.2 the exact
solutions are plotted.

Instead of requiring adiabatic initial conditions one sometimes also requires � =
� = 0 on super-Hubble scales. This is the so-called iso-curvature initial condition.
We shall discuss it in Section 3.3.

2.5 Light-like geodesics and CMB anisotropies

After decoupling, t > tdec, photons follow to a good approximation light-like
geodesics. The temperature shift of a Planck distribution of photons is equal to
the energy shift of any given photon. The relative energy shift, red- or blue shift, is
independent of the photon energy (gravity is ‘achromatic’).



88 Perturbation theory

Fig. 2.2. The time evolution for |Dgm |2 (long-dashed), |Dgr |2 (dotted), |Vm |2
(dashed) and |Vr |2 (solid) is indicated as a function of t/teq. The wave number
in the top panel is k1 � 1/teq, while in the bottom panel k2 � 1/teq. Note that
for a large wave number Dgm immediately starts growing and rapidly becomes
much larger than Dgr , while for the small wave number (top panel) Dgm stays of
the same order as Dgr until horizon entry, which is roughly at t/teq ∼ 10. After
horizon entry Dgm starts growing while Dgr starts oscillating.

The unperturbed photon trajectory follows

(xµ(t)) ≡
(

t,
∫ t0

t
n(t ′) dt ′ + x0

)
,

where x0 is the photon position at time t0 and n is the (parallel transported) photon
direction. We determine the components of the photon momentum with respect to
a geodesic basis (ei )3

i=1 on the constant time hypersurfaces. We choose

ei =
{

∂
∂xi , if K = 0 ,

εi , with γ (εi , ε j ) = δi j if K 
= 0 .
(2.217)

In other words, the vector fields εi form an orthonormal basis for the spatial metric
γi j .
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Our metric is of the form

ds̃2 = a2ds2 , with (2.218)

ds2 = (
γµν + hµν

)
dxµ dxν, γ00 = −1, γi0 = 0, γi j = γ j i . (2.219)

as before.
We make use of the fact that light-like geodesics are conformally invariant. More

precisely, ds2 and ds̃2 have the same light-like geodesics, only the corresponding
affine parameters are different. Let us denote the two affine parameters by λ and λ̃

respectively, and the tangent vectors to the unperturbed geodesic by

n = dx

dλ
, ñ = dx

dλ̃
, n2 = ñ2 = 0 , n0 = 1 , n2 = 1 . (2.220)

The photon 4-momentum pµ is then given by pµ = ωn, where ω is the constant
energy of the photon moving in the metric ds2. We have seen that in expanding
space the photon momentum is redshifted. Actually, the components behave like
ñi ∝ 1/a2 so that ñ2 = a2 ∑

i (ñ
i )2 ∝ 1/a2, hence we have to choose λ̃ = a2λ. As

always for light-like geodesics, λ̃ and λ are only determined up to a multiplicative
constant which we have fixed by the conditions n2 = 1 and λ̃ = a2λ.

Let us now introduce perturbations. We set n0 = 1 + δn0. The geodesic equation
for the perturbed metric

ds2 = (γµν + hµν) dxµ dxν , (2.221)

yields, to first order,

d

dλ
δnµ = −δ�

µ
αβnαnβ . (2.222)

For the energy shift, we have to determine δn0. Since g0µ = −δ0µ + first order, we
obtain δ�0

αβ = − 1
2 (hα0|β + hβ0|α − ḣαβ), so that

d

dλ
δn0 = hα0|βnβnα − 1

2
ḣαβnαnβ . (2.223)

Integrating this equation we use hα0|βnβnα = d
dλ

(hα0nα), so that the change of n0

between some initial time ti and some final time t f is given by

δn0| f
i = [

h00 + h0 j n
j
] f

i − 1

2

∫ f

i
ḣµνnµnνdλ . (2.224)

The energy of a photon with 4-momentum p̃µ as seen by an observer moving with
4-velocity ũ is given by E = −(ũ ·̃ p̃). Hence, the ratio of the energy of a photon
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measured by some observer at t f to the energy emitted at ti is

E f

Ei
= (ñ ·̃ũ) f

(ñ ·̃ũ)i
= ai

a f

(n · u) f

(n · u)i
, (2.225)

where here ·̃ denotes the scalar product in an expanding universe, containing the
factor a2 and ũ is the emitter and receiver 4-velocity in an expanding universe, ũ =
a−1u, while u f and ui are the 4-velocities of the observer and emitter respectively
in the non-expanding conformally related geometry given by

u = (1 − A)∂t + vi ei = aũ . (2.226)

Together with ñ = a−2n this implies the result (2.225). The ratio ai/a f = Ti/T f

is the usual (unperturbed) redshift which relates n and ñ. An observer measuring
a temperature T0 receives photons that were emitted at the time tdec of decoupling
of matter and radiation, at the fixed temperature Tdec. In first-order perturbation
theory, we find the following relation between the unperturbed temperatures T f ,
Ti , the true temperatures T0 = T f + δT f , Tdec = Ti + δTi , and the photon density
perturbation:

ai

a f
= T f

Ti
= T0

Tdec

(
1 − δT f

T f
+ δTi

Ti

)
= T0

Tdec

(
1 − 1

4
δr | f

i

)
, (2.227)

where δr is the intrinsic density perturbation in the radiation and we have used
ρr ∝ T 4 in the last equality. Inserting the above equation and Eq. (2.224) into
Eq. (2.225), and using Eq. (2.28) for the definition of hµν , as well as Eqs. (2.55),
(2.56), (2.86) and (2.83) one finds, after integration by parts, the following result
for scalar perturbations:

E f

Ei
= T0

Tdec

{
1 −

[
1

4
D(r )

g + V (b)
j n j + � + �

] f

i

+
∫ f

i
(�̇ + �̇) dλ

}
.

(2.228)
Here D(r )

g denotes the density perturbation in the radiation fluid, and V (b) is the
peculiar velocity of the baryonic matter component (the emitter and observer of
radiation).

Evaluating Eq. (2.228) at final time t0 (today) and initial time tdec, we obtain the
temperature difference of photons coming from different directions n1 and n2

�T

T
≡ �T (n1)

T
− �T (n2)

T
≡ E f

Ei
(n1) − E f

Ei
(n2) . (2.229)

Direction-independent contributions to E f /Ei do not enter in this difference.
The largest contribution to �T/T is the dipole term, V (b)

j (t0)n j which simply
describes our motion with respect to the emission surface. Its amplitude is about
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1.2 × 10−3 and it has been measured so accurately that even the yearly variation
due to the motion of the Earth around the sun has been detected.

For the higher multipoles (polynomials in n j of degree 2 and higher) we can set

�T (n)

T
=

[
1

4
D(r )

g + V (b)
j n j + � + �

]
(tdec, xdec) +

∫ t0

tdec

(�̇ + �̇)(t, x(t)) dt ,

(2.230)
where x(t) is the unperturbed photon position at time t for an observer at x0, and
xdec = x(tdec) (if K = 0 we simply have x(t) = x0 − (t0 − t)n). The first term in
Eq. (2.230) is the one we have discussed in the previous section. It describes the
intrinsic inhomogeneities of the radiation density on the surface of last scattering,
due to acoustic oscillations prior to decoupling, see Eq. (2.193). Depending on the
initial conditions, it can also contribute significantly on super-horizon scales. This
is especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (2.213), in a dust + radiation universe with 
 = 1, adiabatic initial conditions
imply D(r )

g (k, t) = − 20
3 �(k, t) and V (b) = V (r ) � D(r )

g when kt � 1. With � = �

the square bracket of Eq. (2.230) therefore gives for adiabatic perturbations

(
�T (n)

T

)(OSW)

adiabatic

= 1

3
�(tdec, xdec) ,

on super-horizon scales. The contribution to �T/T from the last scattering surface
on very large scales is called the ‘ordinary Sachs–Wolfe effect’ (OSW). It was
derived for the first time by Sachs and Wolfe (1967). For iso-curvature perturbations,
the initial conditions require D(r )

g (k, t) → 0 for t → 0 so that the contribution of
D(r )

g to the ordinary Sachs–Wolfe effect can be neglected,

(
�T (n)

T

)(OSW)

iso-curvature

= 2�(tdec, xdec) .

The second term in (2.230) describes the relative motion of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term; we call the sum of the acoustic and Doppler
contributions ‘acoustic peaks’.

The integral in Eq. (2.230) accounts for the red- or blue shifts caused by the
time dependence of the gravitational potential along the path of the photon, and
represents the so-called integrated Sachs–Wolfe (ISW) effect. In a 
 = 1, pure
dust universe, as we have seen, the Bardeen potentials are constant and there is no
integrated Sachs–Wolfe effect; the blue shift which the photons acquire by falling
into a gravitational potential is exactly cancelled by the redshift induced by climbing
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out of it. This is no longer true in a universe with substantial radiation contribution,
curvature, or a cosmological constant. The sum of the ordinary Sachs–Wolfe term
and the integral is the full Sachs–Wolfe contribution.

For vector perturbations δ(r ) and A vanish and Eq. (2.225) leads to(
E f

Ei

)(V )

= ai

a f

[
1 − V (b)

j n j
∣∣∣ f

i
+

∫ f

i
σ j n

j dλ

]
. (2.231)

We obtain a Doppler term and a gravitational contribution. For tensor perturbations,
i.e., gravitational waves, only the gravitational part remains:(

E f

Ei

)(T )

= ai

a f

[
1 −

∫ f

i
Ḣl j n

ln j dλ

]
. (2.232)

Equations (2.228), (2.231) and (2.232) are the manifestly gauge-invariant results
for the energy shift of photons due to scalar, vector and tensor perturbations. Dis-
regarding again the dipole contribution due to our proper motion, Eqs. (2.231) and
(2.232) imply the vector and tensor temperature fluctuations(

�T (n)

T

)(V )

= V (b)
j (tdec, xdec)n

j +
∫ f

i
σ j (t, x(t))n j dλ , (2.233)(

�T (n)

T

)(T )

= −
∫ f

i
Ḣl j (t, x(t))nln j dλ . (2.234)

Note that for models where initial fluctuations have been laid down in the very
early universe, vector perturbations are irrelevant as we have already pointed out.
In this sense Eq. (2.233) is here mainly for completeness. However, in models
where perturbations are sourced by some inherently inhomogeneous component
(e.g. topological defects, see Durrer et al. (2002)) vector perturbations can be
important.

2.6 Power spectra

2.6.1 Generics

The quantities that we can determine from a given model are usually not the pre-
cise values of perturbation variables as �(k, t), but only expectation values like
〈|�(k, t) · �∗(k′, t)〉. In different realizations, e.g., of the same inflationary model,
the ‘phases’ α(k, t) given by �(k, t) = exp(iα(k))|�(k, t)| are different. They are
random variables. If we assume that the random process which generates the fluctu-
ations � is stochastically homogeneous and isotropic, these phases have a vanishing
2-point correlator for different values of k. However, the quantity which we can
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calculate for a given model and which then has to be compared with observations
is the power spectrum, defined below. Power spectra are the ‘harmonic transforms’
of the 2-point correlation functions.2 If the perturbations of the model under con-
sideration are Gaussian, a relatively generic prediction from inflationary models,
then the 2-point functions and therefore the power spectra contain the full statistical
information of the model.

There is one additional problem to consider: one can never ‘measure’ expectation
values. We have only one Universe, i.e., one realization of the stochastic process
which generates the fluctuations at our disposal for observations. The best we can
do when we want to determine the mean square fluctuation on a given scale λ is to
average over many disjoint patches of size λ, assuming that this spatial averaging
corresponds to an ensemble averaging; a type of ‘ergodic hypothesis’. This works
well as long as the scale λ is much smaller than the Hubble horizon, the size of
the observable Universe. For λ ∼ O(H−1

0 ) we can no longer average over many
independent volumes and the value measured could be quite far from the ensemble
average. This problem is known under the name ‘cosmic variance’ and we shall
come back to it in Chapter 6. More details about the formal aspects of power spectra
can be found in Appendix 7.

For an arbitrary scalar variable X in position space, we define the power spectrum
in Fourier space by〈

X (k, t0) X∗ (
k′, t0

)〉 = (2π )3δ(k − k′)PX (k) . (2.235)

In flat space, K = 0, the function X (k) is the ordinary Fourier transform of X (x).
If K 
= 0 the situation is more complicated. Then X (k) represents an expansion of
X (x) in terms of eigenfunctions of the Laplacian and in the case K > 0 the Dirac
δ-function has to be replaced by a discrete Kronecker δ.

The 〈 〉 indicates a statistical average, ensemble average, over ‘random initial
conditions’ in a given model. We assume that no point in space is preferred, in
other words that X (x) and any other stochastic field which we consider has the
same distribution in every point x. Such random fields are called ‘statistically ho-
mogeneous’ (or stationary). We further assume that the distribution of X (x) has no
preferred direction. This means that the random field X is statistically isotropic.
These properties imply that the Fourier transform of the 2-point function is diagonal,
i.e., they explain the factor δ(k − k′) in Eq. (2.235) (see Ex. 2.4).

2 The ‘harmonic transform’ in usual flat space is simply the Fourier transform. In curved space it is the expansion
in terms of eigenfunctions of the Laplacian on that space, e.g., on the sphere it corresponds to the expansion in
terms of spherical harmonics.



94 Perturbation theory

2.6.2 The matter power spectrum

Let us first consider the power spectrum of dark matter, PD(k), which is defined
by

〈
Dgm (k, t0) D∗

gm

(
k′, t0

)〉 = PD(k)(2π )3δ(k − k′) . (2.236)

PD(k) is usually compared with the observed power spectrum of the galaxy distri-
bution. This is clearly problematic since it is by no means evident what the relation
between these two spectra should be. This problem is known under the name of
‘biasing’ and it is very often simply assumed that the dark matter and galaxy power
spectra differ only by a constant factor. The hope is also that on sufficiently large
scales, since the evolution of both, galaxies and dark matter is governed by gravity,
their power spectra should not differ much. This hope seems to be reasonably jus-
tified. In Tegmark et al. (2004) it is found that the observed galaxy power spectrum
and the matter power spectrum inferred from the observation of CMB anisotropies
differ only by about 10% on large scales.

The power spectrum of velocity perturbations satisfies the relation

〈
Vj (k, t0) V ∗

i

(
k′, t0

)〉 = Q(S)
j (k)Q(S)∗

i (k′)PV (k)(2π )3δ(k − k′) , (2.237)

PV (k) � H 2
0 
1.2

m PD(k)k−2 . (2.238)

For � we have used that |kV (t0)| = Ḋ(m)
g (t0) ∼ H0


0.6
m Dg on subhorizon scales

(see e.g., Peebles, 1993).

2.6.3 The CMB power spectrum

Definition

The spectrum that we are most interested in and which can be both, measured and
calculated to the best accuracy is the CMB anisotropy power spectrum. It is defined
as follows: �T/T is a function of position x, time t and photon direction n. Here,
x = x0 and now, t = t0, �T/T is a function on the sphere, n ∈ S

2. We develop it in
terms of spherical harmonics, Y�ms. We will often suppress the arguments t0 and x0 in
the following calculations. Since our fields are statistically homogeneous, averages
over an ensemble of realizations (expectation values) are independent of position.
Furthermore, we assume that the process generating the initial perturbations is
statistically isotropic. This means that the distribution of �T/T (n) is the same for
all directions n. As for the Fourier transforms of random fields in space, this implies
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that the harmonic transform of �T/T is diagonal. In other words, the off-diagonal
correlators of the expansion coefficients a�m vanish and we have

�T

T
(x0, n, t0) =

∑
�,m

a�m(x0)Y�m(n),
〈
a�m · a∗

�′m ′
〉 = δ��′δmm ′C� . (2.239)

The C�s are the CMB power spectrum.
The 2-point correlation function is related to the C�s by〈

�T

T
(n)

�T

T
(n′)

〉
n·n′=µ

=
∑

�,�′,m,m ′

〈
a�m · a∗

�′m ′
〉
Y�m(n)Y ∗

�′m ′(n′)

=
∑

�

C�

�∑
m=−�

Y�m(n)Y ∗
�m(n′)︸ ︷︷ ︸

2�+1
4π

P�(n·n′)

= 1

4π

∑
�

(2� + 1)C� P�(µ) , (2.240)

where we have used the addition theorem of spherical harmonics for the last equal-
ity; the P�s are the Legendre polynomials (see Appendices A4.2.3 and A4.1).

Clearly the alms from scalar, vector and tensor perturbations are uncorrelated,〈
a(S)

�m a(V )
�′m ′

〉
=

〈
a(S)

�m a(T )
�′m ′

〉
=

〈
a(V )

�m a(T )
�′m ′

〉
= 0 . (2.241)

Since vector perturbations decay, their contributions, the C (V )
� , are negligible in

models where initial perturbations have been laid down very early, e.g., after an
inflationary period. Tensor perturbations are constant on super-horizon scales and
perform damped oscillations once they enter the horizon.

Scalar perturbations

Let us first discuss in somewhat more detail scalar perturbations. We specialize to
the case K = 0 for simplicity. We suppose the initial perturbations to be given by
a spectrum of the form〈

�(k)�∗(k′)
〉
k3 = (2π )3k3 P�(k)δ(k − k′) = (2π )3 AS(kt0)n−1δ(k − k′) .

(2.242)
We multiply by the constant tn−1

0 , the actual comoving size of the horizon, in order
to keep AS dimensionless for all values of n. The number n is called the spectral
index. AS then represents the amplitude of metric perturbations at horizon scale
today, k = 1/t0.
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As we have seen in the previous section, the dominant contribution on super-
horizon scales (neglecting the integrated Sachs–Wolfe effect

∫
�̇ + �̇ ) is the

ordinary Sachs–Wolfe effect, OSW, which for adiabatic perturbations is given by

�T

T
(x0, n, t0) � 1

3
�(xdec, tdec) . (2.243)

Since xdec = x0 + n(t0 − tdec), the Fourier transform of (2.243) gives

�T

T
(k, n, t0) = 1

3
�(k, tdec) · eikn(t0−tdec) . (2.244)

Using the decomposition (see Appendix A4.3)

eikn(t0−tdec) =
∞∑

�=0

(2� + 1)i� j�(k(t0 − tdec))P�(̂k · n) ,

where j� are the spherical Bessel functions, we obtain (k = |k|, k̂ = k/k)〈
�T

T
(x0, n, t0)

�T

T
(x0, n′, t0)

〉
(2.245)

= 1

(2π )6

∫
d3k d3k ′ eix0·(k−k′)

〈
�T

T
(k, n, t0)

(
�T

T

)∗
(k′, n′, t0)

〉
� 1

(2π )69

∫
d3kd3k ′eix0·(k−k′) 〈�(k)�∗(k′)

〉 ∞∑
�,�′=0

(2� + 1)(2�′ + 1)i�−�′

· j�(k(t0 − tdec)) j�′(k ′(t0 − tdec))P�(k̂ · n) · P�′(k̂′ · n′)

= 1

(2π )39

∫
d3k P�(k)

∞∑
�,�′=0

(2� + 1)(2�′ + 1)i�−�′

· j�(k(t0 − tdec)) j�′(k ′(t0 − tdec))P�(k̂ · n) · P�′(k̂ · n′) . (2.246)

In the first equals sign we have used the unitarity of the Fourier transfor-
mation. Inserting P�(k̂n) = 4π

2�+1

∑
m Y ∗

�m(k̂)Y�m(n) and P�′(k̂n′) = 4π
2�′+1∑

m ′ Y ∗
�′m ′(k̂)Y�′m ′(n′), integration over the directions d
k̂ gives

δ��′δmm ′
∑

m Y ∗
�m(n)Y�m(n′).

Also using
∑

m Y ∗
�m(n)Y�m(n′) = 2�+1

4π
P�(µ), where µ = n · n′, we find〈

�T

T
(x0, n, t0)

�T

T
(x0, n′, t0)

〉
nn′=µ

�
∑

�

2� + 1

4π
P�(µ)

2

π

∫
dk

k

1

9
P�(k)k3 j2

� (k(t0 − tdec)) . (2.247)
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Comparing this equation with Eq. (2.240) we obtain for adiabatic perturbations
on scales 2 ≤ � � χ (t0 − tdec)/tdec ∼ 100:

C (SW)
� � C (OSW)

� � 2

9π

∫ ∞

0

dk

k
P�(k)k3 j2

� (k (t0 − tdec)) . (2.248)

The function j2
� (k(t0 − tdec)) peaks roughly at k (t0 − tdec) � kt0 � �. If � is a pure

power law on large scales, ktdec <∼ 1 as in Eq. (2.242) and we set k(t0 − tdec) ∼ kt0,
the integral (2.248) can be performed analytically. For the ansatz (2.242), using the
integral (A4.102) one finds

C (SW)
� = AS

9

�(3 − n)�(� − 1
2 + n

2 )

23−n�2(2 − n
2 )�(� + 5

2 − n
2 )

for − 3 < n < 3 . (2.249)

Of special interest is the scale-invariant or Harrison–Zel’dovich (HZ) spectrum,
n = 1 (see Chapter 3). It leads to

�(� + 1)C (SW)
� = AS

9π
�

〈(
�T

T
(ϑ�)

)2
〉

, ϑ� ≡ π/� . (2.250)

This is precisely (within the accuracy of the experiment) the behaviour observed
by the DMR (differential microwave radiometer) experiment aboard the satel-
lite COBE (Smoot et al., 1992) and more precisely with the WMAP (Wilkinson
microwave anisotropy probe) satellite (Bennett et al., 2003), n = 0.95 ± 0.02 (see
Table 6.1) .

As we shall see in Chapter 3, inflationary models predict very generically a
HZ spectrum (up to small corrections). The DMR discovery has therefore been
regarded as a great success, if not a proof, of inflation. There are, however, other
models such as topological defects (see Section 6.8, or for more details Durrer et al.,
2002), or certain string cosmology models (Durrer et al., 1999) which also predict
scale-invariant, i.e., Harrison–Zel’dovich spectra of fluctuations. These models are
outside the class investigated here, since in them perturbations are induced by
seeds which evolve non-linearly in time. They are not simply layed down as initial
conditions for the fluid perturbations but typically affect the perturbations of a given
wavelength until it crosses the Hubble scale. This generically leads to iso-curvature
perturbations which are not favoured by present data. We therefore investigate such
models only briefly in Section 6.8.

For iso-curvature perturbations, the main contribution on large scales comes
from the integrated Sachs–Wolfe effect and (2.248) is replaced by

C (ISW)
� � 8

π

∫
dk

k
k3

〈∣∣∣∣∫ t0

tdec

�̇(k, t) j2
� (k(t0 − t)) dt

∣∣∣∣2
〉

. (2.251)
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Fig. 2.3. Examples of COBE normalized adiabatic (solid line) and iso-curvature
(dashed line) CMB anisotropy spectra, �(� + 1)C�/(2π ) in units of (µK )2 are
shown on the top panel. In the bottom panel the ratio of the iso-curvature to
adiabatic temperature fluctuations is plotted.

Inside the horizon � is roughly constant (matter dominated). Using the ansatz
(2.242) for � inside the horizon and setting the integral in (2.251) ∼ 2�(k, t =
1/k) j2

� (kt0), we obtain again (2.249), but with A2
S/9 replaced by 4A2

S . For a fixed
amplitude AS of perturbations, the Sachs–Wolfe temperature anisotropies coming
from iso-curvature perturbations are therefore about six times larger than those
coming from adiabatic perturbations (see Fig. 2.3).

On smaller scales, � >∼ 100, the contribution to �T/T is dominated by acoustic
oscillations, the first two terms in Eq. (2.230). Instead of (2.251) we then obtain

C (AC)
� � 2

π

∫ ∞

0

dk

k
k3

〈∣∣∣∣1

4
Dr (k, tdec) j�(kt0) + V (r )(k, tdec) j ′

�(kt0)

∣∣∣∣2
〉

.

(2.252)

To remove the SW contribution from D(r )
g we have simply replaced it by Dr which

is much smaller than � on super-horizon scales and therefore does not contribute
to the SW terms. On subhorizon scales Dr � D(r )

g and Vr are oscillating like sine or

cosine waves depending on the initial conditions. Correspondingly the C (AC)
� will

show peaks and minima. For adiabatic initial conditions D(r )
g and therefore Dr also
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oscillates like a cosine. Its minima and maxima are at kntdec/
√

3 = nπ . Odd values
of n correspond to maxima, ‘contraction peaks’, while even numbers are minima,
‘expansion peaks’.

These are the ‘acoustic peaks’ of the CMB anisotropies. Sometimes they are
misleadingly called ‘Doppler peaks’ referring to an old misconception that the
peaks are due to the velocity term in the above formula. Actually the contrary is
true. At maxima and minima of the density contrast, the velocity (being proportional
to the derivative of the density) nearly vanishes. We shall therefore consistently call
the CMB peak structure ‘acoustic peaks’.

The angle θn , which subtends the scale λn = π/kn at the last scattering sur-
face, is determined by the angular diameter distance to the last scattering surface,
dA(tdec) via the relation θn = λn/dA(tdec). Expanding the temperature anisotropies
in spherical harmonics, the angular scale θn corresponds (roughly) to the harmonic
number

�n � π/θn = πdA(tdec)/λn = dA(tdec)kn = n
√

3πdA(tdec)/tdec . (2.253)

For a flat matter dominated universe dA(tdec) � t0 leading to �n � 180n (see
Ex. 2.7). This crude approximation deviates by about 15% from the precise nu-
merical value, which not only depends, with dA, strongly on curvature but also on
the Hubble parameter and on the cosmological constant. Furthermore, the peak po-
sitions depend on the sound speed of the radiation–baryon plasma which we have
simply set to cs = 1/

√
3 in this approximation. We shall discuss this parameter

dependence of the peak positions in detail in Chapter 6. Note, however, that the
position of the first peak differs significantly for the iso-curvature mode, for which
D(r )

g oscillates like a sine. For generic initial conditions, we would expect a mixture
of the sine and cosine modes which leads to a displacement of the first peak. The ob-
served CMB anisotropies are consistent with a purely adiabatic mode and require,
at least, that the adiabatic mode dominates (Bucher et al., 2001; Trotta, 2006).

For a flat universe, 
 = 1, the nth peak therefore is placed at

�n � knt0 ∼= nπ
√

3
t0

tdec
. (2.254)

For a flat matter dominated universe we have t0
tdec

∼ √
zdec ∼ 33.2 which yields

�1 ∼ 180. Here we have used zdec ∼ 1100 (see Section 1.3). This approximation
is not very good since the Universe is not very well matter dominated at tdec. A
somewhat more accurate estimate (Ex. 2.7) gives �1 ∼ 220, in good agreement with
the numerical value. Subsequent peaks are then given by �n = n�1.

Our discussion is only valid in flat space. In curved space the exponentials
exp(ik(t0 − tdec)) have to be replaced with the harmonics of the curved spaces.
For the positions of the peaks, this corresponds to replacing knt0 by knχ (t0), hence
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replacing t0 by the comoving angular diameter distance to the last scattering surface.
Instead of Eq. (2.254) we then obtain the following approximate relation for the
peak positions,

�n ∼ nπ
√

3
χ (t0)

tdec
. (2.255)

For values of 
 close to unity this scales like 1/
√


 (see Section 1.2).
On very small scales the acoustic peaks are damped by the photon diffusion

which takes place during the recombination process. This effect will be discussed
with the Boltzmann equation approach in Chapter 4.

Tensor perturbations

For gravitational waves (which are tensor fluctuations), a formula analogous to
(2.249) can be derived (see Appendix 8),

C (T )
� = 2

π

∫
dk k2

∣∣∣∣∫ t0

tdec

dt Ḣ (t, k)
j�(k(t0 − t))

(k(t0 − t))2

∣∣∣∣2 (� + 2)!

(� − 2)!
. (2.256)

To a very crude approximation we may assume Ḣ (T ) = 0 on super-horizon scales
and

∫
dt Ḣ (T ) j�(k(t0 − t)) ∼ H (T )(t = 1/k) j�(kt0). For a pure power law,

k3 |H (k, t = 1/k)|2 = AT (kt0)nT , (2.257)

one obtains

C (T )
� � 2

π

(� + 2)!

(� − 2)!
AT

∫
dx

x
xnT

j2
� (x)

x4

= (� + 2)!

(� − 2)!
AT

�(6 − nT )�(� − 2 + nT
2 )

26−nT �2( 7
2 − nT )�(� + 4 − nT

2 )
. (2.258)

For a scale-invariant spectrum (nT = 0) this results in

�(� + 1)C (T )
� � 8

15π

�(� + 1)

(� + 3)(� − 2)
AT . (2.259)

The singularity at � = 2 in this crude approximation is not real, but there is some
enhancement of �(� + 1)C (T )

� at � ∼ 2 (see Fig. 2.4).
Since tensor perturbations decay on subhorizon scales, � >∼ 60, they are not very

sensitive to cosmological parameters.
Again, inflationary models (and topological defects) predict a scale-invariant

spectrum of tensor fluctuations (nT ∼ 0).
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Scalar Tensor

Fig. 2.4. Adiabatic scalar and tensor CMB anisotropy spectra are plotted, �(� +
1)C�/(2π ) in units of (µK )2 in log-scale (top panels), where the Sachs–Wolfe
plateau is clearly visible and in linear scale (bottom panels) which shows the equal
spacing of the acoustic peaks. The solid line shows the temperature spectrum,
the dashed line is the polarization and the dotted line shows the temperature–
polarization cross correlation (see Chapter 5). The latter can become negative, the
deep spikes in the dotted curves in the left-hand panels are actually sign changes.
The left-hand side shows scalar fluctuation spectra, while the right-hand side shows
tensor spectra. The observational data are well fitted by a purely scalar spectrum.
Comparison of data and a model scalar spectrum are shown in Figs. 6.5–6.7.

Comparing the tensor and scalar result for scale-invariant perturbations we obtain
for large scales, � < 50

C (T )
�

C (S)
�

� 72

15

AT

AS
≡ r . (2.260)

Present CMB anisotropy data favour a roughly scale-invariant spectrum with
amplitude

�(� + 1)C� � 6 × 10−10 for � <∼ 50 .
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If the perturbations are purely scalar, this requires AS � 1.7 × 10−8, if they were
purely tensorial (which we know they are not), we would need AT � 3.5 × 10−9.
In general observations require

AS

9π
(1 + r ) � 6 × 10−10 . (2.261)

On very small angular scales, � >∼ 800, fluctuations are damped by collisional
damping (Silk damping). This effect has to be discussed with the Boltzmann equa-
tion for photons which is presented in detail in Chapter 4.

2.7 Final remarks

In this chapter we have developed the basics of cosmological perturbation theory.
Perturbation theory is an important tool especially to calculate CMB anisotropies
and polarization since these are very small and can be determined reliably within
linear cosmological perturbation theory. Here we have discussed the Einstein equa-
tions and the propagation of light-like geodesics. Linear perturbations of the some-
what more involved Boltzmann equation which is more adequate to study CMB
anisotropies and polarization will be developed in Chapters 4 and 5. To determine the
evolution of the matter density fluctuations at late times, linear perturbation theory
has to be complemented with the theory of weakly non-linear Newtonian grav-
ity and with N -body simulations. To finally understand the formation of galaxies
non-gravitational highly non-linear physics, like heating and cooling mechanisms,
dissipation and nuclear reactions have to be taken into account. These topics go
beyond the scope of this book.

Exercises

(The exercises marked with an asterisk are solved in Appendix A10.2.)

Ex. 2.1 Gauge transformations∗

Using the general formulae of Appendix A2.2 derive Eq. (2.30),

LXḡ = a2[−2(HT + Ṫ )dt2 + 2(L̇ i − T,i )dt dxi

+ (
2HT γi j + Li | j + L j |i

)
dxi dx j ]. (2.262)

Ex. 2.2 Normals to hypersurfaces
We consider the normal nµ to some hypersurface of the form t = constant for a
suitably chosen time coordinate t . Then the corresponding 1-form, is of the form
nµ dxµ = f dt . The function f = ±

√
−g00 is determined by the normalization
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condition. Show that in this case the vorticity

ωµν = 1

2
Pλ

µ Pρ
ν (nλ;ρ − nρ;λ) , (2.263)

vanishes. Here Pρ
ν is the projection tensor defined in Eq. (2.40).

Hint: If you are familiar with forms, you find from Wald (1984) that a vector field
is hypersurface orthogonal if and only if the corresponding 1-form α = nµ dxµ

satisfies α ∧ dα = 0. Show that for a form given by α = f (x) dt this is always the
case. Here f is an arbitrary function on the spacetime manifold.

Ex. 2.3 Adiabaticity∗

Consider a mixture of two non-interacting fluids with sound speeds c1, c2 and
enthalpies w1, w2. Determine � from the single fluid perturbation variables
�α, Dgα, Vα, �α , α = 1, 2. If the intrinsic perturbations of each fluid are adia-
batic, �α = 0, what is the condition that the total perturbation be adiabatic, � = 0?
Derive an evolution equation for � under the condition �α = 0.

Ex. 2.4 Power spectrum
For a spatial, statistically homogeneous and isotropic random variable X (x) with
vanishing mean we define the 2-point function

ξ (r ) = 〈X (x)X (x + rn)〉 .

Homogeneity requires that ξ does not depend on the position of the first point, x
and isotropy means that ξ is independent of the direction n in which the second
point y = x + rn lies. Hence ξ depends only on the distance r . Show that the power
spectrum defined in Eq. (2.235) is the Fourier transform of the correlation func-
tion ξ .

Ex. 2.5 Variable transformation
We consider an ordinary linear second-order differential equation for φ, which is
of the form

φ̈ + f (t)φ̇ + ω2(t)φ(t) = 0 . (2.264)

Show that the variable ψ ≡ h(t)φ with h(t) = exp
(

1
2

∫ t f (t ′) dt ′
)

, satisfies the

equation

ψ̈ + ω̃2(t)ψ(t) = 0 , (2.265)

where

ω̃2 = ω2 + ḧ/h .

Use these findings to derive Eq. (2.154).
Hint: Use

d

dt
[ρ(1 + w)]−1/2 = 3

2
H(1 + c2

s )[ρ(1 + w)]−1/2 .
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To derive this equation make use of Eq. (2.113) and the energy conservation equa-
tion. Finally, use Eq. (2.109).

This shows that a linear second-order differential equation can always be brought
into the form of the equation for a harmonic oscillator with a time-dependent fre-
quency. This is useful to know, not only because we can quantize this system easily,
but also since we know that an instability sets in, when ω̃2 < 0. By studying the
time dependence of the frequency, we can therefore infer the qualitative behaviour
of the solution.

Ex. 2.6 Perturbations in universes with non-flat spatial section
Consider a universe filled with dust, c2

s = w = 0. In this case, the Bardeen equation
reduces to

�̈ + 3H�̇ − 2K� = 0 . (2.266)

Solve this equation for both cases, K > 0 and K < 0 and discuss the results. What
happens for K < 0 at late times? How do perturbations evolve during a collapsing
universe?

Ex. 2.7 Acoustic peaks
Consider a universe with matter and radiation but no curvature or cosmological
constant. Solve the Friedmann equation exactly and determine t0/tdec given that
zdec � 1100. Insert a realistic value for 
r and keep h in the expression. Use the
result to approximate the positions of the acoustic peaks in this Universe. Discuss
qualitatively the change in the peak position in the following cases:
(a) addition of a cosmological constant (at fixed 
r and for vanishing curvature).
(b) addition of curvature (at fixed 
r and � = 0).
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Initial conditions

So far we have only studied the evolution of perturbations assuming that the initial
conditions are fixed and given once and for all. Now we want to study how classical
perturbations are generated out of quantum fluctuations during a simple inflationary
phase. The fact that inflation generates a nearly scale-invariant spectrum of scalar
perturbations in good agreement with the observations of the cosmic microwave
background is to be considered as its greatest success. The solution of the flatness
and entropy problems with an inflationary phase are actually ‘post-dictions’ while
the scale-invariant spectrum of scalar perturbations was first predicted in Mukhanov
& Chibishov (1982) and Mukhanov et al. (1992), long before its discovery by the
COBE satellite by Smoot et al. (1992). It represents therefore a real prediction of
inflation. There are also other models for structure formation which predict a scale-
invariant spectrum of fluctuations but which disagree with the detailed spectrum of
CMB fluctuations such as topological defects (Durrer et al., 2002).

In this chapter we first study perturbations in a FL universe filled with a scalar
field. Next we discuss the generation of fluctuations during inflation. We especially
determine the spectral index of scalar and tensor perturbations and the ratio of their
amplitudes in the slow roll approximation. This will lead us to the well known
consistency relation for slow roll inflation. We study in detail the simple case of
one scalar field, the ‘inflaton’.

Finally, we discuss more general initial conditions which are relevant if more
than one scalar field plays a role during inflation, so-called mixed adiabatic and
iso-curvature fluctuations.

As we discussed in Chapter 1, an inflationary phase supresses curvature and in
order for curvature to be of order unity or smaller today, it must have been very small
in the early Universe. In this chapter which deals mainly with the early Universe,
we therefore neglect curvature, K = 0.

105



106 Initial conditions

3.1 Scalar field perturbations

We consider here the special case of a FL universe filled with self-interacting scalar
field matter. The action is given by

S = −1

16πG

∫
d4x

√
|g|R −

∫
d4x

√
|g|

(
1

2
∂µϕ ∂µϕ + W (ϕ)

)
, (3.1)

where ϕ denotes the scalar field and W is the potential. The energy–momentum
tensor is obtained by varying the action w.r.t. the metric gµν ,

Tµν = ∂µϕ∂νϕ −
[

1

2
∂λϕ ∂λϕ + W

]
gµν . (3.2)

The energy density ρ and the energy flux u are defined by

T µ
ν uν = −ρuµ . (3.3)

For the homogeneous and isotropic FL background we obtain (see also Chapter 1)

ρ = 1

2a2
ϕ̇2 + W , (uµ) = 1

a
(1, �0) . (3.4)

The pressure is

T i
j = Pδi

j , P = 1

2a2
ϕ̇2 − W . (3.5)

We want to derive the linear perturbation equations for the evolution of scalar
field and metric perturbations. We define the scalar field perturbation modes,

ϕ = ϕ̄ + δϕQ(S) . (3.6)

Clearly, the scalar field only generates scalar perturbations in the energy momentum
tensor (to first order). With the definition (3.2) we obtain

δTµν = ∂µϕ̄ ∂ν δϕ + ∂ν ϕ̄∂µ δϕ + a−2 ¯̇ϕ δϕ̇ḡµν

+
[

1

2a2
( ˙̄ϕ)2 − W̄

]
δgµν − W̄ ′δϕḡµν . (3.7)

Inserting Eq. (3.7) in the definition (3.3) of the energy density and energy–flux, and
setting ρ = ρ̄ + δρQ(S) and

(uµ) = 1

a

(
1 − AQ(S), vQ(S)

i

)
, (3.8)

we find

δρ = 1

a2
˙̄ϕ δϕ̇ − 1

a2
˙̄ϕ2 A + W,ϕ δϕ , (3.9)
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and

v = k
˙̄ϕ

(
δϕ + ˙̄ϕk−1 B

)
. (3.10)

The stress tensor, Ti j = ϕ,i ϕ, j − [
1
2∂λϕ∂λϕ + W

]
gi j yields

PπL = 1

a2
˙̄ϕδϕ̇ − 1

a2
˙̄ϕ2 A − W,ϕ δϕ and � = 0 . (3.11)

We now define a gauge-invariant scalar field perturbation which corresponds to
the value of δϕ in longitudinal gauge.

δϕ(gi) = δϕ + ˙̄ϕk−1(B − k−1 ḢT ) = δϕ − ˙̄ϕk−1σ = δϕ(long) . (3.12)

The second and third expressions give δϕ(gi) in a generic gauge. Under a gauge
transformation the scalar field perturbation simply changes by δϕ → δϕ + ¯̇ϕT .
Since σ → σ + kT , it is clear that the combination δϕ(gi) is gauge-invariant. On
the other hand, in longitudinal gauge B = HT = 0, so that δϕ(gi) = δϕ(long). This
variable is very simply related to the other gauge-invariant scalar variables. Short
calculations give

V = kδϕ(gi)/ ¯̇ϕ , (3.13)

Dg = −(1 + w)
[
4� + 2Hk−1V − k−1V̇

]
, (3.14)

Ds = −(1 + w)
[
� + 2Hk−1V − k−1V̇

]
, (3.15)

D = −(1 + w)
[
� − Hk−1V − k−1V̇

]
, (3.16)

� = 2W,ϕ ¯̇ϕ

P ρ̇

[
ρDs − ρ̇k−1V

]
, (3.17)

� = 0 . (3.18)

The last equation implies that the two Bardeen potentials are equal for scalar field
perturbations, � = �. Using this we can write the perturbed Einstein equations
fully in terms of the Bardeen potentials � and V . We actually only need (2.104).
Since we need them mainly to discuss inflation where curvature is negligible, we
write them down here only for the case K = 0:

k2� = 4πGϕ̇2
[
� − Hk−1V − k−1V̇

]
, (3.19)

�̇ + H� = 4πGϕ̇2k−1V , (3.20)

where we have used a2ρ(1 + w) = ϕ̇2. To simplify the notation, we have dropped
the overbar on the background quantities. With the help of Eqs. (2.104) and (2.106)
one can easily generalize these equations to the case with curvature. Using (3.20)
to eliminate V and V̇ from Eq. (3.19), leads to the following second-order equation
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for the Bardeen potential:

�̈ + 2(H − ϕ̈/ϕ̇)�̇ + (2Ḣ − 2Hϕ̈/ϕ̇ + k2)� = 0 . (3.21)

Here we have also used the fact that 4πGϕ̇2 = 4πGa2ρ(1 + w) = H − Ḣ. In-
serting the definition c2

s = Ṗ/ρ̇ = − 1
3H (2 ϕ̈

ϕ̇
+ H), we can also write (3.21) in the

form

�̈ + 3H(1 + c2
s )�̇ + (2Ḣ + (1 + 3c2

s )H2 + k2)� = 0 . (3.22)

This equation differs from the � equation for a perfect fluid only in the term
proportional to k2 which is not multiplied with the adiabatic sound speed c2

s . Indeed
the scalar field is not in a thermal state with fixed entropy, � 
= 0. It is in a fully
coherent state so that field fluctuations propagate with the speed of light and not
with some adiabatic sound speed. On large scales, kt � 1 this difference is not
relevant, but on sub-Hubble scales it does play a certain role.1

During slow roll inflation we can express the background variables in terms of
H and the slow roll parameters ε1 and ε2 defined in Chapter 1. With the definition
(1.153) and the expression for ϕ′′/(3Hϕ′) above, we obtain

ϕ̈

Hϕ̇
= H (dϕ/dτ ) + d2ϕ/dτ 2

H (dϕ/dτ )
= 1 + 3ε2 + ε1 , (3.23)

so that

2(Ḣ − Hϕ̈/ϕ̇) = −2H2(3ε2 + 2ε1) . (3.24)

Inserting these results in Eq. (3.21) we find

�̈ − 2(3ε2 + ε1)H�̇ − [
2H2(3ε2 + 2ε1) − k2

]
� = 0 . (3.25)

Hence on small scales, (3ε2 + 2ε1)H2 � k2, � oscillates, while on super-Hubble
scales, k/H � 1, it varies slowly as long as the slow roll parameters are small.
During the transition from inflation to the radiation dominated era, where the slow
roll parameters reach order unity, the Bardeen potential can however vary substan-
tially. It is thus not very well suited to determine the amplitude of perturbations
which have been induced during inflation in the radiation dominated era. We now
show, that, on super-Hubble scales, the curvature variable ζ remains constant during

1 Often, the terms ‘Hubble scale’ and ‘horizon scale’ are used interchangeably. For inflation, however they
can differ by many orders of magnitude. During inflation the (comoving) Hubble scale, H−1 � |t | = −t is
decreasing and much smaller than the comoving horizon scale,

∫ t
ti

dt � −ti � H � −t . The scale relevant
for the behaviour of perturbations is, however always the Hubble scale, since H enters into the perturbation
equations. The horizon is a global quantity, an integral, it does not determine whether perturbations are oscillating
or whether they behave like a power law. It just happens that in a decelerating universe the two scales are often
of the same order. In this chapter we shall be careful not to mix them up. We shall use the terms ‘Hubble scale’
for the Hubble scale and ‘Hubble exit’ for a scale growing larger than the Hubble scale during inflation.
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the transition from inflation to the radiation dominated era. To study the evolution of
super-Hubble perturbations from inflation into the radiation era, we shall therefore
use the variable ζ .

As for the case of fluids, see Eqs. (2.154)–(2.156), we introduce the variable u

u = a[4πG(H2 − Ḣ)]−1/2� , (3.26)

which now satisfies the equation

ü + (k2 − θ̈/θ )u = 0 , (3.27)

where

θ = 3H
2a

√
H2 − Ḣ

. (3.28)

The difference to the fluid equations is just the factor c2
s in front of k2 which for the

scalar fields is replaced by 1. Scalar field fluctuations propagate with the speed of
light. The curvature variable ζ in a scalar field background is given by

ζ ≡ 2(H−1�̇ + �)

3(1 + w)
+ � . (3.29)

Note that we need w > −1 so that ζ is well defined. In a pure de Sitter space, we
cannot work with the ζ -variable. This becomes even more evident when expressing
the above relation in terms of the slow roll parameter ε1. From (1.152) and

(1 + w) = ϕ̇2

1
2 ϕ̇

2 + a2W
=

2
3ε1

1
3ε1 + 1

� 2

3
ε1 , (3.30)

we obtain

ζ � H−1�̇ + �

ε1
+ � . (3.31)

For ζ to be well defined we therefore need ε1 
= 0 (or the perturbations have to
decay, �̇ = −H�). From Eq. (3.25), using Eq. (1.153), one finds

ζ̇ = − 2k2

3(1 + w)H� = − (1 + 1
3ε1)k2

ε1H
� � −k2

ε1H
� . (3.32)

As in the case of fluids, this implies that the curvature perturbation ζ is conserved on
super-Hubble scales, k/H � 1. Using Eqs. (3.20) and (3.13) and φ̇2 = a2ρ(1 + w),
we can express ζ also as

ζ = H
ϕ̇

δϕ(gi) + � . (3.33)
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As we have seen in Chapter 2, Eqs. (2.159)–(2.161), the evolution of ζ is closely
related to the one of v defined by

v = a
√
H2 − Ḣ√
4πGH

ζ = a δϕ(gi) + aϕ̇

H � . (3.34)

The variable v satisfies the equation of motion

v̈ + (k2 − z̈/z)v = 0 , (3.35)

with

z = a
√
H2 − Ḣ√
4πGH

= a

√
3(1 + w)

8πG
= a

√
a2(ρ + P)

H = aϕ̇

H . (3.36)

Hence

v = zζ .

Also note that z is related to the slow roll parameter ε1 by

ε1 = −d H/dτ

H 2
= H2 − Ḣ

H2
= 4πG

z2

a2
. (3.37)

The equation of motion (3.35) can be obtained from the Fourier decomposition of
the action

S = −1

2

∫
d4x

√
|g| (∂µv ∂µv + m2(t)v2

)
, (3.38)

where m2 = −(z̈/z)a−2. This is the action of a simple free field with time-dependent
mass term. For a constant or slowly varying w we have z ∝ a and during inflation
z̈/z > 0, hence m2(t) < 0, which represents an instability and leads to the ampli-
fication of vacuum fluctuations (or particle creation). During ordinary expansion,
z̈/z < 0 and the vacuum state is stable.

In the next section we want to study quantum fluctuations of the variable v.
Remark: Note that also Eq. (3.27) can be written as a Euler–Lagrange equa-

tion for a canonical scalar field Lagrangian with time-dependent mass term
m2

θ = −(θ̈/θ )a−2 for the variable u defined in Eq. (3.26). The problem there is
however, that we cannot ‘switch off’ gravity for this variable, which diverges in
the limit H, Ḣ → 0. Hence u does not have well defined initial conditions when
k2 � |θ̈/θ |. Even though the perturbation equations take the form of canonical
equations in this variable, it is therefore not the correct variable to quantize.

The above action (3.38) can also be obtained by perturbing the original action
of the system to second order,

S =
∫

dx4
√

|g|
( −R

16πG
− 1

2
∂µϕ∂µϕ − W

)
.
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A long and cumbersome calculation, removing several total derivatives (Mukhanov
et al., 1992) shows that to second order, the perturbation of this action is given
by (3.38). A much more elegant recent derivation of this result is given in Maldacena
(2003).

3.2 Generation of perturbations during inflation

So far we have simply assumed some initial fluctuation amplitude A, without inves-
tigating where it came from or what the k-dependence of A might be. In this section
we discuss the most common idea about the generation of cosmological perturba-
tions, namely their production from the quantum vacuum fluctuations during an
inflationary phase.

The basic idea is simple: a time-dependent gravitational field generically leads to
particle production, analogously to the electron–positron production in a classical,
time-dependent electromagnetic field.

3.2.1 Scalar perturbations

The main result is the following: during inflation, the produced particles induce a
perturbed gravitational potential with a (nearly) scale-invariant spectrum,

k3|ζ (k, t)|2 = kn−1 × constant with n � 1 . (3.39)

The quantity k3|ζ (k, t)|2 is the squared amplitude of the curvature perturba-
tion at comoving scale λ = π/k. To make sure that this quantity is small on a
broad range of scales, so that neither black holes are formed on small scales nor
large deviations from homogeneity and isotropy on large scales appear, we must
require n � 1. These arguments were put forward for the first time by Harrison
and Zel’dovich (Harrison, 1970; Zel’dovich, 1972) (still before the advent of in-
flation), leading to the name ‘Harrison–Zel’dovich spectrum’ for a scale-invariant
perturbation spectrum as discussed in Chapter 2.

To derive the above result we consider a scalar field background with energy
density which is dominated by the potential term, hence the slow roll parameters,
ε1 and ε2 are small. Over a reasonably short period of time we can approximate
them as constants leading to nearly power law expansion

a ∝ |t |q with q = −1 − ε1 + O(ε2
1) . (3.40)

We want to determine the Bardeen potential during the subsequent radiation and
matter dominated era. For this we use the fact that the curvature perturbation ζ

remains constant on super-Hubble scales. Hence if we calculate its amplitude at
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Hubble crossing, k/H = 1, during inflation it will remain constant until it re-enters
the Hubble-horizon in the radiation or matter dominated era.

Quantization

To determine the initial conditions and the evolution of v we now quantize the
variable v in the action

δS = −1

2

∫
dx4

[
(∂µv)2 + m2(t)v

] = −
∫

dx4 L , (3.41)

with canonical momentum π = ∂L/∂v̇ = v̇. We interpret v̂ and π̂ as operators on
a Hilbert space which satisfy the standard canonical commutation relations given
by

[v̂(t, x), v̂(t, x′)] = [π̂ (t, x), π̂ (t, x′)] = 0, and (3.42)

[v̂(t, x), π̂ (t, x′)] = iδ3(x − x′) (� = 1) . (3.43)

We now expand the operator v̂ in Fourier modes,

v̂(t, x) = 1

(2π )3/2

∫
d3k[vk(t)âkeik·x + v̄k(t)â∗

ke−ik·x] . (3.44)

The operators âk and their hermitean conjugates â∗
k are the annihilation and creation

operators. Since v̂ describes a real field, v̄k is the complex conjugate of vk . Choosing
the time-independent normalization

v̄k v̇k − vk ˙̄vk = +i , (3.45)

Eqs. (3.42) and (3.43) require that the operators ak satisfy the usual commutation
relations

[âk, âk′] = [â∗
k, â∗

k′] = 0 and [âk, â∗
k′] = δ3(k − k′) . (3.46)

The time-dependent mode functions vk obey the classical equation of motion (3.35).
At very early times, k � H we can neglect the mass term, z̈/z, in Eq. (3.35) and

vk is the mode function of a free massless scalar field. We assume that initially v̂ is
in the vacuum state so that

vk(t) = 1√
2k

exp(−ikt) for k � H . (3.47)

Note that we work (as is usual in quantum field theory) in the Heisenberg picture.
The state, which we assume to be the vacuum state at very early times and which
we denote by |0〉 does not evolve but the field operator does.

At late times, k � H, we may neglect k2 in Eq. (3.35) and the growing mode
solution behaves like vk ∝ z, so that ζk = vk/z remains constant as expected.
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We want to calculate the power spectrum of

ζ̂ (t, x) = 1

(2π )3/2

∫
d3k[ζk(t)âkeik·x + ζ̄k(t)â∗

ke−ik·x]

= 1

(2π )3/2

∫
d3k[ζ̂keik·x + ζ̂ ∗

k e−ik·x] , (3.48)

defined by

〈0| ζ̂kζ̂
∗
k′ |0〉 ≡ Pζ (k)δ3(k − k′) . (3.49)

Inserting Eq. (3.48) with ζk = vk/z and using the properties of the vacuum,
〈X | ak |0〉 = 〈0| a∗

k |X〉 = 0, for an arbitrary state |X〉 as well as the commutation
relations (3.46) one obtains (see exercises)

Pζ (k) = | vk(t) |2
z2

. (3.50)

Perturbation spectrum from power law inflation

As a first simple example we consider power law inflation, a ∝ |t |q , q <∼ − 1. In
this case Ḣ ∝ H2 so that z ∝ a The evolution equation (3.35) for v then reduces
to (we suppress the index k again)

v̈ +
(

k2 − q(q − 1)

t2

)
v = 0 . (3.51)

The solutions to this equation are of the form (k|t |)1/2 H (i)
µ (kt), where µ = 1

2 − q
and H (i)

µ is the Hankel function of the i th kind (i = 1 or 2) of order µ. The initial
condition (3.47) requires that only H (2)

µ appears. Fixing the constants we obtain

v = − i
√

π exp(iqπ/2)

2
√

k
(k|t |)1/2 H (2)

µ (kt) .

At late times, k/H ∼ k|t | � 1, we have H (2)
µ (kt) � (i/π )�(µ)(kt/2)−µ. Inserting

this above we obtain

v � C(µ)eiα(k|t |)1/2−µk−1/2, k|t | � 1, (3.52)

with C(µ) = (2µ−1/π1/2)�(µ). The phase eiα is uninteresting, it disappears in the
power spectrum. The power spectrum of ζ = v/z is thus given by

Pζ (k, t) =
∣∣∣v
z

∣∣∣2
= C(µ)2 (k|t |)1−2µ

z2k
� 4πC(µ)2

ε1m2
P

(k|t |)1−2µ

a2k
, k|t | � 1 ,

(3.53)

where we have used Eq. (3.37) in the last equals sign. Recalling that 1 − 2µ = 2q,
we see that Pζ is time independent on super-Hubble scales, as expected. We now
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replace |t | by H = −q/|t | and multiply the spectrum by k3, which yields2

k3 Pζ (k) = 2π H 2

ε1m2
P

(
k

H

)3−2µ

, (3.54)

where we have used H = H/a and C(µ)2 � 1/2. The latter approximation is ob-
tained by setting q = −1 and µ = 3/2 in the expression for C(µ) and H above. The
amplitude of a given mode k at Hubble exit is given by

k3 Pζ (k)
∣∣
k=H = 2π H 2

ε1m2
P

. (3.55)

The scalar spectral index n is defined by

n − 1 = d log
(
k3 Pζ

)
d log(k)

. (3.56)

From Eq. (3.54), using ε1 = 1 − Ḣ/H2, see Eq. (1.152), we obtain (see also Eq.
3.40)

n − 1 = 3 − 2µ = 2 + 2q = − 2ε1

1 − ε1
� −2ε1 . (3.57)

While the equals signs are exact for power law inflation, the last approximate sign
is valid only to first order in ε1.

In Ex. 3.1 you show that power law inflation with a scalar field requires an
exponential potential V = V0 exp(−αϕ/m P ). The slow roll parameters are readily
calculated, ε1 = α2/16π = −(3/2)ε2. We therefore can also write with the same
accuracy as above

n − 1 = −6(ε1 + ε2)

1 − ε1
� −6(ε1 + ε2) . (3.58)

We shall see in the next paragraph that this is the general result for slow roll inflation.

Slow roll inflation

We now want to derive equations (3.58) and (3.54) when expansion no longer
follows a power law exactly, but the slow roll parameters ε1 and ε2 are small. Let us
first calculate the mass term, z̈/z in this case. From Eq. (3.36) we have z = ϕ̇a/H.
Taking the derivative of this using Eq. (3.24) we obtain

ż

z
= (1 + 2ε1 + 3ε2)H , (3.59)

2 Remember that the conformal time is negative during inflation, t < 0.
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leading to

z̈

z
=

(
ż

z

)2

+
(

ż

z

)•

= (1 + 2ε1 + 3ε2)Ḣ + (2ε̇1 + 3ε̇2)H + (1 + 2ε1 + 3ε2)2H2 . (3.60)

As we saw in Eq. (1.154), the derivatives ε̇1 and ε̇2 are second order and can be
neglected. Neglecting also all the other second-order terms we obtain

z̈

z
= (2 + 9ε1 + 9ε2)

1

t2
. (3.61)

Here we have used H2 = q2/t2 = (1 + ε1)2/t2 � (1 + 2ε1)/t2 and Ḣ = −q/t2 �
(1 + ε1)/t2. Neglecting the time dependence of ε1 and ε2 (which is second order),
the v equation (3.35) is therefore again a Bessel equation with µ2 − 1/4 = 2 +
9ε1 + 9ε2, hence

µ = 3

2
(1 + 2ε1 + 2ε2) . (3.62)

Inserting this in the power spectrum for ζ given in Eq. (3.54) we find

k3 Pζ (k) = 2π H 2

ε1m2
P

(
k

H

)−6(ε1+ε2)

, k/H � 1 . (3.63)

The spectral index is therefore

n − 1 = −6(ε1 + ε2) , (3.64)

which corresponds exactly to the expression (3.58) for power law inflation.
From the curvature spectrum it is now easy to determine the spectrum for the

Bardeen potential � in the matter dominated era, e.g. at recombination. As we have
seen in Eq. (2.151), during power law expansion the growing mode of the Bardeen
potential is constant on super-Hubble scales. In a matter dominated universe, w = 0,
the Bardeen potential is even constant on all scales. The relation (3.29) then
yields

k3 P�(k) = 9

25
k3 Pζ (k) = 18π H 2

25ε1m2
P

(
k

H

)−6(ε1+ε2)

, k/H � 1 . (3.65)

The amplitude AS and the spectral index n of the Sachs–Wolfe contribution to the
CMB power spectrum given in Eq. (2.250) are thus determined by the energy scale
of inflation, H , and the slow roll parameters ε1 and ε2.

It is possible to develop the slow roll approximation further, to second and third
order, which has been done in the literature (Hoffman & Turner, 2001; Schwarz
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et al., 2001; Martin & Schwarz, 2003). But at first order it is already possible to
constrain inflationary models by using the data, see Chapter 6.

3.2.2 Vector perturbations

In the simplest models of inflation where the only degrees of freedom are the
scalar field and the metric, no vector perturbations are generated. But even if
they are, subsequent evolution after inflation will lead to their decay. Indeed, in
a perfect fluid background the anisotropic stress vanishes, �i j = 0. The evolution
of vector perturbations is then given by Eq. (2.116) which implies for the fluid
vorticity 



 ∝ a3c2
s −1 . (3.66)

For a radiation–matter fluid, ṗ/ρ̇ = c2
s ≤ 1/3, this leads to a non-growing vorticity.

The dynamical Einstein equation (2.108) gives

σ (V ) ∝ a−2 , (3.67)

and the constraint (2.105) reads (at early times, so that we can neglect curvature)


 ∼ (kt)2σ (V ) . (3.68)

Therefore, even if they are created in the very early universe on super-Hubble
scales during an inflationary period, vector perturbations of the metric will decay
and become soon entirely negligible. Even if the vorticity remains constant in a
radiation dominated universe, it will be so small on relevant scales at formation
(ktin � 1) that we may safely neglect it.

Vector perturbations are irrelevant if perturbations have been created at some
early time, e.g., during inflation. This result changes completely when consider-
ing ‘active perturbations’ such as topological defects where vector perturbations
contribute significantly to the CMB anisotropies on large scales, see Durrer et al.
(2002). It is interesting to note that, in a background without anisotropic stresses,
vector perturbations do not satisfy a wave equation and therefore will not oscillate.
Vorticity simply decays with time.

3.2.3 Tensor perturbations

The situation is different for tensor perturbations. Again we consider the perfect
fluid case, �

(T )
i j = 0. Equation (2.109) implies, if K is negligible,

Ḧi j + 2HḢi j + k2 Hi j = 0 . (3.69)
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If the background has a power law evolution or is slowly rolling, a ∝ tq with
q = −1 − ε1, H = q/t , this equation can be solved in terms of Bessel functions
(see Abramowitz & Stegun 1970, Eq. 9.1.52). The less decaying mode solution to
Eq. (3.69) is Hi j = ei j x1/2−qYa/2−9(x), where Yν denotes the Bessel function of
order ν, x = kt and ei j is a transverse traceless polarization tensor. This leads to

Hi j = constant for x � 1 , (3.70)

Hi j = 1

a
for x >∼ 1 . (3.71)

One may also quantize the tensor fluctuations which represent gravitons. Doing this,
one obtains (up to small corrections) a scale-invariant spectrum of tensor fluctua-
tions from inflation. For tensor perturbations the canonical variable is simply given
by

hi j = ei j h = m Pa√
8π

Hi j . (3.72)

Here ei j is a normalized transverse traceless polarization tensor, ei
i = ki ei j = 0 and

ei j ei j = 2. The evolution equation for h is obtained by inserting the ansatz (3.72)
in Eq. (3.69),

ḧ + (k2 + m2(t))h = 0 , (3.73)

with m2(t) = − ä

a
= −(Ḣ + H2) = −(2 − ε1)H2

= −(2 − ε1)

(
1 + 2ε1

t

)2

� −2 + 3ε1

t2
. (3.74)

The variable h is canonically normalized and can therefore be quantized with the
usual commutation relation. This is best seen by determining the perturbed action
to second order,

S + δS = m2
P

16π

∫
d4x

√
−(g + δg)(R + δR) .

The derivation of δS to second order in hi j is not very long for pure tensor pertur-
bations (see Ex. 3.2).

During inflation the mass term m2(t) in Eq. (3.73) is negative, leading to par-
ticle creation. As for scalar perturbations, the vacuum initial conditions are given
on scales which are inside the Hubble scale, k2 � |m2|, where expansion can be
neglected and we may set

hin = 1√
2k

exp(−ikt) for k|t | � 1 .
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Solving Eq. (3.73) with this initial condition, gives (up to an uninteresting phase)

h =
√

π

2
√

k
(k|t |)1/2 H (2)

ν (kt) ,

where ν2 − 1/4 = 2 + 3ε1 so that ν = 3/2 + ε1. On super-Hubble scales, H (2)
ν (kt) ∝

(k|t |)−ν this results in

k3 PH = k3|Hi j Hi j | = 2
8πk3|h|2

a2m2
P

� 8π
H 2

m2
P

(
k

H

)−2ε1

, k/H � 1 . (3.75)

Note the factor 2 due to the two tensor modes. The pre-factor is obtained by setting
ν = 3/2 and q = −1. In the exponent, however we keep the slow roll parameter
ε1 
= 0.

From Eq. (3.75) we derive the tensor spectral index nT defined by

nT = d log
(
k3 PH

)
d log(k)

= −2ε1 . (3.76)

After inflation Hi j is constant on super-Hubble scales. The gravity wave spectrum
is therefore determined by the amplitude of the fluctuations at Hubble crossing,

k3 PH = AT (kt0)nT , k/H � 1 , with (3.77)

AT = 8π
H 2

m2
P

∣∣∣∣
k=H0

� 64π2

3m4
P

W

∣∣∣∣
k=H0

. (3.78)

Note that here, as in Eq. (3.55), H |k=H = k/a indicates the value of the Hubble
parameter H at ‘Hubble exit’, i.e., during inflation when 1/k becomes larger than
the comoving Hubble scale 1/H, corresponding to a = a1 in Fig. 3.1. This is much
larger than the value of H = H/a at re-entry, long after inflation, when again
k = H. At this second Hubble crossing time the Hubble parameter H = k/a2 is
much smaller since a2 � a1, is much larger, see Fig. 3.1.

The parameter AT introduced here is the amplitude of the tensor spectrum at
the present Hubble scale t0 � 1/H0 = 1/H0, if we normalize the scale factor such
that a0 = 1. We could have chosen some arbitrary other reference scale k0. But
for definiteness and because of its relevance for CMB anisotropies we choose the
Hubble scale. Equation (3.77) relates the tensor amplitude to the value of the inflaton
potential at the moment when the comoving Hubble scale during inflation equals
the present Hubble scale:

W∗ ≡ W |H=H0
= 3m4

P

64π2
AT . (3.79)

Measuring the amplitude of tensor perturbations therefore allows us to determine the
energy scale of inflation. If we simply require that tensor fluctuations do not generate
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Fig. 3.1. We sketch the behaviour of the Hubble scale H−1 = aH−1 and some
wavelength λ = a/k during and after inflation as functions of the scale factor. At
a = a1 during inflation, the scale λ exits the Hubble scale and after inflation, at
a = a2, it re-enters. At a = a f inflation ends.

more than a third of the observed CMB anisotropies, according to Eq. (2.262),
present observational limits require AT <∼ 10−9, so that

W 1/4
∗ <∼ 0.0015 × m P � 2 × 1016 GeV. (3.80)

On the other hand, this energy scale must be larger than the reheating temperature
after inflation. This limits the number of e-folds N∗ of inflationary expansion after
Hubble exit of the present Hubble scale H−1

0 . This is roughly the same number of
e-folds it takes after inflation until the present.

Let us briefly derive this statement. We denote the Hubble parameter during
inflation, which is nearly constant, by Hi and neglect its slight time dependence.
We consider a comoving wave number k which exits the Hubble scale at the value a1

of the scale factor during inflation, when its wavelength is λ = λ1 = a1/k = H−1
i .

It re-enters after inflation at a = a2, when its wavelength is λ = λ2 = a2/k = H−1
2 .

The value of the scale factor at the end of inflation is denoted by a f , see Fig. 3.1.
The number of e-folds of inflation after a1 is N1 = ln(a f /a1), while the number
of e-folds of expansion after inflation until λ re-enters the Hubble scale is N2 =
ln(a2/a f ). In the radiation era after inflation H ∝ 1/τ ∝ 1/a2. If the scale re-enters
during the radiation era we therefore obtain (a2/a f )2 = Hi/H2 = Hi a2/k. On the
other hand, Hi = 1/λ1 = k/a1, so that Hi a2/k = a2/a1. Inserting this above yields
a2

2/a2
f = a2/a1 or, equivalently, a2/a f = a f /a1, which implies N1 = N2.



120 Initial conditions

For a scale which enters only during the matter era we have to correct this result,
since after matter and radiation equality the scale factor behaves as a ∝ τ 2/3 so
that H ∝ 1/τ ∝ 1/a3/2. Denoting the redshift of matter–radiation equality by zeq,
this leads to a correction factor

√
zeq/z2, where z2 < zeq is the redshift at re-entry.

The number of e-folds of inflationary expansion after horizon exit, N1 is therefore
related to the number of e-folds of expansion from the end of inflation until re-entry,
by

N1 �
{

N2 if k re-enters in the radiation era, z2 > zeq

N2 − 1
2 ln(zeq/z2) if k re-enters in the matter era, z2 < zeq .

Neglecting the correction term 1
2 ln(zeq/z2) which is never more than a few and

denoting the reheating temperature by TR , we therefore obtain the following limit
for the number of e-folds of inflation after exit of the present Hubble scale,

N∗ = ln

(
TR

T0

)
≤ ln

(
W 1/4

∗
T0

)
≤ ln

(
2 × 1016

2.4 × 10−13

)
� 66 . (3.81)

Note that this is a conservative estimate and the reheating temperature is most
probably significantly lower.

Consistency relation

We have obtained the following results for the scalar and tensor power spectra
induced during slow roll inflation

n − 1 = −6(ε1 + ε2) , (3.82)

nT = −2ε1 , (3.83)
PH

Pζ

= 4ε1 = −2nT , k/H � 1 . (3.84)

Using the relation (2.143) between ζ and � = � in the radiation and in the matter
dominated era, we find that on large scales, where �̇ = 0, ζ and � differ only by
a constant factor,

P� = 4

9
Pζ , k/H � 1 , (radiation dominated era) , (3.85)

P� = 9

25
Pζ , k/H � 1 , (matter dominated era) . (3.86)

Writing k3 P� = AS(k/H0)n−1 for scalar perturbations and k3 PH = AT (k/H0)nT

for tensor perturbations on super-Hubble scales, the relation (3.84) implies

AT

AS
= 100

9
ε1 = −50

9
nT . (3.87)
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Equations (3.84) or equivalently (3.87) are often also called the consistency relation
of slow roll inflation. It is one of the major goals of forthcoming CMB observations
to measure tensor perturbations in order to test this relation which holds for both,
slow roll and power law inflation, but might be violated if inflation occurred in
several stages or not at all.

3.3 Mixture of dust and radiation revisited

In this section we want to study the perturbation of a mixture of dust and radiation
in more detail. We shall find that the system has two regular perturbation modes
which we can identify with the adiabatic and an iso-curvature mode. We determine
the solutions on super-Hubble scales for both modes explicitly and discuss the im-
plications for CMB anisotropies, especially for the positions of the acoustic peaks.

After inflation and reheating the Universe is radiation dominated. Only very
much later, at redshift z < 104 do dark matter and baryons start dominating. It may
also be that a scalar field (called quintessence) plays a certain subdominant role,
but we neglect this possibility here. Curvature and a cosmological constant are
certainly negligible at early times and we thus consider a mixture of radiation and
matter only. As in Section 2.4.3 we define

R = ρr

ρ
= ρr

ρr + ρm
, a = ρm

ρr
= 1 − R

R
. (3.88)

The scale factor is normalized to unity at equality, ρm(teq) = ρr (teq) = ρ(teq)/2.
Also note that by definition 0 ≤ R ≤ 1 and R � 1 during the radiation era, while
R � 0 in the matter era. With wr = c2

r = 1
3 and wm = c2

m = 0 we obtain the fol-
lowing useful relations (see also Section 2.4.3 and Ex. 1.3)

ρm

ρ
= 1 − R , (3.89)

w = ρr/3

ρ
= 1

3
R , (3.90)

c2
s = ρ̇r/3

ρ̇
=

4
3 R

4R + 3(1 − R)
= 4R

3(R + 3)
. (3.91)

Integrating the Friedmann equation,(
ȧ

a

)2

= 4πG

3
ρeq

(
a−1 + a−2

)
, (3.92)

we obtain the scale factor

a(t) =
(

t

t1

)2

+ 2

(
t

t1

)
where t1 ≡

√
3

πGρeq
. (3.93)
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The normalization a(teq) = 1 yields teq = (
√

2 − 1)t1. In terms of t1, Eq. (3.92)
leads to the following useful expression for the Hubble parameter

H2 = 4(1 + a)

t2
1 a2

. (3.94)

The radiation/matter mixture has no anisotropic stresses and no intrinsic entropy
perturbations. Equation (2.124) then leads to

� = �rel = (ρr + Pr )ρm

3w(w + 1)ρ2
Srm = 4(1 − R)

3 + R
Srm .

The perturbation equations (2.137) and (2.138) for dust and radiation become,
with S ≡ Srm ,

Ṡ = −kVrm , (3.95)

kV̇rm + 4R

3 + R
HkVrm = k2

3 + R
D + k2(1 − R)

3 + R
S . (3.96)

This is equivalent to the second-order equation

S̈ + 4R

R + 3
HṠ = − k2

3 + R
[(1 − R)S + D] . (3.97)

In addition we have the second-order equation (2.119) for D. Using our expressions
for w, c2

s , � and � = K = 0 we obtain

D̈ + 3 − R − 2R2

R + 3
HḊ − 9 + 3R + 5R2 − R3

2(R + 3)
H2 D + 4R

3(R + 3)
k2 D

= −4R(1 − R)

3(R + 3)
k2S . (3.98)

We now want to transform this equation into a differential equation w.r.t. the variable
R. For this we need Ṙ = −ȧ R2 = HR(R − 1) and

R̈ = Ḣ(R2 − R) + H(2R − 1)Ṙ = 3

2
H2(R − 1)2 R .

For the second equals sign we made use of Ḣ = −(1 + 3w)H2/2 (see Eq. (2.111)).
A lengthy but straightforward calculation gives

d2 D

d R2
+

[
1

2R
− 1

R + 3

]
d D

d R
− 9 + 3R + 5R2 − R3

2R2(1 − R)2(R + 3)
D

= −4

3R(1 − R)(R + 3)

(
k

H

)2 [
1

1 − R
D + S

]
. (3.99)
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We also transform Eq. (3.97),

d2S

d R2
+

[
3

2R
− 1

1 − R
− 1

R + 3

]
d S

d R

= − 1

R2(1 − R)2(R + 3)

(
k

H

)2

[D + (1 − R)S] . (3.100)

Equation (3.99) can be simplified by writing it as a differential equation for the
variable � ≡ D(1 − R)R−3/2,

d2�

d R2
+

[
7

2R
− 1

R + 3
+ 2

1 − R

]
d�

d R

= − 4

3R(R + 3)

(
k

H

)2 [
1

(1 − R)2
� + R−3/2S

]
. (3.101)

We want to study possible initial conditions after a generic inflationary phase
and subsequent reheating (rh). We are interested in cosmological scales, k−1a0 ∼
O(Mpc). But from H−1

0 a0 = H−1
0 � 3000 h−1 Mpc and our expressions for H and

a one finds that H(a = 0.1)a0 ∼ O (Mpc). For the last estimate we have used zeq =
a0 � 3300 (see Appendix 1). The reheating temperature of the Universe is typically
of the order Trh ∼ 1010 GeV so that with Teq ∼ 1 eV, we obtain arh ∼ 10−19 � 0.1.
Therefore, to study the initial conditions it is sufficient to consider the limit of very
long wave perturbations, k/H → 0. In this limit we may neglect the right-hand
sides of Eqs. (3.100) and (3.101) and the equations decouple completely. They can
then easily be solved by quadrature leading to

� = A1 R−5/2

[
1 − 25

9
R + 5

3
R2 − 5

3
R3

]
+ A2 , (3.102)

= A1 X (R) + A2 , (3.103)

S = B1

[
3R−1/2 − 2 log

(
1 + √

R

1 − √
R

)]
+ B2 . (3.104)

We now transform � back into D and write the solutions in terms of the scale
factor. If we just multiply the modes proportional to A1 and A2 by the factor
R3/2/(1 − R), both modes of D are singular. We would like to split the solution D
into two modes D = AUR + BUS where US = R3/2/(1 − R) is decaying at late
time, R → 0 and UR = R3/2/(1 − R)X + bUS stays regular at early times, R → 1.
This can be achieved by choosing b = 16

9 . In terms of the scale factor, using

a = 1 − R

R
and R = 1

a + 1
,
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we get

D = AUR + BUS with , (3.105)

UR = 5

3(1 + a)
+ (1 + a)2 − 25

9 (1 + a) + 16
9 (1 + a)−1/2

a
, (3.106)

US = (1 + a)−1/2

a
, (3.107)

S = C1

[
2 log

(√
a + 1 + 1√
a + 1 − 1

)
− 3

√
a + 1

]
+ C2 , (3.108)

= C1VS + C2 . (3.109)

Developing UR we obtain

UR(a) � 10

9
a2 , if a � 1 and UR(a) � a , if a � 1 . (3.110)

The singular modes behave like US � 1/a and VS � 2 log(4/a) at early times, a �
1. In the most generic case right after reheating, at a = arh � 1, all the modes may
have comparable amplitudes so that |2 log(arh/4)C1| ∼ |C2| � |Aa2

rh| ∼ |B/arh|.
Hence C1 � C2 and B � A. Therefore the US and VS modes cannot be relevant
at late times. We neglect them in what follows, setting B = C1 = 0. On super-
Hubble scales we hence end up with two possible modes, namely A 
= 0, C2 = 0
and A = 0, C2 
= 0. The first is called the ‘adiabatic mode’ and the second the
‘entropy mode’. We shall also be interested in a linear combination of these modes,
the so-called ‘iso-curvature mode’ below.

3.3.1 Adiabatic initial conditions

Let us first consider the adiabatic mode, given by the initial condition

D = A

[
5

3(1 + a)
+ (1 + a)2 − 25

9 (1 + a) + 16
9 (1 + a)−1/2

a

]
, S = 0

(3.111)

on super-Hubble scales, k/H � 1. Here A = A(k) is a function of the wave num-
ber which determines the spectrum. On sub-Hubble scales, radiation perturbations
oscillate while matter perturbations which exert no pressure do not, therefore, adia-
baticity, S = 0 cannot be maintained. The term ‘adiabatic perturbations’ is however
used for perturbations which have adiabatic initial conditions, i.e. which satisfy
S = 0 at early times, when k/H � 0. From the constraint Einstein equation we
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Fig. 3.2. The Bardeen potential (in units of A) for adiabatic perturbations of a
mixed radiation and matter fluid on super-Hubble scales as a function of the scale
factor normalized to equality, a(teq) = 1.

have � = −(3/2)(H/k)2 D. With (3.94) this yields

� = −6(1 + a)

(kt1)2a2
D . (3.112)

This function is nearly constant in time, see Fig. 3.2. With Eq. (3.110) we find the
following asymptotic behaviour in the radiation and matter dominated eras:

� = −6
A

(kt1)2
×

{ 10
9 , if a � 1

1 , if a � 1 .
(3.113)

On super-Hubble scales we therefore have � � constant ≡ �0. If the spectral
index is defined as usual, |�|2k3 ∝ kn−1 we therefore have

|A|2 ∝ kn , and |D|2 ∝ kn ×
{

a4 , if a � 1
a2 , if a � 1 .

Let us now evolve forward to the matter era, R � 1 and a � 1, but no longer
require k/H � 1. Neglecting the terms which are subdominant in the matter era,
Eq. (3.99) reduces to

d2 D

da2
+ 3

2a

d D

da
− 3

2a2
D = (kt1)2

9a2
[D + S] . (3.114)

We first consider modes which enter the Hubble scale only in the matter dominated
era. For them kt1 � 1 and we may always neglect the r.h.s. of Eq. (3.114). The
growing mode solutions then also remain D � Aa and � � �0 on sub-Hubble
scales.
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Energy–momentum conservation for radiation (2.115) now becomes

D′
gr = −4

3
Vr , (3.115)

V ′
r = 2�0 + 1

4
D(r )

g , (3.116)

where here a prime denotes a derivative w.r.t. x ≡ kt . Now �0 acts like a constant
source term. The general solution of this system is

D(r )
g = A cos

(
x√
3

)
− 4√

3
B sin

(
x√
3

)
+ 8�0

[
cos

(
x√
3

)
− 1

]
, (3.117)

Vr = B cos

(
x√
3

)
+

√
3

4
A sin

(
x√
3

)
+ 2

√
3�0 sin

(
x√
3

)
. (3.118)

In Ex. 2.3 we show that adiabaticity requires Vr = Vm . But in the matter dominated
era Vm ∝ t ∝ x so that

lim
x→0

Vr

x
= lim

x→0

Vm

x
= V0 < ∞ . (3.119)

Therefore, we have to set B = 0 and V0 = A/4 + 2�0. Using in addition �0 = 3V0

(see (2.181)) we obtain

D(r )
g = 4

3
�0 cos

(
x√
3

)
− 8�0 , (3.120)

Vr = 1√
3
�0 sin

(
x√
3

)
, (3.121)

Dgm = −�0

(
5 + 1

6
x2

)
, (3.122)

Vm = 1

3
�0x . (3.123)

Here, we have neglected the influence of the radiation perturbations on the matter
variable and simply used the pure dust solutions (2.174) and (2.173) for Dgm and
Vm . On super-Hubble scales, x � 1 we have

D(r )
g � −20

3
�0 and Vr � 1

3
x�0 . (3.124)

This characterizes adiabatic initial conditions. Up to a constant, the density fluc-
tuations oscillate like a cosine. At x = 0, |D(r )

g | has a minimum. The first maxi-

mum follows at x = √
3π . This gives rise to the acoustic peak structure discussed

in Section 2.6.
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3.3.2 Iso-curvature initial conditions

Let us now turn to the ‘entropy perturbations’. We first recall that the curvature
perturbation in the comoving gauge, ζ , is constant for adiabatic perturbations on
super-Hubble scales. We want to calculate it for the entropy perturbation mode.
From Eq. (2.146) with vanishing curvature we obtain,

ζ̇ = w

w + 1
H� − 2c2

s

3(w + 1)
k2H−1� . (3.125)

Inserting ζ̇ = Ṙ dζ/d R = −R(1 − R)H dζ/d R, 1 + w = (3 + R)/3 and c2
s =

4R/[3(3 + R)], we obtain

dζ

d R
= − 4

(R + 3)2
S + 8

3(R + 3)2(1 − R)

(
k

H

)2

� , (3.126)

= − 4

(R + 3)2
S − 4

(R + 3)2(1 − R)
D , (3.127)

where we have used the (00) Einstein equation in (2.104) for the second identity.
For entropy perturbations one has S = C = constant and D = 0 on large scales,
k � H, so that Eq. (3.127) can be integrated to

ζ (R) = (1 − R)

(3 + R)
C , (k/H) � 1 . (3.128)

Here we have performed the definite integral from 1 to R in order not to add
a constant to the result, because such a constant simply represents an adiabatic
contribution. This mode therefore satisfies ζ → 0 and � → 0 for R → 1, i.e., in
the radiation dominated era on super-Hubble scales. Equation (2.143) implies

Dg = D − 3(1 + w)ζ . (3.129)

For the iso-curvature mode, ζ → 0 for R → 1, 0 = D = RDr + (1 − R)Dm im-
plies that Dr → 0 and hence also D(r )

g � Dr → 0 for R → 1. Instead of the typical
cosine oscillations of the adiabatic mode, we therefore obtain sine oscillations in
D(r )

g when the scale 1/k enters the Hubble horizon.
As we have seen in Chapter 2, the CMB anisotropies contain a term

�T

T
(k, t0, n) = · · · + 1

4
D(r )

g (k, tdec) eikn(t0−tdec) + · · · . (3.130)

On scales where this term dominates, the peaks in D(r )
g translate into peaks in the

angular power spectrum of CMB anisotropies.
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Since D(r )
g oscillates like a sine for iso-curvature perturbations, we find a first

peak in D(r )
g ∝ sin(cskt) at

x (0)
i = k(0)

i tdec = 1

cs

π

2
, λ

(0)
i = π

k(0)
i

= 2cstdec ,

ϑ
(0)
i � 2cstdec

χ (t0 − tdec)
� 2cstdec

t0
. (3.131)

Here ϑ
(0)
i is the angle under which the comoving scale λ

(0)
i at comoving distance

t0 − tdec is seen, see Eqs. (1.39)–(1.49). Equation (3.131) shows clearly that ϑ
(0)
i

strongly depends on the cosmological parameters, especially on curvature. The last
� sign above, is only true if K � 0.

The position of the acoustic peaks in the CMB anisotropy spectrum therefore
presents an excellent means to determine the spatial curvature of the Universe. As
we discussed in Chapter 2, when we expand the temperature fluctuations in terms of
spherical harmonics, a fluctuation on angular scale ϑ shows up around the harmonic
� ∼ π/ϑ . As an indication, we note that for � = K = 0, the harmonic of the first
iso-curvature peak is

�
(0)
i ∼ π/ϑ

(0)
i ∼ 110 .

In the adiabatic case the corresponding ‘first peak’ would actually be at k(0)
a = 0,

but we have not discussed it since it is not visible at all. Since k = 0 is of course a
super-Hubble scale at recombination, our discussion of the peak structure does not
apply at this scale. This is also nearly true for the ‘first’ peak of the iso-curvature
mode. Furthermore, D(r )

g is negative for small x so that these ‘first’ peaks are under-
densities or ‘expansion peaks’, and due to the gravitational attraction of the baryons
(which we have neglected in this simple argument) they are less pronounced than
the peaks due to over-densities, called ‘compression peaks’.

These ‘second’ peaks are usually called the first acoustic peaks. They are the first
compression peaks. We shall also adopt the convention of calling them ‘first peak’
for consistency with the literature. They correspond to wavelengths and angular
scales

λ
(1)
i = 2

3 cstdec ,

ϑ
(1)
i � (2/3)cs tdec

χ (t0−tdec) ,

�
(1)
i ∼ 330

 (iso-curvature) , (3.132)

λ(1)
a = cstdec ,

ϑ (1)
a � cs tdec

χ(t0−tdec) ,

�(1)
a ∼ 220

 (adiabatic) . (3.133)
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Here the indicated harmonic is the one obtained in the case � = K = 0, for a
typical baryon density inferred from nucleosynthesis.

It is interesting to note that the distance between consecutive peaks is the same
for adiabatic and iso-curvature initial conditions. It is given by

�ki = k(1)
i − k(0)

i = π/(cstdec) = �ka , �ϑ = cstdec

χ (t0 − tdec)
, �� ∼ 200 .

(3.134)

Again, the numerical value indicated for �� corresponds to a universe with � =
K = 0. The result is strongly dependent, especially on K . This is the reason why
the measurement of the peak position (or better of the inter-peak distance) allows
an accurate determination of curvature.

From our analysis we can draw the following important conclusions. For scales
where the D(r )

g -term dominates, the CMB anisotropies show a series of acoustic
oscillations with spacing �k. The position of the first significant peaks is at k = k(1)

a/ i ,
depending on the initial condition, however the spacing �k is independent of initial
conditions.

The angle �ϑ onto which the scale �k is projected in the sky is determined
entirely by the matter content and the geometry of the Universe. According to our
findings in Chapter 1 , ϑ will be larger if 
K < 0 (positive curvature) and smaller
if 
K > 0 (see Fig. 1.4).

In our analysis we have neglected the presence of baryons, in order to obtain
simple analytical results. Baryons have two effects: they lead to (ρ − 3p)rad+bar > 0,
and therefore to an enhancement of the compression peaks (the first, third, etc.
acoustic peak). In addition, the presence of baryons decreases the sound speed cs

of the baryon–photon plasma by about 10%, thereby increasing �k and �� and
decreasing �ϑ .

Another point which we have neglected is the fact that the Universe becomes
matter dominated at teq, only shortly before decoupling: tdec � 2.4teq for 
m ∼ 0.3.
As we have seen, the gravitational potential on sub-Hubble scales is decaying in
the radiation dominated era. If the radiation dominated era is not very long before
decoupling, the gravitational potential is still decaying slightly and free-streaming
photons fall into a deeper gravitational potential than they have to climb out of.
This effect, called the ‘early integrated Sachs–Wolfe effect’ adds to the photon
temperature fluctuations at scales which are only slightly larger than the position of
the first acoustic peak for adiabatic perturbations. It therefore ‘boosts’ this peak and,
at the same time, moves it to slightly larger scales (larger angles, lower spherical
harmonics). Since teq ∝ h−1, the first acoustic peak is higher if h is smaller.

A small Hubble parameter therefore increases the amplitude of the first acoustic
peak. A similar effect is observed if a cosmological constant or negative curvature
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are present, since teq is retarded in those cases. We shall discuss this dependence of
the acoustic peak structure on cosmological parameters in detail in Chapter 6.

3.3.3 Mixed adiabatic and iso-curvature perturbation

In general, inflation (from more than one scalar field) can lead to a mixture of
adiabatic and iso-curvature perturbations. At early time, k/H � 1 and R → 1,
such a mixture is given by

D = AUR and S = C . (3.135)

Here the ‘constants’ A and C are random variables for each wave number k. One
usually assumes them to be Gaussian, so that all the expectation values are deter-
mined by 〈A(k)A∗(k′)〉, 〈C(k)C∗(k′)〉 and 〈A(k)C∗(k′)〉. Statistical homogeneity
and isotropy requires

〈A(k)A∗(k′)〉 = δ(k − k′)Pa(k) , (3.136)

〈C(k)C∗(k′)〉 = δ(k − k′)Pi (k) , (3.137)

〈A(k)C∗(k′)〉 = δ(k − k′)Pai (k) . (3.138)

Clearly, Pia(k) = P∗
ia(k). Furthermore, Schwarz’ inequality requires∣∣〈A(k)C∗(k′)〉∣∣2 ≤ 〈A(k)A∗(k′)〉〈C(k)C∗(k′)〉 . (3.139)

Hence the Hermitean 2 × 2 matrix (Pmn) is positive semi-definite. One calls A and
C completely (anti-)correlated if

〈A(k)C∗(k′)〉 = ±
√

〈A(k)A∗(k′)〉〈C(k)C∗(k′)〉 .

To define such generic initial conditions one has, in principle, to specify four real
functions, namely Pa(k), Pi (k), Re(Pai (k)) and Im(Pai (k)), which satisfy the in-
equality (3.139). The present data are fully compatible with purely adiabatic per-
turbations, C = 0. Nevertheless, a considerable iso-curvature contribution of about
10% is still possible. (The precise percentage depends strongly on the definition
of the ratio of iso-curvature to adiabatic perturbations, e.g. on the scale at which
it is defined, and whether it is the ratio of the CMB anisotropies or of some other
perturbation variables.) It is interesting to note that the iso-curvature contribution
cannot be severely limited by CMB anisotropy data alone. The above constraint
comes mainly from the dark matter spectrum, to which iso-curvature modes con-
tribute very little on large scales. More details can be found in the literature (Trotta
et al., 2001, 2003; Moodley et al., 2004). Another possibility for constraining the
iso-curvature mode will be CMB polarization data, once they are available with
sufficient accuracy (Bucher et al., 2001).
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In reality, the situation is even more complicated. The real Universe contains
not only photons and dark matter, but also neutrinos and baryons (and maybe
quintessence). It has been found recently (Bucher et al., 2000) that a mixture of
photons, dark matter, baryons and neutrinos allows five different modes which grow
or stay constant, i.e. which are ‘regular’ in the sense that they do not grow very large
into the past. These are the adiabatic mode and the dark matter iso-curvature mode
which we have just discussed, a similar baryon iso-curvature mode (where only
the baryon density is perturbed) and two neutrino modes (where only the neutrino
density or velocity is perturbed). The acoustic peaks from the most generic initial
conditions which allow for arbitrary correlations between the different modes are
very unpredictable. For example, in a flat universe with a vanishing cosmological
constant and fixed cosmic parameters we can obtain a first peak position in the range
of 150 ≤ �(1) ≤ 350. However, combining CMB data and galaxy catalogues (LSS
data) allows us to constrain the total contribution from all non-adiabatic modes to
less than about 15%. This number will certainly still improve in the future, when
accurate polarization data are available.

In the remainder of this book, we only discuss adiabatic perturbations, which are
by far the most studied and which are in very good agreement with present data.
However, one should keep in mind that all the results, especially those concerning
the estimation of cosmological parameters, are not valid if we allow for more generic
initial conditions (Bucher et al., 2001; Trotta et al., 2001, 2003; Moodley et al.,
2004).

Exercises

(The exercise marked with an asterisk is solved in Appendix A10.3.)

Ex. 3.1 Power law expansion∗

Consider a FL universe filled with a (minimally coupled) scalar field with vanishing
spatial curvature, K = 0. Show that the universe expands like a power law, a ∝ tq

so that H = q/t if and only if the scalar field potential is of the form

W (ϕ) = W0 exp

(
α

ϕ

m P

)
. (3.140)

Determine α(q) and w(q) = P/ρ. Determine also p(q) such that a ∝ τ p and α(p).
For which values of α do you obtain an inflationary universe?
Hint: Show that power law expansion implies w = P/ρ = constant. Use this
to derive that Ẇ/W ∝ H/ϕ̇ and ϕ̈ ∝ Hϕ̇. Replacing Ẇ and ϕ̈ in the equation of
motion, you can now show that a2W ∝ ϕ̇2. Inserting this in the Friedmann equation
leads to H ∝ ϕ̇ and therefore to Ẇ/W = constant.
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Ex. 3.2 A canonical variable for tensor perturbations
Consider a spatially flat FL universe with pure tensor perturbations,

ds2 = a2
[−dt2 + (δi j + Hi j ) dxi dx j

]
. (3.141)

Consider only the gravitational part of the action,

S + δS = m2
P

16π

∫
d4x

√
−(g + δg)(R + δR) .

Show that up to second order in Hi j the perturbed action is given by

δS(2) = 1

2

∫
d4x

[
ḣi j ḣ

i j − hi j,l h
i j,l + ä

a
hi j h

i j

]
. (3.142)

Indices in hi j are raised and lowered with the flat metric δi j and

hi j = m p√
8π

aHi j .

Hint: Use the variational principle of general relativity, Eq. (A2.15) and insert the
first-order expression for Gi j given in Eq. (2.109) to obtain δS(2). This yields

δS(2) = −m2
P

8π

∫
d4x a2 Hi j

[
Ḧi j + 2

ȧ

a
Ḣi j − �Hi j

]
.

After a partial integration (subtraction of a total derivative) this leads to Eq. (3.142).
We can now Fourier transform hi j and set hi j (k, t) = ei j (k, +)h+(k, t) +
ei j (k, ×)h×(k, t), where ei j (k, +) and ei j (k, ×) denote the two polarizations of the
gravity wave which satisfy ei

i (k, λ) = ki ei j (k, λ) = 0 and ei j (k, λ)ei j (k, λ′) = δλλ′ .
Calculate ei j (k, λ) for k along the z direction. Show that h satisfies Eq. (3.73) for
each of the two polarizations λ.

Ex. 3.3 A mixture of matter and radiation
Consider a mixture of a relativistic fluid, Pr = (1/3)ρr and a non-relativistic fluid,
with energy density ρm and pressure Pm = 0 in a Friedmann universe with negligi-
ble curvature and cosmological constant. Assume that the fluids are non-interacting.
As in Eq. (3.93)

R = ρr

ρ
= ρr

ρr + ρm
. (3.143)

(i) Show that

a = ρr

ρm
= R−1 − 1 = 1 − R

R

is the scale factor normalized to a(teq) = 1, where teq is defined by ρr (teq) =
ρm(teq) ≡ ρeq.

(ii) Show that

a(t) =
(

t

t1

)2

+ 2

(
t

t1

)
where t1 ≡

√
3

πGρeq
. (3.144)



Exercises 133

(iii) Also derive the following useful relations which we have used throughout this
chapter:

H2 = 4(1 + a)

t2
1 a2

,

w = R

3
,

c2
s = 4R

3(R + 3)
.

Using τ0 = 2/H0, zeq = 2300h2 and zdec = 1090 calculate t0, t1, teq and tdec

in our flat model. Keep the explicit dependence on the Hubble parameter, h,
in the expressions.
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CMB anisotropies

4.1 Introduction to kinetic theory

As we saw in Chapter 1, and as we know from statistical mechanics, the distribution
function of photons in thermal equilibrium is given by

f (ω) = 1

eω/T − 1
, (4.1)

where ω = a|p̃| is the physical photon energy. The comoving photon energy and
momentum are denoted by p̃0 and p̃ and we have p̃ = |p̃| = p̃0 = a−1ω. As long
as interactions are sufficiently frequent to keep photons in thermal equilibrium, this
distribution is maintained. Once there are very few interactions, the distribution
is affected only by redshifting photon momenta, this follows from Eq. (1.89) and
was discussed in Chapter 1. As we saw there, if we define T (a) = TDaD/a after
decoupling, where a(tD) ≡ aD is the scale factor at decoupling, the distribution
retains its form even after decoupling. Of course, after decoupling T (a) is no
longer a temperature in the thermodynamical sense but merely a parameter of the
distribution function. This point is especially interesting for neutrinos: even if they
may have masses of the order of mν ∼ 1 eV � T0, their distribution is an extremely
relativistic Fermi–Dirac distribution, since this is what it was at decoupling and it
has only changed since by redshifting of neutrino momenta.

4.1.1 Generalities

We first present a brief introduction to relativistic kinetic theory. More details can
be found in Ehlers (1971) and Stewart (1971).

In the context of general relativity on a spacetime M, for a particle species with
mass m we define the mass-shell, mass-bundle or 1-particle phase space as the part

134
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of tangent space given by

Pm ≡ {(x, p) ∈ TM | gµν(x)pµ pν = −m2} . (4.2)

This is a seven-dimensional subspace of the tangent space TM. A (three-
dimensional) ‘fibre’ of the mass-bundle at a fixed event x ∈ M is defined by

Pm(x) ≡ {p ∈ TxM | gµν(x)pµ pν = −m2} . (4.3)

Here TxM is the tangent space of M at point x ∈ M. The 1-particle distribution
function is defined on Pm ,

f : Pm → R : (x, p) �→ f (x, p) . (4.4)

The distribution function is non-negative and represents the phase-space density
of particles with respect to the invariant measure dµ = 2δ(p2 + m2)|g| d4 p d4x .
Here g is the determinant of the metric and p2 = gµν p̃µ p̃ν . The factor 2 is a
convention which we adopt here for convenience. We have chosen the coordinate
basis ∂µ = ∂/∂xµ in tangent space, so that p = p̃µ∂µ. We integrate over p0 to get
rid of the Dirac-δ. This yields the measure dµ on phase space in terms of the phase
space coordinates ( p̃i , xµ),

dµm = |g(x)|
| p̃0(x, p̃)| d4x d3 p̃ =

√
|g(x)|dπm d4x , where (4.5)

dπm =
√|g(x)|
| p̃0(x, p̃)| d3 p̃ . (4.6)

Here p̃ = ( p̃1, p̃2, p̃3) and x = (x0, x1, x2, x3); p̃0 = g0µ p̃µ is determined as
a function of (x, p̃) via the mass-shell condition, p2 = −m2. The measure√|g(x)| d4x is the usual invariant measure on M. Therefore densities on spacetime
are obtained by integrating over the momenta with the measure dπ . For example
the particle flux density is given by

nµ(x) =
∫

Pm (x)

√|g(x)|
| p̃0(x, p̃)|

p̃µ

p̃0
f (x, p̃) d3 p̃ . (4.7)

More importantly, the energy–momentum tensor is given by

T µν(x) =
∫

Pm (x)

√|g(x)|
| p̃0(x, p̃)| p̃µ p̃ν f (x, p̃) d3 p̃ . (4.8)

If the particles are non-interacting, they move along geodesics,

ẍµ + �µ
να ẋν ẋα = 0 . (4.9)

Here the dot denotes the derivative with respect to proper time s defined by the
condition gµν(x)ẋµ ẋν = ẋ2 = −1. In the case of massless (light-like) particles, the
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arc length cannot be defined. In this case the dot can be the derivative with respect to
some arbitrary affine parameter. The geodesic equation (4.9) for massless particles,
ẋ2 = 0, is invariant under affine reparametrizations, s → As + B, where A and B
are constants.

Equation (4.9) is obtained as the Euler–Lagrange equation of the Lagrangian

L(x, ẋ) = m

2
gµν(x)ẋµ ẋν .

For massive particles m denotes the mass, for massless particles it is an arbitrary
non-vanishing constant normally set to one. The canonical momentum is then given
by

p̃µ = ∂L
∂ ẋµ

= mẋµ and p̃µ = mẋµ .

From the geodesic equation (4.9) we therefore have

m ˙̃pµ = −�µ
να p̃α p̃ν .

If there are no collisions, i.e., no interactions other than gravity, the distribution
function remains constant in a ‘comoving’ volume element of phase space. There-
fore

d

ds
f =

[
ẋµ∂µ + ˙̃pi ∂

∂ p̃i

]
f = 0 , (4.10)

↔
[

p̃µ∂µ − �i
µν p̃µ p̃ν ∂

∂ p̃i

]
f = 0 . (4.11)

This is the Liouville equation for collisionless particles. If collisions cannot be
neglected, we have to replace the right-hand side by a collision term. Since collisions
involve more than one particle, in principle the collision term depends on the 2- or
even 3- and 4-particle distribution functions. To continue, one then has to derive an
equation of motion for the 2-particle distribution function and so forth. This leads to
the well known BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy of
equations. Often, if the particles are sufficiently diluted, the 2-particle distribution
function can be approximated by the product of the 1-particle distribution functions,

f2(x, y, px , py) � f (x, px ) f (y, py) . (4.12)

This corresponds to the assumption that the particle positions in phase space are
uncorrelated and is called ‘molecular chaos’. In this case, the collision term becomes
an integral over the momentum of the colliding particle and we obtain the Boltzmann
equation, [

p̃µ∂µ − �i
µν p̃µ p̃ν ∂

∂ p̃i

]
f = C[ f ] . (4.13)
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The collision integral C[ f ] depends on the details of the interactions. We will
calculate it for Thomson scattering of electrons and photons.

What we have discussed so far remains valid in the context of general rela-
tivity under some conditions on the number of collisions within a small volume
which have to be satisfied in order for a coordinate-independent collision integral
to exist (Ehlers, 1971).

In the kinetic approach it is often very useful to use a tetrad basis of vector
fields, eµ(x) = eν

µ∂ν with g(eµ, eν) = gαβeα
µeβ

ν = ηµν . Here ηµν denotes the flat
Minkowski metric. With respect to such an orthonormal basis, p = pµeµ we have
|p0| = |p0| =

√
m2 − p2, where p2 = ∑3

i=1(pi )2, and dπm = d3 p/|p0|, as in flat
Minkowski spacetime. This can also be written as

ηµν pµ pν = gµν p̃µ p̃ν .

4.1.2 Liouville’s equation in a FL universe

We now want to discuss the Liouville equation in a FL universe. We choose the
tetrad basis (orthonormal basis of four vector fields)

e0 = a−1∂t and ei = a−1εi , (4.14)

where (εi ) is an orthonormal basis of vector fields for the metric of the 3-space
of constant curvature γi j . If K = 0 we can choose εi = ∂i . But also if K 
= 0 we
can always choose vector fields (εi ) which form an orthonormal basis, i.e., a basis
which satisfies

γ (εi , ε j ) = δi j . (4.15)

The expression for the energy–momentum tensor (with respect to the usual co-
ordinate basis ∂µ) in a Friedmann universe becomes

T µν(x) = a4
√

|γ (x)|
∫

Pm (x)

1

| p̃0| p̃µ p̃ν f (x, p̃) d3 p̃ , (4.16)

where γ is the determinant of the three-dimensional metric (γi j ) and we have used
|g| = a8|γ |.

The Liouville equation in a Friedmann universe in terms of the coordinates
(xµ, p̃i ), is given by

p̃µ∂µ f | p̃ − �i
µν p̃µ p̃ν ∂ f

∂ p̃i
= 0 . (4.17)

Here we write ∂µ f | p̃ in order to indicate that the components p̃i are fixed when
the derivative w.r.t. xµ is taken. Next we transform Eq. (4.17) into an equation for
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f with respect to the new coordinates (xµ, pi ), i.e., we consider f as a function of
(xµ, pi ). Since the FL universe is isotropic, f depends on the momentum only via1

p = √
δi j pi p j = √

a2γi j p̃i p̃ j = a p̃. The derivative of the distribution function
with respect to t or x depends on the momentum variable which we keep constant
when performing this derivative. We denote by ∂µ f |p the derivative w.r.t. xµ while
keeping constant the momentum components pi w.r.t. the orthonormal basis ei and
∂µ f | p̃ the derivative w.r.t. xµ while keeping constant the momentum components
p̃i w.r.t. the coordinate basis ∂i . We then have

∂0 f | p̃ = ∂0 f |p + (∂0 p j )| p̃
∂ f

∂p j
= ∂0 f |p + Hp

∂ f

∂p
, (4.18)

∂i f | p̃ = ∂i f |p + (∂i p)| p̃
∂ f

∂p
= ∂i f |p + a2 p̃k p̃ jγk j ,i

2p

∂ f

∂p
,

p̃i∂i f | p̃ = p̃i∂i f |p + a2 p̃k p̃ j p̃iγk j ,i

2p

∂ f

∂p
, (4.19)

∂ f

∂ p̃i
= ∂p

∂ p̃i

∂ f

∂p
= a2 γim p̃m

p

∂ f

∂p
. (4.20)

With Eq. (4.20) the terms with spatial Christoffel symbols in Eq. (4.17) become

�i
jm p̃m p̃ j ∂ f

∂ p̃i
= a2�i

jmγik
p̃m p̃ j p̃k

p

∂ f

∂ p̃
= a2 1

2
γmj ,k

p̃m p̃ j p̃k

p

∂ f

∂ p̃
. (4.21)

In the last equals sign we have used the fact that p̃m p̃ j p̃k is symmetrical in the in-
dices m, k, j and we may therefore also symmetrize the term �i

jmγik = 1/2(γk j,m +
γkm, j − γ jm,k). With the help of Eq. (4.19) the terms −�i

jk p̃ j p̃k (∂ f /∂ p̃i ) and
p̃i (∂i p)| p̃(∂ f /∂p) in Eq. (4.17) cancel and we obtain

p̃µ∂µ f |p + H p̃0 p
∂ f

∂p
− 2�i

0 j p̃0 p̃ j ∂ f

∂ p̃i
= 0 . (4.22)

Inserting the Christoffel symbols of the FL universe (see Appendix A2.3) �i
0 j =

�i
j0 = Hδi

j , we find

p̃µ∂µ f − H p̃0 p
∂ f

∂p
= 0 . (4.23)

In an unperturbed FL universe we assume the distribution function to be homo-
geneous and isotropic, hence to depend on x j and on pi only via p. When using
the coordinates pi in momentum space we therefore expect f not to depend on
the spatial coordinates xi anymore. Therefore, the Liouville equation simplifies

1 Here we use p to denote the absolute value of the physical momentum while before we used it to denote the
4-vector p. Since these are very different objects we hope that there is no danger of confusion.
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further to

∂0 f − Hp
∂ f

∂p
= 0 . (4.24)

Or, setting v = ap so that ∂0 f |v = ∂0 f |p − Hp(∂ f /∂p) and interpreting f as a
function of (t, v), we obtain simply

∂0 f (t, v) = 0 . (4.25)

The Liouville equation in a FL universe therefore just requires that the distribution
function of collisionless particles changes in time only by redshifting of the physical
momentum p and therefore is simply a function of the redshift corrected momentum
v = ap. Normally we shall use the same letter f for f (t, p) and f (v).

4.2 The Liouville equation in a perturbed FL universe

Let us consider small (first-order) deviations from a FL universe. This does not
only imply a small perturbation of the distribution function, but also its domain of
definition, the mass-shell (4.2) is modified due to the perturbations of the metric.
We will keep track of this by modifying the tetrad fields (eµ).

4.2.1 Scalar perturbations

We derive the linear perturbation of Liouville’s equation in the longitudinal gauge.
The perturbed metric is given by

ds2 = −a2(1 + 2�) dt2 + a2(1 − 2�)γi j dxi dx j . (4.26)

The perturbed distribution function is f = f̄ (v) + F (S)(xµ, v, θ, φ), where (θ, φ)
define the direction of the momentum p. Liouville’s equation now becomes, to first
order, in the perturbations

p̃µ∂µ f − �̄i
µν p̃µ p̃ν ∂ f

∂ p̃i
− δ�i

µν p̃µ p̃ν ∂ f̄

∂ p̃i
= 0 , (4.27)

where the perturbations of the Christoffel symbols are given in Appendix 3,
Eqs. (A3.2)–(A3.5). We have denoted background quantities by an over-bar. For
simplicity, and also since this is the most relevant case, we restrict ourselves here
to K = 0. The curved cases, K 
= 0 are treated in Appendix 9. However, in order
to connect these results in a more straightforward manner to the K 
= 0 case, we
do not yet make a Fourier decomposition of �, � and F (S). We again use a tetrad
basis which is now given by

e0 = a−1(1 − �)∂t and ei = a−1(1 + �)∂i . (4.28)
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We want to transform Eq. (4.27) to the coordinates (xµ, pi ) with pµeµ = p̃µ∂µ. So
that

p0 = a(1 + �) p̃0 and pi = a(1 − �) p̃i . (4.29)

For the transformation we use the derivatives

∂0 pi | p̃ = [
H(1 − �) − �̇

]
a p̃i so that ,

∂0 f | p̃ = ∂0 f |p + [H(1 − �) − �̇]a p̃i ∂ f

∂pi
,

∂0 f | p̃ = ∂0 f |p + [H − �̇]p
∂ f

∂p
, (4.30)

p̃ j∂ j f | p̃ = p̃ j∂ j f |p − p̃ j∂ j�p
∂ f̄

∂p
. (4.31)

As in the previous section, we indicate the momentum variable kept constant. With
the help of the Liouville equation for f̄ , we then find

p̃µ∂µF (S)
∣∣

p
− H p̃0 p

∂ F (S)

∂p

= a−1v
d f̄

dv
[pi∂i� + p0�̇] + a−1δ�i

µν pµ pν ∂ f̄

∂pi
. (4.32)

Inserting the perturbation of the Christoffel symbols (Eqs. (A3.2)–(A3.5) of
Appendix 3), the right-hand side becomes

a−1v
d f̄

dv

[
−p0�̇ + ( p̃0)2

p̃2
pk∂k�

]
,

where p̃2 = ∑
k( p̃k)2 and we have used pi (∂ f̄ /∂pi ) = v(d f̄ /dv).

We now rewrite the Liouville equation in terms of a new variable defined byF =
F (S) + �v(d f̄ /dv). In most of the literature (Hu & Sugiayma, 1995; Hu et al., 1995,
1998; Hu & White, 1997a, 1997b) the variable F (S) is used directly. Note, however,
that F and F (S) only differ by an isotropic (direction-independent) term. Hence,
once we determine the CMB anisotropies this difference will only be present in the
unmeasurable monopole term. The advantage of the variable F will become clear
later.

Setting p̃ j = p̃n j with 1 = δi j ni n j we have to lowest order, p̃ = p/a = v/a2.
Defining also

q = a2 p̃0 = aω = a
√

p2 + m2 =
√

v2 + a2m2 , (4.33)
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we can rewrite the Liouville equation for the function F(t, x, v, n) in the form

q∂0F + vni∂ jF = ni∂i
[
q2� + v2�

] d f̄

dv
. (4.34)

Here v j = ap j are the redshift corrected physical momentum components and F
is understood as a function of the variables xµ and v j ≡ vn j . Since F and � , �

are already perturbations, we can use the background relations between p and v as
well as q.

This is the Liouville equation for collisionless (massive) particles. We shall see
that the equation can be simplified in the massless case where q = v, which is
relevant for the study of photons.

4.2.2 Vector perturbations

Next we consider vector perturbations. For simplicity, here we do not use the vector
gauge, but we set Bi = 0 so that

ds2 = a2
(−dt2 + (γi j + 2Hi j ) dxi dx j

)
, 2Hi j = Hi | j + Hj |i . (4.35)

We use this gauge instead of the vector gauge, because it has a simpler perturbed
orthonormal basis. The vector fields

e0 = a−1∂t and ei = a−1
(
δ

j
i − H j

i

)
∂ j , (4.36)

are orthonormal. If we used a gauge with Bi 
= 0 (non-vanishing ‘shift vector’) this
would lead to a mixing of time and space directions in the orthonormal basis and
would complicate the calculations.

In the chosen basis the components of p = p̃µ∂µ = pµeµ are related by

p̃0 = a−1 p0 ,

p̃i = a−1 p j (δ j
i − Hj

i ) ,

p0 = a p̃0 ,

pi = a p̃ j (δ j
i + Hj

i ) .

The indices of Hi j are raised and lowered with the trivial metric δ j
i . In the gauge

chosen in Eq. (4.35), the only non-vanishing perturbations of the Christoffel sym-
bols are

δ�i
j0 = Ḣ i

j , δ�i
jm = Hi

j |m + Hi
m| j − Hjm

|i , (4.37)

where in the spatially flat case, | is simply the ordinary partial derivative. Again,
we want to write the Liouville equation p̃µ∂µ f − �i

αβ p̃α p̃β(∂ f /∂ p̃i ) for f as a
function of (xµ, pi ). The difference to the scalar case comes from the different basis
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and hence the difference in the relation between pµ and p̃µ and from the different
Christoffel symbols. A short calculation gives for f = f̄ (v) + F (V )(t, x, v, n)

p̃i∂i f | p̃ = a−1 pi

[
∂i f |p + ∂i p j | p̃

∂ f

∂p j

]
= a−1 pi

[
∂i F (V )|p + pk H j

k|i
∂ f̄

∂p j

]
= a−1 pi

[
∂i F (V )|p + p j pk

p
H j

k|i
∂ f̄

∂p

]
,

�i
jk p̃ j p̃k ∂ f

∂ p̃i
= a−1 pi p j

p
pk Hi

k| j

∂ f̄

∂p
.

Here we have used that the background contribution to f , f̄ depends on momentum
only via p so that ∂ f̄ /∂p j = (p j/p)(∂ f̄ /∂p). The other terms of the Liouville
equation are

∂0 f | p̃ = ∂0 f |p + ∂0 pi | p̃
∂ f

∂pi

∂0 pi = Ha p̃ j (δi
j + Hj

i ) + a p̃ j Ḣ i
j = Hpi + a p̃ j Ḣ i

j

p̃0∂0 f | p̃ = a−1

[
p0∂0 f |p + p0Hpi ∂ f

∂pi
+ Ḣi j

pi p j

p

∂ f̄

∂p

]
.

Furthermore,

2�i
0 j p̃ j p̃0 ∂ f

∂ p̃i
= 2Hp0 pi ∂ f

∂pi
+ 2Ḣi j

pi p j

p

∂ f̄

∂p
.

Together these results yield

p̃µ∂µ f | p̃ − �i
µν p̃µ p̃ν ∂ f

∂ p̃i

= a−1

[
p0∂0 f |p + pi∂i f |p − Hp0 pi ∂ f

∂pi
− p0 Ḣ i

m

pm pi

p

∂ f

∂p

]
. (4.38)

Using the zeroth-order Liouville equation, and transforming to the redshift corrected
momentum variable v = ap, all this finally leads to the following Liouville equation
for F (V )(t, x, v, n),

q∂0 F (V ) + vni∂i F (V ) = qvni n j Ḣi j
d f̄

dv
. (4.39)

where for B = 0, σ
(V )
�m = aḢ (V )

�m as defined in Chapter 2, Eq. (2.52).
Note that it was useful to choose the redshift corrected momentum v and the

directions ni as our momentum variables. Otherwise the Liouville equation would
be significantly more complicated.
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4.2.3 Tensor perturbations

For tensor perturbations the perturbed metric is given by

ds2 = a2
(−dt2 + (γi j + 2Hi j ) dxi dx j

)
, Hi

i = H j
i | j = 0 . (4.40)

As above we define the perturbation of the distribution function by

f = f̄ (v) + F (T )(t, x, v, n) .

The situation is exactly the same as for vector perturbations and we find the same
Liouville equation,

q∂0 F (T ) + vni∂i F (T ) = qvni n j Ḣi j
d f̄

dv
. (4.41)

4.3 The energy–momentum tensor

From the perturbed distribution function and metric, we can determine the perturbed
energy–momentum tensor. We start from the general expression

T µ
ν (x) =

∫
Pm (x)

√|g(x)|
| p̃0(x, p̃)| p̃µ p̃ν f (x, p̃) d3 p̃ . (4.42)

Observe that the components p̃µ are the momentum components w.r.t. the coordi-
nate basis ∂µ. We now use

p̃0 = a−2(1 − �)q ,

p̃0 = −(1 + �)q ,

p̃i = a−2vn j (δ j
i − Hj

i ) ,

p̃i = vn j (δ
j
i + H j

i ) .

Here we consider scalar, vector and tensor perturbations together so that Hi j =
−�δi j + H (V )

i j + H (T )
i j . In the following subsections we then isolate the contribu-

tions for the scalar, vector and tensor perturbations of the energy–momentum tensor.
We note that to first order det g = −a8(1 + 2� − 6�). In order to transform the
integration d3 p̃ in Eq. (4.42) into an integration w.r.t. d3 p we use

det

(
d p̃

dp

)
= a−3 det

(
δm

j − Hm
j
) = a−3[1 + 3�] . (4.43)

With this we find that the metric perturbations in T 0
0 and T 0

j cancel and we obtain
the following expressions for the energy–momentum tensor

T 0
0 = −

∫
Pm (x)

p0 p2 f (x, p) dp d
n = −1

a4

∫
qv2 f dv d
n , (4.44)
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T j
0 = −

∫
Pm (x)

n j p3 f (x, p) dp d
n = −1

a4

∫
n jv3 f dv d
n , (4.45)

T i
j = (δi

� − Hi
�)(δ jk + Hjk)

1

a4

∫
n�nk v4

q
f dv d
n ,

= T̄ i
j + 1

a4

∫
ni n j

v4

q
F dv d
n = P̄δi

j + δT i
j . (4.46)

To find the last expression we use the fact that the background stress tensor is
diagonal,

∫
n�nk f̄ d
n = 4π

3 δ�k f̄ and that to first order

(δik − Hik)(δk
j + H j

k ) = δi j ,

since H km = H k
m = Hkm is symmetric. In Eq. (4.45) we have neglected the term

proportional to H �
m since in the direction integral

∫
n j f only the perturbation of

the distribution function contributes, so that this term would be second order. The
surface element d
n denotes the integral over the sphere of momentum directions,
pi = pni .

Before turning to the different modes, let us split the stress tensor into a trace
and a traceless part,

T i
j = Pδi

j + P̄�i
j with (4.47)

P = 1

3
T i

i = P̄ + 1

3a4

∫
v4

q
F dv d
n and (4.48)

P̄�i
j = T i

j − Pδi
j = 1

a4

∫
v4

q

(
ni n j − 1

3
δi

j

)
F dv d
n . (4.49)

Here we have used the fact that

P̄ = 4π

3a4

∫
v4

q
f̄ dv .

4.3.1 Scalar perturbations

We now use the general expressions above to determine the variables defined in
Chapter 2 which specify scalar perturbations of the energy–momentum tensor.
We consider a Fourier mode F (S)(t, k, n)eik·x. As before, we denote background
quantities with an overbar. Equation (4.44) implies

ρ(t, k) = ρ̄(t) + δρ(long)(t, k) = 4π

a4

∫
qv2 f̄ (v) dv

+ 1

a4

∫
qv2 F (S)(t, k, n) dv d
n . (4.50)
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Hence

Ds = δρ(long)

ρ̄
= 1

ρ̄a4

∫
qv2 F (S) dv d
n . (4.51)

To determine the integral of F = F + �v(d f̄ /dv) we use

1

a4

∫
qv3 d f̄

dv
dv d
n = −4π

a4

∫ (
3qv2 + v4

q

)
f̄ dv = −3(ρ̄ + P̄) .

For the first equals sign we have integrated by parts and used

dq

dv
= d

dv

√
a2m2 + v2 = v

q
.

There is no boundary term since f decays rapidly for large momenta. With this we
obtain

1

ρ̄a4

∫
qv2F dv d
n = Ds − 3(1 + w)� = Dg . (4.52)

The gauge-invariant velocity perturbation is given by T 0
i in longitudinal gauge.

Hence

T 0(S)
i = 1

a4

∫
niv

3 F (S) dv d
n = 1

a4

∫
niv

3F dv d
n = (ρ̄ + P̄)Vi . (4.53)

Taking the divergence on both sides we obtain, with Vj ≡ −i(k j/k)V ,

kV = i

a4(ρ̄ + P̄)

∫
ni kiv

3F dv d
n ,

V = i

a4(ρ̄ + P̄)

∫
µv3F dv d
n , (4.54)

where we have introduced the direction cosine between n and k, µ = ni ki/k = ni k̂i .
In order to determine the variable � we first write

πL = δP

P̄
= 1

3P̄a4

∫
v4

q
F (S) dv d
n ,

and therefore

1

3P̄a4

∫
v4

q
F dv d
n = πL + �

4π

3P̄a4

∫
v5

q

d f̄

dv
dv (4.55)

We use the background identity ˙̄ρ = −3Hρ̄(1 + w) = −3H (1+w)
w

P̄ to replace P̄
in the second term. After integration by parts we find

�
4π

3P̄a4

∫
v5

q

d f̄

dv
dv = �

H(1 + w)

w ¯̇ρ

4π

a4

∫ (
5v4

q
− v6

q3

)
f̄ dv .
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On the other hand, using q̇ = Hm2a2/q = H q2−v2

q , we obtain

˙̄P = −H 4π

3a4

∫ (
5v4

q
− v6

q3

)
f̄ dv .

With ˙̄P/ ˙̄ρ = c2
s , these two equations together yield

1

3P̄a4

∫
v4

q
F dv d
n = π

(long)
L − 3(1 + w)

c2
s

w
� . (4.56)

Furthermore

c2
s

P̄a4

∫
qv2F dv d
n = c2

s

w
Dg = c2

s

w
δ(long) − 3(1 + w)

c2
s

w
� .

Combining this with Eq. (4.56) results in

1

P̄a4

∫ (
v4

3q
− c2

s qv2

)
F dv d
n = π

(long)
L − c2

s

w
δ(long) = � . (4.57)

The scalar anisotropic stress tensor is simply given by Eq. (4.49). It is related to
its potential � via �i j = (−k−2ki k j + 1

3δi j
)
�, so that �i j |i j = 2

3 k2�. In Eq. (4.49)
this leads to

� = 3

2a4 P̄

∫
v4

q

(
−(n · k)2/k2 + 1

3

)
F dv d
n (4.58)

= 3

2a4 P̄

∫
v4

q

(
1

3
− µ2

)
F dv d
n . (4.59)

4.3.2 Vector perturbations

Vector perturbations are given by divergence free vector fields. For a fixed Fourier
component k, we expand them in the basis functions Q(V )

j which have two inde-

pendent modes. Let us choose two basis vectors e(1) and e(2) so that (e(1), e(2), k̂)
form an orthonormal basis. The k-Fourier mode of an arbitrary vector perturbation
is then of the form A j = (A(1)e(1)

j + A(2)e(2)
j ) eikx. We can also write it in terms of

the helicity basis (see Eq. (2.13))

e(±) = 1√
2

(
e(1) ± ie(2)

)
, (4.60)

A j = (
A(+)e(+)

j + A(−)e(−)
j

)
eikx ,

where A(±) = 1√
2

(
A(1) ∓ i A(2)

)
.
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We write the vector perturbations of the distribution function for a given Fourier
mode k in this form

F (V )(t, x, n, v) = [
F (V +)(t, k, n, v)e(+) · n + F (V −)(t, k, n, v)e(−) · n

]
eik·x .

(4.61)

The functions F (V +) and F (V −) no longer depend on e(±). Therefore, if the
process which generated the fluctuations is isotropic, the components F (V ±)

depend on the direction n only via µ = k̂ · n. With respect to spherical co-
ordinates where k points in the z-direction, the components of n are n =
(
√

1 − µ2 cos ϕ,
√

1 − µ2 sin ϕ, µ). With e(1) = (1, 0, 0) and e(2) = (0, 1, 0) we
obtain

e(±) · n = n∓ =
√

1 − µ2

2
e±iϕ , (4.62)

so that

F (V )(t, x, n, v) =
√

1 − µ2

2

[
F (V +)(t, k, µ, v)eiϕ + F (V −)(t, k, µ, v)e−iϕ

]
eik·x .

(4.63)
We now write the vorticity vector perturbation of the energy–momentum tensor in
the helicity basis, 
i (t, k) = 
(+)(t, k)e(+)

i + 
(−)(t, k)e(−)
i .


 j (t, k) = −1

ρ̄ + P̄
T (V ) j

0 ,


(±)(t, k) = 1

(ρ̄ + P̄)a4

∫
e∓ · nv3 F (V )(t, k, n, v) dv d
n

= π

(ρ̄ + P̄)a4

∫
v3 F (V ±)(t, k, µ, v)(1 − µ2) dv dµ . (4.64)

In the chosen gauge, Bi = 0, we obtain T i
0 = (ρ̄ + P̄)
i , hence the first moment,∫

ni F (V ) gives rise to the vorticity 
i and not to the shear V (V )i (for details see
Section 2.2.4).

We introduce the helicity decomposition of the vector potential for anisotropic
stresses,

�
(V )
j =

(
�(V +)e(+)

j + �(V −)e(−)
j

)
eikx . (4.65)

The anisotropic stress tensor is defined by �(V )i
j = −1

2k

(
�(V )i | j + �

(V )
j

|i)
. But

�(V )i
j is also given by the integral of the distribution function over momentum

space,

�(V )i
j = 1

a4 P̄

∫
v4

q

(
ni n j − 1

3
δi

j

)
F (V ) dv d
n . (4.66)
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Taking the divergence of both expressions we obtain

�(V )i
j |i = k

2

(
�(V +)e(+)

j + �(V −)e(−)
j

)
eikx

= ik

a4 P̄

∫
v4

q

(
n jµ − 1

3
k̂ j

)
F (V ) dv d
n . (4.67)

We multiply this vector with e∓ to isolate the modes �±. We also make use of the
helicity decomposition of the distribution function, Eq. (4.61)

�(V ±) = 2i

a4 P̄

∫
v4

q
n±µF (V ) dv d
n

= 2π i

a4 P̄

∫
v4

q
µ(1 − µ2)F (V ±)(t, k, µ, v) dv dµ . (4.68)

For the second equals sign we made use of the decomposition n = n+e(+) +
n−e(−) + µk̂ =

√
1 − µ2e−iϕe(+) +

√
1 − µ2eiϕe(−) + µk̂ introduced above.

4.3.3 Tensor perturbations

For tensor perturbations only the anisotropic stresses survive. The ansatz for a
tensor-type Fourier mode of the distribution function is

F (T )(t, x, n, v) =
[

F (T ×)(t, k, n, v)Q(T ×)
i j + F (T d)(t, k, n, v)Q(T d)

i j

]
ni n j ,

where

Q(T ×)
i j = eik·x

√
2

[
e(1)

i e(2)
j + e(2)

i e(1)
j

]
and Q(T d)

i j = eik·x
√

2

[
e(1)

i e(1)
j − e(2)

i e(2)
j

]
.

These tensors form a basis of the symmetric traceless tensors normal to k. Usually,
when discussing gravity waves, the second mode function is denoted Q(T +)

i j . Here

we use Q(T d)
i j in order not to confuse this basis with the helicity basis which we

shall use later also for tensor perturbations. The superscript d indicates that this
tensor is non-zero only on the diagonal with principal axes (eigenvectors) e(1) and
e(2), while Q(T ×)

i j is purely off-diagonal. Its principal axes are rotated by 45◦ with
respect to e(1) and e(2).

�(T )i
j = 1

a4 P̄

∫
v4

q

(
ni n j − 1

3
δi

j

)
F (T ) dv d
n . (4.69)
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With the above decomposition of the distribution function and �
(T )
i j =

�(T ×)(t, k)Q(T ×)
i j + �(T d)(t, k)Q(T d)

i j we obtain

�(T •) = π

2a4 P̄

∫
v4

q
F (T •)(t, k, v, µ)(1 − µ2)2 dv dµ . (4.70)

As for vector perturbations, we assume that the process generating the perturbation
is isotropic, so that F (T •) depends on the direction n only via µ = n · k̂.

In the massless case, which is most relevant for us, the energy–momentum tensor
simplifies considerably. This is the subject of the next section.

4.4 The ultra-relativistic limit, the Liouville equation for massless particles

The Liouville equation and the expression for the perturbations of the energy–
momentum tensor derived in the previous section are actually more important for
massive collisionless particles, e.g., massive neutrinos, than for massless particles.
In the massless (or ultra-relativistic) case we have q = v and the equations simplify
significantly. Before discussing the different modes, let us introduce the ‘longitudi-
nal temperature fluctuation’ for a thermal bath of massless particles. ‘Longitudinal’
indicates that we consider perturbations in the longitudinal gauge. We integrate the
perturbed distribution function over energy so that only the dependence on momen-
tum directions, n, remains,

4π

a4

∫
v3 f dv ≡ ρ̄ (1 + 4�(n)) . (4.71)

We call the variable �(n) the longitudinal temperature fluctuation in direction n.
�(n) depends also on (t, x) which we suppress here for brevity. This definition
is motivated by the following consideration: for a Planck distribution of photons
which has a slightly direction-dependent temperature, but is otherwise unperturbed
(especially, it has a perfect blackbody spectrum, fB(p, T ) = (exp(p/T ) + 1)−1),
the perturbed distribution function can be expanded to first order as

f (p, n) = fB(p, T (n)) = fB(p, T̄ ) − δT

T̄
p∂p fB(p, T̄ ) . (4.72)

Observe that fB is purely a function of p/T so that ∂T fB = −(p/T )∂p fB . The
energy density of this photon distribution is given by

ργ = 1

a4

∫
v3 f (v, n) dv d
n = ρ̄γ − 1

a4

∫
δT

T̄
v4∂v fB(v, T̄ ) dv d
n

= ρ̄γ

(
1 + 4

4π

∫
δT

T̄
d
n

)
= ρ̄γ

(
1 + 1

π

∫
�(n) d
n

)
. (4.73)
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For the third equals sign we have performed an integration by parts to evaluate
the integral over v. We shall see that the Liouville equation for photons leads to a
perturbation which can be described entirely by such a direction-dependent tem-
perature fluctuation. Of course f and also � = δT /T̄ also depend on position and
time, arguments which we suppress here for brevity. The fact that the perturbation
of the photon distribution can be described in such a simple way is not surprising.
It is an expression of the ‘a-chromaticy’ of gravity which is a consequence of the
equivalence principle: the deflection and redshift of a photon in a gravitational field
are independent of its energy.

4.4.1 Scalar perturbations

For massless particles, v = q, the Liouville equation (4.34) reduces to

∂0F + ni∂iF = n j
[
�, j + �, j

]
v

d f̄

dv
. (4.74)

We define

M(S)(t, x, n) = π

a4ρ̄

∫
v3F dv . (4.75)

In terms of the temperature fluctuation �(n) defined in Eq. (4.71) we get

M(S)(n) = �(S)(n) − � . (4.76)

Up to a (irrelevant) monopole contribution, the momentum integrated distribution
function M is nothing other than the temperature perturbation in the longitudinal
gauge. It is not surprising that the monopole terms of M(n) and �(n) do not agree
because they are gauge dependent. Also the dipole terms might differ since they too
are gauge dependent. (In a gauge with non-vanishing shear, the dipole contributions
to � and M do differ.)

Integrating the Liouville equation (4.74) over momenta and performing an inte-
gration by parts on the right-hand side, we obtain the evolution equation for M.

For the scalar part of the distribution function we obtain

∂tM(S) + ni∂iM(S) = −n j
[
�, j + �, j

]
. (4.77)

This equation can be solved formally for any given source term � + �. One easily
checks that the solution with initial condition M(S)(tin, x, n) is

M(S)(t, x, n) = M(S) (tin, x − n(t − tin), n)

−
∫ t

tin

dt ′ ni∂i (� + �)(t ′, x − n(t − t ′)) . (4.78)
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Using

d

dt ′ (� + �)(t ′, x − n(t − t ′)) = ∂t ′(� + �)(t ′, x − n(t − t ′))

+ ni∂i (� + �)(t ′, x − n(t − t ′)) ,

we can replace the second term on the right-hand side to obtain

M(S)(t, x, n) = M(S) (tin, x − n(t − tin), n)

+ (� + �)(tin, x − n(t − tin))

+
∫

dt ′ ∂t ′(� + �)(t ′, x − n(t − t ′)) + monopole . (4.79)

By ‘monopole’ we denote an uninteresting n-independent contribution which does
not affect the CMB anisotropy spectrum. The Bardeen potentials � and �, how-
ever, are given via Einstein’s equation in terms of the perturbations of the energy–
momentum tensor which contain contributions from the photons which are in turn
the momentum integrals of M given below. Therefore, even though it might look
like it, this is not really a solution of the Liouville equation. The term on the right-
hand side also depends on M(S).

Let us compare Eq. (4.79) with the result from the integration of light-like
geodesics after decoupling in Eqs. (2.229) and (2.231). Here we have solved the
Liouville equation which also does not take into account the scattering of photons
and is therefore equivalent to our approach in Chapter 2. They both correspond to
the ‘sudden decoupling’ approximation, where we assume that photons behave like
a perfect fluid before decoupling and are entirely free after decoupling. This is a
relatively good approximation for all scales which are much larger than the duration
of the process of recombination which we shall estimate in the next section. The
comparison with Eqs. (2.229) and (2.231) yields

M(S) (tdec, x − n(t − tdec), n) =
(

1

4
Dg + n · V(b)

)
(tdec, x − n(t − tdec)) ,

(4.80)
and

M(S)(t, x, n) ≡ δT

T
(t, x, n) . (4.81)

In other words, the temperature fluctuation defined via the energy shift of photons
moving along geodesics corresponds to M(S) while the temperature fluctuation
defined via the energy density fluctuation in longitudinal gauge corresponds to
�(S) = M(S) + �. In addition to the energy shift, the latter includes a contribution
from the perturbation of the volume element,

√| det(gi j )| d3x = a3(1 − 3�) d3x .
The distinction is not very important since it is a monopole which does not show
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up in the angular power spectrum. However, the corresponding evolution equations
are of course different. The variable �(S) is used, for example, in Hu & Sugiayma
(1995), Hu et al. (1995, 1998) and Seljak & Zaldarriaga (1996), while the variable
M(S) is used, for example, in Durrer & Straumann (1988), Durrer (1990, 1994),
Durrer et al. (2002), Doran (2005) and Bashinsky (2006).

The initial condition in the sudden decoupling approximation is a distribution
function which contains only a monopole and a dipole. Higher multipoles do not
build up in a perfect fluid. In the next section we shall take into account the process
of decoupling by studying the Boltzmann equation.

The scalar perturbations of the energy–momentum tensor of the radiation fluid
for a given Fourier mode k can be found by integrating the r.h.s. of Eqs. (4.52),
(4.54), (4.57) and (4.59) over energy,

Dg = 2
∫ 1

−1
M(S) (µ) dµ , (4.82)

V = 3i

2

∫ 1

−1
µM(S)(µ) dµ , (4.83)

� = 0 , (4.84)

� = 3
∫ 1

−1

(
1 − 3µ2

)
M(S)(µ) dµ . (4.85)

We have assumed that M(S)(n) depends on the direction n only via µ = k̂ · n
and have performed the integration over ϕ which simply gives a factor 2π . For
isotropic perturbations there is no other vector which could single out a direction
and therefore this assumption reflects statistical isotropy.

The exact equality w = c2
s = 1

3 does not allow for any entropy perturbation in a
pure radiation fluid.

4.4.2 Vector perturbations

Vector perturbations of the distribution function are not gauge dependent. We have
directly M(V ) ≡ �(V ). The Liouville equation for vector perturbations of the radi-
ation fluid is obtained by integrating Eq. (4.39) over energies,

M(V )(n) = π

a4ρ̄

∫
v3 F (V )(n, v) dv ,

M(V ±)(µ) = π

a4ρ̄

∫
v3 F (V ±)(µ, v) dv , (4.86)

∂tM(V ) + ni∂iM(V ) = −ni n j Ḣ (V )
i j . (4.87)
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The formal solution to this equation is

M(V )(t, x, n) = M(V )(tin, x − n(t − tin), n)

−
∫ t

tin

dt ′ ni n j a(t ′)−1σ
(V ±)
i j (t ′, x − n(t − t ′)) . (4.88)

After Fourier transforming M(V ) and σ
(V )
i j we can expand them in the helicity

basis,

Ḣ (V )
j = Ḣ (V +)e(+)

j + Ḣ (V −)e(−)
j = σ (V +)e(+)

j + σ (V −)e(−)
j ,

so that

Ḣ (V )
i j ≡ −1

2k

(
Ḣ (V )

i | j + Ḣ (V )
j |i

)
= −i

2

(
Ḣ (V +)

[
e(+)

i k̂ j + e(+)
j k̂i

] + Ḣ (V −)
[
e(−)

i k̂ j + e(−)
j k̂i

])
ni n j Ḣ (V )

i j = −i√
2
µ

√
1 − µ2

(
Ḣ (V +)eiϕ + Ḣ (V −)e−iϕ

)
. (4.89)

In the last equality we have introduced the representation of n in the helicity basis,
Eq. (4.62). The ϕ dependence on the left- and right-hand sides of Eq. (4.87) shows
thatM(V ±) couples only to σ (V ±) and both helicity components satisfy the equation

∂tM(V ±) + ikµM(V ±) = −iµσ (V ±) . (4.90)

From Eqs. (4.64) and (4.68) we obtain the vector perturbations of the energy–
momentum tensor in terms of M(V ),


(±) = 3

4

∫ 1

−1
(1 − µ2)M(V ±)(µ) dµ , (4.91)

�(V ±) = 6i
∫ 1

−1
(1 − µ2)µM(V ±)(µ) dµ . (4.92)

4.4.3 Tensor perturbations

For tensor fluctuations, the perturbed Liouville equation becomes

∂tM(T ) + ni∂iM(T ) = −ni n j Ḣ (T )
i j . (4.93)

For a given source term H (T )
i j this is solved by

M(T )(t, x, n) = M(T )(tin, x − n(t − tin), n) −
∫ t

tin

dt ′ ni n j Ḣ (T )
i j (t ′, x − n(t − t ′)) .

(4.94)



154 CMB anisotropies

We decompose also H (T ) and M(T ) in the basis Q(T •)
i j defined in Eq. (2.12),

H (T )
i j = H (T ×) Q(T ×)

i j + H (T d) Q(T d)
i j , (4.95)

M(T •)(µ) = π

a4ρ̄

∫
dv v3 F (T •)(µ, v) , (4.96)

∂tM(T •) + ikµM(T •) = −Ḣ (T •) . (4.97)

The tensor anisotropic stresses are

�(T •) = 3

2

∫ 1

−1
(1 − µ2)2M(T •)(n)d
 . (4.98)

4.4.4 The Liouville equation in terms of the Weyl tensor

We know that the motion of photons in a gravitational field is conformally invariant.
Therefore, the evolution of the photon distribution, once the redshift is taken out
by using the conformally invariant momentum variable v, should depend only
on the Weyl tensor. To find the Liouville equation in terms of the Weyl tensor,
we first consider only scalar and tensor perturbations and assume that the vector
perturbations vanish. Adding together the scalar and tensor parts of the Liouville
equation M = M(S) + M(T ) the Liouville equation becomes

(∂t + n j∂ j )M = ni∂i (� + �) − n j ni Ḣ (T )
i j ≡ SG . (4.99)

Now we apply the Laplacian on both sides. Using the expressions (A3.21) and
(A3.57)–(A3.59) for the Weyl tensor, one finds that this corresponds to

(∂t + ni∂i )�M = −3ni ∂ j Ei j − nkn jεk
i� ∂� Bi j ≡ �SG , (4.100)

where εki� is the totally anti-symmetric tensor in three dimensions, and Ei j and
Bi j are the electric and magnetic parts of the Weyl tensor. We shall sometimes use
SG to denote the gravitational source term on the right-hand side of the Liouville
equation. As before, this equation is easily solved for a given source term, SG . In
terms of our variableM the Liouville equation is easily written in terms of the Weyl
tensor, while this is not possible with the variable �. This variable M manifests the
conformal invariance of photon propagation. It remains zero if the Weyl curvature
vanishes and therefore photons are not deflected.

If we want to include also vector perturbations a subtlety occurs. With the help
of (A3.43)–(A3.45) one finds

− 3ni∂ j E (V )
i j − nkn jεk

i�∂� B(V )
i j = 3

4
n j�σ̇ j + 1

4
ni n j�σi | j , (4.101)
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which does not correspond to the r.h.s. of Eq. (4.87). However, if we transform
M(V ) by the addition of a simple dipole term which does not show up in the CMB
multipoles for � ≥ 2 to

M(V 2) ≡ M(V ) + 3

4
n j Ḣ j , (4.102)

one finds easily that

(∂t + ni∂i )�M(V 2) = −3ni∂ j E (V )
i j − nkn jεk

i�∂� B(V )
i j . (4.103)

Hence with this redefinition, the variable

M ≡ M(S) + M(V 2) + M(T ) ,

satisfied the Liouville equation

(∂t + ni∂i )�M = −3ni ∂ j Ei j − nkn jεk
i� ∂� Bi j . (4.104)

It may be interesting to note that in a generic gauge this variable can be written as

�M = �M + �R + 3

2
ni ∂ jσi j . (4.105)

The first term, M is the simply the momentum integration of the perturbation of
the distribution function, F , while the second term is the perturbation of the spatial
curvature given in Eq. (2.48). Only scalar perturbations contribute to it. The last
term is related to the shear and both, scalar and vector perturbations contribute to
it. Note that for scalar perturbation in longitudinal gauge the shear term vanishes
while the vector part of the shear is gauge invariant. By construction, this variable
is perfectly gauge invariant.

The right-hand side of Eq. (4.104) is written entirely in terms of tensor fields with
vanishing background contribution. It would be interesting to attempt the same for
the left-hand side, the variable �M.

4.4.5 The Liouville equation in Fourier space

A Fourier mode of M(t, x, n) is given by

M(t, k, n) ≡
∫

d3x e−ik·xM(t, x, n) , and its inverse is

M(t, x, n) = 1

(2π )3

∫
d3k eik·xM(t, k, n) .

We have seen that the Liouville equation for a Fourier mode is given by

(∂t + ikµ)M(t, k, n) = SG(t, k, µ) , (4.106)



156 CMB anisotropies

where µ = k̂ · n is the cosine between the unit vectors k̂ = k/k and n. The general
solution to this equation for a given source term SG can be written as

M(t, k, n) = e−ikµ(t−tin)M(tin, k, n) +
∫ t

tin

dt ′e−ikµ(t−t ′)SG(t ′, k, n) . (4.107)

The function SG can be decomposed into scalar, vector and tensor perturbations.
As already mentioned, the source term usually depends on M via Einstein’s

equations and Eq. (4.107) is not really a solution but simply corresponds to rewriting
Eq. (4.106) as an integral equation. But as we shall see, this has serious advantages
especially for numerical computations.

From Eq. (4.107) using the decomposition (see Appendix A4.3)

eik·n(t−tin) =
∞∑

�=0

(2� + 1)i� j�(k(t − tin))P�(µ) ,

one finds the CMB power spectrum, exactly as in Chapter 2, Eqs. (2.249)–(2.253)
and (2.259). Before we do this, we go on to study Thomson scattering which is
the relevant scattering process just before recombination. We will then derive the
power spectrum taking into account this scattering process.

4.5 The Boltzmann equation

At very early times, long before recombination, scattering of photons with free
electrons is very frequent. During recombination, however, the number density of
free electrons, i.e., of electrons not bound to an atom, drops drastically and soon the
mean free path of photons is much larger than the Hubble scale so that, effectively,
photons do not scatter any more. In the previous treatment we assumed this process
of decoupling to be instantaneous; now we want to reconsider it in more detail.

The only scattering process which is relevant briefly before decoupling, i.e., at
temperatures of a few electron volts and less, is elastic Thomson scattering, where
the photon energy is conserved and only its direction is modified. The Thomson
scattering rate is

�T = σT ne ,

where σT = 6.6524 × 10−25 cm2 is the Thomson scattering cross section and ne is
the number density of free electrons.

Before decoupling, in a matter dominated universe, we find

�T � 7 × 10−30 cm−1
bh2(1 + z)3 while

H � 10−28 cm−1h(1 + z)3/2

�T /H � 0.07
bh(z + 1)3/2 .
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Hence before recombination, which corresponds to redshifts z > 1100, say, Thom-
son scattering is much faster than expansion. During recombination, the free elec-
tron density drops and eventually the Thomson scattering rate drops below the ex-
pansion rate. To take scattering into account we add a so-called ‘collision integral’
to the right-hand side of the Liouville equation, which leads us to the Boltzmann
equation. To learn more about the Boltzmann equation and the approximations go-
ing into it see, e.g., Lifshitz & Pitajewski (1983). The collision integral C[ f ] takes
into account that the 1-particle distribution function can change due to collisions
which scatter a particle into, f+, or out of, f−, a volume element d3x d3 p in phase
space, [

p̃µ∂µ − �i
αβ p̃α p̃β ∂

∂ p̃i

]
f = C[ f ] = d f+

dt
− d f−

dt
. (4.108)

Here f+ and f− denote the distribution of photons scattered into and out of the
beam of photons at position x at time t with momentum p respectively.

In the baryon rest frame, which we denote by a prime, the photons scattered into
the beam in direction n per unit of time are

d f ′
+

dt ′ (n) = σT ne

4π

∫
f ′(p′, n′)ω(n, n′) d
′ ,

where ω(n, n′) denotes the normalized angular dependence of Thomson scattering
after averaging over photon polarizations (Jackson, 1975)

dσ

d

= σT

4π
ω(n, n′) = 3σT

16π

[
1 + (n · n′)2

]
, (4.109)

= σT

4π

[
1 + 3

4
ni j n

′
i j

]
with ni j = ni n j − 1

3
δi j .

Here we have averaged over incoming polarizations and summed over final polariza-
tions of the photons, see Jackson (1975). In this chapter we neglect the polarization
dependence of Thomson scattering which we discuss fully in Chapter 5.

In the baryon rest frame which moves with 4-velocity uµ, the photon energy is

p′ = − p̃µuµ = p(1 − niv
i ) .

Since Thomson scattering is energy independent, we may integrate f+ over
photon energies p′ = v′/a to obtain again an equation for M. With v′3 dv′ =
(1 − 4niv

i )v3 dv and Eq. (4.71), we obtain

4π

a4

∫
v′3 d f ′

+
dt ′ dv′ = ρ̄rσT ne

[
1 − 4niv

i + 1

π

∫
�(n′)ω(n, n′) d
′

]
.

(4.110)
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Here ρ̄r is the background radiation density. The term 4n · v is a Doppler term from
the velocity of the electrons with respect to the longitudinal rest frame. The factor
of 4 comes from the fact that we have to transform p′3 dp′ = p3(1 + 4n · v) dp
from the electron rest frame into the ‘laboratory’ frame.

The distribution of photons scattered out of the beam per unit time is simply the
scattering rate multiplied by the distribution function,

d f−
dt ′ = σT ne f ′(p′, n) .

Also integrating this term over photon energies we obtain the collision term which
enters the energy integrated Boltzmann equation for M in the baryon rest frame,

C ′[M] = π

a4ρ̄r

∫
v3 dv

(
d f+
dt ′ − d f−

dt ′

)
= σT ne

[
1

4
δ(long)

r − �(n) − ni V
(b)i + 3ni j

16π

∫
�(n′)n′

i j d
′
]

. (4.111)

Here δ
(long)
r is the density perturbation in longitudinal gauge. (We work, as usual,

in longitudinal gauge.) In order to replace � in the collision term with M we use
the relation, Eq. (4.76) and δ

(long)
r = D(r )

g + 4� together with the fact that � and
M differ only by a monopole term with does not contribute to the angular integral
in Eq. (4.111). We introduce also

Mi j = 3

8π

∫
ni jM(n) d


and observe that to lowest order C = (dt ′/dt)C ′ = aC ′. With all this the Boltzmann
equation becomes

(
∂t + ni∂i

)
M = SG(n) + aσT ne

[
1

4
D(r )

g − M − ni V (b)
i + 1

2
ni j Mi j

]
, (4.112)

where SG is the gravitational term defined in Eq. (4.100). Note that the perturbation
of the electron density, ne = n̄e + δne does not contribute to first order, since the
isotropic background photon distribution f̄ annihilates the collision term.

For the Fourier transform of M we obtain the equation

(∂t + ikµ + aσT ne)M(k, n) = SG(k, n)

+ aσT ne

[
1

4
D(r )

g (k) − ni V (b)
i (k) + 1

2
ni j Mi j (k, n)

]
. (4.113)
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This can be converted to the integral equation

M(t, k, n) = e−ikµ(t−tin)−κ(tin,t)M(tin, k, n)

+
∫ t

tin

dt ′ eikµ(t ′−t)−κ(t ′,t)
[

SG(k, n) + κ̇

(
1

4
D(r )

g (k)

− ni V (b)
i (k) + 1

2
ni j Mi j (k, n)

)]
. (4.114)

Here κ(t1, t2) = ∫ t2
t1

aσT ne dt is the optical depth and κ̇(t1, t2) = ∂t2κ(t1, t2) =
aσT ne(t2) is independent of the initial value t1.

We now decompose Eq. (4.114) into its scalar, vector and tensor contributions.

4.5.1 Scalar perturbation

We first consider scalar perturbations. Since the direction dependence enters the
evolution equation only via the cosine µ = k̂ · n, we assume consistently that
this is the only direction dependence of the Fourier transform M(S)(t, k, n), so
that M(t, k, n) = M(t, k, µ). It therefore makes sense to expand M in Legendre
polynomials,

M(S)(t, k, µ) =
∑

(2� + 1)(−i)�M(S)
� (t, k)P�(µ) . (4.115)

Using the orthogonality and normalization of Legendre polynomials, see Ap-
pendix A4.1, we obtain the expansion coefficients,

M(S)
� (t, k) = i�

2

∫ 1

−1
dµM(S)(t, k, µ)P�(µ) . (4.116)

Statistical homogeneity and isotropy imply that the coefficients M� for different
values of � and k are uncorrelated,〈

M(S)
� (t, k)M(S)∗

�′ (t, k′)
〉
= M (S)

� (t, k)(2π )3 δ3(k − k′) δ��′ . (4.117)

We want to relate the spectrum M (S)
� (t, k) to the scalar CMB power spectrum C (S)

� .
We use the definition given in Eq. (2.241),〈

�T

T
(t0, x0, n)

�T

T
(t0, x0, n′)

〉(S)

= 1

4π

∑
�

(2� + 1)C (S)
� P�(n · n′)

= 1

(2π )6

∫
d3k d3k ′ ∑

�1�2

(2�1 + 1)(2�2 + 1)(−i)�1−�2eix0·(k−k′)

×
〈
M(S)

�1
(t0, k)M(S)∗

�2
(t0, k′)

〉
P�1 (µ)P�2 (µ

′) ,
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where µ = k̂ · n and µ′ = k̂′ · n′. With Eq. (4.117) we obtain

1

4π

∑
�

(2� + 1)C (S)
� P�(n · n′)

= 1

(2π )3

∑
�1

∫
d3k M (S)

�1
(t0, k)(2�1 + 1)2 P�1 (µ)P�1 (µ

′)

= 2

π

∑
�1

∫
d3k M (S)

�1
(t0, k)

∑
m1m2

Y�1m1 (n)Y ∗
�1m1

(k̂)Y ∗
�1m2

(n′)Y�1m2 (k̂)

= 2

π

∑
�1m1

∫
dk k2 M (S)

�1
(t0, k)Y�1m1 (n)Y ∗

�1m1
(n′)

= 1

2π2

∑
�1

(∫
dk k2 M (S)

�1
(t0, k)

)
(2�1 + 1)P�(n · n′) .

In several steps in this derivation we have applied the addition theorem of spherical
harmonics derived in Appendix A4.2.3. Comparing the first and the last expressions
in the series of equalities above, we infer

C (S)
� = 2

π

∫
dk k2 M (S)

� (k) . (4.118)

To calculate the CMB power spectrum, we therefore have to determine the ran-
dom variables M�. We now derive a hierarchical set of equations for them, the
so-called Boltzmann hierarchy.

With Eqs. (4.82)–(4.85), Eq. (4.116) and the explicit expressions of the Legendre
polynomials for � ≤ 2 given in Appendix A4.1, one finds the relations of the scalar
perturbations of the photon energy–momentum tensor to the expansion coefficients
M�(t, k), � ≤ 2,

D(r )
g = 4M(S)

0 , (4.119)

V (S)
r = 3M(S)

1 , (4.120)

�(S)
r = 12M(S)

2 . (4.121)

Inserting Eq. (4.115) in the definition of Mi j and choosing the coordinate system
such that k points in the z direction one can easily compute the integrals M33 =
−M(S)

2 and M11 = M22 = M(S)
2 /2 and all off diagonal contributions vanish. With

n2
1 + n2

2 = 1 − µ2 this yields

1

2
ni j Mi j = −1

2
M(S)

2 P2(µ) .
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Also using the fact that for scalar perturbations V = i k̂V we obtain the scalar
Boltzmann equation

(∂t + ikµ)M(S)(k, n) = ikµ(� + �)

+ κ̇

[
1

4
D(r )

g (k) − M(S) − iµV (b)(k) − 1

2
M2(k)P2(µ)

]
.

(4.122)

With the recurrence relation (see Appendix A4.1)

µP�(µ) = � + 1

2� + 1
P�+1(µ) + �

2� + 1
P�−1(µ) ,

we can convert Eq. (4.122) into the following hierarchy of equations

Ṁ(S)
� + k

� + 1

2� + 1
M(S)

�+1 − k
�

2� + 1
M(S)

�−1 + κ̇M(S)
�

= δ�0κ̇M(S)
0 + 1

3
δ�1

[−k(� + �) + κ̇V (b)
] + κ̇

1

10
δ�2M(S)

2 . (4.123)

Here the source terms on the right-hand side contribute only for � = 0, 1 and � = 2
respectively. In Eq. (4.123) each variable M(S)

� couples to its neighbours, M(S)
�−1

and M(S)
�+1 via the left-hand side. From Eq. (4.122) it is clear, that the left-hand side

actually just describes the free streaming of photons after decoupling.
If we want to determine the CMB power spectrum via the Boltzmann hierarchy,

Eq. (4.123), in order to calculate, e.g., C1000 we have to know all the other M(S)
� s

which may influence M(S)
1000 via free streaming during a Hubble time, which is

certainly more than 1000. Furthermore, at the beginning, when coupling is still
relatively tight, we may simply take into accountM(S)

0 andM(S)
1 given by the perfect

fluid initial conditions and set all the other M(S)
� s to zero. They then gradually build

up mainly due to free streaming. But using the Boltzmann hierarchy (4.123), we
cannot calculate M(S)

1000 with any accuracy if we have not determined all the M(S)
� s

with � < 1000 with the same (or rather better) accuracy.
On the other hand, if we knew the source term, the right-hand side of Eq. (4.123),

we could simply write down the solution, Eq. (4.114). As the source term only
depends on the first two moments of the hierarchy, it can usually be obtained with a
precision of about 0.1% (see Seljak & Zaldarriaga, 1996) by solving the hierarchy
only up to � � 10. Inserting the corresponding moments into Eq. (4.114) one finds

M(S)(t0, k, µ) = e−ikµ(t0−tin)−κ(tin,t0)M(S)(tin, k, µ)

+
∫ t0

tin

dt eikµ(t−t0)−κ(t,t0) ×
[

ikµ(� + �)(k) + κ̇

(
1

4
D(r )

g (k)

−iµV (b)(k) − 1

2
P2(µ)M(S)

2 (k, t)

)]
.
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Fig. 4.1. The visibility function g (left) is plotted in units of H0 as a function of
redshift. For comparison we show also κ(z) (right).

If the only µ-dependent term was the exponential, we could use its representation
in terms of spherical Bessel functions, using Eq. (A4.101), to isolate M(S)

� . With
this in mind, we use

eikµ(t−t0)µ f (t) = −ik−1∂t
(
eikµ(t−t0)

)
f (t) ,

to get rid of all the µ-dependence in the term in square brackets above. Furthermore,
we move the derivative ∂t ′ onto the function f via integration by parts. We want to
choose the initial time tin long before decoupling and t0 denotes today. Therefore,
κ(tin, t0) is huge and we can completely neglect the term from the initial condition.
Since early times do not contribute, we can formally start the integral at tin = 0.
We can also neglect the boundary terms since the terms from the upper boundary
t ′ = t0 contribute only to the uninteresting monopole and dipole terms.

Let us introduce the visibility function g, defined by

g(t) ≡ aσT nee−κ(t,t0) ≡ κ̇e−κ(t) . (4.124)

This function is very small at early times, when the optical depth, κ is very large.
During decoupling, κ becomes smaller but also the pre-factor, aσT ne = κ̇ then
becomes small. Therefore, g is strongly peaked during decoupling and small both
before and after, see Fig. 4.1. With the above mentioned integration by parts we
then find

M(S)(t0, k, µ) =
∫ t0

0
dt eikµ(t−t0)S(S)(t, k) , (4.125)
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with

S(S) = −e−κ (�̇ + �̇) + g

(
+� + � + k−1V̇ (b) + 1

4
D(r )

g + 1

4
M2

)
+ k−1ġV (b) − 3

4k2

d2

dt2

(
gM(S)

2

)
. (4.126)

Rewriting the exponential in terms of spherical Bessel functions, we now obtain
simply

M(S)
� (t0, k) =

∫ t0

0
dt j�(k(t0 − t))S(S)(t, k) . (4.127)

Together with Eq. (4.118) this yields the scalar contributions to the CMB power
spectrum, once the scalar source term is given. In this chapter we still neglect
the effect of polarization. As we shall see in the next chapter, including it simply
leads to a slight modification of the source term S(S). Apart from the gravitational
contribution �̇ + �̇ which gives rise to the integrated Sachs–Wolfe effect, all the
terms are multiplied with the visibility function g or its derivatives, which are
strongly peaked around the decoupling era, see Fig. 4.1. In the limit when we
neglect the angular dependence of Thomson scattering (the terms containing M2)
and approximate g by a delta-function at decoupling, we recover the tight coupling
approximation discussed in the previous section and in Chapter 2.

For a numerical calculation of the CMB anisotropy power spectrum, this method
has become the method of choice: first, the source term is calculated via the Boltz-
mann hierarchy truncated at about � = 10. Then, the C�s are computed via the
line-of-sight integral (4.127) followed by integration over k, Eq. (4.118). Free
streaming is now taken care of by the spherical Bessel functions which can be
computed just once and then be stored. This is especially useful if one wants to
compute many models as in the context of parameter estimation, see Chapter 6.
Another advantage is that the source term varies much more slowly than the Bessel
functions both in k and in time and it can therefore be sampled relatively sparsely
and still lead to good accuracy. Also, not all the M�s have to be computed. It is usu-
ally sufficient to calculate every tenth � and to interpolate smoothly between them.
All these numerical advantages have been used in the publicly available codes
CMBfast (Seljak & Zaldarriaga, 1996), CAMB (Lewis et al., 2000) and CM-
Beasy (Doran, 2005). CMBfast is ‘the original’ from which the others are drawn.
CAMB is presently the best maintained, updated of these codes and CMBeasy is
the most user friendly.

The time integral of the source term in Eq. (4.127) will smear out and damp fluc-
tuations with wavelengths smaller than the width of the visibility function g. This
phenomenon, called ‘Silk damping’ will be discussed in more detail in Section 4.6.
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But first we want to derive the Boltzmann hierarchy and its solution via line-of-
sight integration also for vector and tensor perturbations.

4.5.2 Vector perturbations

For vector perturbations, the Boltzmann equation (4.113) becomes

Ṁ(V ) + ikµM(V ) = −ni n j a−1σ
(V )
i j + aσT ne

[
ni


(b)
i − M(V ) + 1

2
ni j Mi j

]
.

(4.128)

As before we decompose n into

n = µk̂ +
√

1 − µ2 (cos ϕe1 + sin ϕe2) = µk̂ + n(+)e(+) + n(−)e(−)

= µk̂ +
√

1 − µ2

2

(
e−iϕe(+) + eiϕe(−)

)
. (4.129)

We use the splitting of M(V ) and −ni n jσ
(V )
i j into helicity modes as in Eqs. (4.86)

and (4.89)

M(V ) =
√

1 − µ2

2

[
exp(iϕ)M(V +) + exp(−iϕ)M(V −)

]
, (4.130)

M(V +) =
∑

�

(−i)�(2� + 1)M(V +)
� P�(µ), (4.131)

M(V −) =
∑

�

(−i)�(2� + 1)M(V −)
� P�(µ) , (4.132)

a−1ni n jσ
(V )
i j = −i√

2
µ

√
1 − µ2

(
σ (V +)eiϕ + σ (V −)e−iϕ

)
. (4.133)

For the expansion in Legendre polynomials we have used the fact that the coeffi-
cients M(V ±) depend on n only via µ.

As in the case of scalar perturbations, statistical homogeneity and isotropy
require that the random variables M(V ±)

� (k) are uncorrelated for different val-
ues k and �. Furthermore, we want to consider parity invariant perturbations,
hence also M(V +)

� (k) and M(V −)
� (k) are uncorrelated and they have the same

spectrum, 〈
M(V +)

� (k)M(V +)∗
�′ (k′)

〉
=

〈
M(V −)

� (k)M(V −)∗
�′ (k′)

〉
= (2π )3 δ3(k − k′)δ��′ M (V )

� (k) . (4.134)
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To relate this spectrum to the vector C�s we use, as for scalar perturbations,

〈
�T

T
(t0, n)

�T

T
(t0, n′)

〉(V )

= 1

4π

∑
�

(2� + 1)C (V )
� P�(n · n′)

= 1

(2π )6

∫
d3k d3k ′ 〈M(V )(k, n)M(V )∗(k′, n′)〉eix0(k−k′)

=
∑

�

(2� + 1)2

(2π )3

∫
d3k P�(µ)P�(µ′)

√
(1−µ2)(1−µ′2) cos(ϕ−ϕ′)M (V )

� (k) ,

(4.135)

where µ = k̂ · n and µ′ = k̂ · n′ and ϕ and ϕ′ are the angles defined in the decom-
position on n and n′ respectively according to Eq. (4.129). The first equals sign is
just the definition of the C (V )

� s and after the second equals sign we have inserted
the Fourier representation of �T /T . Using the decomposition (4.129) one finds

n · n′ = µµ′ +
√

(1 − µ2)(1 − µ′2) cos(ϕ − ϕ′) . (4.136)

We therefore have
√

(1 − µ2)(1 − µ′2) cos(ϕ − ϕ′) = n · n′ − µµ′. The term n · n′

is independent of k and can be taken out of the integral. The terms containing
additional factors µ and µ′ respectively can be absorbed with the help of the recur-
rence relations of Legendre polynomials and again using the addition theorem of
spherical harmonics. We finally arrive at

C (V )
� = 2�(� + 1)

π (2� + 1)2

∫
dk k2

(
M (V )

�+1 + M (V )
�−1

)
. (4.137)

The details of the derivation are developed in Ex. 4.3.
A short calculation shows that the vector perturbations of the energy–momentum

tensor are given in terms of the expansion coefficients M(V +)
� and M(V −)

� by


± = M(V ±)
0 + M(V ±)

2 , (4.138)

�(V ±) = 24

5

[
M(V ±)

1 + M(V ±)
3

]
. (4.139)

To write the Boltzmann equation with the help of moments of M(V ±) we still need
ni j Mi j . A short calculation shows that only M13 = M31 and M23 = M32 do not
vanish. Using the basic properties of the Legendre polynomials (see Appendix A4.1)
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we obtain (k = ke3)

M±3 ≡ M13 ∓ i M23 = 3

8

∫ 1

−1
dµ µ(1 − µ2)M(V ±)

= − 3i

10

(
M(V ±)

1 + M(V ±)
3

)
.

With the definitions (4.130)–(4.133) and (4.138) the Boltzmann equation can then
be written as

Ṁ(V ±) + ikµM(V ±) + κ̇M(V ±) = iµσ (V ±)

+ κ̇

[

(±) − iµ

3

10

(
M(V ±)

1 + M(V ±)
3

)]
, (4.140)

where κ denotes the optical depth κ(t) = σT
∫ t0

t ane dt ′. As in the case of scalar

perturbations this yields a Boltzmann hierarchy equation for the M(V ε)
� s,

Ṁ(V ±)
� + k

2� + 1

[
(� + 1)M(V ±)

�+1 − �M(V ±)
�−1

]
= −κ̇M(V ±)

�

+ δ�0κ̇
(±) + δ�1

[−1

3
σ (V ±) + κ̇

1

10

(
M(V ±)

1 + M(V ±)
3

)]
. (4.141)

Also for vector perturbations, the most rapid way of solving the equations numeri-
cally is to solve the above hierarchy only for the lowest few multipoles in order to
determine the source term, the right-hand side of Eq. (4.141). For a given source
term Eq. (4.140) is then easily solved by line-of-sight integration

M(V ±)(t0, k, µ) =
∫ t0

0
dt eikµ(t−t0)−κ

[
− iµσ (V ±)

+ κ̇
(

(±) − iµ

3

10

(
M(V ±)

1 + M(V ±)
3

))]
. (4.142)

Absorbing the factors µ into time derivatives as in the scalar case, we find

M(V ±)(t0, k, µ) =
∫ t0

0
dt eikµ(t−t0)

[
+ k−1e−κ σ̇ (V ±) + g

(

(±) − k−1σ (V ±)

+ 3

10k

(
Ṁ(V ±)

1 + Ṁ(V ±)
3

))
+ ġ

3

10k

(
M(V ±)

1 + M(V ±)
3

)]
.

(4.143)

We have again used the visibility function g defined in Eq. (4.124). The expansion
of the exponential in terms of spherical Bessel functions and Legendre polynomials
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reproduces the M(V ±)
� s,

M(V ±)
� (t0, k) =

∫ t0

0
dt j�(kµ(t0 − t))

[
+ k−1e−κ σ̇ (V ±) + g

(

(±) − k−1σ (V ±)

+ 3

10k

(
Ṁ(V ±)

1 + Ṁ(V ±)
3

))
+ ġ

3

10k

(
M(V ±)

1 + M(V ±)
3

)]
. (4.144)

4.5.3 Tensor perturbations

The Boltzmann equation (4.113) for tensor perturbations finally, has the form

Ṁ(T ) + ikµM(T ) = −ni n j Ḣ (T )
i j + aσT ne

[
1

2
ni j M (T )

i j − M(T )

]
. (4.145)

Since H (T )
i j is entirely orthogonal to k, it is of the form H (T )

i j = Ĥ (T )
ab ea

i eb
j , where e1

and e2 denote the two polarization directions normal to k. Using the decomposition
Eq. (4.129) for n, the gravitational source term in Eq. (4.145) is seen to be the time
derivative of

ni n j H (T )
i j = (1 − µ2)

[
Ĥ (T )

11 cos2 ϕ + Ĥ (T )
22 sin2 ϕ + 2Ĥ (T )

12 cos ϕ sin ϕ
]

= (1 − µ2) [Hd cos(2ϕ) + H× sin(2ϕ)] . (4.146)

For the last equals sign we have used that Ĥ (T )
22 = −Ĥ (T )

11 and we have introduced the
usual notation for the two polarizations of a gravity wave propagating in direction
k̂, Hd ≡ Ĥ (T )

11 and Ĥ (T )
12 ≡ H×.

This motivates our ansatz for the tensor perturbations of the temperature
anisotropy,

M(T )(k, n) = (1 − µ2)
[
M(T d)(k, µ) cos(2ϕ)

+ M(T ×)(k, µ) sin(2ϕ)
]

. (4.147)

The coefficients M(T •) only depend on µ and can thus be expanded in Legendre
polynomials,

M(T •) =
∑

�

(2� + 1)(−i)�M(T •)
� (k)P�(µ) . (4.148)

Here • denotes either d or ×. Statistical homogeneity and isotropy again imply
that expansion coefficients with different values of k or for different �s are uncor-
related. Furthermore, also requiring invariance under parity, implies that the two
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polarizations are uncorrelated and have the same spectra,〈
M(T •)

� (k)M(T •) ∗
�′ (k′)

〉
= (2π )3δ3(k − k′)δ��′ M (T )

� (k) . (4.149)

The relation of this tensor spectrum to the C�s is obtained with the same reasoning
as for the scalar and vector modes:

1

4π

∑
�

(2� + 1)C (T )
� P�(n · n′)

= 1

(2π )6

∫
d3kd3k ′〈M(T )(k, n)M(T )∗(k′, n′)〉e−x(k−k′)

= 1

(2π )3

∑
�

(2� + 1)2
∫

d3k M (T )
� (k)P�(µ)P�(µ′)

× (1 − µ2)(1 − µ′2)[cos(2ϕ) cos(2ϕ′) + sin(2ϕ) sin(2ϕ′)] , (4.150)

where µ = k̂ · n and µ′ = k̂ · n′. The angles ϕ and ϕ′ are those appearing in the
decomposition of n and n′ according to Eq. (4.129).

Again using Eq. (4.136) and cos(2ϕ) cos(2ϕ′) + sin(2ϕ) sin(2ϕ′) = cos(2(ϕ −
ϕ′)), the ϕ-dependence can be written as a function of n · n′ and µ and µ′. The
recurrence relations for the Legendre polynomials can then be applied to absorb
the factors µ and µ′ and with the addition theorem of spherical harmonics, we
arrive after a somewhat lengthy calculation at

C (T )
� = 2

π

(� + 2)!

(� − 2)!

∫
dk k2 �(T )(k)

(2� + 1)2
, with (4.151)

�(T )(k) = M (T )
�−2

(2� − 1)2
+ 4(2� + 1)2 M (T )

�

[(2� − 1)(2� + 3)]2
+ M (T )

�+2

(2� + 3)2
. (4.152)

The details of this result are developed in Ex. 4.4.
We also express the tensor anisotropic stress in terms of the expansion coefficients

M(T •), we use that it is transverse to k.

�(T •)
r = 3

2

∫ 1

−1
dµ (1 − µ2)2M(T •) = 24

35
M(T •)

4 + 16

7
M(T •)

2 + 8

5
M(T •)

0 .

(4.153)
With the ansatz (4.147) we find that for tensor perturbations

ni j Mi j = (1 − µ2)

{
cos(2ϕ)

[
3

35
M(T d)

4 + 2

7
M(T d)

2 + 1

5
M(T d)

0

]
+ sin(2ϕ)

[
3

35
M(T x)

4 + 2

7
M(T X )

2 + 1

5
M(T X )

0

]}
. (4.154)
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Inserting this in the Boltzmann equation we obtain

Ṁ(T •) + ikµM(T •) = −Ḣ• + κ̇

[
3

70
M(T •)

4 + 1

7
M(T •)

2 + 1

10
M(T •)

0 − M(T •)

]
,

(4.155)

with the line-of-sight ‘solution’

M(T •)(t0, k, µ) =
∫ t0

0
dt eik(t−t0)−κ

[
− Ḣ•

+ κ̇

(
3

70
M(T •)

4 + 1

7
M(T •)

2 + 1

10
M(T •)

0

) ]
. (4.156)

Of course for this to solve the equation, the first moments, M(T •)
0 to M(T •)

4 which
also determine Ḣ• have to be calculated via the Boltzmann hierarchy which in this
case is

Ṁ(T •)
� + k

2� + 1

[
(� + 1)M(T •)

�+1 − �M(T •)
�−1

]
= −κ̇M(T •)

� + δ�0

[
−Ḣ• + κ̇

(
3

70
M(T •)

4 + 1

7
M(T •)

2 + 1

10
M(T •)

0

)]
. (4.157)

The coefficients M(T •)
� are now given simply by

M(T •)
� (t0, k) =

∫ t0

0
dt j�(k(t0 − t))S(T )

� , with (4.158)

S(T )
� = e−κ

[
−Ḣ• + δ0�κ̇

(
3

70
M(T •)

4 + 1

7
M(T •)

2 + 1

10
M(T •)

0

)]
.

(4.159)

Also here, the only modification which this solution will experience once we
include polarization, is a change in the source term S(T ), to which contributions
from the polarization spectrum will have to be added (see Chapter 5).

4.6 Silk damping

In this section we want to discuss, in more detail, the damping on small scales
which appears when the coupling between photons and the baryon/electron gas is
still present, but no longer perfect. We therefore do not want to describe the photon–
baryon system as a perfect fluid, but want to take into account the force provided
by the Thomson scattering of electrons and photons. This leads to an additional
force in the baryon equation of motion (Eq. (2.118) for w = c2

s = 0), the photon
drag force due to Thomson scattering. For simplicity, and since this is the relevant
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case, we consider only scalar perturbations in this section. For them the photon
drag force is given by

Fj = −ρr

π

∫
C[M]n j d
n , (4.160)

k̂ · F = −4iσT neaρr

3

(
3M1 − V (b)

)
. (4.161)

For the second equals sign we have used Eq. (4.111) and integrated nC[M] =
nC ′[M]a over angles. From the expansion of M in Legendre polynomials we
know that

(−i)�M� = 1

2

∫
dµ P�(µ)M(µ) ,

so that

M1 = i

2

∫
dµ µM(µ) and

1

4
D(r )

g = 1

2

∫
dµM .

Adding the drag force to the baryon equation of motion yields (in Fourier space)

V̇(b) + HV(b) = −ik� + ρ−1
b F . (4.162)

To discuss damping, we are only interested in small scales kt � 1 and therefore
shall neglect the expansion of the Universe in our treatment. It then makes sense to
model the time dependence of our variables with an exponential, V, M ∝ e−iωt .
Furthermore, we consider the epoch when there are still many collisions per Hubble
expansion. Denoting the collision time by tc = 1/κ̇ = 1/(aσT ne), this means t �
tc. For simplicity, we also neglect gravitational terms and the term ni j Mi j which
is due to the direction dependence of Thomson scattering and is not important
as long as scattering is sufficiently abundant. With the ansatz of a harmonic time
dependence with frequency ω, we then obtain from Eqs. (4.122) and (4.162) with
k̂ · V = +i V (b),

− i tc(ω − kµ)M = 1

4
D(r )

g − iµV (b) − M , (4.163)

tcωV (b) = −4iρr

3ρb

[
3M1 − V (b)

]
. (4.164)

Therefore, integrating the Boltzmann equation (4.163) over µ, yields

M1 = iω

4k
D(r )

g . (4.165)

Inserting this in Eq. (4.164) we find, with R ≡ 3ρb/4ρr ,

V (b) = +3iωD(r )
g

4k(1 − i tcωR)
. (4.166)



4.7 The full system of perturbation equations 171

Inserting this result for V (b) in Eq. (4.163) we obtain

M =
1 + 3µω/k

1−i tcωR

1 − i tc(ω − kµ)

D(r )
g

4
. (4.167)

Integrating this equation over µ yields a dispersion relation for ω(k) in the form

1 = 1

2

∫ 1

−1
dµ

1 + 3µω/k
1−i tcωR

1 − i tc(ω − kµ)

= 3ω

i tck2 + t2
c k2ωR

+ 1

2

(
1

i tck
+ 3ω

t2
c k3

1 − i tcω

1 − i tcωR

)
× [ln(1 + i tc(k − ω)) − ln(1 − i tc(ω + k))] . (4.168)

This equation cannot be solved analytically. If we expand it in tck and tcω we find
to lowest non-vanishing order

ω(k) = k

(
1√

3(R + 1)
− i

ktc
6

R2 + 4
5 (R + 1)

(R + 1)2

)
. (4.169)

The real part of ω(k) describes oscillations and Re(ω)/k is the group velocity
of the oscillations. The imaginary term is a damping term. Over a time interval
td = 6

ktc
(R+1)2

R2+ 4
5 (R+1)

, the amplitude is reduced by one e-fold. This is Silk damping,

due to the imperfect coupling of electrons and photons. It vanishes in the limit
ktc → 0. It is interesting to note that one has to expand Eq. (4.168) to sixth order in
ωtc and ktc to find this relation (see Ex. 4.5). This indicates that damping is effective
only for tck relatively close to 1.

4.7 The full system of perturbation equations

We terminate this chapter by writing down the full system of perturbation equa-
tions in a ‘standard’ universe containing dark matter, baryons, photons, massless
neutrinos and a cosmological constant. The latter only influences the background
evolution and does not appear in the perturbation equations. Even though we know
that neutrinos are not truly massless, since their mass scale may be as low as 0.01
eV, it is most probably irrelevant for CMB anisotropies. We thus neglect it here. In
standard inflationary models only scalar and tensor modes are generated, we there-
fore restrict this recapitulation to them. The fluid equations for dark matter and
baryons and the Einstein equations have been derived in Chapter 2. The Boltzmann
equation for photons and the evolution equation for neutrinos, which is simply the
Liouville equation, have been derived in this chapter.
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The evolution of cold dark matter perturbations, Dc and Vc, is determined by the
energy–momentum conservation equations

Ḋc = −kVc , (4.170)

V̇c + HVc = k� . (4.171)

For the evolution of baryons, we have also to take into account the photon drag
force leading to

Ḋb = −kVb , (4.172)

V̇b + HVb = k� + 4κ̇ρr

3ρb
(3M1 − Vb) . (4.173)

For the low multipoles, � < 10, say, we have to solve the Boltzmann hierarchies

Ṁ(S)
� + k

� + 1

2� + 1
M(S)

�+1 − k
�

2� + 1
M(S)

�−1 = 1

3
δ�1

[−k(� + �) + κ̇V (b)
]

+ κ̇

[
1

2
δ�2M(S)

2 − M(S)
�

]
, (4.174)

for scalar perturbations, and

Ṁ(T •)
� + k

2� + 1

[
(� + 1)M(T •)

�+1 − �M(T •)
�−1

]
= −κ̇M(T •)

�

+ δ�0

[
−Ḣ• + κ̇

(
3

35
M(T •)

4 + 2

7
M(T •)

2 + 1

5
M(T •)

0

)]
, (4.175)

for tensor perturbations. The higher multipoles, � can then be obtained via the
integrals Eqs. (4.127) and (4.156).

Neutrino perturbations have to be treated via the collisionless Boltzmann equa-
tion. Setting the collision term to zero and denoting the neutrino perturbation of
the distribution function integrated over energies by N , we obtain, by exactly the
same steps as explained in the previous sections for photons,

Ṅ (S)
� + k

2� + 1

[
(� + 1)N (S)

�+1 − �N (S)
�−1

]
= −k

3
δ�1(� + �) , (4.176)

for scalar perturbations, and

Ṅ (T •)
� + k

2� + 1

[
(� + 1)N (T •)

�+1 − �N (T •)
�−1

]
= −δ�0 Ḣ• , (4.177)

for tensor perturbations.
The scalar and tensor metric perturbations are determined by Einstein’s equa-

tions,

− k2� = 4πGa2ρD , (4.178)

k2(� − �) = 4πGa2
(
Pr�

(S)
r + Pν�

(S)
ν

)
, and (4.179)

Ḧ• + 2HḢ• + k2 H• = 8πGa2
(
Pr�

(T )
r• + Pν�

(T )
ν•

)
. (4.180)
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The scalar and tensor anisotropic stresses are given by

�(S)
r = 12M(S)

2 , (4.181)

�(S)
ν = 12N (S)

2 , (4.182)

�(T )
r• = 24

35
M(T )

4 + 16

7
M(T )

2 + 8

5
M(T )

0 , (4.183)

�(T )
ν• = 24

35
N (T )

4 + 16

7
N (T )

2 + 8

5
N (T )

0 . (4.184)

The total density perturbation is

ρD = ρc Dc + ρb Db + ρr Dr + ρν Dν , (4.185)

where

Dr = D(r )
g + 4k−1HVr + 4� ,

= 4(M0 + 3k−1HM1 + �) , (4.186)

Dν = Dgν + 4k−1HVν + 4� ,

= 4(N0 + 3k−1HN1 + �) . (4.187)

For a given background evolution, the above is a closed set of perturbation equations
which can be solved. One obtains a good approximation by truncating the hierar-
chies for the photons and neutrinos at about � = 10 and determining the higher
moments via the line-of-sight integrals. For photons these are given in Eqs. (4.127)
and (4.156). For neutrinos one obtains the same equations just setting κ̇ = κ = 0.

The initial conditions are determined by inflation. In order not to miss any of the
physical processes which can influence perturbations once they enter the Hubble
horizon, we choose the initial time tin so that ktin � 1 for the mode k under study.
Furthermore, we want to start deep in the radiation era so that we can use the results
of Section 2.4.3. Requiring that perturbations remain regular for t → 0 usually
restricts us to the growing mode. Let us first consider scalar perturbations. On super-
horizon scales the growing mode behaves as M0 ∝ N0 ∝ constant. M1 ∝ N1 ∝
kt and � = � = constant. For the non-relativistic, subdominant species one can
choose (for adiabatic perturbations) Vc = Vb = Vr = 3M1. The initial condition
for Db and Dc is then determined by Eqs. (4.172) and (4.170) with the condition
that D → 0 for t → 0. Adiabaticity also requires N1 = M1. For adiabatic scalar
perturbations this leaves us with one initial condition, which is usually given as the
initial power spectrum for � determined during inflation,

k3〈|�|2(k)〉 = AS(k/H0)nS−1 . (4.188)

Here AS is the square of the perturbation amplitude and nS is the scalar spectral
index. It is sufficient to start integration at z � 107 – 108.
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For tensor perturbations we can simply set H• = constant and N� ∝ j�(kt). At
early times, the collision term suppresses the build up of higher moments in the
photon distribution and imposes

4

5
M(T )

0 = 2

7
M(T )

2 + 3

35
M(T )

4 .

A simple possibility is M(T )
0 = N (T )

0 , M(T )
2 = 14

5 M
(T )
0 and M(T )

4 = 0.
Of course one can also suggest some other initial conditions, e.g., the neutrino

iso-curvature velocity mode, where N1 dominates.
From purely theoretical grounds one can define an initial perturbation which just

induces a N (S)
13 
= 0 at some early time tin, while all other perturbation variables

vanish. The system of equations presented here can then be solved given this initial
condition. Such a condition is purely iso-curvature, since the energy–momentum
perturbations vanish initially. But via Eq. (4.176), the perturbation will be induced
in the lower moments of the neutrino distribution function and finally in the neutrino
energy–momentum tensor. It then leads to perturbations of the gravitational field
which in turn induce perturbations in the dark matter, the baryons and photons.

However, a physical mechanism leading to this kind of initial perturbations has
not been proposed so far.

Exercises

(The exercises marked with an asterisk are solved in Appendix A10.4.)

Ex. 4.1 An orthonormal basis for a curved universe
Study the first section of Appendix 9.
Determine the transformation matrix Ek

j (x) in the spatial basis dx2 =
γi j dxi dx j = dr2 + χ2(r )

(
dθ2 + sin2 θ dϕ

)
, with

χ (r ) =


sin(r ) for K = 1
r for K = 0
sinh(r ) for K = −1 .

Ex. 4.2 Vector perturbations of the CMB
Consider a vector perturbation spectrum of the form

〈σi (k)σ ∗
j (k′)〉 = (δi j − k̂i k̂ j )AknV δ(k − k′) . (4.189)

Using statistical isotropy (and symmetry under parity), explain why the k-space
structure of the power spectrum has to be of this form.
Using the solution Eq. (4.144) in k-space, calculate the vector-type CMB
anisotropies generated from σ j . Which value of nV leads to a scale-invariant
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spectrum? i.e., for which nV do you obtain �(� + 1)C� � constant for sufficiently
large �s?

Ex. 4.3 The vector C�s∗
Derive Eq. (4.137) from Eqs. (4.134) and (4.135).
Indication: use√

(1 − µ2)(1 − µ′2) cos(ϕ − ϕ′) = n · n′ − µµ′ , (4.190)

where µ = k̂ · n and µ′ = k̂ · n′. Replace now terms µP�(µ) via the recursion
relations in terms of P�+1 and P�−1. Show, using the addition theorem for spherical
harmonics given in Appendix A4.2.3 that∫

d
k̂ P�(µ)P�′ (µ′) = δ��′
4π

2� + 1
P�(n · n′) , (4.191)

and use this relation to perform angular integrations. Using the recursion relation
for (n · n′)P�(n · n′) and finally collecting the terms which multiply P�(n · n′) one
obtains Eq. (4.135).

Ex. 4.4 The tensor C�s
From Eqs. (4.147) and (4.150) derive Eq. (4.151).
Indication: follow exactly the same lines as for Ex. 4.3. Only this time the recursion
formula has to be applied twice to reduce terms µ2 P�(µ) and, at the end (n ·
n′)2 P�(n · n′). The calculation is lengthy but straight forward.

Ex. 4.5 Silk damping
Derive the dispersion relation (4.169) from the integral (4.168).
Hint: use an algebraic program, like Maple or Mathematica to expand (4.168) up
to sixth order in tck and tcω.
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CMB polarization and the total angular
momentum approach

The Thomson scattering cross section depends on the polarization of the outgoing
photon. If its polarization vector lies in the scattering plane, the cross section is pro-
portional to cos2 β, where β denotes the scattering angle. If, however, the outgoing
photon is polarized normal to the scattering plane, no such reduction by a factor
cos2 β occurs (see Jackson (1975), Section 14.7). If photons come in isotropically
from all directions, this does not lead to any net polarization of the outgoing radia-
tion. However, if, for a fixed outgoing direction, the intensity of incoming photons
from one direction is different from the intensity of photons coming in at a right
angle with respect to the first direction and with respect to the direction of the outgo-
ing photon (see Fig. 5.1), this anisotropy leads to some polarization of the outgoing
photon beam. As it is clear from the figure, it is the quadrupole anisotropy in the
reference frame of the scattering electron which is responsible for polarization.

In this chapter we discuss the induced polarization in detail. We derive the
equations which govern the generation and propagation of polarization and we
discuss their implications. This can be done by different methods, most of which
are either rather involved or incomplete. Here we employ the so-called ‘total an-
gular momentum method’ which has been developed in Hu & White (1997b) and
Hu et al. (1998), based on previous work mainly by Seljak (1996b), Kamionkowski
et al. (1997) and Zaldarriaga & Seljak (1997). Even though the derivation of the
results is somewhat involved, it is straight forward, in the sense that there are no
‘unexpected turns’ in it. Nevertheless, readers who do not want to dwell in lengthy
derivations may just read the first section and then go directly to the results which
are given in the form of integral solutions at the end of the chapter. Computationally,
this is the most difficult chapter of this book.

For our derivations we use spherical harmonics and spin weighted spherical
harmonics. Also the basics of representation theory of the rotation group will be
needed. All the notions on these topics which are employed here are presented in

176
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e −

Fig. 5.1. More incoming photons from the left than from the top (indicated in the
figure with longer polarization directions), lead to a net polarization of the out-
going photon beam, since the photons coming in from the left are preferentially
polarized vertically, while the photons coming in from the top are preferentially po-
larized horizontally. In this way, an unpolarized photon distribution which exhibits
a quadrupole anisotropy generates polarization on the surface of last scattering.

Appendix 4, especially A4.2. Some detailed derivations are also deferred to that
appendix or to the exercises.

5.1 Polarization dependent Thomson scattering

5.1.1 The Stokes parameters

We consider an electromagnetic wave propagating in direction n. We define
the polarization directions εε(1) and εε(2) such that

(
εε(1), εε(2), n

)
form a right-

handed orthonormal system. The electric field of the wave is of the form E =
E1εε

(1) + E2εε
(2). (The polarizations εε(1) and εε(2) are not to be confused with e(1)

and e(2) which were introduced in Chapter 4 to form an orthonormal system with
the wave vector k.) The polarization tensor of an electromagnetic wave is defined
as

Pi j = P̃abεε
(a)
i εε

(b)
j , with P̃ab = E∗

a Eb . (5.1)

P̃ab is a hermitian 2 × 2 matrix and can therefore be written as

P̃ab = 1

2

[
Iσ (0)

ab + Uσ
(1)
ab + V σ

(2)
ab + Qσ

(3)
ab

]
(5.2)

= 1

2
Iσ (0)

ab + Pab ,
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where σ (α) denote the Pauli matrices and the four real functions of the photon
direction n, I , U , V and Q are the Stokes parameters.

σ (0) =
(

1 0
0 1

)
, σ (1) =

(
0 1
1 0

)
,

σ (2) =
(

0 −i
i 0

)
, σ (3) =

(
1 0
0 −1

)
. (5.3)

In terms of the electric field, the Stokes parameters are

I = |E1|2 + |E2|2 , Q = |E1|2 − |E2|2 ,

U = (E∗
1 E2 + E∗

2 E1) = 2Re(E∗
1 E2) , V = 2Im(E∗

1 E2) . (5.4)

I is simply the intensity of the electromagnetic wave. Q represents the amount
of linear polarization in directions εε(1) and εε(2), i.e., Q is the difference between
the intensity of radiation polarized along εε(1) minus the intensity polarized in di-
rection εε(2). The parameters Q and U describe the symmetric traceless part of
the polarization tensor while V multiplies the anti-symmetric Pauli matrix σ (2).
This part describes a phase difference between E1 and E2 which results in circu-
lar polarization. This is best seen by expressing Pab in terms of the helicity basis
εε(±) = (1/

√
2)

(
εε(1) ± iεε(2)

)
, where one finds that V is the difference between the

left- and right-handed circular polarized intensities (see e.g. Jackson, 1975). As
we shall see below, Thomson scattering does not introduce circular polarization.
We therefore expect the V -Stokes parameter of the CMB radiation to vanish. We
neglect it in the following. If V = 0, we have Pab = P∗

ab = Pba . Hence Pab is a
real symmetric matrix.

We often also use the quantities

P ≡ P++ = 2Pabεε(+)
a εε

(+)
b = Q + iU, and (5.5)

P̄ ≡ P−− = 2Pabε̄ε(+)
a ε̄ε

(+)
b = 2Pabεε(−)

a εε
(−)
b = Q − iU . (5.6)

Up to a factor of 2, these are the components of the polarization tensor expressed in
the helicity basis. One easily verifies that the off-diagonal terms vanish since they
are proportional to V , P+− = P−+ ∝ V = 0.

The intensity is proportional to the energy density of the CMB, ρ = 1
8π

I and
therefore to our perturbation variableM = δT/T = 1

4δρ/ρ = 1
4δ I/I . Correspond-

ingly we define the dimensionless Stokes parameters

Q ≡ Q

4I
and U ≡ U

4I
. (5.7)

Rotating the basis
(
εε(1), εε(2)

)
by an angle ψ around the direction n we obtain εε(1)′ =

cos ψεε(1) + sin ψεε(2) and εε(2)′ = cos ψεε(2) − sin ψεε(1) so that the coefficients with
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respect to the rotated basis are E ′
1 = E1 cos ψ − E2 sin ψ and E ′

2 = E2 cos ψ +
E1 sin ψ . For the Stokes parameters this implies

I ′ = I , V ′ = V and

Q′ = Q cos 2ψ − U sin 2ψ , U ′ = U cos 2ψ + Q sin 2ψ , (5.8)

or more simply

Q′ ± iU ′ = e±2iψ (Q ± iU ) . (5.9)

Hence Q ± iU transform like spin-2 variables with a magnetic quantum number
±2 under rotations around the n axis. They depend not only on the direction n,
but also on the orientation of the polarization basis

(
εε(1), εε(2)

)
. For example, when

rotating the polarization basis by π/4 we turn U into Q and Q into −U . Hence U
measures the linear polarization in the basis

(
εε(1)′, εε(2)′

)
which is rotated by −π/4

from the original basis.

The eigenvalues of 2P =
(

Q U
U −Q

)
are λ1,2 = ±

√
Q2 + U 2 with eigenvec-

tors(
x1

y1

)
= A

(
Q +

√
Q2 + U 2

U

)
, and

(
x2

y2

)
= A

(
Q −

√
Q2 + U 2

U

)
.

Here A 
= 0 is an arbitrary constant. The first eigenvector encloses the angle φ1

with the εε(1)-axis which is given by

tan(2φ1) = 2 sin φ1 cos φ1

cos2 φ1 − sin2 φ1
= 2x1 y1

x2
1 − y2

1

= U

Q
.

The same equation is fulfilled forφ2 = φ1 + π . A polarizer oriented in the directions
φ1,2 will detect a maximal signal, while when oriented at 90◦ to this polarization
direction the signal is minimal.

It is not very convenient to work with these basis dependent amplitudes. First of
all, the results will depend on the arbitrary choice of εε(1) and εε(2). Therefore, we
shall not work directly with the Stokes parameters Q and U . But we make use of
the spin weighted spherical harmonic functions sY�m(n) which are defined for each
integer s with |s| ≤ � and have the property that they transform under rotations
about n by an angle ψ like sY�m(n) → eisψ

sY�m(n). The spin weighted spherical
harmonics are the components of a symmetric rank |s| tensor field defined on the
tangent space of the sphere in the canonical basis (eϑ ≡ ∂ϑ, eϕ ≡ (1/sin ϑ)∂ϕ).
Note that (eϑ, eϕ) are not well defined at the north and south poles. Setting

e± = 1√
2

(
eϑ ± ieϕ

)
,
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sY�m(n) transforms like the + · · · + component of a rank s tensor, if s > 0 and like
the − · · · − component of a rank |s| tensor, if s < 0. With respect to the helicity
basis e(±), the dimensionless parameters Q ± iU can be expanded as

(Q ± iU)(n) =
∞∑

�=2

�∑
m=−�

a(±2)
�m ±2Y�m(n) , (5.10)

=
∞∑

�=2

�∑
m=−�

(e�m ± ib�m) ±2Y�m(n) . (5.11)

Hence

e�m = 1

2

(
a(2)

�m + a(−2)
�m

)
, b�m = −i

2

(
a(2)

�m − a(−2)
�m

)
. (5.12)

Under a ‘parity’ transformation, n → −n the basis vectors e(±) transform as
e(±) → e(∓). Hence the coefficient a(2)

�m turns into a(−2)
�m and a(−2)

�m → a(2)
�m so that e�m

remains invariant while b�m changes sign.
The spin weighted spherical harmonics are defined in Appendix A4.2.4 where

useful properties are derived. The sum over � starts only at � = 2. As is clear from
their definition, the spin weighted spherical harmonics sY�m vanish for |s| > �. Here
a(±2)

�m is a decomposition into positive and negative helicity, while (e�m, b�m) is a
decomposition into the Q and U Stokes parameter with respect to the canonical
basis on the sphere which requires the choice of a z axis.

In Appendix A4.2.4 we also define the spin raising and lowering operators /∂

and /∂∗, similar to the quantum mechanical angular momentum operators L+ and
L− which raise and lower the magnetic quantum number m. The operators /∂ (∗)

have the properties /∂ sY�m ∝ s+1Y�m and /∂∗
sY�m ∝ s−1Y�m . Actually one obtains

(see Appendix A4.2.4)

/∂2 ( −2Y�m) =
√

(� + 2)!

(� − 2)!
Y�m , (5.13)

(/∂∗)2 ( 2Y�m) =
√

(� + 2)!

(� − 2)!
Y�m . (5.14)

Applying this to Q ± iU we find

(/∂∗)2(Q + iU)(n) =
∞∑

�=2

�∑
m=−�

a(2)
�m

√
(� + 2)!

(� − 2)!
Y�m(n) , (5.15)

/∂2(Q − iU)(n) =
∞∑

�=2

�∑
m=−�

a(−2)
�m

√
(� + 2)!

(� − 2)!
Y�m(n) . (5.16)
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With this, we can define the scalar quantities

E(n) =
∞∑

�=2

�∑
m=−�

e�mY�m(n) , (5.17)

B(n) =
∞∑

�=2

�∑
m=−�

b�mY�m(n) . (5.18)

Like temperature fluctuations, E andB are invariant under rotation. Since the sign of
b�m changes under parity,B has negative parity while E and M have positive parity.
At the end of Section 5.3 we shall show that E measures gradient contributions while
B measures curl contributions to the electric field considered as a function on the
sphere. The electric field is transverse and hence tangential to the sphere of photon
directions.

5.1.2 The scattering matrix and collision term

We now consider incoming radiation from direction n′ which is then scattered into
direction n with scattering angle β, n · n′ = cos β. The cross section for scattering
off a non-relativistic electron depends on the polarization of the photon. For photons
polarized in the scattering plane it is suppressed by a factor cos2 β, while it is
unsuppressed for photons polarized normal to the scattering plane. The scattering
field generated per unit of time in a plasma with electron density ne is proportional
to

√
neσT E, where σT is the scattering cross section. In the rest frame of the electron

we thus have (Jackson, 1975),

E (c)
‖ =

√
nee2

me
cos βE‖ =

√
3

8π
neσT cos βE‖ , (5.19)

E (c)
⊥ =

√
nee2

me
E⊥ =

√
3

8π
neσT E⊥ . (5.20)

We now choose the polarization basis such that εε(1)(n) lies in the scattering plane
and εε(2)(n) is normal to it. Using I = |E‖|2 + |E⊥|2, Q = |E‖|2 − |E2

⊥| and U =
2E‖E∗

⊥ we obtain

M(c) = 3

16π
neσT

[
(1 + cos2 β)M − sin2 βQ

]
, (5.21)

Q(c) = 3

16π
neσT

[
(1 + cos2 β)Q − sin2 βM

]
, (5.22)

U (c) = 3

8π
neσT cos βU . (5.23)
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Defining the vector

V =
 M
Q + iU
Q − iU

 , (5.24)

we can write the scattered amplitudes in terms of a scattering matrix, V (c) =
(neσT /4π )SV with

S = 3

4

 cos2 β + 1 − 1
2 sin2 β − 1

2 sin2 β

− sin2 β 1
2 (cos β + 1)2 1

2 (cos β − 1)2

− sin2 β 1
2 (cos β − 1)2 1

2 (cos β + 1)2

 . (5.25)

This is the scattering matrix expressed in the polarization basis
(
εε(1)(n), εε(2)(n)

)
which is chosen such that εε(1)(n) lies in the scattering plane. In the expansion (5.10),
we expressQ ± iU in the basis (eϑ , eϕ). To obtain the scattering matrix with respect
to this basis, we first rotateQ ± iU by an angle γ ′ around n′ to turn the basis (eϑ (n′),
eϕ(n′)) into

(
εε(1)(n′), εε(2)(n′)

)
, only then can we apply the scattering matrix S on

V . Finally, we rotate the polarizations
(
εε(1)(n), εε(2)(n)

)
back into (eϑ (n), eϕ(n)) by

the rotation with angle −γ around n.
The rotation with angle γ ′ around direction n′ multiplies Q(n′) ± iU(n′) by a

factor exp(±2iγ ′) and the rotation around n with angle −γ multiplies Q(c)(n) ±
iU (c)(n) by exp(∓2iγ ). The intensity perturbation is invariant under rotations. The
scattering matrix which multiplies V with Stokes parameters oriented in the fixed
polarization basis (eϑ, eϕ), is therefore simply R(−γ )S R(γ ′) where we define the
3 × 3 matrix R(α) = diag

(
1, e2iα, e−2iα

)
.

Using the expressions for ±sY�m(ϑ, ϕ), � ≤ 2 given in Appendix A4.2.4, straight-
forward comparison gives

R(−γ )S R(γ ′)

= 1

2

√
4π

5

 Y20(β, γ ′) + 2
√

5Y00(β, γ ′) −
√

3
2 Y2−2(β, γ ′) −√

6Y22(β, γ ′)
−√

62Y20(β, γ ′)e−2iγ 3 2Y2−2(β, γ ′)e−2iγ 3 2Y22(β, γ ′)e−2iγ

−
√

3
2 −2

Y20(β, γ ′)e2iγ 3 −2Y2−2(β, γ ′)e2iγ 3 −2Y22(β, γ ′)e2iγ

 . (5.26)

Using the addition theorem for spin weighted spherical harmonics,

sY2s ′(β, γ ′)e−siγ =
√

4π

5

∑
m

−s ′Y ∗
2m(n′)sY2m(n) ,

we can write the matrix R(−γ )S R(γ ′) = 4π
10 P(n, n′) + diag(1, 0, 0), where the

matrix P(n, n′) is given by (0Y� m ≡ Y� m)

P(n, n′) =
2∑

m=−2

Pm(n, n′) ,



5.2 Total angular momentum decomposition 183

where

Pm(n, n′)

=
(

Y2m (n)Y ∗
2m (n′) −

√
3
2 Y2m (n) 2Y ∗

2m (n′) −
√

3
2 Y2m (n) −2Y ∗

2m (n′)
−√

6 2Y2m (n)Y ∗
2m (n′) 3 2Y2m (n) 2Y ∗

2m (n′) 3 2Y2m (n) −2Y ∗
2m (n′)

−√
6 −2Y2m (n)Y ∗

2m (n′) 3 −2Y2m (n) 2Y ∗
2m (n′) 3 −2Y2m (n) −2Y ∗

2m (n′)

)
. (5.27)

The three component collision term for V in the electron rest frame is now obtained
by integrating over the incoming photon directions and subtracting the photons
scattered out of the beam, as in Eq. (4.111),

C[V]rest = aneσT

[
1

10

∫

n′

2∑
m=−2

Pm(n, n′)V(n′) − V(n)

+ 1

4π

∫

n′M(n′)

1
0
0

 ]
. (5.28)

The Y00 term in Eq. (5.26) results in the second integral in Eq. (5.28) which
provokes isotropization in the electron rest frame. The other terms of R(−γ )S R(γ ′)
lead to

∑2
m=−2 Pm(n, n′).

As we shall see, the contribution to the scattering term coming from the spin
weighted spherical harmonics with |m| = 0, 1 and 2 correspond to the contributions
for scalar, vector and tensor perturbations respectively. To transform the scattering
term from the electron (or baryon) rest frame to our coordinate frame, we simply add
the Doppler term n · V(b) as in Eq. (4.112). Also as there, we obtain an additional
factor a since we calculate the scattering per conformal time interval. The collision
term per unit of conformal time in the coordinate frame then becomes

C[V] = aneσT

[
1

10

∫

n′

2∑
m=−2

Pm(n, n′)V(n′) − V(n)

+
[

1

4π

∫

n′M(n′) + n · V(b)

] 1
0
0

 ]
. (5.29)

5.2 Total angular momentum decomposition

In the previous section we calculated the scattering term of the vector V at some
fixed position x as a function of the photon direction n. Now we also want to
consider the x dependence.

In Chapter 4, we Fourier transformed the x dependence of the temperature fluc-
tuation M, and then decomposed M(t, k, n) into its scalar, vector and tensor con-
tributions. We found that M(S) depends on n only via µ = k̂ · n, while M(V ) and
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M(T ) are of the form

M(V ) =
√

1 − µ2
1

2

[
exp(iφ)M(V )

+ (µ) + exp(−iφ)M(V )
− (µ)

]
, (5.30)

M(T ) = (1 − µ2)
1

2

[
exp(i2φ)M(T )

+ (µ) + exp(−2iφ)M(T )
− (µ)

]
. (5.31)

Here φ is the angle with respect to some fixed (but arbitrary) direction in the plane
normal to k. We then expanded the functions M(V,T )

± in Legendre polynomials.
But, according to Appendix A4.2,

Y�, ±1(n) ∝ ±e±iφ
√

1 − µ2 P ′
�(µ) ,

Y�, ±2(n) ∝ ±e±2iφ(1 − µ2)P ′′
� (µ) .

For a fixed wave vector k, we can therefore expand the n dependence of the vector
contribution to M in terms of spherical harmonics of order |m| = 1 and the ten-
sor contributions in terms of spherical harmonics of order |m| = 2. These are the
spherical harmonics of the photon direction n in the coordinate system with k ‖ ez .

For a fixed Fourier mode k we now introduce the basis functions

sG�m(x, n) = (−i)�
√

4π

2� + 1
eik·x

sY�m(n) , (5.32)

where the spin weighted spherical harmonics are evaluated in a coordinate system
with k ‖ ez . According to our findings in Chapter 4, the temperature fluctuation can
now be expanded as

M(t, x, n) =
∫

d3k

(2π )3

∞∑
�=0

2∑
m=−2

M(m)
� (t, k) 0G�m(x, n) . (5.33)

As we have seen, the m = 0 term represents scalar fluctuations while the |m| = 1
terms are of vector-type and the |m| = 2 terms are tensor fluctuations. The coef-
ficients M(±2)

� are easily related to the expansion coefficients M(T ±)
� defined in

Eq. (4.147), and M(±1)
� are related to M(V ±)

� given in Eqs. (4.131) and (4.132) (see
Ex. 5.1).

Next, we use that the polarization can be expanded in terms of spin weighted
spherical harmonics ±2Y�m (see Eqs. (5.10) and (5.11)):

Q ± iU =
∫

d3k

(2π )3

∞∑
�=2

2∑
m=−2

±2A(m)
� (t, k) ±2G�m(x, n) , (5.34)

=
∫

d3k

(2π )3

∞∑
�=2

2∑
m=−2

(
E (m)

� (t, k) ± iB(m)
� (t, k)

)
±2G�m(x, n) . (5.35)

Here, as in Eqs. (5.10) and (5.11), the coefficients A are related to E and B by

±2A(m)
� (t, k) = E (m)

� (t, k) ± iB(m)
� (t, k) .
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As in the case of temperature fluctuations, m = 0 are scalar perturbations, while
|m| = 1 and |m| = 2 are vector and tensor perturbations respectively. The above
Q and U polarization are defined with respect to some fixed coordinate system
in real space, while the Fourier coefficients E� and B� correspond to the Q and U
polarization with respect to the coordinate system where k points in the z-direction.
Therefore, the inverse Fourier transform of E and B respectively, will in general not
simply give Q and U respectively with respect to any fixed real space coordinate
system. The basis functions sG�m have three different types of indices. Let us briefly
recapitulate their meaning. As we have seen, m determines the tensor character of
the perturbations. The index� labels the expansion in an orthonormal set of functions
of µ = k̂ · n = cos ϑ . Under rotations around the photon direction n temperature
fluctuations are tensorial quantities of rank s = 0 which gives them the index 0,
while the polarization variables, Q ± iU are tensorial quantities of rank |s| = 2
with helicity ±2.

It is important to note that when expanding in s G�m we express the spherical
harmonics Y�m with respect to a coordinate system which depends on k.

We now consider the situation where the observer is placed at x = 0 and the
incoming photon is at a distance r from her, so that the photon position is x = −rn,
where n, as above, denotes the direction of propagation of the photon. This situation
will be relevant for the line-of-sight integration which we shall use to solve the
Boltzmann equation. We want to expand our basis functions sG�m(−rn, n) for fixed
k in their total angular momentum components. The functions sG�m have ‘spin’ �

but the ‘orbital’ angular momentum of the exponential is a sum,

eik·x = e−ikrµ =
∞∑

L=0

√
4π (2L + 1)(−i)−L jL (kr )YL0(n) ,

where we have used Eq. (A4.101) and P�(µ) = √
4π/(2� + 1)Y�0(n). Hence

sG�m(−rn, n) = 4π

∞∑
L=0

√
2L + 1

2� + 1
i−L−� jL (kr )YL0(n) sY�m(n) . (5.36)

The spin weighted spherical harmonics are related to the matrix elements of the
representations of the rotation group by (see Appendix A4.2)

sY�m(θ, φ) =
√

2� + 1

4π
D(�)

−sm(φ, θ, 0) . (5.37)

Here n = (sin θ cos φ, sin θ sin φ, cos θ ) and (φ, θ, 0) denote the Euler angles of the
rotation which first rotates around the y axis with angle θ and then around the z axis
with angle φ. This is a rotation which turns the z axis into n. We also want to use
the relation of YL0 to D(L)

00 . But D(L)
SM D(�)

sm is the matrix element (S, M ; s, m) of the
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representation D(L) ⊗ D(�) in the basis YL M ⊗ Y�m . With the help of the Clebsch–
Gordan series (see Appendix A4.2) this representation can be decomposed as a sum
of irreducible representations,

D(L) ⊗ D(�) =
L+�∑

j=|L−�|
D( j) .

The basis (YL M ⊗ Y�m)M=L ,m=�
M=−L ,m=−� is transformed into the basis ((Y jr ) j

r=− j )
j=L+�

j=|L−�|
with the Clebsch–Gordan coefficients 〈L , �; M, m| j, r〉. Using the fact that
Clebsch–Gordan coefficients are non-vanishing only if r = M + m, we can write
the matrix elements

D(L)
00 D(�)

−sm =
j=L+�∑

j=|L−�|
〈L , �; 0, m| j, m〉〈L , �; 0, −s| j, −s〉D( j)

−sm . (5.38)

(For more details see Appendix A4.2.) Using Eq. (5.37) this yields

4π

√
2L + 1

2� + 1
YL0(n)sY�m(n)

= (2L + 1)
j=L+�∑

j=|L−�|
〈L , �; 0, m| j, m〉〈L , �; 0, −s| j, −s〉

√
4π

(2 j + 1)
sY jm(n) .

(5.39)

When inserting this in the sum, Eq. (5.36) we can exchange the sums over L and
j . Extending the sum over j from zero to infinity, we have to sum for each given j
over all Ls for which this j contributes in Eq. (5.39). These are simply the values
| j − �| ≤ L ≤ j + �. Defining the functions s f (�m)

j which represent the sums over
L by

s f (�m)
j (x) ≡

j+�∑
L=| j−�|

(−i)L+�− j 2L + 1

2 j + 1
〈L , �; 0, m| j, m〉〈L , �; 0, −s| j, −s〉 jL (x) ,

(5.40)
we can then write the sum (5.36) as

sG�m(−rn, n) =
∞∑
j=0

(−i) j
√

4π (2 j + 1) s f (�m)
j (kr ) sY jm(n) . (5.41)

We are only really interested in the cases s = 0 and s = ±2. For these we define

α
(�m)
j ≡ 0 f (�m)

j , (5.42)

ε
(�m)
j ± iβ (�m)

j ≡ ±2 f (�m)
j . (5.43)
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We repeat Eq. (5.41) for the relevant cases s = 0 and |s| = 2:

0G�m(−rn, n) =
∞∑
j=0

√
4π (2 j + 1) (−i) jα

(�m)
j (kr )Y jm(n) , (5.44)

±2G�m(−rn, n) =
∞∑
j=0

√
4π (2 j + 1) (−i) j

(
ε

(�m)
j (kr ) ± iβ (�m)

j (kr )
)

±2Y jm(n) .

(5.45)

This is the total angular momentum expansion of sG�m(−rn, n). We want to use it
to find the integral solution of the Boltzmann equation. For this we shall need the
functions α

(�m)
j , ε(�m)

j and β
(�m)
j only for � and |m| ≤ 2, since the ‘source terms’ of the

Boltzmann equation, which are the collision terms collected in C[V] in Eq. (5.29)
and the gravitational contributions which we have determined in Chapter 4 all have
� ≤ 2 and |m| ≤ 2.

Using the Clebsch–Gordan coefficients given in Appendix A4.2 and the re-
currence relations of spherical Bessel functions presented in Appendix A4.3 one
obtains

α
(00)
� (x) = j�(x) , (5.46)

α
(10)
� (x) = j ′

�(x) , α
(1 ±1)
� (x) =

√
�(� + 1)

2

j�(x)

x
, (5.47)

α
(20)
� (x) = 1

2
[3 j ′′

� (x) + j�(x)], α
(2 ±1)
� (x) =

√
3�(� + 1)

2

(
j�(x)

x

)′
, (5.48)

α
(2 ±2)
� (x) =

√
3(� + 2)!

8(� − 2)!

j�(x)

x2
, (5.49)

ε
(20)
� (x) =

√
3(� + 2)!

8(� − 2)!

j�(x)

x2
≡ α

(2 ±2)
� (x) , (5.50)

ε
(2 ±1)
� (x) = 1

2

√
(� − 1)(� + 2)

[
j�(x)

x2
+ j ′

�(x)

x

]
, (5.51)

ε
(2 ±2)
� (x) = 1

4

[
− j�(x) + j ′′

� (x) + 2
j�(x)

x2
+ 4

j ′
�(x)

x

]
, (5.52)

β
(20)
� (x) = 0 , (5.53)

β
(2 ±1)
� (x) = ±1

2

√
(� − 1)(� + 2)

j�(x)

x
, (5.54)

β
(2 ±2)
� (x) = ±1

2

[
j ′
�(x) + 2

j�(x)

x

]
. (5.55)
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In order to (hopefully) avoid confusion we have used the letter � here as the total
angular momentum, since j is the name of the spherical Bessel functions.

The functions α
(�m)
j , ε

(�m)
j and β

(�m)
j will be investigated in more detail when we

discuss the integral solution of the Boltzmann equation. They peak around x � �,
like spherical Bessel functions, and then oscillate and decay like 1/x or faster.

From the definition of sY �m it follows that under the parity operation, n →
−n, eϑ (n) → eϑ (−n) = eϑ (n), eϕ(n) → eϕ(−n) = −eϕ(n) one finds sY �m(−n) =
(−1)�−sY �m(n). The first factor simply reflects the behaviour of Y�m under par-
ity, while the transformation s → −s comes from the fact that eϕ changes sign
under parity, while eϑ does not. This together with the parity of the spheri-
cal Bessel functions, j�(−x) = (−1)� j�(x) explains that α

(� −m)
j (x) = α

(�m)
j (x) and

ε
(� −m)
j (x) = ε

(�m)
j (x) while β

(� −m)
j (x) = −β

(�m)
j (x). Furthermore, since E (m)

� cou-

ples to the sum sY �m + −sY �m it has parity (−1)�, while B(m)
� which couples

to the difference sY�m − −sY�m has parity (−1)�+1. With Y�m , the M(m)
� have

parity (−1)�.
Recalling the definition (5.11), we observe that in the coordinate system where

k points in the z direction, the E (m)
� (k)-terms correspond to pure Q and the B(m)

� (k)-
terms correspond to pure U polarization.

5.3 The spectra

To find the power spectra in terms of the random variables M(m)
� , E (m)

� and B(m)
� in

Fourier space, we use the definition of the temperature perturbation spectrum given
in Chapter 2,

C (M)
� = 〈|a�m |2〉 , where (5.56)

M(x, n) =
∞∑

�=0

�∑
m=−�

a�m(x)Y�m(n) . (5.57)

From this and the addition theorem of spherical harmonics,

Y�0(cos ϑ = n · n′) =
√

4π

2� + 1

∑
m

Y�0(n)Y ∗
�m(n′) , (5.58)

we have derived the expression for the correlation function,

〈M(t, x, n)M(t, x, n′)〉 = 1

4π

∞∑
�=0

(2� + 1)P�(n · n′)C (M)
� , (5.59)

where we have used P�(n · n′) = √
4π/(2� + 1)Y�0(cos ϑ = n · n′). In the same
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way we now define the rotationally invariant spectra

C (E)
� = 〈|e�m |2〉 , (5.60)

C (B)
� = 〈|b�m |2〉 , (5.61)

C (ME)
� = 〈a∗

�me�m〉 , (5.62)

with the expansion coefficients e�m and b�m defined in Eq. (5.12). The coefficients
b�m have parity (−1)�+1 while a�m and e�m have parity (−1)�. We shall always
assume that the random process which generates the initial fluctuations is invariant
under parity, so that expectation values with negative parity such as C (MB)

� and
C (EB)

� vanish. But, in principle, this has to be tested experimentally. It is possible
that parity violating processes, such as weak interactions lead to effects in the CMB,
see Caprini et al. (2004).

We now want to relate the spectra to the k-space expressions for the variables
M, E and B. To do this we have to be careful about our use of spherical harmonics.
In Eq. (5.57) we employ them with respect to some arbitrary but fixed z direction, let
us call it e, while in the Fourier decomposition, Eq. (5.33), the spherical harmonics
are to be taken in the coordinate system where k̂ denotes the z direction. To make
this dependence clear, in this section we indicate the spherical harmonics with
respect to a given z axis, e by Y�m(n; e). To relate Y�m(n; k̂) to Y�m(n; e) we use the
fact that a basis with k̂ in the z direction can be obtained from a basis with e in the
z direction by first rotating with the angle −φk around the z axis, e and then with
−θk around the y axis. Here, (θk, φk) are the polar angles of k in the coordinate
system with e in the z direction. We therefore rotate the basis with the rotation given
by the Euler angles (0, −θk, −φk). This is the inverse of the rotation with Euler
angles (φk, θk, 0). Since the representation matrices are unitary,

D(�)
mm ′(0, −θk, −φk) = D̄(�)

m ′m(φk, θk, 0) .

Furthermore using the fact that the basis vectors Y�m transform with the transpose
of the matrix with which the coefficients of vectors transform, we obtain (see also
Appendix A4.2.3, Eqs. (A4.37) and (A4.41)):

Y�m(n; k) =
∑
m ′

Y�m ′(n; e)D̄(�)
mm ′(θk, φk, 0)

=
√

4π

2� + 1

∑
m ′

Y�m ′(n; e) −mȲ�m ′(k; e) . (5.63)

Note how the magnetic quantum number m in the k-basis transfers to the spin
weight in the e-basis. Equation (5.63) is a generalization of the addition theorem
of spherical harmonics (see also Appendix A4.2).
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Inserting this in the Fourier decomposition, Eq. (5.33) we can isolate the coeffi-
cient a�m as the term proportional to Y�m(n; e). We use the orthogonality of spherical
harmonics which implies

a�m(x) =
∫

d
nY ∗
�m(n; e)M(x, n) .

Inserting M(x, n) from Eq. (5.33) and making use of the identity, Eq. (5.63) we
obtain finally

a�m(x) =
√

4π

2� + 1

2∑
s=−2

∫
d3k

(2π )3
M(s)

� (k) sY
∗
�m(k; e)e−ix·k . (5.64)

Because of statistical homogeneity, coefficients M(s)
� (k) with different values of

k are uncorrelated. We introduce the power spectrum ofM(s)
� (k) which is of the form〈

M(s)
� (k)M(s)∗

� (k′)
〉 ≡ (2π )3δ3(k − k′)M (s)

� (k) . (5.65)

Because of statistical isotropy, M (s)
� (k) is a function of the modulus k = |k| only,

and the M(s)
� (k)s with different � or s are uncorrelated. With this and Eq. (5.64)

integration over angles leads to

(2� + 1)2C� = (2� + 1)2〈|a�m |2〉 = 2

π

2∑
s=−2

∫
dk k2 M (s)

� (k) . (5.66)

We now address the polarization spectra. Here, the situation is somewhat more
complicated, since apart from the dependence of sY�m(n; k) on the chosen z axis,
the spin weighted spherical harmonics also depend on the polarization basis normal
to n. In addition to the rotation from the k-basis into the e-basis outlined above, we
would also have to fix the polarization basis. To avoid this complication we again
use the spin raising and lowering operator /∂ and its hermitian conjugate /∂∗. With
Eqs. (5.13) and (5.14) we define the following scalar quantities which are closely
related to E and B,

Ẽ(x, n) = 1

2

[
(/∂∗)2(Q + iU)(x, n) + /∂2(Q − iU)(x, n)

]
=

∞∑
�=2

√
(� + 2)!

(� − 2)!

�∑
m=−�

e�m(x)Y�m(n; e) , (5.67)

and

B̃(x, n) = −i

2

[
(/∂∗)2(Q + iU)(x, n) − /∂2(Q − iU)(x, n)

]
=

∞∑
�=2

√
(� + 2)!

(� − 2)!

�∑
m=−�

b�m(x)Y�m(n; e) . (5.68)

Here we have inserted the original expansion of Q ± iU given in Eq. (5.11).
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To relate Ẽ(x, n) and B̃(x, n) to their Fourier transforms, which can be obtained
from Eq. (5.35), we first rotate ±2G�m(x, n) into the e-basis, using

sY�m(n; k) =
√

4π

2� + 1

∑
m ′

sY�m ′(n; e) −mY ∗
�m ′(k; e) , (5.69)

which is derived exactly like for s = 0. But since we do not take notice of the
orientation of the polarization basis, the latter is still oriented in a k dependent
manner and sY�m ′(n; e) still depends on k over the orientation of the polarization
basis. We now act with the operator /∂2 for s = −2 and (/∂∗)2 for s = 2 on sY�m ′(n; e)
to obtain Y�m ′(n; e). Using Eq. (5.63) we then find

Ẽ(x, n) =
∫

d3k

(2π )3
eik·x

∞∑
�=2

√
(� + 2)!

(� − 2)!

2∑
m=−2

E (m)
� (k)Y�m(n; k) , (5.70)

B̃(x, n) =
∫

d3k

(2π )3
eik·x

∞∑
�=2

√
(� + 2)!

(� − 2)!

2∑
m=−2

B(m)
� (k)Y�m(n; k) . (5.71)

This is exactly the same result as when acting directly with /∂ and /∂∗ on sY�m ′(n; k)
which is not entirely obvious since in general the operators /∂ and /∂∗ are basis
dependent. However, as we have seen the relations Eqs. (5.13) and (5.14) are valid
in every basis. Since both sides of these equations have spin-0, they are independent
of the polarization basis.

Now that we have expressed polarization in terms of ordinary spherical harmon-
ics, we can proceed as for the temperature anisotropies. We rotate Y�m(n; k) into
spin weighted harmonics mY�m ′(n; e), and obtain,

(2� + 1)2C (E)
� ≡ (2� + 1)2〈|e�m(x)|〉

= 2

π

2∑
s=−2

∫
dk k2 E (s)

� (k) , (5.72)

(2� + 1)2C (B)
� ≡ (2� + 1)2〈|b�m(x)|〉

= 2

π

2∑
s=−2

∫
dk k2 B(s)

� (k) , (5.73)

and

(2� + 1)2C (ME)
� ≡ (2� + 1)2〈a∗

�me�m(x)〉

= 2

π

2∑
s=−2

∫
dk k2 F (s)

� (k) , (5.74)
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where we have introduced the power spectra〈
E (s)

� (k)E (s)∗
� (k′)

〉
≡ (2π )3δ3(k − k′)E (s)

� (k) , (5.75)〈
B(s)

� (k)B(s)∗
� (k′)

〉
≡ (2π )3δ3(k − k′)B(s)

� (k) , (5.76)〈
E (s)

� (k)M(s)∗
� (k′)

〉
≡ (2π )3δ3(k − k′)F (s)

� (k) . (5.77)

To relate these spectra to meaningful correlation functions, we correlate quantities
which are scalars under rotations around n and n′ respectively, hence quantities
which can be expanded in ordinary, s = 0 spherical harmonics. For this we use our
quantities Ẽ and B̃. The same derivation which led to Eq. (5.59) now yields

〈
Ẽ(t, x, n)Ẽ(t, x, n′)

〉 = 1

4π

∞∑
�=0

(2� + 2)!

(2� − 2)!
(2� + 1)P�(n · n′)C (E)

� , (5.78)

〈
B̃(t, x, n)B̃(t, x, n′)

〉 = 1

4π

∞∑
�=0

(2� + 2)!

(2� − 2)!
(2� + 1)P�(n · n′)C (B)

� , (5.79)

〈
M(t, x, n)Ẽ(t, x, n′)

〉 = 1

4π

∞∑
�=0

√
(2� + 2)!

(2� − 2)!
(2� + 1)P�(n · n′)C (ME)

� . (5.80)

It is easier to interpret the scalar polarization amplitudes Ẽ and B̃, than E and B
which are lacking the factors (2� + 2)!/(2� − 2)! in the expansion, since the former
are simply related to derivatives of the polarization tensor. In Appendix A4.2.4 we
show that the operators /∂ and /∂∗ are the covariant derivatives on the sphere in the
direction e± = (1/

√
2)(e1 ∓ ie2). Observing that Q ± iU actually correspond to

the +, + and −, − components of the polarization tensor Pab defined in Eq. (5.1),
we find that

(/∂∗)2(Q + iU ) = 2∇−∇−P++ , /∂2(Q − iU ) = 2∇+∇+P−− . (5.81)

Here we have used /∂ = −√
2∇+ and /∂∗ = −√

2∇− which is derived in Ap-
pendix A4.2.4. We also note that in two dimensions the curl of a vector,
rotV ≡ εi j∇i Vj is a (pseudo-)scalar, hence the double curl of a tensor, rot rotT ≡
εlmεi j∇l∇i Tjm is a scalar. A short calculation (see Appendix A4.2.4) now shows
that

∇−∇−P++ + ∇+∇+P−− = 2∇i∇ jPi j = 2div divP ,

∇−∇−P++ − ∇+∇+P−− = 2εlmεi j∇l∇iP jm = 2rot rotP , (5.82)

so that

Ẽ = 2div divP and B̃ = 2rot rotP . (5.83)
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Fig. 5.2. E-polarization (left) and B-polarization (right) patterns are shown around
the photon direction indicated as the centre. E-polarization can be either radial or
tangential, while B-polarization is clearly of curl type.

Hence Ẽ measures ‘gradient-type’ polarization while B̃ measures curl-type po-
larization. More precisely, if we split the electric field tangent to the sphere
of directions n into a gradient part and a curl part, Ei = ∇i f + εi j∇ j g, we
obtain

Ẽ = 2∇i∇ j

(
∇i f ∇ j f ∗ − 1

2
δi j |∇ f |2

)
, and

B̃ = 2∇i∇ j

(
∇i g∇ j g

∗ − 1

2
δi j |∇g|2

)
. (5.84)

Hence B̃ (and B) is measuring the curl component in the electric field while Ẽ (and
E) is measuring the gradient component. This is derived in Ex. 5.2. In Fig. 5.2
examples of E- and B-polarization are shown. Note that the functions E and B
are not local, they do not have a direct interpretation in terms of the measurable
polarization pattern Q ± iU .
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5.4 The small-scale limit and the physical meaning of E and B
The polarization variables E and B are easier to interpret in the small-scale limit.
For � >∼ 100 which corresponds to angles of less than about 2◦, we may neglect
the curvature of the sphere of directions and consider it as a plane normal to ez . In
this approximation, the spherical harmonics can be replaced by exponentials, the
eigenfunctions of the Laplacian on the plane.

Y� m(n) → 1

2π
exp(i�� · x) , (5.85)

where x is a small vector in the plane normal to ez and �� = �(cos ϕ�, sin ϕ�) is a
vector in the ‘Fourier plane’. In this approximation the magnetic quantum number
m is replaced by the continuous direction of the vector ��. The orthogonality relation
now becomes

1

(2π )2

∫
d2x eix(��−��′) = δ2(�� − ��′) .

The temperature anisotropy is given by

�T

T
(x) = M(x) = 1

2π

∫
d2��M(��) eix·��, (5.86)

M(��) = 1

2π

∫
d2xM(x)e−ix·�� . (5.87)

The spin weighted spherical harmonics s = 2 become

2Y�m =
√

(� − 2)!

(� + 2)!
/∂2Y�m → 1

2π
�−2 /∂2 eix·��, (5.88)

−2Y�m =
√

(� + 2)!

(� − 2)!
\∂∗ 2Y�m → 1

2π
�−2 \∂∗ 2 eix·�� . (5.89)

Inserting this in Eq. (5.11) yields

(Q + iU)(x) = 1

2π

∫
d2� (E(��) + iB(�))

1

�2
/∂2 eix·�� , (5.90)

(Q − iU)(x) = 1

2π

∫
d2� (E(��) − iB(�))

1

�2
/∂∗ 2 eix·�� . (5.91)

We orient the coordinate system such that /∂ = −(∇ϑ − i∇ϕ) = −(∇x − i∇y) at ez

and /∂eix·�� = −i(�x − i�y)eix·�� = −i�e−iϕ�eix·��. With this we obtain

/∂2eix·�� = −�2e−2iϕ�eix·�� , (5.92)

/∂∗ 2eix·�� = −�2e2iϕ�eix·�� . (5.93)
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In the small-scale limit, the Stokes parameters are therefore given in terms of E(��)
and B(��) by

Q(x) = −1

2π

∫
d2� [E(��) cos(2ϕ�) − B(��) sin(2ϕ�)] eix·�� , (5.94)

U(x) = −1

2π

∫
d2� [E(��) sin(2ϕ�) + B(��) cos(2ϕ�)] eix·�� . (5.95)

These relations were introduced by Seljak (1996b), where E- and B-polarizations
have been introduced for the first time. They can be inverted to

E(��) = −1

2π

∫
d2x [Q(x) cos(2ϕ) + U(x) sin(2ϕ)] e−ix·�� , (5.96)

B(��) = −1

2π

∫
d2x [U(x) cos(2ϕ) − Q(x) sin(2ϕ)] e−ix·�� . (5.97)

A short calculation, see Ex. 5.3, leads to the following relation of E,B and Q,U in
real space:

E(x) = ∇−2(∂2
x − ∂2

y )Q(x) + ∇−22∂x∂yU(x) , (5.98)

B(x) = ∇−2(∂2
x − ∂2

y )U(x) − ∇−22∂x∂yQ(x) . (5.99)

Hence E and B which are the inverse Laplacians of combinations of second deriva-
tives of Q and U are more closely related to the latter than Ẽ and B̃, they have no
additional factors of �; but the relation is non-local. Because of the inverse Lapla-
cians we have to know U and Q globally to determine E and B, while Ẽ = ∇2E
and B̃ = ∇2B are locally related to Q and U . Furthermore, since Q-polarization
turns into U -polarization and vice versa if we rotate the coordinate system by 45◦,
a pure E-polarization configuration turns into pure B, if we turn all the polarization
vectors by 45◦.

If we have a pure gradient-type polarization, Ei = ∇i f , we find

E = ∇−2
(∇i∇ j (∇i f ∇ j f ∗)

) − 1

2
|∇ f |2 .

Whereas a pure curl-type polarization is related to B via

B = ∇−2
(∇i∇ j (∇i g∇ j g

∗)
) − 1

2
|∇g|2 ,

if E j = εim∇m g. Vanishing polarization corresponds toB = E = 0. Positive values
ofE around a zero indicate radial polarization patterns while negative values indicate
tangential polarization. A B-polarization pattern can then be obtained by simply
rotating the polarization vectors by 45◦. Hence the B-polarization patterns rotate
around their zeros, see Fig. 5.3.



196 CMB polarization and the total angular momentum approach

Fig. 5.3. A E-polarization pattern (left) is compared with B-polarization. The
function Ẽ is indicated in grey scale, and the polarization directions are drawn.
E-polarization is tangential along the dark negative regions while it is radial from
the white positive regions. The B-polarization pattern is obtained by rotating the
polarization directions by 45◦.

We finally want to derive expressions for the correlation functions in the small-
scale limit. For the temperature anisotropies we use the fact that the correlation
function is simply the Fourier transform of the power spectrum. In the small-scale
limit, the definition of the temperature anisotropy spectrum yields

〈M(��)M∗(��′)〉 = δ(�� − ��′)C (M)
� .

Hence

ξM(x) ≡ 〈M(y)M(y + x)〉 = 1

(2π )2

∫
d2�� ei��xC (M)

�

= 1

(2π )2

∫
d� �C (M)

�

∫ 2π

0
e�r cos φ = 1

2π

∫ ∞

0
� d� J0(r�)C� . (5.100)

For the integral over the angle φ between x and �� we have set r = |x| and∫
dφ e−ir� cos φ = 2π J0(r�) .

To see this we can use the formula given in Appendix A4.3,

eiy cos φ =
∞∑

n=−∞
i n Jn(y) einφ = J0(y) + 2

∞∑
n=1

i n Jn(y) cos(nφ) . (5.101)



5.4 The small-scale limit and the physical meaning of E and B 197

Integrating this expansion yields

1

2π

∫ 2π

0
dφ eiy cos φ e−inφ = i n Jn(y) . (5.102)

Starting from the correlation function we can derive the equivalent expression for
the power spectrum

C� = 2π

∫ ∞

0
r dr J0(r�)ξ (r ) . (5.103)

To derive the correlation functions for polarization, we introduce the variable
P = Q + iU and, correspondingly P̄ = Q − iU . According to Eqs. (5.94)–(5.97),
their Fourier representations are

P = Q + iU = −
∫

d2��

2π
[E(��) + iB(��)] e2iφ ei��·x , (5.104)

P̄ = Q − iU = −
∫

d2��

2π
[E(��) − iB(��)] e−2iφ ei��·x , (5.105)

or, inversely

E(��) + iB(��) = −
∫

d2x
2π

Pe−2iφ ei��·x , (5.106)

E(��) − iB(��) = −
∫

d2x
2π

Pe2iφ ei��·x . (5.107)

We want to define correlation functions of P and P̄ in a coordinate independent
way. For two given points x 
= x′, r ≡ x − x′ we rotate the polarization basis by the
angle φr which r encloses with the x axis. The new polarization basis, r̂ and the di-
rection orthogonal to it, is uniquely defined by r. The rotated polarization is given by

Pr (x) = e−2iφr P(x) .

With respect to this intrinsic basis we can now define the coordinate independent
correlation functions

ξ+(r) = 〈P̄r (x)Pr (x′)〉 = 〈P̄(x)P(x′)〉
= 〈Q(x)Q(x′)〉 + 〈U(x)U(x′)〉 , (5.108)

ξ−(r) = 〈Pr (x)Pr (x′)〉 = 〈e−4iφrP(x)P(x′)〉
= 〈Qr (x)Qr (x′)〉 − 〈Ur (x)Ur (x′)〉 + i

(〈Qr (x)Ur (x′)〉 − 〈Ur (x)Qr (x′)〉) ,

(5.109)

ξ×(r) = 〈Pr (x)M(x′)〉 = 〈e−2iφrP(x)M(x′)〉
= 〈Qr (x)M(x′)〉 + i〈Ur (x)M(x′)〉 . (5.110)
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Under parity, r → −r, φr and with it the imaginary part of the terms eniφr change
sign. If we assume statistical parity invariance, they therefore have to vanish,

〈Ur (x)Qr (x′)〉 ≡ 〈Ur (x)M(x′)〉 ≡ 0 .

This expresses the fact that B-polarization is uncorrelated with E-polarization and
the temperature anisotropies in terms of the correlation functions.

The calculation of the correlation function ξ+ now is exactly analogous to that
for the temperature anisotropy, one just has to replace C� by C (E)

� + C (B)
� ,

ξ+(r ) = 〈P̄(x)P(x′)〉
= 1

2π

∫
� d�

[
C (E)

� + C (B)
�

]
J0(�r ) . (5.111)

For ξ− and ξ×, the situation is somewhat different because of the exponentials eimφr .
We insert the Fourier transform of P(x) given in Eq. (5.104) in the expression for
ξ−, we find

ξ−(r ) = 〈Pr (x)Pr (x′)〉
=

∫
d2�

2π

d2�′

2π
〈[E(��) + iB(��)][E∗(��′) + iB∗(��′)]〉 ei(��·x−��′·x′)ei(2φ�+2φ�′−4φr )

=
∫

d2�

(2π )2

[
C (E)

� − C (B)
�

]
eir� cos φr e4iφr

= 1

2π

∫ ∞

0
d� �J4(r�)

[
C (E)

� − C (B)
�

]
. (5.112)

For the last equals sign we have used Eq. (5.102) and the fact that Bessel functions
with an even index are even. Similarly we obtain for the cross correlation function

ξ×(r ) = 〈Pr (x)Mr (x′)〉

= −
∫

d2�

2π

d2�′

2π
〈[E(��) + iB(��)]M∗(��′)〉ei(��·x−��′·x′)ei(2φ�−2φr )

= 1

2π

∫ ∞

0
d� �J2(r�)C (ME)

� . (5.113)

As for the temperature anisotropy, the polarization power spectra and correlation
functions are related via two-dimensional Fourier transforms. Taking into account
the correct factors ei(φ�−φr ) coming from the definitions, Eqs. (5.109) and (5.110)
and the expression (5.104), we find

C (E)
� + C (B)

� = 2π

∫
r dr J0(�r )ξ+(r ) , (5.114)

C (E)
� − C (B)

� = 2π

∫
r dr J4(�r )ξ−(r ) , (5.115)

C (EM)
� = 2π

∫
r dr J2(�r )ξ×(r ) . (5.116)
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These small-scale expressions for the temperature and polarization power spectra
and for the correlation functions will be especially useful when we discuss lensing
in Chapter 7.

5.5 The Boltzmann equation

In this section we write the Boltzmann equation for the mode functions M(m)
� , E (m)

�

and B(m)
� introduced in Section 5.3. First we note that the usual free-streaming term

is given by

iµk ≡ ik

√
4π

3
Y10(n) . (5.117)

Furthermore, as we show in Appendix A4.2.4,√
4π

3
Y10 · sY�m =

√[
(� + 1)2 − m2

] [
(� + 1)2 − s2

]
(� + 1)2(2� + 3)(2� + 1)

sY�+1 m

− ms

�(� + 1)
sY�m +

√
(�2 − m2)(�2 − s2)

�2(2� + 1)(2� − 1)
sY�−1 m . (5.118)

This determines the free streaming of the modes 0G�m which hence couple to

0G�+1,m and 0G�−1,m . The E (m)
� -mode, which is proportional to 2G�m + −2G�m ,

couples to the E (m)
�±1-modes and to the B(m)

� -mode, which multiplies 2G�m − −2G�m .

Correspondingly, free streaming couples B(m)
� to B(m)

�±1 and E (m)
� . Therefore, even if

B-modes are not generated by Thomson scattering, as we shall see below, they are
generated by free streaming from the E-modes. Only the scalar B- and E-modes for
which m = 0, are not coupled. Therefore, if B(0)

� vanishes initially it will remain
zero. With Eq. (5.118), the left-hand side of the Boltzmann equation turns into the
mode equations

(∂t + n · ∇)M(m)
� Y�m

=
∂t +

√ [
(� + 1)2 − m2

]
(2� + 3)(2� + 1)

Y�+1,m +
√

(�2 − m2)

(2� + 1)(2� − 1)
Y�−1,m

M(m)
� ,

(5.119)

(∂t + n · ∇)
[
E (m)

� ± iB(m)
�

]
( ±2Y�m)

=
∂t +

√[
(� + 1)2 − m2

] [
(� + 1)2 − 4

]
(� + 1)2(2� + 3)(2� + 1)

(
±2Y�+1,m

) ∓ 2m

�(� + 1)
(±2Y�m)

+
√

(�2 − m2)(�2 − 4)

�2(2� + 1)(2� − 1)

(
±2Y�−1,m

) (
E (m)

� ± iB(m)
�

)
. (5.120)
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To obtain the scattering term we integrate Pm(n, n′)V(n′) given in Eq. (5.27) over
the n′-sphere. For this we use the mode expansion

V(k, n′) =
 M
Q + iU
Q − iU



=


∑∞

�=0

∑2
m=−2 M

(m)
� (k) 0G�m(n′)∑∞

�=2

∑2
m=−2

(
E (m)

� (k) + iB(m)
� (k)

)
2G�m(x, n′)∑∞

�=2

∑2
m=−2

(
E (m)

� (k) − iB(m)
� (k)

)
−2G�m(x, n′)

 . (5.121)

Using the orthogonality relation
∫

d
n′ sY�m(n) sY�′m ′(n) = δ��′ δmm ′ we obtain

∫
d
n′ Pm(n, n′)V(n′) =

 M(m)
2 (k) 0G2m(n) − √

6E (m)
2 (k) 0G2m(n)

−√
6M(m)

2 (k) 2G2m(n) + 3E (m)
2 (k) 2G2m(n)

−√
6M(m)

2 (k) −2G2m(n) + 3E (m)
2 (k) −2G2m(n)

 .

(5.122)

Hence, Thomson scattering does not depend on B-mode polarization. Finally, we
also need the gravitational scalar, vector and tensor terms which enter the Boltz-
mann equation for the temperature anisotropy. They do not directly couple to the
polarization since there is no zeroth-order polarization. We obtain exactly the same
terms as in Chapter 4 which we now write in terms of the basis functions Y�m . We
get

iµk(� + �) = ik

√
4π

3
(� + �)Y10 = −i

√
4π

3
Y10S(0)

1 , (5.123)

− ik√
2
µ [(n · e+)σ+ + (n · e−)σ−] = ik

√
4π

15
[σ+Y21 + σ−Y2−1]

= −
√

4π

5

[
Y21S(1)

2 + Y2−1S(−1)
2

]
, (5.124)

−(1 − µ2)
[
Ḣ+ cos(2ϕ) + Ḣ× sin(2ϕ)

]
= −1

2
(1 − µ2)

[
(Ḣ+ − i Ḣ×)e2iϕ + (Ḣ+ + i Ḣ×)e−2iϕ

]
= −

√
4π

15

[
Ḣ2Y22 + Ḣ−2Y2−2

] = −
√

4π

5

[
Y22S(2)

2 + Y2−2S(−2)
2

]
, (5.125)

where we have set H±2 = √
2(H+ ± i H×). The source terms S(m)

� are defined by
these equations. In addition, we must take into account the Doppler term which

is of the form iµkV (b) = ik
√

4π/3
[
V (0)

b Y10 + V (1)
b Y1 1 + V (−1)

b Y1 −1

]
. Here, V (0)

b
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denotes the scalar part of the baryon velocity field and V (±1)
b are the vector per-

turbations with helicity ±1. With all this and taking care of the normalization of
the mode function 0G�m , the Boltzmann equation for the temperature anisotropies,
(∂t + n · ∇)M = S + κ̇C[M] turns into the mode equations

Ṁ(m)
� + k

[√
(� + 1)2 − m2

(2� + 3)
M(m)

�+1 −
√

�2 − m2

(2� + 1)
M(m)

�−1

]
= S(m)

� + κ̇
[

P (m)
� − M(m)

�

]
. (5.126)

with

S(0)
� = −δ�1k(� + �) , (5.127)

S(±1)
� = −δ�2

i√
3

kσ± , (5.128)

S(±2)
� = δ�2

1√
3

k Ḣ±2 , (5.129)

P (0)
� = δ�0M(0)

0 + V (0)
b δ�1 + δ�2

1

10

[
M(0)

2 −
√

6E (0)
2

]
, (5.130)

P (±1)
� = V (±1)

b δ�1 + δ�2
1

10

[
M(±1)

2 −
√

6E (±1)
2

]
, (5.131)

P (±2)
� = δ�2

1

10

[
M(±2)

2 −
√

6E (±2)
2

]
. (5.132)

For the left-hand side of Eq. (5.126) we used Eq. (5.119) and have isolated terms
proportional to Y�m in the expansion (5.33) for fixed k. The terms P (m)

� come from
the collision integral (5.122). Apart from the E-polarization contribution they agree
with the result found in Chapter 4.

For the evolution of the polarizations, we only need to take into account free
streaming and the collision term. As mentioned above, the coupling of polarization
to gravity is a second-order effect which is taken into account when discussing
lensing in Chapter 7. Isolating terms proportional to ±2Y�m , in Eq. (5.118), taking the
sum and the difference, 2Y�m ±−2Y�m , leads to the left-hand side of the Boltzmann
equation for E- and B-mode polarization. The right-hand side is obtained from
(5.122). Putting it all together we find

Ė (m)
� + k

[√
[(� + 1)2 − 4][(� + 1)2 − m2]

(2� + 1)(2� + 3)
E (m)

�+1 − 2m

�(� + 1)
B(m)

�

−
√

(�2 − 4)(�2 − m2)

(2� + 1)(2� + 3)
E (m)

�−1

]
= −κ̇

[
E (m)

� +
√

6P (m)
�

]
, (5.133)
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Ḃ(m)
� + k

[√
[(� + 1)2 − 4][(� + 1)2 − m2]

(2� + 1)(2� + 3)
B(m)

�+1 + 2m

�(� + 1)
E (m)

�

−
√

(�2 − 4)(�2 − m2)

(2� + 1)(2� + 3)
B(m)

�−1

]
= −κ̇B(m)

� . (5.134)

Eqs. (5.126)–(5.134) represent the full Boltzmann hierarchy which has to be trun-
cated at some value �max and can then be solved, using the relations given in
Section 4.7 which determine the gravitational source terms. As in Chapter 4 it is
numerically very costly to solve the hierarchy until some large value �max ∼ 2000,
which determines the fluctuations on angular scales larger than about 5 arc min-
utes. One therefore solves it only up to � ∼ 10 and uses this result to determine
the source terms which depend only on the multipoles � = 0, 1 and 2. The higher
multipoles are then again calculated with the help of an integral solution which, for
a given source term is obtained by simple quadrature. We now derive this integral
solution.

5.5.1 Integral solution

To find the integral solution, we prefer, as in Chapter 4, to consider the sums of
the harmonic expansions. We define for m = 0, 1 and 2 (scalar, vector and tensor
perturbations)

M(m)(t, n, k) =
∑

�

M(m)
� (t, k)(−i)�

√
4π

2� + 1
Y�m , (5.135)

E (m)(t, n, k) + iB(m)(t, n, k)

=
∑

�

(E (m)
� (t, k) + iB(m)

� (t, k))(−i)�
√

4π

2� + 1
2Y�m , (5.136)

E (m)(t, n, k) − iB(m)(t, n, k)

=
∑

�

(E (m)
� (t, k) − iB(m)

� (t, k))(−i)�
√

4π

2� + 1
−2Y�m . (5.137)

For each of these variables, the Boltzmann equation is of the form

(∂t − iµk + κ̇)X = S , (5.138)

For X = M(m) the source term is

S(m)(t, n) =
2∑

�=0

(
S(m)

� + κ̇ P (m)
�

)
(−i)�

√
4π

2� + 1
Y�m , (5.139)
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while for X = E (m) ± B(m)

S(m)(t, n) = −
√

6
κ̇

10

(
M(m)

2 −
√

6E (m)
2

) √
4π

5
±2Y2m . (5.140)

The general solution to Eq. (5.138) with initial condition X (tin) is simply

X (t) = X (tin) e−ikµ(t−tin)−κ(t,tin) +
∫ t

tin

dt ′e−ikµ(t−t ′)−κ(t,t ′)κ̇(t ′)S(t ′) , (5.141)

whereκ(t, t1) = ∫ t
t1

dt ′ κ̇(t ′) and eκ(t0,t ′)κ̇(t ′) = g(t ′) is the visibility function defined
in Chapter 4 which is strongly peaked at the last scattering surface, where the
collision terms induce the higher moments and polarization due to scattering. At
much earlier times the photons behave like a perfect fluid and at much later times,
collisions are very rare and all the evolution is determined by free streaming.

We are interested in the solution at t0 and choose the initial time early enough
so that we can neglect the initial value for all modes we are interested in. We then
obtain the integral solution

M(m)(t0, n)

=
2∑

�=0

(−i)�
√

4π

2� + 1

∫ t0

tin

dt
(

S(m)
� (t) + κ̇ P (m)

� (t)
)

Y�me−ikµ(t0−t)−κ(t0,t) ,

(5.142)

E (m)(t, n) ± iB(m)(t, n)

= −
√

24π

5

∫ t0

tin

dt
κ̇

10

(
M(m)

2 −
√

6E (m)
2

)
±2Y2m e−ikµ(t0−t)−κ(t0,t) . (5.143)

To expand this solution in spherical harmonics we use that

(−i)�
√

4π

2� + 1
sY�m(n)e−ikµ(t0−t) = sG�m(−n(t0 − t), n) .

Furthermore, the total angular momentum expansion of sG�m gives, see Eqs. (5.44)
and (5.45),

0G�m(−nr, n) =
∑

L

(−i)L
√

4π (2L + 1)α(�m)
L (kr )YLm , (5.144)

as well as

±2G�m(−nr, n) =
∑

L

(−i)L
√

4π (2L + 1)
(
ε

(�m)
L (kr ) ± iβ (�m)

L (kr )
)

YLm(n) .

(5.145)

Introducing Eq. (5.144) in Eq. (5.142) and making use of the explicit form of the
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source term given in Eqs. (5.127)–(5.132) yields with x ≡ k(t0 − t)

M(0)(t0, n) =
∑

�

(−i)�
√

4π (2� + 1)Y�m(n)
∫ t0

tin

dt e−κ(t0,t)

×
[

ik(� + � + κ̇V (b))α(10)
� (x) + κ̇

(
M(0)

0 α
(00)
� (x)

+ 1

10

[
M(0)

2 −
√

6E (0)
2

]
α

(20)
� (x)

)]
, (5.146)

M(0)
� (t0)

2� + 1
=

∫ t0

tin

dt e−κ(t0,t)

[
ik(� + � + κ̇V (b))α(10)

� (x)

+κ̇

(
M(0)

0 α
(00)
� (x) + 1

10

[
M(0)

2 −
√

6E (0)
2

]
α

(20)
� (x)

) ]
, (5.147)

M(±1)(t0, n) =
∑

�

(−i)�
√

4π (2� + 1)Y�m(n)
∫ t0

tin

dt e−κ(t0,t)

×
[
− ik√

3
σ±α

(2 ±1)
� (x) + κ̇V (b)

± α
(1 ±1)
� (x)
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M(±2)(t0, n) =
∑

�

(−i)�
√

4π (2� + 1)Y�m(n)
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� (t0)
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=
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√

6E (±2)
2

]]
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Equivalently, introducing Eq. (5.145) in Eq. (5.143) we obtain

E (m)(t0, n) ± iB(m)(t0, n)

= −
√

6
∑

�

(−i)�
√

4π (2� + 1) ±2Y�m(n)

×
∫ t0

tin

dt e−κ(t0,t)
κ̇

10

(
M(m)

2 −
√

6E (m)
2

) (
ε

(2m)
� (x) ± iβ (2m)

� (x)
)

, (5.152)
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Fig. 5.4. The functions �2|α(00)
� |2 (top), �2|α(10)

� |2 (middle) and �2|α(20)
� |2 (bottom)

are shown as function of � for fixed x = 100. These are the kernels relevant for
the scalar temperature anisotropies. Their amplitude and shape determine how
strongly the corresponding source terms influence the final anisotropy spectrum.

E (m)
� (t0, n) ± iB(m)

� (t0, n)

2� + 1

= −
√

6
∫ t0

tin

dt e−κ(t0,t)
κ̇

10
(M(m)

2 −
√

6E (m)
2 )

(
ε

(2m)
� (x) ± iβ (2m)

� (x)
)

. (5.153)

Taking the sum and the difference of the last equation we obtain

E (m)
� (t0, n)

2� + 1
= −

√
6

∫ t0

tin

dt e−κ(t0,t)
κ̇

10
(M(m)

2 −
√

6E (m)
2 )ε(2m)

� (x) , (5.154)

B(m)
� (t0, n)

2� + 1
= −

√
6

∫ t0

tin

dt e−κ(t0,t)
κ̇

10
(M(m)

2 −
√

6E (m)
2 )β (2m)

� (x) . (5.155)

The fact that the scalar B-mode, B(0)
� vanishes, is now a consequence of β (20) = 0.

To have some insight into the kernels α
(i j)
� , ε

(i j)
� and β

(i j)
� , we plot them in

Figs. 5.4–5.7 as functions of � for fixed x = k(t0 − t) = 100. They are all peaked
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�
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�

Fig. 5.5. The functions �2|α(11)
� |2 (top), �2|α(21)

� |2 (middle) and �2|α(22)
� |2 (bottom)

are shown as functions of � for fixed x = 100. These are the kernels relevant for
vector, α

(11)
� and α

(21)
� , and tensor, α

(22)
� , temperature anisotropies.

at � � x . For temperature anisotropies this peak is strongest for the tensor kernel
α(22). The kernel which dominates scalar temperature anisotropies by a factor of
nearly 10 is α(00), which comes from the free streaming of density fluctuations on
the last scattering surface and therefore is responsible for the acoustic peaks. The
kernel α(10) which multiplies the ordinary and integrated Sachs–Wolfe terms and
the Doppler term is significantly lower and somewhat less strongly peaked. Finally,
the kernel α(20) which couples to polarization has a narrow peak at � � x and a
lower, broader one around � � x/2. The decay of all kernels for � > x is very
rapid.

The kernel α(21) which couples vector perturbations to polarization and to the
gravitational vector modes is smaller and less strongly peaked than α(11) which
couples to the vector-type Doppler term. Finally, tensor temperature anisotropies
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�
�

�
�

�

Fig. 5.6. The functions �2|ε(21)
� |2 (top) and �2|ε(22)

� |2 (bottom) are shown as func-
tions of � for fixed x = 100. These are the kernels relevant for E-polarization of
vector and tensor modes respectively. Since �2|ε(20)

� |2 = �2|α(22)
� |2 this kernel for

scalar E-polarization is not replotted. Note that the vector E-polarization kernel
is very small and the scalar kernel is still about a factor of 5 larger than the tensor
kernel.

have only one kernel, α(22), for their coupling to both, the gravitational term and
polarization.

Looking at the polarization kernels ε
(i j)
� and β

(i j)
� , it is interesting to note that the

vector B-kernel,β (21)
� is nearly 8 times larger than the tensor one. For E-polarization,

the situation is reversed. Hence, vector perturbations would be very effective in
generating B-polarization, while tensor perturbations generate somewhat more
E- than B-polarization. Summing up the relevant contributions one finds for
x = k(t0 − t) � 1, ∑

� �2|β (2 m)
� |2∑

� �2|ε(2 m)
� |2 �

{
6 for m = ±1
8
13 for m = ±2 .

(5.156)
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�
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Fig. 5.7. The functions �2|β (21)
� |2 (top) and �2|β (22)

� |2 (bottom) are shown as func-
tions of � for fixed x = 100. These are the kernels relevant for B-polarization
of vector and tensor modes respectively. Note that the vector B-polarization ker-
nel is much larger than the tensor one. This is the opposite of what we find for
E-polarization.

The scalar polarization kernel, ε(20) = α(22) is the highest of all polarization kernels.
As we have seen, scalar perturbations generate no B-polarization at all.

Exercises

Ex. 5.1 Relation to Chapter 4
Using the expressions for spherical harmonics from Appendix A4.2.3 and our
definitions of M(T )±

� and M(V )±
� given in Eqs. (4.147) and (4.131) and (4.132) in

Chapter 4 show that

M(0)
� = (2� + 1)M(5)

�

M(±1)
� = i

√
�(� + 1)

[
M(V ±)

�+1 + M(V ±)
�−1

]
, (5.157)

M(±2)
� = . . .M(T ±) . (5.158)
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Hint: For Eq. (5.157) use the recurrence relation (A4.20) to relate the Legendre
functions P� 1 to Legendre polynomials.

Ex. 5.2 E- and B-polarization
For an electric field normal to n given by Ei = ∇i f (n) + εi j∇ j g(n) determine the
Q and U polarization. Here f and g are real functions on the sphere. Calculate Ẽ and
B̃. Here εi j is the totally anti-symmetric tensor in two dimensions; εi j = ± det γ if
(i, j) = (1, 2) and (i, j) = (2, 1) respectively and εi j = 0 if two indices are equal.
Here γ is the two-dimensional metric.

Ex. 5.3 E- and B-polarization in real space
Using �x + i�y = �eiϕ� derive the following relation between E,B and Q,U in real
space:

E(x) = ∇−2(∂2
x − ∂2

y )Q(x) + ∇−22∂x∂yU(x) , (5.159)

B(x) = ∇−2(∂2
x − ∂2

y )U(x) − ∇−22∂x∂yQ(x) . (5.160)



6

Cosmological parameter estimation

6.1 Introduction

In the previous chapters we have calculated the CMB anisotropies and polariza-
tion. Generically the resulting spectrum shows a series of acoustic oscillations
which present a snapshot of the CMB sky at the moment when photons decouple
from electrons. The details of these spectra depend on the one hand on the initial
fluctuations and on the other hand on the background cosmological parameters
which determine the evolution of fluctuations.

If we make no hypothesis on the initial fluctuations, a given observed spectrum
can be obtained by a nearly arbitrary choice of cosmological parameters. For a given
initial power spectrum Pm(k) of scalar (m = 0), vector (m = ±1) and tensor (m =
±2) perturbations, under the assumption of statistical homogeneity and isotropy,
the resulting CMB power spectrum is generically of the form

C� =
2∑

m=−2

∫
dk Tm(�, k)Pm(k) , (6.1)

where Tm is the CMB ‘transfer function’ which depends on the cosmological pa-
rameters. Therefore, for a nearly arbitrary transfer function Tm(�, k) and arbitrary
C�s one can find initial power spectra Pm such that Eq. (6.1) holds. Since vector
perturbations decay, the vector transfer function T±1 is very small. If the initial
perturbations are sufficiently small for linear perturbation theory to hold, vector
perturbations will not show up in the CMB spectrum. We shall therefore neglect
them in our discussion.

‘Sources’ form an exception to this rule. A source is an inhomogeneous and
anisotropic component of the energy–momentum tensor which is too small to con-
tribute to the background, but which sources perturbations in all fluids. We shall dis-
cuss this case in Section 6.8. If sources are relevant, some parts of the perturbations

210
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are generated at late time by a source term. In this case, vector perturbations can
also be important.

We have to keep in mind that when determining cosmological parameters with
the CMB, we are not really ‘measuring’ them, but we are ‘estimating’ them under
certain, usually well motivated but very restrictive assumptions on the initial power
spectrum. On the other hand, whenever we make a physical measurement we are
using prior knowledge, e.g. that our apparatus obeys Maxwell’s equation. However,
the apparatus has usually been tested by some other measurements, while only the
CMB and very few other data sets contain experimental information about the initial
conditions of the fluctuations in the Universe. Therefore, in the ‘ideal’ world we
might want to measure the cosmological parameters by other means and then with
the well known transfer functions at hand, use the CMB to determine the initial
fluctuations which help us to understand the physics of inflation, the physics at very
high energies, probably close to the Planck scale, energies which are not available
in any laboratory on Earth.

However, the real world is not ideal and since CMB fluctuations are the most
accurate and theoretically the best understood dataset, we use them for both, to
determine the parameters of the background cosmology and the initial fluctuations.
For this to work, we have to assume that the initial power spectrum depends only on
a few parameters, for example k3 P0 = AS(k/H0)nS−1 and P±2 = 0 with only two
parameters, AS and nS . The better the data, the more parameters can be fitted.

Naively one might think that the knowledge of 1000 C�s to a few per cent accuracy
allows us to determine as many parameters with similar accuracy. But this is not so,
since the CMB power spectrum can usually be well fitted with a function of only a
few parameters. Also, it is only sensitive to a certain combination of cosmological
parameters. This leads to degeneracies which we shall discuss in Section 6.6.

But before we enter the technical details of parameter estimation, we briefly
want to discuss the physics of their influence on the CMB spectrum. This helps us
to develop a good intuition for which parameters can be estimated with the CMB
to high accuracy and which cannot.

6.2 The physics of parameter dependence

6.2.1 The acoustic peaks

The first acoustic peak corresponds to the comoving wavelength λ1 = π/k1 which
has undergone exactly one compression since entering the horizon and whose fluc-
tuations are at a maximum at decoupling. As we have discussed in Chapter 2, this
scale is determined by csk1tdec = π for adiabatic perturbations (csk1tdec = 3π/2 for
iso-curvature perturbations). Subsequent peaks are at cskntdec = nπ for adiabatic
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perturbations (and cskntdec = (2n + 1)π/2 for iso-curvature perturbations). The
angle onto which these peaks are projected in the sky is

θn � λn

DA(zdec)
, �n � π/θn, (6.2)

where DA(z) denotes the angular diameter distance to an event at time t(z) and
�(θ ) = π/θ is the harmonics, which corresponds roughly to the angle θ . The red-
shift of decoupling, zdec, and also tdec depend mainly on the baryon density of the
Universe, while the angular diameter distance depends strongly on curvature, but
also on the cosmological constant and the dark matter density.

In a universe containing radiation, matter and a cosmological constant we have
(see Chapter 1)

a0cstdec = 1

H0

∫ ∞

zdec

cs(z)dz[

r (z+1)4+
m(z+1)3+
�+
K (z+1)2

]1/2
, (6.3)

DA(zdec) = a0

zdec + 1

×χK

(
1

H0a0

∫ zdec

0

dz[

r (z+1)4 + 
m(z+1)3 + 
� + 
K (z+1)2

]1/2

)
, (6.4)

�n � π DA(zdec)

λn

=
nπχK

(
1

H0a0

∫ zdec

0
dz

[
r (z+1)4+
m (z+1)3+
�+
K (z+1)2]
1/2

)
1

zdec+1
1

H0

∫ ∞
zdec

cs (z)dz

[
r (z+1)4+
m (z+1)3+
�+
K (z+1)2]
1/2

. (6.5)

Here

χK (r ) =


r if K = 0

1√
K

sin
(√

Kr
)

if K > 0
1√|K | sinh

(√|K |r)
if K < 0 ,

(6.6)

and we have used

λn = a0

ncstdec
.

It is evident, that, via χK , the position �n strongly depends on curvature. Since
curvature and the cosmological constant are irrelevant at high redshift, the denom-
inator of Eq. (6.5) is nearly independent of them. It depends mainly on 
r , 
m and
on the baryon density via the sound speed cs ,

c2
s = 1

3

4
γ h2

4
γ h2 + 3
bh2
, (6.7)
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�

Fig. 6.1. We show the position of the first peak as a function of 
�. In the
solid line we vary 
K , leaving all other parameters fixed, for the dashed line we
vary 
� at fixed h, and for the dotted line we vary 
� at fixed 
mh2. The fixed
parameters are 
K = 0, h = 0.72, 
bh2 = 0.022, 
m = 0.25, ns = 0.96, τri =
0.085. Therefore, all the curves cross at 
� = 0.75. Notice the strong dependence
of �peak on curvature.

where h = H0/100 km s−1Mpc−1. Since 
γ h2 which is proportional to the
present photon energy density, hence to T 4

0 is very well known, the sound speed
provides a measure of 
bh2. Note that 
γ h2 is much better known than 
γ = 8π

GaSB T 4
0 /3H 2

0 . The latter contains considerable uncertainty in the Hubble constant.
In Fig. 6.1 we show the dependence of �1 on different cosmological parameters.

There one also sees that when varying a parameter, like e.g. 
�, the resulting
spectrum strongly depends on what has been kept fixed during the variation. We
can fix h but not 
m , since increasing 
� just increases the dimensionless angular
diameter distance, H0 DA due to the decrease in 
m , while H0λ1 is not affected.
The opposite is true if we let h, but not 
mh2 vary with 
�. Then the peak position
is reduced with growing 
�. This comes from the fact that H0λ1 now increases
with increasing Hubble parameter due to the decrease in 
r . This effect more than
compensates the increase in H0 DA due to the decrease in 
m . Note that 
r h2, like

γ h2, is determined by the CMB temperature T0 and therefore always remains
fixed. (We neglect neutrino masses.)

As we have seen in Chapter 2, dark matter fluctuations grow only logarithmically
during the radiation dominated era, Once the Universe becomes matter dominated,
they start growing like the scale factor. Therefore, the amplitude of the gravitational
potential which is mainly determined by the dark matter density, depends on 
mh2.
Especially, the ratio of the height of the first acoustic peak and the Sachs–Wolfe
plateau is sensitive to this parameter.
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�

Fig. 6.2. In the left-hand panel we show the asymmetry of even and odd peaks
and its dependence on 
bh2. The temperature anisotropy spectrum is plotted for

bh2 = 0.02 (solid line), 
bh2 = 0.03 (dotted) and 
bh2 = 0.01 (dashed). On
the right-hand side 
bh2 = 0.02 is fixed and three different values for the matter
density are chosen, 
mh2 = 0.12 (solid), 
mh2 = 0.2 (dashed) and 
mh2 = 0.3
(dotted). Note that higher values of 
mh2 also lead to a stronger peak asymmetry.
In addition, a smaller value of 
mh2 boosts the height especially of the first peak
due to the stronger contribution from the early integrated Sachs–Wolfe effect. The
peaks are also somewhat shifted since DA depends on 
m .

The baryon density also enters CMB physics via the asymmetry of even and odd
acoustic peaks. As we have said before, the first peak at scale �1 is a contraction peak,
an over-density. Correspondingly, the second peak is an expansion peak, an under-
density. If the oscillating fluid consists solely of massless photons it would undergo
perfectly harmonic oscillations and the amplitudes of contraction and expansion
peaks would be equal. However, the massive baryons re-enforce contraction via
their self-gravity and their reaction to the gravitational potential of dark matter.
Correspondingly they reduce expansion (see Fig. 6.2).

On small scales, the fluctuation amplitudes decay due to Silk damping. Again
the strength of the damping depends on the baryon density, hence on 
bh2.

6.2.2 Neutrinos

As we saw in Chapter 1, neutrinos decouple when the Universe has a temperature
of about Tν ∼ 1.4 MeV, which corresponds to a redshift of zν ∼ 0.6 × 1010. After
that, weak interactions are too weak to keep them in thermal equilibrium with the
other constituents, electrons, baryons, photons and also cold dark matter. (If dark
matter interactions with neutrinos were stronger than weak interactions, we would
probably have detected dark matter in the laboratory.)
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�

Fig. 6.3. We show the CMB power spectrum for massless neutrinos and neutrinos
with mass mν = 2 eV (dashed lines). In the left-hand panel 
cdmh2 = 0.12 is
fixed while on the right-hand side 
mh2 = 0.144 is fixed. In all curves 
tot = 1,

bh2 = 0.022 and h = 0.7. Keeping 
mh2 fixed, adding neutrinos acts a bit like
a lower-matter density, since the neutrinos are not yet fully non-relativistic at
decoupling.

After that, neutrinos propagate freely, described by the Liouville equation (see
Section 4.7). As long as their masses can be neglected, they build up anisotropic
stresses by free streaming and their energy density dilutes like that of radiation. As
soon as their masses become relevant, their pressure and anisotropic stresses decay
and they behave like dark matter. This changes their effects on CMB anisotropies
and thereby leads to a way of measuring their mass with the CMB. The significance
is not very high, since neutrino anisotropic stresses contribute only about 5% to the
CMB fluctuations and since massive neutrinos have a similar signature like cold
dark matter in the CMB. In Fig. 6.3 we compare the CMB spectrum for three sorts
of degenerate neutrinos, all with mass mν = 2 eV, with the spectrum of massless
neutrinos, once by fixing the total matter density and once by fixing the cold dark
matter density.

6.2.3 Gravitational waves

The CMB anisotropies from gravitational waves are significant on scales that are
super-Hubble before decoupling, which corresponds to � <∼ 80. On smaller scales
they decay. If it is small, such a signal is difficult to disentangle from a slightly red
(ns < 1) spectrum of scalar fluctuations which simply has somewhat more power
on the Sachs–Wolfe plateau than a Harrison–Zel’dovich spectrum with ns = 1.

However, as we saw in Chapter 5, scalar perturbations do not generate B-mode
polarization. Therefore, the detection of B-mode polarization would be a finger
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print of gravitational waves from inflation. In Chapter 7 we will, however, see that
second-order effects, especially lensing can generate a B-mode signal from scalar
perturbations.

6.3 Reionization

Even though we have overwhelming evidence that the Universe recombined and
became neutral at a redshift of about zrec � 1400, no considerable fraction of neutral
hydrogen can be found in the intergalactic medium. At present the intergalactic gas
is fully reionized.

This conclusion is drawn from the absence of the so-called ‘Gunn–Peterson
trough’ in quasar spectra. Quasars (or ‘quasi-stellar objects’) are very active galactic
centres which are so luminous that they can be observed up to redshifts close to
z � 7.

Gunn and Peterson (1965) calculated that even a modest density of neutral hy-
drogen would lead to a significant absorption trough in the part of the quasar spectra
which is bluer than Lyman-α at emission and redder at absorption. These photons
have, at some moment during their propagation from the quasar to us, exactly
Lyman-α frequency and are then resonantly absorbed by neutral hydrogen. Insert-
ing numbers one finds (Peacock, 1999) that the neutral hydrogen density in the
intergalactic medium amounts to less than 
H h <∼ 10−8.

There are, however, so-called Lyman-α clouds, i.e. clouds of neutral hydrogen
which intervene the lines of sight of quasars and lead to a ‘forest’ of absorption
lines in quasars, the Lyman-α forest, see Section 6.7.5. But even integrating the
total optical depth of the Lyman-α forest one infers a neutral hydrogen density of
only 
H h � 10−5. It is very unlikely that galaxy formation has been so efficient as
to sweep up 99.9% of all the hydrogen in the Universe. We are therefore led to the
conclusion that the present intergalactic hydrogen is ionized.

In recent years the Lyman-α and Lyman-β troughs have been found in very
high-redshift quasars with z > 6. This confirms that at these high redshifts, some
neutral hydrogen has been present which has been reionized later on, probably by
UV-light from the first burst or star formation.

Reionization was terminated at redshift zri � 6, but it is not clear when the process
started and whether it was very fast or slow. The unknown reionization history of the
Universe affects CMB anisotropies and polarization. Once the Universe is reionized,
CMB photons can, in principle scatter again with the free electrons. Since the
electron density is significantly lower than at decoupling, the scattering probability
or optical depth is rather low and the effect is probably on the level of 5–10%.

Rescattering of electrons leads to additional polarization on a scale which cor-
responds to the sound horizon at reionization, λri � cs(zri)t(zri). In addition, due to
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the much larger free-streaming scale of electrons after reionization, there is some
additional Silk damping on scales up to λri.

Usually, reionization is parametrized simply by a reionization redshift zri or by
the optical depth τri to reionization,

τri(zri) = σT

∫ t0

t(zri)
a(t)ne(t) dt . (6.8)

Of course, the reionization history can be more complicated than this, e.g. it does
make a difference whether reionization is instantaneous or slow. However, present
data are not sufficient to determine more than the optical depth.

6.4 CMB data

So far, we have mainly discussed the theoretical aspects of the CMB. Of course
these are very interesting, mainly since we have good quality data to compare with
our theoretical models. On the other hand, good quality CMB data are so valuable,
since, for a given cosmological model and specified initial fluctuations, we can
calculate the CMB anisotropies and polarization with high accuracy.

This interplay of theory and data, which makes physics so fascinating, works in a
most beautiful way in CMB physics: observing the largest structures in the Universe,
the anisotropy patterns in the CMB, we learn not only a lot about the parameters
of the Universe but also about physics at the highest energies corresponding to
the smallest scales. The largest pattern in the cosmos turns out to be an imprint of
quantum physics!

In the previous chapters we learned how to calculate the CMB anisotropy and
polarization spectrum for a given model. A theoretical model does not predict the
CMB anisotropy or polarization amplitude in a given position (θ0, ϕ0) in the sky.
However, this is what an experiment measures.1

Let us assume that we are given a temperature fluctuation map �Ts(n) = Ts(n) −
T̄s from an experiment. Here T̄s is the mean temperature and the suffix s stands for
‘signal’. The correlation function 〈�Ts(n1)�Ts(n2)〉 is a measure for the mean
temperature difference,

〈(Ts(n1) − Ts(n2))2〉 = 2
(〈�T 2

s 〉 − 〈�Ts(n1)�Ts(n2)〉) . (6.9)

When we put brackets around observed quantities like 〈�Ts(n1)�Ts(n2)〉, we
understand an averaging over directions n1 and n2 with fixed opening angle
cos θ = n1 · n2. In this paragraph we simply equate such averages to theoretical

1 The experiment actually measures voltage differences as a function of time. We shall not enter into the rather
involved process of how an optimal map T (θ, ϕ) is obtained from these time ordered data streams (for an
introduction, see Dodelson (2003)).
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ensemble averages. This is an implicit assumption of statistical isotropy. In the next
paragraph we shall discuss additional limitations of this procedure which go under
the name of ‘cosmic variance’.

The measured temperature Ts(n) is obtained from the true sky temperature by
convolution with a beam profile B(n, n′) centred at n,

Ts(n) =
∫

B(n, n′)T (n′)d
′ . (6.10)

We can relate the correlation function of the measured temperature fluctuations
between two directions n1 and n2 to the power spectrum by〈

�Ts(n1)�Ts(n2)

T̄ 2

〉
= 1

T̄ 2

∫
B(n1, n′

1)B(n2, n′
2)〈�T (n′

1)T (n′
2)〉 d
′

1 d
′
2

=
∑

�,m,�′,m ′
〈a�ma∗

�′m ′ 〉
∫

B(n1, n′
1)B(n2, n′

2)Y�m(n′
1)Y ∗

�′m ′(n′
2) d
′

1 d
′
2

=
∑

�

2� + 1

4π
C�W�(n1, n2) , (6.11)

where we have inserted 〈a�ma∗
�′m ′ 〉 = C� δ��′ δmm ′ . We then made use of the addi-

tion theorem for spherical harmonics, and we have defined the window function
W�(n1, n2),

W�(n1, n2) =
∫

B(n1, n′
1)B(n2, n′

2)P�(n′
1 · n′

2) d
′
1 d
′

2 . (6.12)

Beam patterns are usually translation invariant so that B(n, n′) only depends on the
angle between n and n′ and the window function only depends on cos θ = n1 · n2.
Also the mean temperature difference and 〈Ts(n1)Ts(n2)〉 only depend on θ . This
simply reflects statistical isotropy. Actually, since we determine the expectation
value 〈•〉 by averaging over directions which include the same angle, we obtain a
result which only depends on this angle by construction.

6.4.1 Example window functions

As an illustration we calculate the window function for two examples of beam
patterns. For this we observe that the beam is usually very narrow, a few degrees
or less, so that, for the beam pattern B(n, n′) we can approximate the sphere by a
plane orthogonal to n in the regime where the beam is non-vanishing. The planar
vectors xi then correspond to the angle between n and n′

i . Setting n′
i = ni +xi√

1+x2
i

n′
1 · n′

2 = (n1 · n2 + n1 · x2 + n2 · x1 + x1 · x2)/
√(

1 + x2
1

)(
1 + x2

2

)
� n1 · n2

(
1 − 1

2

(
x2

1 + x2
2

)) + n1 · x2 + n2 · x1 + x1 · x2 .
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For the approximation we have used xi ≡ |xi | � 1. The beam function B is negli-
gibly small if this is not satisfied. The generic expression for the window function
then becomes

W�(n1 · n2) =
∫

B(n1, x1)B(n2, x2)P�(n′
1 · n′

2) dx2
1 dx2

2 . (6.13)

We first simplify this formula for n1 = n2 = n. Then, since x1 and x2 are normal to n,
the scalar product n′

1 · n′
2 becomes n′

1 · n′
2 � 1 − 1

2 (x2
1 + x2

2 ) + x1 · x2 � cos(|x1 −
x2|). Furthermore, for small values of |x1 − x2|/� and sufficiently large �, we can
approximate (see Appendix A4.1)

P� (cos(|x1 − x2|)) → J0(�|x1 − x2|)
= 1

π

∫ π

0
dφ exp[−i�|x1 − x2| cos φ]

= 1

2π

∫ 2π

0
dφ exp[−i�|x1 − x2| cos φ] , (6.14)

where we have used Eq. (A4.90) for the first equality. Let us define the planar vector
�� as the vector with length � which points at an angle φ from x1 − x2 and

B̃(��) =
∫

B(x)e−i��x d2x , (6.15)

the two-dimensional Fourier transform of the beam pattern. Equation (6.13) together
with Eq. (6.14) then yields

W�(1) = 1

2π

∫ 2π

0
dφ |B̃(��)|2 . (6.16)

The window function for n1 = n2 is the angular average of the square of the Fourier
transformed beam pattern.

To find an expression for the window function for n2 
= n1, let us expand
P�(n′

1 · n′
2) to second order in x1 and x2 also if n1 
= ±n2. Setting

n′
1 · n′

2 = n1 · n2 + ε

up to order x2
i we have

ε = −1

2
n1 · n2

(
x2

1 + x2
2

) + n1 · x2 + n2 · x1 + x1 · x2 ,

so that

P�(n′
1 · n′

2) � P�(n1 · n2) + εP ′
�(n1 · n2) + 1

2
ε2 P ′′

� (n1 · n2) . (6.17)

This approximation is sufficient if P� does not vary too much in an interval ε, hence
if �ε < 1. Inserting it in Eq. (6.13) and keeping only terms up to second order in
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xi , we find

W�(z) = P�(n1 · n2) + 1

2

∫
d2x1 d2x2 B(n1, x1)B(n2, x2)

× [−2z
(
x2

1 + x2
2

)
P ′

�(z) + ((n1 · x2)2 + (n2 · x1)2)P ′′
� (z)

]
, (6.18)

with z = n1 · n2 = cos θ . We have assumed that the beam is spherically symmetric
around its centre and we have dropped all terms which were linear in the vectors
xi and therefore integrate to zero. Decomposing the vectors xi into a component
which lies in the (n1, n2)-plane (ei ) and a component orthogonal to it (m), xi =
ei cos ϕi + m sin ϕ we find,

n1x2 = sin θ cos ϕ2 , n2x1 = sin θ cos ϕ1 .

Inserting this above, integration over angles gives

W�(z) = P�(z) + (2π )2

4

∫ ∞

0
dx1 dx2 x1x2 B(n1, x1)B(n2, x2)

× [−2z
(
x2

1 + x2
2

)
P ′

�(z) + (
x2

2 + x2
1

)
sin2 θ P ′′

� (z)
]

. (6.19)

We now use the fact that (1 − z2)P ′′
� (z) − 2z P ′

�(z) = −�(� + 1)P�(z) (see Ap-
pendix A4.1) and the normalization of the beam, 2π

∫ ∞
0 dx x B(x) = 1. Further-

more, we define the width of the beam

σ 2 ≡ π

∫ ∞

0
dx x3 B(x) . (6.20)

With this, the window function simply becomes

W�(z) = P�(z)
(
1 − σ 2�(� + 1)

)
, for σ� � 1 . (6.21)

This last condition is necessary to assure that P�(z + ε) is well approximated by
Eq. (6.17) for all |ε| <∼ σ . A reasonable approximation for all values of � might
therefore be W�(z) = P�(z) exp(−σ 2�(� + 1)), which is (nearly) the result of the
Gaussian beam as we see below.

Gaussian beam

For a Gaussian beam,

B(x) = 1

2πσ 2
exp

(
− x2

2σ 2

)
, (6.22)

with Fourier transform

B(��) = exp (−�2σ 2/2) , (6.23)
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hence

W�(1) = e−�2σ 2
. (6.24)

For z 
= 0 and σ� � 1 we reproduce Eq. (6.21) and

W�(z) = P�(z) exp (−σ 2�(� + 1)) (6.25)

is an excellent approximation to the numerical result for all values of z and � as
long as σ � 1. The only difference in W�(1) is that �(� + 1) becomes �2 which
comes from the fact that we have approximated the sphere by a plane normal to n.
This is an irrelevant difference for sufficiently large values of �.

Differencing beam

The disadvantage of the Gaussian beam is the fact that we have to subtract the mean
temperature to relate it to the theoretical power spectrum of the CMB anisotropies.
We subtract two large numbers to obtain a small result. A notoriously dangerous
procedure to perform on noisy data. Therefore, instead of the Gaussian beam one
usually utilizes a beam pattern with mean zero,∫

d2x B(x) = 0 .

Often one simply adds the signals coming from different directions with weights
which add up to 0. Let us analyse the simplest case of a single subtraction. We
choose the line connecting the two beam centres to be the x axis in the x = (x, y)
plane and define

B(x, y) = 1

2πσ 2

[
exp

[
− (x − x0)2 + y2

2σ 2

]
− exp

[
− (x + x0)2 + y2

2σ 2

]]
.

(6.26)

This is the difference of two Gaussian beams separated by a ‘throw’ of 2x0. A
similar calculation to the one for the Gaussian beam leads to

W�(1) = e−σ 2�2
(1 − P�(cos(2x0))) . (6.27)

In Fig. 6.4 we plot the window function for σ = 1◦ = π/180 for two different
values of the throw. As for the Gaussian beam, we cannot measure fluctuations
with �σ � 1. But, what is new for the differencing beam, we are also not sensitive
to fluctuations on scales much larger than the throw of the beam pattern since on
these scales the beam averages to zero.

With the known window function, we can now relate the measured temperature
fluctuations to the theoretical C�s. As always when doing an experiment, we want
to know the best estimate for C� and its error, or better, its probability distribution.
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�

�

�

Fig. 6.4. We show the window function �2W�(1) for a differencing beam with
width σ = 1◦ for two different values of the throw, x0 = 4◦ (solid) and x0 = 1◦
(dashed). The peak at � � 70 is due to the beam size. If throw and beam size differ,
a second peak appears on the left for the larger value of the throw.

Before exploring statistical methods to analyse CMB data, we discuss an error
which is always present in cosmological experiments.

6.4.2 Cosmic variance

Only one CMB sky is at our disposition for observation. Therefore, when we
measure the mean fluctuation in large angular patches, not many statistically inde-
pendent patches are available in the sky and we expect relatively large statistical
fluctuations.

Let us calculate this fluctuation under the assumption that the initial fluctuations
are Gaussian. Then, the coefficients a� m are Gaussian variables and, in the optimal
case when our data cover all sky, we can determine 2� + 1 statistically independent
a� ms for a given value of �. We want to determine the variance

σ� =
√

〈(Co
� − C�)2〉

C2
�

.

Here Co
� = (2� + 1)−1 ∑

m |a� m |2 is the ‘random’ variable which we obtain when
averaging over the 2� + 1 measured a�ms, and C� = 〈|a� m |2〉 is the statistical
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expectation value. The square variance, σ 2 of 2� + 1 independent Gaussian vari-
ables is 1/(2� + 1). For the squares of these variables, we expect σ 2 to double,
by simple error propagation. This is exactly what we will find now with a more
thorough calculation,

〈(Co
� − C�)2〉 = 1

(2� + 1)2

〈(∑
m

[|a� m |2 − 〈|a� m |2〉])2〉

= 1

(2� + 1)2

∑
m,m ′

(〈|a� m |2|a� m ′ |2〉 − 〈|a� m |2〉〈|a� m ′ |2〉) .

The second term in the above sum is simply C2
� . For the first term we apply Wick’s

theorem which states that for a set of Gaussian variables, the 2n-point correlation
function is given by the sum of all the possible 2-point correlation functions that
can be formed from it (see Appendix 7). Hence

〈|a� m |2|a� m ′ |2〉 = 〈a� ma∗
� ma� m ′a∗

� m ′ 〉
= 〈a� ma∗

� m〉〈a� m ′a∗
� m ′ 〉+〈a� ma∗

� m ′ 〉〈a� m ′a∗
� m〉+〈a� ma� m ′ 〉〈a∗

� m ′a∗
� m〉

= C2
� + δm,m ′C2

� + δm,−m ′C2
� .

For the last equals sign we have used the fact that a� m and a∗
� m ′ = a�, −m ′ are

independent random variables if m 
= m ′. Summation over m and m ′ gives now

〈(Co
� − C�)2〉 = 2

2� + 1
C2

� so that

σ� =
√

〈(Co
� − C�)2〉

C2
�

=
√

2

2� + 1
.

This is the absolutely minimal error which can be achieved from one sky. It is a
principle causality limit that cannot be escaped. To it we have to add instrumental
noise, foregrounds, atmospheric noise, etc.

Even if there were a far away civilization at a cosmological distance which would
undertake similar measurements and then send us their results, this would not really
help. By the time it takes for their information to arrive on Earth, the CMB sky has
grown by so much, that the region they have observed is now also inside our Hubble
horizon and we can observe it in our CMB experiments. On the other hand, if they
have sent us the data long ago, the sky they could observe at this time, is now also
inside our Hubble horizon. The problem is, of course, causality. If the Universe is
not inflating, we can by no means obtain any information about a region outside
our Hubble horizon which corresponds roughly to the CMB sky.

If we observe a fraction f < 1 of the sky, the error increases since we now cannot
determine all the a� ms, and 2� + 1 is replaced by (2� + 1) f . This is roughly the
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Fig. 6.5. The observed CMB anisotropy spectrum from WMAP (Hinshaw et al.,
2007) extended by BOOMERanG (Jones et al., 2006) and Acbar (Kuo et al., 2006)
in linear (left) and log (right) scale. The line draws the best-fitting �CDM model.

number of independent a� ms which can be measured in a fraction f of the sky. The
variance then increases to

σ� =
√

2

(2� + 1) f
.

Finally, we note that in real full sky CMB experiments, the data close to the
galactic plane are strongly contaminated by foregrounds and it is safest not to use
them at all. One therefore often cuts out a region of about 20◦ around the galactic
plane. In this cut sky, the spherical harmonics are no longer an orthonormal basis
of function and one has to conceive a new method to define such a basis. This can,
in principle, be done by applying a Cauchy–Schwartz orthogonalization procedure
on the old basis, see Gorski (1994).

In Figs. 6.5–6.7 we show the recently (July 2007) available CMB data in terms
of the anisotropy, polarization and cross correlation spectra.

6.5 Statistical methods

To extract the optimal information from data it is most useful to apply the best
statistical method. However, as a rule of thumb, results that strongly depend on the
statistical method applied, are not to be trusted.

Some elementary statistical tools that are used in this chapter are presented in
Appendix 7.
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Fig. 6.6. The CMB anisotropy spectrum and the temperature–polarization cross-
correlation obtained from the WMAP 3-yr data (figure from Hinshaw et al. (2007)).

6.5.1 Bayes’ theorem and the likelihood function

To estimate cosmological parameters one uses a simple result from probability
theory which goes under the name of Bayes’ theorem. In a probability space,
consider two sets A and B and their intersection A ∩ B. The probability that a
given event of which we know that it is in A is also in B is

P[A ∩ B]

P[A]
=: P[B|A] . (6.28)

P[B|A] denotes the conditional probability of B given A. Exchanging A and B we
obtain the conditional probability of A given B. Hence

P[A ∩ B] = P[B|A]P[A] = P[A|B]P[B] . (6.29)
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Fig. 6.7. The measured EE polarization spectrum from WMAP 3-yr data,
BOOMERanG and others. For more details see Page et al. (2007) from where
this figure is taken.

The last equation which is here written for the probabilities of sets is, of course,
also true for the corresponding probability densities. What is the relevance of this
simple statement for parameter estimation? Let us assume that a cosmological
model is described by a set of parameters (p1, . . . , pM ) = m. Our experiment has
made a series of measurements and has come up with data (d1, . . . , dN ) with errors
(σ1, . . . , σN ), for example the CMB temperature in different directions ni . For a
given model m we can calculate the predicted outcome of the experiment in terms of
expectation value and variance (di (m), σi (m)) for each of the data points. Here we
assume the situation, as it is in cosmology, that the model is of a statistical nature and
predicts expectation values for the measurements di (m) and their variances, σi (m).
For example, if the di s are coefficients a�m of the expansion of the temperature
fluctuations, then their expectation values vanish and the variances are the C�s.
However, if your data are the C�s then their variance is given by cosmic variance.
It is sometimes not clear whether the errors σi (m) should be added to the data
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or to the model. But we just need to require that they are independent of (other)
measurement errors and therefore can be added in quadrature.

If the distribution of the data points di is Gaussian (as we assume the CMB
temperature fluctuations to be), the probability of measuring di in model m taking
into account the measurement uncertainty σi is given by (see Appendix 7)

P[di |m] = 1√
2π (σi (m)2 + σ 2

i )
exp

(
− (di − di (m))2

2(σi (m)2 + σ 2
i )

)
. (6.30)

Note that the theoretical uncertainty, σi (m) and the measurement error, σi have been
added in quadrature. If the measurements di are independent, e.g. if the directions
ni are much further apart than the beam width, the joint probability of measuring
(d1, . . . , dN ) with errors (σ1, . . . , σN ) is the product of the individual probabilities,

P[{di , σi }|m] ≡ L({di , σi }, m) = �N
i=1

exp
(
− (di −di (m))2

2(σi (m)2+σ 2
i )

)
√

2π (σi (m)2 + σ 2
i )

 . (6.31)

In the more general case, when the measurements are not independent but Gaussian
with correlation function,

〈di d j 〉 = Ci j , (6.32)

the above expression becomes

L({di , σi }, m) = 1√
det C(2π )N

exp

(
−diC−1

i j d j

2

)
, (6.33)

(see Appendix 7). This expression is called the likelihood function. It gives us the
likelihood of the data {di , σi } given the model m. But since it is the data that we
know and the model that we would like to know, we would be more interested in
the probability of a model m given the data. And here, Bayes’ theorem comes to
our rescue. According to Eq. (6.29)

P[m|{di , σi }] = P[{di , σi }|m]
P[m]

P[{di , σi }] . (6.34)

Here P[m] is called ‘the prior’ and the denominator is called ‘the evidence’. The
right-hand side is the ‘posterior distribution’ or simply the ‘posterior’. Ideally it can
be used as ‘prior’ for the next experiment. The evidence P[{di , σi }] is unimportant
for parameter estimation since it does not depend on the model parameters, hence the
ratio P[m1|{di , σi }]/P[m2|{di , σi }] is independent of the evidence. Furthermore,
it can be eliminated noting that when integrating over the entire space of model
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parameters, the left-hand side must be normalized to 1,

P[{di , σi }] =
∫

dm P[m]L({di , σi }, m) .

The prior P[m] depends on our prior knowledge of the model space. For example,
if previous experiments have shown us that curvature is not huge, it makes sense
to choose P[m] = 0 for all models with |
K | > 1

2 . But how shall we choose P[m]
for |
K | < 1

2 ? We may opt for a ‘flat’ prior, i.e. the same probability for all values
of 
K . But this is as much a special case as choosing a flat prior for exp(
K ). This
is the weakest point of Bayesian likelihood: the probability of a model m for given
data {di , σi } depends on our prior.

Things are not as hopeless as this might seem. First of all, physics often tells
us to some extent what the distribution of the prior should be. As a rule of thumb,
parameters which add to the data should have a flat prior while parameters which
multiply the data (scaling parameters) more naturally have a logarithmic prior i.e.
a flat prior in log(λ).

If the data have sufficiently small error bars, most priors are relatively flat and the
resulting maximum likelihood is nearly independent of the prior. However, if the
data are relatively weak and errors are large, the Bayesian likelihood P[m|{di , σi }]
may well be strongly prior dependent. In this case, the data are simply not good
enough to choose a model.

The model with the highest probability to be correct is given by the maximum of
P[m|{di , σi }]. If the data are sufficiently good to choose a model, i.e., if the prior
P[m] is sufficiently flat around the maximum of P[m|{di , σi }], then the latter is
close to the maximum of the likelihood function, L({di , σi }, m). When estimating
parameters, we therefore simply search for a maximum of the likelihood function.

6.5.2 Fisher matrix and parameter estimation

Best-fitting parameters

We consider a set of parameters λ = (λ1, . . . , λM ). The best-fitting model with
parameters λ̄ corresponds to the maximum of the likelihood function,

dL(λ)

dλ

∣∣∣∣
λ̄

= 0 . (6.35)

It is most easily determined with a root-finder method applied to dL(λ)/dλ. How-
ever, for a Gaussian distribution the likelihood function is an exponential. Therefore,
its logarithm is usually better suited to a numerical root finder. One starts at some



6.5 Statistical methods 229

best guess value λ(0) and then approximates the derivative d lnL/dλ to first order,

∂ lnL
∂λi

(λ̄) � ∂ lnL
∂λi

(λ(0)) + (λ̄ j − λ
(0)
j )

∂2 lnL
∂λi∂λ j

(λ(0)) .

Setting ∂ lnL
∂λ

(λ̄) = 0, we obtain to first order

(λ̄ j − λ
(0)
j ) � −

(
∂2 lnL
∂λ j∂λi

)
∂ lnL
∂λi

(λ0) ≡ δλ j . (6.36)

For the next step we can replace λ(0) by λ(1) = λ(0) + δλ and iterate the procedure
until it converges. In directions in which the likelihood function is very flat, we
make large steps while in directions along which it is steep, the steps are small.

However, this is not how it is usually done. There is a simplification which can
be made without a great loss of accuracy. For the CMB, we expect the likelihood
function to be of the form (6.33) so that

∂ lnL
∂λi

= −1

2

∂

∂λi

[
ln(det C) + dTC−1d

]
. (6.37)

For notational simplicity we now denote ∂/∂λi ≡ ∂i . With ln(det C) = Trace(ln(C))
and ∂iC−1 = −C−1(∂iC)C−1 we obtain

∂ lnL
∂λi

= 1

2

[
dTC−1(∂iC)C−1d − Trace

(
C−1(∂iC)

)]
. (6.38)

For the second derivative we find after similar manipulations

∂2 lnL
∂λi∂λ j

= −1

2

[
dTC−1(∂iC)C−1(∂ jC)C−1d

+ dTC−1(∂ jC)C−1(∂iC)C−1d − Trace
(
C−1(∂ jC)C−1(∂iC)

)
− dTC−1(∂2

i jC)C−1d + Trace
(
C−1(∂2

i jC)
) ]

. (6.39)

The Fisher matrix is defined as the expectation value

Fi j ≡
〈
∂2 lnL
∂λi∂λ j

〉
. (6.40)

To determine it we use 〈di d j 〉 = Ci j so that

〈dTC−1(∂iC)C−1(∂ jC)C−1d〉 = 〈dmC−1
mn (∂iC)npC−1

pq (∂ jC)qrC−1
rs ds〉

= C−1
mn (∂iC)npC−1

pq (∂ jC)qrC−1
rs Csm

= Trace
(
(∂iC)C−1(∂ jC)C−1

)
= Trace

(
(∂ jC)C−1(∂iC)C−1

)
= Trace

(
C−1(∂ jC)C−1(∂iC)

)
.
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For the last two equals signs we use the fact that the trace is invariant under cyclic
permutations. Equivalently

〈dTC−1(∂2
i jC)C−1d〉 = Trace

(
C−1(∂2

i jC)
)

.

Inserting these results to calculate the expectation value of (6.39) we obtain

Fi j = 1

2
Trace

(
C−1(∂ jC)C−1(∂iC)

)
. (6.41)

We assume the Fisher matrix to be non-singular. Otherwise not all the parame-
ters λi can be determined by the data since then the Fisher matrix has a vanish-
ing eigenvalue for some eigenvector µ 
= 0. The covariance matrix and hence the
likelihood function are then independent of the linear combination µiλi which
therefore cannot be estimated by the experiment. Clearly, F is also symmetric
and Fi jλ

iλ j = 1
2 Trace

(
(C−1(λ j∂ jC))2

)
> 0 for all λ 
= 0. The Fisher matrix is a

positive-definite symmetric matrix.
Instead of dividing by the true curvature of the likelihood function in Eq. (6.36)

to determine the next estimator for the parameters, one divides by the corresponding
element of the Fisher matrix,

λ
(1)
i = λ

(0)
i + 1

2
F−1

i j

[
dTC−1(∂ jC)C−1d − Trace

(
C−1(∂ jC)

)]
(λ(0)) . (6.42)

The advantage of this method is that for a given starting parameter the Fisher matrix
Fi j (λ(0)) is readily calculated from the covariance matrix alone, without having to
know the data. As we shall see below, this can be used to forecast the precision
with which a given experimental setup (hence given covariance matrix) is able to
estimate parameters.

The above estimated parameters λ(1) depend quadratically on the data vector d.
For this reason they are called a ‘quadratic estimator’. The Fisher matrix actually is
a local Gaussian approximation to the distribution of the parameters in the vicinity
of the parameter values λ. Dividing by the true curvature of the likelihood function
and not its expectation value, would not have provided a quadratic estimator. It
can be shown that the estimator described here is actually an optimal quadratic
estimator (see e.g. Dodelson, 2003).

In practice, relatively few iterations are needed to achieve convergence. This is
very important since we often search in a parameter space of 10 or more dimensions.
A modest grid of 10 points per side, would already lead to 1010 evaluations of the
likelihood function. Each of these requires one run of a fast CMB code which in an
optimized code takes a few seconds. One evaluation of the likelihood function then
requires a computational time of roughly 1 s. Hence 1010 evaluations take in the
optimal case 1010 s � 300 yr. Not a time span we comfortably wait for the output
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of a computation. Therefore, it is imperative that we use an iterative procedure and
not a grid to estimate parameters.

The method described so far still has several problems, some of which we briefly
want to address.

• What if we end up in a shallow local maximum of the likelihood function and are stuck
there?
To avoid this problem, one usually adds a small random fluctuation to the obtained δλ, a
‘temperature’, so that one can leave a shallow local maximum.

• What if there are several local maxima, some of them quite steep and separated by deep
ridges?
To check this, one performs not only one but many iteration chains with different starting
points. One can then compare the height of the different maxima. A procedure along these
lines is the Markov chain Monte Carlo method (MCMC) discussed below. It is presently
the method of choice for CMB analysis. A publicly available MCMC code and more
details of the method can be found in the paper by Lewis & Bridle (2002).

• What if the maximum is somewhere at the border of parameter space?
The border of the parameter space is given by the prior. If the data are best fitted by
parameter values lying at the border of what is allowed by the prior, this hints that either
the prior is wrong or the model is incorrect. This is one of the most important drawbacks
of the Fisher matrix technique. It provides relatively rapidly the best-fitting model under
consideration, but it works independently of whether this model is actually a good fit to the
data or not. For this an evaluation of the likelihood function at the best-fitting parameter
values has to be performed. If the likelihood function is very small, this is either a sign
that the model is wrong or that the real errors are much larger than those assumed.

Estimating errors

So far we have only studied the problem of how to find the best fit. But we also
want error bars on the estimated parameters. A good first estimate for 1σ error bars
are the diagonal elements of the Fisher matrix at the maximum λ̄. To see this, we
use the expression (6.42) for the deviation δλ

〈δλiδλ j 〉 = 1

4
F−1

im F−1
jn

〈[
dTC−1(∂mC)C−1d − Trace

(
C−1(∂mC)

)]
× [

dTC−1(∂nC)C−1d − Trace
(
C−1(∂nC)

)]〉
= 1

4
F−1

im F−1
jn

[〈dkdldpdq〉C−1
kr (∂mC)rsC−1

sl C−1
pv (∂nC)vwC−1

wq

−Trace
(
C−1(∂mC)

)
Trace

(
C−1(∂nC)

)]
.

For the second term we made use of 〈dpdq〉 = Cpq . With this, the mixed terms
become equal to the pure trace term,

〈dTC−1(∂mC)C−1d〉Trace
(
C−1(∂nC)

) = Trace
(
C−1(∂mC)

)
Trace

(
C−1(∂nC)

)
.
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For the first term we apply Wick’s theorem (see Appendix 7),

〈dkdldpdq〉 = CklCpq + CkpClq + CkqClp .

Inserting this above, the first term results again in Trace
(
C−1(∂mC)

) ×
Trace

(
C−1(∂nC)

)
while the second and third terms give rise to twice the Fisher

matrix Fmn . We therefore finally obtain

〈δλiδλ j 〉 = F−1
im F−1

jn Fmn = F−1
i j . (6.43)

Therefore, the diagonal elements of the Fisher matrix usually give reasonable errors
for the parameters. Of course, these are the true 1σ errors only if the distribution
is Gaussian in the parameters λ which usually it is not. But since the log of the
likelihood function peaks at λ̄ it will locally be of the form of a Gaussian,

L(λ̄ + δλ) � L(λ̄) exp

(
−1

2
δλT F(λ̄) δ λ

)
,

for small enough δλ. The Fisher matrix defines an ellipse around λ̄ in the parameter
space via the equation,

δλT F(λ̄)δλ = 1 . (6.44)

The principal directions of this error ellipse are parallel to the eigenvectors of F
and their half length is given by the square root of the eigenvalues of F−1.

According to Eq. (6.44), the total width of the error ellipse in a given direction
λ j at the centre λ̄ is 2/

√
Fj j . Therefore, 1/

√
Fj j is the error of the parameter λ j

if all other parameters are known and are equal to λ̄. However, realistically, we do
not know the other parameters any better than λ j . Therefore, the true error in λ j is
given by the size of the projection of the error matrix onto the j axis, see Fig. 6.8.
These are the so-called marginalized errors, which we obtain when integrating over
all the other parameters.

We now show that the marginalized error ofλi is given by
√

F−1
i i , i.e., the diagonal

element of the inverse of the Fisher matrix. For this we solve the quadratic equation
Eq. (6.44) for δλi ,

δλi = 1

Fii

−
∑
j 
=i

Fjiδλ j ±
√√√√(∑

j 
=i

Fjiδλ j

)2

− Fii

(∑
jk 
=i

Fjkδλ jδλk − 1

) .

This equation expresses δλi as a function of all the other parameters δλ j . To de-
termine the maximum of δλi , we set the gradient of this function to zero. From the



6.5 Statistical methods 233

l2

l1

Fig. 6.8. The error ellipse is shown in a two-dimensional example. The widths

2/
√

F11 (dashed double arrow) and 2
√

F−1
11 (solid double arrow) are indicated.

derivative w.r.t. λ j we obtain

0 = 1

Fii

(
−Fji ± Fji

∑
k 
=i Fkiδλk − Fii

∑
k 
=i Fjkδλk√· · ·

)
,

where the square root
√· · · is the same as in the previous equation. Multiplying by

∓√· · · = Fiiδλi + ∑
k 
=i Fkiδλk we find

0 = Fjiδλi +
∑
k 
=i

Fjkδλk . (6.45)

This equation must hold for all j 
= i . Inserting δλk = aF−1
ki and δλi = aF−1

i i we
obtain 0 = aδi j which is certainly true since j 
= i . Since the Fisher matrix is
non-singular the above solution is the only possibility. Inserting it in Eq. (6.44)

determines a = 1/

√
F−1

i i , so that we arrive at the important result

δλ
(marg)
i =

√
F−1

i i . (6.46)

These error ellipses are useful for forecasting if the errors are roughly Gaussian.
However, if the true error contours have a very different shape, e.g. ‘bananas’ as in
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Fig. 6.17, the Fisher matrix approximation usually underestimates the parameter
errors.

The Fisher matrix for CMB anisotropy experiments and forecasting

For a given cosmological model we can calculate the C�s. We now consider them as
our model parameters λ� and want to determine their best-fitting values and errors.
We determine the Fisher matrix from the correlation matrix C�m,�′m ′ = 〈a�mā�′m ′ 〉.
(Take care not to mix up the CMB power spectrum C�s with the correlation function
Cs.)

We have already seen in Eq. (6.11) that a finite beam size σ leads to a correlation
function of the form

C�m,�′m ′ = δ� �′δm m ′C�W� with, e.g. ,

W� =


e−�2σ 2
for a single beam,

e−�2σ 2
[1 − P�(cos(2x0))] for a differencing

beam with throw x0 .

To this we have to add the correlation function of the noise. For simplicity we assume
isotropic noise of amplitude σn in each pixel and a pixel size �
 in radians. In
other words, a noise correlation function of the form

1

T 2
〈�T (n)(n)�T (n)(n′)〉 =

{
σ 2

n if n and n′ are in the same pixel
0 else ,

= 1

4π

∑
�

(2� + 1)C (n)
� P�(n · n′) . (6.47)

We have already taken into account that the noise is isotropic and therefore〈
a(n)

�mā(n)
�′m ′

〉
= δ� �′δm m ′C (n)

� . To isolate C (n)
�1

we set µ = n · n′, multiply the above

equation with P�1 (µ) and integrate over µ. Defining

f (µ) =
{

σ 2
n if 1 − µ < �µ

0 else,

we have ∫ 1

−1
dµ P�1 (µ) f (µ) � −�µσ 2

n � �ϑ sin(�ϑ/2)σ 2
n , � <

1

�µ
.

Here we have used the fact that P�(µ) � 1 for µ � 1 and −�µ = −� cos ϑ �
�ϑ sin(�ϑ/2). If � >∼ 1/�µ this approximation breaks down. But it is clear that with
an experiment of pixel size corresponding to n · n′ ≤ 1 − �µ we cannot measure
C�s with � > 1/�µ. We are therefore not considering these values. In other words,
we are only determining the C�s for values of � with � < �max � 1/(2�µ). Also
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multiplying the l.h.s. of Eq. (6.47) with P�1 and using
∫

P� P�1 = δ��1 2/(2� + 1)
we obtain

C (n)
�1

= 2π�ϑ sin(�ϑ/2)σ 2
n = �
σ 2

n . (6.48)

It is reasonable to assume that the signal and the noise are uncorrelated so that we
can simply add their correlation functions and arrive at〈

a(n)
�mā(n)

�′m ′

〉
= δ� �′ δm m ′

[
C�W� + w−1

]
, (6.49)

where we have introduced the width w = (�
σ 2
n )−1. With this correlation function

at hand, we can now calculate the Fisher matrix. Denoting the derivative with respect
to C� by ∂�, Eq. (6.41) yields

F��′ = 1

2
Trace

(
C−1(∂�C)C−1(∂�′C)

)
= 1

2
C−1

�1m1,�2m2
(∂�C)�2m2,�3m3C−1

�3m3,�4m4
(∂�′C)�4m4,�1m1

=
1
2δ�1�2δm1m2[

C�1 W�1 + w−1
] δ�2�3 δm2m3 W�2 δ�2�

δ�3�4δm3m4[
C�3 W�3 + w−1

]δ�4�1δm4m1 W�′ δ�4�′

= δ��′
(2� + 1)W 2

�

2[C�W� + w−1]2
= δ��′

(2� + 1)

2[C� + (wW�)−1]2
. (6.50)

The factor 2� + 1 comes from the summation over the ms,∑
m1m2m3m4

δm1m2 δm2m3 δm3m4 δm4m1 =
∑
m1

δm1m1 = 2�1 + 1 ,

while the summation over the �s requires �1 = �2 = � = �3 = �4 = �′ and therefore
leads to δ��′ .

Using the C�s as our ‘parameters’ has the big advantage that the Fisher matrix

is diagonal and the marginalized errors are simply given by 1/
√

F�� =
√

F−1
�� ,

δC� =
√

2

2� + 1
[C� + (wW�)−1] . (6.51)

For a given window function, pixel size and pixel noise, this gives a good error
estimate for the accuracy with which the C�s can be determined in a full sky experi-
ment. If the experiment covers only a fraction fsky of the sky, a good approximation
for the error is again

δC� =
√

2

(2� + 1) fsky
[C� + (wW�)−1] . (6.52)
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Of course, the model parameters that we really want to estimate are not the
C�s, but rather cosmological parameters like 
mh2, 
� and the curvature. For
this we can now start the process over again, considering the C�s as our ‘data’
with correlation matrix F−1

��′ and calculate the Fisher matrix of the cosmological
parameters, F̃(λ). The only disadvantage here is that contrary to the a�ms, the
C�s do not obey a Gaussian distribution. But for high �s the distribution is nearly
Gaussian and for low �s the error is relatively large due to cosmic variance, so
that treating the distribution as Gaussian does not usually induce large errors. Of
course F̃(λ) is by no means diagonal and the errors in the cosmological param-
eters alone are not Gaussian at all. If we want not only to estimate errors of the
parameters, which can be obtained from the inverse of the Fisher matrix F̃−1, but
the full marginalized probability distribution, we have to use a more sophisticated
method, like MCMC discussed below. The forecasted probability distributions cal-
culated with a MCMC method for the Planck satellite experiment to be launched
in 2008 are shown in Fig. 6.10. The probability distributions in present real data
are shown in Fig. 6.9. There, WMAP 3-yr data alone and combined with small-
scale CMB anisotropy data, supernovae and galaxy surveys are used to determine
the marginalized distribution of 
cdmh2, 
bh2, ns , the amplitude As and the op-
tical depth τ for a flat cosmology with purely scalar perturbations. This is the
simplest model (only five parameters) which currently seems to fit all the data
satisfactorily.

6.5.3 Model comparison

Sometimes, we would like to compare two models with different parameter sets
and decide which one of them is more probable given the data. At first, we certainly
want to look at the likelihood functions and compare those. Models with a larger
maximum likelihood fit the data better. But on the other hand, if model m2 has
many more parameters than model m1, we are not surprised if m2 fits the data better
than m1 and may still decide in favour of m1 with the argument that m1 is ‘more
physical’ and more ‘predictive’ or, certainly, more economical. The latter criterion
is often called ‘Occam’s razor’: we should explain the data by the simplest possible
model. Can these seemingly subjective criteria be made objective? We shall now
see that under certain assumptions the answer is yes.

To be more specific let us consider two models which we want to com-
pare; m1 with parameters λ(1) = (λ(1)

1 , . . . , λ
(1)
M1

) and m2 with parameters λ(2) =
(λ(2)

1 , . . . , λ
(2)
M2

). We assume that the priors are fixed in both cases. (In Bayesian
statistics the priors are just part of the game and cannot be ignored!) Bayes’ the-
orem then gives us the probability of some set of parameters for given data D
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Planck experiment, for a flat cosmological model with purely scalar perturbations
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by

P[λ(1)|D, m1] = P[D|m1, λ
(1)]P[λ(1)|m1]

P[D|m1]
, (6.53)

P[λ(2)|D, m2] = P[D|m2, λ
(2)]P[λ(2)|m2]

P[D|m2]
. (6.54)

Our present notation indicates that our parameter choice λ(1) or λ(2) assumes the
model m1 or m2 and, more importantly, that the evidence depends on the model
under consideration. The prior is now of the form of a probability for the parameters
λ(1) and λ(2) respectively, given the model m1 and m2 respectively. From Bayes’
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theorem we also obtain

P[mi |D] ∝ P[D|mi ]P[mi ] . (6.55)

Here, P[mi ] is the total prior we assign to model mi while P[D|mi ] is simply the
evidence from above. If we have no idea which model should be preferred, we
can simply set P[mi ] = 1

2 . The probability of a model is then proportional to its
evidence, and more importantly, their ratio is equal to the ratio of the evidence. But
the evidence is given by the integral

P[D|mi ] =
∫

P[D|mi , λ
(i)]P[λ(i)|mi ] d Mi λ(i) . (6.56)

For many problems the posterior P[λ(i)|D, mi ] = P[D|mi , λ
(i)]P[λ(i)|mi ] is

strongly peaked around some best-fitting value λ̄(i) with widths σ (i)(D) =
(σ (i)

1 , . . . , σ
(i)
Mi

) (let us assume, for simplicity, that the parameters are uncorrelated).
We may then evaluate the integral (6.56) by multiplying the peak height with the
width

�(i)(D) = �
Mi
j=1σ

(i)
j .

The evidence then becomes

P[D|mi ] � P[D|mi , λ̄
(i)]P[λ̄(i)|mi ]�

(i)(D) . (6.57)

Furthermore, let us assume that the prior of model i has some (large) total width
�(i) and that λ̄(i) is nicely inside the prior distribution. Then, due to normalization,
P[λ̄(i)|mi ] � 1/�(i) and the evidence for model mi becomes

P[D|mi ] � P[D|mi , λ̄
(i)]

�(i)(D)

�(i)
. (6.58)

Hence the first guess, the maximum of the likelihood, is multiplied by the so-called
‘Occam factor’ �(i)(D)/�(i), i.e., the ratio of the parameter space ‘occupied by
the data’ divided by the volume of parameter space allowed by the prior. Models
that are not predictive at all are penalized by a small Occam factor, and can in this
way lose against a model even if they allow for a parameter choice λ̄(i) with higher
likelihood. Of course if the prior is constraining, but does not have a significant
overlap with the posterior from the data, this will also disfavour a model. These
situations are shown in the panels (a)–(c) of Fig. 6.11. As becomes clear from this
example, for models which do allow a good fit to the data, the evidence strongly
depends on the prior.

It is, however, important to note that the Occam factor enters the model prob-
ability just as a power law, while the offset of the measured parameter from the
model prediction reduces the model probability exponentially.
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Fig. 6.11. Three 1-parameter models with their prior (solid) and posterior (dotted)
distributions shown. They all have a comparable maximum likelihood. In (a) the
prior distribution is much wider than the posterior. In models (b) and (c) the widths
are comparable, but model (c) does not provide a good fit. The evidence for model
(b) is by far the largest.

A situation which is often encountered in cosmology is the so-called ‘nested
models’. Two models are called ‘nested’ if one of them is obtained by fixing one or
several parameters of the other model. For example, a model with vanishing tensor
contribution is nested inside the more general models which allow for tensors, by
setting the tensor to scalar ratio r = 0. Another example is the models which do not
allow for curvature that are nested inside models with curvature. Let us concentrate
on these to illustrate the significance of the prior for model selection.

As we shall see, present data yield the constraints 
K � −0.01 ± 0.03. Does
this mean that a universe with vanishing curvature is preferred? To discuss this let
us approximate the marginalized posterior distribution of the parameter 
K by a
Gaussian with width σK = 0.03. Cosmologist A says that the Universe might well
have a curvature in the full range 
K ∈ [−1, 1] and therefore, models allowing
for a curvature are penalized by an Occam factor of 0.03, hence models without
curvature are strongly preferred.

Cosmologist B argues differently. She says that we know from inflation, which
is in good agreement with all other observations, that curvature must be small, say

K ∈ [−0.05, 0.05] and therefore there is no small Occam factor and models with
non-vanishing but small curvature are as plausible as vanishing curvature.

This example makes it clear: for model selection the prior is crucial. It is of
course a very different statement to say that since curvature is small it has little
effect on all the other parameters and we therefore set it to zero in our analysis
(which somewhat speeds up the CMB codes). This is a practical statement and
does not address the problem of model selection.

If the posterior probability distribution is non-Gaussian, the approximations
above no longer hold, and we have to resort to more complicated methods like
MCMC to evaluate the posterior distribution. But the principal arguments of the
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above discussion remain valid. For more details and more advanced methods of
model selection see Kunz et al. (2006).

6.5.4 Markov chain Monte Carlo methods (MCMC)

If the posterior probability distribution of parameters is Gaussian, it is sufficient
to give its mean and its width in the direction of the principal axis, i.e., the Fisher
matrix, this contains all the statistical information. However, even if the distribution
is Gaussian in the data, it is very often far from Gaussian in the cosmological
parameters of interest to us.

Given our model with parameters λ and the data D, we can evaluate the proba-
bility density P(λ) ≡ P[λ|D] up to a constant simply by Eq. (6.29),

P[λ|D] = P[D|λ]
P[λ]

P[D]
, (6.59)

where usually, the distribution of the data, D = (d1, . . . , dN ) is a Gaussian with
some correlation matrix C,

P[D|λ] = L(D, λ)d N d = 1√
(2π )N det C

exp

(
−diC−1

i j d j

2

)
d N d . (6.60)

Therefore, once we have fixed a prior P[λ], we can evaluate the probability
P[λ|D] ≡ p(λ)d Mλ of a given choice of parameters, λ = (λ1, . . . , λM ), up to a
constant, the evidence P[D]. Let us define this not normalized distribution by

P∗(λ) ≡ P[λ|D]P[D] = P[D|λ]P[λ] . (6.61)

We would like to answer the following questions.

• What is the shape of the probability density p(λ) in the full parameter space, and what
are the densities of some arbitrary subset of parameters, µ = (λi1 , . . . , λiK ), K < M
marginalized over all the other parameters. We are especially interested in the cases of
K = 1 and 2, which are easy to visualize and which indicate how strongly the parameters
λi1 and λi2 are correlated, see Figs. 6.9 and 6.10.

• We would also like to compute the expectation value and variance of derived parameters,

〈h〉 =
∫

h(λ)p(λ) d Mλ ,

and 〈
(h(λ) − 〈h〉)2

〉 =
∫

(h(λ) − 〈h〉)2 p(λ) d Mλ ,

in brief, integrals of the form
∫

f (λ)p(λ) d Mλ .
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If we have a representative (or fair) sampling of parameter space, S =
(λ(1), λ(2), · · · , λ(R)), i.e., a sampling in which the number of points λ ∈ S in a
small volume V of parameter space is proportional to

∫
V p(λ) d Mλ, we could

approximate

〈 f 〉 =
∫

f (λ)p(λ) d Mλ � 1

R

R∑
i=1

f
(
λ(i)

)
.

Furthermore, marginalized probability densities at µ = (λi1, . . . , λiK ) would be
proportional to the sum of all the points for which the parameters of interest are in
a given infinitesimal volume around µ, i.e.,

pi1···iK =
∫ (

� j 
=ir dλ j
)

p(λ1, . . . , λM ) .

In other words, the marginalized probability distribution of the parameters µ would
just be given by the projection of the full probability distribution onto these param-
eters. Especially, the probability that the parameter λ1 lies in some small interval I
is proportional to the number of points which have λ1 ∈ I and all other parameters
are arbitrary.

The above mentioned problems can therefore be solved, if we find a representa-
tive sampling of our parameter space. There are several methods for finding such a
sampling which all have their advantages and disadvantages (see, e.g., Gamerman
(1997) and MacKay (2003)). For high-dimensional problems, the Markov chain
Monte Carlo methods (MCMC) are especially useful. Of these, we concentrate
here on the Metropolis–Hastings algorithm which is dominantly in use for CMB
analysis. We shall mention also the Hamiltonian Monte Carlo method. Full proofs
that these algorithms really converge are found in the literature mentioned above.

Metropolis–Hastings algorithm

Let us start with some arbitrary point λ(1), and some ‘proposal density’ Q
(
λ(2), λ(1)

)
for a new value λ(2) which depends on λ(1). We call λ(1) the ‘current point’ and λ(2)

the ‘proposal’. For the moment, let Q be arbitrary but simple enough so that we can
easily (with little numerical investment) sample it. We shall soon be more precise.
To generate our sampling S we start at some arbitrary point λ(1). With probability
Q(λ, λ(1)) we now determine a proposal λ. To decide whether to accept this point as
the next element of our sampling (which now becomes a chain, since it is ordered),
we compute

r = P∗(λ)Q
(
λ(1), λ

)
P∗(λ(1)

)
Q

(
λ, λ(1)

) . (6.62)
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If r ≥ 1, we accept λ as the next member of our chain, λ(2) = λ, if r < 1 we assign
λ(2) = λ with probability r and λ(2) = λ(1) with probability 1 − r . And so on, we
generate our Markov chain, S = (λ(1), . . . , λ(R)).

If the proposal density Q is symmetric in its arguments, as for example a Gaussian
centred on the current point, the factor Q

(
λ(1), λ

)
/Q

(
λ, λ(1)

)
drops out and we

only have to calculate P∗(λ)/P∗ (
λ(1)

)
. We now concentrate on this case which is

often simply called the ‘Metropolis algorithm’. The proposal density Q is then only
needed to suggest the next point, but is not involved in the decision whether it is
accepted or not.

It can be shown that for strictly positive Q, the distribution of the points in S
always tends to the posterior distribution P(λ) = P∗(λ)/P[D] for R → ∞. How
long will this take? Or in other words, how large do we have to choose R so that S
becomes a fair sample of P? This is a difficult question, but it is relatively easy to
find a lowest estimate for R. In order to have a reasonable acceptance rate r we do
not want to choose a too large step size ε = |λ − λ(i)|. Hence the proposal density
Q has to be sufficiently narrow. A reasonable step size is probably of the order of
the smallest widths σs of the 1-parameter distributions (of course strictly speaking
we do not yet know these widths, but in practice we can make an educated guess
and revise it if necessary). Now, the distance the chain has to travel is at least equal
to the width of the largest 1-parameter distribution, σl . Since our chain performs
a random walk in parameter space, the number of steps it needs to travel a given
distance is Rmin ∝ (σl/σs)2. The proportionality factor will be roughly the inverse
of the mean acceptance probability, since, if the next point is not accepted, the chain
does not move forward at all.

To obtain a reasonably fair sample, one certainly has to cover the high-probability
part of the parameter volume several times and choose chain lengths of a few times
Rmin. This all works, if our probability distribution has only one high-probability
region. If it has several, even though, usually a given chain will rapidly find one
of them, it is very hard to cross from one of these regions into another. Therefore,
instead of generating just one chain, one usually generates several (tens of) chains.
On the other hand, the first few (of order 20) points of a chain do not sample
the posterior distribution but depend mainly on the random initial point λ(1). This
‘burn in phase’ is usually discarded. Furthermore, the points in the chain are not
independent. As usual for Markov chains, each point depends on its predecessor.
This is not really a hindrance, as the mathematical theorem shows, but nevertheless
analysts often ‘thin out’ their chains, i.e., they use only every tenth or so point for
the posterior distribution.

Since the ‘burn in phase’ of the chain is useless, it is not economical to use
many very short chains. On the other hand, since the probability distribution can
have several high-probability islands in parameter space which are separated by
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deep canyons, it is not advisable to use only one very long chain. As so often, the
‘golden middle’ of many reasonably long chains is usually the best. However, if the
likelihood function turns out to have more than one maximum to which chains may
converge, care is required. The probability of a maximum is not simply proportional
to the number of chains which converge to it. This number can be large, not because
the maximum is large, but simply because its ‘basin of attraction’ is large. In this
case, one has to analyse the shape of the likelihood function in more detail.

It is important to have a relatively good guess for the proposal density to start
with. A simple possibility is a Gaussian with the correlation matrix given by the
inverse of the Fisher matrix.

In practice, to test whether the chains have converged one just adds 10% more
steps and investigates if the results change. In order to test whether the series of
chains represents a fair sampling one adds a couple more independent chains and
checks the effect on the results. If the results are not affected, or only well within
error bars, one is usually confident that the procedure has converged. Often, one
simply compares the variance of the parameters obtained from the chain with the
error bars from the data.

In Figs. 6.9 and 6.10 we show the results obtained by this analysis method
with the best currently available CMB data (WMAP 3-yr data) and for the Planck
forecast.

There are several other Monte Carlo methods which people begin using for cos-
mological data sets like the slice sampling, MacKay (2003), but the principle behind
them is always the same: to obtain a Markov chain which produces a representative
sampling of an underlying probability distribution proportional to P∗(λ), we have
to find a transition probability T (λ, λ′) which leaves P∗ invariant, i.e.,

P∗(λ) =
∫

T (λ, λ′)P∗(λ′) d Mλ′ . (6.63)

Choosing, as in the Metropolis algorithm, T (λ, λ′) = V −1
tot P∗(λ)/P∗(λ′), is clearly

a transition probability which obeys Eq. (6.63). Here Vtot is the total volume of pa-
rameter space which has to be introduced in order for T to be correctly normalized.

6.5.5 Hamiltonian Monte Carlo

Finally, let us briefly mention a method, which has not yet been widely used in cos-
mology (for a first attempt to study its usefulness for CMB data analysis, see Hajian
(2007)). This method does not only use P∗(λ), but also its gradient. Evaluating P∗

with reasonable accuracy requires one run of a fast CMB code. Evaluating the gradi-
ent with respect to M parameters requires 2M , or for a stable numerical derivative,
3M evaluations. As this is the costly part of CMB analysis, its usefulness has to
be checked in detail. However, as we explain now, the Hamiltonian Monte Carlo
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might reduce the number of points needed for a representative sampling from Rmin

to order
√

Rmin. Therefore, if the chains have difficulties in converging, it might be
useful.

The basic idea is very simple. Let us write

P∗(λ) = e−V (λ) .

Maximizing the probability is then equivalent to minimizing the potential V . There-
fore, it is useful to take the next step in the direction −∇V . But this is exactly
what Hamiltonian dynamics does. Therefore, we introduce momentum variables
π = (π1, . . . , πM ) and define the Hamiltonian

H (λ, π) = V (λ) + K (π) ,

where K is the kinetic energy, for example K = 1
2π

T π . We then define the non-
normalized probability

P∗
H (λ, π) = e−H (λ,π) = e−V (λ)e−K (π ) .

We now sample P∗
H in the following way. We first choose some initial value λ(1) and

draw a momentum π (1) from the Gaussian distribution e−K (π )/Z K . For the next,
dynamical proposal, the present momentum π (1) decides the displacement of λ and
the gradient of the present potential V (λ(1)) decides the change in the momentum,
via the canonical equations

λ̇ = π , and π̇ = −∇V (λ) .

We then advance this system for some (fixed) number of steps to arrive at the
proposal (λ, π), which is then accepted or rejected according to the Metropolis rule
(6.62) for P∗

H (and some symmetrical Q which is no longer needed).2

The big advantage of this method, is that the distance covered by the parameters
λ(i) is now proportional to the computer time per step and not only to its square
root.

From the representative sampling of P∗
H obtained in this way, we obtain a fair

sampling of P∗(λ) by simply ignoring the momentum variables in the chains.

6.6 Degeneracies

To explain the problem of degeneracies, let us first consider parameters that
obey a Gaussian distribution with some Fisher matrix F(λ̄) at the maximum
likelihood parameter λ̄. Its inverse is the correlation matrix of the parameters,

2 If the simulation is perfect, the proposal is accepted every time since H = V + K is a constant of motion and
so r is always equal to 1. In practice however, the inaccuracy in the numerical evaluation of the gradient will
lead to some rejections.
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Ci j = 〈(λi − λ̄i )(λ j − λ̄ j )〉 = F−1
i j (λ̄). If one (or several) of the eigenvalues of the

Fisher matrix is (are) very small, the variance of the parameters in the correspond-
ing direction is very large. Hence this linear combination of parameters cannot
be determined accurately. In the limiting case, when the eigenvalue vanishes, the
linear combination which defines the eigenvector with vanishing eigenvalue is not
at all constrained by the data.

Such directions are called degenerate or nearly degenerate directions. It is very
useful to identify them and to express the results of the experiment in terms of
quantities that are well determined and have small errors, i.e., that are orthogonal
to the degenerate directions. Usually, degenerate directions have a simple physical
interpretation. They can be lifted either by improving the data (if they are only
nearly degenerate) or by considering complementary data. Here we discuss the
main examples.

6.6.1 Curvature

The most prominent example of a degeneracy of CMB anisotropies comes from
the fact, that they are strongly dependent on 
bh2, 
mh2 and the angular diameter
distance DA. Considering a �CDM model, only three combinations of the param-
eters of interest, 
m, 
b, 
�, h are well determined by CMB anisotropies. This is
especially important for the determination of the curvature 
K = 1 − 
� − 
m .
Changes in the curvature which keep DA, 
mh2 and 
bh2 fixed have nearly no
effect on CMB anisotropies (see Fig. 6.12).

It is therefore, actually wrong if we say we can determine the curvature from
CMB anisotropies. For this we need some additional information. The simplest way
to break this degeneracy is, for example, to introduce a relatively strong prior on
the Hubble constant. Using the HST key project result (Freedman et al., 2001), h =
0.71 ± 0.7, for example, we can determine the curvature to 
K = −0.02 ± 0.02.
On the other hand, requiring 
K = 0, reproduces a Hubble constant in perfect
accord with the HST result. Another possibility is the inclusion of large-scale
structure data, galaxy surveys. As we shall see in Section 6.7.3, these are mainly
sensitive to the shape parameter � � 
mh. Together with the measurement of 
mh2

from the CMB this also determines h and thereby lifts the degeneracy. Also inclusion
of supernova data, see Section 6.7.1 which measures the luminosity distance to much
smaller redshifts, lifts the degeneracy.

6.6.2 Scalar spectral index, tensor component and related degeneracies

The tensor contribution to the CMB anisotropies only significantly adds to the C�s
with � <∼ 60. For � >∼ 60 it rapidly decays and can be neglected (see Fig. 2.4). But
a slight enhancement of power on large scales can also be produced by reducing
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Fig. 6.12. In the upper panel lines of equal angular diameter distance are indicated.
The number R is the ratio of the angular diameter distance of the model to the one
of a concordance model with 
� = 0.7, 
m = 0.3, h = 0.7. The lines of constant
curvature are parallel to the diagonal which is also drawn. In the lower left-hand
panel we show CMB anisotropy spectra with 
K > 0 (dashed), 
K < 0 (dotted)
and 
K = 0 (solid), which have identical angular diameter distance, matter density
and baryon density. They correspond to the dots indicated in the upper panel. The
spectra overlay so precisely that we cannot distinguish them by eye. On the lower
right-hand panel we show three spectra with curvature zero, identical matter density
and baryon density, but with different angular diameter distances (the squares
indicated in the upper panel on the K = 0 line). The spectra are significantly
different.

somewhat the spectral index ns . A slightly redder spectrum also has somewhat more
power on large scales, see Fig. 6.13.

Another parameter that affects the power on large scales is the optical depth to
the last scattering surface, τ . Enhancing it leads to more damping on larger scales
which in turn can be compensated by a tensor component.
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�

�

�
�

K

Fig. 6.13. A spectrum of purely scalar perturbations with ns = 0.96 (solid) is
compared to one with a tensor contribution of r = 0.3 (dotted). The cosmological
parameters of the two models differ somewhat but are all within 1 to 2 sigma of
the ‘concordance values’ given in Table 6.1: (h = 0.73, 
bh2 = 0.0225, 
mh2 =
0.135, τ = 0.1, ns = 0.96) for the purely scalar model and (h = 0.8, 
bh2 =
0.023, 
mh2 = 0.118, τ = 0.1, ns = 1.0, r = 0.3, nT = 0) for the model with
tensor contribution. Clearly, these two models cannot be distinguished from their
temperature anisotropies.

This degeneracy can, in principle, be lifted by including high-quality polarization
data. For example, reionization leads to the rescattering of photons at late times and
induces a small amount of polarization on large scales which would not be seen
in an ionized universe. The presently available polarization data from WMAP and
other experiments, provides the best estimate of the optical depth τ .

On the other hand, a tensor component can be (nearly) unambiguously deter-
mined by a measurement of the B-mode of polarization. This is the next ‘quantum
leap’ to be expected from CMB data: good B-polarization data which even might
allow the testing of the slow roll consistency condition (3.87),

AT

AS
= −18

25
nT .

6.6.3 Initial conditions

As we discussed in Chapter 3, simple inflationary models generate perturbations
with adiabatic initial conditions. In the simplest case, neglecting a possible ten-
sor component, the initial conditions are characterized by only two parameters.
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However, in principle, other initial conditions are also possible. We have discussed
the mixture of adiabatic and CDM iso-curvature perturbations. Also allowing for
the two neutrino modes (the neutrino density and the neutrino velocity mode),
one obtains four essentially different modes. Together with arbitrary correlations
this gives a 4 × 4 symmetric, positive semi-definite matrix of initial conditions,
hence ten parameters. The spectral indices of each component allow for additional
parameters (see however Ex. 6.2).

Introducing these many additional parameters leads to serious additional degen-
eracies. Especially, the first peak of the acoustic oscillations for iso-curvature per-
turbations no longer determines the angular diameter distance to the last scattering
surface, since it also depends strongly on the initial conditions. Even if the Hubble
parameter is known, curvature can no longer be determined by CMB anisotropies
alone.

However, iso-curvature perturbations, while contributing to the Sachs–Wolfe
plateau, do not induce significant density fluctuations. But the normalization of
CMB fluctuations on large scales gives about the right amplitude for density fluctu-
ations in the purely adiabatic case. Therefore, combining CMB fluctuations with the
galaxy power spectrum leads to stringent constraints for the iso-curvature contribu-
tion (Trotta et al., 2001, 2003). An analysis (Trotta, 2006) with fixed spectral index
nS , comparing with the WMAP 3-yr data combined with small-scale CMB exper-
iments, the HST prior for the Hubble parameter and the Sloan Digital Sky Survey
(SDSS) (Tegmark et al., 2004) for the matter power spectrum, infers that data are
fully compatible with purely adiabatic perturbations and a possible iso-curvature
fraction may not contribute more than about 20%.

Very roughly, iso-curvature modes have an effect similar to a tensor component:
they contribute to the CMB anisotropies but not to the galaxy power spectrum.
However, since they contribute to the CMB not only on very large scales, but also
on smaller scales where the data have smaller error bars, they are better constrained
than a tensor contribution.

Finally, polarization information will also help to break the degeneracies from
iso-curvature modes (see Bucher et al., 2001). This comes first of all from the fact
that when several acoustic peaks are available, their relative position in �-space,
i.e., their distance, depends only on the cosmological parameters and not on the
initial conditions.

Even when considering simple adiabatic perturbations, one can allow for ad-
ditional features in the initial power spectrum that will influence the estimated
cosmological parameters. As long as these are parametrized by a few numbers,
we can test good enough data against them, but as mentioned in the beginning of
this chapter, if we do not make any simplifying assumptions on the initial power
spectrum, we must know the cosmological parameters which then fix the transfer
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Table 6.1. Joint likelihoods for a flat �CDM model with purely scalar
perturbations. The WMAP 3-yr data are combined with small-scale CMB

experiments (CBI + VSA, BOOMERanG) or galaxy survey data (2dFGRS). A is
the amplitude of density fluctuations at k = 0.002/Mpc and τ is the optical depth

to the last scattering surface. The parameters σ8 and 
m are derived. Table
from Spergel et al. (2007).

WMAP WMAP WMAP+ACBAR WMAP +
Parameter only +CBI+VSA +BOOMERanG 2dFGRS

100
bh2 2.233+0.072
−0.091 2.212+0.066

−0.084 2.231+0.070
−0.088 2.223+0.066

−0.083


mh2 0.1268+0.0072
−0.0095 0.1233+0.0070

−0.0086 0.1259+0.0077
−0.0095 0.1262+0.0045

−0.0062

h 0.734+0.028
−0.038 0.743+0.027

−0.037 0.739+0.028
−0.038 0.732+0.018

−0.025

A 0.801+0.043
−0.054 0.796+0.042

−0.052 0.798+0.046
−0.054 0.799+0.042

−0.051

τ 0.088+0.028
−0.034 0.088+0.027

−0.033 0.088+0.030
−0.033 0.083+0.027

−0.031

ns 0.951+0.015
−0.019 0.947+0.014

−0.017 0.951+0.015
−0.020 0.948+0.014

−0.018

σ8 0.744+0.050
−0.060 0.722+0.043

−0.053 0.739+0.047
−0.059 0.737+0.033

−0.045


m 0.238+0.030
−0.041 0.226+0.026

−0.036 0.233+0.029
−0.041 0.236+0.016

−0.024

function in order to determine the initial power spectrum. Without assumptions we
cannot determine them both.

One often allows for a so-called ‘running’ of the spectral index. For this one fits
for a ‘running parameter’ α = dns/d ln(k) which is assumed to be constant. An
initial spectrum, with running, is determined by three parameters. First one has to
fix some ‘pivot scale’ k∗ which is arbitrary, but has to be a scale where the power
spectrum is well constrained by the data. One then sets

k3 P�(k) = A∗(k/k∗)ns−1+α ln(k/k∗) . (6.64)

The resulting amplitude A∗ and spectral index ns , in general, depend on the pivot
scale. Only if α = 0 does ns not depend on k∗. If α = 0 and ns = 1 as well A∗ is
independent of k∗.

One can of course allow for more complicated features like one or several kinks in
the power spectrum, i.e., sudden changes of the spectral index. There are inflationary
models which lead to such predictions, for example models where inflation is driven
by several scalar fields (Adams et al., 1997).

A comparison of the cosmological parameters obtained by CMB data alone and
CMB in conjunction with complementary data is given in Tables 6.1 and 6.2. At
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Table 6.2. As in Table 6.1 but including other data sets: galaxy surveys (SDSS),
supernovae (SNLS and SN Gold) and weak lensing (CFHTLS). Table

from Spergel et al. (2007).

WMAP+ WMAP+ WMAP+ WMAP+
Parameter SDSS SNLS SN Gold CFHTLS

100
bh2 2.233+0.062
−0.086 2.233+0.069

−0.088 2.227+0.065
−0.082 2.255+0.062

−0.083


mh2 0.1329+0.0056
−0.0075 0.1295+0.0056

−0.0072 0.1349+0.0056
−0.0071 0.1408+0.0034

−0.0050

h 0.709+0.024
−0.032 0.723+0.021

−0.030 0.701+0.020
−0.026 0.687+0.016

−0.024

A 0.813+0.042
−0.052 0.808+0.044

−0.051 0.827+0.045
−0.053 0.846+0.037

−0.047

τ 0.079+0.029
−0.032 0.085+0.028

−0.032 0.079+0.028
−0.034 0.088+0.026

−0.032

ns 0.948+0.015
−0.018 0.950+0.015

−0.019 0.946+0.015
−0.019 0.953+0.015

−0.019

σ8 0.772+0.036
−0.048 0.758+0.038

−0.052 0.784+0.035
−0.049 0.826+0.022

−0.035


m 0.266+0.026
−0.036 0.249+0.024

−0.031 0.276+0.023
−0.031 0.299+0.019

−0.025

the present level of accuracy, complementary datasets do not reduce the error bars
considerably, but it is important that they are consistent.

6.7 Complementary observations

CMB observations are not the only cosmological observations at our disposal. The
main reason why they are so useful is that they are relatively easy to calculate
to good accuracy. On a wide range of scales, we do not expect any complicated
physics to obscure the relation between data and theory. Nevertheless, it would
be a waste not to also consider other available data and, especially in view of the
degeneracies, we need other data to confidently interpret the CMB. Here we only
briefly introduce the most important complementary observations.

6.7.1 The Hubble parameter H(z)

A notoriously difficult quantity to measure is not only the function H (z), but more
basically the value of the present Hubble parameter, H0 = H (0). The main difficulty
lies in the measurement of cosmological distances. The history of astrophysics
and cosmology is marked by repeated underestimations of distances. E. Hubble
originally overestimated his parameter by a factor of about 7 (Hubble, 1929). Even
though it is relatively straight forward to measure the redshift of a cosmological
source, how can we find its distance? The main tools are standard candles or standard
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rulers. If we know the intrinsic size or luminosity of a distant source, we can use
this to determine its angular diameter or luminosity distance. To lowest order in
the redshift z, these are simply H−1

0 z. For redshift higher than z � 0.2, one has to
take into account the full expression for the distance as derived in Chapter 1. The
full function H (z) determines not only the present Hubble parameter but, via the
Friedmann equation, also the matter content and the curvature of the Universe.

At present, the most promising method is to determine H (z) with the obser-
vation of supernovae of type Ia. These are supernovae without hydrogen lines.
They are extremely luminous and can be seen out to redshift of 2 and maybe
more. The idea is that they come from white dwarfs which accrete material, e.g.,
from a companion star, until they pass over the Chandrasekhar mass limit of about
1.4 M! (Chandrasekhar, 1939). At this moment they become unstable and explode.
Most probably this leads to the formation of a neutron star. The intrinsic luminosity
of this explosion is quite constant and the mild variation is strongly correlated with
the width of the light curve. Correcting for this variation with a phenomenological
formula, one can obtain very small variations in the corrected intrinsic luminosity
(about 0.1 magnitude). This allows a very accurate measurement of the luminosity
distance to these explosions.

At present, luminosity distances to supernovae with redshifts up to 1.7 have been
determined (Astier et al., 2006 and Wood-Vasey et al., 2007). These are used not
only to measure H0 (performed with HST (Freedman et al., 2001; Sandage et al.,
2006)) but especially to determine H (z)/H0 which can be obtained with much
better accuracy. These measurements have provided the first clear indication that
the expansion of the Universe is currently dominated by a cosmological constant
or some form of dark energy with strong negative pressure leading to acceleration
(see Chapter 1). They are especially important in our aim to reveal the nature of
dark energy. Is it simply a cosmological constant with w = −1 or is it dynamical
e.g. a scalar field with a time-dependent equation of state, w(z)? Or is it even some
‘phantom matter’ with w < −1?

Unfortunately, the luminosity distance only directly measures the integral (see
Chapter 1, Eqs. (1.39) and (1.51))

DL (z) = (1 + z)χ√|
k |H0

(∫ z

0

λdz

(1 + z)H (z)

)
.

The equation of state parameter w on the other hand enters on the level of the
derivative H ′(z). To determine it, two derivatives from relatively noisy data have
to be taken; a very difficult task. Recently, it has been shown that the dipole of the
luminosity distance which is, like the CMB dipole, due to our motion with respect
to the Friedmann background, allows a direct measure of H (z) so that only one
additional derivative is needed to arrive at the equation of state (Bonvin et al., 2006).
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On the other hand, to accurately determine the amplitude of the dipole, many SNIas
in a given redshift bin are needed. It remains to be seen whether this new approach
will bear fruit.

6.7.2 Nucleosynthesis

As we have seen in Chapter 1, by an analysis of what has happened during nucleo-
synthesis, i.e. at T � 0.1 MeV and z � 2.3 × 109 we can calculate the light element
abundance as a function of the baryon density, 
bh2, see Fig. 1.10. Comparing with
the observations of these abundances yields the nucleosynthesis value of the baryon
density. How to estimate the primordial abundance from the present abundance of
light elements is entirely non-trivial, an art which we do not discuss here any further.
An average, relatively conservative estimate gives (Particle Data Group, 2006),

0.017 ≤ 
bh2 ≤ 0.024 (at 95% confidence) . (6.65)

The agreement of this result with the CMB estimate is most remarkable. Both values
are based on completely different physics. Such agreements give us confidence in
the standard cosmological model.

The abundance of helium generated during nucleosynthesis is very sensitive
to the number of relativistic degrees of freedom at the time of nucleosynthesis,
which determines the expansion rate during nucleosynthesis. Assuming the photon
and three types of neutrinos (at their somewhat lower temperature) give a good fit
to the observed helium abundance. The nucleosynthesis constraint on the content
of relativistic particles at the time of nucleosynthesis is usually formulated as a
constraint on the number Nν of light neutrino species. The data require (Particle
Data Group, 2006)

Nν = 3.24 ± 1.2 (at 95% confidence). (6.66)

In very good agreement with the value from the width of Z -decay obtained at
accelerators (Particle Data Group, 2006),

Nν = 2.99 ± 0.016 .

Even though the cosmological result is older, the accelerator result has become
much more accurate.

6.7.3 The galaxy distribution

When determining the scalar CMB anisotropies we also calculate the matter power
spectrum of linear perturbations, PD(k). Unfortunately, we cannot observe this
power spectrum directly. First of all, on small scales, k >∼ 2π/(30 h−1 Mpc) �
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0.2 h Mpc−1, the spectrum is affected by non-linear clustering. On these scales
the fluctuations in the matter density are of order unity and larger. Therefore, they
cannot be accurately determined by linear perturbation theory. Non-linear pertur-
bation theory or numerical simulations are needed which are much less accurate.
While linear perturbation calculations are easily made with accuracies of better
than 1%, it is very difficult to achieve an accuracy of 10% with numerical N -body
simulations.

Second, we cannot observe matter directly. We just observe luminous galaxies
and it is unclear how these are related to the underlying matter distribution. This
problem is usually ‘encoded’ in the so-called bias b, which is often set to a constant,
but most probably depends on scale. Nevertheless, the galaxy power spectrum is
usually a good measure of the so-called ‘shape parameter’ � which determines the
scale ke, at which the linear power spectrum turns from the PD ∝ kns behaviour on
large scales to the PD ∝ kns−4 behaviour on small scales. Even though neither of
the two asymptotic behaviours has ever been observed in a galaxy power spectrum,
the position of the kink is relatively well established and yields a shape parameter
� � 0.2. The shape parameter is defined as the real position of the kink ke compared
to km1, the position of the kink in a universe with 
m = h = 1,

ke = km1/� . (6.67)

The kink position is given by the horizon scale at matter radiation equality and one
easily shows that � � 
mh, see Ex. 6.3. Assuming that the bias ‘function’ does
not have any structure in the neighbourhood of the kink, the position of the latter
allows us to determine 
mh.

The reason why the power spectrum does not decay like kns−4 on small scales
(large k) is non-linear clustering. On scales smaller than the kink, the fluctu-
ations have become sufficiently large for non-linear clustering to become rele-
vant, before the slope no longer has its asymptotic value from linear perturbation
theory.

The question of why the power spectrum is not seen to rise like kns on large scales
has different answers. The first is simply that we have not measured the power
spectrum on large enough scales to see this asymptotic behaviour. An additional
difficulty is that a galaxy power spectrum, coming from a distribution of points,
always has a white noise component. On sufficiently large scales, this white noise,
being a constant, will always win over a nearly scale-invariant spectrum, ∝ kns

with ns � 1. The relevant question is: what is the amplitude of the white noise
component? There are arguments, that it may be so high that we shall never be able
to observe the Harrison–Zel’dovich part, PD ∝ kns of the matter spectrum with the
observation of galaxies (Durrer et al., 2003).
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The mean matter fluctuation inside a ball of radius R is given by

〈(�M/M)2〉R =
〈(∫

WR(x − y)D(y) d3 y

)2
〉

. (6.68)

Here WR is a window function of size R and D is the density contrast. The most
common shapes for window functions are a Gaussian or a ‘top hat’. Using the fact
that the Fourier transform of a convolution is the product of the Fourier transforms,
we have ∫

WR(x − y)D(y) d3 y =
∫

d3k

(2π )3
eik·xWR(k)D(k) ,

so that

〈(�M/M)2〉 =
∫

d3k

(2π )3
|WR(k)|2 PD(k) . (6.69)

If the bias is relatively close to unity, the average fluctuations inside a ball of radius
R can therefore give the normalization of the matter power spectrum. One usually
defines

σ 2
8 =

∫
d3k

(2π )3
W 2

8 h−1 Mpc(k)PD(k) , (6.70)

the mean fluctuation inside a ball of radius R = 8 h−1 Mpc. Of course, this quantity
can only be measured from the galaxy power spectrum if the bias is known. How-
ever, within linear perturbation theory it is readily determined by the CMB. The
parameters which enter are mainly the CMB normalization, As , and the spectral
index, ns . Current CMB data yield σ8 � 0.74 ± 0.05.

The matter power spectrum is also very sensitive to the presence of light mas-
sive neutrinos in the dark matter. Such a ‘hot dark matter’ component, containing
relativistically fast particles, leads to damping by free streaming on small scales.
Therefore, hot dark matter suppresses power on small scales. This suppression
is very strong and can be severely limited even with only 10% accurate N-body
simulations. Comparisons of data and simulations require mν < 1 eV.

The best currently available galaxy power spectra come from the 2dF
Galaxy Redshift Survey (Cole et al., 2005) and the Sloan Digital Sky
Survey (Tegmark et al., 2004). The SDSS power spectrum is shown in Fig. 6.14.

Finally, the matter power spectrum contains acoustic oscillations which come
from the baryon acoustic oscillations before decoupling. If galaxies trace matter
closely enough, these oscillations are also visible in the galaxy power spectrum.
This seems to be the case and first reports on the identification of these features in
observed galaxy distributions have been made (Eisenstein et al., 2005). Since the
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Fig. 6.14. The galaxy power spectrum from the SDSS corrected by the modelled
bias (top) is shown. The solid line is the best-fitting linear �CDM model (from
Tegmark et al., 2004).

scale of the oscillations can be calculated by linear perturbation theory, they provide
a standard ruler which can be used to determine the angular diameter distance to
the mean redshift of the sample. Once we have large galaxy catalogues with many
different redshifts at our disposition, the acoustic peaks in the matter distribution
can (in principle) lead to an evaluation of DA(z) and thereby H (z) in a way similar
to the supernova observations but completely independent of these.

6.7.4 Measuring the late integrated Sachs–Wolfe effect by correlations of
CMB anisotropies with density fluctuations

The integrated Sachs–Wolfe effect is the term(
�T

T

)
ISW

(x0, n) = 2
∫ t0

tdec

�̇(x0 − n(t − t0), t) dt (6.71)

in the expression for the temperature anisotropy given in Eq. (2.231). The overdot
in �̇ denotes the partial derivative with respect to conformal time t . We have set



6.7 Complementary observations 257

� � 0 so that � = �. The Bardeen potential is determined by the Einstein equation
(2.104). Neglecting curvature this is

� = −4πG

k2
a2ρD = −3H 2

0 
m(1 + z)

2k2
D . (6.72)

For the second equals sign we have assumed that ρ comes from pressureless matter
with density parameter 
m , so that ρ ∝ a−3. We have set a0 = 1. As we have
seen in the examples treated in Chapter 2, in a purely matter dominated universe
D ∝ a = (1 + z)−1 and therefore a2ρD = constant, so that there is no integrated
Sachs–Wolfe effect (ISW). This is different at relatively early times, t ∼ tdec where
the radiation content cannot be neglected, and also at very late times if there is
either curvature or a cosmological constant that becomes relevant.

The late ISW effect leads to a correlation between matter density fluctuations
and the CMB temperature fluctuations on large scales. This is already evident from
Eq. (6.72). At any fixed time, �(k, t) and D(k, t) are perfectly correlated since
they differ by a deterministic multiplicative function. However, most of the CMB
anisotropies actually measure � (and D) at tdec, a time at which we can by no means
measure the matter power spectrum directly. This is different for the late ISW effect
which measures � at late times, when the cosmological constant becomes relevant,
z <∼ 1. At these times we can also observe the galaxy distribution and infer from it
the matter distribution.

Let us estimate the signal obtained from the correlation of the matter fluctuations
at some fixed redshift z with the CMB. The density fluctuation at z in a direction n
from us is

D(x0, n, z) = D(x0 − n(t(z) − t0), t(z)) .

Here x0 is our position, t0 denotes today and t(z) is the conformal time at redshift
z. Expressed in terms of the Fourier transform D(k, t(z)) we obtain

D(x0, n, z) = 1

(2π )3

∫
d3k e−ik·(x0−n(t(z)−t0)) D(k, t(z))

= − 2

3H 2
0 
m(1 + z)(2π )3

∫
d3k k2e−ik·(x0−n(t(z)−t0))�(k, t(z)). (6.73)

We want to correlate these density fluctuations with the ISW effect,〈
D(x0, n′, z)

(
�T

T

)
ISW

(x0, n)

〉
= 1

4π

∑
�

(2� + 1)C (D)
� (z)P�(n · n′) . (6.74)

For the second term we insert Eq. (6.71) with its Fourier transform(
�T

T

)
ISW

(x0, n) = 2

(2π )3

∫
d3k

∫ t0

tdec

dt e−ik·(x0−n(t−t0))�̇(k, t) .
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Fig. 6.15. The growth function g (solid) and its derivative, ġ (dashed) are shown
as functions of redshift in a universe with 
� = 0.7 and 
m = 0.3. Note that only
for z <∼ 2, the growth function g starts to deviate significantly from 1.

We now set

�(k, t) = g(t, k)�in(k) . (6.75)

For scales which enter the horizon only in the matter dominated era, g(t, k) is nearly
independent of k and constant in time for t < t1, where t1 denotes the time when the
cosmological constant becomes relevant, say 
�(t1) � 0.1. After t1, linear density
fluctuations grow more slowly than the scale factor. In Fig. 6.15 we plot g(z) and
ġ(z) for a universe with (
�, 
m) = (0.7, 0.3).

We make use of �̇ = ġ�in and 〈�in(k)�∗
in(k′)〉 = (2π )3δ(k − k′)P�(k) =

(2π )3δ(k − k′)A2
S(k/H0)ns−1k−3, see Eq. (2.242). Furthermore, we rewrite eikn(t0−t)

in terms of spherical Bessel functions and Legendre polynomials (see Eq. (A4.101)).
Applying the addition theorem for spherical harmonics, Eq. (A4.42), the integration
over directions in k-space yields

C (D)
� (z) = −8g(t(z))

3π
m H 2
0 (1 + z)

∫
dk k4 P�(k) j�(k(t0 − t(z)))

×
∫ t0

tin

dt ġ(t) j�(k(t0 − t)) . (6.76)

Eq. (6.76) is still exact. For a given initial power spectrum k3 P�(k) = A2(kt0)ns−1,
the transfer function g(t) is determined by the cosmological parameters 
m and

�. If 
m = 1 and 
� = 0, g = constant and the effect vanishes.
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The kernel for the k-integration,

K (k, �, z) ≡ j�(k(t0 − t(z)))
∫ t0

tdec

dt ġ(t) j�(k(t0 − t)) ,

is largest, when j�(k(t0 − t)) has its first peak in the interval from t1 to t0 during
which ġ is considerable. Hence for values of � <∼ k(t0 − t1) <∼ � + π . In order for
j�(k(t0 − t(z))) to also be large in this interval, we must also require � <∼ k(t0 −
t(z)) <∼ � + π . Since t1 ∼ t0/2, this can only be achieved if t(z) >∼ t1. The kernel
then peaks roughly at

kmax ∼ �

t0 − t(z)
, with a width , �kmax ∼ π

t0 − t(z)
. (6.77)

Its value at this position can be approximated by K (kmax, �, z) ∼ �−2. Here we use
the relatively crude approximation for the maximum of spherical Bessel functions3

j�(xmax) ∼ 1/�. Inserting this in the expression (6.76), we obtain

C (D)
� (z) ∼ − 8

3π
m H 2
0 (1 + z)

�kmaxkmax

�2
A2

S(kmax/H0)ns−1

� −8(t0 − t(z))−2 A2
S

3
m H 2
0 (1 + z)�

(
�

H0(t0 − t(z))

)ns−1

. (6.78)

If z is sufficiently small, we may approximate z(t) by a �-dominated expansion,
z + 1 ∼ exp(H0(t0 − t(z))), so that H0(t0 − t(z)) ∼ ln(z + 1) ∼ z. For the last ap-
proximation we used z � 1 in order for �-domination to be a reasonable approxi-
mation. With these approximations we can estimate

�2C (D)
� (z) ∼ −8�A2

S(�/z)ns−1

3
m(1 + z)z2
, z � 1 . (6.79)

This formula seems to diverge for z → 0. This is due to the fact that D ∝ k2� grows
for large wave numbers. But our result is of course only valid if kmax is well within
the linear regime. This means kmax <∼ 0.1 h Mpc−1. Inserting Eq. (6.77) for kmax this
becomes �H0/z <∼ 0.1 h Mpc−1, or, with H0 = h/(3000 Mpc), �/300 ≡ zmin <∼ z.
Hence, for a nearly scale-invariant spectrum, ns � 1, �2C (D)

� (z) increases linearly
with �, but also the minimum redshift zmin for which the result is valid increases
linearly with �, so that �2C (D)

� (zmin(�)) decreases linearly with �. Since the data
suffer less from cosmic variance for larger �s, a good compromise is z ∼ 0.2 which
allows the measurement of C (D)

� (z) up to �max ∼ 0.2 × 300 = 60.

3 A better approximation (Abramowitz & Stegun, 1970) would be j�(xmax) ∼ 0.84/�5/6, but since the subsequent
uncertainties are rather large, it is not worth it to complicate our formulae by using it.
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Measurements of these correlations need large-scale CMB anisotropies and den-
sity fluctuations in a relatively narrow redshift interval. Of course the result over a
broader redshift interval is easily obtained by integrating Eq. (6.76) over redshift.

So far, several tentative detections at the (2 – 3)σ level have been reported e.g.,
in Padmanabhan et al. (2005) and Pietrobon et al. (2006).

6.7.5 The Ly-α forest

The light from a high-redshift quasar, on its way from emission into our detector,
not only propagates through the reionized intergalactic medium, but also crosses
through clouds of hydrogen. These are regions where the matter density is rel-
atively high and baryons are relatively cool so that at least some of them have
recombined into hydrogen. These hydrogen clouds are not considered as isolated
‘proto-galaxies’, but simply as regions of relatively high density, where collisions
that allow cooling processes can occur. When quasar light passes through them,
the Lyman-α photons are absorbed by the neutral hydrogen, leading to a ‘forest’ of
absorption lines in the quasar spectrum, see Fig. 6.16.

This Ly-α forest is related to the one-dimensional distribution of neutral hydrogen
which is in turn related to the matter power spectrum. The depth of the lines is a
measure of the hydrogen density. The observations are usually presented in terms of
the power spectrum of the transmitted flux fraction, PF (k, z), as F(λ) = exp(τ (λ)),
where τ (λ) is the optical depth to Ly-α averaged over the scale λ.

To relate this to the matter density power spectrum PD(k, z), we have to make
assumptions about cooling and recombination, see e.g. McDonald et al. (2005).
With such a relation at hand (which is usually non-linear, given by hydrody-
namical simulations), the correlations of the lines provide, in principle, a mea-
sure of the matter power spectrum. If the underlying density fluctuations were
still linear, we could relate them to the initial fluctuation by some deterministic
growth factor T (z) via D(x, z) = T (z)Din(x). The growth factor depends only on
the background cosmology, i.e. on the cosmological parameters. The correlation
between linear density fluctuations in some fixed direction n at redshifts z1 and z2 is
simply

〈D(z1)D(z2)〉 = 〈D (x0 − n(t0 − t(z1)), t(z1)) D (x0 − n(t0 − t(z2)), t(z2))〉
= T (z1)T (z2)Cin(|t(z1) − t(z2)|) , (6.80)

where Cin is the initial correlation function, i.e. the Fourier transform of the initial
power spectrum. Typically z1, z2 ∼ 2–3 and�z = |z1 − z2| < 0.01, so that |t(z1) −
t(z2)| ∼ t(z)(�z/2(z + 1)). Here z is the mean redshift and we have approximated
z + 1 ∝ t−2, which gives the right order of magnitude for z > 1. These length scales
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Fig. 6.16. The Ly-α forest region in the Keck HIRES spectrum of the Quasar
QSO 1422 + 231 at z = 3.61. From Songaila & Cowie (1996).

are small, hence the Ly-α forest explores the power spectrum at small scales. For
example, for z = 2.5 we have t(z) � 1500 h−1 Mpc so that we find |t(z) − t(z +
�z)| � 1.5 h−1 Mpc for �z = 0.01.

On the other hand, at z ∼ 2–3 perturbations on these scales are already non-linear,
so that time evolution and correlation do not simply factorize as in Eq. (6.80). To use
the Ly-α forest for parameter estimation, we have to rely on N -body simulations.
The main sensitivity of the Ly-α forest is then the amplitude of fluctuations on a
small scale, which is sensitive to both, σ8 and the spectral index ns , as well as to a
possible contribution of massive neutrinos.

Due to the complicated physics involved in the conversion from absorption
lines which determine the flux power spectrum to the linear density fluctuations,
it is difficult to estimate possible systematic errors in the inferred parameters. At
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present, it is reassuring, that parameter estimations using the Ly-α forest are in the
same bulk part as other estimates.

If the theoretical difficulties can be overcome, the Ly-α forests of quasars provide
a very interesting data set. They are our most promising tool for estimating the linear
power spectrum on small scales. In that sense they help enormously to extend the
‘lever arm’ of our knowledge on the initial power spectrum. The length of this lever
arm is crucial for a precise estimation of the scalar spectral index ns or of a possible
‘running’ of the spectral index, dn/dk 
= 0. An analysis of the Ly-α forest from
quasars in the SDSS is presented in McDonald et al. (2005) and Seljak et al. (2006),
there a neutrino mass limit of mν < 0.17 eV and no running is inferred. Even if this
analysis may be somewhat optimistic, it illustrates the potential of the method.

6.7.6 Weak lensing

The deflection of light from a source behind a mass concentration can lead to
the formation of multiple images. This effect is called lensing, or more precisely,
‘strong lensing’. If the impact parameter of the light ray connecting the source to
the observer is too large, or if the intervening mass is too small, no separate images
are formed but the source is deformed by the gravitational field. For example, a
spherical source behind a point mass deforms into an ellipse which has its large
axis aligned with the radial direction (see Ex. 6.4). In this case we speak of ‘weak
lensing’. Such an alignment of the ellipticity of galaxies behind massive clusters
has been observed and can be used to estimate the cluster mass (Schneider, 2007,).

But weak lensing can also be used in a statistical way, i.e., by measuring the cor-
relation of the direction of galaxy ellipticities, to gain information about the matter
power spectrum. The observations are extremely difficult because the ellipticity of
galaxies from lensing is typically less than about 1% of their intrinsic ellipticity and
is only detectable by a statistical analysis: weak lensing leads to ellipticities which
are correlated if the galaxies are close in angular position but may be very far apart
in physical space, at different redshifts. In this way, the correlation of ellipticities
from lensing can in principle be separated from physical alignment of galaxies
which may come from the process of galaxy formation. These galaxy ellipticities
measure the shear of the gravitational field which is closely related to the matter
power spectrum (Schneider, 2007,).

The advantage of weak lensing observations over galaxy catalogues is that lens-
ing responds purely to the matter density, it does not distinguish luminous matter
and dark matter. The disadvantage is that observations of weak lensing are much
more difficult. One has to determine the correlation of the ellipticities of background
galaxies behind some foreground over density. These correlations are on the level
of a few per cent of the actual ellipticities of the galaxies.
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Fig. 6.17. The 
m–σ8 constraints from the combination of all shear measurements
available in 2001. The light, medium and dark contours enclose the 1-, 2- and 3-σ
contours. The cross indicates the position of the best fit. The line shows the result
from the local cluster abundance (see below). From Maoli et al. (2001).

In Chapter 7, we shall develop some of the beautiful theory of weak lensing.
Here we simply note that lensing can be expressed in terms of the gravitational
potential � ∝ 
m D ∝ 
mσ8. What really enters in weak lensing is the line-of-
sight integral of the gravitational potential, which reduces the sensitivity to 
m to
roughly

√

mσ8. Constraints from weak lensing lead to the typical ‘banana-shaped’

contours in the 
m–σ8 plane, see Fig. 6.17. The best limit from Maoli et al. (2001)
is of the form σ8


0.47
m � (0.59 ± 0.03).

For the future, one plans to measure the entire lensing power spectrum which
determines the matter power spectrum without any bias. This very powerful tool,
which can, in principle, measure the dark matter distribution as a function of redshift,
is theoretically nearly as simple as the CMB. If observational difficulties can be
overcome, this will provide a most valuable complementary tool for parameter
estimation, for a review of weak lensing see Schneider (2007,).

6.7.7 Galaxy clusters

Finally, we want to address briefly the relevance of galaxy clusters for cosmological
parameters. Rich clusters with masses M ∼ 1014.5 h−1 M! are the largest bound
structures in the Universe (M! is the mass of the Sun). But clusters vary from
groups of tens of galaxies to more than 1000 galaxies. They represent over-densities
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of several and are thus non-linear. For Gaussian fluctuations the probability for
measuring an over- (or under-) density δρ = ρm D on a scale λ is

P(D, z) = 1√
2πσ (λ, z)

exp

(
− D2

2σ 2(λ, z)

)
. (6.81)

Here σ 2(λ, z) is the variance of the density fluctuations on scale λ at redshift z.
Assuming that a relative over-density Dc is needed for an object to collapse, the
probability that an over-density on scale λ has collapsed into a cluster becomes

P(D > Dc|λ, z) = 1 − erf

(
Dc√

2σ (λ, z)

)
, (6.82)

where erf(x) denotes the error function. This is the basic ingredient of the Press–
Schechter formalism (Press & Schechter, 1974).

The spherical collapse model (see e.g. Peebles (1993)) requires Dc � 1.69. As-
signing the total mass M inside a sphere of radius λ to the collapsed object, allows
one to determine the number density of clusters of mass larger than M for differ-
ent redshifts. This quantity is very sensitive to 
m which determines the redshift
at which the growth of linear density fluctuations stops. It was one of the first
observations indicating 
m ∼ 0.3 (see Bahcall & Cen, 1992).

Furthermore, clusters usually form at a fixed velocity dispersion. The kinetic
energy has to be smaller than the gravitational potential energy for a bound struc-
ture to form. Therefore, the cluster density strongly constrains the velocity power
spectrum, PV ∝ 
1.2

m σ 2
8 (see Eq. (2.238)). Comparing observations with numerical

simulations gives (Pierpaoli et al., 2001) σ8

0.6
m = 0.495+0.034

−0.037. The line tracing this
relation in the 
m–σ8 plane is also indicated in Fig. 6.17.

Comparing lensing observations from clusters that are sensitive to the total mass
to X-ray emission which depends on the baryon density in clusters, one can de-
termine the ratio 
b/
m ∼ 0.1. Several assumptions go into this value. First of
all, X-ray emission is proportional to the line-of-sight integral of ρ2

b and assuming
〈ρ2

b〉 � 〈ρb〉2 is not trivial at all, since baryons are strongly clustered on small scales.
Furthermore, this assumes that the baryon to matter ratio in clusters is similar to its
mean in the total Universe. We know, for example that this is not so in the central
parts of galaxies. However, clusters seem to have a sufficiently low mean density,
so that hydrodynamical processes that affect baryons, but not dark matter, do not
significantly modify the ratio 
b/
m in clusters.

Concluding, we state that clusters, being the largest bound structures in the
Universe, are an interesting tracer of the mass distribution which should not be
ignored. It is very reassuring that the cosmological parameters inferred from clusters
fit well with the results from CMB and other observations. Of course, since they
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are non-linear structures, they will never achieve the degree of accuracy which we
expect from probes of linear perturbations.

6.8 Sources

So far we have assumed that small initial perturbations were generated early in the
Universe during an inflationary phase and then evolved under linear perturbation
theory. For a given spectrum of, e.g., scalar initial fluctuations P�(k), the spectrum at
some later time is then determined by a transfer function, P�(k, t) = g2(k, t)P�(k).
This transfer function only depends on the background cosmology, i.e., on the
cosmological parameters.

There is, however yet another possibility: an intrinsically inhomogeneous and
anisotropic matter distribution, which makes up only a small perturbation, and
which interacts with the cosmological matter and radiation only gravitationally.
We consider the energy–momentum tensor of this component as a first-order per-
turbation. Within linear perturbation theory, it then evolves with the equations of
motion determined by the background geometry.

Such a component is termed a source or ‘seed’. The source’s energy–momentum
tensor seeds first-order perturbations in the geometry which in turn affect the evo-
lution of matter and radiation, generating fluctuations in the matter density and in
the CMB.

6.8.1 Topological defects

Topological defects which can form during symmetry breaking phase transitions
are physically well motivated seeds. If the vacuum manifold (i.e., the manifold
of minima of the Higgs field (or order parameter) which is responsible for the
symmetry breaking is topologically non-trivial, regions where the field cannot relax
to the minimum generically occur. The simplest examples are cosmic strings which
form, e.g., when a U (1) symmetry is broken. Below a critical temperature Tc, the
temperature dependent effective potential V (φ, T ) of the complex Higgs field φ

changes from a form with a single minimum at φ = 0 to a Mexican hat shape with
an entire circle SS of minima, see Fig. 6.18.

When the temperature drops below Tc, the field at a given position x assumes
some value in the new vacuum manifold SS. The field values at positions that are
further apart than the Hubble horizon are uncorrelated. Therefore the configuration
φ(s) = φ(x(s)) along some large closed curve x(s) in a plane of physical space
may well make one (or several) full turns in SS. If this happens, in order to remain
continuous, φ has to leave the vacuum manifold and assume a value with higher
potential energy somewhere in the interior of this curve. Continuing this argument
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T << Tc

T >Tc

Fig. 6.18. The effective potential of a complex Higgs field for two values of the
temperature, T > Tc and T < Tc is shown. The circle at the bottom is the vacuum
manifold SS of the low-temperature phase.

Cosmic string

Fig. 6.19. A cosmic string in space is shown with the corresponding configuration
of the complex Higgs field, indicated as arrows.

in the third dimension, one obtains a line of higher energy. These lines, which are
either closed or infinite, are cosmic strings, see Fig. 6.19.

As the Universe expands, the Higgs field straightens out. Strings which intersect
exchange partners and can thereby chop off loops from the network of long strings.
In this way the long string network loses energy by shortening the total length of
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strings. The strings from a broken gauge symmetry interact with other matter com-
ponents only gravitationally. They shed energy only into a background of gravity
waves which they produce. This process is slow, but sufficiently effective to lead to
a mean energy density in cosmic strings which scales like the background energy
density ρS ∝ 1/τ 2. If M � Tc is the energy scale of the phase transition, we expect
ρS � M2/τ 2 so that

ρS

ρ
� 4πG M2 = 4π

(
M

MPl

)2

≡ ε . (6.83)

The amplitude of the induced perturbations will be of the order of ε. Recalling
that the gravitational potential responsible for the CMB anisotropies is roughly
10−5, we infer that the symmetry breaking scale cannot be much smaller than M ∼
10−3 MP ∼ 1016 GeV, if such a component is to play a role for CMB anisotropies.
Interestingly, this is a grand unified (GUT) scale where some drastic changes of
physical interactions, for example a phase transition, are expected to occur from
the running of the coupling constants of gauge interactions. If cosmic strings were
generated at the electroweak transition (which is not the case in the standard model),
they would have far too low energy to play a role for structure formation or CMB
anisotropies.

Another type of topological defects, called monopoles, occur at symmetry break-
ing phase transitions if the vacuum manifold of the broken phase, SS, has the topol-
ogy of a sphere. More generically, monopoles form if the second homotopy group,
π2(SS) is non-trivial. Monopoles are points of higher potential energy. If the broken
symmetry is gauged, such massive monopoles cease to interact soon after the phase
transition. Their energy density then scales like ordinary matter ρ ∝ a−3 and soon
dominates over the radiation density of the Universe. Therefore, local monopoles
are ruled out by observations.

However, if the symmetry is not gauged, the gradients of the scalar field cannot
be compensated by the presence of a gauge field. In this case, long range interac-
tions lead to very effective annihilation of monopole–anti-monopole pairs and the
remaining energy density has the correct scaling, ρM ∝ 1/τ 2.

This is not just true for a symmetry breaking Higgs field: an arbitrary, un-ordered
multi-component scalar field with a potential minimum at some scale M 
= 0,
evolves in an expanding universe such that ρS/ρ � G M2 = constant. The field
orders on the Hubble scale, so that its gradient and kinetic energy are of the order
M2/τ 2. These findings have been confirmed by numerical simulations and they be-
come very accurate for fields with three or more components (Durrer et al., 2002).
For fields with only two components (global strings) this scaling law seems to ob-
tain logarithmic corrections. One-component, or real scalar fields does not scale
at all. They generically lead to domain walls which soon come to dominate the
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energy density of the Universe and are therefore ruled out. (Their vacuum manifold
consists of isolated points, so that they have negligible gradient and kinetic energy.
Their energy is dominated by potential energy.)

6.8.2 Causal scaling seeds

If the initial conditions of the scalar field are uncorrelated on scales larger than the
Hubble scale, correlations evolve causally and will always vanish on scales larger
than the Hubble scale during non-inflationary expansion. The correlation functions
of arbitrary components of the energy–momentum tensor are therefore functions
with compact support. An important mathematical theorem (Reed & Simon, 1980)
states that the Fourier transform of a function with compact support is analytic.
On scales which are much smaller than the Hubble scale, the field has already had
sufficient time to order and will therefore not contribute much. The only scale in
the problem is the Hubble scale H � 1/t . We therefore expect the power spectra
to depend on scale only via the dimensionless variable z ≡ kt . Seeds which have
this behaviour are called ‘causal scaling seeds’. They are most interesting since,
as we shall see below, they generically predict a scale-invariant spectrum of CMB
fluctuations.

We now consider an arbitrary seed energy–momentum tensor which may or may
not come from a scalar field or even from cosmic strings, but which has the above
properties of scaling and of causality and therefore analyticity. Let us parametrize
the correlations of its energy–momentum tensor, #µν in the form

#µν(k, t) = M2θµν(k, t) , (6.84)

〈θµν(k, t)θ∗
ρλ(k′, t)〉 = (2π )3Cµνρλ(k, t)δ(k − k′) . (6.85)

The correlators Cµνρλ are analytic functions of k. Scaling requires that they only
depend on tk and on t , where the t dependence is a simple power law with the
power required for dimensional reasons and the dependence on tk is analytical. We
also require Cµνρλ → 0 for kt → ∞. The dimension of θµν(x) is 1/(length)2 so
that θµν(k) has the dimension of a length. Hence Cµνρλ must have the dimension
of an inverse length and therefore be of the form t−1 × (an analytical function of
tk). For example

C0000 = 1

t
F1(kt) , or (6.86)

C0i0 j = 1

t

[
t2ki k j F2(kt) + (kt)2δi j F3(kt)

]
(6.87)
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where the functions Fn(z) are analytic in z2 with the asymptotics

lim
z→∞ Fn(z) = 0 .

It can be shown that if the energy–momentum of the source is conserved, the
correlators (6.85) can all be expressed in terms of five free functions with this
asymptotic behaviour.

In a given specific model, numerical simulations are usually employed to deter-
mine these functions, see Durrer et al. (2002).

Let us now show, that on large scales, the CMB anisotropy spectrum from causal
scaling seeds is always scale invariant. Since the Laplacians of the Bardeen poten-
tials are of the form

k2�, k2� ∼ εθ

where θ denotes some components of θµν , their power spectrum must be of the
form

〈
(� + �)(k, t)(� + �)∗(k′, t)

〉 = ε2(2π)3δ(k − k′)
F(z2)

k4t
, (6.88)

≡ (2π )3δ(k − k′)P(k, t) , (6.89)

where again F is an analytic function of z2 which tends to 0 for large z. We have
written the power spectrum for � + �, since this is the quantity which determines
the large-scale CMB anisotropy spectrum.

�T

T
(x0, n) = (� + �)(x(tdec), tdec) +

∫ t0

tdec

∂t (� + �)(x(t), t) dt , (6.90)

see Eq. (2.231). The Fourier transform of this equation yields

�T

T
(k, n) = eik·n(t0−tdec)(� + �)(k, tdec) +

∫ t0

tdec

eik·n(t0−t) ∂t (� + �)(k, t) dt .

(6.91)

We have ∂t
[
eik·n(t0−t)(� + �)

] = eik·n(t0−t)[−ikn(� + �) + ∂t (� + �)]. As long
as kt < 1, the second term in this expression dominates and we may therefore
approximate the above derivative of � + � by the time derivative of the total
integrand. Since � + � decays rapidly inside the horizon, it suffices to integrate
until t = 1/k. The integral can now be perfomed and the value at the lower boundary
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simply cancels the ‘ordinary Sachs–Wolfe’ term. We obtain

�T

T
(k, n) � eik·n(t0−1/k)(� + �)(k, 1/k) , (6.92)

and 〈
�T

T
(k, n)

�T ∗

T
(k′, n′)

〉
� eik·(n−n′)(t0−1/k) ε

2

k3
F(1)(2π )3δ(k − k′) . (6.93)

Expanding eik·n(t0−1/k) and e−ik·n′(t0−1/k) in Legendre polynomials and spherical
Bessel functions, along the same steps as in Section 2.6, we arrive at

C� � ε2 F(1)
2

π

∫ ∞

0

dk

k
j2
� (kt0) = ε2 F(1)

π

1

�(� + 1)
. (6.94)

We have approximated kt0 − 1 ∼ kt0 in the argument of the spherical Bessel func-
tion and used the integral (A4.102). As promised, we obtain a scale-invariant spec-
trum, �(� + 1)C� = constant. The numerical value obtained in this way is not accu-
rate, but the scaling is correct. Note that the main ingredient for the scaling was that
the power spectrum of � + � does not contain any other dimensionful parameter
other than t and k and that it decays inside the horizon. For dimensional reasons,
the spectrum P then is such that P(k, t = 1/k) ∝ 1/k3, and the CMB anisotropies
become scale invariant.

We expect F(1) to be of order unity, so that ε determines the amplitude of the
fluctuations.

In the next subsection, we explain how to go beyond such a rough approximation
and calculate the CMB anisotropies and polarization from scaling causal seeds in
more detail.

6.8.3 Calculating CMB anisotropies from sources

The linear perturbation equations in the presence of sources take the form
(in k-space)

DX (k, t) = εSS(k, t) , (6.95)

where D is a first-order linear differential operator in time and X is a long vector
containing as its components: all the perturbation variables, e.g. Dm ; all the tem-
perature fluctuation variables, M(m)

� ; the polarizations, E (m)
� , B(m)

� and so on. SS
is the source vector. It describes the gravitational interaction of the source with
the cosmic fluid. Its elements are linear combinations of components of the source
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energy–momentum tensor θµν and ε = 4πG M2 determines the gravitational cou-
pling strength of the source.

In principle, one can simulate the source, Fourier transform it and insert the
random variable SS(k, t) in Eq. (6.95). Averaging over directions in k-space one can
then obtain the correlation matrix Pnm(k, t)(2π )3δ(k − k′) = 〈Xn(k)X∗

m(k′)〉. For
this one needs as input SS(k, t) depending on four variables, the three-dimensional
k-vector and time. This way has proved to be very tedious, requiring a huge (3 + 1)-
dimensional numerical simulation with a dynamical range of several hundred only
to determine the C�s for � <∼ 100. The following observation allows one to reduce
the numerical complexity of the problem considerably.

To solve Eq. (6.95), we use the Green function method. If G(k, t, t ′) is the Green
function for the operator D with initial condition G(t1, t1) = 0 and DG(t, t1) =
δ(t − t1), the general solution of Eq. (6.95) is

X (k, t0) = ε

∫ t0

tin

dt G(k, t0, t)SS(k, t) + X0(k, t0) , (6.96)

where tin denotes the time at which the source first appears, e.g. the phase transition,
and X0(k, t0) is an arbitrary homogeneous solution of Eq. (6.95). A specific example
of a Green function is given in Ex. 6.5.

If perturbations are a mixture of two components, one coming from inflation
and one from topological defects, X0 denotes the component from inflation. These
two components can be considered as uncorrelated and the resulting perturbation
spectra can just be added. We have discussed the computation of the perturbation
spectra from inflation in detail in Chapters 2, 4 and 5. Here we want to concentrate
on the part induced by the sources. We therefore neglect X0, so that we obtain for
the correlation matrix,

〈Xi (k, t0)X∗
j (k

′, t0)〉 = ε2
∫ t0

tin

dt ′ dt Gim(k, t0, t)G∗
nj (k

′, t0, t ′)

× 〈SSm(k, t)SS∗
n (k′, t ′)〉 . (6.97)

To calculate it, we need to determine the unequal time correlators of the source,〈
SSi (k, t)SS∗

j (k
′, t ′)

〉 = (2π )3t pFi j
(√

t t ′k, r
)
δ(k − k′) . (6.98)

Here we have introduced the ratio r = t/t ′. The details of the correlation functions
Fi j have to be determined case by case, via numerical simulations. But they are
much easier to obtain on a large dynamical range than the full random variable SS.
The source just consists of linear combinations of the energy–momentum tensor of
the seed, which is determined by five functions, Fn(r, z), n ∈ {1, 2, 3, 4, 5} where
now z = √

t t ′k. These functions are analytic in k and therefore in z2. They go to
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Fig. 6.20. The source correlation function F(r, z) for vector perturbations from
numerical simulations for a 4-component scalar field (texture) in panel (a) and
for the semi-analytical result for the large N limit, panel (b). From Durrer et al.
(2002).

zero for either z → ∞ or r → ∞, r → 0; furthermore, Fn(r, z) = F∗
n (1/r, z). We

now only have to determine the amplitude of the functions at r ∼ 1, z ∼ 0−1 and
their behaviour around these values. This is numerically very feasible and has been
done with reasonable accuracy. The source functions for vector perturbations of a
self-ordering scalar field are shown in Fig. 6.20.

6.8.4 Decoherence

From its definition (6.98) it is clear that the source correlation function F(t, t ′, k)
can be interpreted as a positive symmetric operator. For a given function V (t) setting
(FV )(t) = ∫

dt ′ F(t, t ′)V (t ′), we find (suppressing the argument k for simplicity)

〈V,FV 〉 ≡
∫

dt dt ′ V ∗(t)F(t, t ′)V (t ′) ≥ 0 .

Discretizing it in time, F becomes a positive semi-definite hermitian matrix, which
we can diagonalize. Let us denote its non-negative eigenvalues by λ2

1, . . . , λ
2
n , and

D = diag(λ2
1, . . . , λ

2
n) so that F = U DU ∗ for some unitary matrix U . For simplic-

ity, we suppress the vector structure of X and present the argument for a simple
scalar quantity X and F(t, t ′, k). According to Eqs. (6.97) and (6.98), the power
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spectrum of X is given by

PX =
∫

dt dt ′ G(t0, t)Ḡ(t0, t ′)F(t, t ′) .

Discretizing this integral and diagonalizing the source function F(t, t ′) we
obtain

PX =
∑
i jm

(�t)2G(t0, t j )Ḡ(t0, ti )U jmŪimλ2
m =

∑
m

λ2
m

∣∣∣∣∫ dt G(t0, t)Um(t)

∣∣∣∣2

,

(6.99)
where we define Um(t j ) ≡ U jm and interpolate for values between the time steps.
The last equality sign shows that the spectrum PX is the sum of the spectra with
deterministic source terms λmUm(t).

In this way, the problem of a stochastic source term is reduced to the problem of
many deterministic source terms. In practice, one orders the eigenvalues according
to size, λ1 > λ2 · · · and sums the contributions of about the 20 largest eigenvalues
to achieve an accuracy of a few per cent which is also typically the accuracy of the
source term from numerical simulations.

With this procedure in mind, let us discuss the acoustic peak structure of the
CMB generated by sources. The acoustic peaks from inflationary perturbations
reflect the maxima and minima in the radiation/baryon density at the moment
of decoupling. The radiation density perturbation oscillates like a cosine wave
since it starts at maximum amplitude, D(kt) � A cos(cskt). In the case of sourced
perturbations, however, sources generate perturbations at different moments in time,
so that D � ∑

n Dn(kt) = ∑
n An cos(cskt − δn), with different phases δn that are

determined by the time at which the perturbation Dn is generated. At the time of
decoupling, tdec, many different wavelengths can have their maximum or minimum
in one of the contributions Dn(ktdec). Instead of a distinct peak structure we therefore
rather expect a broad hump in the acoustic peak region of the CMB spectrum. This
phenomenon, which is rather generic for seeds, is called ‘decoherence’. It was first
pointed out by Albrecht et al. (1996). If only very few eigenvalues dominate, i.e., if
the above sum contains only a few terms, decoherence is not very effective and a
peak structure can still be seen.

6.8.5 Results

In addition to decoherence, an important characteristic of scaling seeds is that
they typically generate vector perturbations with an amplitude comparable to that
of scalar perturbations, see Durrer et al. (2002) and Bevis et al. (2007). Tensor
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perturbations are usually somewhat smaller, C (T )
2 /C (S)

2 ∼ 1
4 . Sources are probably

the only way to obtain significant vector perturbations in the CMB. Scaling seeds
always generate vector perturbations at the horizon scale while vector perturbations
that are generated early in the Universe simply decay and leave no traces in the CMB.

Furthermore, the amplitude of the Sachs–Wolfe part of CMB anisotropies is
roughly 2� as compared to �/3 for adiabatic inflationary perturbations. Therefore,
we expect the acoustic peak structure, or the acoustic hump, to be not much higher
than the Sachs–Wolfe plateau.

These are the main results for CMB anisotropies seeded by topological defects.
They have a scale-invariant Sachs–Wolfe plateau which determines the normaliza-
tion and which contains important contributions from all, scalar, tensor and espe-
cially vector perturbations. This is followed by a very low acoustic hump or peak
structure. Since the perturbations are rather of iso-curvature than of adiabatic nature
(even though this classification does not strictly apply for sources), this ‘hump’ is
around � ∼ 300–500 in a flat universe. This wide range stems from the uncertainty
of the scale at which perturbations are induced. This may be the horizon scale, as
for global defects or somewhat less, as for cosmic strings.

In Fig. 6.21 we show the scalar, vector and tensor CMB spectra from a 4-
component global scalar field (cosmic texture). The contributions from the largest
eigenvalues as well as their sum (bold solid line) are shown. Even though single
eigenvalue contributions do show acoustic oscillations, these are washed out in the
sum. Similar results have recently been obtained for cosmic strings (Bevis et al.,
2007).

From these results it is clear that topological defects or similar sources cannot
generate the observed CMB anisotropy spectrum. However, they might make up a
small contribution in models where inflation ends with a symmetry breaking phase
transition that leads to cosmic strings. It has been argued, that the formation of
cosmic strings is quite generic for GUTs and can actually be used to constrain them
using the CMB (Rocher & Sakellariadou, 2005).

Another question of interest is the following: as the entire class of scaling causal
seeds allows for five nearly free functions of two variables, is it possible to ‘man-
ufacture’ these functions such that they reproduce the observed CMB anisotropies
and polarization or can this be excluded? It has been argued that the small hump
at low � ∼= 100 which is generated in the E-polarization spectrum from inflation
during decoupling, cannot be reproduced by causal seeds (Spergel & Zaldarriaga,
1997). At decoupling, scales corresponding to � <∼ 100 are still super-Hubble and
causal seeds have no power on these scales. The problem is that this nice distinc-
tion is hard to see in the actual data, where this small hump is affected by the
contributions after reionization, which are present in both inflationary models and
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Fig. 6.21. The scalar, vector and tensor contributions for the texture model of
structure formation are shown. The dashed lines show the contributions from
the first few single eigenfunctions while the solid line represents the sum (over
100 eigenfunctions). Note that the single contributions to the scalar and tensor
spectrum do show oscillations which are, however, washed out in the sum (vector
perturbations do not obey a wave equation and thus do not show oscillations). Data
courtesy of N. Bevis and M. Kunz (see Bevis et al., 2004).

models with seeds. The question of whether a seed model can reproduce the data
is therefore not answered with real satisfaction.

On the other hand, inflationary models very naturally reproduce the data whereas
simple seed models do not. Therefore, Occam’s razor certainly cuts in favour of
inflationary models but it cannot harm to keep in mind a possible contribution from
defects, especially when estimating cosmological parameters.
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Exercises

(Exercises marked with an asterisk are solved in Appendix A10.5.)

Ex. 6.1 Optical depth from reionization
Calculate the optical depth τri(zri) as a function of the reionization redshift, zri,
for a pure matter universe, 
tot = 
m = 1 and for a �-dominated universe with

� = 0.7 and 
m = 0.3. Express the result as a function of 
bh2.

Hint: For the �-dominated case you may assume zri >∼ 6 and neglect the influence
of the cosmological constant for z > 2 and the contribution to τri for z < 2. Estimate
your error. Consider two cases.
(i) The universe ionized suddenly at redshift zri.

(ii) Ionization started at redshift zri > 6 and was completed at z = 6. In the reion-
ization interval, 6 ≤ z ≤ zri, the free electron fraction, x rises linearly with the
scale factor, 1 − x = (z − 6)/(zri − 6).

Ex. 6.2 Iso-curvature initial conditions*
Let us denote X1 = Dγ , X2 = Dm , X3 = Dν and X4 = Vν . We parametrize the
initial conditions by

Ci j = 〈Xi (k)X∗
j (k

′)〉 = Ai j (k/H0)ni j δ(k − k′) .

Show that Ci j is positive semi-definite for all values of k if and only if the matrix
Ai j is positive semi-definite and nii ≤ ni j ≤ n j j or n j j ≤ ni j ≤ nii for all i, j with
Ai j 
= 0.

Ex. 6.3 The shape parameter*
Show that the comoving Hubble scale at equality H0teq ∝ (
mh)−1.

Ex. 6.4 Weak lensing
Consider a point mass M at distance DL in front of a circular source with radius
rs at distance DS , the centre of which passes the lens with impact parameter b.
Using the small angle and small deflection approximation calculate the shape of
the image. Show that the ellipticity is parallel to the radial direction. Calculate the
ellipticity for a source distance, DS = 30 Mpc, lens distance, DL = 25 Mpc, impact
parameter b = 0.1 Mpc, source radius rs = 0.03 Mpc and mass M = 1015 M!.
Hint: Approximate the gravitational potential by � = G M/r . Calculate the im-
pact parameter of a point on the circular border of the source as a function of
DL S = DS − DL (neglect the expansion of the Universe). Determine now the im-
age position of this point.

Ex. 6.5 The Green function
Show that for

DX = Ẍ + α Ẋ + β X

the Green function with initial condition G(t, t) = 0 and Ġ(t, t) = 1 is given by

G(t1, t) = D1(t1)D2(t) − D1(t)D2(t1)

Ḋ1(t)D2(t) − D1(t)Ḋ2(t)
,
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where D1 and D2 are two linearly independent solutions of the homogeneous
equationDX = 0. Show thatG is independent of the choice of D1 and D2. Ġ|t1, t | ∼=
∂

∂t1
G(t1, t).

Consider the case α = 0 and β = c2
s k2 = constant. Introduce a source of the form

SS1(t) = A1δ(t − t1). Discuss decoherence by adding the signal of several sources
of this kind.
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Lensing and the CMB

In this chapter we discuss the most important second-order effect on CMB
anisotropies and polarization. Patches of higher or lower CMB temperature are
modified and polarization patterns are distorted when they propagate through an
inhomogeneous gravitational field. The content of this chapter is strongly inspired
by the excellent review by Lewis & Challinor (2006) on the subject.

7.1 An introduction to lensing

On their path from the last scattering surface into our antennas, the CMB photons are
deflected by the perturbed gravitational field. If the CMB were perfectly isotropic,
the net effect of this deflection would vanish, since, by the conservation of photon
number, as many photons would be deflected out of a small solid angle as into it.
On the other hand, if there is no perturbation in the gravitational field, the latter is
perfectly isotropic and the effect also vanishes. Hence, gravitational lensing of the
CMB is a second-order effect and we have not discussed it within linear perturbation
theory.

To estimate the effect let us consider the CMB temperature in a point n in the sky,
T (n). If the direction n is deflected by a small angle αα, we receive the temperature
T (n) from the direction n′ = n + αα. Note that, since αα is a vector normal to n
also n′ is a unit vector to first order in αα. To lowest order, this induces a change
δT = αα · ∇nT (n), since the angular dependence of the temperature as well as αα are
first-order quantities this effect is second order.

The deflection angle from a gravitational potential � of an isolated mass dis-
tribution is roughly given by 4�m , where �m is the maximum of the gravita-
tional potential along the photon trajectory (see Ex. 7.1). The mean amplitude
of the cosmic gravitational potential is about

√
〈�2〉 � 2 × 10−5 so that we have

〈|αα|〉 ∼ 10−4. The typical size of a primordial ‘potential well’ is difficult to esti-
mate since the potential is scale invariant, but let us approximate it by the horizon

278
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size at equality which is roughly 300 Mpc (comoving). The distance from the last
scattering surface to us is about 14 000 Mpc, so that a light ray passes through of
the order of 50 such potential wells. Assuming the direction of deviation to be
random this yields a total deviation of about

√
50|αα| ∼ 7 × 10−4 � 2 arc minutes.

This corresponds to a deviation of order unity for a patch with an angular size of 2
arc minutes, i.e. for � ∼ 4000. In fact, primary CMB anisotropies on these scales
are severely damped by Silk damping so that lensing and other secondary effects
like the Sunyaev–Zel’dovich (SZ) effect already dominate on scales larger than
� ∼ 3000. In the acoustic peak region which corresponds to about 1◦ we expect
lensing to change the size of the patches by roughly half a per cent on average.
Some patches are enlarged while others are reduced in size. In the C� spectrum
this leads to a broadening of the peak. The peak position is somewhat less well
defined.

Requiring better than 1% accuracy we have to take into account lensing for
� >∼ 400.

7.1.1 The deflection angle

We first want to compute the deflection of a light ray in a perturbed FL universe.
We consider only scalar perturbations so that the metric is of the form

ds2 = a2(t)
(−(1 + 2�) dt2 + (1 − 2�)γi j dxi dx j

)
, (7.1)

with, see Eqs. (1.9) and (1.12)

γi j dxi dx j = dr2 + χ (r )(dϑ2 + sin2 ϑ dϕ2) . (7.2)

Since we are only interested in deflection, we may also consider the conformally
related metric

ds̃2 = −(1 + 4�W ) dt2 + γi j dxi dx j , (7.3)

where

�W = 1

2
(� + �), (7.4)

is the Weyl potential. According to Eq. (A3.21) the Weyl tensor from scalar perturba-
tions is given by (∇i∇ j − 1

3γi j�)�W . Without loss of generality we set the observer
position to x = 0 and we consider a photon with an unperturbed trajectory radially
towards the observer, (x̄µ) = (sn̄µ) = s(1, n), where n is the radially inward photon
direction fixed by two angles ϑ0 and ϕ0 and s is an affine parameter. With our choice
for s we have dt/ds = dx0/ds = 1, hence s = t − t0 for the unperturbed trajec-
tory. The perturbed photon velocity is given by (nµ) = (1 + δn0(s), n + δn(s)). The
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Christoffel symbols for ds̃2 to first order in �W are easily determined as

�̃0
00 = 2∂t�W , �̃0

0i = �̃0
i0 = 2∂i�W , �̃0

i j = 0 ,

�̃i
00 = 2γ i j∂ j�W , �̃i

j0 = 0 , �̃i
jm = �̄i

jm ,

where �̄i
jm are the Christoffel symbols of the unperturbed three-dimensional metric

γi j .
With this, the geodesic equation of motion, d2xµ

ds2 + �
µ
αβ

dxα

ds
dxβ

ds = 0 leads to the
following equations of motion for the perturbation of the photon velocity δnµ

d

ds
δn0 = −2∂t�W − 4ni∂i�W = −2

d

ds
�W − 2ni∂i�W , (7.5)

d

ds
δni = −2γ i j∂ j�W − 2δn j nm�̄i

jm . (7.6)

Here s denotes the affine parameter along the photon trajectory and we made use
of (d/ds)�W = ∂t�W + ni∂i�W . For the rest of this paragraph we set˙= d/ds.

The deflection is given by the ϑ- and ϕ-components of δn = εn + ϑ̇∂ϑ + ϕ̇∂ϕ .
In spherical coordinates (r, ϑ, ϕ) we have n = (−1, 0, 0) ≡ −∂r . The unperturbed
Christoffel’s in Eq. (7.6) are given by

�̄ϑ
rϑ = �̄ϕ

rϕ = ∂rχ

χ

and all other �̄
j
r i = 0. With this we obtain the following equations of motion for ϑ̇

and ϕ̇

ϑ̈ = −2

χ2
∂ϑ�W + 2

∂rχ

χ
ϑ̇, (7.7)

ϕ̈ = −2

χ2 sin2 ϑ
∂ϕ�W + 2

∂rχ

χ
ϕ̇, so that (7.8)

− d

ds

(
χ2ϑ̇

) = 2∂ϑ�W , (7.9)

− d

ds

(
χ2ϕ̇

) = 2 sin−2 ∂ϕ�W . (7.10)

For the last two lines we have used the fact that to lowest order χ̇ = −∂rχ for
radial geodesics. Integrating these equations and using the fact that to lowest order
ds = dt we obtain

χ2(t0 − t)ϑ̇(t) = 2
∫ t

t0

dt ′ ∂ϑ�W (t ′, t0 − t ′, ϑ0, ϕ0) , (7.11)

χ2(t0 − t)ϕ̇(t) = 2
∫ t

t0

dt ′

sin2 ϑ0
∂ϕ�W (t ′, t0 − t ′, ϑ0, ϕ0) . (7.12)
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Here t0 is the time at which we receive the photon at x = 0 and the constant of
integration has been fixed by requiring χ2|t=t0 = 0. Integrating this equation once
more leads to

ϑ(t∗) = ϑ0 − 2
∫ t0

t∗
dt

χ (t − t∗)∂ϑ�W (t, t0 − t, ϑ0, ϕ0)

χ (t0 − t∗)χ (t0 − t)
, (7.13)

ϕ(t∗) = ϕ0 − 2

sin2 ϑ0

∫ t0

t∗
dt

χ (t − t∗)∂ϕ�W (t, t0 − t, ϑ0, ϕ0)

χ (t0 − t∗)χ (t0 − t)
. (7.14)

The easiest way to see that these are the integrals of Eqs. (7.11) and (7.12) is to take
the derivative of Eqs. (7.13) and (7.14) with respect to t∗ and use χ ′(t − t∗)χ (t0 −
t∗) − χ (t − t∗)χ ′(t0 − t∗) = χ (t0 − t) for all three functions χ given in Eq. (1.12).

The deflection angle αα = (ϑ − ϑ0, sin ϑ0(ϕ − ϕ0)) is therefore given by

αα = −2
∫ t0

t∗
dt

χ (t − t∗)

χ (t0 − t∗)χ (t0 − t)
∇⊥�W (t, t0 − t, ϑ0, ϕ0) , (7.15)

where ∇⊥ = (∂ϑ, (sin ϑ)−1∂ϕ) is the gradient on the sphere and the above expres-
sion gives the components of the deflection angle αα in this basis. The application
(ϑ0, ϕ0) → (ϑ∗, ϕ∗) = (ϑ0, ϕ0) + αα(ϑ0, ϕ0) is called the lens map. When investi-
gating lensing of the CMB, we want to choose t∗ = tdec.

Einstein’s equation relates �W to the energy–momentum tensor. Equations
(2.104) and (2.105) together with the definition (7.4) yield

(� + 3K )�W = 4πGa2(D + �) . (7.16)

Using the canonical basis e1 ≡ eϑ = ∂ϑ and e2 ≡ eϕ = (sin ϑ)−1∂ϕ we introduce
the gradient of the lens map,

Aab(ϑ, ϕ) = δab − 2
∫ t0

t∗
dt

χ (t − t∗)∇a∇b�W (t, t0 − t, ϑ, ϕ)

χ (t0 − t∗)χ (t0 − t)
, (7.17)

≡
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
. (7.18)

The matrix A describes the deformation of a bundle of light rays from direction
(ϑ, ϕ). Its trace, trA = 2(1 − κ) is a measure for the amount of focusing while its
traceless part is often represented as the complex number γ = γ1 + iγ2 represents
the shear. As a double gradient of a scalar is symmetric. To first order in perturbation
theory, lensing from scalar perturbations does not induce vorticity.

The surface brightness of a source ι(n′) becomes, after passing through the
lensing potential ι(n) = det(A−1)ι(n′). With det(A−1) = [

(1 − κ)2 − |γ |2]−1 �
1 + 2κ , we obtain the magnification µ to first order in the gravitational poten-
tial, µ = 1 + 2κ . Focusing not only increases the number of photons which reach
us from a source (or a patch in the CMB sky), but it also enhances the solid angle
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under which we see this patch exactly by the factor det A, so that the number of
photons per unit solid angle is conserved. Lensing conserves surface brightness.
Photons are neither absorbed nor created by lensing.

The shear is very important for the weak lensing of galaxy surveys as it renders
spherical sources elliptical. For CMB lensing both, the focusing κ and the shear γ

are relevant.

7.2 The lensing power spectrum

Let us introduce the lensing potential

ψ(n) = −2
∫ t0

t∗
dt

χ (t − t∗)

χ (t0 − t∗)χ (t0 − t)
�W (t, n(t0 − t)) . (7.19)

This is a function on the sphere and the deflection angle is its gradient. The de-
flection potential seems to be divergent because χ (t0 − t) → 0 for t → t0. But this
divergence affects only the monopole term which we may set to zero since it does
not affect the lens map. We consider the CMB as a single source at fixed t∗ = tdec.
We expand the lensing potential in spherical harmonics,

ψ(n) =
∑
�m

ψ�mY�m(n) , (7.20)

〈ψ�mψ̄�′m ′ 〉 ≡ δ��′δmm ′Cψ

� . (7.21)

The expectation values Cψ

� are the lensing power spectrum, and the Kronecker deltas
are a consequence of statistical isotropy like for the CMB. The same manipulations
as in Chapter 2, Eq. (2.140) now give the lensing correlation function in terms of
the power spectrum,

〈ψ(n)ψ(n′)〉 = 1

4π

∑
�

(2� + 1)Cψ

� P�(n · n′) . (7.22)

We want to relate the lensing power spectrum to the primordial power spectrum
of the Weyl potential. For simplicity we restrict ourselves to the case K = 0, with
χ0(r ) = r . In this case, the power spectrum of the Weyl potential is given by the
Fourier transform,

�W (t, x) = 1

(2π )3

∫
d3k �W (t, k) e−ik·x , (7.23)

〈�W (t, k)�̄W (t ′, k′)〉 = (2π )3T (k, t)T̄ (k, t ′)P�(k) δ(k − k′) . (7.24)

Here we have introduced the primordial power spectrum P� and the transfer func-
tion T (k, t). For a fixed wave number k the transfer function is the solution of
the evolution equation for � with initial condition T (k, t) → 1 for kt → 0. The
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Fig. 7.1. The lensing power spectrum for a �CDM concordance model. The solid
line is the linear approximation while in the dashed line non-linear corrections in
the matter power spectrum are included. Figure from Lewis & Challinor (2006).

transfer function for a matter/radiation universe, neglecting the cosmological con-
stant is constant during the matter era and given by Eq. (2.216), setting A = 10

3 .
For simplicity, we neglect the difference between � and �W which is given

by the anisotropic stresses and never contributes more than a few per cent. This is
easily corrected for in a numerical treatment.

Inserting Eqs. (7.24) and (7.19) in Eq. (7.22) and expanding

eik·n(t0−t) = 4π
∑
�m

i� j�(k(t0 − t))Y�m(n) , Ȳ�m(k̂),

we obtain

Cψ

� = 8

π

∫ ∞

0
dk k2 P�(k)

∣∣∣∣∫ t0

t∗
dt T (k, t) j�(k(t0 − t))

t − t∗
(t0 − t∗)(t0 − t)

∣∣∣∣2

.

(7.25)

The relevant quantity for us is the spectrum of the deflection angle αα(n) = ∇⊥ψ(n).
The correlation function of ψ only depends on the angle between n and n′. It is
invariant under simultaneous infinitesimal variations n → n + εε and n′ → n′ +
εε so that 〈ψ(n)ψ(n′ + εε)〉 = 〈ψ(n − εε)ψ(n′)〉. Therefore 〈∇⊥ψ(n)∇⊥ψ(n′)〉 =
−〈�ψ(n)ψ(n′)〉. Since �Y�m = −�(� + 1)Y�m , the power spectrum of the deflec-
tion angle is simply given by �(� + 1)Cψ

� . This power spectrum, multiplied by the
usual factor �(� + 1)/2π , is shown in Fig. 7.1.

7.3 Lensing of the CMB temperature anisotropies

We now want to determine how lensing affects the CMB. On small scales, the
lensing potential is nearly completely uncorrelated with the CMB anisotropies.
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At � > 60 the correlation of the lensing and CMB spectra is less than 10% of its
maximum value and at � >∼ 600 it drops below 0.1%. Most of the lensing power was
generated relatively recently, at z <∼ 20 and it therefore does not correlate with the
CMB anisotropies which were generated at z � 1100. The lensing signal correlates
significantly only with the late integrated Sachs–Wolfe effect which is relevant on
very large scales. But the latter has very little structure, so that lensing on large
scales is negligible.

Since we are mostly interested in small scales, we approximate the sky by a flat
plane as in Section 5.4. The temperature anisotropy is given by Eq. (5.86). The
correlation function between two points x and x′ in the sky

〈M(x)M(x′)〉 = ξ (|x − x′|) = ξ (|r|) , r = x − x′ ,

is related to the power spectrum by Eq. (5.103),

〈M(��)M̄(��′)〉 = δ2(�� − ��′)C (M)
�

C (M)
� = 2π

∫ ∞

0
dr r J0(r�)ξ (|r|) .

The inverse relation is given in Eq. (5.100).
The same equations also relate the lensing potential correlation function to its

power spectrum, Cψ

� .

7.3.1 Approximation for small deflection angles

We now expand the lensed temperature fluctuation in the deflection angle αα = ∇ψ ,

M̃(x) = M(x + ∇ψ)

� M(x) + ∇aψ(x)∇aM(x) + 1

2
∇aψ(x)∇bψ(x)∇b∇aM(x) + · · · .

This is a good approximation only if the deflection angle is much smaller than the
scales of interest to us. If not, we cannot truncate this expansion at second order.

Using

∇aψ(x) = −i

2π

∫
d2�� ��aψ(��) e−i��·x , and

∇aM(x) = −i

2π

∫
d2�� ��aM(��) e−i��·x ,

we can obtain the Fourier components for M̃(��). For this we use that the Fourier
transform of a product is equal to the convolution of the Fourier transforms. For
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example for the functions ∇aψ and ∇aM we obtain

1

2π

∫
d2x ∇aψ(x)∇aM(x)eix·��

= −1

(2π )3

∫
d2x

∫
d2��1

∫
d2��2 (��1 · ��2) eix·(��−��1−��2)ψ(��1)M(��2)

= −1

2π

∫
d2��2 ((�� − ��2) · ��2) ψ(�� − ��2)M(��2)

= −1

2π
(��ψ % ��M) (��) .

Here % indicates convolution and for the second equals sign we have used that

1

(2π )2

∫
d2x eix·(��−��1−��2) = δ2(�� − ��1 − ��2) .

Using the above for the second term in the Fourier transform ofM̃ and the equivalent
identity for the third term, we find

M̃(��) � M(��) −
∫

d2�′

2π
��′ · (�� − ��′)ψ(�� − ��′)M(��′)

−1

2

∫
d2�1

2π

∫
d2�2

2π
��1 · (��1 + ��2 − ��)��1 · ��2M(��1)ψ(��2)ψ̄(�� − ��1 − ��2) .

(7.26)

To work out the lensed power spectrum we neglect correlations of M with ψ and
use ψ̄(��) = ψ(−��). We take into account only terms up to first order in Cψ

� so that

C̃� � C� +
∫

d2�′

(2π )2

[
��′ · (�� − ��′)

]2
Cψ

|��−��′|C�′ − C�

∫
d2�′

(2π )2
(��′ · ��)2Cψ

�′ .

(7.27)
Integrating the second term over the angle gives

C̃� � (1 − Rψ )C� +
∫

d2�′

(2π )2

[
��′ · (�� − ��′)

]2
Cψ

|��−��′|C�′ , (7.28)

where we have introduced the mean square of the deflection angle

Rψ ≡ 1

2
〈αα2〉 = 1

4π

∫ ∞

0
d� �3Cψ

� . (7.29)

The deflection power spectrum peaks at relatively large scales, � � 50 (see Fig. 7.1)
and the bulk of the contribution of the convolution integral in Eq. (7.28) comes from
�� ∼ ��′.

We first investigate the result for a scale-invariant CMB power spectrum
i.e. �2C� = constant. For such a scale-invariant spectrum the above integral
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becomes

C̃� � (1 − Rψ )C� + �2C�

∫
d2�′

(2π )2

[
��′ · (�� − ��′)

]2

�′2 Cψ

|��−��′|

= (1 − Rψ )C� + �2C�

∫
d2�1

(2π )2

[(��1 − ��) · ��1]2

(�� − ��1)2
Cψ

�1

= C�

[
1 + �2

4π

∫ ∞

�

d�1 �1Cψ

�1

(
�2

1 − �2
)]

. (7.30)

For the last equals sign we have performed the angular integral which is derived in
Ex. 7.2.

The integral in Eq. (7.30) is, in general, small, ofO(10−3). Note that the spectrum
at a scale � is only affected by the lensing power on smaller scales. If the lensing
power vanished above a certain value �0, a scale-invariant spectrum would not be
modified by lensing for �’s larger than �0. A large-scale lensing mode magnifies
and demagnifies small-scale fluctuations, which has no effect if the fluctuations
are scale invarant. The effect of CMB lensing is important because of the acoustic
oscillations and Silk damping on small scales which break scale invariance.

7.3.2 Arbitrary deflection angles

As we argued at the beginning of this chapter, for � > 3000, the deflection angle is
comparable to the angular separations which contribute mainly to C�. A gradient
expansion in the deflection angle is therefore no longer justified.

Let us first consider very small scales, � � 3000. On these scales the primor-
dial anisotropies are virtually wiped out by Silk damping and are very small. Even
though the deflection angle is larger than the scale in consideration we may approx-
imate M ∼ ∇ψ · ∇M. Setting the intrinsic C� = 0 we obtain

C̃� �
∫

d2�′

(2π )2
C�′

[
��′ · (�� − ��′)

]2
Cψ

|��−��′| � Cψ

�

∫
d2�′

(2π )2
C�′

[
��′ · ��

]2

= �2Cψ

�

∫ ∞

0

d�′

4π
�′3C�′ . (7.31)

On very small scales, where intrinsic anisotropies are negligible, the lensed
anisotropy power spectrum is given by the power of the deflection angle on this
scale multiplied with the integrated anisotropy power on all scales.

To determine the general formula for the lensed CMB anisotropy spectrum,
we consider the correlation function. As before we set the lensed temperature
anisotropy equal to

M̃(x) = M(x + α(x)) ,
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where α = ∇ψ is the deflection angle. For r = x − x′, r = |r| the lensed correlation
function ξ̃ (r ) is given by

ξ̃ (r ) = 〈M̃(x)M̃(x′)〉 = 〈M(x + αα)M(x′ + αα′)〉
=

∫
d2��

2π

∫
d2��′

2π

〈
e−i��·(x+αα)ei��′·(x′+αα′)〉〈M(��)M̃(��′)

〉
=

∫
d2��

(2π )2
C��e−i��r〈ei��·(αα′−αα)

〉
. (7.32)

Here we have used the fact that the CMB anisotropies and the deflection angle
are virtually uncorrelated and we can therefore write the expectation value of the
product

〈
e−i��·(x+αα)ei��′·(x′+αα′)M(��)M̃(��′)

〉
as the product of the expectation values.

We assume that linear perturbations are Gaussian so that αα is a Gaussian field.
Hence �� · (αα − αα′) is a Gaussian random variable with mean 〈�� · (αα − αα′)〉 = 0
and variance 〈[�� · (αα − αα′)]2〉. The expectation value of its exponential is given by,
see Ex. 7.3

〈ei��·(αα′−αα)〉 = exp

(
−1

2

〈[
�� · (αα′ − αα)

]2
〉)

.

To calculate the variance of �� · (αα − αα′) = �� · (αα(x) − αα(x + r)) we define

Ai j (r) = 〈αi (x)α j (x + r)〉 = 〈∇iψ(x)∇ jψ(x + r)〉 =
∫

d2��

(2π )2
�i� j C

ψ

� eir·�� .

(7.33)

By statistical homogeneity and isotropy, for fixed r = |r|, this symmetric, matrix
depends on directions only via r. Therefore it is of the form

Ai j (r) = 1

2
A0(r )δi j − A2(r )

[
r̂i r̂ j − 1

2
δi j

]
. (7.34)

To determine the functions A0 and A2 we first take the trace of Ai j . This yields

A0(r ) =
∫ ∞

0

d� �3

(2π )2
Cψ

�

∫ 2π

0
ei�r cos φ =

∫ ∞

0

d� �3

2π
Cψ

� J0(r�) . (7.35)

For the last equals sign we made use of Eq. (5.102). We then contract Ai j with
r̂ = r/r ,

Ai j (r)r̂i r̂ j = 1

2
(A0(r ) − A2(r )) =

∫ ∞

0

d� �3

(2π )2
Cψ

�

∫ 2π

0
cos2 φei�r cos φ

=
∫ ∞

0

d� �3

(2π )2
Cψ

�

∫ 2π

0

1

2
[1 + cos(2φ)]φei�r cos φ

= 1

2

∫ ∞

0

d� �3

2π
Cψ

� (J0(r�) − J2(r�)) . (7.36)
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We have again used Eq. (5.102) for the last equality. Together with Eq. (7.35) this
determines A2(r ),

A2(r ) =
∫ ∞

0

d� �3

2π
Cψ

� J2(r�) . (7.37)

Inserting these results in the variance, we find A2(0) = 0)

〈[�� · (αα′ − αα)
]2〉 = 2�i� j

(〈αiα j 〉 − 〈α′
iα j 〉

)
= �2 [A0(0) − A0(r ) + A2(r ) cos(2φ)] .

Inserting this in the correlation function for the lensed anisotropies yields

ξ̃ (r ) =
∫

d2��

(2π )2
C� exp[−i�r cos φ] exp

[
−�2

2
[A0(0) − A0(r ) + A2(r ) cos(2φ)]

]
.

(7.38)

This expression is exact. With the relation

C̃�′ = 1

4π

∫ ∞

0
r dr J0(r�′)ξ̃ (r ) ,

we can obtain the lensed power spectrum from it.
Bessel functions of imaginary arguments are related to the modified Bessel

function (see Appendix A4.3), so that Eq. (5.101) leads to

exp(−y cos φ) = J0(iy) + 2
∞∑

n=1

i n Jn(iy) cos(nφ)

= I0(y) + 2
∞∑

n=1

(−1)n In(y) cos(nφ), (7.39)

so that

1

2π

∫ 2π

0
dφ exp(−y cos φ) cos(nφ) = (−1)n In(y) . (7.40)

With this and Eq. (5.101), we can perform the angular integration,

ξ̃ (r ) =
∫

� d�

2π
C� exp

[
−�2

2
[A0(0) − A0(r )]

]
×

(
I0(r�) + 2

∞∑
n=1

In(�2 A2(r )/2)J2n(r�)

)
. (7.41)

Note that even though the modified Bessel functions grow exponentially
In(r ) → er/

√
2πr for large arguments, the combination exp[− �2

2 [A0(0) −
A0(r )]]In(�2 A2(r )/2) → 0 for large �, since A0(0) − A0(r ) > A2(r ) for all values
of r (see Fig. 7.2).
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Fig. 7.2. The functions A0(0) − A0(r ) (solid) and A2(r ) (dashed) are shown as
functions of the separation angle r (in radians). The underlying cosmological
model is a typical concordance model.

Since A2(0) = 0 and In(0) = δn0, the variance of the lensed CMB anisotropies
remains unchanged,

ξ̃ (0) =
∫

� d�

2π
C� = ξ (0) . (7.42)

Weak lensing only alters photon directions and hence the spatial structure of the
correlation function. The power is redistributed by weak lensing but no power is lost.

A simpler but also accurate expression for the correlation function can be ob-
tained if we approximate the exponential

exp

[
−�2

2
[A0(0) − A0(r ) + A2(r ) cos(2φ)]

]
� exp

[
−�2

2
[A0(0) + A0(r )]

] (
1 − �2

2
A2(r ) cos(2φ)

)
.

Note that this is not an expansion in the deflection angle αα. The longitudinal part of
the correlation function, 〈αα · αα′〉 is fully taken into account and we have expanded
only the traceless part A2. A change in the direction of αα′ with respect to the direction
of αα contributes to this part. But since the deflection angle has most power on large
scales � ∼ 50, this change is small for scales corresponding to � >∼ 1000. As one
sees in Fig. 7.2, the function A2(r ) is much smaller than A0(0) − A0(r ) on all scales
and it peaks at r ∼ 0.05 which corresponds to � ∼ 20, after which it decays like a
power law.
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Inserting this expansion in Eq. (7.38) we find

ξ̃ (r ) �
∫

d2��

(2π )2
C� exp[−i�r cos φ] exp

[
−�2

2
[A0(0) − A0(r )]

]
×

(
1 − �2

2
A2(r ) cos(2φ)

)
=

∫ ∞

0

� d�

2π
C� exp

[
−�2

2
[A0(0) − A0(r )]

]
×

(
J0(r�) + �2

2
A2(r )J2(r�)

)
. (7.43)

Equation (7.43) is a very good approximation which can be used for all �s for which
CMB lensing is relevant. The C̃�s can be obtained from Eq. (7.43) with the help of
Eq. (5.103),

C̃�′ =
∫ ∞

0
� d� C�

∫ ∞

0
rdr exp

[
−�2

2
[A0(0) − A0(r )]

]
×

(
J0(r�′)J0(r�) + �2

2
A2(r )J0(r�′)J2(r�)

)
. (7.44)

Observing that A(0) − A(r ) <∼ 10−6, we may neglect the exponential for small �.
The integral over r of the first term in the parentheses then simply gives �−1 δ(� − �′)
and reproduces the unlensed spectrum. For larger values of � the exponential reduces
power and induces a broadening of the δ-function. For very large �s the second term
also becomes relevant, but A2(r ) < 10−7 for all values of r . Therefore, if �2 A2(r )
becomes relevant, the damping exponent �2[A0(0) − A0(r )] is several times bigger
(see Fig. 7.2), so that this term never dominates.

In Fig. 7.3 the lensed CMB anisotropy power spectrum is shown. The large �

approximation given in Eq. (7.31) is also indicated as a dashed line.

7.4 Lensing of the CMB polarization

In this section we study how polarization is affected by lensing. We work again in
the flat sky approximation which is sufficient for � >∼ 20. There are, in principle,
two contributions: First, like for temperature anisotropies, the direction n in which
a given photon is received has been deflected by the deflection angle αα from the
direction in which it has been emitted, n′ = n + αα. Second, the polarization tensor
is parallel-transported along the perturbed photon geodesics. To lowest order this
means that the orientation of the polarization in the observed direction n and in the
lensed direction n′ is the same if it is determined which respect to a basis which is
parallel-transported from n to n′. Since the distance between n and n′ is already first
order, we may neglect the perturbation of the gravitational field along the geodesic
from n to n′. In the flat sky approximation, this simply means that we have to
measure polarization with respect to the same basis εε(1) and εε(2) in both points.
With this, the second effect is automatically taken care of, to first order.
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Fig. 7.3. Top panel: the lensed CMB temperature anisotropy spectrum is shown
(solid). Underlaid is the unlensed spectrum (dotted). The large � approximation
for the lensed CMB spectrum is also indicated (dashed).
Bottom panel: the fractional difference between the lensed and non-lensed CMB
spectrum.

We introduce, as in Chapter 5, see Eq. (5.5),

e± = 1√
2

(εε(1) ± iεε(2)) and

P ≡ 2ei
+e j

+Pi j = Q + iU , so that P̄ ≡ 2ēi
+ē j

+Pi j = 2ei
−e j

−Pi j = Q − iU .

Expanding Q ± iU in Fourier space and direction, we have, see Eq. (5.35)

Q ± iU =
∫

d3k

(2π )3

∞∑
�=2

2∑
m=−2

×
(
E (m)

� (t, k) ± iB(m)
� (t, k)

)
±2G�m(x, n) , (7.45)

with

sG�m(x, n) = (−i)�
√

4π

2� + 1
eik·x

sY�m(n) . (7.46)
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The spin-2 spherical harmonics are given by (see Appendix A4.2.4) ±2Y�m(x) =
2
√

(� − 2)!/(� + 2)!∇e±∇e±Y�m . As we have already seen in Chapter 5, in the flat
sky approximation they become

±2Y�m = ±2Y��(x) = 2

�2
ei
±e j

±∇i∇ j e
i��·x = −e±2iφei��·x . (7.47)

Here φ denotes the angle which �� encloses with the x axis. The relation of the
polarization field with its Fourier transforms E(��) and B(��) is given in Chapter 5 in
Eqs. (5.104)–(5.107).

7.4.1 The lensed polarization power spectrum

We again start by expanding the polarization tensor in the deflection angle up to
second order. This is a good approximation only when considering angular scales
which are much larger than the deflection angle, i.e. up to about � ∼ 1000. We will
have to do better in a second approach, but this approximation helps us to develop
an intuition for the modifications of CMB polarization by lensing.

We shall see that even if, initially, perturbations are purely scalar and therefore
do not have B-modes, the lensed polarization will develop B-modes. This is the
most important effect from lensing: it generates B-modes from scalar perturbations
so that B-modes are no longer an unambiguous sign of gravity waves.

7.4.2 Approximation for small deflection angles

As for the temperature anisotropies, we Taylor expand the polarization tensor to
second order,

P̃i j (x) = Pi j (x + ∇ψ)

� Pi j (x) + ∇mψ∇m Pi j (x) + 1

2
∇mψ∇nψ∇n∇m Pi j (x) .

Since parallel-transporting in the flat sky just means keeping the polarization basis
e± constant, the same expansion is also valid for P = Q + iU and P̄ = Q − iU .
Fourier transforming the above expression leads to the same convolution integrals
as we obtained for the lensed temperature anisotropies in Eq. (7.26). With the help
of Eqs. (5.104)–(5.107) we find(
Ẽ(��) ± iB̃(��)

)
e2iφ� � (E(��) ± iB(��)) e2iφ�

−
∫

d2�′

2π
��′ · (�� − ��′)ψ(�� − ��′)[E(��′) ± iB(��′)]e2iφ′

�

−1

2

∫
d2�1

2π

∫
d2�2

2π
��1 · (��1 + ��2 − ��)��1 · ��2

× [E(��1) ± iB(��1)]e2iφ�1 × ψ(��2)ψ̄(�� − ��1 − ��2) . (7.48)
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In the flat sky approximation, the E- and B-polarization spectra and the T –E cross
polarization spectrum are of the form

〈E(��)Ē(��′)〉 = δ2(�� − ��′)C (E)
� , 〈B(��)B̄(��′)〉 = δ2(�� − ��′)C (B)

� ,

〈E(��)M̄(��′)〉 = δ2(�� − ��′)C (EM)
� .

Multiplying Eq. (7.48) with its complex conjugate, with itself or with the expression
for lensed temperature anisotropies in ��-space, Eq. (7.26) and keeping only lowest-
order expressions in Cψ

� , we obtain,

C̃ (E)
� + C̃ (B)

� = C (E)
� + C (B)

� +
∫

d2�′

(2π )2
[��′ · (�� − ��′)]2Cψ

|��−��′|
[
C (E)

�′ + C (B)
�′

]
−

[
C (E)

� + C (B)
�

] ∫
d2�′

(2π )2
(��′ · ��)2Cψ

�′ , (7.49)

C̃ (E)
� − C̃ (B)

� = C (E)
� − C (B)

�

+
∫

d2�′

(2π )2
[��′ · (�� − ��′)]2e4i(φ��′−φ��)Cψ

|��−��′|
[
C (E)

�′ − C (B)
�′

]
−

[
C (E)

� − C (B)
�

] ∫
d2�′

(2π )2
(��′ · ��)2Cψ

�′ , (7.50)

C̃ (EM)
� = C (EM)

� +
∫

d2�′

(2π )2
[��′ · (�� − ��′)]2e2i(φ��′−φ��)Cψ

|��−��′|C
(EM)
�′

− C (EM)
�

∫
d2�′

(2π )2
(��′ · ��)2Cψ

�′ . (7.51)

For these results we have made use of the fact thatB is uncorrelated with both, E and
M. In the angular integration of the above expressions, only the real part contributes.
Also noting that the scalar product ��′ · �� = �′� cos(φ��′ − φ��) only depends on the
angle difference φ ≡ φ��′ − φ�� the angular integral in (7.50) is of the form∫ 2π

0
dφ f (cos φ)e4iφ

=
∫ 2π

0
dφ f (cos φ)

[
cos(4φ) + 4i sin φ cos φ(cos2 φ − sin2 φ)

]
=

∫ 2π

0
dφ f (cos φ) cos(4φ) .

The imaginary part of such an integral vanishes since
∫ 2π

0 f (cos φ) sin φ dφ =∫ π

−π
f (cos φ) sin φ dφ = 0 for arbitrary functions of cos φ. Correspondingly we

have ∫ 2π

0
dφ f (cos φ)e2iφ =

∫ 2π

0
dφ f (cos φ)[cos(2φ) + 2i sin φ cos φ]

=
∫ 2π

0
dφ f (cos φ) cos(2φ) .
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We may therefore replace e4iφ → cos(4φ) = cos2(2φ) − sin2(2φ) and e2iφ →
cos(2φ). With the definition (7.29) of the mean square deflection angle, Rψ =
(4π )−1

∫ ∞
0 d� �3Cψ

� , we then find

C̃ (E)
� = (1 − �2 Rψ )C (E)

� +
∫

d2�′

(2π )2
[��′ · (�� − ��′)]2Cψ

|��−��′|

× [
C (E)

�′ cos2 2(φ��′ − φ��) + C (B)
�′ sin2 2(φ��′ − φ��)

]
, (7.52)

C̃ (B)
� = (1 − �2 Rψ )C (B)

� +
∫

d2�′

(2π )2
[��′ · (�� − ��′)]2Cψ

|��−��′|

× [
C (B)

�′ cos2 2(φ��′ − φ��) + C (E)
�′ sin2 2(φ��′ − φ��)

]
, (7.53)

C̃ (EM)
� = (1 − �2 Rψ )C (EM)

�

+
∫

d2�′

(2π )2
[��′ · (�� − ��′)]2Cψ

|��−��′|C
(EM)
�′ cos 2(φ��′ − φ��) . (7.54)

As we see from Eq. (7.53), even if there is no unlensed B-mode, C (B) = 0, like for
purely scalar perturbations, the lensing deflection induces a non-zero B-spectrum,
C̃ (B) 
= 0. On relatively large scales, � � �′, the lensed B-mode induced by a pure
primordial E-mode is roughly1

C̃ (B)
� ∼

∫
d2�′

(2π )2
�′4Cψ

�′ C
(E)
�′ sin2 2(φ��′ − φ��) =

∫
d�′

4π
�′5Cψ

�′ C
(E)
�′ . (7.55)

This is an �-independent constant. On large scales, the B-mode power spectrum
induced by lensing is white noise. The contribution to the power per logarithmic
interval, d log(�) = d�/� is

dC̃ (B)
� = 1

2
�4Cψ

�

�2C (E)
�

2π
,

half the product of the power of the deflection angle and the E-polarization, see
Fig. 7.4.

At very small scales, � � �′ we can approximate the lensed E- and B-spectra
by

C̃ (E)
� � Cψ

�

∫
d2�′

(2π )2
[��′ · ��]2C (E)

�′ cos2 2(φ��′ − φ��) = 1

2
�2Cψ

� RE , (7.56)

C̃ (B)
� � Cψ

�

∫
d2�′

(2π )2
[��′ · ��]2C (E)

�′ sin2 2(φ��′ − φ��) = 1

2
�2Cψ

� RE

= C̃ (E)
� , (7.57)

1 We integrate over �′ and so, in principle, the inequality � � �′ does not strictly make sense. What we mean, of
course, is that � is much smaller than those values of �′, which mainly contribute to the above integral. In the
same sense we shall use � � �′ below.
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Fig. 7.4. The B-mode power spectrum induced from a pure E-mode by lensing is
shown (thick solid curve). The lensed E-power spectrum (thin solid curve) is also
indicated. The thin straight line traces the white noise approximation (7.55) which
is excellent for � < 200.

where we have introduced the variance of the gradient of polarization,

RE = 1

4π

∫
d� �3C (E)

� = 〈|∇Q|2〉 = 〈|∇U |2〉 ∼ 2 × 107(µK )2

T 2
0

. (7.58)

The order of magnitude of this numerical value can be estimated from Fig. 7.4
by noting that at its maximum, � ∼ 1000, the E-polarization spectrum is about
�2C (E)

� /(2π ) ∼ 40(µK )2/T 2
0 . The results (7.56) and (7.57) are valid for a pure

E-primordial spectrum, but are not significantly modified if primordial B-modes
are also present since the latter usually contribute very little on small scales.

The lensed and unlensed E-power spectrum and E–T -correlation spectrum are
compared in Fig. 7.5. The lensed E- and B-power spectra from purely scalar pri-
mordial perturbations are shown in Fig. 7.6.
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Fig. 7.5. The unlensed E–T -correlation and E-power spectra are compared with
the smoother lensed spectra (dashed).
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Fig. 7.6. The lensed E- (solid) and the induced B- (long dashed) power spec-
tra are shown. The deflection angle spectrum (short dashed) and the unlensed
E-power spectrum (dotted) are also indicated. The bottom panel shows the rela-
tive difference of the lensed and unlensed E-spectra.
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7.4.3 Arbitrary deflection angles

We now derive an expression which is also valid for large �s where the deflec-
tion angle is no longer smaller than the scale of interest. As for the temperature
anisotropies, we study the modification of the correlation function by lensing.

As in Chapter 5, we consider two points x and x′ and define the polarization
basis along r = x − x′. The rotated polarization is given by

Pr (x) = e−2iφrP(x) .

The correlation functions of this rotated polarization are defined in Eqs. (5.108)–
(5.110). The calculation of the lensed correlation function ξ̃+ is exactly analogous
to that for the temperature anisotropy, one just has to replace C� by C (E)

� + C (B)
� .

ξ̃+(r ) = 〈
P̄(x + αα)P(x′ + αα′)

〉
= 1

2π

∫
� d�

[
C (E)

� + C (B)
�

]
e−(�2/2)(A0(0)−A0(r ))

×
(

I0(�2 A2(r )/2)J0(r�) + 2
∞∑

n=1

In(�2 A2(r )/2)J2n(r�)

)
. (7.59)

For ξ− and ξ×, the situation is somewhat different because of the exponentials eimφr .
We insert the Fourier transform of P(x) given in Eq. (5.104) in the expression for
ξ−, we find

ξ̃−(r ) = 〈
P(x + αα)P(x′ + αα′)e−i4φr

〉
=

∫
d2�

2π

d2�′

2π
〈[E(��) + iB(��)][E∗(��′) + iB∗(��′)]〉

× ei(��·x−��′·x′)ei(2φ�+2φ�′−4φr )〈ei(��·αα−��′·αα′)〉
=

∫
d2�

(2π )2

[
C (E)

� − C (B)
�

]
eir� cos φe4iφ

× exp

(
−�2

2
[A0(0) − A0(r ) + cos(2φ)A2(r )]

)
.

For the second equals sign we have used the expression for the E- and B-polarization
spectra and we have set φ = φ� − φr .

Of the factor e4iφ only the real part survives integration over φ, since the
imaginary part can be written in the form f (cos φ) sin φ. Furthermore, cos 4φ =
cos2 2φ − sin2 2φ = 2 cos2 2φ − 1

ξ̃−(r ) =
∫

d2�

(2π )2

[
C (E)

� − C (B)
�

]
e−�2(A0(0)−A0(r ))/2eir� cos φ

× [
2 cos2 2φ − 1

]
exp

(
−�2

2
cos(2φ)A2(r )

)
.
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We now observe that

cos2 2φ exp (−β cos(2φ)) = d2

dβ2
exp (−β cos(2φ)) .

Also using Eq. (7.39) we obtain

ξ̃−(r ) =
∫

d2�

(2π )2

[
C (E)

� − C (B)
�

]
e−�2(A0(0)−A0(r ))/2eir� cos φ

×
(

2I ′′
0 (�2 A2(r )/2) − I0(�2 A2(r )/2) + 2

∞∑
n=1

(−1)n

×[2I ′′
n (�2 A2(r )/2) − In(�2 A2(r )/2)] cos(2nφ)

)
.

Here primes indicate the derivative with respect to the argument. Integration over
φ finally yields

ξ̃−(r ) =
∫

� d�

2π

[
C (E)

� − C (B)
�

]
e−�2(A0(0)−A0(r ))/2

×
(

[2I ′′
0 (�2 A2(r )/2) − I0(�2 A2(r )/2)]J0(�r )

+2
∞∑

n=1

[2I ′′
n (�2 A2(r )/2) − In(�2 A2(r )/2)]J2n(�r )

)
, (7.60)

�
∫

� d�

2π

[
C (E)

� − C (B)
�

]
e−�2(A0(0)−A0(r ))/2

×
(

J4(�r ) + �2

4
A2(r )[J2(�r ) + J6(�r )]

)
. (7.61)

For the last line we have expanded the general expression to first order in A2(r ).
To obtain an accuracy of better than cosmic variance one has to also include the
term ∝ A2(r )2, see Challinor & Lewis (2005). A similar calculation gives the cross
correlation function,

ξ̃×(r ) =
∫

� d�

2π
C (EM)

� e−�2(A0(0)−A0(r ))/2

×
(

I ′
0(�2 A2(r )/2)J0(�r ) + 2

∞∑
n=1

(−1)n I ′
n(�2 A2(r )/2)J2n(�r )

)
, (7.62)

�
∫

� d�

2π
C (EM)

� e−�2(A0(0)−A0(r ))/2

(
J2(�r ) + �2

4
A2(r )[J0(�r )+ J4(�r )]

)
.

(7.63)
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Fig. 7.7. The 95% confidence regions for the polarization spectra from a compi-
lation of the CMB and large-scale structure data available in 2005. The spectral
index is fixed, the other parameters are marginalized over a flat �CDM model.
The tensor B-mode spectra from tensors for r = 0.1 and 10−3 are also indicated.
(Figure from Lewis & Challinor (2006).)

Like for the temperature anisotropy, the polarization power spectra and correlation
functions are related via two-dimensional Fourier transforms. The relations between
polarization spectra and correlation functions are the same as those for the unlensed
quantities given in Chapter 5.

In Fig. 7.7 we show the lensed E- and B-mode spectra for a fixed spectral index
and a �CDM model. The B-mode spectra from tensors for r = 0.1 and r = 10−3

are also indicated.
Considering the B-polarization induced by lensing of E-polarization as the only

(Gaussian) noise in an all-sky polarization experiment, one finds that the primor-
dial tensor B-mode is detectable for r ≥ 10−3. If r < 10−3, a method must be
found to subtract the lensing contribution to the B-polarization spectrum. This is
not impossible. At small scales, � > 1000, the B-mode is nearly entirely due to
lensing and can therefore help to determine the spectrum of the lensing potential.
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Once we know the latter, we can, in principle, invert our expressions for the lensed
spectra to obtain the ‘delensed’ primordial spectra. The procedure can be applied
iteratively. In a first step, one may assume that the B-spectrum is purely due to
lensing, but neglect the effect of lensing in the E-spectrum. Determining the spec-
trum of the lensing potential in this approximation, one can now calculate the
first-order delensed E-spectrum and from it the new lensed B-spectrum. The dif-
ference of this and the measured B-spectrum is a first estimate for the primordial
B-spectrum.

I suppose that this procedure converges rapidly, but this has not been shown as
far as I know. Present methods hope to be able to identify the lensing signal with
about 10% accuracy (Lewis & Challinor, 2006).

The lensing potential comes dominantly from low redshift and may also be
determined or at least constrained by other observations, like e.g. weak lensing
especially on small scales. On large scales, where perturbations are linear, we can
obtain a first approximation to the lensing potential from parameter estimation,
neglecting lensing, which determines the Bardeen potentials �, � and then via
Eq. (7.19) the lensing potential.

All calculations done in this chapter approximate the sky as flat. This approx-
imation is very good within patches of the size of the deflection angle and up to
a few degrees. But if we want to determine the modifications of the low C�s by
lensing, sky curvature has to be taken into account. The result from such a curved
sky treatment for the correlation between two directions n1 and n2 is very similar
to our formulae (7.41) and (7.59), (7.61) and (7.63). Only the sums over the modi-
fied Bessel functions become double sums over m and m ′ and the ordinary Bessel
functions of r are replaced by elements D�

mm ′ of the representation matrix of the
rotation which turns n1 into n2. The detailed expressions can be found in Lewis &
Challinor (2006).

7.5 Non-Gaussianity

There is also another mean which may help to single out the lensing contribution
to the CMB power spectra. This is statistical in nature: we usually assume that
primordial fluctuations are Gaussian. However, lensing, being a second-order effect,
is not Gaussian. Generically it has a non-vanishing 3-point and connected 4-point
correlation function. This, in principle, also offers a possibility of identifying the
lensing part of the CMB anisotropies and polarization. However, since all forms
of noise, foregrounds, instrumental noise etc. are, in general, non-Gaussian, it may
be difficult to use it to remove lensing. Nevertheless, the 3-point and connected
4-point correlation functions from lensing can be calculated and they have a well
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defined scale dependence which may help to identify them. In Lewis & Challinor
(2006) the subject of non-Gaussianity is treated in more detail.

7.6 Other second-order effects

Before this chapter, we have calculated CMB anisotropies and polarization entirely
within linear perturbation theory. In this chapter we have discovered, that for � >

1000, a 5% accuracy requires to include lensing. At � >∼ 3000, lensing induces
changes of order unity and more. Only for � <∼ 400, neglecting lensing is accurate
to better than 1

2 %. This naturally brings up the question: are there other second-order
effects which are similarly important? The answer to this question is ‘probably not,
at least not upto � ∼ 2000’.

Several second-order effects have been considered in the literature, but a sys-
tematic study of second-order CMB anisotropies and polarization is still lacking.
Here I briefly explain the physical effects that have been studied so far, but we do
not enter into their calculation. We shall, however discuss the Sunyaev–Zel’dovich
(SZ) effect in the next chapter in some detail.

• Lensing by clusters. So far we have discussed lensing mainly using the linear lensing
potential. However, CMB photons are also lensed by non-linear structures like individual
clusters. Statistically this effect can be taken into account by using the non-linear lensing
potential on small scales.

• Ostriker–Vishniac effect. This is a second-order Doppler term which comes from the
fact that the optical depth is proportional to the electron density and the Doppler term
therefore has a second-order contribution of the form n · Vb Db, where Db is the baryon
density fluctuation, Vb the baryon velocity and n the photon direction. It has been argued
in Hu & White (1996) that this term is less affected by Silk damping than the first-order
Doppler term and may thus become important on small scales, � � 1000. Calculations
show, however, that the effect is smaller than the lensing contribution for all � <∼ 3000,
see Lewis & Challinor (2006).

• SZ effect. Clusters contain a hot plasma with a temperature of several keVs. As we shall
see in the next chapter, whenever CMB photons pass through a plasma with hot electrons,
their spectrum is modified in a well defined way. This is the thermal SZ effect. It can
be distinguished from primordial CMB anisotropies by its spectral signature. However,
clusters usually have a coherent peculiar velocity and CMB photons which scatter off hot
electrons of a cluster also acquire a Doppler shift, the so-called kinetic SZ effect, which
has exactly the same spectrum as ordinary CMB anisotropies. The kinetic SZ effect is
typically of the same order as the Vishniac effect.

• Rees–Sciama effect. The gravitational potential from linear perturbation theory is con-
stant in a CDM background and decaying in a late �CDM background. However, once
density perturbations become non-linear, the gravitational potential also starts growing.
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This leads to a late integrated Sachs–Wolfe effect on very small scales. Estimations show
that this effect is probably subdominant on all scales (Seljak, 1996a).

• Patchy reionization. As we discussed in Chapter 6, reionization is supposed to be caused
by the radiation of the first, probably very massive stars. It is reasonable to expect that these
stars have not formed everywhere at the same time and with the same number density.
Therefore, reionization was probably earlier in some patches than in others, leading
to more rescattering and therefore damping of CMB anisotropies and regeneration of
polarization in some places than in others. It is not clear what and how strong the signature
of this ‘patchy reionization’ is, but it probably is relevant only on very small scales where
it may be comparable with the kinetic SZ and Ostriker–Vishniac effects. A study with
somewhat unrealistic parameters can be found in Knox et al. (1998).

Exercises

(The exercises marked with an asterisk are solved in Appendix A10.6.)

Ex. 7.1 The deflection angle from a point mass∗
Consider a point mass M with gravitational potential � = G M/r . Approximate
the Schwarzschild metric for this mass by

ds2 = −(1 + 2�) dt2 + (1 − 2�) dx2 .

Show that the light deflection in this metric to first order in � is given by αα = ϕe
where e is the normal to the original photon direction n in the plane defined by n
and the position of the mass, and

ϕ = 4G M

d
, (7.64)

where d is the impact parameter of the photon trajectory (i.e. its closest distance to
the mass M).

Ex. 7.2 Lensing of a scale-invariant power spectrum
In Section 7.3.1 we show that lensing of a scale-invariant spectrum by a small
deflection angle, |αα| � π/�, can be approximated by

C̃� � (1 − Rψ )C� + �2C�

∫
d2�1

(2π )2

[(��1 − ��) · ��1]2

(�� − ��1)2
Cψ

�1
.

Bring the above integral into the form∫
d2�1

(2π )2

[(��1 − ��) · ��1]2

(�� − ��1)2
Cψ

�1
=

∫ ∞

0

�1 d�1

(2π )2
Cψ

�1

∫ 2π

0
dφ

(�2
1 − �1� cos φ)2

�2
1 + �2 − 2�1� cos φ

.

Using complex integration, show that the angular integral gives∫ 2π

0
dφ

(�2
1 − �1� cos φ)2

�2
1 + �2 − 2�1� cos φ

= π
(
�2

1 + θ (�1 − �)(�2
1 − �2)

)
.
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Here θ is the Heaviside function,

θ (x) =
{

1 if x ≥ 0
0 if x < 0 .

This implies the result (7.30).
Ex. 7.3 Expectation values of Gaussian variables

Show that for a Gaussian variable X with mean zero and variance σ we have

〈ei X 〉 = e−σ 2/2 .
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The CMB spectrum

The observed frequency power spectrum of the CMB is perfectly approximated by
a Planck spectrum, see Fig. 1.7. In our units, � = c = 1, it is given by

I (ω) = 4π f (ω) = 1

π2

ω3

eω/T − 1
. (8.1)

No deviation from this spectrum has been observed so far.
In this chapter we discuss physical processes which might lead to spectral

distortions. We first introduce the collisional processes relevant at temperatures
T < me. These are elastic Compton scattering, double Compton scattering and
Bremsstrahlung. We derive the Boltzmann equation for this processes and calculate
the relevant timescales. In Section 8.2 we analyse how the injection of high-energy
photons e.g. by the decay of a long-lived unstable particle modifies the CMB spec-
trum. In the final section, we discuss what happens when the CMB photons pass
through a hot electron gas affected only by elastic Compton scattering. We shall see
that this leads, in general, to a so-called Compton-y distortion of the spectrum. We
estimate the effect from the passage of CMB photons through a cluster of galaxies
and discuss observations.

8.1 Collisional processes in the CMB

8.1.1 Generalities

At very high temperature many collisional processes keep the cosmic background
radiation in thermal equilibrium with itself and all other particles. As we saw in
Section 1.4, at T � 1.4 MeV weak interactions drop out of equilibrium and neu-
trinos cease to interact. They are not heated by the decay of electron–positron
pairs, which takes place at T ∼ me � 500 keV. Below that temperature, but be-
fore recombination, elastic Compton scattering, e + γ → e + γ , double Compton
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scattering, e + γ → e + 2γ and Bremsstrahlung, e + X → e + X + γ keep the
CMB thermalized. Here X denotes an atomic nucleus, usually a proton or a helium-4
nucleus.

As we shall see below, at a redshift of about zµ � 107 also Bremsstrahlung and
double Compton drop out of equilibrium and only elastic Compton scattering is still
active. This can still distribute the CMB photons in energy, but it does not change
their number density. Therefore, energy injection after zµ leads to a Bose–Einstein
distribution with a non-vanishing chemical potential.

In this section we derive the equations which govern the evolution of the photon
distribution function in the temperature range me > T > Trec. We also calculate the
timescales for the above mentioned processes and the redshifts above which they
are faster than the expansion timescale, i.e., above which they efficiently keep the
photon distribution in thermal and ‘chemical’ equilibrium (by the latter we mean
that no chemical potential is developed).

8.1.2 Elastic Compton scattering and the Kompaneets equation

We want to derive a differential equation which describes the thermalization
of photons when they interact with electrons which also have a thermal dis-
tribution but may be at a different temperature Te 
= T . We consider a photon
with initial energy ω and final energy ω′ and a non-relativistic electron with
initial velocity v � 1 and final velocity v′ � 1. Hence we must also require
ω, ω′ � me. In the centre of mass system, energy and momentum of the two
particles remain unchanged, of course, in a two-body interaction. This is a sim-
ple consequence of energy and momentum conservation. However, in the lab-
oratory frame, if initially the electron momentum is much larger than the pho-
ton momentum, after the collision the photon will have gained energy while the
electron has lost and vice versa. Let us first study the process in the frame in
which the initial electron momentum vanishes, so that by energy and momentum
conservation

ωn = mev′ + ω′n′ and ω = 1

2
mev

′2 + ω′ = 1

2me
(ωn − ω′n′)2 + ω′ ,

(8.2)

where n and n′ denote the photon direction before and after the collision. If we
neglect all terms of order ω/me, we find ω = ω′. This would imply no change in
the photon frequency. In this approximation we obtain non-relativistic Thomson
scattering where only the direction of the photon but not its energy is affected. The
energy difference is of the order ω2/me, where ω is either ω or ω′. Taking this
difference into account to lowest order we may set ω2 = ω′2 = ωω′ in the term
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proportional to 1/(2me). With this Eq. (8.2) yields

ω

ω′ = 1 +
(

ω

me

)
(1 − cos ϑ) , (8.3)

where ϑ is the scattering angle, cos ϑ = n · n′. To first order in ω/me this can be
written as

ω′ − ω

ω
≡ �ω

ω
= −

(
ω

me

)
(1 − cos ϑ) . (8.4)

In a generic frame, denoting the photon and electron 4-momentum before and after
the scattering process by pγ = ω(1, n) and pe = (E, p) respectively p′

γ = ω′(1, n′)
and p′

e = (E ′, p′) energy–momentum conservation implies

(p′
e)2 = m2

e = (pe + pγ − p′
γ )2 = m2

e + 2pe(pγ − p′
γ ) − 2pγ p′

γ ,

which yields

0 = E(ω − ω′) − p · (ωn − ω′n′) − ωω′ + ωω′n · n′

= E(ω − ω′) − p · n′(ω − ω′) + ω(ω − ω′)(1 − n · n′)

+ ωpn′ − ω2(1 − n · n′) − ωp · n .

Defining xe ≡ ω/Te, we obtain for the energy difference ( Te
E

∼= P2

2m2
e
− V 2

2 )

� ≡ ω′ − ω

Te
= xep(n′ − n) − x2

e Te(1 − n · n′)
E − p · n′ + xeTe(1 − n · n′)

� xep(n′ − n)

me
. (8.5)

The energy transfer, ω′ − ω is of order ωv, i.e. it is suppressed by a factor v.
To calculate how the photon distribution f (ω) changes by elastic Compton scat-

tering we write down the Boltzmann equation. Neglecting the expansion of the
Universe and perturbations we have (see Section 4.5)

∂ f

∂t
(ω) = d f+

dt
(ω) − d f−

dt
(ω) ≡ C[ f ](ω) , (8.6)

where d f+/dt denotes the phase space density of photons which are scattered into
the energy range [ω, ω + dω] per unit time and d f−/dt denotes the density of
photons scattered out of this energy range. We assume that f is independent of
direction and position. Contrary to the situation in Section 4.5 we now consider
a distribution of electrons in momentum space which we denote by fe(E). The
collision integral now becomes

C[ f ](ω)

=
∫

d3 p
∫

d
n′
dσ

d


{
f (ω′)[1 + f (ω)] fe(E) − f (ω)[1 + f (ω′)] fe(E ′)

}
.

(8.7)
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Here d3 p denotes integration over electron momenta with E = √
m2

e + p2 � me +
p2/2me and d
n′ denotes integration over photon directions. The variables ω′ =
ω + Te� and E ′ = E − Te� are eliminated via Eq. (8.5). The factors 1 + f take
into account the quantum effect of stimulated emission for photons which are
bosons. For the electrons we should, in principle, include a factor [1 − fe] due to
their fermionic nature, but we assume that the electron gas is sufficiently diluted,
fe � 1, so that we may neglect this quantum correction. The Compton scattering
cross section is given by Eq. (4.109)

dσ

d

= 3

16π
σT

(
1 + (n · n′)2

)
.

Strictly speaking, this is the cross section in the electron rest frame and when
transforming it to the laboratory frame the photon directions and (n · n′)2 change
due to aberration. But as we shall argue, this effect can be neglected for non-
relativistic electrons (up to order v2).

We now expand the integrand of Eq. (8.7) to second order in the small energy
transfer ω′ − ω = E − E ′ ∼ O(ωv).

f (ω′) = f (ω) + �
∂ f

∂xe
+ �2

2

∂2 f

∂x2
e

+ · · ·

fe(E ′) = fe(E) − Te�
∂ fe

∂ E
+ T 2

e �2

2

∂2 fe

∂ E2
+ · · ·

= fe(E)

[
1 + � + �2

2
+ · · ·

]
.

For the last equality sign we have assumed that the electrons obey a Maxwell
distribution, fe(E) ∝ exp(−E/T ). Inserting this expansion in Eq. (8.7), we find

∂ f

∂t
(ω) =

[
∂ f

∂xe
+ f (1 + f )

]
I1 + 1

2

[
∂2 f

∂x2
e

+ 2(1 + f )
∂ f

∂xe
+ f (1 + f )

]
I2

(8.8)

with

I1 =
∫

d3 p
∫

d
n′
dσ

d

fe(E)� , (8.9)

I2 =
∫

d3 p
∫

d
n′
dσ

d

fe(E)�2 . (8.10)

We want to calculate these integrals up to order v2. The second integral is readily
performed. Since the lowest-order approximation to � is already of order v we can
simply set �2 = (xe/me)2(p · (n′ − n))2. Inserting this in Eq. (8.10) and choosing
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the p3-direction along n′ − n we obtain

I2 = x2
e

m2
e

∫
dσ

d

d


∫
d3 p fe(E)p2(n′ − n)2 cos2 θ

= 4πx2
e

3m2
e

∫
dσ

d

(n′ − n)2 d


∫ ∞

0
dp p4 fe(E)

= Tenex2
e

me

∫
dσ

d

(n′ − n)2 .

We have used the fact that to lowest order in v, f ′
e = −(p/meTe) fe so that p4 fe =

−mTe p3 f ′
e = meTe[−(p3 fe)′ + 3p2 fe]. The p-integral over the first term in the

square bracket does not contribute while the integral over the second term gives
3ne/(4π ), where ne denotes the electron density. We still have to integrate over
scattering angles,∫

dσ

d

(n′ − n)2d
 = 3σT

16π

∫
d
(1 + cos2 ϑ)(2 − 2 cos ϑ)

= 3σT

4

∫ 1

−1
d(cos ϑ)[1 + cos2 ϑ] = 2σT .

We finally obtain

I2 = 2neσT
Te

me
x2

e . (8.11)

Note that Te/me ∼ p2/(2m2
e) ∼ v2 hence the term is of the required order of

magnitude.
The calculation of I1 is more tricky. To lowest order � ∝ p(n′ − n) so that the

integral over d3 p vanishes. (Were this not the case, this term which is of order v

would by far dominate all other contributions and also I2.) We therefore have to
include the next order. Expanding � to the next order gives

� � xe

me
p · (n′ − n)

[
1 + p · n′

m

]
− x2

e

me
Te(1 − n · n′) .

In addition, we have to take into account the fact that the photon density seen by
the electron (in its rest frame) is not 4π f ω2 dω but 4π f ω2 dω (1 − p · n/me)3 �
4π f ω2 dω (1 − 3p · n/me), to lowest order in v � p/me. Therefore, the integral
which we really have to compute is not the one given in Eq. (8.9) but

I1 =
∫

d3 p
∫

d
n′
dσ

d

fe(E)(1 − 3p · n/me)� , (8.12)

with

(1 − 3p · n/me)� = xe

me
p · (n′ − n)

[
1 + p · n′

m
− 3p · n

m

]
− x2

e

me
Te(1 − n · n′) + O(v3) .
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Of course this correction also applies to I2, but there it is subdominant and does
not enter up to order v2. To order v2, in principle, aberration also has to be taken
into account. We should replace n · n′ by the corresponding the scalar product in
the electron rest frame, nR(n, v) · n′

R(n′, v) in dσ/d
. Here a subscript R denotes
the electron rest frame (see Ex. 8.2). However the resulting expression will always
be symmetrical in n and n′. Since to lowest order it is multiplied with the anti-
symmetrical factor p · (n′ − n), its angular integral vanishes.

Using as before that∫
d3 p (p · n)2 fe(E) = meTene ,

∫
d3 p fe = ne ,

and ∫
d2 p (p · n)(p · n′) fe(E) = (n · n′)

4π

3

∫ ∞

0
dp p4 fe = (n · n′)meTene ,

we find ∫
d3 p fe(1 − 3p · n/me)� =

[
4

Tenexe

me
− x2

e Tene

me

]
(1 − n · n′) .

The integral over photon directions gives∫
d


dσ

d

(1 − n · n′) =

∫
d


dσ

d

= σT .

Putting this together we obtain

I1 = σT neTe

me
xe(4 − xe) .

Inserting the results for I1 and I2 in Eq. (8.8), we obtain the Kompaneets equation

me

Te

1

neσT

∂ f

∂t
= 1

x2
e

∂

∂xe

[
x4

e

(
∂ f

∂xe
+ f + f 2

)]
. (8.13)

Solving the time-dependent Kompaneets equation in order to study ‘Comptoniza-
tion’ of a photon distribution on thermal electrons in full generality can only be
achieved numerically. However, there are important situations where meaningful
analytical results can be obtained.

First of all, as it should, the photon number density remains unchanged by
evolution under the Kompaneets equation,

dnγ

dt
∝

∫
dxe x2

e

∂ f

∂t
∝

∫
dxe

∂

∂xe

[
x4

e

(
∂ f

∂xe
+ f + f 2

)]
= 0 . (8.14)

Furthermore, a Bose–Einstein distribution with temperature Te, hence fB E =(
e(ω/Te+µ) − 1

)−1
is the (unique) equilibrium solution of this equation, d

dt fB E = 0.



310 The CMB spectrum

Let us also write the equation in terms of the photon energy ω instead of xe = ω/Te,

me

neσT

∂ f

∂t
= 1

ω2

∂

∂ω

[
ω4

(
Te

∂ f

∂ω
+ f + f 2

)]
. (8.15)

We finally write the Kompaneets equation in the form

∂ f

∂t
= 1

τK

1

x2
e

∂

∂xe

[
x4

e

(
∂ f

∂xe
+ f + f 2

)]
, (8.16)

with

τK = me

Te

1

neσT
� 1028 s (1 − YHe/2)−1(
bh2)−1 T

Te
z−4 , (8.17)

where we have used

ne = n p = nB(1 − YHe/2) = 3
b H 2
0 (1 − YHe/2)

8πGm p
,

and we have set the present photon temperature to T (z = 0) = T0 = 2.7 K and m p

is the proton mass.
In equilibrium, f = fB E = 1/(exe+µ − 1), it is easy to see that the electron

temperature is

Te = 1

4

∫
dω ω4 f ( f + 1)∫

dω ω3 f
. (8.18)

This is the electron temperature whenever the electrons are in thermal equilib-
rium with the photons, even if the photons are not in thermal equilibrium with the
electrons. The timescale for elastic Compton scattering of the electrons is of the
order

te � ne

nγ

tK � 10−10tK ,

which is much shorter than all other timescales involved. Therefore, instead of
including a kinetic equation for the electrons, we shall always assume that they
are in thermal equilibrium with the photons and therefore follow a Boltzmann
distribution at temperature Te given by Eq. (8.18). Note that it needs only a fraction
of about 10−10 of all photons for one scattering event on each electron. This huge
mismatch, nγ � ne, leads to the somewhat unusual behaviour, that electrons are
much more rapidly thermalized than photons.

8.1.3 Thermal Bremsstrahlung

According to the Larmor formula (see Jackson, 1975) an accelerated electron emits
electromagnetic radiation. For non-relativistic electrons, the energy emitted per unit
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time is

dE
dt

= 2α

3
|a(t)|2 , (8.19)

where a(t) denotes the acceleration and α is the fine structure constant, see Ap-
pendix A1.2. The radiation spectrum is obtained by Fourier transforming a. If the
period of acceleration is a short interval �t , over which the velocity changes by an
amount �v, one obtains, see Padmanabhan (2000)

dE
dω

=
{ 2

3π
α(�v)2 , ω � (�t)−1

0 , ω � (�t)−1 .

We now consider an electron which passes by an ion X of charge Ze, with impact
parameter b and initial velocity v. We assume the change in the velocity to be small
so that we can only take into account the component normal to the initial velocity
and integrate the equation of motion, a � a⊥ = e⊥α/(mer2), along the unperturbed
path. With |e⊥| = b/

√
b2 + (vt)2, this gives the velocity change

�v = Zα

me

∫ ∞

−∞

b

[b2 + (vt)2]3/2
dt = 2Zα

mebv
.

The acceleration is important during a time interval of about �t = b/v around the
closest encounter at t = 0. Inserting this in the above expression for the radiated
energy spectrum we obtain

dE
dω

=
{

8Z2α3

3πm2
ev

2b2 , if ω � v/b

0 , if ω � v/b .
(8.20)

We now want to determine the energy emitted by an ion density ni and an electron
density ne. The electron flux incident on one ion is simply nev and the surface area
with a given impact parameter b is 2πb db. Multiplying by the ion density and
integrating over the impact parameter, we obtain the energy emitted per volume per
unit time and per frequency,

dE(ω, v)

dV dt dω
= 16α3 Z2

3m2
ev

ni ne

∫ bmax

bmin

db

b
= 16α3 Z2

3m2
ev

ni ne log

(
bmax

bmin

)
. (8.21)

Here bmax is determined by the maximal impact parameter which can still produce
photons with frequency ω, bmax = v/ω. The minimum impact parameter can be
estimated in two ways. First we can take it as the smallest value for which the
straight line approximation which we have used to determine �v is still reasonable,
this is roughly when �v ∼ v. Inserting this in the above expression for �v yields

bmin,1 = 2Zα

mev2
.
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On the other hand, the uncertainty principle requires p = mev > �/b so that

bmin,2 = �

mev
.

The correct value for bmin is whichever of the two values is larger.
In general, one casts the uncertainty of this logarithmic term in a so-called Gaunt

factor defined by

gff =
√

3

π
log

(
bmax

bmin

)
. (8.22)

The correct expression for the Gaunt factor has to be obtained by a quantum me-
chanical treatment (see e.g. Padmanabhan (2000)).

We now want to average Eq. (8.21) over electron velocities which follow a
Maxwell distribution, fe ∝ exp(−mev

2/(2Te))

dE(ω, T )

dV dt dω
=

∫ ∞
vmin

dv dE(ω,v)
dV dt dω

v2 exp(−mev
2/(2Te))∫ ∞

0 dv v2 exp(−mev2/(2Te))
. (8.23)

Here vmin is the minimal velocity which can generate a photon of energy ω,
ω = v2

min/(2m). Neglecting the weak velocity dependence of the Gaunt factor, the
integral in the numerator is elementary and the one in the denominator simply gives
the mean square velocity, 2Te/m, so that we arrive at

dE(ω, T )

dV dt dω
= 16α3 Z2

3me

(
2π

3me

)1/2

T −1/2
e ni nee−ω/Te ḡff(T, ω) . (8.24)

The modification of this formula obtained from a correct quantum treatment of
Bremsstrahlung can be absorbed in the dimensionless Gaunt factor.

This emitted Bremsstrahlung changes the photon energy spectrum. Since,
according to Eq. (1.55),

dEγ

dV dω
= dργ

dω
= 1

π2
ω3 f ,

we can translate Eq. (8.24) into an equation for the change of the photon distribution
function. With σT = 8πα2/(3m2

e) we find[
d f

dt

]
ff em

= σT ne

x3
e exe

Q ḡff, with (8.25)

Q = 2π

√
2π

3

α

T 3
e

√
m

Te

∑
i

Z2
i ni , (8.26)
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where we now sum over the contributions from different ion species. The ‘em’ in
the above subscript stands for ‘emission’. We discuss free–free absorption below. In
the early Universe, we can approximate the ions by hydrogen and helium-4 only so
that

∑
i Z2

i ni = nB . In the energy range of interest, we can approximate the Gaunt
factor by, Rybicki & Lightman (1979)

ḡff �
{ √

3
π

ln
(

0.37 eπ/
√

3/xe

)
, xe ≤ 0.37

1 , xe ≥ 0.37 .
(8.27)

Of course, there is not only Bremsstrahlung emission but also absorption. We can
either calculate the latter directly or obtain it by the argument of detailed balance:
emission and absorption have to cancel exactly in equilibrium, i.e. if the photon
distribution is a Planck distribution at temperature T = Te, f = 1/(exe − 1). With
this and using the fact that absorption is proportional to f , we obtain[

d f

dt

]
ff ab

= −
[

d f

dt

]
ff em

f (exe − 1) .

The kinetic equation for Bremsstrahlung then becomes[
d f

dt

]
ff

= σT ne

x3
e exe

Q ḡff
[
1 − f (exe − 1)

]
. (8.28)

It is convenient to write this equation as[
d f

dt

]
ff

= 1

τff

ḡff

x3
e exe

[
1 − f (exe − 1)

]
, (8.29)

with

τ−1
ff = 2π

√
2π

3
ne σT nB

α

T 3
e

√
me

Te
(8.30)

τff � 2.3 × 1023s (1 − YHe/2)−1(
bh2)−2

[
Te

T

]7/2

(z + 1)−5/2 .

Here T = (1 + z)T0 is the CMB temperature.

8.1.4 Double Compton scattering

It actually turns out that in most cosmological circumstances double Compton
scattering is more efficient than Bremsstrahlung, even though the double Compton
process e + γ ′ ↔ e + γ1 + γ is second order. We shall see that it is most efficient
for very small energies of the second photon γ and therefore we neglect the small
energy transfer, assuming that the photons γ ′ and γ1 have the same frequency. The
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angle integrated double Compton cross section then gives (Jauch & Rorlich, 1976)

dσ2γ

dω1 dω
= 4α

3π
σT

(
ω′

me

)2 1

ω
δ(ω1 − ω′) . (8.31)

Here ω′ is the energy of the incoming photon, ω1 is the energy of the incoming
photon after the collision and ω is the energy of the photon generated by the
collision.

To derive an equation for the distribution function f , we use the fact that the
number density of photons in the energy interval ω and ω + dω is given by

dn(ω) = 1

π2
f (ω)ω2 dω .

With Eq. (8.31) we then obtain for double Compton emission

ω2

π2

∂ f (ω)

∂t
= ne

∫
dω1 dω′ dσ2γ

dω1dω

ω′2

π2
f (ω′) (8.32)

∂ f (ω)

∂t
= 4α

3π
σT ne

∫
dω′

(
ω′

me

)2
ω′2

ω3
f (ω′)[ f (ω′) + 1][ f (ω) + 1] .

In the second equation we have multiplied by the factor [ f (ω1) + 1][ f (ω) + 1] =
[ f (ω′) + 1][ f (ω) + 1] to take into account stimulated emission.

To obtain the contribution from double Compton absorption, γ + γ1 + e →
γ ′ + e, we can again use detailed balance and the fact that absorption is proportional
to f (ω) f (ω1)[ f (ω′) + 1]. The full equation for double Compton scattering then
takes the form[

∂ f (ω)

∂t

]
2γ

= 4α

3π
σT ne

∫
dω′

(
ω′

me

)2
ω′2

ω3

{
f (ω′)[ f (ω′) + 1][ f (ω) + 1]

− exp

(
ω

Te

)
f (ω′) f (ω)[ f (ω′) + 1]

}
.

With xe = ω/Te and x ′
e = ω′/Te this yields[

∂ f

∂t

]
2γ

= 4α

3π
σT ne

(
Te

me

)2 1

x3
e

[1 − f (exe − 1)]I

= 1

τ2γ

1

x3
e

[1 − f (exe − 1)]I , (8.33)

with

I =
∫

dx ′
e (x ′

e)4 f (x ′
e)[1 + f (x ′

e)] ,
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and

τ2γ = 3π

4α σT ne

(
me

Te

)2

� 7 × 1039 s
1

(1 − YHe/2)
bh2

(
T

Te

)2

(1 + z)−5 .

(8.34)

Strictly speaking, this equation is only valid for xe < 1 since the double Compton
cross section assumes that the energy of the photon generated by the collision is
much smaller than the kinetic energy of the electron. But double Compton scattering
becomes very inefficient at high energy, so that we can simply set [∂ f (xe)/∂t]2γ = 0
for xe ≥ 1.

8.1.5 Timescales and redshifts

In this section we follow Hu & Silk (1993).
Taking into account Compton scattering, double Compton scattering and

Bremsstrahlung, the kinetic equation for the photon distribution becomes

∂ f

∂t
=

[
∂ f

∂t

]
K

+
[
∂ f

∂t

]
ff

+
[
∂ f

∂t

]
2γ

.

In this equation, cosmic expansion is not taken into account. Accounting also for
the dilution of photons due to expansion, we have to add a term −3H f on the
right-hand side and we must take care to distinguish between cosmic time τ and
conformal time t . Of course, the above are derivatives with respect to cosmic time
so that the kinetic equation in the expanding Universe becomes

∂ f

∂τ
= − 3

τexp
f +

[
∂ f

∂t

]
K

+
[
∂ f

∂t

]
ff

+
[
∂ f

∂t

]
2γ

. (8.35)

Here τexp = 1/H is the expansion timescale which can be approximated by

τexp(z) = 1/H (z) � 5 × 1019 s (z + zeq)−1/2(1 + z)−3/2 , (8.36)

where zeq = 2.4 × 104
mh2 is the redshift where the matter and radiation densities
are equal, see Ex. 8.1. Equation (8.36) holds in a matter/radiation universe, i.e.
as long as the cosmological constant (or any other dark energy component) and
curvature are negligible.

Let us first compare the expansion time and the timescale for Compton scattering,
τK . Since [∂ f /∂t]K is not simply proportional to τ−1

K f one has to compare the term
on the right-hand side of the Kompaneets equation with 3 f/τexp. For Compton
scattering to be efficient, one typically requires (Hu & Silk, 1993) τK /4 ≤ τexp,
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which implies

z ≥ zK ∼ 104(
bh2)−1/2 . (8.37)

Here we have assumed zK � zeq. At redshifts below zK , elastic Compton scattering
drops out of equilibrium and only Thomson scattering, which does not change the
photon energies is relevant.

Also of interest is the redshift at which double Compton scattering becomes more
important than Bremsstrahlung (i.e. free–free). Considering the redshift dependence
of τff and τ2γ it is clear that at high redshift double Compton is more efficient. For
our estimates, we may replace the integral I in Eq. (8.33) by its value for a Planck
spectrum, I � IP � 26. Furthermore, both processes are most efficient at small
xe � 1 where Eqs. (8.29) and (8.33) with I � 26 yield [d f /dt]2γ � 26/(τ2γ x3

e )
and [d f /dt]ff � ḡff(xe)/(τffx3

e ). Equating these two terms, neglecting the small
temperature difference, Te � T , yields

zff,2γ ∼ 106
(

bh2ḡff(xe)

)2/5
, xe � 1 . (8.38)

Above this redshift, double Compton scattering is more efficient than free–free.
We also determine the energy at which double Compton scattering or

Bremsstrahlung become as efficient as elastic Compton scattering. For this we
use the fact that [

I −1
P τ2γ

x3
e

exe − 1

] [
∂ f

∂t

]
2γ

∼ 1

exe − 1
− f and[

exe

ḡff
τff

x3
e

exe − 1

] [
∂ f

∂t

]
ff

∼ 1

exe − 1
− f .

Hence, within the timescale in square brackets, double Compton and
Bremsstrahlung respectively, are able to establish a Planck spectrum. Equating this
timescale to the Compton timescale, τK /4, we obtain a redshift dependent energy
below which double Compton and Bremsstrahlung respectively, are efficient,

xc,2γ (z) = 3 × 10−6√z , (8.39)

xc,ff(z) = 77 z−3/4(
bh2)1/2 . (8.40)

At energies below xc ≡
√

x2
c,2γ + x2

c,ff, photon number changing processes are ef-

ficient and a Planck spectrum can be established, if z > zK so that elastic Compton
scattering is still efficient. At energies above xc, photons settle into a Bose–Einstein
distribution, if z > zK .

Correspondingly, comparing double Compton scattering and Bremsstrahlung
with expansion, we find that at a given redshift z double Compton scattering or
Bremsstrahlung are still efficient only for photon energies with xe < xexp,2γ (z) or
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Fig. 8.1. The redshifts zK (dashed) and zff,2γ (xe) (dash-dotted) are plotted together
with the energies ωc = Texc and ωexp = Texexp, xc(z) (solid) and xexp(z) (dotted).

xe < xexp,ff(z) respectively with

xexp,2γ (z) = 4.3 × 10−10 z7/4

(z + zeq)1/4
(
bh2)1/2(1 − YHe/2)1/2 , (8.41)

xexp,ff(z) = 1.1 × 10−2 z1/2

(z + zeq)1/4

bh2(1 − YHe/2)1/2 . (8.42)

The energies below which photon number changing processes are still faster than
expansion and can lead to establishing a thermal equilibrium are given by xe <

xexp ≡
√

x2
exp,2γ + x2

exp,ff.

In Fig. 8.1 we plot zK , zff,2γ (xe) as well as xc(z) and xexp(z). When xc < 0.1, say
if z < 108, a Planck spectrum is established rapidly only for very small energies,
ω < 0.1 × Te, while at larger energies we first obtain a Bose–Einstein distribution.
Nevertheless, if there is a short period of injection of photons at a redshift where
xexp(z) >∼ 1, a Planck spectrum will be established eventually for the relevant regime
of energies with xe <∼ 1. We may therefore say, that such processes still are fully
thermalized if they happen sufficiently earlier than z ∼ 107. However, if energy
injection happens at z ≤ 107, the Planck spectrum cannot be established anymore
for energies with xe > xexp(z) ≤ 1.

It is also interesting to note that in the regime where Bremsstrahlung is
more efficient than double Compton scattering, z < zff,2γ � 2 × 106, these pro-
cesses are very inefficient anyway and can thermalize the spectrum only for
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xe < xexp(2 × 106) � 0.1, the bulk part of the spectrum remains Bose–Einstein.
Therefore, it is a good approximation to disregard Bremsstrahlung entirely in these
considerations.

8.2 A chemical potential

Observational studies of the CMB spectrum have shown that it is very close to a
blackbody, i.e. Planck spectrum, see Fig. 1.7. Up to this day, no deviations from a
blackbody have been detected. The experimental bound for the reduced chemical
potential comes mainly from the FIRAS experiment aboard the COBE satellite. It
limits µ to (Fixsen et al., 1996)

|µ| ≤ 9 × 10−5 at 95% confidence . (8.43)

This seems very small, but as we shall see, a quite violent event is needed to generate
such a chemical potential. This comes from the fact that there are many more photons
in the Universe than baryons or dark matter particles. Therefore, producing about
one photon per dark matter particle will not induce a big chemical potential.

As we have seen in the previous section, if energy is injected into the CMB at
a redshift z1 > zK with xexp(z1) < 1, we expect a spectral distortion which leads
to a chemical potential on energies with ω/Te ≡ xe > xexp(z1). In this section we
want to estimate the chemical potential produced by a given energy input δρ. We
assume that the energy input happens rapidly. Furthermore, we neglect the part of
the integrals over photon energies in which the spectrum has been able to relax to a
Planck spectrum, i.e. x < xexp(z1). We must therefore assume z1 < zµ � 6 × 106

(see Fig. 8.1).
This can happen, for example via a ‘long’ lived, unstable particle which decays

at redshift z1. Some models of super-symmetry predict the existence of a ‘next-
to-lightest’ super-symmetric particle which is rather long lived and decays quite
late into the lightest super-symmetric particle which then plays the role of dark
matter. But also the annihilation of a very light particle with mass m � T (1 + z1) �
2.3 × 10−4(1 + z1) eV, when the temperature drops below its mass threshold can
provoke a chemical potential.

According to what we have learned in the previous section, since z1 > zK , a
Bose–Einstein distribution is established rapidly at some temperature Te and with
chemical potential µ. The temperature Te and the chemical potential µ are deter-
mined by

ρ = 1

π2
T 4

e

∫
x3

e dxe

exe+µ − 1
= ργ + δρ = π2

15
T 4(1 + ε) , and (8.44)

n = 1

π2
T 3

e

∫
x2

e dxe

exe+µ − 1
= nγ + δn = 2ζ (3)

π2
T 3(1 + α) . (8.45)
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For the last equals sign we have introduced ε ≡ δρ/ργ and α ≡ δn/nγ . For ργ and
nγ we use the expressions for a Planck spectrum given in Eqs. (1.55) and (1.62).
For z1 � 107, photon number changing processes are no longer active and α ≡ 0.
But here we keep the expressions general. Experimentally we know that µ � 1.
Expanding the integrals in Eqs. (8.44) and (8.45) to first order in µ yields

ρ = T 4
e

π2
[Ib(3) − 3µIb(2)] = π2

15
T 4(1 + ε)

n = T 4
e

π2
[Ib(2) − 2µIb(1)] = 2ζ (3)

π2
T 3(1 + α) .

Here Ib(n) = ∫ ∞
0 dx xn

ex −1 = �(n + 1)ζ (n + 1) as defined in Eq. (1.56). Inserting
Ib(3) = π4/15, Ib(2) = 2ζ (3) and Ib(1) = π2/6, we can write these equations as

µ = 6ζ (3)

π2

[
1 −

(
T

Te

)3

(1 + α)

]
and 1 −

(
T

Te

)4

(1 + ε) = 90ζ (3)

π4
µ .

Since |µ| � 1 and ζ (3) � 1.2, we must have |1 − T/Te| � 1. We therefore expand
Te/T = 1 + δ with |δ| � 1 so that (Te/T )n � 1 + nδ. Inserting this approximation
above, we can determine δ and µ in terms of ε and α. The above relations give (we
neglect the second-order terms ∝ δε and δα)

µ = 18ζ (3)

π2
(δ − α/3)

4δ − ε = 90ζ (3)

π4
µ ,

so that

δ = ε − (540ζ (3)2/π6)α

4[1 − 405ζ (3)2/π6]
� 0.64

δρ

ρ
− 0.52

δn

n
, (8.46)

µ = 3ζ (3)

2π2[1 − 405ζ (3)2/π6]
(3ε − 4α) � 0.46

(
3
δρ

ργ

− 4
δn

nγ

)
. (8.47)

First of all, we note that when photon number changing processes are still very rapid,
the photon number will change so that δn/nγ = (3/4)(δρ/ργ ) and no chemical
potential is generated. The temperature is then modified by the injection of energy
to T → T (1 + δ) = Te = T (1 + ε/4), which is evident since in this case ρ/ργ =
(Te/T )4.

The situation is very different if z1 < zµ and photon number changing processes
are no longer active. Then δn = 0 and

µ � 1.4
δρ

ργ

. (8.48)
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First of all, the chemical potential generated by such an energy injection is always
positive. This is good, since a distribution with a negative chemical potential is
not well defined for frequencies ω ≤ ωc = −Teµ. But since we know that double
Compton scattering is still active at very low frequencies, this is not a real problem,
as at these low frequencies a Planck spectrum would be established anyway.

Let us now estimate the chemical potential generated by the decay of a species of
non-relativistic particles which contributes an energy density 
X H 2

0 (1 + z)3 before
they decay. Since photons contribute the energy density 
γ H 2

0 (1 + z)4, assuming
that a fraction f of the energy of these particles is heating up the CMB we have

µ = 1.4
δρ

ργ

= 1.4
f 
X


γ (1 + z1)
,

where z1 denotes the redshift of the decay. This formula is of course only valid if
z1 < zµ ∼ 107 since an energy injection at higher redshift is still fully thermalized.
Using 
γ = 5 × 10−5 (see Appendix A1.3), the limit on the chemical potential can
be translated into a limit for f 
X ,

f 
X ≤ 3 × 10−3 1 + z1

106
, z1 < 107 . (8.49)

This might appear as a small number, nevertheless it is more than the entire mass
density in stars. If the decay product of the particle species X is supposed to be the
dark matter, we need 
X h2 > 0.14. The above bound then implies f < 0.01z1/106,
hence only a small fraction of the energy may be injected into standard model
particles (other than neutrinos). If a particle decays at a redshift z1 � 107 partial
thermalization, especially at small frequencies, xe <∼ 1 can still be achieved. In this
case, the Boltzmann equation (8.35) with a source term describing the injection
has to be solved numerically and the resulting ‘chemical potential’ depends on the
frequency.

For a particle species which decays into photons when the temperature goes
below its mass threshold we would expect δρ/ρ ∼0.1–1. So that it would produce
a chemical potential of order unity. This shows that no particle with mass m <

T0(1 + zµ) � 230 eV which interacts relatively strongly with photons can exist. Of
course such a particle would also be produced in accelerators, so that this does not
come as a surprise.

8.3 The Sunyaev–Zel’dovich effect

Clusters of galaxies are permeated by a hot plasma of electrons and nuclei at a
temperature of several keV. This is much hotter than CMB photons at redshifts
z <∼ 1. Therefore, in the Kompaneets equation (8.15) the first term on the right-hand
side dominates.
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Furthermore, the plasma is optically thin to Compton scattering so that we can
neglect multiple scattering. The change of the photon distribution when passing
through a cluster is then simply

δ f = yω−2 ∂

∂ω

(
ω4 ∂ f

∂ω

)
, (8.50)

where we have introduced the Compton-y parameter

y ≡ σT

∫
ne

Te

m
dr . (8.51)

The integral extends through the cluster, and the approximation holds, if the opti-
cal depth τ = σT

∫
ne dr � 1. Inserting a blackbody spectrum, f ∝ (exp(ω/T ) −

1)−1, we obtain with x ≡ ω/T 
= ω/Te

δ f

f
= −y

xex

ex − 1

[
4 − x coth

( x

2

)]
�

{−2y , if x � 1
yx2, if x � 1 .

(8.52)

This is the frequency dependent Sunyaev–Zel’dovich (SZ) effect . With the help of

δT

T
= f

T

δ f

f

(
d f

dT

)−1

= ex − 1

xex

δ f

f
,

we can translate it in a frequency dependent temperature shift

δT

T
= −y

[
4 − x coth

( x

2

)]
�

{−2y , if x � 1
yx, if x � 1 .

(8.53)

When passing through a hot thermal plasma, the low-energy Rayleigh–Jeans
regime of the photons’ spectrum is depleted and the spectrum is enhanced at high
energies, in the Wien tail. Photons are on average up-scattered in energy. The spec-
tral change vanishes at x0 � 3.8 given by 0 = 4 − x0 coth (x0/2), see Fig. 8.2. For
a CMB temperature of T = 2.726 this corresponds to a frequency of ν = 217 GHz.

Numbers for a typical cluster are Te � 7 keV, ne ∼ 10−2 cm−3 and the diameter
is of the order of R � 300 kpc. Estimating the Compton-y parameter by y ∼ yc =
(σT Te/me)ne R we obtain yc � 10−4. This is the order of magnitude of the SZ
effect in clusters. Of course the true value can deviate substantially and will depend
on the details of the cluster (LaRoque et al., 2006; De Petris et al., 2002). At
present, SZ observers start to use the effect to generate cluster maps of the quantity
Tene integrated along the line of sight. Not surprisingly, the best studied cluster
so far is the Coma cluster which is closest to us (De Petris et al., 2002). The
SZ results for the Coma cluster are shown in Fig. 8.3. In general, the situation
is complicated since clusters are complicated objects which may have different
‘electron populations’ one of them thermal and others not. Also the electron density
might be a complicated function of position etc. Here we are not entering into all of
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Fig. 8.2. The function δT/T given in Eq. (8.53) is shown for y = 10−4. Note that
it passes through zero roughly at x = ω/T � 3.8.

Fig. 8.3. The SZ distortion � j (x) = x3 δ f measured in the Coma cluster by
WMAP (left-most point) OVRA (two subsequent points) and MITO (the three
rightmost points) is compared with its theoretical best fit with Te = 8.2 keV and
optical depth τe = 4.9 × 10−3 (middle solid curve). Other curves which add pos-
sible other effects are also shown. From Colafrancesco (2007).
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these interesting difficulties of cluster physics, but we just mention some important
points.

• The SZ effect in clusters can add to the CMB anisotropies on very small scales and
may, depending on the cluster number density which is not well known, even dominate
it above � ∼ 2000. Fortunately it can be distinguished from primordial anisotropies due
to its spectral signature, see Fig. 8.2.

• The motion of clusters induces in addition to the thermal SZ effect discussed above a
temperature shift due to the bulk motion of the cluster,

δT/T = vcσT

∫
ne dr = vcτe ,

where vc is the bulk motion in the direction of the line of sight and τe is the optical depth
of the cluster. This effect which is spectrally identical to primordial CMB anisotropies is
typically several times smaller than the thermal SZ effect. It goes under the name ‘kinetic
SZ effect’.

• The average effect from all clusters should contribute a mean Compton-y parameter in
the Universe. Its amplitude strongly depends on the cluster distribution, but is estimated
to be of the order of ȳ ∼ 10−7. This number is within reach of planned CMB spectrum
experiments (Singal et al., 2005; Kogut et al., 2006).

• Clearly the SZ effect in clusters is mainly of interest for cluster physics. Together with X-
ray observations which probe the square of the electron density, it allows us, in principle,
to gain detailed information about the electron density and temperature distribution inside
the clusters. Furthermore, the SZ effect, which represents the ‘shadow’ of the cluster in
the CMB, is independent of redshift and might lead to the detection of clusters with high
redshift which are too faint to be seen in optical or X-ray telescopes.

The fact that the observed average Compton-y parameter is so small y ≤ 10−5,
leads to a limit on early reionization. Let us derive this limit for a simple toy model.
We assume that the Universe is reionized at some redshift zri. Then during the
ionization process, the electrons also gain some kinetic energy which we estimate
to be typically in the 10 eV range. This seems reasonable, if we do not want to
assume that the reionizing photons have exactly the reionization energy, 13.6 eV,
but some energy in this ball park. The remaining energy is then simply absorbed by
the electron as kinetic energy. As the Universe evolves, since the electron momenta
are redshifted p ∝ 1/a, the temperature which is a measure of the kinetic energy
of the electrons is also redshifted, Te � p2/2m ∝ a−2. Already in Chapter 1 in our
discussion below Eq. (1.93) we have seen that the temperature of non-relativistic
particles decays like 1/a2. Denoting the electron temperature at reionization by Tri

we find that reionization should induce a Compton-y parameter given by

y = σT Trine(t0)

me(zri + 1)2

∫ t0

tri

dt (z + 1)5. (8.54)
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We expect zri to lie in the matter dominated phase of expansion and before the
cosmological constant becomes relevant. During matter domination the Friedmann
equation yields

dt = −dz

(1 + z)5/2

1

H0
√


m
,

so that we obtain

y = σT Trine(t0)

me H0
√


m(zri + 1)2

∫ zri

0
dz (z + 1)5/2 = 2(1 + zri)3/2σT Trine(t0)

7me H0
√


m

� 5 × 10−7 
bh2√

mh2

(1 + zri)
3/2

(
Tri

10 eV

)
. (8.55)

For 
mh2 = 0.13 and 
bh2 ∼= 0.022 the limit y < 10−5 translates into the reion-
ization redshift

zri < 50

(
Tri

10 eV

)2/3

. (8.56)

This is a truly interesting number and it reduces by a factor (105 y)2/3 if we lower
the limit on the y parameter. Already a y parameter y < 10−6 would require a
reionization redshift of zri < 10 × (Tri/10 eV)2/3. As discussed in Chapter 6 the
CMB polarization spectrum favours zri � 10. Reducing the assumed electron tem-
perature by a factor of 10 can help, but when y < 10−7 we have no simple way out.
Therefore, according to our understanding of the reionization process which took
place probably at zri ∼ 10, this should have led to a Compton-y parameter of the
order of y � 10−7–10−6.

Exercises

Ex. 8.1 The Hubble parameter in a matter/radiation universe and the collision times
Using the Friedmann equation show that in a spatially flat universe containing only
matter and radiation, the Hubble parameter is given by

H 2(z) = H 2
0 
r (1 + z)3(z + zeq + 2) , (8.57)

H � 2 × 10−20 s−1(2 + z + zeq)1/2(1 + z)3/2 , (8.58)

where 1 + zeq = 
m/
r � 2.4 × 104
mh2 is the redshift where the matter and
radiation densities are equal. We use the relativistic density parameter for photons
and three species of massive neutrinos, 
r = 4.19 × 10−5 h−2 and H0 = 3.24 ×
10−18 h s−1 given in Appendices A1.2 and A1.3.
Using ne = (1 − YHe/2)nB also verify Eqs. (8.17), (8.30) and (8.34).

Ex. 8.2 Aberration
For a given non-relativistic electron velocity v and incoming and outgoing photon
directions n and n′ in the laboratory frame determine the scalar product nR · n′

R of
the photon directions in the electron rest frame.
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Final remarks

The goal of this book has been to give you an overview of one of the most suc-
cessful and fascinating topics of cosmology, the physics of the cosmic microwave
background. Its success is best illustrated by the two Nobel prizes the subject has
led to: Penzias & Wilson (1978) for the discovery of the CMB and Mather & Smoot
(2006) for the detailed measurement of its spectrum and for the discovery of the
fluctuations.

I have concentrated on the theoretical side of the topic not only because this is
my expertise, but also because I believe that this subject is mature enough for a
text book. On the experimental side, certainly there is much to tell and tremendous
progress has been made in the last 15 years, but I think, hope, that this is not the end
of it. There will be much more to come and therefore a book on CMB experiments
could be only a snapshot of the present situation. The theory of the CMB, on the
other hand, is in many of its aspects basically complete, so that I can hope that this
book may have some lasting value for students who want to learn about the topic
and also for researchers in the field who want to obtain a rather detailed overview.

I am afraid that despite a big effort there are still some misprints or er-
rors in the book. If you, dear reader, have spotted one, please let me know
(ruth.durrer@physics.unge.ch) so that I can correct it in forthcoming editions.



Appendix 1

Fundamental constants, units and relations

Here we summarize some useful relations between units and the values of physical
constants that are used throughout this book.

A1.1 Conversion factors, units

In a system of units where � = c = kBoltzmann = 1, as is often used in this book, all units
can be expressed in terms of a unit of energy like, e.g., the GeV or a length scale like,
e.g., cm. We then have

1 GeV = 1.6022 × 10−3 erg

= 1.1605 × 1013 K

= 1.7827 × 10−24 g

= 5.0684 × 1013 cm−1

= 1.5192 × 1024 s−1

The relation I always remember by heart for order of magnitude estimates is 1 =
200 MeV fm. Here ‘fm’ is 1 femtometre (or fermi), 1 fm = 10−15 m.

Other useful relations are

1 parsec (pc) = 3.2612 light years = 3.0856 × 1018 cm

1 Mpc = 106 pc � 3 × 1024cm � 1014 s

1 g cm−3 = 4.3102 × 10−18 GeV4

(Astronomical unit) 1 AU = 1.4960 × 1013 cm

1 (Gauss)2/8π = 1.9084 × 10−40 GeV4

(Jansky) 1 Jy = 10−23 erg cm−2 s−1 Hz−1

= 2.4730 × 10−48 GeV3

1 yr � π × 107 s

(Radian) 1 rad = (180/π ) degrees = 57.266 degrees

(Steradian) 1 sr = 1 rad2 = 3.283 × 103 degrees2

326
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A1.2 Constants

A1.2.1 Fundamental constants

Planck’s constant � = 1 = h/(2π )
= 1.0546 × 10−27 cm2 g s−1

Speed of light c = 1 = 2.9979 × 1010 cm s−1

Fine structure constant α ≡ e2

4π
= 1/137.036

Gravitational constant G = 6.673 × 10−8 cm3g−1s−2

Planck mass m P = 1.2211 × 1019 GeV
= 2.1768 × 10−5 g

Planck length �P = 8.189 × 10−20 GeV−1

= 1.616 × 10−33 cm
Planck time τP = 8.189 × 10−20 GeV−1

= 5.3904 × 10−44 s
Electron mass me = 0.5110 MeV

Proton mass m p = 938.27 MeV
Neutron mass mn = 939.57 MeV

Rydberg 1 Ry = α2me/2 = 13.606 eV

Thomson cross section σT ≡ 8πα2/3m2
e = 6.65246 × 10−25 cm2

Bohr radius a0 ≡ 1

αme
= 5.2918 × 10−9 cm

Bohr magneton µ0 ≡ e

2me
= 5.7884 × 10−18 GeV

Gauss
Avogadro’s number NA = 6.022 × 1023

Stefan–Boltzmann constant aSB ≡ π2/15 = 0.658
= 7.566 × 10−15 erg cm−3 K−4 .

A1.2.2 Important constants

Solar mass M! = 1.989 × 1033 g = 1.116 × 1057 GeV

Solar radius R! = 6.9598 × 1010 cm = 3.527 × 1024 GeV−1

Luminosity of the Sun L! = 3.90 × 1033erg s−1 = 1.6 × 1012 GeV−2

Mass of the Earth M⊕ = 5.977 × 1027 g

= 3.357 × 1051 GeV
Solar magnitude m! = −26.85, (apparent)

M! = 4.72, (absolute)

Distance modulus m − M = 5 log(D/10 pc)

Hubble constant H0 = 100 h km s−1 Mpc−1

= 2.1332 h × 10−42GeV

where 0.5 < h < 0.8
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Hubble time, distance H−1
0 = 3.0856 × 1017 h−1 s

= 9.7776 × 109 h−1 yr

= 2997.9 h−1 Mpc

= 9.2503 × 1027h−1 cm

Critical density ρc = 3H 2
0 /8πG = 1.8791 h2 × 10−29 g cm−3

= 8.0992 h2 × 10−47 GeV4

= 1.0540 h2 × 104 eV cm−3

= 11.2 h2 (proton masses)/m3

CMB temperature T0 = 2.725 K

= 2.35 × 10−13 GeV

Neutrino temperature Tν = 1.945 K = (4/11)1/3T0

A1.3 Useful relations

Photons
Number density nγ = 411 cm−3

Entropy density sγ = 2900 cm−3 = 3.602nγ

Energy density ργ = 2.01 × 10−51 GeV4

Density parameter 
γ h2 = 2.48 × 10−5

Neutrino (per species)
Number density nν = 112 cm−3

Entropy density sν = 470 cm−3 = 4.202nν

Energy density ρν = 3.08 × 10−53 GeV4

Density parameter 
νh2 = 5.63 × 10−6

Relativistic entropy s0 = 4310 cm−3 = sγ + 3sν

Relativistic density parameter 
γ 3νh2 = 4.17 × 10−5

Baryon density 
Bh2 = 3.639 × 107ηB

= 0.022 ± 0.002

Baryons per photon nB/nγ = ηB = (5.2 ± 0.5) × 10−10

Age of the Universe

for T > Teq : τ = 2.42 s × (1 MeV/T )2/
√

g∗
= 0.30118(m P/T 2)/

√
g∗

for T < Teq, � = 0 : τ = 2.057 × 1017√

mh2

(1 + z)−3/2 s

= 7.504 × 1011√

mh2

(T/1 eV)−3/2 s
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Matter density 
mh2 = 0.13 ± 0.02

Equivalence redshift zeq = 2.4 × 104(
mh2)

Equivalence temperature Teq = 5.6 eV(
mh2)

Decoupling redshift zdec � 1089 ± 2

Decoupling temperature Tdec � 2970 ± 10 K = 0.26 eV

Decoupling time τdec � 1013(0.14/
mh2)1/2 s

Recombination redshift zrec � 1360

Nucleosynthesis temperature Tnuc � 0.08 MeV = 9 × 108 K

Time of nucleosynthesis τnuc � 206 s

Age of the Universe τ0 = (1.37 ± 0.03) × 1010 yr



Appendix 2

General relativity

Throughout this book it is assumed that the reader is familiar with the basics of general
relativity as presented, e.g., in Wald (1984). This appendix does not present an
introduction to general relativity but just fixes the notation used throughout this book.
Furthermore, we calculate the curvature tensor for a FL universe.

A2.1 Notation

We consider a four-dimensional pseudo-Riemannian spacetime given by a manifold M
and a metric g with signature (−, +, +, +). For a given choice of coordinates (xµ)3

µ=0 the
metric is given by the ten components of a 4 × 4 symmetric tensor,

g = ds2 = gµν dxµ dxν . (A2.1)

Contra- and covariant tensor fields on a pseudo-Riemannian manifold are equivalent.
Their indices can be lowered and raised with the metric, e.g.,

gβνT αν = T α
β = gαµTµβ . (A2.2)

Here gαµ is the inverse of the metric such that gαµgµβ = δα
β , and we adopt Einstein’s

summation convention: indices which appear as subscripts and superscripts are summed
over.

The Christoffel symbols are defined by

�
µ
αβ = 1

2
gµν

[
∂αgνβ + ∂β gνα − ∂νgαβ

]
. (A2.3)

Here ∂µ indicates a partial derivative w.r.t. the coordinate xµ, this is sometimes also
simply denoted by a comma ∂µ f ≡ f,µ. Covariant derivatives are indicated by a
semi-colon, or by the symbol ∇.

A geodesic γ (t) with X = γ̇ is a solution to the differential equation

∇X X = 0 , Xµ∂µ X ν + �ν
αβ Xα Xβ = d2 Xµ

ds2
+ �

µ
αβ

d Xα

ds

d Xβ

ds
0 , (A2.4)

where the second equation expresses the first equation in components. The vector field
X = γ̇ is given by X = Xµ∂µ = d X4

ds . We often conveniently identify a vector field with
the partial derivative in its direction. A tensor field T of rank (p, q) is parallel transported
along the vector field X if

∇X T = 0 , XµT
αi1 ···αi p

β j1 ···β jq ;µ = 0 . (A2.5)

330
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Covariant derivatives of a tensor field are given by

T
αi1 ···αi p

β j1 ···β jq ;µ = T
αi1 ···αi p

β j1 ···β jq
,µ +�

αi1
µσ T

σ ···αi p

β j1 ···β jq
+ · · · − �σ

µβ j1
T

αi1 ···αi p

σ ···β jq
− · · · . (A2.6)

The Riemann curvature tensor is defined by

Rα
βµν = �α

νβ,µ −�α
µβ,ν +�

ρ
βν�

α
µρ − �

ρ
βµ�α

νρ . (A2.7)

The tensor Rαβµν = gασ Rσ
βµν is anti-symmetric in the first (αβ) and second (µν) pair of

indices and symmetric in the exchange of the pairs, (αβ) ↔ (µν). The Bianchi identities
read

�(βµν) Rα
βµν = 0 1st Bianchi identity. (A2.8)

�(µνσ ) Rα
βµν;σ = 0 2nd Bianchi identity . (A2.9)

Here �(βµν) denotes the sum over all cyclic permutations of these three indices.
The Ricci tensor and the Riemann scalar are given by

Rµν = Rα
µαν , R = Rµ

µ = Rµνgµν . (A2.10)

With these sign conventions, the curvature of the sphere is positive, and changing the
order of covariant derivatives of a vector field X yields

∇µ∇ν Xα − ∇ν∇µ Xα = Rα
σµν Xσ . (A2.11)

The Einstein tensor is defined as

Gµν = Rµν − 1

2
gµν R . (A2.12)

The second Bianchi identity and the symmetries of the Riemann tensor imply Gν
µ;ν = 0.

The field equations of general relativity relate the curvature to the energy–momentum
tensor Tµν via Einstein’s equation,

Gµν = 8πGTµν , (A2.13)

where G denotes Newton’s constant, G = m−2
P . The second Bianchi identity ensures that

Tµν is covariantly conserved, T ν
µ;ν = 0. Equation (A2.13) can also be derived from an

action principle with

S = Sgrav + Smat .

Here Smat is the usual matter action and

Sgrav = m2
P

16π

∫
d4x

√−gR (A2.14)

is the Hilbert action. A somewhat tedious but standard calculation gives (see e.g., Wald,
1984)

δSgrav = − m2
P

16π

∫
d4x

√−gGµνδgµν . (A2.15)

The Einstein equation implies then that the energy–momentum tensor can be obtained by
varying the matter action w.r.t. the metric,

T µν = 2
√−g

δSmat

δgµν

.
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By construction, this energy–momentum tensor is always symmetric, but it does, in
general, not agree with the canonical energy–momentum tensor. Of course the conserved
quantities (if any!) are the same for both definitions.

The Weyl tensor specifies the degrees of freedom of the Riemann tensor which are not
determined by the Ricci tensor (or Einstein tensor). It is the traceless part of Rα

βµν . In n
dimensions, n ≥ 3, it is given by

Cαβµν = Rαβµν − 2

n − 2

(
gα[µ Rν]β + gβ[µ Rν]α

)
− 2

(n − 1)(n − 2)
Rgα[µgν]β . (A2.16)

Here [µν] denotes anti-symmetrization in the indices µ and ν. The Weyl tensor has the
same symmetries like the Riemann tensor but all its traces vanish. It describes the degrees
of freedom of the curvature (gravitational field) in source-free spacetime, hence it
describes gravity waves.

An introduction to general relativity can be found e.g., in the books by Straumann
(2004) or Wald (1984).

A2.2 The Lie derivative

For a vector field X with flux φX
t the Lie derivative of a tensor field T of arbitrary rank is

defined by

L X T = lim
ε→0

1

ε

((
φX

ε

)∗
T − T

)
. (A2.17)

Here
(
φX

ε

)∗
denotes the pullback of the map φX

t : M → M : p �→ γp(t), where γp is the
integral curve to X with starting point p. The existence and uniqueness of solutions to
ordinary differential equations tells us that for sufficiently small t , φX

t is a local
diffeomorphism. If T (t) denotes the value of the tensor field T at the position γp(t) we
also have

L X T (p) = d

dt

∣∣∣∣
t=0

T (t) . (A2.18)

Hence the Lie derivative in direction X vanishes if the tensor field T is conserved along
integral curves of X . Furthermore, for small t we have(

φX
t

)∗
T = T + t L X T + O(t2). (A2.19)

In coordinates the Lie derivative becomes (see e.g., Wald, 1984)

L X T
αi1 ···αi p

β j1 ···β jq
= XµT

αi1 ···αi p

β j1 ···β jq
,µ −Xαi1 ,σ T

σ ···αi p

β j1 ···β jq
− · · ·

+Xσ ,β j1
T

αi1 ···αi p

σ ···β jq
+ · · · . (A2.20)

A2.3 Friedmann metric and curvature

The Friedmann metric is given by

ds2 = gµν dxµ dxν = −dτ 2 + a2(τ )γi j dxi dx j = a2(τ )[−dt2 + γi j dxi dx j ].
(A2.21)
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The Christoffel symbols with respect to cosmic or conformal time are

cosmic time τ conformal time t

�0
00 = 0

ȧ

a
, (A2.22)

�i
00 = 0 0 , (A2.23)

�0
i0 = 0 0 , (A2.24)

�i
j0 = a′

a δi
j = Hδi

j

ȧ

a
δi

j = Hδi
j , (A2.25)

�0
i j = a′aγi j

ȧ

a
γi j , (A2.26)

�k
i j = (3)�k

i j = 1
2γ km

(
γim, j + γ jm,i − γi j,m

)
(3)�k

i j , (A2.27)

where (3)�k
i j denotes the three-dimensional Christoffel symbols of the metric γ which

depend on the coordinate system chosen on the spatial slices. The over-dot indicates a
derivative w.r.t. conformal time t while the prime indicates a derivative w.r.t. cosmic time
τ .

The non-vanishing components of the Riemann and Ricci curvature tensors in cosmic
time τ are then given by

R0
i0 j = a′′aγi j , (A2.28)

Ri
00 j = a′′

a
δi

j , (A2.29)

Ri
jkm = (3) Ri

jkm + (a′)2
(
δi

kγ jm − δi
mγ jk

)
, (A2.30)

R00 = −3
a′′

a
, (A2.31)

Ri j =
[
a′′a + 2

(
a′2 + K

)]
γi j , (A2.32)

R = 6

[
a′′

a
+ H 2 + K

a2

]
, (A2.33)

while in conformal time t we have

R0
i0 j =

(
ȧ

a

)·
γi j = Ḣγi j , (A2.34)

Ri
00 j =

(
ȧ

a

)·
δi

j = Ḣδi
j , (A2.35)

Ri
jkm = (3) Ri

jkm + H2
(
δi

kγ jm − δi
mγ jk

)
, (A2.36)

R00 = −3

(
ȧ

a

)·
= −3Ḣ , (A2.37)

Ri j = [
Ḣ + 2

(
H2 + K

)]
γi j , (A2.38)

R = 6

a2

[
Ḣ + H2 + K

]
. (A2.39)
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The curvature on the three-dimensional slices of constant time is given by
(3) Ri

jkm = K
(
δi

kγ jm − δi
mγ jk

)
, (A2.40)

(3) Ri j = 2Kγi j and (A2.41)
(3) R = 6K . (A2.42)



Appendix 3

Perturbations

In this appendix we present the intermediate results in the calculation of the perturbed
Einstein equations for a given ‘Fourier mode’ k. We also determine the Weyl tensor. All
the results are for conformal time t .

A3.1 Scalar perturbations

We work in the longitudinal gauge,

ds2 = a2
(−(1 + 2�Q(S)) dt2 + (1 − 2�Q(S))γi j dxi dxi

)
. (A3.1)

Here Q(S) is an eigenfunction of the spatial Laplacian with eigenvalue −k2 (see
Section 2.2.2).

A3.1.1 The Christoffel symbols

δ�0
00 = �̇Q(S) , δ�0

0 j = −k�Q(S)
j , (A3.2)

δ�
j
00 = −k�Q(S) j , δ�

j
i0 = −�̇δ

j
i Q(S) , (A3.3)

δ�0
i j = [−2H(� + �) − �̇

]
Q(S)γi j , (A3.4)

δ�
j
im = k�

[
δ

j
i Q(S)

m + δ j
m Q(S)

i − γim Q(S) j
]

. (A3.5)

A3.1.2 The Riemann tensor

δR0
00 j = δR0

0i j = 0, (A3.6)

δR0
i0 j = −

[
2Ḣ(� + �) + H(�̇ + �̇) + �̈ − k2

3
�

]
γi j Q(S)

− k2�Q(S)
i j , (A3.7)

δR0
i jm = −k

[
H� + �̇

] (
γi j Q(S)

m − γim Q(S)
j

)
, (A3.8)
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δRi
00 j =

[
k2

3
� − H(�̇ + �̇) − �̈

]
δi

j Q(S) − k2�Q(S)i
j , (A3.9)

δRi
0 jm = −k

[
�̇ + H�

] (
δi

j Q(S)
m − δi

m Q(S)
j

)
, (A3.10)

δRi
j0m = k

[
H� + �̇

] (
δi

m Q(S)
j − γ jm Q(S)i

)
, (A3.11)

δRi
jmn = −2

[
H2(� + �) + H�̇ + 1

3
k2�

] (
δi

mγ jn − δi
nγ jm

)
Q(S)

− k2�
(
δi

n Q(S)
jm − δi

m Q(S)
jn + Q(S)i

n γ jm − Q(S)i
m γ jn

)
. (A3.12)

A3.1.3 The Ricci and Einstein tensors

The perturbation if the Ricci tensor is

δR00 = [
3H(�̇ + �̇) − k2� + 3�̈

]
Q(S) , (A3.13)

δR0 j = −2k
[
H� + �̇

]
Q(S)

j , (A3.14)

δRi j =
[
−2(Ḣ + 2H2)(� + �) − H�̇ + k2

3
� − �̈ − 5H�̇

− 4

3
k2�

]
γi j Q(S) + k2(� − �)Q(S)

i j . (A3.15)

The perturbation of the Riemann scalar then becomes

δR = − 2

a2

[
6(Ḣ + H2)� + 3H�̇ − k2� + 9H�̇ + 3�̈ + 2(k2 − 3K )�

]
Q(S) .

(A3.16)
For the Einstein tensor we find

δG0
0 = 2

a2

[
3H2� + 3H�̇ + (k2 − 3K )�

]
Q(S) , (A3.17)

δG0
j = 2

a2
k

[
H� + �̇

]
Q(S)

j , (A3.18)

δG j
0 = − 2

a2
k

[
H� + �̇

]
Q(S) j , (A3.19)

δGi
j = 2

a2

[
(2Ḣ + H2)� + H�̇ − k2

3
� + �̈ + 2H�̇ +

(
k2

3
− K

)
�

]
δi

j Q(S)

+ k2

a2
(� − �)Q(S)i

j . (A3.20)

A3.1.4 The Weyl tensor

The Weyl tensor from scalar perturbations only has an ‘electric’ component, i.e., all the
components are determined by

C0
i0 j ≡ −Ei j = k2

2
(� + �)Q(S)

i j . (A3.21)
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More precisely we have

C0i0 j = a2 Ei j , (A3.22)

C0i jk = 0 , (A3.23)

Ci jk� = gik E j� + g j�Eik − g jk Ei� − gi�E jk . (A3.24)

A3.2 Vector perturbations

We work in the vector gauge defined in Eq. (2.58),

ds2 = a2
(
−dt2 + 2σ Q(V )

i dtdxi + γi j dxi dxi
)

, (A3.25)

where σ i = σ Q(V )i is divergence-free and Q(V )
i j = − 1

2k (Q(V )
i | j + Q(V )

j |i ).

A3.2.1 The Christoffel symbols

δ�0
00 = 0 , δ�0

0 j = Hσ Q(V )
j , (A3.26)

δ�
j
00 = [σ̇ + Hσ ]Q(V ) j , δ�

j
i0 = 1

2
σ

(
Q(V ) j

|i − Q(V )
i

| j
)

, (A3.27)

δ�0
i j = kσ Q(V )

i j , δ�
j
im = −Hσγim Q(V ) j . (A3.28)

A3.2.2 The Riemann tensor

δR0
00 j = Ḣσ Q(V ) j , δR0

0i j = 0 , (A3.29)

δR0
i0 j = k [σ̇ + Hσ ] Q(V )

i j , (A3.30)

δR0
i jm = −kσ

(
Q(V )

i j |m − Q(V )
im| j

)
, (A3.31)

δRi
00 j = k [σ̇ + Hσ ] Q(V )i

j , (A3.32)

δRi
0 jm = [

K + H2
]
σ

(
δi

j Q(V )
m − δi

m Q(V )
j

)
+ kσ

[(
Q(V )i

m

)
| j −

(
Q(V )i

j

)
|m

]
, (A3.33)

δRi
j0m = −σ

[
H2

(
δi

m Q(V )
j − γ jm Q(V )i

)
+ Ḣγ jm Q(V )i

− 1

2

(
Q(V )|i

j − Q(V )i
| j

)
|m

]
, (A3.34)

δRi
jmn = kHσ

(
δi

m Q(V )
jn − δi

n Q(V )
jm + Q(V )i

m γ jn − Q(V )i
n γ jm

)
. (A3.35)
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A3.2.3 The Ricci and Einstein tensors

The perturbation if the Ricci tensor is

δR00 = 0 , (A3.36)

δR0 j =
[

K + 1

2
k2 + 2H2 + Ḣ

]
σ Q(V )

j , (A3.37)

δRi j = k [σ̇ + 2Hσ ] Q(V )
i j . (A3.38)

The vector perturbation of the Riemann scalar of course vanishes. For the Einstein tensor
we find

δG0
0 = 0 , (A3.39)

δG0
j = 2K − k2

2a2
σ Q(V )

j , (A3.40)

δG j
0 = 1

a2

[
2(H2 − Ḣ) + K + k2

2

]
σ Q(V ) j , (A3.41)

δGi
j = k

a2
[σ̇ + 2Hσ ] Q(V )i

j . (A3.42)

A3.2.4 The Weyl tensor

C0
i0 j = −k

2
σ̇ (V ) Q(V )

i j ≡ −E (V )
i j , (A3.43)

Ci jk� = gik E (V )
j� + g j�E (V )

ik − g jk E (V )
i� − gi�E (V )

jk , (A3.44)

C0
jlm ≡ εlmi B(V )i

j

= 1

2
σ

[
Q(V )

l| jm − Q(V )
m| jl − k2

2
γ jl Q(V )

m + k2

2
γ jm Q(V )

l

]
. (A3.45)

All other components are determined by symmetry.

A3.3 Tensor perturbations

The metric is given by

ds2 = a2
(
−dt2 + (

γi j + 2H Q(T )
i j

)
dxi dxi

)
, (A3.46)

where Hi j = H Q(T )
i j is symmetric, traceless and divergence-free. For tensor perturbations

all scalar- and vector-type quantities vanish and we shall not write them down here. The
non-vanishing tensor perturbations are

A3.3.1 The Christoffel symbols

δ�i
0 j = Ḣ Q(T )i

j , δ�0
i j = (2HH + Ḣ )Q(T )

i j , (A3.47)

δ�i
jm = H

(
Q(T )i

j |m + Q(T )i
m| j − Q(T )|i

m j

)
. (A3.48)
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A3.3.2 The Riemann tensor

δR0
i0 j = [

Ḧ + HḢ + 2ḢH
]

Q(T )
i j , (A3.49)

δR0
i jm = −Ḣ

(
Q(T )

i j |m − Q(T )
im| j

)
, (A3.50)

δRi
00 j = − [

Ḧ + HḢ
]

Q(T )i
j , (A3.51)

δRi
0 jm = Ḣ

(
Q(T )i

m| j − Q(T )i
j |m

)
, (A3.52)

δRi
j0m = −Ḣ

(
Q(T )|i

jm − Q(T )i
m| j

)
, (A3.53)

δRi
jmn = 2H2 H

(
δi

m Q(T )
jn − δi

n Q(T )
jm

)
+ H

(
Q(T )i

j |nm − Q(T )i
j |mn + Q(T )i

n| jm − Q(T )i
m| jn + Q(T )

jm
|i |n − Q(T )

jn
|i |m

)
+HḢ

(
δi

m Q(T )
jn − δi

n Q(T )
jm − Q(T )i

n γ jm + Q(T )i
m γ jn

)
. (A3.54)

A3.3.3 The Ricci and Einstein tensors

δRi j = [
Ḧ + 2HḢ + (2Ḣ + 4H2 + k2 + 6K )H

]
Q(T )

i j , (A3.55)

δGi
j = [

Ḧ + 2HḢ + (k2 + 2K )H
]

Q(T )i
j . (A3.56)

A3.3.4 The Weyl tensor

C0
i0 j ≡ −E (T )

i j = −1

2
(∂2

t − k2)H Q(T )
i j , (A3.57)

Ci jk� = gik E (T )
j� + g j�E (T )

ik − g jk E (T )
i� − gi�E (T )

jk , (A3.58)

C0
jlm ≡ εlmk B(T )k

j = −Ḣ
[

Q(T )
jl|m − Q(T )

jm|l
]
. (A3.59)

All other components are determined by symmetry.
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Special functions

A4.1 Legendre polynomials and Legendre functions

The Legendre polynomials form an orthonormal set of polynomials on the interval
[−1, 1]. The lowest-order polynomials are P0 = 1 and P1 = x . The higher-order
polynomials can then be obtained via the Gram–Schmidt orthogonalization procedure
starting from the monomial xn . They obey the normalization condition∫ 1

−1
dx P�(x)P�′ (x) = 2

2� + 1
δ��′ . (A4.1)

The Legendre polynomials can also be obtained via the recursion relation

(� + 1)P�+1(x) = (2� + 1)x P�(x) − �P�−1(x) . (A4.2)

They obey the differential equation

(1 − x2)P ′′
� − 2x P ′

� + �(� + 1)P� = 0 . (A4.3)

Rodrigues’ formula

P�(x) = 1

2��!

d�

dx�

(
x2 − 1

)�
. (A4.4)

The lowest-order Legendre polynomials are given by

P0 = 1 , (A4.5)

P1 = x , (A4.6)

P2 = 1

2
(3x2 − 1) , (A4.7)

P3 = 1

2
(5x3 − 3x) , (A4.8)

P4 = 1

8
(35x4 − 30x2 + 3) . (A4.9)

Clearly P�(−x) = (−1)� P�(x). Via induction, using Eq. (A4.2), one finds that

P�(1) = 1 . (A4.10)

The Legendre polynomials obey the limiting relation

lim
�→∞

P� (cos(θ/�)) = J0(θ ) . (A4.11)

340
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Here J0 is the Bessel function of order zero (see Appendix A4.3).
The associated Legendre functions are defined by

P� m(x) = (1 − x2)m/2 dm P�(x)

dxm
= (1 − x2)m/2 1

2��!

d�+m

dx�+m

(
x2 − 1

)�
, (A4.12)

for 0 ≤ m ≤ �. (We use the notation of Abramowitz & Stegun (1970) with
P� m = (−1)m Pm

� .) The Legendre functions with −� ≤ m < 0 are given via the relation

P�−m = (� − m)!

(� + m)!
P� m . (A4.13)

From the above definition and Eq. (A4.10) one obtains

P� m(1) = δm0 . (A4.14)

The Legendre functions solve the differential equation

(1 − x2)P ′′
� m − 2x P ′

� m +
[
�(� + 1) − m2

1 − x2

]
P� m = 0 . (A4.15)

They are in principle defined for arbitrary complex degree � and order m as
(meromorphic) functions of complex variables x . We shall only need them for integer m
and non-negative integer �s with |m| ≤ � and x ∈ [−1, 1]. In this interval and with these
values of order and degree they are singularity-free and analytic.

The Legendre functions satisfy the following (and several more) recurrence relations:

P� m+1 = 2mx√
1 − x2

P� m − [�(� + 1) − m(m + 1)] P� m−1 , (A4.16)

x P� m = � + m

2� + 1
P�−1 m + � − m + 1

2� + 1
P�+1 m , (A4.17)

d P� m

dx
= 1

2
√

1 − x2
[P� m+1 − (� + m)(� − m + 1)P� m−1] , (A4.18)

(x2 − 1)
d P� m

dx
= �x P� m + (m + �)P�−1 m , (A4.19)

P�+1 m = P�−1 m + (2� + 1)
√

1 − x2 P� m−1 . (A4.20)

The parity relation of the associated Legendre function is a simple consequence of their
definition, P� m(−x) = (−1)�+m P� m(x). Also of importance for us is the orthogonality
relation ∫ 1

−1
P� m(x)P�′ m(x) dx

=
∫ π

0
P� m(cos ϑ)P�′ m(cos ϑ) sin ϑ dϑ = 2

2� + 1

(� + m)!

(� − m)!
δ� �′ . (A4.21)

The derivation of most of these results and more can be found in Arfken & Weber (2001).
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A4.2 Spherical harmonics

A4.2.1 The irreducible representations of the rotation group

Here we briefly repeat some basics about the rotation group and its irreducible
representations. Much more can be found in most quantum mechanics books, e.g., Sakurai
(1993). Here we are only interested in ordinary (i.e., not projective) representations and
therefore integer values of the angular momentum. For a function � on the sphere we
define its transformation under rotations R ∈ SO(3) by

[U(R)�] (n) ≡ �
(
R−1n

) ∀ n ∈ S
2 . (A4.22)

This is clearly a unitary representation of the rotation group on L2(S2), i.e. the Hilbert
space of square integrable functions on the sphere.

The one-parameter subgroup of rotations around a given axis e is

R(e, α)n = cos αn + [1 − cos α] (e · n)e + sin αe ∧ n . (A4.23)

Its generator is defined by


(e)n = d

dα
R(e, α)n

∣∣∣∣
α=0

.

With Eq. (A4.23) we obtain


(e)i j = ek I k
i j , where I k

i j = −εi jk . (A4.24)

The generator of U(R(e, α)) is the angular momentum in direction e;

d

dα
U(R(e, α))

∣∣∣∣
α=0

≡ U∗(I j )e j = i

h--
L j e j ,

with

L = −ih--x ∧ ∇ . (A4.25)

In spherical coordinates (r, ϑ, ϕ) one finds

L = ih--

(
sin ϕ cot ϑ∂ϕ + cos ϕ∂ϑ

cos ϕ cot ϑ∂ϕ − sin ϕ∂ϑ

−∂ϕ

)
. (A4.26)

One easily verifies that the matrices Ik and the operators Lk satisfy the commutation
relations [

I j , Ik
] = ε jkl Il , (A4.27)[

L j , Lk
] = +ih--ε jkl Ll . (A4.28)

Introducing also L± = L1 ± L2 and L2 = L2
1 + L2

2 + L2
3 one finds the commutation

relations [
L2, L j

] = 0 = [
L2, L±

]
, (A4.29)

[L3, L±] = ±h-- L± , and (A4.30)

L±L∓ = L2 − L2
3 ± h-- L3 . (A4.31)

Let us now consider a representation of the rotation group on some finite-dimensional
vector space V . Since L2 and L3 are commuting hermitian operators, we can find an
orthonormal basis of simultaneous eigenvectors of L2 and L3. We order them according to
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their eigenvalue of L3, so that the eigenvalue of ψ1 is maximal. Let us call it h--a.
Furthermore, h--2b denotes the corresponding eigenvalue of L2. Hence L3ψ1 = h--aψ1 and
L2ψ1 = h--2bψ1. Equation (A4.30) gives L3L+ψ1 = h--(a + 1)L+ψ1. Hence L+ψ1 is an
eigenvector of L3 with eigenvalue h--(a + 1) or zero. Since h--a is maximal, this implies
L+ψ1 = 0. With Eq. (A4.31) therefore 0 = (L2 − L2

3 − h-- L3)ψ1 = h--2(b − a(a + 1))ψ1,
so that b = a(a + 1). Applying L− on ψ1 and using again Eq. (A4.30), we find that L−ψ1
is also an eigenvector of L3 with eigenvalue h--(a − 1). Repeated application of L− shows
that (L−)mψ1 is an eigenvector of L3 with eigenvalue h--(a − m). We finally arrive at the
eigenvector with the lowest eigenvalue h--(a − n) of L3, let us call it

ψn+1 = (L−)nψ1/ ‖ (L−)nψ1 ‖ .

Necessarily, L−ψn+1 = 0 since it would otherwise have an even lower eigenvalue of L3.
From this we conclude

0 = L+(L−)n+1ψ1 = (L2 − L2
3 + h-- L3)(L−)nψ1 = h--2(b − (a − n)2 + a − n)(L−)nψ1 ,

so that b = (a − n)2 + n − a. Together with the previous identity, b = a(a + 1), this
implies a = n/2. Therefore, a must be an integer or half-integer number, the
representation with a = � is denoted by D(�) and has dimension n + 1 = 2� + 1. The
induced representation of the generators (the Lie algebra) defines the angular momentum,
L j = ih-- D(�)

∗ (I j ). The vector space which carries D(�) is denoted by V (�). The vectors(
(Ln

−)ψ1/ ‖ (Ln
−)ψ1 ‖ )2�

n=0 form an orthonormal basis of eigenvectors of L3 and L2; the
so-called canonical basis. The eigenvalues of L3 are h--�, h--(� − 1), . . . , −h--�. The
operator L2 is constant on V (�) with eigenvalue h--2�(� + 1). D(0) is the trivial
representation, D(0)(R) = 1I, which is irreducible only on a one-dimensional space; and
D(1) is the identical representation, D(1)(R) = R.

In the next section, when we realize these representations on L2(S2) we shall see that
only the representations D(�)

∗ with integer � can be lifted to representations of the rotation
group. Half-integer �s give projective representation with D(�)(R1)D(�)(R2) =
±D(�)(R1 R2) which are relevant in quantum mechanics where a state is only defined up to
a constant phase. The existence of particles with half-integer spin, fermions, is a purely
quantum mechanical phenomenon.

Acting with L± we can pass from one basis vector to every other in V (�). Hence the
representation D(�) is irreducible, i.e., V (�) contains no invariant subspaces. We have
obtained all irreducible representations of the rotation group in this way.

A4.2.2 The Clebsch–Gordan decomposition

The tensor product, V (�) ⊗ V (�′) carries the tensor representation D(�) ⊗ D(�′). In general
this representation is not irreducible but can be decomposed into a sum of irreducible
representations. We show that

D(�) ⊗ D(�′) =
�+�′∑

j=|�−�′|
D( j) . (A4.32)

This sum is called the Clebsch–Gordan series.
Without loss of generality, we assume � ≥ �′. The Leibnitz rule, implies that the induced

representation on the generators is (D(�) ⊗ D(�′))∗ = (D(�)
∗ ⊗ 1I) ⊕ (1I ⊗ D(�′)

∗ ). We denote
the canonical basis on V (�) by (ψ� m)�m=−�. L3 takes once the maximal value on the state
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ψ� � ⊗ ψ�′ �′ , where we have L3(ψ� � ⊗ ψ�′ �′ ) = (L3ψ� �) ⊗ ψ�′ �′ + ψ� � ⊗ (L3ψ�′ �′ ) =
h--(� + �′)ψ� � ⊗ ψ�′ �′ . Hence D(�) ⊗ D(�′) contains D( j) with j = � + �′ exactly once and
it does not contain any higher angular momentum. However, there are two states with
L3φ = h--(� + �′ − 1)φ, namely the states ψ� �−1 ⊗ ψ�′ �′ and ψ� � ⊗ ψ�′ �′−1, hence
D(�) ⊗ D(�′) must also contain D(�+�′−1) (except if �′ = 0). Furthermore, there are three
states with L3φ = h--(� + �′ − 2)φ, namely the states ψ� �−2 ⊗ ψ�′ �′ , ψ� �−1 ⊗ ψ�′ �′−1 and
ψ� � ⊗ ψ�′ �′−2, hence D(�) ⊗ D(�′) must in addition contain D(�+�′−2). This goes on until
the eigenvalue � + �′ − m, with m = 2�′ is reached, which has an eigenspace of
dimension m + 1 and which also implies that the representation D(�−�′) is contained. For
higher values of m the dimension of the eigenspace is reduced by one at each step and is
therefore just sufficient to contain the eigenvectors of each of the representations D( j)

already inferred. This can also be concluded from the fact that (2� + 1)(2�′ + 1) =∑�+�′
j=�−�′ (2 j + 1) and therefore the dimension of the total space agrees with the sum of the

dimensions of all the irreducible representations already defined. This proves the
Clebsch–Gordan series.

The matrix which induces the change of basis from the tensor product basis to the
canonical basis on each of the irreducible pieces of V (�) ⊗ V (�′) defines the
Clebsch–Gordan coefficients in the following way. We have seen that

V (�) ⊗ V (�′) = W (�+�′) ⊕ W (�+�′−1) ⊕ · · · ⊕ W (|�−�′|) ,

where W ( j) carries the representation D( j) of the rotation group. Let us denote the
canonical basis in W ( j) by

(
φ j m

) j

m=− j
. The transformation from the basis

(ψ� m ⊗ ψ�′ m ′ )�,�
′

m,m ′=−�,−�′ to the basis
((

φ j m
) j

m=− j

)�+�′

j=|�−�′|
is of the form

φ j m j =
∑
m,m ′

〈�, �′; m, m ′| j, m j 〉ψ� m ⊗ ψ�′ m ′ . (A4.33)

The complex coefficients 〈�, �′; m, m ′| j, m j 〉 are called Clebsch–Gordan coefficients. In
the literature they are often denoted by 〈�, �′; m, m ′| j, m j 〉 ≡ 〈�, �′; m, m ′|�, �′; j, m j 〉.
We shall not repeat the redundant numbers �, �′ in the second argument. From the above
discussion it is clear that 〈�, �′; m, m ′| j, m j 〉 
= 0 only if m j = m + m ′ and
j ∈ {� + �′, � + �′ − 1, . . . , |� − �′|}. The general formula for these coefficients is given
below (Abramowitz & Stegun, 1970). They can also be computed with Mathematica.

〈�1, �2; m1, m2| j, m1 + m2〉

=
√

(�1 + �2 − j)!( j + �1 − �2)!( j + �2 − �1)!(2 j + 1)

(�1 + �2 + j + 1)!

×
∑

k

[
(−1)k

√
(�1 + m1)!(�1 − m1)!(�2 + m2)!(�2 − m2)!

k!(�1 + �2 − j − k)!(�1 − m1 − k)!

×
√

( j + m1 + m2)!( j − m1 − m2)!

(�2 + m2 − k)!( j − �2 + m1 + k)!( j − �1 − m2 + k)!

]
. (A4.34)

In the sum over k only the terms with a finite denominator contribute, hence
k ≥ max{0, �2 − j − m1, �1 − j + m2} and k ≤ min{�1 + �2 − j, �1 − m1, �2 + m2}.
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Table A4.1. The non-vanishing Clebsch–Gordan coefficients for
�2 = 1. 〈�, 1; m, m2| j, m + m2〉.

j m2 = 1 m2 = 0 m2 = −1

� + 1
√

(�+m+1)(�+m+2)
(2�+1)(2�+2)

√
(�+m+1)(�−m+1)

(2�+1)(�+1)

√
(�−m+1)(�−m+2)

(2�+1)(2�+2)

� −
√

(�+m+1)(�−m)
2�(�+1)

m√
�(�+1)

√
(�−m+1)(�+m)

2�(�+1)

� − 1
√

(�−m−1)(�−m)
2�(2�+1) −

√
(�+m)(�−m)

�(2�+1)

√
(�+m)(�+m−1)

2�(2�+1)

In Chapter 5 we need the Clebsch–Gordan coefficients 〈�1, �2; m1, m2| j, m1 + m2〉 for
�2 ≤ 2. We therefore give the non-vanishing ones of these coefficients in Tables A4.1 and
A4.2. Of course 〈�1, 0; m1, 0|�, m〉 = δ�1 � δm1 m .

A4.2.3 Spherical harmonics of spin-0

The spherical harmonics are functions on the sphere. For a unit vector n defined by its
polar angles (ϑ, ϕ) the spherical harmonics are given by

Y�m(n) = (−1)m

√
2� + 1

4π

(� − m)!

(� + m)!
eimϕ P�m(µ) , µ = cos ϑ . (A4.35)

From the parity transformation properties and the orthogonality of the associated
Legendre functions, Eq. (A4.21), we conclude Y�−m = (−1)mȲ�m and∫

Y�m(n)Ȳ�′m ′ (n)d
n = δ��′δmm ′ . (A4.36)

We now show that the spherical harmonics (Y�m)�m=−� carry the representation D(�).
From Eq. (A4.26) we know L3 = −ih--∂ϕ . Therefore, the set of functions f�m which

forms a canonical basis for the representation D(�) must be of the form
f�m = exp(imϕ)g�m(µ). Furthermore, Eq. (A4.26) implies

L2 = L2
1 + L2

2 = L2
3 = −h--2

[
1

sin ϑ
∂ϑ sin ϑ∂ϑ + 1

sin2 ϑ
∂2
ϕ

]
= −h--2� ,

where � denotes the Laplacian on the 2-sphere. For f�m = exp(imϕ)g�m(µ) we obtain

� f�m =
[

(1 − µ2)
d2

dµ2
− 2µ

d

dµ
− m2

1 − µ2

]
g�m(µ) exp(imϕ) .

With L2 = h--2�(� + 1) it follows that g�m(µ) satisfies the differential equation of the
associated Legendre function, Eq. (A4.15), hence g�m = c�m P�m(µ). The constants c�m
are chosen to normalize the functions f�m . Furthermore, since f�m and f�′m ′ are
eigenfunctions with different eigenvalues for some hermitian operator (L3 if m 
= m ′ and
L2 if � 
= �′) they are certainly orthogonal. Hence the functions f�m are proportional to the
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Table A4.2. The non-vanishing Clebsch–Gordan coefficients for �2 = 2.
〈�, 2; m, m2| j, m + m2〉.

j m2 = 2 m2 = 1

� + 2
√

(�+m+1)(�+m+2)(�+m+3)(�+m+4)
(2�+1)(2�+2)(2�+3)(2�+4)

√
(�−m+1)(�+m+3)(�+m+2)(�+m+1)

(2�+1)(�+1)(2�+3)(�+2)

� + 1 −
√

(�+m+1)(�+m+2)(�+m+3)(�−m)
2�(�+1)(�+2)(2�+1) −(� − 2m)

√
(�+m+2)(�+m+1)

2�(2�+1)(�+1)(�+2)

�

√
3(�+m+1)(�+m+2)(�−m−1)(�−m)

(2�−1)2�(�+1)(2�+3) −(1 + 2m)
√

3(�−m)(�+m+1)
�(2�−1)(2�+2)(2�+3)

� − 1 −
√

(�+m+1)(�−m−2)(�−m−1)(�−m)
2(�−1)�(�+1)(2�+1) (� + 2m + 1)

√
(�−m)(�−m−1)

�(�−1)(2�+1)(2�+2)

� − 2
√

(�−m−3)(�−m−2)(�−m−1)(�−m)
(2�−2)(2�−1)2�(2�+1) −

√
(�−m)(�−m−1)(�−m−2)(�+m)

(�−1)(2�−1)�(2�+1)

j m2 = 0 m2 = −1

� + 2
√

3(�−m+2)(�−m+1)(�+m+2)(�+m+1)
(2�+1)(2�+2)(2�+3)(�+2)

√
(�−m+3)(�−m+2)(�−m+1)(�+m+1)

(2�+1)(�+1)(2�+3)(�+2)

� + 1 m
√

3(�−m+1)(�+m+1)
�(2�+1)(�+1)(�+2) (� + 2m)

√
(�−m+2)(�−m+1)

2�(2�+1)(�+1)(�+2)

� 3m2−�(�+1)√
(2�−1)�(2�+3)(�+1)

(2m − 1)
√

3(�−m+1)(�+m)
�(2�−1)(2�+2)(2�+3)

� − 1 −m
√

3(�−m)(�+m)
(�−1)�(2�+1)(�+1) −(� − 2m + 1)

√
(�+m)(�+m−1)

�(�−1)(2�+1)(2�+2)

� − 2
√

3(�−m)(�−m−1)(�+m)(�+m−1)
(2�−2)(2�−1)(2�+1)� −

√
(�−m)(�+m)(�+m−1)(�+m−2)

(�−1)(2�−1)�(2�+1)

j m2 = −2

� + 2
√

(�−m+1)(�−m+2)(�−m+3)(�−m+4)
(2�+1)(2�+2)(2�+3)(2�+4)

� + 1
√

(�−m+1)(�−m+2)(�−m+3)(�+m)
�(2�+1)(�+1)(2�+4)

�

√
3(�−m+1)(�−m+2)(�+m−1)(�+m)

�(2�−1)(2�+2)(2�+3)

� − 1
√

(�−m+1)(�+m−2)(�+m−1)(�+m)
(�−1)�(2�+1)(2�+2)

� − 2
√

(�+m−3)(�+m−2)(�+m−1)(�+m)
(2�−2)(2�−1)2�(2�+1)

spherical harmonics and obey the same normalization condition, i.e., they are the
spherical harmonics Y�m .

We can relate the spherical harmonic Y�m(n) to the matrix element D(�)
m0(R), where R is

a rotation which turns ez into n. To do this we observe that the spherical harmonics of
order � form an orthonormal basis for the (2� + 1)-dimensional space of functions on the
sphere which transform with the representation D(�) under rotation. Let f be such a
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function and ( fm) be its coefficients in the basis Y�m . In other words,

f (n) =
∑

m

fmY�m(n) .

Under a rotation, the vector ( fm) transforms with D(�)
m1m2

so that

f (R−1n) =
∑
m1

(∑
m2

D(�)
m1m2

(R) fm2

)
Y�m1 (n) .

Considering the function with fm2 = δmm2 this yields

Y�m(R−1n) =
∑
m1

D(�)
m1m(R)Y�m1 (n) . (A4.37)

Let us now consider n = ez . Using Y�m(ez) = δ0m
√

(2� + 1)/4π we arrive at

Y�m(R−1ez) =
√

2� + 1

4π
D(�)

0m(R) . (A4.38)

If R is an (otherwise arbitrary) rotation which turns n into ez , so that R−1ez = n, we
therefore have

Y�m(n) =
√

2� + 1

4π
D(�)

0m(R) . (A4.39)

Usually one chooses for R the rotation with Euler angles (0, −ϑ, −ϕ) for the unit vector n
with polar angles (ϑ, ϕ). We denote the representation matrix of the rotation by Euler
angles (α, β, γ ) by D(�)

mn(α, β, γ ): first a rotation by angle γ around the z-axis, then a
rotation by angle β around the y-axis and finally a rotation by angle α around the (new)
z-axis. The inverse of the rotation (α, β, γ ) is the rotation with Euler angles
(−γ, −β, −α). Observing that the representation D(�) is unitary we find

D(�)
0m(0, −ϑ, −ϕ) = D(�)−1

0m (ϕ, ϑ, 0) = D̄(�)
m0(ϕ, ϑ, 0) so that we can also write

Y�m(n) =
√

2� + 1

4π
D̄(�)

m0(ϕ, ϑ, 0) . (A4.40)

With this it is now easy to show the addition theorem of spherical harmonics. Consider
two directions n1 and n2 separated by an angle γ , cos γ = n1 · n2. We denote the rotation
with Euler angles (ϕ1, ϑ1, 0) by R1. It rotates ez into n1. With Eqs. (A4.37) and (A4.40)
we have

Y�0(R−1
1 n2) =

∑
m

D(�)
m0(R1)Y� m(n2) =

√
4π

2� + 1

∑
m

Ȳ�m(n1)Y�m(n2) . (A4.41)

But since R−1
1 rotates n1 into ez , the polar angle ϑ of R−1

1 n2 is simply the angle between
n1 and n2, so that Y�0(R−1

1 n2) = √
(2� + 1)/4π P�(n1 · n2). Inserting this above yields the

addition theorem for spherical harmonics,

2� + 1

4π
P�(n1 · n2) =

�∑
m=−�

Ȳ�m(n1)Y�m(n2) . (A4.42)
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The lowest � spherical harmonics are given by

� = 0 Y00 = 1√
4π

, (A4.43)

� = 1


Y11 = −

√
3

8π
sin ϑ eiϕ ,

Y10 =
√

3
4π

cos ϑ ,

(A4.44)

� = 2


Y22 =

√
15

32π
sin2 ϑ e2iϕ ,

Y21 = −
√

15
8π

sin ϑ cos ϑ eiϕ ,

Y20 =
√

5
4π

(
3
2 cos2 ϑ − 1

2

)
,

(A4.45)

� = 3



Y33 = −
√

35
64π

sin3 ϑ e3iϕ ,

Y32 =
√

105
32π

sin2 ϑ cos ϑ e2iϕ ,

Y31 = −
√

21
16π

sin ϑ
(

5
2 cos2 ϑ − 1

2

)
eiϕ ,

Y30 =
√

7
4π

cos ϑ
(

5
2 cos2 ϑ − 3

2

)
,

(A4.46)

Y� −m = (−1)mY ∗
�m . (A4.47)

A4.2.4 Spherical harmonics of spin s1

We now consider tensor fields on the sphere. We can express their components in terms
of the standard ‘real’ orthonormal basis, e1 = eϑ = ∂ϑ , e2 = eϕ = 1

sin ϑ
∂ϕ or in terms of

the helicity basis

e+ = 1√
2

(e1 − ie2) , e− = 1√
2

(e1 + ie2) . (A4.48)

Here we identify, as is often done, a vector with the derivative in a given direction. A
vector is then defined by its action on functions: e1 f = ∂ϑ f and e2 f = 1

sin ϑ
∂ϕ f . Note

also that the metric ds2 = dϑ2 + sin2 ϑ dϕ2 on the sphere has the components
g−+ = g+− = 1, and g++ = g−− = 0 in the helicity basis.

Under a rotation of the ‘real’ basis, e1 → cos γ e1 − sin γ e2, e2 → cos γ e2 + sin γ e1,
the helicity basis transforms as e+ → e−iγ e+, e− → eiγ e−.

The components of a tensor field of rank r in the helicity basis transform under a
rotation by

T

s︷ ︸︸ ︷
+ · · · +

r−s︷ ︸︸ ︷
− · · · − → ei(2s−r )γ T

s︷ ︸︸ ︷
+ · · · +

r−s︷ ︸︸ ︷
− · · · − . (A4.49)

For example, the components of a vector transform as V + → eiγ V + and V − → e−iγ V −.
(The vector itself V = V +e+ + V −e− is invariant, hence the components transform
‘contragradient’ to the basis.) Components which transform with eisγ are called
components of spin |s| or of helicity s.

1 A more detailed treatment of spin weighted spherical harmonics can be found in Goldberg (1967) and Newman
& Penrose (1966).
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We are mainly interested in symmetric (real) rank-2 tensors like the polarization. These
have one spin-0 component T +− = T −+ = 1

2 tr T ≡ I , one spin-2 component with
positive helicity, T ++ = 1

2 (T11 − T22) − iT12 and one spin-2 component with negative
helicity, T −− = 1

2 (T11 − T22) + iT12 (see Ex. A4.1).
We can write a symmetric rank-2 tensor in these components as

T = 1

2

[
I 1I + T ++σ+ + T −−σ−

]
, (A4.50)

where σ± = σ 3 ± iσ 1 are given by the Pauli matrices,

σ 3 =
(

1 0
0 −1

)
, σ 1 =

(
0 1
1 0

)
.

To expand a spin-s component of a tensor field on the sphere, one employs the spin
weighted spherical harmonics. These are spin-s components of tensor fields on the
2-sphere. In the basis (eϑ , eϕ) they are given in terms of the irreducible representations of
the rotation group by

sY�m(ϑ, ϕ) ≡
√

2� + 1

4π
D̄(�)

m−s(ϕ, ϑ, 0) , (A4.51)

= (−1)m

√
(2� + 1)

4π

(� + m)!(� − m)!

(� + s)!(� − s)!
(sin ϑ/2)2�eimϕ

×
∑

r

(
� − s

r

) (
� + s

r + s − m

)
(−1)�−r−s(cot ϑ/2)2r+s−m . (A4.52)

Here the sum over r goes over those values for which the binomial coefficients are
non-vanishing, this means max{0, m − s} ≤ r ≤ min{� − s, � + m}. (Remember

(
0
0

)
= 1.) The spin weighted spherical harmonics are defined for |s| ≤ � and |m| ≤ �. For each
fixed spin s they form a complete set of orthonormal functions on the sphere, so that∫

d
n sY
∗
�m(n) sY�′m ′ (n) = δ��′δmm ′ , (A4.53)

and ∑
�m

sY
∗
�m(n) sY�m(n) = δ(ϕ − ϕ′)δ(cos ϑ − cos ϑ ′) . (A4.54)

Since a rotation with angle ψ around the z axis simply rotates the matrix element D(�)
m −s

by a factor e−isψ , we also have

D̄(�)
m −s(ϕ, ϑ, ψ) =

√
4π

2� + 1
sY�m(ϑ, ϕ)eisψ . (A4.55)

Now let R1 be the rotation with Euler angles (ϕ1, ϑ1, 0) which rotates ez into n1 and R2
the rotation with Euler angles (ϕ2, ϑ2, 0) which rotates ez into n2. Let (α, β, γ ) be the
Euler angles of the rotation R−1

1 R2, which first rotates n2 into ez and then ez into n1. We
then have

D(�)
m −s(α, β, γ ) =

∑
m ′

D(�)−1
mm ′ (ϕ1, ϑ1, 0)D(�)

m ′ −s(ϕ2, ϑ2, 0)

=
∑
m ′

D̄(�)
m ′m(ϕ1, ϑ1, 0)D(�)

m ′ −s(ϕ2, ϑ2, 0)

= 4π

2� + 1

∑
m ′

sȲ�m ′ (n2) −mY�m ′ (n1) . (A4.56)
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Table A4.3. The spin-2 spherical
harmonics for � = 2.

m 2Y2m

2 1
8

√
5
π

(1 − cos ϑ)2e2iϕ

1 1
4

√
5
π

sin ϑ(1 − cos ϑ)eiϕ

0 3
4

√
5

6π
sin2 ϑ

−1 1
4

√
5
π

sin ϑ(1 + cos ϑ)e−iϕ

−2 1
8

√
5
π

(1 + cos ϑ)2e−2iϕ

Using Eq. (A4.55) we find√
4π

2� + 1

∑
m ′

sY�m ′ (ϑ2, ϕ2) −mȲ�m ′ (ϑ1, ϕ1) = sY�m(β, α)e−isγ . (A4.57)

This is the generalized addition theorem for spin weighted spherical harmonics.
In analogy to L± as raising and lowering operators for the ‘magnetic quantum number’

m, we introduce the spin raising and lowering operators /∂ and /∂∗. They are defined by,
µ = cos ϑ ,

/∂ sY�m =
(

s ctgϑ − ∂ϑ − i

sin ϑ
∂ϕ

)
sY�m (A4.58)

=
(

sµ√
1 − µ2

+
√

1 − µ2∂µ − i√
1 − µ2

∂ϕ

)
sY�m (A4.59)

= −(1 − µ2)
s
2

(
∂ϑ + i∂ϕ√

1 − µ2

)
[(1 − µ2)−s/2

sY�m],

/∂∗
sY�m =

(
−s ctgϑ − ∂ϑ + i

sin ϑ
∂ϕ

)
sY�m (A4.60)

=
(

−sµ√
1 − µ2

+
√

1 − µ2∂µ + i√
1 − µ2

∂ϕ

)
sY�m (A4.61)

= −(1 − µ2)
−s
2

(
∂ϑ − i∂ϕ√

1 − µ2

)
[(1 − µ2)s/2

sY�m] .

The interest of these operators is that they allow us to construct the spin weighted
spherical harmonics directly from the spin-0 harmonics and, inversely, we can use them to
build spin-0 quantities from spin weighted harmonics. One can actually show (e.g., by
using Eq. (A4.52)) that

/∂ ( sY�m) =
√

(� − s)(� + s + 1) s+1Y�m , (A4.62)

/∂∗ ( sY�m) = −
√

(� + s)(� − s + 1) s−1Y�m , (A4.63)
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and therefore

/∂2 ( −2Y�m) =
√

(� + 2)!

(� − 2)!
Y�m , (A4.64)

(/∂∗)2 ( 2Y�m) =
√

(� + 2)!

(� − 2)!
Y�m . (A4.65)

On the other hand, the spin-2 spherical harmonics can be obtained from the ordinary
spherical harmonics by acting twice with the differential operators /∂ or /∂∗,

(/∂)2Y�m =
√

(� + 2)!

(� − 2)!
2Y�m , (A4.66)

(/∂∗)2Y�m =
√

(� + 2)!

(� − 2)!
−2Y�m . (A4.67)

To see that /∂ s f has spin s + 1 and /∂∗
s f has spin s − 1, for an arbitrary component s f with

spin weight s, we show that /∂ is proportional to a covariant derivative in direction g+−e−
and correspondingly /∂∗ ∝ g−+∇e+ . Since /∂∗ is the adjoint of −/∂ , it is sufficient if we show
the first identity. For s = 0, using e+ = 1√

2
(eϑ − ieϕ) = 1√

2
(∂ϑ − i 1

sin ϑ
∂ϕ), we obtain

/∂∗ f = −√
2e+ f . For s 
= 0 tensor fields we have to compute the Christoffel symbols in

order to determine the covariant derivatives. In terms of the helicity basis, the canonical
metric on the 2-sphere takes the form ds2 = θ+θ−, where θ± denote the 1-forms dual to
the vector fields e± defined by θ+(e+) = θ−(e−) = 1 and θ−(e+) = θ+(e−) = 0. Hence

θ± = 1√
2

(dϑ ± i sin ϑ dϕ) .

Therefore, the metric components are simply g++ = g−− = 0 and g−+ = g+− = 1. A
careful evaluation of the Christoffel symbols defined by ∇ek e j = �i

k j ei in the helicity basis
gives2

�+
−+ = �−

+− = −�+
++ = −�−

−− = − 1√
2

cos ϑ

sin ϑ
= − 1√

2
ctgϑ . (A4.68)

All other Christoffel symbols vanish. With this we find for the covariant derivatives of the
spin-s components of a tensor

T +···+;+ = T +···+
;− = e−(T +···+) − s√

2
ctgϑT +···+ ,

= 1√
2

(
∂ϑ + i

sin ϑ
∂ϕ

)
(T +···+) − s√

2
ctgϑT +···+ ,

= 1√
2

[
∂ϑ − s ctgϑ + i

sin ϑ
∂ϕ

]
T +···+

= −1√
2
/∂T +···+ .

2 These Christoffel symbols are most easily calculated using the Cartan formalism which can be found in most
modern books on general relativity, e.g. Straumann (2004).
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In the same way one obtains

T +···+;− = −1√
2
/∂∗T +···+ .

In other words,

/∂ = −
√

2 ∇e− and /∂∗ = −
√

2 ∇e+ . (A4.69)

Since for an arbitrary rank-s tensor field the component T +···+ has helicity s and
T +···+;+ has helicity s + 1 while T +···+;− has helicity s − 1, this shows that /∂ and /∂∗ are
spin raising and lowering operators. Correspondingly one obtains −1√

2
/∂∗T −···− = T −···−;−

and −1√
2
/∂T −···− = T −···−;+, which have spin weight −s − 1 and −s + 1 respectively.

The spin-2 spherical harmonics are therefore just the doubly covariant derivatives of the
usual spherical harmonics,

−2Y�m = 2

√
(� − 2)!

(� + 2)!
∇e+∇e+Y�m , (A4.70)

+2Y�m = 2

√
(� − 2)!

(� + 2)!
∇e−∇e−Y�m . (A4.71)

Finally, we want to interpret the spin-0 quantities /∂/∂T −− and /∂∗/∂∗T ++ of a symmetric
traceless spin-2 tensor T = T ++e+ ⊗ e+ + T −−e− ⊗ e−. In Exercise A4.22 we find that
for a vector with components V + and V −, the divergence and curl are given by
V +

;− + V −
;+ = V i

;i = div V and V +
;− − V −

;+ = −iεi j V i ; j = −i rot V . Here εi j is the
totally anti-symmetric tensor in two dimensions,

εϑϑ = εϕϕ = 0, εϑϕ = −εϕϑ =
√

det g = sin ϑ . (A4.72)

In the same way one also finds

1

2

(
/∂∗2T ++ + /∂2T −−) = T ++;−− + T −−;++

= T i j
;i j = div(div(T )) , (A4.73)

1

2

(
/∂∗2T ++ − /∂2T −−) = T ++;−− − T −−;++

= −εikε jm T i j ;km = −rot(rot(T )) . (A4.74)

Hence the sum of the two scalars T ++;−− and T −−;++ gives the double divergence while
their difference gives the double curl of T . Note that in two dimensions the curl is a
(pseudo-)scalar. It is a three-dimensional (pseudo-)vector with a purely radial component
which as a field on the tangent space of the sphere has scalar character.

Exercise A4.2.1: Tensor components in the helicity basis
Show that the components T i j of a 2-tensor on the sphere are related to the components in
the helicity basis e+ and e− via

T ±,± = 1

2

(
T 11 − T 22 ∓ i(T 12 + T 21)

)
,

T ±,∓ = 1

2

(
T 11 + T 22 ± i(T 12 − T 21

)
.
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In particular, if T is symmetric T +− = T −+ = 1
2 tr T .

Exercise A4.2.2: Divergence and curl in the helicity basis
Show that for a vector field on the sphere given by

V = V +e+ + V −e− = V ϑ∂ϑ + V ϕ∂ϕ ,

we have

V +;− + V −;+ = V ϑ
,ϑ + V ϕ

,ϕ + ctgϑV ϑ = divV (A4.75)

V +;− − V −;+ = −i

(
1

sin ϑ
V ϑ

,ϕ − sin ϑV ϕ
,ϑ − 2 cos ϑV ϕ

)
,

= −i

sin ϑ

(
V ϑ

,ϕ − (sin2 ϑV ϕ),ϑ
) = −irotV . (A4.76)

Solution
We first calculate the Christoffel symbols with respect to the coordinate basis (ϑ, ϕ).
Using ds2 = dϑ2 + sin2 ϑ dϕ2 quickly gives

�ϑ
ϕϕ = − cos ϑ sin ϑ , �

ϕ
ϕϑ = �

ϕ
ϑϕ = ctg ϑ ,

and zero for all other Christoffel symbols, so that

V ϑ
;ϑ = V ϑ

,ϑ , (A4.77)

V ϑ
;ϕ = V ϑ

,ϕ − cos ϑ sin ϑV ϕ , (A4.78)

V ϕ
;ϕ = V ϕ

,ϕ + ctgϑV ϑ , (A4.79)

V ϕ
;ϑ = V ϕ

,ϑ + ctgϑV ϕ . (A4.80)

so that

divV = V ϑ
;ϑ + V ϕ

;ϕ = V ϑ
,ϑ + V ϕ

,ϕ + ctgϑV ϑ , (A4.81)

rotV =
√

det g(V ϑ ;ϕ − V ϕ;ϑ ) = sin ϑ

(
1

sin2 ϑ
V ϑ

;ϕ − V ϕ
;ϑ

)
= 1

sin ϑ
V ϑ

,ϕ − sin ϑV ϕ
,ϑ − 2 cos ϑV ϕ . (A4.82)

On the other hand, we have

V +;− ± V −;+ = V +
;+ ± V −

;− = V +
,+ ± V −

,− + �+
++V + ± �−

−−V − . (A4.83)

Inserting V ± = 1√
2
(V ϑ ± i sin ϑV ϕ) and V •

,± = 1√
2
(∂ϑ ∓ i

sin ϑ
∂ϕ)V • together with

�+
++ = �−

−− = 1√
2
ctg ϑ we find the above result.
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Exercise A4.2.3: The Laplacian in the helicity basis
In the helicity basis the Laplacian on the sphere is given by

� = gab∇b∇a = g−+∇−∇+ + g+−∇+∇− = ∇−∇+ + ∇+∇− = 1

2

(
/∂/∂∗ + /∂∗/∂

)
.

Apply this formula to the spherical harmonics Y�m to show that �Y�m = −�(� + 1)Y�m .

A4.3 Bessel functions

A4.3.1 Bessel functions of integer order

The Bessel functions Jν(x) and Yν(x) are real solutions to the differential equation

x2 d2 f

dx2
+ x

d f

dx
+ (x2 − ν2) f = 0 . (A4.84)

We only consider ν ∈ R, hence we may consider ν ≥ 0. Actually Jν and J−ν satisfy the
same differential equation but one defines

J−ν = cos(νπ )Jν − sin(νπ )Yν .

With this definition the Bessel functions are also analytic in the order ν. If ν ≥ 0, Jν is
regular at x = 0, Jν(x) ∝ xν for |x | � ν and Yν diverges, Yν(x) ∝ x−ν for |x | � ν. For
large values of |x | both functions oscillate with a period of approximately 2π and decay
like 1/

√
x . We sometimes also use the Hankel functions defined by

H (1)
ν = Jν + iYν , H (2)

ν = Jν − iYν . (A4.85)

All of these functions satisfy the recurrence relations

Fν−1 + Fν+1 = 2ν

x
Fν , (A4.86)

Fν−1 − Fν+1 = 2F ′
ν , (A4.87)

Fν−1 − ν

x
Fν = F ′

ν , (A4.88)

−Fν+1 + ν

x
Fν = F ′

ν . (A4.89)

The Bessel functions are well defined in the complex plane (with suitably chosen cuts)
even for complex values ν. The Bessel functions Jn , n ∈ N can be represented as the
integral

Jn(x) = (−i)n

π

∫ π

0
eix cos θ cos(nθ ) dθ . (A4.90)

With this one finds the useful expansion

eiy cos φ = J0(y) + 2
∞∑

n=1

i n Jn(y) cos(nφ) =
∞∑

n=−∞
i n Jn(y)einφ . (A4.91)

We shall also employ the modified Bessel functions which are defined by

Iν(x) = (−i)ν Jν(i x) , (A4.92)

Kν(x) = iπ

2
(i)ν H (1)

ν (i x) = − iπ

2
(−i)ν H (1)

ν (−i x) . (A4.93)
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A4.3.2 Spherical Bessel functions

The spherical Bessel (Hankel) functions are Bessel (Hankel) functions of half-integer
order,

jn(x) =
√

π

2x
Jn+1/2(x) , (A4.94)

yn(x) =
√

π

2x
Yn+1/2(x) , (A4.95)

h(1)
n = jn + iyn , (A4.96)

h(2)
n = jn − iyn . (A4.97)

They are solutions of the differential equation

x2 d2 f

dx2
+ 2x

d f

dx
+ (x2 − n(n + 1)) f = 0 . (A4.98)

The spherical Bessel/Hankel functions satisfy the recurrence relations

fn

x
= 1

2n + 1
( fn−1 + fn+1) , (A4.99)

f ′
n = 1

2n + 1
(n fn−1 − (n + 1) fn+1) . (A4.100)

Expressing the three-dimensional Laplace operator in polar coordinates, and observing
that the spherical part of the Laplacian applied to a spherical harmonic function gives
�ϑϕY�m = −�(� + 1)Y�m we find that j�(rk)Y�m(x̂) as well as y�(rk)Y�m(x̂) is a solution of(

� + k2
)

f = 0

for arbitrary values of � and −� ≤ m ≤ �. Only the j�s are regular at r = 0. On the other
hand, the exponential function, eix·k, for arbitrary k with modulus |k| = k also solves this
equation. Since the spherical harmonics form a complete system of functions on the
sphere, there must exist an expansion

eix·k = eikr x̂·k̂ =
∑
�m

c�m j�m(rk)Y�m(x̂) .

This represents the decomposition of the exponential into its contributions of orbital
angular momentum �. To determine the coefficients c�m , we choose the z-axis in the
direction of k, so that the function is independent of ϕ and only the terms with m = 0
contribute. Setting µ = cos ϑ this yields

eirkµ =
∑

�

c� 0 j�(rk)Y� 0(µ) =
∑

�

c� j�(rk)P�(µ) ,

where we have set c� = 2�+1
4π

c� 0 and made use of Eq. (A4.35). The coefficients c� are now
obtained by taking the nth derivative with respect to rk, multiplying with Pn and
integrating over µ (for more details see Arfken & Weber, 2001). One finds
c� = i�(2� + 1) so that

eik·nr =
∞∑

�=0

(2� + 1)i� j�(kr )P�(µ) . (A4.101)
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An important Bessel function integral which we use especially in Chapter 4 is

I (p, �) ≡ 2

π

∫ ∞

0
dx x p j2

� (x) =
∫ ∞

0
x p−1 J 2

�+1/2(x)

=
�(1 − p)�

(
� + p+1

2

)
21−p�2(1 − p/2)�

(
� + 3−p

2

) . (A4.102)

Here � denotes the Gamma function, i.e. �(n) = (n − 1)! for positive integers. The
integral is well defined for 1 > p > −2� − 1. Of special interest is the case p = −1
which occurs in the calculation of the CMB spectrum for scale-invariant fluctuations,

I (−1, �) = 1

π �(� + 1)
. (A4.103)



Appendix 5

Entropy production and heat flux

Here we show that the perturbation variable � defined in Eq. (2.82) is related to the
divergence of the entropy flux. We consider a system which deviates slightly from thermal
equilibrium.

A5.1 Thermal equilibrium

We first recollect some important relations in thermal equilibrium. We consider an
arbitrary mix of different (relativistic and non-relativistic) particles which may or may not
be conserved. The only total thermodynamical quantities then are temperature T , entropy
S, energy E , pressure P and volume V . We shall also use the densities s = d S/dV and
ρ = d E/dV . Certain conserved species may have a chemical potential, but we are not
interested in this ‘fine structure’ here. The corresponding treatment for one conserved
particle species can be found in Straumann (1984), Appendix B.

We start with the Gibbs relation

T d S = d E + P dV , or T
d S

dV
= T s = ρ + P . (A5.1)

S and E are extensive quantities. Locally they are simply given by S = sV and E = ρV .
Inserting this in the Gibbs relation we obtain

T V ds + T s dV = V dρ + ρ dV + P dV hence T ds = dρ . (A5.2)

Defining the entropy 4-velocity field by Uµ. The entropy flux is then given by
Sµ = sUµ = T −1(ρ + P)Uµ. In thermal equilibrium the entropy velocity coincides with
the energy flux uµ = Uµ, so that T µνUµ = −ρU ν . In thermal equilibrium we therefore
have

Sµ = − 1

T
UνT µν + P

T
Uµ . (A5.3)

In a FL background (Uµ) = (uµ) = a−1(1, 0) with Uµ
;µ = 3ȧ/a2, so that entropy

conservation becomes 0 = Sµ
;µ = a−1ṡ + 3(ȧ/a2)s which results in the well known law

of adiabatic expansion, ṡ = −3(ȧ/a)s. Furthermore, with Eq. (A5.2) small variations of
the entropy flux at fixed velocity field Uµ are given by

d Sµ = Uµ ds = 1

T
Uµ dρ = − 1

T
Uν dT µν . (A5.4)

357
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A5.2 Small departures from thermal equilibrium

We now proceed to the study of small deviations from equilibrium. There is some
arbitrariness in fitting the actual state with an equilibrium state plus small deviations.
Following Israel & Stewart (1980), we approximate the actual state with the thermal
equilibrium at the same energy density ρ and entropy velocity field Uµ. We neglect all
second-order quantities, taking into account only first-order deviations from thermal
equilibrium and/or from the FL background. We specify the deviation of the
energy–momentum tensor from thermal equilibrium, δT µν , by the following ansatz

T µν = (ρ + Peq)UµU ν + Peqgµν + δT µν . (A5.5)

Here Peq is the pressure of the thermal equilibrium state with energy density ρ. Setting
ρ = ρ̄ + δρ we therefore have Peq = P̄ + δP with δP = c2

s δρ.
On the other hand, the energy flux 4-velocity uµ is defined by (2.62) as the time-like

eigenvector of the energy–momentum tensor and T µν can also be written in the form

T µν = (ρ + P)uµuν + Pgµν + �µν = ρuµuν + τµν , (A5.6)

where τ is given in Eq. (2.66),

τµν = P(uµuν + gµν) + �µν , �λ
λ = 0 . (A5.7)

The tensor �µν is orthogonal to uµ, �µνuν = 0. Defining Qµ by

uµ = Uµ + Qµ ,

we can rewrite (A5.6) in the following manner:

T µν = (ρ + P)UµU ν + Pgµν + Uµqν + U νqµ + �µν

= (ρ + Peq)UµU ν + Peqgµν + Uµqν + U νqµ

+ (P − Peq)(UµU ν − gµν) + �µν , (A5.8)

where we have introduced

qµ = (ρ + p)Qµ . (A5.9)

�µν, δTµν, Qµ and therefore also qµ vanish in the background, they are of first order.
Since u2 = U 2 = −1, we have to first order q · U = 0, q · u = 0.

Identifying δT µν by comparing Eq. (A5.8) with the definition given in Eq. (A5.5), we
obtain to first order

δT µν = Uµqν + U νqµ + (P − Peq)(UµU ν − gµν) + �µν , (A5.10)

and

δT µνUµ = −qν − �µν Qµ = −qν ,

since �µν and Qµ are both first order and normal to Uµ. With Eq. (A5.4) the perturbed
entropy flux Sµ = Sµ

eq + δSµ becomes

Sµ = sUµ − 1

T
δT µνUν = sUµ + 1

T
qµ . (A5.11)

This equation shows that qµ represents the heat flux.

From P = P̄(1 + πL ) and Peq = P̄(1 + c2
s

w
δ), δ = δρ/ρ̄ we find with Eq. (2.82)

P − Peq = P̄

(
πL − c2

s

w
δ

)
= P̄� . (A5.12)
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Taking the divergence of Eq. (A5.11) we find

Sµ
;µ = s,µUµ + sUµ

;µ + T,µ

T 2
δT µνUν − 1

T
δT µν

;µU ν

− 1

T
δT µνU(ν;µ) , (A5.13)

where (ν; µ) denotes symmetrization, U(ν;µ) = 1
2 (Uµ;ν + Uν;µ). In the last term we have

used the fact that δT µν is symmetric. To evaluate the third term on the r.h.s. we make use
of energy–momentum conservation in the form

0 = UνT µν
;µ = Uν[(ρ + Peq)UµU ν + Peqgµν];µ + UνδT µν

;µ .

Expanding the derivative of the square bracket leads to

(ρ + Peq)Uµ
;µ + ρ,µUµ = δT µν

;µUν . (A5.14)

With Eq. (A5.1), the first term on the l.h.s. of Eq. (A5.14) canals the second term on the
r.h.s. of Eq. (A5.13), and Eq. (A5.2) implies s,µ = T −1ρ,µ, so that the second term of
Eq. (A5.14) canals the first term in Eq. (A5.13). The fourth term on the r.h.s. of
Eq. (A5.13) therefore cancels the first two and we are left with

Sµ
;µ = T,µ

T 2
qµ − 1

T
δT µνU(ν;µ) . (A5.15)

To evaluate δT µνU(ν;µ) we define the projector hµ
ν onto the three-dimensional subspace

of tangent space normal to Uµ:

hµ
ν = UµUν + δµ

ν ,

and the acceleration

aµ = U νUµ;ν .

With this it is easy to show that

Uµ;ν = hµ
αhν

βUα;β − aµUν .

Defining the expansion tensor θµν = θνµ = hµ
αhν

βU(α;β), Eq. (A5.15) now becomes

Sµ
;µ = − 1

T

(
T,µ

T
+ aµ

)
qµ − 1

T
δT µνθνµ . (A5.16)

The acceleration aµ is of first order, and to lowest order T,µ/T ∝ Uµ so that ( T ,µ

T + aµ)qµ

vanishes to first order. Furthermore, δT µν is of first order. To determine the divergence of
the entropy flux to first order, it is therefore sufficient to determine θνµ to zeroth order. But
to zeroth order

h0
0 = h0

i = hi
0 = 0 and h j

i = δ
j
i .

Furthermore, (Uµ) = −a(1, 0) so that

Ui ; j = −ȧδi j and U0;0 = U0; j = Ui ;0 = 0 .

Inserting this in the definition of θµν , we obtain

θi j = ȧ

a2
gi j and θ00 = θi0 = θ0 j = 0 . (A5.17)
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With Eq. (A5.16) the divergence of the entropy flux then becomes to first order

Sµ
;µ = 1

T
δT µνθνµ = 1

T
δT i jθi j = 3

ȧ

a2

P − Peq

T
= 3

ȧ

a2

P̄

T
� . (A5.18)

For the last equals sign we have used Eq. (A5.12). This demonstrates that the entropy
production rate is proportional to �.

A5.3 Phenomenological coefficients

Finally, for completeness, we want to introduce the heat conductivity coefficient as well as
bulk and shear viscosities. We now no longer assume the energy–momentum tensor to be
nearly homogeneous and isotropic, but we allow only for small departures from thermal
equilibrium which we take into account to first order only. It is then easy to check that
Eq. (A5.16) is still valid. We now define ηµν by

δT µν = ηµν + Uµqν + qµU ν, η ≡ ηµ
µ . (A5.19)

From Eq. (A5.10) we have Uµηµν = 0, hence hµ
α hν

βηαβ = hµ
αηαν = ηµν . Therefore ηµν

‘lies’ in the hypersurface of tangent space normal to Uµ,

Sµ
;µ = − 1

T 2
qµhν

µ

(
T,ν + T aν

) − 1

T
ηµνθµν . (A5.20)

Let us also introduce the traceless part of ηµν ,

η̂µν = ηµν − 1

3
η hµν .

With the shear tensor defined by

σµν = θνµ − 1

3
θhνµ , θ = θµ

µ ,

Eq. (A5.16) can now be written as

Sµ
;µ = − 1

T 2
qµhν

µ

(
T,µ + T aµ

) − 1

T
η̂µνσµν − 1

3T
θη . (A5.21)

The three terms in Eq. (A5.21) are independent. The second law of thermodynamics,
Sµ

;µ ≥ 0, requires that each of them be non-negative. This is only possble if

qµ = −χhµν
(
T,ν + T aν

)
, χ ≥ 0 (A5.22)

η̂µν = −2ζσµν , ζ ≥ 0 (A5.23)

η = −3ξθ , ξ ≥ 0 . (A5.24)

The quantities ζ and ξ are called the shear and bulk viscosity respectively and χ is the
heat conductivity coefficient. For small deviations from thermal equilibrium, the second
law of thermodynamics requires that δT µν be fully determined by these three coefficients
and be of the form

δT µν = −χ
[
Uµhνλ

(
T,λ + T aλ

) + U νhµλ
(
T,λ + T aλ

)] − 2ζσµν − ξθhµν .

(A5.25)
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Eq. (A5.22) is the relativistic generalization of Fourier’s law, q = −χ∇∇T . In terms of the
phenomenological coefficients χ, ζ and ξ the entropy production is given by

Sµ
;µ = 1

χT 2
qµqµ + 2ζ

T
σµνσµν + ξ

T
θ2 ≥ 0 . (A5.26)

Each of these contributions is non-negative since qµ is a spatial vector and σµν is a spatial
tensor. They are understood as entropy production due to heat flux, shear viscosity and
bulk viscosity respectively. Only the third term, the bulk viscosity, contributes to first order
in deviations from homogeneity and isotropy, since in this case qµ and σµν are small.



Appendix 6

Mixtures

In this appendix we derive Eqs. (2.136) and (2.137). Let us first recall the definitions of
the difference variables,

Sαβ =
[

Dgα

1 + wα

− Dgβ

1 + wβ

]
, (A6.1)

Vαβ = Vα − Vβ , (A6.2)

�αβ = wα

1 + wα

�α − wβ

1 + wβ

�β , (A6.3)

�αβ = wα

1 + wα

�α − wβ

1 + wβ

�β . (A6.4)

We now calculate the derivative of one of the terms in Sαβ .(
Dgα

1 + wα

)·
= Ḋgα

1 + wα

− ẇα

1 + wα

Dgα

1 + wα

= (1 + wα)−1
[
Ḋgα + 3H(c2

α − wα)Dgα

]
= −kVα − 3H wα

1 + wα

�α . (A6.5)

For the second equals sign we have used ẇα = −3H(c2
α − wα)(1 + wα) and for the last

equals sign we have inserted Eq. (2.130). With the definition (A6.1) we now simply obtain
Eq. (2.136):

Ṡαβ = −kVαβ − 3H�αβ . (A6.6)

To find a differential equation for Vαβ we first take the difference of Eq. (2.130)
for the component α with the same equation for component β.
This leads to

V̇αβ + HVαβ − 3H(c2
αVα − c2

β Vβ) = 3k(c2
α − c2

β)� + kc2
α

Dgα

1 + wα

−kc2
β

Dgβ

1 + wβ

+ k�αβ − 2k

3

(
1 − 3K

k2

)
�αβ .

(A6.7)
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We now write
Dgα

1 + wα

= Dg

1 + w
+ Dgα

1 + wα

− Dg

1 + w

= Dg

1 + w
+

∑
γ

ργ + Pγ

ρ + P

(
Dgα

1 + wα

− Dgγ

1 + wγ

)
,

= Dg

1 + w
+

∑
γ

ργ + Pγ

ρ + P
Sαγ . (A6.8)

Inserting this and k Dg

1+w
= k D

1+w
− 3k� − 3HV in Eq. (A6.7) yields

V̇αβ + HVαβ − 3H
[
c2
α(Vα − V ) − c2

β(Vβ − V )
] = k

(
c2
α − c2

β

)
1 + w

D

+ k
∑

γ

ργ + Pγ

ρ + P

(
c2
α Sαγ − c2

β Sβγ

) + k�αβ − 2k

3

(
1 − 3K

k2

)
�αβ . (A6.9)

Note also that Vα − V = ∑
γ

ργ +Pγ

ρ+P (Vα − Vγ ) = ∑
γ

ργ +Pγ

ρ+P Vαγ . Furthermore,

(ργ + Pγ )Sαγ = 1
2 (ργ + Pγ )[Sαγ + Sβγ ] + 1

2 (ργ + Pγ )[Sαγ − Sβγ ]. Using
Sαγ − Sβγ = Sαβ this gives∑

γ

(ργ + Pγ )Sαγ = 1

2

∑
γ

(ργ + Pγ )[Sαγ + Sβγ ] + 1

2
(ρ + P)Sαβ .

The same identity holds with S.. replaced by V... Inserting this in Eq. (A6.9) we finally
obtain Eq. (2.137):

V̇αβ + HVαβ − 3

2
H

(
c2
α + c2

β

)
Vαβ − 3

2
H

(
c2
α − c2

β

) ∑
γ

ργ + Pγ

ρ + P

(
Vαγ + Vβγ

)
= k

[
c2
α − c2

β

1 + w
D + c2

α + c2
β

2
Sαβ + c2

α − c2
β

2

∑
γ

ργ + Pγ

ρ + P

(
Sαγ + Sβγ

)
+ �αβ − 3

2

(
1 − 3K

k2

)
�αβ

]
. (A6.10)



Appendix 7

Statistical utensils

A7.1 Gaussian random variables

A7.1.1 Introduction

A random variable is a real function X on a probability space (
, dµ). The set 
 is a
measurable space with normalized measure µ, i.e.,

∫



dµ = 1. The integral∫



X dµ = 〈X〉 ,

is called the expectation value or simply the mean of X .∫



(X − 〈X〉)2 dµ = 〈X2〉 − 〈X〉2 ,

is called the variance of X and its (positive) square root is the ‘standard deviation’. If
〈X〉 = 0, we call X a fluctuation. We are mainly interested in fluctuations. We sometimes
call 
 the ‘space of realizations’ or the ‘ensemble’. A random variable is strongly
continuous if the derivative of its probability distribution dµ/d X ≡ p is an integrable
function1 on R. Then we can write

〈X〉 =
∫




X dµ =
∫

R

xp(x) dx . (A7.1)

The probability distribution satisfies the normalization condition∫
R

p(x) dx = 1 .

The distribution function p(x), also called the probability density, fully determines the
random variable.

Definition A7.1: A random variable with probability distribution

p(x) = 1√
2πσ

e−(x−x0)2/2σ 2
,

is called a Gaussian random variable (normal distribution) with mean x0 and variance σ 2.

1 In the more general case, p is a distribution in the sense of Schwartz, i.e., a functional on some space of functions
on R.
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The Gaussian distribution with mean 0 and variance 1 is called the standard normal
distribution.

The cumulants of a random variable with mean x0 are defined by

Vn ≡
∫ ∞

−∞
(x − x0)n p(x) dx . (A7.2)

The cumulants of a Gaussian random variable are given by

V0 = 1, Vn =
{

0 if n is odd
σ n(n − 1)!! if n > 0, is even ,

(A7.3)

where the double factorial of a number is defined by m!! = m(m − 2)(m − 4) · · ·. This
statement is evident for n odd. The proof of the even case is easiest done by induction and
is left as an exercise.

A7.1.2 The central limit theorem

Let Xi be independent random variables with means xi and variances σi . Independence
means that 〈(Xi − xi )(X j − x j )〉 = δi jσ

2
i . Then the sums

Sn =
∑n

i=1 Xi − xi√
n

∑n
i=1 σi

,

converge (weakly) to the standard normal distribution. A proof of this important theorem
can be found in most texts on probability theory.2

In physics it means that an experimental error which comes from many independent
sources is often close to Gaussian.

For the CMB its main relevance is that the observed C�s, which are given by the
average Co

� = 1
2�+1

∑�
−� |a� m |2 even though by themselves not Gaussian, tend to Gaussian

variables with mean C� and variance C2
� /� for large �. As we have seen in Section 6.4.2,

the variance of the variable |a� m |2 is 2C2
� , therefore the central limit theorem implies that

√
2√

(2� + 1)C�

�∑
−�

(|a� m |2 − C�) ,

converges to the standard normal distribution. Hence Co
� converges to a Gaussian

distribution with mean C� and variance C2
� /� which becomes small with increasing �.

A7.1.3 A collection of Gaussian random variables

A collection X1 · · · X N of random variables is called Gaussian if their joint probability
density is given by

p(x) = 1√
(2π )N det(C)

exp

(
−1

2
xT C−1x

)
, x ∈ R

N , (A7.4)

where C is a real, positive-definite, symmetric N × N matrix.

2 There is a technical condition which has to be fulfilled for the theorem to hold. It ensures that the series is not
dominated by one (or a small number) of variables. This is certainly fulfilled if the variables Xi are equally
distributed. But the central limit theorem applies in much more general cases.
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First we show that

〈Xi X j 〉 ≡ 1√
(2π )N det(C)

∫
xi x j exp

(
−1

2
xT C−1x

)
dx N = Ci j . (A7.5)

To prove this, we use the fact that symmetric matrices can be diagonalized. In other
words, there exists an orthogonal matrix S, SST = 1 so that

ST C−1S = D =


λ1 0 · · ·
0 λ2 0 · · ·

...
0 · · · 0 λN

 . (A7.6)

Since | det S| = 1, 1/ det C = det D = λ1λ2 · · · λN and for y = Sx we have d N x = d N y.
This yields

〈Xi X j 〉 = ST
ik ST

jl

√
�N

n=1λn

(2π )N/2

∫
yk yl exp

(
−1

2

N∑
n=1

y2
nλn

)
dx N

= ST
ik(λk)−1δkl Sl j = (ST D−1S)i j = Ci j . (A7.7)

Here the sum over repeated indices is understood and we have made use of Eq. (A7.3) for
the case n = 1 if k 
= l and n = 2 if k = l. For obvious reasons, the matrix C is called the
correlation matrix.

It is easy to see that arbitrary linear combinations of a collection of Gaussian random
variables result again in a collection of Gaussian random variables, whereas powers of
Gaussian random variables are not Gaussian. Actually, the sum of the squares of n
independent Gaussian random variables with the same distribution results in a
χ2-distributed variable with n degrees of freedom.

A7.1.4 Wick’s theorem

Wick’s theorem provides a general formula for the n-point correlator of a collection of
Gaussian variables. In this sense it is a generalization of Eq. (A7.3). It is clear that for n
odd the result vanishes. For even ns we obtain the n-point correlator by summing all the
possible products of 2-point correlators made from the variables Xi1 , . . . , Xin ,

〈Xi1 . . . Xi2n 〉 =
∑

{ j1,... j2n}={i1,...i2n}
C j1 j2 · · · C j2n−1 j2n . (A7.8)

Here the sum is not over all permutations, but only over those which give rise to different
pairs. Since Ci j = C ji we could also simply sum over all permutations of (i1, . . . , i2n) and
divide by 2nn!, since for each collection into pairs, there are 2nn! permutations which give
rise to the same pairs. The factor 2n stems from the fact that in each of the pairs we can
interchange the factors and n! permutations simply interchange some of the pairs. For
example, 2n = 4 admits 4!/222 = 3 different pairings, namely 〈X1 X2〉〈X3 X4〉,
〈X1 X3〉〈X2 X4〉 and 〈X1 X4〉〈X3 X2〉.

This theorem is extremely important not only in probability theory but also in field
theory. It means that for a collection of Gaussian random variables, all n-point correlators
are determined by the 2-point correlator alone. Since its proof is not easily found in texts
on probability but more often in the infinite-dimensional context of field theory where it is
more complicated, we present it here for those who are interested.
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Proof: We consider only the case of a diagonal covariance matrix C . The general case
can then be obtained by diagonalization of C in the same way as in Eq. (A7.7). We show
Eq. (A7.8) by induction. The case n = 1 is nothing other than Eq. (A7.7). For the step
from n to n + 1 we use the fact that for an exponentially decaying function∫ ∞
−∞ dx d f

dx = 0, hence

0 =
∫

dx N d2

x j xk

(
xi1 xi2 · · · xi2n e− ∑N

m=1 x2
mλm/2

)
=

∫
dx N

(
2n∑

r 
=s=1

δir jδis k xi1 · · · x̌ ir · · · x̌ is · · · xi2n − λ jδ jk xi1 · · · xi2n

+ λ jλk x j xk xi1 · · · xi2n −
∑

r

λ j x jδkir xi1 · · · x̌ ir · · · xi2n

−
∑

r

λk xkδ j ir xi1 · · · x̌ ir · · · xi2n

)
e− ∑N

m=1 x2
mλm/2 .

Here a check over a variable xm means that this variable is omitted in the product. In the
above integral, all except the term proportional to λ jλk are 2n-point correlators. We can
therefore express the (2n + 2)-point correlator proportional to λ jλk in terms of 2n-point
correlators. Furthermore, we shall use the fact that λ−1

k δ jk = 〈X j Xk〉. The above equation
therefore gives

〈X j Xk Xi1 · · · Xi2n 〉 = −
2n∑

r 
=s=1

〈Xir X j 〉〈Xis Xk〉〈Xi1 · · · X̌ ir · · · X̌ is · · · Xi2n 〉

+ 〈X j Xk〉〈Xi1 · · · Xi2n 〉
+

∑
r

〈Xk Xir 〉〈X j Xi1 · · · X̌ ir · · · Xi2n 〉

+
∑

r

〈X j Xir 〉〈Xk Xi1 · · · X̌ ir · · · Xi2n 〉 .

Wick’s theorem for 2n implies that

〈Xk Xi1 · · · X̌ ir · · · Xi2n 〉 =
∑

s

〈Xk Xis 〉〈Xi1 · · · X̌ ir · · · X̌ is · · · Xi2n 〉 .

Therefore, the last sum cancels with the double sum and we end up with

〈X j Xk Xi1 · · · Xi2n 〉 = 〈X j Xk〉〈Xi1 · · · Xi2n 〉
+

∑
r

〈Xk Xir 〉〈X j Xi1 · · · X̌ ir · · · Xi2n 〉 . (A7.9)

But since the 2n-point correlators 〈Xi1 · · · Xi2n 〉 and 〈X j Xi1 · · · X̌ ir · · · Xi2n 〉 are the sum of
all possible products of 2-point correlators, this represents simply the sum of all possible
products of 2-point correlators of X j , Xk , Xi1 , . . . , Xi2n , hence Wick’s theorem is proven.

A7.2 Random fields

A random field is an application X : S → {random variables} : n �→ X (n) which
assigns to each point n in the space S a random variable X (n). Here the space S can be R

n ,
the sphere or some other space. We think mainly of S being the CMB sky, hence the
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sphere on which our random fields are for example the temperature fluctuations �T (n) or
the polarization. Another example is three-dimensional-space (either R

3, the 3-sphere or
the 3-pseudo-sphere) where, for example, the density and velocity fluctuations are random
fields of interest to us.

Definition A7.2: A random field is called Gaussian if arbitrary collections
X (n1), . . . , X (nN ) are Gaussian random variables. The correlator

〈X (n1)X (n2)〉 = C(n1, n2)

is called the correlation function or the 2-point function.

For Gaussian random fields, the n-point function is given by the sum of all possible
different products of 2-point functions.3

A7.2.1 Statistical homogeneity and isotropy

A random field respects a symmetry group G of the space S if the correlation function is
invariant under transformations n �→ Rn for all R ∈ G. In other words

C(Rn1, Rn2) = C(n1, n2) .

For this it is not necessary that X (n) = X (Rn), but the transformed variable must have
identical statistical properties. In cosmology, we expect the CMB sky to be statistically
isotropic, i.e., invariant under rotations. This means that the correlation function is a
function only of the scalar product µ = n1 · n2. Therefore, we can expand it in terms of
Legendre polynomials,

C(n1, n2) = C(µ) = 1

4π

∑
�

(2� + 1)C� P�(µ) . (A7.10)

We shall show now, that when expanding a statistically isotropic random variable on the
CMB sky in spherical harmonics,

X (n) =
∑
�m

a�mY�m(n) (A7.11)

the coefficients a�m satisfy

〈a�1m1 ā�2m2〉 = δm1m2δ�1�2 C�1 . (A7.12)

To see this we write the correlation function as∑
�m

C�Y�m(n1)Ȳ�m(n2) =
∑

�m�′m ′
〈a�mā�′m ′ 〉Y�m(n1)Ȳ�′m ′ (n2) . (A7.13)

For the left-hand side of this equation we have used the addition theorem for spherical
harmonics (see Appendix A4.2.3) to replace the P�s in Eq. (A7.10) and for the left-hand
side we simply used the expansion (A7.11). Multiplying this equation by
Ȳ�1m1 (n1)Y�2m2 (n2) and integrating over n1 and n2 we obtain Eq. (A7.12).

Therefore, for statistically isotropic random fields, the expansion in terms of spherical
harmonics diagonalizes the correlation function. This is why it is so useful to determine

3 Physicists are often more familiar with quantum field theory. In (Euclidean) quantum field theory the 2-point
function is called the propagator and the theory is Gaussian if and only if it is trivial. Only in the absence of
interactions are all n-point functions determined by the propagators and the so-called ‘connected part’, which
is the n-point function subtracted by the Gaussian result, vanishes.
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the a�ms measured by an experiment. If the underlying fluctuations are Gaussian, these are
independent Gaussian variables.

Let us now turn to random fields on three-dimensional space. For simplicity we
consider Euclidean space. For a random field X (x) we expect its statistical properties to be
independent of translations and rotations. Therefore, the correlation function C(x1, x2)
depends only on the distance |x1 − x2| ≡ r . We now show that for statistically
homogeneous random fields, the power spectrum is simply the Fourier transform of the
correlation function. Statistical isotropy implies that the latter depends only on the
modulus of k. In Chapter 2 we have defined the power spectrum of a statistically
homogeneous and isotropic random field X by

〈X (k)X̄ (k′)〉 = (2π )3δ(k − k′)PX (k) . (A7.14)

We shall now see that 〈X (k)X̄ (k′)〉 is indeed of this form and that

PX (k) = Ĉ(k) . (A7.15)

We simply insert the definition

〈X (k)X̄ (k′)〉 =
∫

d3x d3x ′ 〈X (x)X (x′)〉ei(k·x−k′ ·x′)

=
∫

d3x d3x ′ 〈C(x − x′)〉ei(k·(x−x′)−(k′−k)·x′)

=
∫

d3z d3x ′ 〈C(z)〉ei(k·z−(k′−k)·x′)

= (2π )3 δ(k − k′)Ĉ(k) .

For the third equals sign we made the variable transform z = x − x′ and for the last equals
sign we used the fact that the integral of eik·x is a delta function. This proves the ansatz
(A7.14) and Eq. (A7.15). This shows that for statistically homogeneous fields, the Fourier
coefficients X (k) are independent random variables and are therefore especially useful for
statistical analysis and parameter estimation.



Appendix 8

Approximation for the tensor C� spectrum

In this appendix we derive in a self-consistent way the approximation (2.256) for the C�

power spectrum of tensor perturbations in a FL background with vanishing curvature,
K = 0. We start with the power spectrum of tensor perturbations of the metric,〈

H (T )
i j (k, t)H (T )∗

mn (k′, t ′)
〉
= (2π )3 Pi jmn(k, t, t ′)δ3(k − k′) .

H (T )
i j (k, t) is symmetric, traceless and transverse, and since its Fourier transform is real we

have H (T )∗
i j (k, t) = H (T )

i j (−k, t), hence Pi jmn(k, t, t ′) = Pmni j (−k, t ′, t).
We define the projection tensor onto the plane normal to k,

Pi j = δi j − k−2ki k j . (A8.1)

The most generic tensor Pi jmn which has the above properties, is isotropic1 and is also
invariant under parity, Pi jmn(k, t, t ′) = Pi jmn(−k, t, t ′), is to be of the form2

Pi jmn(k, t, t ′) = H(k, t, t ′)Mi jmn(k) with (A8.2)

Mi jmn(k) ≡ Pim Pjn + Pin Pjm − Pi j Pmn

= [δimδ jn + δinδ jm − δi jδmn + k−2(δi j kmkn

+ δmnki k j − δimk j kn − δinkmk j − δ jmki kn − δ jnkmki )

+ k−4ki k j kmkn] . (A8.3)

The Fourier transform on Eq. (2.234) gives(
�T (n, k)

T

)(T )

= −
∫ f

i
dt exp(ik · n(t0 − t)) ∂t Hi j (t, k)ni n j . (A8.4)

1 This means that only k and invariant tensors like δi j or εi jm enter its construction. No external given vector or
tensor which is not invariant under rotations is allowed.

2 If we do not require parity invariance, an additional term proportional to Ai jlm =
k−1kq

(
Pjmεilq + Pilε jmq + Pimε jlq + Pjlεimq

)
can be added. But this term changes sign under parity

and can be shown to be proportional to the difference of the amplitudes of the two polarization states (Caprini
et al., 2004). When it is present, parity violating terms (like corrolators between the temperature anisotropy and
B-polarization, (see Caprini et al., 2004 and Chapter 5) appear. We neglect this possibility in this appendix.
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With this and Eq. (A8.2) we obtain〈
�T

T
(n, x)

�T

T
(n′, x)

〉
≡

(
1

2π

)6 ∫
d3k d3k ′

〈
�T

T
(n, k)

�T

T
(n′, k′)

〉
exp(−ix(k − k′))

=
(

1

2π

)3 ∫
k2 dk d
k̂

∫ t0

tdec

dt
∫ t0

tdec

dt ′ exp(ik · n(t0 − t)) exp(−ik · n′(t0 − t ′))

× ∂2

∂t∂t ′ Pi jlm(k, t, t ′)ni n j n
′
ln

′
m . (A8.5)

Here d
k̂ denotes the integral over directions in k space and we made use of the
δ3-function to get rid of the integral over d3k ′.

We now introduce the form (A8.2) of Pi jlm . We further assume that the perturbations
have been created at some early epoch, e.g. during an inflationary phase, after which they
evolved deterministically. The function H(k, t, t ′) is thus a product of the form

H(k, t, t ′) = H (k, t) · H∗(k, t ′) , (A8.6)

where H (k, t) is the growing mode solution of Eq. (2.108) with the correct initial
spectrum, 〈Hi j (k, tin)H∗

i j (k
′, tin)〉 = 4|H (k, tin)|2δ2(k − k′) and

〈Ḣi j (k, tin)Ḣ∗
i j (k

′, tin)〉 = 4|Ḣ (k, tin)|2δ(k − k′). Introducing this form of Pi jlm in
Eq. (A8.5) yields〈

�T

T
(n)

�T

T
(n′)

〉
=

(
1

2π

)3 ∫
k2 dk d
k̂

[
2(n · n′)2 − 1 + µ′2 + µ2 − 4µµ′(n · n′) + µ2µ′2]

×
∫ t0

tdec

dt
∫ t0

tdec

dt ′ [Ḣ (k, t)Ḣ∗(k, t ′) exp(ikµ(t0 − t)) exp(−ikµ′(t0 − t ′))] , (A8.7)

where µ = (n · k̂), µ′ = (n′ · k̂) and Ḣ = ∂t H . To proceed, we use the identity
(Abramowitz & Stegun, 1970)

exp(ikµ(t0 − t)) =
∞∑

r=0

(2r + 1)ir jr (k(t0 − t))Pr (µ) . (A8.8)

Here jr denotes the spherical Bessel function of order r and Pr is the Legendre
polynomial of degree r .

Furthermore, we replace each factor of µ in Eq. (A8.7) by a derivative of the exponential
exp(ikµ(t0 − t)) with respect to k(t0 − t) and correspondingly with µ′. We then obtain〈

�T

T
(n)

�T

T
(n′)

〉
=

(
1

2π

)3 ∑
r,r ′

(2r + 1)(2r ′ + 1)i (r−r ′)
∫

k2 dk d
k̂ Pr (µ)Pr ′ (µ′)

×
[
2(n · n′)2

∫
dt dt ′ jr (k(t0 − t)) jr ′ (k(t0 − t ′))Ḣ (k, t)Ḣ∗(k, t ′)
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−
∫

dtdt ′[ jr (k(t0 − t)) jr ′ (k(t0 − t ′)) + j ′′
r (k(t0 − t)) jr ′ (k(t0 − t ′))

+ jr (k(t0 − t)) j ′′
r ′ (k(t0 − t ′)) − j ′′

r (k(t0 − t)) j ′′
r ′ (k(t0 − t ′))]Ḣ (k, t)Ḣ∗(k, t ′)

− 4(n · n′)
∫

dt dt ′ j ′
r (k(t0 − t)) j ′

r ′ (k(t0 − t ′))Ḣ (k, t)Ḣ∗(k, t ′)
]

. (A8.9)

The primes on the Bessel functions denote the derivative with respect to the argument of
the function. In the expression (A8.9) only the Legendre polynomials, Pr (µ) and Pr ′ (µ′)
depend on the direction k̂. To perform the integration d
k̂, we use the addition theorem
for spherical harmonics (see Appendix A4.2.3),

Pr (µ) = 4π

(2r + 1)

r∑
s=−r

Yrs(n)Y ∗
rs(k̂) . (A8.10)

The orthogonality of spherical harmonics (see Appendix A4.2.3) then yields

(2r + 1)(2r ′ + 1)
∫

d
k̂ Pr (µ)Pr ′ (µ′)

= 16π2δrr ′

r∑
s=−r

Yrs(n)Y ∗
rs(n′)

= (2r + 1)4πδrr ′ Pr (n · n′) . (A8.11)

In Eq. (A8.9) the integration over d
k̂ leads to terms of the form (n · n′)Pr (n · n′) and
(n · n′)2 Pr (n · n′). To reduce them, we use recursion relations for Legendre polynomials
like

x Pr (x) = r + 1

2r + 1
Pr+1 + r

2r + 1
Pr−1 . (A8.12)

Applying this and its iteration for x2 Pr (x), we obtain

〈
�T

T
(n)

�T

T

∗
(n′)

〉
= 1

2π2

∑
r

(2r + 1)
∫

k2dk
∫

dtdt ′ Ḣ (k, t)Ḣ∗(k, t ′) ×{[
2(r + 1)(r + 2)

(2r + 1)(2r + 3)
Pr+2 + 1

(2r − 1)(2r + 3)
Pr + 2r (r − 1)

(2r − 1)(2r + 1)
Pr−2

]
× jr (k(t0 − t)) jr (k(t0 − t ′)) − Pr [ jr (k(t0 − t)) j ′′

r (k(t0 − t ′))
+ jr (k(t0 − t ′)) j ′′

r (k(t0 − t)) − j ′′
r (k(t0 − t)) j ′′

r ′ (k(t0 − t ′))]

− 4

[
r + 1

2r + 1
Pr+1 + r

2r + 1
Pr−1

]
j ′
r (k(t0 − t)) j ′

r (k(t0 − t ′))
}

, (A8.13)

where the argument, n · n′, of the Legendre polynomials has been suppressed. Also using
the relation

j ′
r = − r + 1

2r + 1
jr+1 + r

2r + 1
jr−1 (A8.14)
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for Bessel functions, and its iteration for j ′′, we can rewrite Eq. (A8.13) in terms of the
Bessel functions jr−2 to jr+2.

To proceed we use the definition of C�:〈
�T

T
(n) · �T

T
(n′)

〉
(n·n′)=cos θ

= 1

4π
�(2� + 1)C� P�(cos θ ) . (A8.15)

If we expand

�T

T
(n) =

∑
�,m

a�,mY�,m(n) (A8.16)

and use the orthogonality of the spherical harmonics as well as the addition theorem,
Eq. (A8.10), we find

C� = 〈a�ma∗
�m〉 . (A8.17)

We thus have to determine the correlators

〈a�ma∗
�′m ′ 〉 =

∫
d
n

∫
d
n′

〈
�T

T

∗
(n)

�T

T
(n′)

〉
Y ∗

�m(n)Y�′m ′ (n′) . (A8.18)

Inserting our result (A8.13), we obtain the somewhat lengthy expression

〈a�ma∗
�′m ′ 〉 =

2

π
δ��′ δmm ′

∫
dk k2

∫
dt dt ′ Ḣ (k, t)Ḣ∗(k, t ′)

×
{

j�(k(t0 − t)) j�(k(t0 − t ′))

×
(

1

(2� − 1)(2� + 3)
+ 2(2�2 + 2� − 1)

(2� − 1)(2� + 3)
+ (2�2 + 2� − 1)2

(2� − 1)2(2� + 3)2

− 4�3

(2� − 1)2(2� + 1)
− 4(� + 1)3

(2� + 1)(2� + 3)2

)
− [

j�(k(t0 − t)) j�+2(k(t0 − t ′)) + j�+2(k(t0 − t)) j�(k(t0 − t ′))
]

× 1

2� + 1

(
2(� + 2)(� + 1)(2�2 + 2� − 1)

(2� − 1)(2� + 3)2
+ 2(� + 1)(� + 2)

(2� + 3)
− 8(� + 1)2(� + 2)

(2� + 3)2

)
− [

j�(k(t0 − t)) j�−2(k(t0 − t ′)) + j�−2(k(t0 − t)) j�(k(t0 − t ′))
]

× 1

2� + 1

(
2�(� − 1)(2�2 + 2� − 1)

(2� − 1)2(2� + 3)
+ 2�(� − 1)

(2� − 1)2
− 8�2(� − 1)

(2� − 1)2

)
+ j�+2(k(t0 − t)) j�+2(k(t0 − t ′))

×
(

2(� + 2)(� + 1)

(2� + 1)(2� + 3)
− 4(� + 1)(� + 2)2

(2� + 1)(2� + 3)2
+ (� + 1)2(� + 2)2

(2� + 1)2(2� + 3)2

)
+ j�−2(k(t0 − t)) j�−2(k(t0 − t ′))

×
(

2�(� − 1)

(2� − 1)(2� + 1)
− 4�(� − 1)2

(2� − 1)2(2� + 1)
+ �2(� − 1)2

(2� − 1)2(2� + 1)2

) }
. (A8.19)
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An analysis of the coefficient of each term reveals that this expression is equivalent to

C (T )
� = 2

π

∫
dk k2

∣∣∣∣∫ t0

tdec

dt Ḣ (t, k)
j�(k(t0 − t))

(k(t0 − t))2

∣∣∣∣2 (� + 2)!

(� − 2)!
. (A8.20)

To obtain this result we have used the identity

j�+2(k(t0 − t))

(2� + 3)(2� + 1)
+ 2 j�(k(t0 − t))

(2� + 3)(2� − 1)
+ j�−2(k(t0 − t))

(2� + 1)(2� − 1)

= j�(k(t0 − t))

(k(t0 − t))2
. (A8.21)



Appendix 9

Boltzmann equation in a universe with curvature

In this appendix we discuss the changes of the Boltzmann equation in the case of
non-vanishing curvature K = H 2

0 (
0 − 1) 
= 0. We closely follow Abbott & Schaefer
(1986) and Hu et al. (1998). We write the metric of the unperturbed FL universe as

ds2 = a2γµν dxµ dxν , (A9.1)

with

γ00 = −1 , (A9.2)

γ0i = 0 , (A9.3)

γi j dxi dx j = 1

|K |
(
dχ2 + sin2

K (χ )(dθ2 + sin2 θ dφ2)
)

. (A9.4)

Here we have set

sinK χ =
{

sin χ for K > 0
χ for K = 0
shχ for K < 0 ,

(A9.5)

where sh denotes the hyperbolic sine (correspondingly we shall denote the hyperbolic
cosine by ch).

A9.1 The Boltzmann equation

We now derive the Boltzmann equation. The collision term is not affected by curvature
since it is purely local. If we use a ‘quasi-orthonormal’ spatial basis, also the gravitational
source term coming from δ�i

αβnαnβγi j n jv2(d f̄ /dv) is not modified. Here ‘quasi-
orthonormal means that ni n jγi j = 1 and (pµ) = (p, pni ). Again v = pa denotes the
redshift corrected photon energy, the only variable on which the background distribution
function f̄ depends. The only modification comes from the fact that on the left-hand side
we have to add a term due to the unperturbed three-dimensional Christoffel symbols,

(∂t + ni∂i )M →
(

∂t + ni∂i − �̄i
jln

j nl ∂

∂ni

)
M . (A9.6)

We now show that this simply corresponds to replacing the partial derivatives ∂i in the
second term by covariant derivatives w.r.t. the spatial background metric γi j . To see this
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we expand M in moments of ni ,

M(t, x, n) =
∑

Q(t, x)(m)
i1··· im

ni1 · · · nim . (A9.7)

Here the sum goes from 1 to 3 for each of the indices il and the number m of indices goes
from zero to infinity. For uniqueness, we require that Qi1··· im be a traceless totally
symmetric tensor. Since γ jln j nl = 1, a trace in Q(m)

i1··· im−2 jl which contributes a term

Q(m−2)
i1··· im−2

γ jlni1 · · · nim−2 n j nl = Q(m−2)
i1··· im−2

and can be absorbed in Q(m−2). With this ansatz
we find (

ns∂s − �̄ j
rsnr ns ∂

∂n j

)
M (A9.8)

=
∑

ns∂s Q(t, x)(m)
i1··· im

ni1 · · · nim − �̄ j
rs Q(m)

i1··· im
nr ns(δ j i1 ni2 · · · nim

+ · · · + ni1 · · · nim−1δ j im )

=
∑

ns
(
∂s Q(t, x)(m)

i1··· im
ni1 · · · nim − �̄ j

rs Q(m)
j ··· im

nr ni2 · · · nim

− · · · − �̄ j
rs Q(m)

i1··· j n
r ni1 · · · nim−1

)
=

∑
ns

(
∂s Q(t, x)(m)

i1··· im
ni1 · · · nim − �̄

j
i1s Q(m)

j ··· im
ni1 ni2 · · · nim

− · · · − �̄
j
im s Q(m)

i1··· j n
i1 · · · nim

)
=

∑
ns Q(t, x)(m)

i1··· im |sni1 · · · nim ≡ nsM|s . (A9.9)

Note that the last expression really is a definition. It tells us how we have to interpret a
covariant derivative for a function in momentum space. With this, the Boltzmann equation
in spaces with non-vanishing curvature becomes simply

∂tV + niV|i = C[V] +
(

G[hµν]
0
0

)
, (A9.10)

where C[V] denotes the collision term given in Eq. (5.29) and

V =
(M
E + iB
E − iB

)
. (A9.11)

The gravitational term is

G[hµν]


−ni (� + �)|i for scalar perturbations,
−σ

(V )
i j ni n j for vector perturbations,

−Ḣi j ni n j for tensor perturbations.
(A9.12)

A9.2 Line-of-sight integration

The homogeneous part of the Boltzmann equation (A9.10),

∂tV + niV|i = 0 , (A9.13)

simply represents free streaming. If the source term can be neglected, the temperature
fluctuations and the polarization are modified by photon free streaming, which in this case
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means that the photons move along spatial geodesics of the unperturbed metric γi j . Unlike
in flat space, n is not constant, but varies along a geodesic.

Let us denote by y(x, n(λ), λ) the (spatial) geodesic of the unperturbed metric γi j which
arrives at x at time λ and then moves on in direction −n(λ), so that x = y(x, n, λ). In flat
space, y(x, n, λ)(t) = x − (t − λ)n. The general solution to Eq. (A9.13) with initial
condition V(tin, x, n) = V1(x, n) is then simply,

V(t, x, n) = V1(y(x, n(t − tin), t − tin), n(t − tin)) . (A9.14)

To verify this we use that both, y and n depend on time so that ∂tV(t, x, n) =
−ni∂iV(t, x, n) + ṅi ∂

∂ni V(t, x, n). But since n moves along a geodesic ṅi = �̄i
rsnr ns , so

that we end up with

∂tV(t, x, n) + ni∂iV(t, x, n) − �̄i
rsnr ns ∂

∂ni
V(t, x, n) = 0 ,

the right-hand side of Eq. (A9.6) which is equivalent to Eq. (A9.13) according to our
definition (A9.9). This observation allows us also to formally solve (A9.10) with a
line-of-sight integration as in the flat case: for an arbitrary source term, S(t, x, n) on the
right-hand side of Eq. (A9.13) the solution is given by

V(t, x, n) = V1(y(x, n, t), n) +
∫ t

tin

dt ′ S(t ′, y(x(t ′), n(t ′), t ′), n(t ′)). (A9.15)

Here x(t ′) is the geodesic which ends at x = x(t) at time t with velocity −n(t).
So far this is only a formal solution. In the case of the Boltzmann equation the source

on the right-hand side depends on the left-hand side. Furthermore, the geodesics
y(x, n(t ′), t ′) are not given explicitly. However, this is not a serious problem, since they
are the solutions to well known ordinary differential equations.

A9.3 Mode functions, radial functions

In flat space, we have expanded Eq. (A9.10) in terms of mode functions

sG�m(x, n) = (−i)�
√

4π

2� + 1
sY�m(n) exp(ik · x) , K = 0 . (A9.16)

Here we have to replace the exponentials by eigenfunctions of the Laplacian in curved
space. The functions Q(m)

i1···i|m| with

(�K + k2)Q(m)
i1···i|m| = 0 , (A9.17)

where k2 > (|m| + 1)|K | and k2 = (p(p + 2) + |m|)K , p ∈ N, from a complete set of
basis functions for K < 0 and K > 0 respectively (see Vilenkin & Smorodinskii, 1964).
Here, like in Chapter 2, Q(m) is a totally symmetric traceless tensor with helicity m and
rank |m|.

We shall concentrate on the case K > 0 since it is really different from that flat space
case as its k-modes are discrete. For convenience we set

q =
√

p(p + 2) + 1 + |m| , K > 0 (A9.18)

q =
√

k2

|K | − 1 − |m| , K < 0 , (A9.19)
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and we shall use this dimensionless number to denominate the mode functions. The
functions p = 0 and p = 1 are not of interest for us. They represent a simple constant
(p = 0) and (p = 1) a pure dipole contribution which is gauge dependent. We therefore
consider q = 3, 4, . . . for m = 0, K > 0.

As we have done for the exponential, we want to expand the function Q(x) in its orbital
angular momentum. For a given mode function Q we orient the coordinate system such
that the angular dependence is given by YL0 alone. (In flat space this corresponds to
choosing the z direction parallel to k.) We can then write

sG�m =
(

4π
∑

L

√
2L + 1

2� + 1
i�−Lφq L (χ )YL0(x̂)

)
sY�m . (A9.20)

Each angular momentum component Q = φq L (χ )YL0(x̂) satisfies

�Q = γ rs Q|rs − γ rs�1
rs Q,1 + γ 11 Q,11 = −|K |(q2 ∓ 1)Q ,

where 1 denotes the χ direction and rs stand for the ϑ and ϕ directions. In q2 ∓ 1, the
minus sign is for K > 0 and the plus sign for K < 0. Denoting sinK = sin for K > 0 and
sinK = sh for K < 0, we have

�1
rs = − sin′

K (χ )

sinK (χ )
γrs ,

and γ rs Q|rs = |K | sin−2
K (χ )�ϑ,ϕ Q = −|K |L(L + 1) sin−2

K Q. With this we obtain the
following differential equation for φq L :

d2φq L

dχ2
+ 2

cos χ

sin χ

dφq L

dχ
+

(
q2 − 1 − L(L + 1)

sin2 χ

)
φq L = 0 .

In this form, the equation is valid for K > 0. For K < 0 one has to replace sin χ by shχ
and cos χ by chχ as well as q2 − 1 by q2 + 1. The solutions to this equation, which are
regular at χ = 0, are

φq L (χ ) ∝
{−q−2(sin χ )L d L+1

d(cos χ )L+1 cos(qχ ) , for K > 0

−q−2(shχ )L d L+1

d(chχ )L+1 cos(qχ ) , for K < 0 .
(A9.21)

These functions can also be expressed in terms of associated Legendre functions,
see Abramowitz & Stegun (1970),

φq L (χ ) ∝


(sin χ )−1/2 P� m(cos χ ) , with

� = −1/2 − q , m = − 1
2 − L , forK > 0

(shχ )−1/2 P� m(chχ ) , with
� = −1/2 + iq , m = − 1

2 − L , for K < 0 .

(A9.22)

This is easily verified by deriving the differential equation for (sin χ )1/2φq L (χ ) and
comparing it with the one for associated Legendre functions given in Eq. (A4.15). The
hyperspherical Bessel functions φq L satisfy the recurrence relations

d

dχ
φq L = 1

2L + 1

[
L
√

q2 − L2φq L−1 − (L + 1)
√

q2 − (L + 1)2φq L+1

]
,

cotχφq L = 1

2L + 1

[√
q2 − L2φq L−1 +

√
q2 − (L + 1)2φq L+1

]
, (A9.23)
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for K > 0. For negative curvature, the terms q2 − n2 have to be replaced by q2 + n2 and
cot χ by coth(χ ). These relations define the hyperspherical Bessel functions in terms of
the first member

φq 0(χ ) =
{ sin(qχ )

q sin χ
for K > 0

sh(qχ )
qshχ

for K < 0 .
(A9.24)

The normalization is chosen such that limK→0 φq L (χ ) = jL (kr ).
We do not need all the details of the mode functions sG�m , but we have to calculate

ni [sG�m]|i (x, n) which enters the Boltzmann equation. To obtain the Boltzmann hierarchy
we have to express this derivative in terms of sG�+1 m , sG�m and sG�−1 m . This is obtained
most easily if we consider n = −x̂ so that x = −√|K |χn. We then have

ni [sG�m]|i (−
√

|K |χn, n) = −
√

|K | d

dχ
[sG�m]|i (−

√
|K |χn, n) . (A9.25)

To calculate this derivative we expand sG�m(−√|K |χn, n) in its total angular momentum.

sG�m(−
√

|K |χn, n) =
(

4π
∑

L

√
2L + 1

2� + 1
i�−Lφq L (χ )YL0(n)

)
sY�m(n)

=
∑

j

(−i) j
√

4π (2 j + 1)s f (�m)
j (χ )Y jm(n) . (A9.26)

For � = 0, we immediately obtain

0 f (00)
j (χ, q) ≡ α

(00)
j (χ ) = φq j (χ ) . (A9.27)

The other coefficients can in principle be obtained with the help of the Clebsch–Gordan
series for the products YL0(n) sY�m(n) and the recurrence relations for the hyperspherical
Bessel functions φq L . This straightforward but cumbersome calculation has never
appeared in print, and we do not want to break with this tradition here. It is much easier to
use the fact that 0Gm m are given by (see e.g. Thorne (1980) and Maggiore (2007))

0Gm m = ni1 · · · nim Q(m)
i1···im

,

and

±2G2 m ∝ e±
i1

e±
i2

Q(m)
i1i2

,

for 0 ≤ |m| ≤ 2. With this it is relatively easy to derive relations between the
hyperspherical Bessel functions and the coefficients s f (�m)

j (χ ). Most importantly

α
(11)
j (χ, q) =

√
j( j + 1)

2(q2 − 1)
sc(χ ) φq j (χ ) ,

α
(22)
j (χ, q) =

√
3

8

( j + 2)( j2 − 1) j

(q2 − 4)(q2 − 1)
sc2(χ ) φq j (χ ) . (A9.28)

Similarly for

±2 f (2m)
j = ε

(m)
j ± iβ (m)

j ,
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one finds

ε
(0)
j (χ, q) =

√
3

8

( j + 2)( j2 − 1) j

(q2 − 4)(q2 − 1)
sc2(χ )φq j (χ ) ,

ε
(1)
j (χ, q) = 1

2

√
( j − 1)( j + 2)

(q2 − 4)(q2 − 1)
scχ

[
cot(χ )φq j (χ ) + φ′

q j (χ )
]

, (A9.29)

ε
(2)
j (χ, q) = 1

4

√
1

(q2 − 4)(q2 − 1)

[
φ′′

q j (χ )

+ 4cot(χ )φ′
q j (χ ) − (

q2 + 1 − 2cot2χ
)
φq j (χ )

]
,

and

β
(0)
j (χ, q) = 0 ,

β
(1)
j (χ, q) = 1

2

√
( j − 1)( j + 2)q2

(q2 − 4)(q2 − 1)
sc(χ )φq j (χ ) , (A9.30)

β
(2)
j (χ, q) = 1

2

√
q2

(q2 − 4)(q2 − 1)

[
φ′

q j (χ ) + 2cot(χ )φq j (χ )
]

,

for m > 0. For m < 0, β
(−m)
j = −β

(m)
j while ε

(m)
j = ε

(−m)
j and α

(m)
j = α

(−m)
j . Also here,

the formulae presented are for positive curvature. For negative curvature all terms of the
form q2 − n2 have to be replaced by q2 + n2, and the trigonometric functions have to be
replaced by hyperbolic functions, e.g. sh χ ≡ 1/ sin χ becomes schχ ≡ 1/sh χ . The
overall normalization of the modes is chosen such that

s f (�m)
j (0, q) = 1

2 j + 1
δ j� . (A9.31)

From the recurrence relation for the hyperspherical Bessel functions we obtain the
following relation for the coefficients s f (�m)

j defined so far:

d

dχ
[s f (�m)

j ] = q

2 j + 1

[
sθ

m
j s f (�m)

j−1 − sθ
m
j+1 s f (�m)

j+1

]
− i

qms

j( j + 1)
s f (�m)

j , (A9.32)

where

sθ
m
j =

√[
( j2 − m2)( j2 − s2)

j2

] (
j2

q2
± 1

)
, (A9.33)

here the + sign is for negative curvature and the − sign is for K > 0.
Since the relation (A9.32) is independent of � it is valid for all �s and can also be used

to define s f (�m)
j+1 from s f (�m)

j and s f (�m)
j−1 .

With the expansion Eqs. (A9.26) and (A9.32) we can now write the derivative (A9.25)
as

ni [sG� m]|i = −
√|K |q
2� + 1

[
sθ

m
� sG�−1 m − sθ

m
�+1 sG�+1 m

] + i

√|K |qms

�(� + 1)
sG�m . (A9.34)
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Like in flat space, we expand the CMB anisotropy and polarization as

M(t, x, n) =
∫∑ d3q

(2π )3

∑
�

2∑
m=−2

M(m)
� 0G� m , (A9.35)

(Q ± iU )(t, x, n) =
∫∑ d3q

(2π )3

∑
�

2∑
m=−2

(E (m)
� ± iB(m)

� )±2G� m . (A9.36)

The sign
∫∑

indicates that for positive curvature the integral over q has to be replaced by
a sum.

For the coefficients M(m)
� (t, q), E (m)

� (t, q) and B(m)
� (t, q) we now obtain the desired

Boltzmann hierarchy

Ṁ(m)
� − q

√
|K |

[
0θ

m
� M(m)

�−1 − 0θ
m
�+1M

(m)
�+1

]
= S(m)

� + κ̇
[

P (m)
� − M(m)

�

]
, (A9.37)

with

S(0)
� = −k(� + �)δ�1 , (A9.38)

S(±1)
� = −

√
3

3k

√
k2 − 2K σ± δ�2 , (A9.39)

S(±2)
� = 1√

3
Ḣ±2 δ�2 , (A9.40)

P (0)
� = M(0)

0 δ�0 + V (b)δ�1 + 1

10
[M(0)

2 −
√

6E (0)
2 ]δ�2 , (A9.41)

P (±1)
� = V (±1)

b δ�1 + 1

10
[M(±1)

2 −
√

6E (±1)
2 ]δ�2 , (A9.42)

P (±2)
� = 1

10
[M(±2)

2 −
√

6E (±2)
2 ]δ�2 . (A9.43)

As in Chapter 5, the superscript (m) indicates scalar perturbations for m = 0, vector
perturbations for m = ±1 and tensor perturbations for m = ±2. For Eqs. (A9.38) and
(A9.39) we made use of

−ni [0G00]|i = k 0G10 and

ni n j Q(m)
i | j = ni [0G1 m]|i =

√
3

3

√
k2 − 2K 0G2 m ,

for m = ±1.
The Boltzmann hierarchy for E- and B-polarization becomes

Ė (m)
� = q

√
|K |

[
2θ

m
�

(2� − 1)
E (m)

�−1 − 2m

�(� + 1)
B(m)

� − 2θ
m
�+1

(2� + 3)
E (m)

�+1

]

−κ̇

(
E (m)

� +
√

6

10

[
M(m)

2 −
√

6E (m)
2

]
δ�,2

)
, (A9.44)

Ḃ(m)
� = q

√
|K |

[
2θ

m
�

(2� − 1)
B(m)

�−1 + 2m

�(� + 1)
E (m)

� − 2θ
m
�+1

(2� + 3)
B(m)

�+1

]
−κ̇B(m)

� . (A9.45)
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A fast Boltzmann code (such as CMBfast) calculates only the lowest few (about ten)
modes with the Boltzmann hierarchy and then uses the results � = 0, 1 and 2 as input for
the integral solutions. These are obtained exactly like in the flat case (see Chapter 5) by
replacing the flat radial functions by the ones obtained for curved spaces.

M(m)
� (t0, q)

� + 1
=

∫ t0

0
dt e−κ

2∑
j=0

[S(m)
j +κ̇ P (m)

j ]α( jm)
� (

√
|K |t, q) , (A9.46)

E (m)
� (t0, q)

� + 1
=

∫ t0

0
dt e−κ k̇

√
6

10

[
M(m)

2 −
√

6E (m)
2

]
ε

(m)
� (

√
|K |t, q) , (A9.47)

B(m)
� (t0, q)

� + 1
=

∫ t0

0
dt e−κ k̇

√
6

10

[
M(m)

2 −
√

6E (m)
2

]
β

(m)
� (

√
|K |t, q) . (A9.48)

A9.4 The energy–momentum tensor

The perturbations of the energy–momentum tensor of radiation which enter the Einstein
equations are obtained from their definitions by integration over the directions n,

D(r )
g = 4M(0)

0 , (A9.49)

V (m)
r = M(m)

1 , (A9.50)√
1 − 3K

k2
�(0)

r = 12

5
M(0)

2 , (A9.51)√
1 − 2K

k2
�(1)

r = 8
√

3

5
M(1)

2 , (A9.52)

�(2)
r = 8

5
M(2)

2 . (A9.53)

A9.5 Power spectra

In the derivation of the power spectra the only change w.r.t. flat space is that for positive
curvature the integral over q has to be replaced by a sum. Note also that our variable q is
dimensionless and therefore so are our amplitudes X (m)

�

(2� + 1)2C XY
� = 2

π

∫∑ dq

q

2∑
m=−2

q3 P (XY )
� m , (A9.54)

where X, Y are M, E or B and the power spectra are defined like in the flat case,

〈M(m)
� (q)M(m)∗

� (q ′)〉 ≡ (2π )3δq,q ′ M (m)
� (q) , (A9.55)

〈E (m)
� (q)E (m)∗

� (q ′)〉 ≡ (2π )3δq,q ′ E (m)
� (q) , (A9.56)

〈B(m)
� (q)B(m)∗

� (q ′)〉 ≡ (2π )3δq,q ′ B(m)
� (q) , (A9.57)

〈E (m)
� (q)M(m)∗

� (q ′)〉 ≡ (2π )3δq,q ′ F (m)
� (q) . (A9.58)
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The formulae here are written for positive curvature. For negative curvature the Kronecker
δ becomes a Dirac δ-function like in flat space. Hence P (MM)

� m (q) = M (m)
� (q),

P (EE)
� m (q) = E (m)

� (q), P (BB)
� m (q) = B(m)

� (q) and P (EM)
� m (q) = F (m)

� (q). Due to their different
parity, M and B as well as E and B are uncorrelated.



Appendix 10

The solutions of some exercises

A10.1 Chapter 1

Exercise 1.4

In a dust universe with curvature and with a cosmological constant the Friedmann
equation can be written in the form

ȧ2 = a2

[
−K + C

a
+ 1

3
�a2

]
≡ G(a). (A10.1)

Here

C = 8πG

3
ρma3 = 
m H 2

0 a3
0 =



m

H0|
k |3/2 = 2q0

H0|1−2q0|3/2 if 
k 
= 0


m H 2
0

if 
k = 0
and a0 = 1.

(A10.2)

If the curvature is negative and � > 0, G is strictly positive and we find an expanding
solution for all times. At late times, curvature becomes negligible and the universe expands
like a ∝ 1/|t | ∝ exp(

√
�/3τ ). If � < 0 the square bracket is decreasing and G has a zero,

G(ac) = 0. At this point expansion turns into contraction and the universe recollapes.
The case K = 0 can be solved explicitly leading to

a3(τ ) =


3C

2�

(
cosh(

√
3�t) − 1

)
� > 0 , amin = (

3C/2�
)1/3

−3C

2�

(
1 − cos

(√−3�t
))

� < 0.

(A10.3)

The qualitative behaviour is like for K < 0.
The case K > 0 is most interesting. The function G can be written as G(a) = a P(a),

where P is a third-order polynomial which has one or three real roots. In the dashed
region of Fig. A10.1, P has one real root, but for a negative value of a. Hence the universe
expands forever. In the upper left region, high cosmological constant, the scale factor has
a minimum. Such a universe has no big bang but comes out of a previous contracting
phase. It is called a bouncing solution. For a value of 
m > 0.01 one finds a maximum
redshift zmax < 4 for a bouncing universe. Hence they cannot explain cosmological data
like quasars and galaxies at a redshift of 6 or even the CMB. Solutions below the dashed
region emerge from a big bang but recollapse eventually, when either the negative
cosmological constant or the positive curvature term render G(amax) = 0.

384
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Fig. A10.1. The kinematics of a universe with matter density parameter 
m and
cosmological constant parameter 
�. The universes with parameters above the
dashed line are positively curved, those below negatively. The universes with
values (
m, 
�) in the dashed region recollapse into a big crunch. Those below
emerge from a big bang, those above emerge from a collapsing universe, they have
no big bang in the past.

A10.2 Chapter 2

Exercise 2.1

We want to show that

L X g = a2

[
−2

(
ȧ

a
T + Ṫ

)
dt2 + 2(L̇ i − T,i )dt dxi

+
(

2
ȧ

a
T γi j + Li | j + L j |i

)
dxi dx j

]
, (A10.4)

for X = T ∂t + Li∂i and g = a2(t)[−dt2 + γi j dxi dx j ] = a2(t)Sµν dxµ dxν .
We use L X a2 = 2ȧaT and L X (a2S) = L X (a2)S + a2L X S. Furthermore, we show

below, that for an arbitrary metric S, we have

(L X S)µν = Xµ;ν + Xν;µ, (A10.5)

where here ; denotes the covariant derivative w.r.t. the metric S. For our metric S all
Christoffel symbols involving a ‘0’ vanish, so that Xν;0 = Xν,0 and X0;ν = X0,ν .
Furthermore Xi ; j = Xi | j , where | denotes the covariant derivative w.r.t. the
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three-dimensional metric γ . With this we obtain

L X g = 2
ȧ

a
T a2S + a2

(−2Ṫ dt2 − 2(T, i − L̇ i ) dt dxi + (Li | j + L j |i ) dxi dx j
)

(A10.6)

which agrees with Eq. (A10.4). It remains to show Eq. (A10.5). For this we use the
general expression (A2.20). For a doubly covariant tensor field this gives

(L X S)αβ = XµSαβ,µ +Xµ,α Sµβ + Xµ,β Sµα

= Xν

(
Sµν Sαβ,µ +Sµν,α Sµβ + Sµν,β Sµα

) + Xα,β + Xβ,α.

For the last equals sign we simply inserted Xµ = Xν Sνµ. We now take the derivative of
the identity SνµSµβ = δν

β w.r.t. α. This yields Sµν,α Sµβ = −Sµν Sµβ,α . Correspondingly
Sµν,β Sµα = −Sµν Sµα,β . Inserting this above and using the definition

Sα;β = Sα,β − �
µ
αβ Sµ with �β

µν = 1

2
Sβα

(
Sµα,ν + Sνα,µ − Sµν,α

)
,

we obtain (A10.5).

Exercise 2.3

We consider a perturbed FL universe containing two non-interacting fluids with energy
densities ρα and pressure Pα . The total energy density and pressure are ρ = ρ1 + ρ2 and
P = P1 + P2. We first note that for both components the intrinsic entropy perturbation is
given by

�α = π
(α)
L − c2

α

wα

δα = δPα

Pα

− c2
α

δρα

Pα

(A10.7)

and the total sound speed is

c2
s = Ṗ1 + Ṗ2

ρ̇
= c2

1ρ̇1 + c2
2ρ̇2

ρ̇
= (1 + w1)c2

1ρ1 + (1 + w2)c2
2ρ2

(1 + w)ρ
. (A10.8)

For the second equality sign we have used that both components are separately conserved.
Defining now R = ρ2/ρ, so that ρ1/ρ = 1 − R we can also write

(1 + w)c2
s = (1 + w1)c2

1(1 − R) + c2
2(1 + w2)R . (A10.9)

Let us first assume �α = 0, so that δPα = c2
αδρα . The total entropy perturbation is then

given by � = �rel with

P�rel = c2
1δρ1 + c2

2δρ2 − c2
s (δρ1 + δρ2) = (

c2
1 − c2

s

)
δρ1 + (

c2
2 − c2

s

)
δρ2 . (A10.10)

To express �rel in terms of gauge-invariant variables we now use

δρα = [D(α)
g + (1 + wα)(3HL + HT )]ρα .

Inserting this in Eq. (A10.10) yields

w�rel = (
c2

1 − c2
s

)
(1 − R)D(1)

g + (
c2

2 − c2
s

)
RD(2)

g + (3HL + HT )

× [(
c2

1 − c2
s

)
(1 − R)(1 + w1) + (

c2
2 − c2

s

)
R(1 + w2)

]
. (A10.11)
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Using Eq. (A10.9) and

1 + w = ρ + P

ρ
= ρ1 + P1 + ρ2 + P2

ρ
= (1 + w1)(1 − R) + (1 + w2)R ,

we find that the square bracket above vanishes and �rel is gauge invariant, as it should be.
In fact, with the relation (A10.9)

[ ] = c2
1(1 − R)(1 + w1) + c2

2 R(1 + w2) − c2
s (1 + w) = 0 .

Multiplying Eq. (A10.11) with 1 + w and using Eq. (A10.9) to replace c2
s finally leads to

w(1 + w)�rel = R(1 − R)
(
c2

1 − c2
2

) [
(1 + w2)D(1)

g − (1 + w1)D(2)
g

]
. (A10.12)

From this equation we already conclude that �rel vanishes if both sound speeds are equal,
c2

1 = c2
2 or if one of the two components is largely subdominant, R � 0 or R � 1. If none

of these conditions is fulfilled, perturbations are adiabatic if

(1 + w2)D(1)
g = (1 + w1)D(2)

g (adiabaticity) . (A10.13)

To determine � when �α 
= 0 we simply note that in this case δPα = Pα�α + cαδρα so that

P� = P1�1 + P2�2 + P�rel .

Inserting our result for �rel we find

� = w1

w
(1 − R)�1 + w2

w
R�2 + �rel . (A10.14)

We now want to derive an evolution equation for �rel in the case where �α = 0 and
wα = c2

α = constant for both components. We use the conservation equation (2.114)
which in this case reduces to

Ḋ(α)
g = −k(1 + wα)Vα . (A10.15)

Defining

f = R(1 − R)

w(1 + w)

(
c2

1 − c2
2

)
,

the derivative of �rel can be written as

�̇rel = ḟ

f
�rel + k f (1 + w1)(1 + w2)[V2 − V1] . (A10.16)

This shows that even if perturbations of a two-component fluid are initially adiabatic, they
develop a relative entropy perturbation if V1 
= V2. This is already clear from the
adiabaticity condition (A10.13), which cannot be maintained if V1 
= V2 due to the time
evolution of D(α)

g given in Eq. (A10.15). Especially, on sub-Hubble scales, where V1 and
V2 evolve differently (we consider the non-trivial case c1 
= c2), adiabaticity between
different components cannot be maintained. When talking about adiabatic perturbations,
we therefore always refer to super-Hubble scales.
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A10.3 Chapter 3

Exercise 3.1

We want to show that only exponential potentials allow for power law inflation, a ∝ tq

with some constant q and we want to express q in terms of the parameters of the potential.
We assume a spatially flat FL universe, K = 0.

For a spatially flat FL universe, the Friedmann equation and energy–momentum
conservation imply

Ḣ = −1 + 3w

2
H2 .

Now if a ∝ tq we have H = q/t and Ḣ = −q/t2. Inserting this above gives

q = 2

1 + 3w
hence w = 2 − q

3q
= constant .

Furthermore, integrating d τ = a dt ∝ tq dt yields τ ∝ tq+1, hence

a ∝ τ p with p = q

q + 1
= 2

3 + 3w
.

Since w = P/ρ has to be constant if q is constant, we have

(ρ̇ − Ṗ)

ρ − P
= ρ̇

ρ
= −3(1 + w)H .

But ρ − P = 2W so that

(ρ̇ − Ṗ)

ρ − P
= W,ϕϕ̇

W
= −3(1 + w)H hence

W,ϕ

W
= −3(1 + w)

H
ϕ̇

.

Here, W,ϕ = dW
dϕ

. The same procedure for ρ + P = (ϕ̇)2/a2 yields

ϕ̈ = −1 + 3w

2
Hϕ̇ .

Using these results to replace ϕ̈ and W,ϕ in the equation of motion for ϕ,

ϕ̈ + 2Hϕ̇ + a2W,ϕ = 0 gives
1

2
(1 − w)ϕ̇2 = (1 + w)a2W .

Inserting this in the Friedmann equation, we obtain

H2 = 4π

3m2
p

(
1 + 1 − w

1 + w

)
ϕ̇2 ; H = A

ϕ̇

m P
with A =

√
8π

3(1 + w)

and W,ϕ/W = −3(1 + w)A/m P = constant. Hence we obtain an exponential potential

W = W0 exp

(
−α

ϕ

m P

)
with α =

√
24π (1 + w) = 4

√
π

1 + q

q
= 4

√
π

p
.

To obtain inflationary expansion we need p > 1, i.e. q < −1 or, equivalently w < − 1
3 .

This is equivalent to α < 4
√

π . Exponential inflation is obtained in the limit q → −1
which is equivalent to p → ∞ and α → 0, W = W0 = constant.
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Exercise 4.3

We start with Eq. (4.135) which yields

1

4π

∑
�

(2� + 1)C (V )
� P�(n · n′)

=
∑

�

(2� + 1)2

(2π )3

∫
d3k M (V )

� (k)P�(µ)P�(µ′)(n · n′ − µµ′) .

For the last factor we made use of Eq. (4.136). Before we continue we now show
Eq. (4.191). The addition theorem of spherical harmonics yields∫

d
k̂ P�(µ)P�′ (µ′)

= (4π )2

(2� + 1)(2�′ + 1)

∑
mm ′

∫
d
k̂ Y�m(k̂) Y ∗

�m(n)Y ∗
�′m ′ (k̂)Y�′m ′ (n′).

Using the orthogonality of spherical harmonics this implies∫
d
k̂ P�(µ)P�′ (µ′) = δ��′

(4π )2

(2� + 1)2

∑
m

Y ∗
�m(n)Y�m(n′)

= 4π

2� + 1
P�(n · n′) .

For the last equals sign we have again applied the addition theorem. With the help of the
recursion relation

µP�(µ) = � + 1

2� + 1
P�+1(µ) + �

2� + 1
P�(µ) ,

we can now perform the angular integration,∫
d3k M (V )

� (k)P�(µ)P�(µ′)(n · n′ − µµ′)

= 4π

∫
dk k2 M (V )

� (k)

[
1

2� + 1
(n · n′)P�(n · n′)

− (� + 1)2

(2� + 1)2(2� + 3)
P�+1(n · n′) − �2

(2� + 1)2(2� − 1)
P�−1(n · n′)

]
= 4π

(2� + 1)2

∫
dk k2 M (V )

� (k)

[
(� + 1)(� + 2)

2� + 3
P�+1(n · n′) + �(� − 1)

2� − 1
P�−1(n · n′)

]
.

Identifying the coefficient of P� finally results in

C� = 2�(� + 1)

π (2� + 1)2

∫
dk k2

[
M (V )

�+1(k) + M (V )
�−1(k)

]
. (A10.17)
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A10.5 Chapter 6

Exercise 6.2

We parametrize the initial conditions by

Ci j = 〈Xi (k)X∗
j (k

′)〉 = Ai j (k/H0)ni j δ(k − k′) .

Clearly, for Ci j to be positive semi-definite for all values of k, the matrix
Ai j = Ci j (k = H0) has to be positive semi-definite. Let us now consider i 
= j with
Ai j 
= 0. If neither nii ≤ ni j ≤ n j j nor n j j ≤ ni j ≤ nii is true, ni j is either the largest or
the smallest of these three spectral indices. Let us first assume it to be the smallest. In
order to show that Ci j is not positive semi-definite, we have to find a vector V so that
Cmn V m V n < 0. If Ai j > 0, we choose V i = −V j = 1, and if Ai j < 0, we choose
V i = V j = 1, so that Ai j V i V j = −|Ai j | (no sum!). Since ni j is smaller than nii and n j j
we can choose k to be sufficiently small so that |Ai j |(k/H0)ni j � |Aii |(k/H0)nii and
|Ai j |(k/H0)ni j � |A j j |(k/H0)n j j . Setting all other components of V to zero we obtain for
such values of k∑

mn

V m V nCmn(k) = −|Ai j |(k/H0)ni j + Aii (k/H0)nii + A j j (k/H0)n j j < 0 .

If ni j is larger than nii and n j j we just have to choose k sufficiently large.

A10.6 Chapter 7

Exercise 7.1

We consider a mass M positioned at x = 0 with gravitational potential � = G M/r . To
first order in � the corresponding metric is given by

ds2 = −(1 + 2�) dt2 + (1 − 2�) dx2 .

We want to determine the deflection of a photon in this metric. Angles are invariant under
conformal transformations of the geometry. We may therefore calculate the deflection in
the conformally related metric ds̃2 = (1 + 2�) ds2. To first order in � we have

ds̃2 = −(1 + 4�) dt2 + dx2 .

M

d

n

Fig. A10.2. A photon passing the mass M in direction n with impact parameter d.



A10.6 Chapter 7 391

We consider a photon along the unperturbed path x(s) = de + sn. The spatial unit vector
n is the direction of motion of the photon and e is a spatial unit vector normal to n. Hence
d is the impact parameter, i.e. the closest distance of the photon from the mass M at
x = 0, see Fig. A10.2. The unperturbed photon velocity is given by (nµ) = (1, n). Since �
is spherically symmetric, angular momentum is conserved and also the perturbed motion
will be in the plane (e, n). We define the perturbed velocity by

(nµ + δnµ) = (1 + δn0, n + δn) .

As it lies in the plane (e, n), the spatial part of δnµ is of the form δn = ϕe + αn, where ϕ
is the deflection angle and α is related to the gravitational redshift. The Christoffel
symbols are of first order in �, so that the first-order equation of motion for the photon
trajectory gives

δṅµ + �̃
µ

00 + 2�̃
µ

0 j n
j + �̃

µ

i j n
i n j = 0 .

For the metric ds̃2 the only non-vanishing Christoffel symbols are

�̃0
0i = �̃0

i0 = �̃i
00 = 2∂i� .

For the deflection angle we therefore obtain

ϕ̇ = (δṅ · e) = −2e · ∇� = 2MG
d

(d2 + s2)3/2
.

Integrating this from s = −∞ to s = ∞ yields

ϕ = 4MG

d
. (A10.18)
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Bardeen potentials, 66
baryon
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density, 39

Bessel functions, 354–355
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binding energy of hydrogen, 18
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central limit theorem, 365
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Christoffel symbols, 330, 335, 337–338
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Clebsch–Gordan decomposition, 343
Clebsch–Gordan series, 343
CMB anisotropies, 87, 134
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Coleman–Weinberg potential, 47
collision integral, 23
collision term, 181, 183
commutation relations, 112

comoving gauge, 76
Compton-y parameter, 25, 321
Compton scattering, 305
conformal time, 3
correlation function, 227
cosmic microwave background, CMB, 25
cosmic string, 266
cosmic variance, 93
cosmological constant, 5–6, 42
cosmological model, 236
cosmological parameters, 210–276
cosmological principle, 2
covariant derivative, 330–331
critical density, 328
curvature

3-space of constant, 3
curvature perturbation, 77

dark matter, 41
decoherence, 273
decoupling of photons, 14, 19, 22
density

critical, 7
entropy, 15
parameter, 7, 328
particle, 15

deuterium, 38
abundance, 39

distance
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distribution, 364
Gaussian, 365
marginalized, 241
normal, 365
standard normal, 365

distribution function, 23, 134–135, 364
DMR experiment, 27
domain walls, 268
Doppler term, 91

Einstein equation, 5, 70, 331
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Einstein’s equations, 71
energy condition, strong, 8, 43
energy conservation, 6
energy density, 5, 66
energy flux, 66
energy–momentum tensor, 5, 332

perturbations of, 66
entropy per baryon, 16
entropy density, 328
entropy flux, 357
entropy perturbation, 386
entropy problem, 43
entropy production, 361
ergodic hypothesis, 93
error, marginalized, 232
Euler angles, 185
evidence, 227
expansion, 64
expectation value, 364

Fermi constant, 31
Fermi–Dirac distribution, 134
Fisher matrix, 229, 235
flatness problem, 43
flux, 13
fractal, 2
Friedmann, 3
Friedmann equations, 5, 6
Friedmann metric, 332
Friedmann–Lemaı̂tre universe, FL universe,

4
fundamental constants, 327

galaxy cluster, 320, 323
gauge invariance, 58, 60
gauge transformation, 58, 59, 68
geodesic, 330
Gibbs potential, 17
Gibbs relation, 357
gravitational waves, 215
gravitino, 41
Gunn–Peterson trough, 216

Hankel functions, 354
harmonic analysis, 60
Harrison–Zel’dovich spectrum, 97
heat conductivity, 360
heat flux, 358
helicity, 180
helium

abundance, 33
helium-3 abundance, 39
helium-4 abundance, 39

Higgs field, 265
homogeneity, 2
horizon, 42
horizon problem, 43
Hubble, 8
Hubble constant, 9, 327
Hubble parameter, 6

inflation, 42–43
consistency relation, 120
e-foldings of, 48
energy scale of, 118
large-field, 46
power law, 113
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tensor perturbations, 116
vector perturbations, 116

intensity, 178
invariant measure, 135
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ionization fraction, 18
isotropy, 2

kinetic theory, 134
kinetic theory, relativistic, 134
Kompaneets equation, 305, 309

Lagrangian, scalar field, 43
Legendre functions, 341
Legendre polynomials, 184, 340
Lemaı̂tre, 4
Lie derivative, 59, 332
likelihood, Bayesian, 228
likelihood function, 227
Liouville equation, 23, 136
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Lorentz invariance, 4
luminosity, 13
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clouds, 216
forest, 216

Markov chain, 241
mass-bundle, see mass-shell
mass-shell, 134
Mathieu equation, 51
Maxwell–Boltzmann distribution,
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Megaparsec, Mpc, 2
Mészáros effect, 86
metric, 3
metric, pseudo-Riemannian, 330
Metropolis–Hastings algorithm, 242
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monopoles, 267
Monte Carlo, 244
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Markov chain, 241
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decoupling, 30

neutron
density, 33
lifetime, 35
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nucleosynthesis, 27
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parallel transport, 330
parity, 180
Pauli matrices, 178
perfect fluid, 73
perturbation, 335

equations, 70
scalar, 335
tensor, 338
vector, 273, 337

phantom matter, 6
phase space, see mass-shell
phase transition, 265
Planck distribution, 15
Planck mass, 30, 327
Planck satellite, 236
polarization, 176–209

B-mode, 180, 188, 209
circular, 178
curl-type, 193
E-mode, 180, 188, 209
gradient-type, 193
linear, 178

posterior distribution, 227, 243
power spectrum, 92, 113, 188

CMB, 159
dark matter, 94
polarization, 190

pre-heating, 52
pressure, 5
primordial black holes, 41
prior, 227
probability distribution, see distribution

quantization, 112
quasar, 216

random variable, 364
Gaussian, 365
independent, 365

recombination, 14, 16, 18
redshift, 9

cosmic, 9
reheating, 50, 52
reionization, 216, 323
resonance, 51
Ricci tensor, 331, 336, 338–339
Riemann scalar, 331, 336
Riemann tensor, 331, 335, 337, 339
Robertson, 4
Rodrigues’ formula, 340
rotation group, 342

irreducible representations of,
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Sachs–Wolfe effect, 91
integrated, 97, 256
ordinary, 91

Saha equation, 18
sampling, 242
scalar field, 43, 106
scale factor, 3
scattering matrix, 181
scattering plane, 181
seeds, 265

causal scaling, 268
shear, 64
Silk damping, 169–171
sources, 265
spatial curvature, 65
spectral index, 95, 114
spectrum, see power spectrum
spherical harmonics, 342, 345–348

addition theorem for, 347
spin weighted, 179, 348–353

addition theorem for, 350
spin raising/lowering operator, 350
standard deviation, 364
Stefan–Boltzmann constant, 14
Stewart–Walker lemma, 60
Stokes parameters, 177
stress tensor, 67
Sunyaev–Zel’dovich effect, 321
supernova, 252
symmetry breaking, 265

thermal equilibrium, 14, 134
Thomson cross section, 156
Thomson scattering, 15, 157, 176, 178

angular dependence of, 157
time, cosmic, 3
topological defects, 265
topology, 4
total angular momentum decomposition, 183

units, 326

vacuum manifold, 265
variance, 364
vector gauge, 66
viscosity

bulk, 360
shear, 360
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Walker, 4
weak interaction, 35
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