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Preface

Perhaps the first recognition that the matter composing the universe may be dif-
ferent from the one we touch and experience every day has been put in writing
by early Greek philosophers and by Aristotle in particular. In his work On the
Heavens, Aristotle argues that the nature and movement of the stars and planets
is so fundamentally different from Earth-like elements that a new substance is
required, a “bodily substance other than the formations we know, prior to them
all and more divine than they.”1 Later on this cosmic element came to be called
quintessentia, or fifth element, and drawing on Plato’s classification of the elements
a dodecahedron’s figure was associated with it.

More than two thousand years later, astrophysicists have begun to pile up evi-
dence that a new form of matter pervades our Universe. This idea is based on
observations that reminds one of Aristotle’s thoughts: the global movement we
observe in distant reaches of our cosmos is unexplainable by ordinary matter. All
the matter we see on Earth, in the solar system, inside our Galaxy or in similar struc-
tures across the Universe has a small or negligible positive pressure and clumps
under the influence of gravity. An expanding Universe filled with this form of mat-
ter would by necessity slow down. But in 1998, astronomers studying the global
expansion by the use of supernovae found that their observed luminosities can be
explained only by an accelerated expansion of the Universe. After a full decade of
more observations, more analyses and more interpretations, we still cannot find a
better explanation than invoking something new, a new force or a new matter, that
acts “on the heavens.” This new form of matter, called dark energy, is what this
book is about.

We do not know the nature of dark energy yet. We are beginning to characterize
its properties in several ways, from its abundance to its dynamics, but we know
still very little about it. The simplest explanation, an energy associated with the

1 Aristole, On the Heavens, I, 2.
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vacuum, was already proposed on a totally different basis by Einstein under the
name of universal (Einstein’s original term) or cosmological constant2 !. But the
freedom still allowed by observations has unleashed theorists’ imagination and
many interpretations of dark energy have been advanced. Dark energy is indeed
a general label for what we do not know about the large-scale properties of our
Universe, its history and its geography.

So why a book on dark energy? One of the immediate consequences of the
discovery of the cosmic acceleration and the hypothesis of dark energy has been
that astrophysicists and particle physicists, both theorists and experimentalists, have
been drawn together into this new field of research, with their own languages and
methods. We believe that this has created the need for a resource that allows scholars
and students to apprehend the basis of dark energy research in an interdisciplinary
way. This book introduces the main theoretical ideas on dark energy and at the
same time the basics of the observational methods and results. There are several
reviews that cover parts of the dark energy research but not a book that could be
used as a starting point to advanced and more topical material.

This book can be used as a companion text for an advanced cosmology course,
covering several areas that complement modern cosmology textbooks or as a stand-
alone text for graduate or post-graduate courses on dark energy. It is also addressed
to newcomers in the field that wish to identify the main lines of the current research.
Finally, we have in mind also researchers in the dark energy field who need to
explore other sides of the discipline and would like to have a handy reference for
many results and topics scattered in the literature. For most of the book we assume
knowledge of General Relativity and basic cosmology at the graduate level and little
more. Some more advanced sections (especially Sections 6.5 and 7.4) require also
a background in quantum field theory but they can be left aside without prejudice.
Whenever possible we give a fairly comprehensive review of the tools required
for further material, for instance we introduce the concepts of statistics and of
cosmological perturbation theory that are needed for understanding the subsequent
chapters. We provide 44 fully solved problems with some detailed calculations,
which will help the reader to test his/her understanding.

The immense impact on cosmology of the dark energy concept is witnessed
by the many projects around the world aiming at collecting more and more data,
from large-scale galaxy surveys to weak lensing surveys, from cosmic microwave
observations to gamma-ray bursts. The very nature of the issue at stake, the study of
a component that determines to a large extent the present and future cosmic dynam-
ics, has generated a great diversity of theoretical and observational approaches. One

2 As a curious coincidence, Aristotle first proposed his eternal and incorruptible “cosmic substance” in the book
! (i.e. the twelfth book) of the Metaphysics. “The Lambda Book,” as it was called in the middle ages, was
singled out as the highest point of Aristotle’s metaphysics.
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can attack the problem from the point of view of an exotic matter component, or of a
non-Einsteinian gravity force, or invoking multidimensional effects. Similarly, one
can employ a very diverse array of observations, from standard candles to standard
clocks, from supernovae to quasar multiple images. Many of the hypotheses and
methods will have a strong impact on cosmology even beyond the dark energy
problem. This book tries to extract from this variety the core teachings: methods,
suggestions, hypotheses, and techniques that are shaping our knowledge of the
cosmos. Many of these, we reckon, will remain with us for many years.

Although the diversity of approaches is one of the hallmarks of dark energy
research, we could not possibly cover all the ideas discussed so far. Up to 2009 the
number of papers that include the words “dark energy” or “cosmological constant”
in the title has been over 3700. We tried to discuss all the driving ideas but not
all possible implementations. In doing so we certainly missed some interesting
contributions; we apologize in advance to our colleagues.

We thank all our collaborators on the topics in this book, namely, Carlo
Baccigalupi, Amedeo Balbi, Marco Baldi, Kazuharu Bamba, Riccardo Barbi-
eri, Bruce A. Bassett, Silvio Bonometto, Stefano Borgani, Robert Brandenberger,
Carlo Burigana, Paolo Cabella, Gianluca Calcagni, Gabriela C. Campos, Salvatore
Capozziello, Daniela Carturan, Christos Charmousis, Edmund J. Copeland, Pier
Stefano Corasaniti, Stephen C. Davis, Antonio De Felice, Cinzia Di Porto, Stephane
Fay, Fabio Finelli, Radouane Gannouji, Mohammad Reza Garousi, Maurizio
Gasperini, Chao-Qiang Geng, Emanuele Giallongo, Fabio Giovi, Burin Gumjudpai,
Zong-Kuan Guo, Soo A. Kim, Martin Kunz, Maxim Libanov, Andew R. Liddle,
Roy Maartens, Andrea Macciò, Kei-ichi Maeda, Roberto Mainini, Elisabetta
Majerotto, Martin Makler, Matteo Martinelli, Alessandro Melchiorri, Shuntaro
Mizuno, Bruno Moraes, David F. Mota, Tapan Naskar, Savvas Nesseris, Shin’ichi
Nojiri, Sergei Odintsov, Junko Ohashi, Nobuyoshi Ohta, Sudhakar Panda,
Eleftherios Papantonopoulos, David Parkinson, Alessandro Pasqui, Valeria
Pettorino, Yun-Song Piao, Federico Piazza, David Polarski, Miguel Quartin,
Claudia Quercellini, R. R. R. Reis, Rogerio Rosenfeld, Valery Rubakov, M. Sami,
Domenico Sapone, Parampreet Singh, Alexei Starobinsky, Takashi Tamaki,
Takayuki Tatekawa, Reza Tavakol, Domenico Tocchini-Valentini, Alexey
Toporensky, Peter V. Tretjakov, Roberto Trotta, Kotub Uddin, Carlo Ungarelli,
Ioav Waga, David Wands, John Ward, Christof Wetterich, Jun’ichi Yokoyama, and
Xinmin Zhang.

Apart from collaborators, we are grateful to many other people with whom we
have discussed a lot about dark energy. We also thank Graham Hart and the editorial
staff at Cambridge University Press for giving us the opportunity to write this book.
Finally we are grateful to our families: Emanuela, Davide, Yasuko, and Masato for
their support and love.

L.A. and S.T.
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I wish to honor the memory of Franco Occhionero, long-time friend and teacher:
you opened to me the magic lamp of cosmology. I also thank the staff and colleagues
at the Osservatorio Astronomico di Roma and the Director Emanuele Giallongo,
for support, patience, collaboration, help, friendship, and everything that makes
work possible, pleasant and productive. Thanks to the University of Heidelberg
for the new exciting opportunities they are offering to me. Special thanks to Sil-
vio Bonometto, Roberto Buonanno, Roberto Scaramella and Christof Wetterich
for collaboration, advice, support, and friendship. Special thanks to Claudia Quer-
cellini, Ioav Waga, Miguel Quartin, Fabio Finelli, Cinzia di Porto for comments on
the draft and for the long-term friendship and collaboration. Thanks also to Adam
Amara, Enzo Branchini, Francisco Castander, Gigi Guzzo, Tom Kitching, Rocky
Kolb, Martin Kunz, Roberto Maoli, Anais Rassat, Alexandre Refregier, Yun Wang,
Jochen Weller, and all the other DUNE/Euclid and NASA/SWG collaborators, too
many to be listed here, from whom I learned a lot in terms both of science and of
scientific collaboration.

L.A.

I am grateful to Kei-ichi Maeda for giving me a chance to work as a cosmologist, in
spite of the fact that I was majoring mathematics before entering a master course of
physics in 1996. This was a correct decision because I witnessed enormous progress
of observational and theoretical cosmology from the late 1990s, especially in the
field of dark energy. I am also thankful to the members of Tokyo University of
Science and Gunma National College of Technology, especially to Antonio De
Felice, Hitoshi Fujiwara and Junko Ohashi, for their kind support and help. I also
thank Bruce A. Bassett and Roy Maartens, who kindly helped me in many aspects
during my stay in Portsmouth in 2003. I am grateful to M. Sami for a long-term
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Symbol Definition

G Gravitational constant (G = 6.67 × 10−8 cm3 g−1 sec−2)
mpl Planck mass (mpl = 1/

√
G = 1.2211 × 1019 GeV)

Mpl Reduced Planck mass (Mpl = 1/
√

8πG = 2.4357 × 1018 GeV)
κ

√
8πG

a Scale factor of the Universe (with the present value a0 = 1)
t Cosmic time
η Conformal time: η =

∫
a−1 dt

N Number of e-foldings: N = ln a

˙ Derivative with respect to t
′ Derivative with respect to η (or N = ln a in Chapters 11 and 12)
z Redshift: z = a0/a − 1
dA, dL Angular diameter distance, luminosity distance
H , H Hubble parameter: H = ȧ/a, conformal Hubble parameter H = aH

H0, h Present Hubble parameter: H0 = 100 h km sec−1 Mpc−1

E(z) Hubble parameter normalized by H0: E(z) = H (z)/H0

ρ (Energy) Density
P Pressure
w Equation of state: w = P/ρ

weff Effective or total equation of state: weff = −1 − 2Ḣ /(3H 2)
K Curvature of the Universe
R Ricci scalar
&(0) Density parameter at the present epoch (z = 0)
cs Sound speed
rs Sound horizon: rs(η) =

∫ η

0 dη̃ cs(η̃)
', ( Gravitational potentials
T Temperature
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Symbol Definition

) Temperature perturbations: ) = δT/T

k Comoving wavenumber
P (k) Power spectrum of perturbations
ℓ Spherical harmonic multipoles
Cℓ Multipole power spectrum
R CMB shift parameter
δ Density contrast
D Growth function
b Bias (ratio of galaxy to total matter perturbations)
! Cosmological constant
S Action
gµν Metric
Gµν Einstein tensor
Tµν Energy-momentum tensor
φ Scalar field
V (φ) Scalar-field potential in the Einstein frame
U (φ) Scalar-field potential in the Jordan frame
L Lagrangian density (also log-likelihood)
λ Slope of the potential defined by λ = −V,φ/(κV )
λ̂ Dimensionless perturbation scale λ̂ = H/k

X Kinetic energy: X = −(1/2)gµν∂µφ∂νφ

Q Coupling between a scalar field φ and non-relativistic matter
ωBD Brans–Dicke parameter
R2

GB Gauss–Bonnet term
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Overview

From the observational data of Supernovae Type Ia (SN Ia) accumulated by the year
1998, Riess et al. [1] in the High-redshift Supernova Search Team and Perlmutter
et al. [2] in the Supernova Cosmology Project Team independently reported that the
present Universe is accelerating. The source for this late-time cosmic acceleration
was dubbed “dark energy.” Despite many years of research (see e.g., the reviews
[3, 4, 5, 6, 7]) its origin has not been identified yet. Dark energy is distinguished
from ordinary matter species such as baryons and radiation, in the sense that it
has a negative pressure. This negative pressure leads to the accelerated expansion
of the Universe by counteracting the gravitational force. The SN Ia observations
have shown that about 70% of the present energy of the Universe consists of dark
energy.

The expression “dark energy” may be somewhat confusing in the sense that a
similar expression, “dark matter,” has been used to describe a pressureless matter
(a non-relativistic matter) that interacts very weakly with standard matter particles.
The existence of dark matter was already pointed out by Zwicky in the 1930s
by comparing the dispersion velocities of galaxies in the Coma cluster with the
observable star mass. Since dark matter does not mediate the electromagnetic force,
its presence is mainly inferred from gravitational effects on visible matter. Dark
matter can cluster by gravitational instability (unlike standard dark energy) so that
local structures have been formed in the Universe. In fact it is observationally
known that dark matter has played a crucial role for the growth of large-scale
structure such as galaxies and clusters of galaxies. The energy fraction of dark
matter in the present universe is about 25%, whereas that of baryons is about 4%.
The black body radiation, which dominated over the other matter components in
the past, shares only about 0.005% of the present total energy density.

In modern cosmology it is believed that another cosmic acceleration called
“inflation” occurred in the very early Universe prior to the radiation-dominated

1



2 Overview

epoch. The idea of inflation was originally proposed in the early 1980s by a num-
ber of people [8, 9, 10, 11] to solve several cosmological problems such as the
flatness and horizon problems. Inflation also provides a causal mechanism for
the origin of large-scale structure in the Universe. The temperature anisotropies
of Cosmic Microwave Background (CMB) observed by the Cosmic Background
Explorer (COBE) in 1992 [12] showed that the fluctuation spectrum is nearly
scale-invariant.1 This is consistent with theoretical predictions of the power spec-
trum of density perturbations originated from quantum fluctuations of a scalar
field generated during inflation. After 2003, the Wilkinson Microwave Anisotropy
Probe (WMAP) group has provided high-precision observational data of CMB
anisotropies [13, 14, 15]. This has given strong support for the existence of an
inflationary period as well as dark energy.

After the end of inflation the Universe entered the radiation-dominated epoch
during which light elements such as helium and deuterium were formed. Since the
energy density of radiation decreases faster than that of non-relativistic matter such
as dark matter and baryons, the radiation-dominated era is eventually followed
by the matter-dominated epoch around the redshift z = 3000. The temperature
anisotropies observed by COBE and WMAP occur on the last scattering surface
at which electrons were trapped by hydrogen to form atoms. After this decoupling
epoch photons can freely move to us without experiencing Thomson scattering.
The decoupling corresponds to the redshift z ≃ 1090. According to the WMAP
5-year data [15], the energy components at the decoupling epoch are dark matter
(63%), radiations (25%) [photons (15%) and neutrinos (10%)], and baryons (12%)
with at most a tiny amount of dark energy. We will often make reference to the
cosmological parameters measured by WMAP in the course of this book.

The formation of structure (galaxies, clusters) started in the matter-dominated
epoch, i.e. when the pressureless dark matter began to dominate the total energy
density of the Universe. Baryons also contribute to the formation of large-scale
structure to some extent. During the matter era the energy density of dark energy
needs to be suppressed compared to that of dark matter in order to allow sufficient
growth of large-scale structure. If dark energy couples to dark matter with some
interaction (as in the coupled quintessence scenario [16, 17]), then dark energy
also affects the past expansion history of the Universe as well as the structure
formation. It is possible to place bounds on the strength of such couplings from
the observations of CMB and of galaxy clustering. In addition to the experiments
of direct and indirect dark matter search (see e.g., [18, 19, 20, 21]), like those at
the Large Hadron Collider (LHC) at CERN and in underground, ground, and space

1 J. Mather and G. Smoot won the Nobel Prize in 2006 for the measurement of the black body spectrum and the
discovery of the temperature anisotropy of CMB.
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facilities, cosmological observations will shed light on the relation between dark
matter and dark energy.

While the energy density of dark matter evolves as ρm ∝ a−3 (a is the scale
factor of an expanding Universe), the dark energy density is nearly constant in time
(ρDE ∝ a−n with n probably close to 0). Hence the latter energy density eventually
catches up with the former. The onset of the cosmic acceleration occurs around the
redshift z ∼ 1, although there is still uncertainty for its precise value because of
the model-dependence. We live then in a special epoch of the cosmic acceleration
in the long expansion history of the Universe. The problem why the accelerated
expansion of the Universe started around today is often called the “coincidence
problem.” The standard radiation- and matter-dominated eras are sandwiched by
two periods of cosmic acceleration – inflation and dark energy.

The simplest candidate for dark energy is the so-called cosmological constant !,
whose energy density remains constant [22]. Originally the cosmological constant
was introduced by Einstein in 1917 to realize a static Universe in the framework of
General Relativity [23]. In fact the Einstein equations allow the freedom to add the
constant ! term. The cosmological constant works as a negative pressure against
gravity so that the two effects can balance each other. However, after the discovery
of the expansion of the Universe by Hubble from the measurement of recession
speeds of distant galaxies, Einstein abandoned the idea of adding the ! term to the
Einstein equations. At the late stage of his career, he regretted having introduced
! as his “biggest blunder” (or so is told by George Gamow). In fact, there was
nothing to regret: after 1998 the cosmological constant revived again as a form of
dark energy responsible for the late-time acceleration of the Universe.

From the viewpoint of particle physics, the cosmological constant appears as
vacuum energy density. If we sum up zero-point energies of all normal modes of
some field and take the cut-off scale of the momentum at the Planck scale, the
vacuum energy density is estimated to be ρvac ≃ 1074 GeV4. This is much larger
than the observed value of dark energy: ρ! ≃ 10−47 GeV4. If vacuum energy with
an energy density of the order of ρvac ≃ 1074 GeV4 was present in the past, the
Universe would have entered an eternal stage of cosmic acceleration already in the
very early Universe. This is of course problematic because the success of the big
bang cosmology based on the presence of radiation and matter epochs is completely
destroyed. Hence the problem of the large vacuum energy density was known long
before the discovery of dark energy in 1998.

If the cosmological constant is responsible for the present cosmic acceleration,
we need to find a mechanism to obtain the tiny value of ! consistent with obser-
vations. A lot of efforts have been made in this direction under the framework of
particle physics. For example, the recent development of string theory shows that
it is possible to construct de Sitter vacua by compactifying extra dimensions in the
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presence of fluxes with an account of non-perturbative corrections [24]. The fact
that there is a huge number of different choices of fluxes gives rise to the so-called
“string landscape” with more than 10500 vacua [25]. Some scientists argued that
only the vacuum whose energy density is of the order of the present cosmological
density can sustain life or complexity and this explains why we live in a low-!
world. This anthropic argument is, to say the least, highly controversial.

If the origin of dark energy is not the cosmological constant, one may seek for
some alternative models to explain the cosmic acceleration today. Basically there
are two approaches to construct models of dark energy other than the cosmological
constant.

The first approach is to modify the right-hand side (r.h.s.) of the Einstein equa-
tions given in Eq. (2.8) by considering specific forms of the energy-momentum
tensor Tµν with a negative pressure. The representative models that belong to this
class are the so-called cosmon or quintessence [26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41], k-essence [42, 43, 44], and perfect fluid models [45, 46].
The quintessence makes use of scalar fields with slowly varying potentials, whereas
in k-essence it is the scalar-field kinetic energy that drives the acceleration. The
perfect fluid models are based on a perfect fluid with a specific equation of state
such as the Chaplygin gas model [45] and its generalizations [46]. There have been
many attempts to construct scalar-field models of dark energy based on particle
physics (see Refs. [47, 48, 49, 50, 51, 52] for early works). In the context of infla-
tion, since the associated energy scale is high, it is natural for scalar fields to be
responsible for the acceleration of the Universe. The situation is different for dark
energy – its energy scale is too low compared to typical scales appearing in particle
physics. Moreover, the field potentials need to be sufficiently flat so that the field
evolves slowly enough to drive the present cosmic acceleration. This demands that
the field mass is extremely light (mφ ≃ 10−33 eV) relative to typical mass scales
appearing in particle physics. It would be expected that this light scalar field should
mediate long-range forces with ordinary matter [36]. Such couplings need to be
suppressed in order to be consistent with a number of local gravity experiments.
In spite of the above-mentioned difficulties it is not hopeless to construct viable
scalar-field dark energy models in the framework of particle physics.

The second approach for the construction of dark energy models is to modify
the left-hand side (l.h.s.) of the Einstein equations (2.8). The representative models
that belong to this class (that we denote “modified gravity”) are the so-called f (R)
gravity [53, 54, 55], scalar-tensor theories [56, 57, 58, 59, 60], and braneworld
models [61, 62]. The cosmological constant scenario (in other words, the “!-Cold-
Dark-Matter (!CDM) model”) corresponds to the Lagrangian density f (R) =
R − 2!, where R is the Ricci scalar. A possible modification of the !CDM is
described by a non-linear Lagrangian density f in terms of R, which is called
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f (R) gravity. Scalar-tensor theories correspond to theories in which the Ricci
scalar R couples to a scalar field φ with a coupling of the form F (φ)R. They
include Brans–Dicke theory [63] and dilaton gravity [64] as specific cases. In the
braneworld models proposed by Dvali, Gabadadze, and Porrati (DGP) [61] the
late-time acceleration of the Universe can be realized as a result of the gravitational
leakage from a 3-dimensional surface (3-brane) to a 5-th extra dimension on Hubble
distances. Generally we require that modified gravity models satisfy local gravity
constraints as well as conditions for the cosmic acceleration preceded by the
matter-dominated epoch. In this sense modified gravity models are typically more
strongly constrained than modified matter models from gravitational experiments
and cosmological observations.

It is important to realize however that the two approaches, which we denote
as modified matter and modified gravity, are not fundamentally different, at least
if for a moment we do not consider their quantum field implications. From the
viewpoint of classical General Relativity (which is all that matters for most of
cosmology), one can always rephrase one into the other by defining a suitable
conserved energy-momentum tensor that equals the Einstein tensor.

In order to distinguish this variety of models of dark energy, it is important to
place constraints by using observational data such as SN Ia, CMB, and large-scale
structure (LSS). Usually the equation of state of dark energy, wDE ≡ PDE/ρDE,
where PDE is the pressure and ρDE is the energy density, is a good measure to
describe the property of dark energy at background level. In the case of the cos-
mological constant we have PDE = −ρDE and hence wDE = −1. In other models
of dark energy the equation of state wDE generally varies in time. Perhaps the first
task of dark energy research is to detect deviations from the value wDE = −1 in
order to find whether dark energy can be identified with the cosmological constant
or not.

The SN Ia observations have provided information of the cosmic expansion
history around the redshift z ! 2 by the measurement of luminosity distances
of the sources. The presence of dark energy leads to a shift of the position of
acoustic peaks in CMB anisotropies as well as a modification of the large-scale
CMB spectrum through the so-called integrated Sachs–Wolfe effect. Although the
CMB data alone are not sufficient to place strong constraints on dark energy, the
combined analysis of SN Ia and CMB can provide tight bounds on the equation of
state wDE and the present energy fraction &

(0)
DE of dark energy [15]. The distribution

of large-scale clustering of galaxies in the sky also provides additional information
on the properties of dark energy [65, 66, 67]. In 2005 the detection of a peak of
baryon acoustic oscillations (BAO) was reported by Eisenstein et al. [68] at the
average redshift z = 0.35 from the observations of luminous red galaxies in the
Sloan Digital Sky Survey. This has also given us another independent test of dark
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energy. From the combined analysis of SN Ia, CMB, and BAO, the WMAP group
[15] obtained the bound −1.097 < wDE < −0.858 at the 95% confidence level
assuming a constant equation of state. The cosmological constant (wDE = −1) is
well consistent with the current observational data while some dark energy models
have been already excluded from observations.

In future observations it is expected that other observational data such as weak
gravitational lensing and gamma ray bursts will shed light on the nature of dark
energy. Confirming !CDM or detecting deviations from it would be an extremely
important step towards understanding the origin of dark energy.

Units and conventions

Throughout this book we use units such that c = ! = kB = 1, where c is the
speed of light, ! is reduced Planck’s constant, and kB is Boltzmann’s constant. We
reinsert these symbols when the discussion needs it. In these units everything can
be expressed in terms of a single unit, e.g., time, length, or energy. The gravitational
constant G is related to the Planck mass mpl = 1.2211 × 1019 GeV via G = 1/m2

pl

and the reduced Planck mass Mpl = 2.4357 × 1018 GeV via κ2 ≡ 8πG = 1/M2
pl,

respectively. We adopt the metric signature (−, +, +, +). We list frequently used
symbols after the Table of Contents.



2

Expansion history of the Universe

Standard hot big bang cosmology is based on the cosmological principle, which
states that the Universe is homogeneous and isotropic at least on large scales.
This is supported by a number of observations, such as the CMB photons coming
from different parts of the sky with almost the same temperature. The past cosmic
expansion history is recovered by solving the Einstein equations in the background
of the homogeneous and isotropic Universe. Of course we observe inhomogeneities
and irregularities in the local region of the Universe such as stars and galaxies. These
inhomogeneities have grown in time through gravitational instability from a matter
distribution that was more homogeneous in the past. Then the inhomogeneities
can be regarded as small perturbations evolving on the background (homogeneous)
Universe.

In this chapter we provide the basic tools to understand the expansion history
of the Universe. We also introduce a number of cosmic distances often used to put
observational constraints on dark energy.

2.1 Friedmann equations

The line-element that describes a 4-dimensional homogeneous and isotropic space-
time is called Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) spacetime and is
given by

ds2 = gµνdxµdxν = −dt2 + a2(t)dσ 2 , (2.1)

where gµν is a metric tensor, a(t) is a scale factor with cosmic time t , and dσ 2 is
the time-independent metric of the 3-dimensional space with a constant curvature
K:

dσ 2 = γij dxidxj = dr2

1 − Kr2
+ r2(dθ2 + sin2 θ dφ2) . (2.2)

7
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Here K = +1, −1, 0 correspond to closed, open, and flat geometries, respectively.
We have used polar coordinates (x1, x2, x3) = (r, θ, φ) with γ11 = (1 − Kr2)−1,
γ22 = r2, and γ33 = r2 sin2 θ . In Eq. (2.1) the Greek indices µ and ν run from 0
to 3, whereas in Eq. (2.2) the Latin indices i and j run from 1 to 3; the same
convention applies to the whole book except when indicated otherwise. We follow
Einstein’s convention that the terms with same upper and lower indices are summed
over. See the book of Weinberg [69] for the derivation of the metric (2.1) from a
maximally symmetric spacetime. In addition to the cosmic time t , we also introduce
the conformal time η defined by

η ≡
∫

a−1 dt . (2.3)

The dynamical equations of motion in the expanding Universe can be derived from
the Einstein equations by the following steps. From the metric gµν we obtain the
Christoffel symbol:

4
µ
νλ = 1

2
gµα(gαν,λ + gαλ,ν − gνλ,α) , (2.4)

where gαν,λ ≡ ∂gαν/∂xλ. Note that gαν satisfies the relation gµαgαν = δµ
ν , where

δµ
ν is Kronecker’s delta (δµ

ν =1 for µ = ν and δµ
ν =0 for µ ̸= ν). The Ricci tensor is

defined by

Rµν = 4α
µν,α − 4α

µα,ν + 4α
µν4

β
αβ − 4α

µβ4β
αν . (2.5)

The contraction of the Ricci tensor gives the Ricci scalar (scalar curvature)

R = gµνRµν . (2.6)

We can then evaluate the Einstein tensor

Gµν ≡ Rµν − 1
2
gµνR . (2.7)

The cosmological dynamics can be obtained by solving the Einstein equations

Gµ
ν = 8πGT µ

ν , (2.8)

where T µ
ν is the energy-momentum tensor of matter components. The l.h.s. of

Eq. (2.8) characterizes the geometry of spacetime, whereas the r.h.s. describes
energies and momenta of matter components. In the cosmological setting the
cosmic expansion rate is determined by specifying the properties of matter in the
Universe.



2.1 Friedmann equations 9

For the FLRW metric (2.1) the non-vanishing components of Christoffel symbols
are

40
ij = a2H γij , 4i

0j = 4i
j0 = H δi

j , (2.9)

41
11 = Kr

1 − Kr2
, 41

22 = −r(1 − Kr2) , 41
33 = −r(1 − Kr2) sin2 θ, (2.10)

42
33 = − sin θ cos θ , 42

12 = 42
21 = 43

13 = 43
31 = 1

r
, 43

23 = 43
32 = cot θ,

(2.11)

where

H ≡ ȧ/a. (2.12)

A dot represents a derivative with respect to cosmic time t . The quantity H ,
called the Hubble parameter, describes the expansion rate of the Universe. The
Christoffel symbols given in Eqs. (2.10) and (2.11) correspond to those for the
three-dimensional metric (2.2) with the curvature K.

From Eqs. (2.5) and (2.6) the Ricci tensor and the scalar curvature are

R00 = −3
(
H 2 + Ḣ

)
, R0i = Ri0 = 0 , Rij = a2 (

3H 2 + Ḣ + 2K/a2) γij , (2.13)

R = 6
(
2H 2 + Ḣ + K/a2) . (2.14)

From Eq. (2.7) together with the relation Gµ
ν = gµαGαν , the Einstein tensor is

G0
0 = −3

(
H 2 + K/a2) , G0

i = Gi
0 = 0 , Gi

j = −
(
3H 2 + 2Ḣ + K/a2) δi

j . (2.15)

In the FLRW spacetime the energy-momentum tensor of the background matter is
restricted to take the perfect fluid form:

T µ
ν = (ρ + P )uµuν + P δµ

ν , (2.16)

where uµ = (−1, 0, 0, 0) is the four-velocity of the fluid in comoving coordinates,
and ρ and P are functions of t . The (00) and (ij ) components of T µ

ν are T 0
0 = −ρ

and T i
j = P δi

j . Then ρ and P have the meaning of an energy density and a pressure,
respectively. Since we are using the unit c = 1, the density ρ is not particularly
distinguished from the energy density ρc2. From the (00) and (ii) components of
the Einstein equations (2.8) we obtain

H 2 = 8πG

3
ρ − K

a2
, (2.17)

3H 2 + 2Ḣ = −8πGP − K

a2
. (2.18)
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Eliminating the term K/a2 gives

ä

a
= −4πG

3
(ρ + 3P ) . (2.19)

Multiplying Eq. (2.17) by a2, differentiating and using Eq. (2.19), we find

ρ̇ + 3H (ρ + P ) = 0 . (2.20)

The Einstein tensor satisfies the Bianchi identities

∇µGµ
ν ≡ ∂Gµ

ν

∂xµ
+ 4µ

αµGα
ν − 4α

νµGµ
α = 0 , (2.21)

where ∇µ denotes the covariant derivative. Sometimes we use also the symbol
“;µ” to represent the covariant derivative. From the Einstein equations (2.8) it
follows that ∇µT µ

ν = 0, which gives the same equation as (2.20) in the FLRW
background (see problem 2.1). Hence Eq. (2.20) is called the conservation or
continuity equation.

Equation (2.17) can be written in the form:

&M + &K = 1 , (2.22)

where

&M ≡ 8πGρ

3H 2
, &K ≡ − K

(aH )2
. (2.23)

We often refer to the present values of the density parameters. For relativistic
particles, non-relativistic matter, dark energy, and curvature, we have, respectively

&(0)
r = 8πGρ(0)

r

3H 2
0

, &(0)
m = 8πGρ(0)

m

3H 2
0

, &
(0)
DE = 8πGρ

(0)
DE

3H 2
0

, &
(0)
K = − K

(a0H0)2
.

(2.24)

When we wish to identify the electromagnetic radiation, rather than all the rela-
tivistic particles, we use the subscript γ . When we need to distinguish between
(cold) dark matter and baryons we use the subscripts c and b, respectively.1 When
we refer to the cosmological constant, we also use the subscript ∧ instead of DE.
Finally, sometimes we use M to denote a generic matter component.

If the expansion of the Universe is decelerated (i.e. ä < 0) then the curvature
term |&K | continues to increase (because the term aH (= ȧ) decreases), apart
from the case where the Universe is exactly flat (K = 0) from the very beginning.
The WMAP 5-year data [15] constrain the curvature of the present Universe to
be −0.0175 < &

(0)
K < 0.0085 at the 95% confidence level. We need a phase of

1 See Section 2.3 for the definition of cold dark matter.
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cosmic acceleration (ä > 0) to reduce |&K | in the past cosmic expansion history,
unless the initial state of the Universe is extremely close to the flat one. In order
to realize the present level of flatness of the Universe, we require, prior to the
radiation-dominated epoch, a phase of cosmic inflation during which the scale
factor changes by more than e70 times [70].

Let us consider the case in which the Universe is dominated by a single compo-
nent with an equation of state defined by

w ≡ P/ρ . (2.25)

If w is a constant, one can analytically find the evolution of ρ and a for the
flat Universe (K = 0). Solving Eqs. (2.17) and (2.20) in this case, we obtain the
following solutions

ρ ∝ a−3(1+w) , a ∝ (t − ti)2/(3(1+w)) , (2.26)

where ti is a constant. Since from statistical mechanics we know that radiation
has the equation of state w = 1/3 (as we will see later), it follows that the cosmic
evolution during the radiation-dominated epoch is given by ρ ∝ a−4 and a ∝
(t − ti)1/2. Non-relativistic matter corresponds to the case with a negligible pressure
relative to its energy density, i.e. w ≃ 0. Then the evolution during the matter-
dominated era is given by ρ ∝ a−3 and a ∝ (t − ti)2/3.

In order to give rise to the cosmic acceleration we require ä > 0 in Eq. (2.19),
i.e.

P < −ρ/3 → w < −1/3 , (2.27)

where ρ is assumed to be positive. The fact that the negative pressure leads to the
cosmic acceleration may look counter-intuitive. In Newtonian gravity the pressure
is related to a force associated with a local potential that depends on the position
in space. In the homogeneous and isotropic Universe such a local potential is
absent, which means that there is no Newtonian-analog pressure. In other words,
the time-dependent pressure P (t) in the FLRW spacetime appears only in General
Relativity. The mechanisms that generate this negative pressure and the cosmic
acceleration are the main topic of this book.

When w = −1, i.e. P = −ρ, it follows from Eq. (2.20) that ρ is a constant. This
case corresponds indeed to the so-called cosmological constant. Since H is constant
in the flat Universe (K = 0), the scale factor evolves exponentially: a ∝ exp(Ht).
The cosmological constant cannot be responsible for inflation in the early Universe
because otherwise the accelerated expansion would not end. However, it is possible
that the cosmological constant is responsible for dark energy because the current
cosmic acceleration might indeed continue without end.



12 Expansion history of the Universe

2.2 Hubble’s law

In the 1920s Slipher and Hubble found that the observed wavelength λ0 of absorp-
tion lines of distant galaxies is larger than the wavelength λ in the rest frame [71].
This is due to the fact that the wavelength is stretched in proportion to the scale
factor in an expanding Universe. In order to quantify this effect, we introduce the
redshift

z ≡ λ0

λ
− 1 = a0

a
− 1 , (2.28)

where the present epoch corresponds to z = 0. In the following we take the present
scale factor a0 to be unity unless otherwise stated. As we go back to the past, z gets
larger. As long as the recessional velocity v of an object is much smaller than the
speed of light c we have λ0 ≃ (1 + v/c)λ from the Doppler effect, giving

z ≃ v/c . (2.29)

In an expanding Universe a physical distance r from an observer (at the origin)
to an object is given by r = a(t)x, where x denotes the comoving distance. For
objects moving with the Hubble flow, the comoving distance remains constant.
Taking the derivative of the equation r = a(t)x with respect to t , we obtain

ṙ = H r + a ẋ . (2.30)

The velocity vH ≡ H r appears because of the presence of the cosmic expansion.
On the other hand, the velocity vp ≡ a ẋ, called peculiar velocity, describes the
movement of an object with respect to the local Hubble flow. The speed of the
object along the direction from the observer to the object is given by

v ≡ ṙ · r/r = Hr + vp · r/r , (2.31)

where r ≡ |r|.
In most cases the peculiar velocity of galaxies does not exceed 106 m/s. Under

the condition that the term vp · r/r is negligible relative to the term Hr , we obtain

v ≃ H0r . (2.32)

Here we have replaced H for the present value H0, which is justified in small
redshift regions (z ≪ 1). In 1929, Hubble reported the law (2.32) by plotting the
recessional velocity v versus the distance r . His data were scarce, shallow, and
noisy, but Hubble concluded correctly that the universe was expanding.

The Hubble parameter H0 (Hubble constant) is usually written as

H0 = 100 h km sec−1 Mpc−1 = 2.1332h × 10−42 GeV , (2.33)

where

1 Mpc = 3.08568 × 1024 cm = 3.26156 × 106 light years . (2.34)
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Note that h describes the uncertainty on the value H0. The observations of the
Hubble Key Project constrain this value to be [72]

h = 0.72 ± 0.08 . (2.35)

Originally Hubble derived a much larger value, H0 ∼ 500 km sec−1 Mpc−1, due to
the uncertainty of the measurement of distances at that time. We define the Hubble
time

tH ≡ 1/H0 = 9.78 × 109 h−1 years , (2.36)

which is a rough measure of the age of the Universe. The present Hubble radius is
defined by

DH ≡ c

H0
= 2998 h−1 Mpc , (2.37)

which corresponds roughly to the largest scale we can observe now.
It is also convenient to introduce the critical density

ρ(0)
c ≡ 3H 2

0

8πG
= 1.88 h2 × 10−29 g cm−3 , (2.38)

which represents the averaged cosmological density in the Universe today. Note
that we have used Eqs. (2.33) and (2.34) together with the value G = 6.67 ×
10−8 cm3 g−1 sec−2 to obtain the numerical value in Eq. (2.38). The critical density
(2.38) is very small compared to densities in the local structure of the Universe
(ρ ≃ 5 g/cm3 for Earth and ρ ≃ 10−24 g/cm3 for the homogeneous baryon/dark
matter density in our Galaxy). An even smaller fraction is responsible for the
present accelerated expansion of the Universe.

2.3 Matter species in the Universe

Let us consider matter species in the Universe. They are broadly classified into
relativistic particles, non-relativistic matter, and dark energy. Another component,
presumably a scalar field, dominated during the period of inflation in the early
Universe. In the following we shall first review the equilibrium thermodynamics
of relativistic and non-relativistic particles and then proceed to the brief thermal
history of the Universe.

Let us consider a particle with momentum p and mass m. From Special Rel-
ativity the energy of this particle is E =

√
p2 + m2, where p ≡ | p|. The phase

space occupancy f ( p) in equilibrium at temperature T is given by the following
distribution function

f ( p) = 1
exp[(E − µ)/T ] ± 1

, (2.39)

where µ is the chemical potential of each species. The plus and minus signs repre-
sent the Fermi–Dirac distribution and the Bose–Einstein distribution, respectively.
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Generally the distribution function f depends on the position x of the species,
but Eq. (2.39) only depends on p ≡ | p| because of the homogeneity of the Uni-
verse. Since the minimum volume of phase space in terms of x and p is given
by (2π!)3 due to Heisenberg’s principle, the number of phase space elements is
d3x d3p/(2π!)3. Then the energy density ρ and the pressure P with g∗ internal
degrees of freedom are [73, 74]

ρ = g∗

∫
d3p

(2π!)3
E(p) f (p) = g∗

2π2

∫ ∞

m

dE
(E2 − m2)1/2

exp[(E − µ)/T ] ± 1
E2 , (2.40)

P = g∗

∫
d3p

(2π!)3

pv

3
f (p) = g∗

∫
d3p

(2π!)3

p2

3E
f (p)

= g∗

6π2

∫ ∞

m

dE
(E2 − m2)3/2

exp[(E − µ)/T ] ± 1
. (2.41)

Note that there is no integral over d3x because ρ and P are defined as quan-
tities per unit volume. In the first equality of Eq. (2.41) we have used the fact
that the pressure per unit number density of particles is given by pv/3 (where v

is the speed of the particle), and in the second equality of Eq. (2.41) the relation
v = p/E has been used in unit of c = 1 (recall that the energy and the momentum
in Special Relativity are E = mc2/

√
1 − v2/c2 and p = mv/

√
1 − v2/c2, respec-

tively). In the final expressions of Eqs. (2.40) and (2.41) we have adopted the
unit ! = 1. In what follows we consider relativistic and non-relativistic particles
separately.

(i) Relativistic species
The relativistic limit corresponds to T ≫ m, i.e. taking the limit m → 0 in
Eqs. (2.40) and (2.41). For non-degenerate particles (T ≫ µ) we obtain

ρ =
{

(π2/30)g∗T
4 , (Bosons)

(7/8)(π2/30)g∗T
4 , (Fermions)

(2.42)

P = ρ/3 , (2.43)

where we have used
∫ ∞

0 d3x x3/(ex − 1) = π4/15 and
∫ ∞

0 d3x x3/(ex + 1) =
7π4/120. The result (2.43) shows that the equation of state of relativistic parti-
cles without degeneracies is given by w = 1/3.

The photons are bosonic species and it is also known that the chemical potential
µ for the CMB photons is much smaller than the temperature T (µ/T < 9 × 10−5

[75]). Since the photon has two spin states (g∗ = 2), its energy density is

ργ = π2

15
T 4 . (2.44)
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The COBE satellite measured the present temperature of CMB photons to be
T = 2.725 ± 0.002 K [12]. On using the conversion 1 K4 =1.279×10−35 g cm−3,
the energy density of CMB photons in the present Universe is ρ(0)

γ = 4.641 ×
10−34 g cm−3. This corresponds to the density parameter

&(0)
γ ≡

8πGρ(0)
γ

3H 2
0

=
ρ(0)

γ

ρ
(0)
c

= 2.469 × 10−5 h−2 . (2.45)

If we take the value h = 0.72, then &(0)
γ = 4.763 × 10−5. Since the energy den-

sity ργ evolves as ργ ∝ a−4 (see Eq. (2.26) with w = 1/3), the comparison with
Eq. (2.44) gives the relation T ∝ 1/a (= 1 + z). Hence the temperature is inversely
proportional to the scale factor.

Neutrinos also behave like relativistic particles provided that their masses are
small. They are fermionic particles with zero chemical potentials and there are
three types of species in standard models (electron neutrino νe, muon neutrino νµ,
and tau neutrino ντ ). Each species has one spin degree of freedom. Note also that
neutrinos have anti-particles (anti-neutrinos). Using Eq. (2.42) in the fermionic
case, the energy density of neutrinos, including anti-particles, is given by

ρν = Neff
7π2

120
T 4

ν , (2.46)

where Neff is the effective number of neutrino species and Tν is the temperature of
neutrinos. Note that Neff = 3 for standard models of neutrinos, but in the fermionic
case we have introduced the effective number Neff in order to allow for other
relativistic degrees of freedom.

The Big Bang Nucleosynthesis (BBN) occurred around the energy scale
∼0.1 MeV to form light elements such as deuterium and helium. The decou-
pling of neutrinos from the rest of the cosmic plasma, immediately followed by
the annihilation of electrons (e−) and positrons (e+), occurred earlier than the
BBN epoch. The presence of extra relativistic degrees of freedom changes the
amount of the light elements predicted by the BBN, which allows to put a bound
on Neff . The current standard value is Neff = 3.04 [76], which is slightly larger
than 3. The neutrino temperature Tν is linked to the photon temperature Tγ via the
relation Tν/Tγ = (4/11)1/3. This comes from the conservation of entropy before
and after the annihilation of electrons and positrons (see the problem 2.2). From
Eqs. (2.44) and (2.46), the relation between the neutrino density and the pho-
ton density is ρν = Neff(7/8)(4/11)4/3ργ . Hence the present density parameter of
radiation, which is the sum of photons and relativistic neutrinos, yields

&(0)
r =

ρ(0)
γ + ρ(0)

ν

ρ
(0)
c

= &(0)
γ (1 + 0.2271Neff) , (2.47)
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where &(0)
γ is given in Eq. (2.45). If we take the values h = 0.72 and Neff = 3.04,

then we obtain &(0)
r = 8.051 × 10−5.

(ii) Non-relativistic matter
In the case of non-relativistic particles (T ≪ m), Eqs. (2.40) and (2.41) reduce to

ρ = g∗ m

(
mT

2π

)3/2

exp [−(m − µ)/T ] , (2.48)

P = g∗ T

(
mT

2π

)3/2

exp [−(m − µ)/T ] = T

m
ρ , (2.49)

which are valid for both bosonic and fermionic particles. See problem 2.3 for
the derivation of (2.48) and (2.49). Equation (2.49) shows that the pressure P is
suppressed relative to the energy density ρ by the factor T/m ≪ 1. Hence the
equation of state for non-relativistic matter is w ≃ 0, as expected. The above result
shows that the energy density ρ is not described by a function of the temperature
T only (unlike the case of photons). Hence we need to measure the density of
non-relativistic particles (baryons and dark matter) directly from observations.

Let us consider baryons first. During the BBN epoch the light elements such as
deuterium and helium were formed from neutrons and protons. Most of the neu-
trons decayed to protons (through the β-decay) before the formation of deuterium,
while neutrons that did not decay to protons were eventually trapped in helium. If
we increase the baryon density, the process of the BBN occurs faster and hence
more neutrons remain without decaying to protons. This leads to an increase of
the abundance of helium, whereas the abundance of deuterium decreases. Thus
the amount of light elements produced during the BBN epoch is sensitive to the
baryon density. The abundance of deuterium is known by observing absorption lines
in the high-redshift quasars. According to the measurement of distant quasars,
Tytler and his collaborators derived the primeval deuterium abundance relative
to the hydrogen to be D/H = (3.0 ± 0.4) × 10−5 [77]. From this bound, Burles,
Nollett, and Turner [78] obtained the following constraint on the present density
parameter of baryons:

&
(0)
b h2 = 0.020 ± 0.002 (BBN constraint), (2.50)

at the 95% confidence level.
The CMB observations also place tight bounds on the density parameter &

(0)
b .

If we increase the baryon density ρb, this leads to a smaller sound speed cs for the
combined fluid system of baryons, photons, and electrons [see Eqs. (4.180) and
(4.173)]. Crudely speaking the perturbations in CMB anisotropies with comoving
wavenumber k satisfy the equation for the harmonic oscillator, d2x

dη2 + k2c2
s x = 0,

with some corrections [see Eq. (5.16)]. For smaller cs , the frequency kcs decreases
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so that the height of the first CMB acoustic peak gets larger (because the amplitude
of the harmonic oscillator with a smaller spring constant gets larger). One can
constrain the amount of the baryon density by using this property. From the WMAP
5-year data combined with SN Ia and BAO data, the constraint on the present density
parameter of baryons is [15]

&
(0)
b h2 = 0.02267+0.00058

−0.00059 (WMAP 5 year constraint), (2.51)

at the 68% confidence level. If we take the value h = 0.72, then we have &
(0)
b =

0.0437 for the central value in Eq. (2.51). This means that the baryonic contribution
is only 4% in the present Universe.

In addition to baryons, astrophysical observations require the existence of dark
matter as another non-relativistic component in the Universe. Since dark matter
interacts very weakly with standard model particles, its existence can only be
probed by gravitational effects on visible matter. More specifically, if dark matter
was non-relativistic at the time it decoupled from photons, it is called Cold Dark
Matter (CDM). Alternatively, dark matter that was relativistic at the photon decou-
pling epoch is called Hot Dark Matter (HDM), whose representative candidate is
the neutrino. The present paradigm of structure formation is based on the gravi-
tational clustering of CDM. The baryonic matter alone is not sufficient to lead to
structure formation consistent with observations of galaxy clustering [74]. Also the
pure HDM model is ruled out as a viable model. This comes from the fact that neu-
trinos tend to stream out of any overdense region so that the CMB spectrum in the
neutrino-dominated Universe has an insufficient power on small scales to be con-
sistent with observations. In the mixed dark matter models of CDM and HDM, the
observations limit the amount of hot dark matter to at most a few percent. In the fol-
lowing we shall focus on the pure CDM model (plus dark energy) unless otherwise
stated.

The CMB anisotropy data show that the present abundance of dark matter is
about 5 times larger than that of baryons. The WMAP 5-year data constrain the
density parameter of the CDM to be [15]

&(0)
c h2 = 0.1131 ± 0.00034 (WMAP 5-year constraint), (2.52)

at the 68% confidence level. For the value h = 0.72 we have &(0)
c = 0.2182 for the

central value in Eq. (2.52).
The origin of dark matter has not been identified yet. There are basically two

classes of dark matter – (i) the astrophysical candidates, or (ii) the particle can-
didates. Examples of class (i) are black holes, neutron stars, and white dwarfs.
However, since these originate from baryons, it is not possible to explain all dark
matter components without taking into account non-baryonic dark matter.
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Class (ii) is of the non-baryonic type. Some examples of this class are axions and
Weakly Interacting Massive Particles (WIMPs, including neutralinos). The axion
was originally introduced by Peccei and Quinn [79] as a solution to the strong CP
problem in quantum chromodynamics (QCD). It has a weak coupling with a small
mass ma = 10−6–10−2 eV. The initial momentum of the axion when it gains a
mass through non-perturbative QCD effects is of the order of pa = 10−9 eV≪ ma .
Hence the axion can be a good candidate for CDM. The WIMPs are usually
motivated by supersymmetric theories. For example, neutralinos are formed as
four eigenstates of a mass operator as a result of the mixing of superpartners of
Z-bosons, the photon, and the neutral higgs (zino, photino, and higgsino, respec-
tively). The lightest of the four neutralinos turns out to be the lightest supersym-
metric particles with typical masses mn = 100 GeV–1 TeV. The lightest neutralinos
couple to other particles with the strength characteristic of the weak interaction
and hence they can be a good candidate for CDM. Direct or indirect dark mat-
ter searches and future LHC experiments will hopefully detect dark matter from
space or from high-energy collisions of particles (see Refs. [19, 20, 21] for recent
reviews).

(iii) Dark energy
From Eqs. (2.47), (2.51), and (2.52) the sum of the density parameters of radiation,
baryons, and dark matter does not exceed 0.3 in the present Universe. Since present
observational bounds on the spatial curvature are very strong, |&(0)

K | ! 0.01, we still
need to identify the remaining 70% of the cosmic matter. This unknown component,
called dark energy, is supposed to be responsible for the present cosmic acceleration.
The combined data analysis using WMAP, SN Ia, and BAO have provided the
following constraint for the present density parameter of dark energy:

&
(0)
DE = 0.726 ± 0.015 (WMAP 5-year constraint). (2.53)

In Chapters 5 and 14 we will discuss observational constraints on dark energy in
great detail. The theoretical attempts to identify the origin of dark energy will be
discussed in Chapters 6–10.

2.4 Cosmic distances

In order to discuss observational constraints on dark energy, it is important to
introduce cosmic distances directly related to observations in the FLRW spacetime
(2.1). In fact, a large part of the evidence for dark energy comes from measurements
of cosmological distances. Setting r = sin χ (K = +1), r = χ (K = 0), and r =
sinhχ (K = −1) in Eq. (2.2), the 3-dimensional space line-element is expressed as

dσ 2 = dχ2 + (fK (χ ))2 (
dθ2 + sin2 θ dφ2) , (2.54)
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where

fK (χ ) =

⎧
⎨

⎩

sinχ (K = +1) ,

χ (K = 0) ,

sinhχ (K = −1) .

(2.55)

The function (2.55) can be written in a unified way:

fK (χ ) = 1√
−K

sinh
(√

−Kχ
)

, (2.56)

where the case of the flat universe is recovered by taking the limit K → −0.

2.4.1 Comoving distance

Let us first compute the comoving distance dc. The light traveling along the χ

direction satisfies the geodesic equation: ds2 = −c2dt2 + a2(t)dχ2 = 0, where we
have recovered the speed of light c for clarification. Let us consider the case in
which light emitted at time t = t1 with χ = χ1 (redshift z) reaches an observer at
time t = t0 with χ = 0 (corresponding to z = 0). Integrating the equation, dχ =
−c dt/a(t), the comoving distance reads

dc ≡ χ1 =
∫ χ1

0
dχ = −

∫ t1

t0

c

a(t)
dt . (2.57)

From Eq. (2.28) it follows that dt = −dz/[H (1 + z)]. Then the comoving distance
is given by

dc = c

a0H0

∫ z

0

dz̃

E(z̃)
, (2.58)

where

E(z) ≡ H (z)/H0 . (2.59)

The function,
∫ z

0 dz̃/E(z̃), can be expanded around z = 0:
∫ z

0

dz̃

E(z̃)
= z − E′(0)

2
z2 + 1

6

{
2E′(0)2 − E′′(0)

}
z3 + O(z4) , (2.60)

where a prime represents a derivative with respect to z. For a redshift z much
smaller than unity, the comoving distance is approximately given by

dc ≃ c

a0H0
z , for z ≪ 1 . (2.61)

On using the relation (2.29), we find

v ≃ (a0H0)dc . (2.62)
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This shows that the recessional velocity v of the object is proportional to dc with
the proportionality constant a0H0. For the physical distance r = a0dc we find
r ≃ (c/H0)z ≃ v/H0, which means that Hubble’s law (2.32) is satisfied. Hubble’s
law written as in Eq. (2.32) is valid therefore only in the low-redshift region z ≪ 1.
For z " 1 the higher-order terms in Eq. (2.60) become important so that Hubble’s
law is subject to be modified.

2.4.2 Luminosity distance

As we will see in Section 5.2, the luminosity distance dL is used in SN Ia obser-
vations in order to link the supernova luminosity with the expansion rate of the
Universe. It is defined by

d2
L ≡ Ls

4πF
, (2.63)

where Ls is the absolute luminosity of a source and F is an observed flux. Note
that the observed luminosity L0 (detected at χ = 0 and z = 0) is different from the
absolute luminosity Ls of the source (emitted at the comoving distance χ with the
redshift z). The flux F is defined by F = L0/S, where S = 4π (a0fK (χ ))2 is
the area of a sphere at z = 0. Then the luminosity distance (2.63) yields

d2
L = (a0fK (χ ))2 Ls

L0
. (2.64)

We need now to derive the ratio Ls/L0.
If we write the energy of light emitted at the time-interval 9t1 to be 9E1, the

absolute luminosity is defined by Ls = 9E1/9t1. Similarly the observed luminos-
ity is given by L0 = 9E0/9t0, where 9E0 is the energy of light detected at the
time-interval 9t0. Since the energy of a photon is inversely proportional to its wave-
length λ we have that 9E1/9E0 = λ0/λ1 = 1 + z, where we have used Eq. (2.28).
Moreover, the constancy of c = λ/9t implies λ1/9t1 = λ0/9t0, where λ1 and λ0

are the wavelength of light at the points of emission and detection respectively.
This leads to the relation 9t0/9t1 = λ0/λ1 = 1 + z. Hence we find

Ls

L0
= 9E1

9E0

9t0

9t1
= (1 + z)2 . (2.65)

From Eqs. (2.64) and (2.65) the luminosity distance reduces to

dL = a0fK (χ )(1 + z) . (2.66)

Recall that the function fK (χ ) is given in Eq. (2.56) with the comoving distance

χ = dc = c

a0H0

∫ z

0

dz̃

E(z̃)
. (2.67)
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Then dL can be expressed as

dL = c(1 + z)

H0

√
&

(0)
K

sinh
(√

&
(0)
K

∫ z

0

dz̃

E(z̃)

)
, (2.68)

where &
(0)
K = −Kc2/(a0H0)2. Note that this definition of &

(0)
K is identical to the

last one given in Eq. (2.24) in the unit c = 1. It is clear that the luminosity distance
is directly related to the expansion rate of the Universe.

Expanding the function sinh(x) in the form sinh(x) = x + x3/6 + O(x5) and
using Eq. (2.60), we find that dL can be expanded around z = 0 as follows:

dL = c

H0

[
z +

{
1 − E′(0)

2

}
z2

+ 1
6

{
2E′(0)2 − 3E′(0) − E′′(0) + &

(0)
K

}
z3 + O(z4)

]
. (2.69)

In the small-redshift region (z ≪ 1) we have dL ≃ c z/H0. Using Eq. (2.29) we
obtain

v ≃ H0dL , for z ≪ 1 . (2.70)

This shows that Hubble’s law holds for the luminosity distance as well.

2.4.3 Angular diameter distance

The angular diameter distance dA is defined by

dA ≡ 9x

9θ
, (2.71)

where 9θ is the angle that subtends an object of actual size 9x orthogonal to the
line of sight. This distance is often used for the observations of CMB anisotropies.

Since the source lies on the surface of a sphere with radius χ with the observer
at the center, the size 9x at time t1 in the FLRW spacetime (2.1) with (2.54) is
given by

9x = a(t1)fK (χ )9θ . (2.72)

Hence the diameter distance is

dA = a(t1)fK (χ ) = a0fK (χ )
1 + z

= 1
1 + z

c

H0

√
&

(0)
K

sinh
(√

&
(0)
K

∫ z

0

dz̃

E(z̃)

)
, (2.73)

where we have used fK = c/(a0H0

√
&

(0)
K ) sinh (

√
&

(0)
K

∫ z

0 dz̃/E(z̃)) and z =
a0/a(t1) − 1. Comparing Eq. (2.73) with Eq. (2.68), we notice the

Daniela Grandón
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following relation

dA = dL

(1 + z)2
. (2.74)

This is called reciprocity or duality or Etherington relation [80]. Its validity extends
far beyond the FLRW metric: it is valid in fact for any metric as long as flux is
conserved.

In the limit z ≪ 1 all the distances discussed above reduce to the Euclidean
distance in the Minkowski spacetime.

2.4.4 Degeneracy of the distance–redshift relation

All the distance definitions given above depend on the cosmological parameters
through the integral χ = (c/(a0H0))

∫ z

0 dz̃/E(z̃) in flat spaces and on fK (χ ) in
curved spaces. It is therefore clear that all the measures of expansion that we can
obtain through measurements of distances, from standard candles to the CMB
acoustic peaks, will constrain only the cosmological parameters contained in E(z)
and only in those particular combinations that appear in χ and in fK (χ ). If we
had distance information only for a given z then all the combinations of cos-
mological parameters that produce the same fK (χ ) would be equally acceptable:
the constraints would therefore be fully degenerate along lines (or surfaces) of
constant fK (χ ). For instance the closed !CDM cosmological model defined by
(&(0)

! , &(0)
m ) = (1, 1) and the open model defined by (&(0)

! , &(0)
m ) = (0.1, 0.6) give

practically identical distances at z = 1. In Fig. 2.1 we plot the lines of constant
fK (χ ) in the plane (&(0)

! , &(0)
m ) for redshifts that roughly correspond to a typical

distant supernova and to CMB.
If we have information only in a small range of redshifts the degeneracy will

be partially broken but still the constraints will appear elongated along the lines of
equal distances, as we will see in the next sections. It is only by combining measures
at widely different redshifts or by employing indicators other than distances that
we may hope to pin down the cosmological parameters.

2.5 The equation of state of dark energy

Let us consider the Universe filled by radiation (density ρr and pressure Pr =
ρr/3), non-relativistic matter (density ρm and pressure Pm = 0), and dark energy
(density ρDE and pressure PDE). Since ρr and ρm evolve as ρr ∝ a−4 and ρm ∝ a−3,
respectively, they can be expressed in the forms

ρr = ρ(0)
r (a0/a)4 = ρ(0)

r (1 + z)4 , (2.75)

ρm = ρ(0)
m (a0/a)3 = ρ(0)

m (1 + z)3 . (2.76)
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Figure 2.1 Contours of constant fK (χ ) for z = 1 and z = 1100. The straight
line represents the flat model. In the left panel the contours range from 1400 to
2800 h−1 Mpc in steps of 200, from right to left. In the right panel they range from
300 to 5100 h−1 Mpc in steps of 600, from top to bottom (the last two contours
are for 15 000 and 30 000 h−1 Mpc, respectively).

The redshift zeq that corresponds to the radiation–matter equality (ρr = ρm) is

1 + zeq = ρ(0)
m

ρ
(0)
r

= &(0)
m

&
(0)
r

, (2.77)

where &(0)
r is given by Eq. (2.47) with Eq. (2.45). The density parameter &(0)

m

is the sum of the baryon contribution &
(0)
b and the CDM contribution &(0)

c , i.e.
&(0)

m = &
(0)
b + &(0)

c . The WMAP 5-year constraints on &
(0)
b and &(0)

c are given by
Eqs. (2.51) and (2.52), respectively.

For the effective number of neutrino species Neff = 3.04 we obtain

1 + zeq = 2.396 × 104 &(0)
m h2 . (2.78)

If we take the value &(0)
m h2 = 0.136, we have zeq = 3258. Note that the CMB decou-

pling epoch corresponds to zdec ≃ 1090 [15], therefore later than the radiation–
matter equality.

Let us consider dark energy with an equation of state wDE = PDE/ρDE, satisfying
the continuity equation

ρ̇DE + 3H (ρDE + PDE) = 0 . (2.79)

Integrating this equation by using the relation dt = −dz/[H (1 + z)], we obtain

ρDE = ρ
(0)
DE exp

[∫ z

0

3(1 + wDE)
1 + z̃

dz̃

]
, (2.80)



24 Expansion history of the Universe

which can also be written by introducing an average ŵDE as

ρDE = ρ
(0)
DE (a/a0)−3(1+ŵDE) , ŵDE(z) = 1

ln(1 + z)

∫ z

0

wDE(z̃)
1 + z̃

dz̃ . (2.81)

From the Friedmann equation (2.17) we have

H 2 = 8πG

3
(ρr + ρm + ρDE) − K

a2
. (2.82)

From Eq. (2.82) we see that the present density parameters defined in Eq. (2.24)
obey the following relation

&(0)
r + &(0)

m + &
(0)
DE + &

(0)
K = 1 . (2.83)

Then Eq. (2.82) can be written in the form

H 2(z) = H 2
0

[
&(0)

r (1 + z)4 + &(0)
m (1 + z)3

+ &
(0)
DE exp

{∫ z

0

3(1 + wDE)
1 + z̃

dz̃

}
+ &

(0)
K (1 + z)2

]
. (2.84)

Differentiating this equation with respect to z, we find that the equation of state of
dark energy can be expressed as

wDE(z) = (1 + z)(E2(z))′ − 3E2(z) − &(0)
r (1 + z)4 + &

(0)
K (1 + z)2

3
[
E2(z) − &

(0)
r (1 + z)4 − &

(0)
m (1 + z)3 − &

(0)
K (1 + z)2

] , (2.85)

where E(z) is defined in Eq. (2.59) and a prime represents a derivative with respect
to z. From Eq. (2.68) the quantity E(z) can be written in terms of dL:

E2(z) =
(1 + z)2

[
c2(1 + z)2 + &

(0)
K H 2

0 dL(z)2
]

[(1 + z)H0d
′
L(z) − H0dL(z)]2

. (2.86)

For the flat Universe (&(0)
K = 0) this relation reduces to the following simple form

E(z) = c

H0

[
d
dz

(
dL(z)
1 + z

)]−1

. (2.87)

If the luminosity distance dL(z) is measured observationally, we can determine the
evolution of E(z) from Eq. (2.86) and hence wDE(z) from Eq. (2.85).

The cosmic expansion history for the redshift z ! O(1) can be reconstructed
from the SN Ia observations. In this regime the energy density of radiation is
negligible compared to those of non-relativistic matter and dark energy. The present
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observational bound on the cosmic curvature is −0.0175 < &
(0)
K < 0.0085 [15],

showing that the Universe is close to the flat geometry. In the flat Universe with a
negligible contribution of radiation, Eq. (2.85) reduces to

wDE(z) = (1 + z)(E2(z))′ − 3E2(z)

3
[
E2(z) − &

(0)
m (1 + z)3

] . (2.88)

This relation is often used when we place observational constraints on the equation
of state of dark energy. While the effect of the cosmic curvature on the estimate of
wDE(z) can be negligible in the region z ! 1, a small uncertainty on the curvature
can produce a significant bias in wDE in the high-redshift regime z " 1 [81, 82]. In
such a case we need to use the relation (2.85) rather than (2.88).

It is important to remark however that the basic observable quantity is E(z),
not wDE(z). In fact, wDE(z) cannot be determined entirely from E(z), i.e. from
measurements of the background expansion. From Eq. (2.88) it appears in fact
that one needs &(0)

m , i.e. the present density of pressureless matter, and this can
only be obtained from large-scale structure methods. However one must notice
that the density parameter obtained from e.g., the cluster mass estimation does
not necessarily coincide with the quantity &(0)

m in Eq. (2.88), since in general
clustered matter and pressureless matter do not need to be the same. This is par-
ticularly important to notice in coupled dark energy models [17] in which matter
acquires an effective pressure through an interaction with dark energy. Of course
if wDE(z) is assumed to be constant or is parametrized in some form, as is usually
done, then the knowledge of E(z) at several z’s can fix both the equation of state
and &(0)

m .
Finally, let us notice that the bound on the equation state of dark energy from the

WMAP 5-year data combined with other observational data is −1.097 < wDE <

−0.858 at the 95% confidence level [15]. Hence we cannot rule out the possibility
that wDE is smaller than −1. These cases are generally called “phantoms” or
“ghosts” [83]. Since P + ρ < 0 in this case, Eq. (2.20) shows that ρ increases with
time. From Eq. (2.17) the Hubble parameter H grows toward the future. When wDE

is constant and smaller than −1, the solution of the scale factor corresponding to
the expanding Universe is given by

a ∝ (trip − t)2/(3(1+wDE)) , (2.89)

where t is smaller than the constant trip. As t approaches trip, the scale factor goes to
infinity. One can easily show that the scalar curvature R and the Hubble parameter
H also diverge at t = trip. The Universe ends up with a finite-time singularity in the
(distant!) future (see problem 2.4). This finite-time singularity is called the big-rip
singularity [84].
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2.6 Problems

2.1 Derive the continuity equation, ρ̇ + 3H (ρ + P ) = 0, from the continuity equation

∇µT
µ

0 = 0 . (2.90)

2.2 Let us consider the entropy conservation before and after the annihilation of electrons
and positrons when the cosmic temperature was of the order of the electron mass.
The entropy density for a particle with density ρ, pressure P , and temperature T is
defined by s ≡ (ρ + P )/T . Before the annihilation there were photons, neutrinos,
anti-neutrinos, electrons, and positrons with the same temperature, whereas after the
annihilation there were photons, neutrinos, and anti-neutrinos with different tempera-
tures. By using the entropy conservation as well as the fact that the neutrino temperature
scales as Tν ∝ a−1, show that the relation between the photon temperature Tγ and the
neutrino temperature Tν is given by

Tν

Tγ

=
(

4
11

)1/3

. (2.91)

2.3 Derive the density (2.48) and the pressure (2.49) in the non-relativistic limit (T ≪ m).
2.4 Show that the scalar curvature R diverges at the big-rip singularity by using the solution

(2.89). For the dark energy equation of state wDE = −1.5, estimate the time trip − t0
by neglecting the contribution of non-relativistic matter.
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Correlation function and power spectrum

The models of dark energy we will introduce later on are linked to the observations
by a precious tool, statistics. Since this world is complicated, we have to average
the ups and downs of everyday life to get a sense of the underlying substance. In
this chapter we present basic tools of statistics in order to confront dark energy
models with observations.

Statistics itself is often divided into descriptive statistics, i.e. how to condense
the data in a compact and useful way, and estimation (or inferential, inductive)
statistics, i.e. how to derive information on model parameters. We start here with
the statistics needed for cosmological perturbation theory, essentially descriptive
statistics such as correlation function and power spectrum, and postpone parameter
estimation statistics to Chapter 13.

A note on notation is in order here. When there is no real need, we will not use
separate notation for an estimator (say, the correlation function) and its expected
value. Similarly, when there is no risk of confusion, we will denote vector quantities
like position x and wavevector k with unbolded fonts x, k, especially to denote the
argument of functions: δ(x) will in general mean the density contrast at a position
x. Finally, when an integration, even a multiple one, is extended to the whole space
we simply write

∫
dV or

∫
dx. When the domain of integration really matters, then

it will be specified.

3.1 The correlation function

Our first task is to describe a random distribution of particles in a compact way,
to be identified with astrophysical sources (galaxies, quasars, etc.). If there are
N points in a volume V , the first interesting descriptor is the average numerical
density ρ0 = N/V . Clearly this is utterly insufficient to discriminate among say
N points clustered near the same spot and N points evenly distributed across the
volume, so we need to find more useful descriptors. Let us focus then on some

27
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small volume dV chosen randomly inside the volume V . Then ρ0dV is the average
number of particles in the infinitesimal volume. If dNab = ⟨nanb⟩ is the average
number of pairs in the volumes dVa and dVb (i.e. the product of the number of
particles in one volume times the number in another volume), separated by rab, then
we define the next important descriptor, the 2-point correlation function ξ (rab), as

dNab = ⟨nanb⟩ = ρ2
0 dVadVb[1 + ξ (rab)] . (3.1)

We have implicitly assumed that rab > 0, i.e. the two volumes do not coincide.
The word “average” (and the symbol ⟨⟩ we will use to denote it) may have

two meanings. One can average by taking many realizations of the distribution,
all of them produced in the same way (e.g., by an N -body computer code or by
throwing particles at random), selecting in each realization the volumes dVa, dVb at
the same locations and then averaging the pair number nanb. This is the ensemble
average.

Alternatively one can take the pairs at different spots within the same realization,
separated by the same rab (sample average). If the spots are so distant that they
are uncorrelated, then we can consider them as coming from different realizations
and the two averaging methods coincide. The problem with the approach is that
we do not know a priori whether the spots really are uncorrelated until we can
compare them with an ensemble of realizations. This issue is particularly acute in
astrophysics since we are given a single Universe. The sample correlation function
does not in general coincide with the one we would obtain from an ensemble. This
problem is of course more important for distributions that are inhomogeneous at
very large scales. The estimation of the correlation function on scales smaller than
the scale of (approximate) homogeneity will not coincide with the ensemble value.
See problem 3.1 for an example. Even in those cases, however, the correlation
function is a useful descriptor (although a survey-dependent one) and it makes
sense to use it. However here we will always assume that the properties of the
sample distribution are a good approximation of the ensemble ones.

If the distribution has been obtained by throwing the N particles at random (i.e.
without any preference with respect to the place), then there is no reason for dNab

to depend on the location. Therefore the average number of pairs is exactly equal
to the product of the average number of particles in the two volumes, ⟨nanb⟩ =
⟨na⟩⟨nb⟩ = ρ2

0 dVadVb, and the correlation ξ vanishes. Conversely, if ξ is non-zero,
we say that the particles are correlated. Then the correlation function can be written
as a spatial average of the product of the density contrast δ(ra) = na/(ρ0dVa) − 1
at two different points:

ξ (rab) = dNab

ρ2
0dVadVb

− 1 = ⟨δ(ra)δ(rb)⟩ , (3.2)
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where we have used ⟨δ(ra)⟩ = ⟨δ(rb)⟩ = 0. If this average is taken to be the sample
average, then it means we have to average over all possible positions:

ξ (r) = 1
V

∫
δ( y)δ( y + r) dVy . (3.3)

A bit of jargon: when ξ (r) depends only on the separation r and not on ra and rb

individually, the system is said to be statistically homogeneous (i.e. it possesses the
same statistical properties everywhere), although strictly speaking for this property
to be true all the higher-order statistics should also be independent of location. If
moreover the ensemble average coincides with the sample average, then the system
is said to be ergodic. However the latter term refers historically to time processes,
not to spatial ones. The term most often used in astrophysics is that the system is a
fair sample of the Universe.

In practice it is easier to derive the correlation function as the average density
of particles at a distance r from another particle, i.e. by choosing the volume dVa

so that ρ0dVa = 1. Then the number of pairs is given by the number of particles in
the volume dVb:

dNb = ρ0dVb[1 + ξ (rb)] . (3.4)

Operationally therefore one evaluates the correlation function as follows:

ξ (r) = dN (r)
ρ0dV

− 1 = ⟨ρc⟩
ρ0

− 1 , (3.5)

i.e. as the average number of particles at distance r from any given particle (or
number of neighbors), divided by the expected number of particles at the same
distance in a uniform distribution, minus 1 (sometimes this is called conditional
density contrast). In a finite volume with N = ρ0V particles one clearly has an
integral constraint on ξ (r) due to the fact that the average density is calculated
within the volume itself:

∫
ξ (r)dV = 1

ρ0

∫
dN

dV
dV − V = N

ρ0
− V = 0 . (3.6)

If the correlation ξ (r) is positive, there are more particles than in a uniform
distribution. In this case the distribution is said to be positively clustered. Quite
often one is interested only in the dependence on the modulus r , so the volume
at distance r is chosen as a shell around each particle. One could generalize this
definition by introducing the anisotropic correlation function as the number of pairs
in volumes separated by the vector r . This is useful whenever there is some reason
to suspect that the distribution is indeed anisotropic, as when there is a significant
distortion along the line of sight due to the redshift.
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The estimator (3.5) requires the knowledge of the number density ρc inside a
shell of thickness dr at distance r from every particle. In other words, it requires the
estimation of the density in every shell. In practice, a direct estimation of the shell
density is difficult because of the complicated boundary and selection procedure
that a real survey often has. The simplest way to measure ξ is to compare the real
catalog to an artificial random catalog with exactly the same boundaries and the
same selection function. Then the estimator can be written as

ξ = DD

DR
− 1 , (3.7)

where DD means the number of galaxies at distance r counted by an observer
centered on a real galaxy (data D). This is divided by the number of galaxies DR

at the same distance but in the random catalog (if to reduce the scatter the random
catalog contains α times more galaxies than the real one then DR has to be divided
by α). In other words, instead of calculating the volume of the shell (which is
a difficult task in realistic cases), we estimate ξ by counting the galaxies in the
Monte Carlo realization. In this way all possible boundaries and selection function
can be easily mimicked in the random catalog, which will affect DD and DR in
the same way. Following these considerations, similar estimators with numerically
more robust properties have been proposed [85].

3.2 The n-point correlation function

The average number density ρ0 can be called a one-point estimator of a random
field, since it is estimated by averaging an ensemble over the same location. The
correlation function we have just seen is a two-point estimator because it requires
averaging over two small volumes. It is clear that one can extend these definitions
to higher orders. For instance, the three-point function is defined as

ςabc(ra, rb, rc) = ⟨δ(ra)δ(rb)δ(rc)⟩ . (3.8)

In terms of the counts in infinitesimal cells, we can write

ςabc(ra, rb, rc) =
〈 (

na

ρ0dVa

− 1
)(

nb

ρ0dVb

− 1
) (

nc

ρ0dVc

− 1
) 〉

= ⟨nanbnc⟩
ρ3

0dVadVbdVc

− ξab − ξbc − ξac − 1 , (3.9)

where ξij ≡ ξ (rij ). We then obtain the following useful relation

⟨nanbnc⟩ = ρ3
0 dVadVbdVc (1 + ξab + ξbc + ξac + ςabc) , (3.10)
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where ςabc is called the “disconnected” part of the third-order correlation function.
A random field is said to be Gaussian when ςabc = 0 (and the same for all discon-
nected higher-order moments). In this case the two-point correlation function (or
its Fourier version, the power spectrum, see the next section) completely describes
the statistical properties of the field.

3.3 The power spectrum

As we will see in the next chapters, in particular in Chapter 4, the linear perturbation
variables contain important physics, both for dark energy and cosmology in general.
A convenient way to study perturbation variables is to decompose fluctuations into
orthonormal modes because at the linear level they evolve independently. Since
by definition the average of a perturbation variable is zero, the simplest non-trivial
statistics corresponds to a quadratic function of the variables. In Fourier space,
any real quadratic function of a perturbation variable is called a power spectrum.
Examples are

Pδ(k) = A|δk|2 , (3.11)

P'(k) = B|'k|2 , (3.12)

where δk and 'k are the Fourier coefficients of the density contrast and the gravita-
tional potential, respectively, with A and B being some constants. If the quadratic
form is composed of two different variables, e.g., |δkθk|, then we have a cross-
correlation power spectrum. If we average over directions, the power spectrum will
depend only on the modulus k. The power spectrum is by far the most common
descriptor of clustering in the linear and mildly non-linear regime and plays a cen-
tral role in cosmology and in this book. As we will show soon, the power spectrum
is the Fourier-space version of the correlation spectrum.

Unless otherwise specified, the normalization convention for the 3-dimensional
(3D) Fourier transformation is

f (x) = V

(2π )3

∫
fke

ik·xd3k , (3.13)

fk = 1
V

∫
f (x)e−ik·xd3x . (3.14)

With these conventions, f (x) and fk have the same dimensions. Remember how-
ever that for the normalization of the Fourier transformation the only important
property is that the product of the pre-integral factors in 3 dimensions amounts
to (2π )−3. For all theoretical manipulations the factor of V can well be replaced
by unity and often for convenience we will do so. Dirac’s delta function δD(x) is
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defined as

δD(x) = (2π )−3
∫

eik·xd3k . (3.15)

Analogous definition holds for Dirac’s function in Fourier space (which is not the
Fourier transform of δD(x))

δD(k) = (2π )−3
∫

eik·xd3x , (3.16)

and their normalization is such that
∫

δD(k)d3k =
∫

δD(x)d3x = 1 . (3.17)

For the density contrast of a density field δ(x), the Fourier transform is

δk = 1
V

∫
δ(x)e−ik·xdV . (3.18)

The power spectrum is defined as

P (k) = V |δk|2 = V δkδ
∗
k . (3.19)

Notice that the power spectrum has the dimension of a volume. It follows that

P (k) = 1
V

∫
δ(x)δ( y)e−ik·(x− y)dVxdVy . (3.20)

Setting r = x − y, the spectrum (3.20) reduces to

P (k) =
∫

ξ (r)e−ik·rdV , (3.21)

where ξ (r) is defined in Eq. (3.3):

ξ (r) = ⟨δ( y + r)δ( y)⟩ = 1
V

∫
δ( y + r)δ( y)dVy . (3.22)

Therefore, the power spectrum is the Fourier transform of the correlation function
(Wiener–Khinchin theorem). The converse property is

ξ (r) = (2π )−3
∫

P (k)eik·rd3k . (3.23)

Notice that here and in the following the Fourier volume factor is not included,
as in most literature. Assuming spatial isotropy, i.e. that the correlation function
depends only on the modulus r = |r|, the spectrum depends only on k = |k|:

P (k) =
∫

ξ (r) r2dr

∫ π

0
e−ikr cos θ sin θ dθ

∫ 2π

0
dφ = 4π

∫
ξ (r)

sin kr

kr
r2dr .

(3.24)
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The integral constraint (3.6) implies P (0) = 0 in k-space: in any finite survey, the
spectrum vanishes at large scales.

A more general definition of the power spectrum can also be given, but this
time we have to think in terms of ensemble averages rather than volume averages.
Consider in fact the ensemble average of V δkδ

∗
k′ :

V ⟨δkδ
∗
k′ ⟩ = 1

V

∫
⟨δ(x)δ( y)⟩e−ik·x+ik′· y dVxdVy

= 1
V

∫
⟨δ( y)δ( y + r)⟩e−i(k−k′)· y−ik·r dVrdVy . (3.25)

In order to perform ensemble averages, one has to think of fixing a position and
taking the average over the ensemble of realizations. Then the average can enter
the integration and acts only over the random variables δ. Then we obtain

V ⟨δkδ
∗
k′ ⟩ = 1

V

∫
ξ (r)e−i(k−k′)· y−ik·rdVrdVy

= 1
V

∫
e−i(k−k′)· ydVy

∫
e−ik·rξ (r)dVr

= (2π )3

V
P (k)δD(k − k′) . (3.26)

The definition (3.26) shows that modes at different wavelengths are uncorrelated if
the field is statistically homogeneous (that is, if ξ does not depend on the position
y but only on the separation r). Since δ(x) is a real function, δ(k) = δ∗(−k) and
therefore the form V ⟨δkδk′ ⟩ = (2π )3V −1P (k)δD(k + k′) can also be employed.

In our cosmological applications we often wish to study a continuous underlying
field, for instance the gravitational potential or the dark matter density contrast δm.
We think of the galaxies as a mere discrete tracer of this field, as sand particles
trace the wind in a sandstorm. The galaxies form therefore a discrete sampling of
the underlying field. The only way to get information on the underlying field is to
study this discrete sampling. Although we may assume by and large that “more
galaxies” mean also “larger dark matter density contrast,” i.e. that the average of the
galaxy density contrast δg is everywhere equal to δm, we need to take into account
possible departure from the ideal case.

The simplest case is when the number of galaxies in a given location follows a
Poissonian distribution with the expected mean value δm. This would be the case
if the galaxy formation process were indeed a Poissonian process: the outcome of
many independent factors each with the same, small probability to occur. We do
not know yet if this is an accurate description of what happens but at least it is a
reasonable starting hypothesis.
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To investigate the discreteness, we assume as field a collection of N particles of
dimensionless unitary masses at positions xi , in a volume V . In the following we
will make use of the window function W (x), a function that expresses the way in
which the particles are selected. A typical selection procedure is to take all particles
within a given region, and no particles elsewhere. In this case, the function will be
a constant inside the survey, and zero outside (top-hat window function). We will
always consider such a kind of window function in the following, and normalize it
such that

∫
W (x)dV = 1 . (3.27)

With this normalization, W (x) = 1/V inside the survey. The density contrast field
we have in a specific sample is therefore the field times the window function (times
the sample volume V because of the way we have normalized W ):

δs = δ(x) V W (x) . (3.28)

Let us now express the field as a sum of Dirac functions ρ(x) =
∑

i δD(x − xi)
so that

δs(x) =
(

ρ(x)
ρ0

− 1
)

V W (x) = V

N

∑

i

wiδD(x − xi) − V W (x) , (3.29)

where wi = V W (xi) and as usual ρ0 = N/V . The Fourier transform is

δk = 1
V

∫ (
V

N

∑

i

wiδD(x − xi) − V W (x)

)

e−ik·xdV = 1
N

∑

i

wie
−ik·xi − Wk ,

(3.30)
where we have introduced the k-space window function

Wk =
∫

W (x)e−ik·xdV , (3.31)

normalized such that W0 = 1. The spherical top-hat function corresponds to

W (x) = 1/V , inside a spherical volume V of radius R ,

W (x) = 0 , outside . (3.32)

We then have

Wk = V −1
∫

V

e−ik·xdV = 3
R3

∫ R

0

r sin kr

k
dr = 3(sin kR − kR cos kR)

(kR)3
,

(3.33)
where in the second equality we have integrated out the angular part as we did
to derive Eq. (3.24). Notice that the function declines rapidly as k → π/R. Now
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squaring and averaging δk in Eq. (3.30) by separating the i = j terms from the
others, we have

⟨92(k)⟩ ≡ V ⟨δkδ
∗
k⟩ = P (k) + Pn , (3.34)

where the “true” spectrum P (k) and the pure noise spectrum are given, respectively,
by

P (k) = V

N2

∑

i ̸=j

⟨wiwj ⟩e−ik·(xi−xj ) − V W 2
k , (3.35)

Pn = V

N2

∑

i

w2
i = V

N
, (3.36)

where the last equality holds if wi equals 0 or 1. In order to derive Eq. (3.34) we
have used the relation ⟨δ−k⟩ = 0

〈
1
N

∑

i

wie
−ik·xi

〉
= Wk . (3.37)

The noise spectrum, negligible only for large densities, ρ0 = N/V → ∞, is
the power spectrum of a distribution with no intrinsic correlation, i.e. obtained
by throwing the particles at random. More exactly, it is the power spectrum of a
Poissonian distribution. Since the galaxy distributions are often sparse, the noise
is not always negligible and has to be subtracted from the estimate if we want
to detect the underlying correlation. Therefore the estimator of the “true” power
spectrum P (k) can be taken as

P̂ (k) = 92(k) − Pn . (3.38)

As for the correlation function, the power spectrum does not characterize a
distribution completely, unless we know the distribution has some specific property,
e.g., Gaussian, or Poisson, etc. In particular, if we assume the fluctuations to be
Gaussian, we can derive the variance of the power spectrum, defined as

σ 2
P ≡ ⟨[P̂ (k) − P (k)]2⟩ = ⟨94(k)⟩ − ⟨92(k)⟩2 , (3.39)

where P (k) ≡ ⟨P̂ (k)⟩ = ⟨92(k)⟩ − Pn. To evaluate 94(k) we proceed as follows.
Neglecting the window term (i.e. in the limit of a large volume) the continuous
fluctuation field in Fourier space can be written in a compact way as

δk =
∑

i

gi

V 1/2
e−ik·r i , (3.40)

where by assumption gi are Gaussian random variables (the volume factor is only
for convenience). The power spectrum is 92(k) = V ⟨δkδ

∗
k⟩ =

∑
i g

2
i . We want to
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evaluate

⟨92(k)92(k′)⟩ = V 2⟨δkδ
∗
kδk′δ∗

k′ ⟩ =
∑

ijmn

⟨gigjgmgn⟩e−i(k·r i−k·rj +k′·rm−k′·rn) .

(3.41)

Now, the oscillating terms in the sum are negligible except when i = j = m = n

or when the indices are equal in pairs. Then we can write

⟨92(k)92(k′)⟩=
∑

i

⟨g4
i ⟩+

∑

i

∑

j ̸=i

⟨g2
i ⟩⟨g2

j ⟩
[
1 + e−i(k+k′)·(r i−rj ) + e−i(k−k′)·(r i−rj )

]
.

(3.42)
Since gi is a Gaussian variable, all odd moments are zero and even moments can

be written in terms of the variance; in particular, we have ⟨g4
i ⟩ = 3⟨g2

i ⟩2. This is
exactly what is needed to supply the sum for j ̸= i with the missing terms j = i .
Moreover, the oscillating exponential terms average out except for k close to k′ (or
equivalently −k′). Then for k ≈ k′ we can neglect the k + k′ term since its faster
oscillations are averaged over and therefore suppressed relative to the k − k′ term.
Then we have

⟨92(k)92(k′)⟩ =
∑

i

∑

j

⟨g2
i ⟩⟨g2

j ⟩
[
1 + e−i(k−k′)·(r i−rj )

]
, (3.43)

which amounts to

⟨92(k)92(k′)⟩ = ⟨92(k)⟩⟨92(k′)⟩ + V 2⟨δkδ
∗
k′ ⟩2 . (3.44)

From Eqs. (3.39) and (3.34) it follows that

σ 2
P (k) = V 2⟨δkδ

∗
k⟩2 = (P (k) + Pn)2 . (3.45)

We obtain finally for the fractional variance of the power spectrum with top-hat
filtering a very simple and useful result

σ 2
P (k)

P 2(k)
=

(
1 + 1

nP (k)

)2

, (3.46)

where n = N/V is the number density. This tells us that, if the fluctuations are
Gaussian, the error of the root mean square (rms) on the power spectrum is of the
order of the power spectrum itself (including the shot noise).

In general we consider the shell-averaged spectrum, i.e. the spectrum for all
modes whose wavenumber modulus k lies within the shell 9k of volume Vk:

P (k) = 1
Vk

∫

9k

P (k′)d3k′ . (3.47)
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If the survey has a volume Vs = L3, the lowest wavenumber we can safely construct
is kmin = 2π/L. Then the number of independent k-modes in a volume Vk is

Nk = Vk

k3
min

= VkVs

(2π )3
. (3.48)

Therefore the error on the shell-averaged spectrum P (k) is reduced by the factor
1/Nk and we obtain

σ 2
P (k)

P 2(k)
≃ (2π )3

VkVs

(
1 + 1

nP

)2

. (3.49)

Another way of looking at this equation is to say that the effective k-volume
resolution k3

min degrades due to the shot noise to k3
min(1 + 1/nP )2, so that there are

effectively less independent k-volumes to average over.
A more complete derivation including an arbitrary density field and selection

function is given in Ref. [86]. The general formula is

σ 2
P (k)

P 2(k)
=

(2π )3
∫
Vs

d3r n4w4[1 + 1/(nP (k))]2

Vk[
∫
Vs

d3r n2w2]2
, (3.50)

where n = n(r) is the average density and w = w(r) is an arbitrary weight that
might be modulated to minimize the variance itself. If n and w are constants, this
expression reduces to Eq. (3.49).

Finally one should be aware of the problem hidden in the result above. In order
to evaluate the variance σP , the spectrum itself should be known. In practice, this
means that one has to guess a spectrum before its variance can be evaluated. More
consistently, in the likelihood method procedure of Chapter 13, we will take into
account the fact that the variance depends on the model itself.

3.4 From the power spectrum to the moments

Since the power spectrum is often the basic outcome of structure formation theories,
it is convenient to express all the other quantities in terms of it. Here we find the
relation between the power spectrum and the moments of the counts in random
cells.

Consider a finite cell. Divide it into infinitesimal cells with counts ni either zero
or unity, so that for any positive power m we have

∑

i

⟨nm
i ⟩ = N0 , (3.51)

where N0 = ρ0V is the count average. We have by definition of ξ for i ̸= j :

⟨ninj ⟩ = ρ2
0 (1 + ξij )dVidVj . (3.52)
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Figure 3.1 (Left) The power spectrum inferred from the SDSS galaxy power spec-
trum (data points from [65]) is compared to the predicted power spectrum based
on the range of parameters consistent with the WMAP parameters (continuous
lines). The galaxy power spectrum is normalized by weak lensing measurements
[87]. (Right) The predicted power spectrum is compared to the mass power spec-
trum inferred from the 2-degree Field (2dF) Galaxy Redshift Survey [88]. From
Ref. [14].

The count in the cell is N =
∑

i ni . The variance (the second-order moment) is
then given by

M2 = N−2
0 ⟨(9N)2⟩ = N−2

0 (⟨N2⟩ − N2
0 ) , (3.53)

where 9N = N − N0. The expectation value ⟨N2⟩ is

⟨N2⟩=
〈∑

ni

∑
nj

〉
=

∑

i

⟨n2
i ⟩ +

∑

i ̸=j

⟨ninj ⟩=N0+N2
0

∫
WiWj (1 + ξij )dVidVj ,

(3.54)
where Wi is the window function and ξij ≡ ξ (|r i − rj |). We define the following
integral (by definition

∫
Wi dV = 1 for any window function)

σ 2 =
∫

W1W2ξ12 dV1dV2 . (3.55)

Then Eq. (3.54) reduces to

⟨N2⟩ = N0 + N2
0 (1 + σ 2) . (3.56)

Since ξ12 = (2π )−3
∫

P (k)eik·(r1−r2)d3k from Eq. (3.23), we have

σ 2 = (2π )−3
∫

P (k)eik·(r1−r2)W1W2 d3k d3r1d3r2 , (3.57)
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where the integral dV1dV2 in Eq. (3.55) is replaced by d3r1d3r2. For spherical cells
of radius R, integrating over the angles, this reduces to

σ 2
R = 1

2π2

∫
P (k)W 2

R(k)k2dk , (3.58)

where we have used W 2
R(k) =

∫
eik·r1W1d3r1

∫
e−ik·r2W2d3r2.

If the cells have a radius of 8 h−1 Mpc, it turns out that σR is close to unity.
Conventionally the normalization of the power spectrum is therefore given by
quoting σ8.

Substituting Eq. (3.56) into Eq. (3.53), we find that the second-order moment
M2 has the following relation with the power spectrum amplitude σ 2:

M2 = N−1
0 + σ 2 . (3.59)

The first and the second terms correspond to the noise and the count variance in
the continuous limit, respectively.

For the third-order moment we proceed in a similar fashion and we obtain (see
problem 3.3)

M3 = N−2
0 +

∫
WiWjWk ςijk dVidVj dVk . (3.60)

Of course similar relations can be found at any order. Non-zero higher-order
moments are useful to quantify the deviation from Gaussianity of the matter and
galaxy distribution.

3.5 Problems

3.1 Find the 3-dimensional correlation function of points distributed randomly on the
equatorial plane of a sphere.

3.2 Using Eq. (3.23), find the isotropic correlation function of a distribution whose isotropic
power spectrum is Gaussian with k ≥ 0 peaked at k = 0 with variance σ 2

k .
3.3 Derive Eq. (3.60).
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Basics of cosmological perturbation theory

In this chapter we present the basics of linear perturbations in cosmology. After
a general introduction of cosmological perturbation theory, we work out sev-
eral cases: (i) single pressureless perfect fluid, (ii) single general perfect fluid,
and (iii) two fluids: matter and radiation. We also discuss a number of top-
ics such as the velocity field, the redshift distribution, Boltzmann equations,
the matter power spectrum, and the perturbed photon propagation. These pro-
vide us with important tools when we confront dark energy models with obser-
vations of the cosmic microwave background (CMB) and large-scale structure
(LSS).

In this chapter the treatment and notation are fairly standard and the topic is cov-
ered in most modern textbooks on cosmology. Readers familiar with cosmological
perturbation theory may skip this chapter.

4.1 Perturbing General Relativity

In Chapter 2 we have outlined the cosmic expansion history in the homogeneous
and isotropic FLRW background. However, our Universe is far richer than this
simple picture. A metric that deviates from the FLRW spacetime can be written as
the sum of an unperturbed FLRW part plus something else, that we can generally
call “perturbed” metric. If the perturbed part is assumed to be small, in a sense to
be defined later, then this splitting of the full metric into a background part and
a perturbed one leads to extremely useful results. As we all know, physics is to a
large extent described by a Taylor expansion to some low order, and cosmology is
not an exception.

To perturb the relativistic equations one must first of all perturb the metric,
writing at first order

gµν = g(0)
µν + δgµν , (4.1)
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where all the entries in the perturbed metric δgµν have to be small with respect
to the 0-th order part. In this chapter we write the metric directly in terms of the
conformal time η =

∫
a−1 dt . We consider cosmological perturbations about the

flat FLRW metric given by

ds2 = g(0)
µνdxµdxν = a2(−dη2 + δij dxidxj ) . (4.2)

We will also use the conformal Hubble quantity

H ≡ 1
a

da

dη
= Ha . (4.3)

In General Relativity the field equations are invariant under a general coordinate
change. This means that the split between a background metric and a perturbed one
is not unique. However, although it is often a great simplification to choose some
special coordinate frame, it would be very confusing if we change in the process
also the unperturbed (or background) metric. We would like for instance to keep the
FLRW metric as “the” background whenever we make a general transformation.
Therefore we select a class of infinitesimal transformations that leaves g(0)

µν as it is,
while the perturbed metric δgµν is subject to change. Following general physics
usage, this class of transformations is called gauge transformations.

In the unperturbed Universe, we have already defined comoving coordinates in
such a way that the matter particles expanding with the Universe remain at fixed
(comoving) coordinates. When perturbations are added, we can either use the same
coordinates, or set up a new set of coordinates that free-fall with the particles in the
perturbed gravitational field, or even adopt a totally different frame not related to
matter particles. That is, for instance, we can choose to attach the observers to the
points in the unperturbed frame or to the perturbed particles. In the former case, to
be called the Newtonian or longitudinal gauge, the observers will detect a velocity
field of particles falling into the clumps of matter and will measure a gravitational
potential. This choice is in fact the most intuitive one and reduces easily to the
Newtonian case. On the other hand, when the wavelengths of perturbations are
larger than the horizon, to attach observers to an invisible background is not a
convenient choice. In the second case, called the comoving proper-time gauge,
the observers are attached instead to the free-falling particles, so they do not see
any velocity field (unless there are other non-gravitational forces, like pressure
gradients) and, being always free falling, do not measure a gravitational potential.
This gauge, therefore, does not have a straightforward Newtonian limit. One can
also define quantities that are gauge-invariant, but this does not necessarily simplify
the understanding and often leads to cumbersome mathematics.

Although a gauge transformation is expressed as a change of coordinates, it is
important to observe that (unlike ordinary coordinate transformations) it does not
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link different observers in the same spacetime but it links two different spacetimes,
the background and the perturbed one, seen by the same observer. This is the
reason, for instance, why scalar quantities change under a gauge transformation
but not under a coordinate transformation.

For a detailed discussion of gauge choices, see Refs. [70, 89, 90, 91, 92, 93, 94].

4.2 The Newtonian gauge

Let us start then with the Newtonian gauge. The most general perturbed metric can
be written schematically as gµν = g(0)

µν + δgµν , where

δgµν = a2
(

−2( wi

wi 2'δij + hij

)
. (4.4)

Here ( and ' are spatial scalars, wi is a 3-vector, and hij is a traceless 3-tensor. All
the perturbation quantities ((, ', wi , etc.) depend on space and time although we
will not necessarily indicate this explicitly for simplicity of notation. For instance, it
is easy to show that g00 is a spatial scalar. If x̃µ = f (xµ) is a general transformation,
the metric tensor transforms as

g̃µν = ∂xα

∂ x̃µ

∂xβ

∂ x̃ν
gαβ . (4.5)

If we perform a purely spatial transformation, x̃0 = x0, x̃i = f (xi), we have imme-
diately that g̃00 = g00, as requested for a spatial scalar.

If we write the perturbed metric as gµν = g(0)
µν + δgµν , the condition that

gαγ gγβ = δβ
α imposes the following relation at first order:

δgµν = −δgαβg(0)αµg(0)βν . (4.6)

That is, the inverse of the perturbed metric is minus the perturbed metric with
indices raised by the unperturbed metric.

A decomposition analogous to gµν can be done for any rank-two tensor as e.g.,
the energy-momentum tensor. From Helmholtz’s theorem one can decompose the
vector wi into a longitudinal and a transverse component

wi = w
∥
i + w⊥

i , (4.7)

where by construction

∇ · w⊥
i = ∇ × w

∥
i = 0 . (4.8)

The longitudinal component, w∥
i , being curl-free, is the gradient of a scalar quantity

ws , i.e. w∥
i = ∇ws . When we derive the Einstein equations for the (0i) components,

we will have therefore longitudinal and transverse terms, both in G0i and in T0i .
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4.2 The Newtonian gauge 43

Taking the curl of the equations, we are left with only the transverse equations.
On the other hand, taking the divergence, we are left with the longitudinal ones.
Therefore, the two components completely decouple from each other and evolve
independently, and therefore can be treated separately. Since the density perturba-
tion δ is a scalar quantity, only the longitudinal terms, which can be derived from
a scalar quantity, couple to the density perturbations.

A similar argument holds for the traceless spatial part hij . This tensor can be
written in general as a sum of three traceless terms:

hij = h
∥
ij + h⊥

ij + hT
ij , (4.9)

where the divergences ∂ ih
∥
ij , ∂

ih⊥
ij (which are vectors) are longitudinal and trans-

verse, respectively, and hT
ij is transverse, that is

ϵijk∂i∂kh
∥
ij = 0, ∂i∂jh

⊥
ij = 0 , ∂ih

T
ij = 0 . (4.10)

Here the Levi-Civita tensor ϵijk is +1 for even index permutations (123,312,231),
−1 for odd permutations, and 0 for repeated indices. This means that the curl of
∂ih

∥
ij as well as divergences of ∂jh

⊥
ij and hT

ij vanish. Now, since ∂ih
∥
ij is curl-free,

it can be written in terms of a scalar function B, and it is easy to verify that
ϵijk∂i∂kh

∥
ij = 0 if

h
∥
ij =

(
∂i∂j − 1

3
δij∇2

)
B ≡ DijB , (4.11)

where the traceless operator Dij is defined implicitly. On the contrary, the pertur-
bations h⊥

ij , h
T
ij cannot be derived from a scalar function. The first one is a vector

giving rise to rotational velocity perturbations, whereas the second one is a tensor
giving rise to gravitational waves. Both decouple completely from the scalar terms
and can be treated separately. The terms which are intrinsically vectorial couple to
pure rotational modes, while tensorial terms represent gravitational waves, coupled
to matter only for anisotropic perturbations. Furthermore, it can be shown that if
initially the rotational, or vorticity, modes are zero, they remain zero throughout
(unless there are entropy gradients). If they are present initially, they decrease as
a−1. Since they are not of much interest in current dark energy research we will
not further deal with vector or tensor perturbations.

Therefore, we need to take into account only the part of wi and hij derived
from scalars. This may be done by introducing two new scalar functions, E and B,
that produce the vector E,i and the tensor DijB, in analogy to the electromagnetic
forces. Then the perturbed metric is given by

δgµν = a2
(

−2( E,i

E,i 2'δij + DijB

)
. (4.12)
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44 Basics of cosmological perturbation theory

Out of the four scalar functions (, ', E, B, one can construct gauge-invariant
quantities, that is, combinations that remain invariant at first-order under a general
coordinate infinitesimal transformation, x̃µ = xµ + ξµ. As we have already men-
tioned, the situation can be much simplified if one works in a specific gauge. This
can be done by imposing up to four conditions on the metric, which corresponds
to the four gauge coordinate transformations. Here we choose them to be wi = 0
(from which E = 0) and B = 0. This finally leaves the perturbed metric in the
Newtonian or longitudinal or shear-free gauge:

ds2 = a2(η)
[
−(1 + 2()dη2 + (1 + 2')δij dxidxj

]
. (4.13)

Beware of the signs: many authors choose opposite metric signature and/or opposite
signs for ' and (, which can lead to a great deal of confusion. We follow the choice
of Dodelson’s textbook [74].

In order to derive the first-order Einstein equations, we decompose the Einstein
tensor Gµ

ν and the energy-momentum tensor T µ
ν into background and perturbed

parts: Gµ
ν = Gµ(0)

ν + δGµ
ν and T µ

ν = T µ(0)
ν + δT µ

ν . The background cosmological
evolution is obtained by solving the zero-th order Einstein equations, Gµ(0)

ν =
8πG T µ(0)

ν . The first-order Einstein equations are given by

δGµ
ν = 8πGδT µ

ν . (4.14)

The l.h.s. of Eq. (4.14) can be computed by the following procedure. We first need
to calculate the perturbed Christoffel symbols δ4

µ
νλ by using the formula:

δ4
µ
νλ = 1

2
δgµα(gαν,λ + gαλ,ν − gνλ,α) + 1

2
gµα(δgαν,λ + δgαλ,ν − δgνλ,α) .

(4.15)

For the metric (4.13), the non-vanishing components of perturbed Christoffel sym-
bols are

δ40
ij = δij

[
2H (' − () + '′] , (4.16)

δ40
00 = ( ′ , (4.17)

δ40
0i = δ4i

00 = (,i , (4.18)

δ4i
j0 = δi

j '′ . (4.19)

Note that in this chapter a prime represents the derivative with respect to the
conformal time η apart from the use for dummy integration variables such as k′

and r ′.
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The next step is to derive the perturbations in the Ricci tensor and in the Ricci
scalar:

δRµν = δ4α
µν,α − δ4α

µα,ν + δ4α
µν4

β
αβ + 4α

µνδ4
β
αβ − δ4α

µβ4β
αν − 4α

µβδ4β
αν ,

(4.20)

δR = δgµαRαµ + gµαδRαµ . (4.21)

Finally the perturbed Einstein tensors are derived by

δGµν = δRµν − 1
2
δgµνR − 1

2
gµνδR , (4.22)

δGµ
ν = δgµαGαν + gµαδGαν . (4.23)

For the metric (4.13) we obtain

δG0
0 = 2a−2 [

3H(H( − '′) + ∇2'
]

, (4.24)

δG0
i = 2a−2 (

'′ − H(
)
|i , (4.25)

δGi
j = 2a−2 [

(H2 + 2H′)( + H( ′ − '′′ − 2H'′] δi
j

+ a−2
[
∇2(( + ')δi

j − (( + ')|i j
]

, (4.26)

where the subscript “|” represents a covariant derivative with the spatial 3-metric
and ∇2f ≡ f

;µ
;µ . If the matter source is specified, the perturbed energy-momentum

tensor δT µ
ν is determined accordingly. We then obtain the linear perturbation equa-

tions from Eq. (4.14). We also recall that the energy-momentum tensor satisfies the
continuity equation T

µ
ν;µ = 0. The first-order part of this equation,

δT µ
ν;µ = 0 , (4.27)

also gives a number of useful equations, as we will see later.
In order to evaluate the perturbed energy-momentum tensor, we need to perturb

the four-velocity uµ ≡ dxµ

ds
. Neglecting the perturbations higher than the first order,

we obtain

uµ =
[

1
a

(1 − () ,
vi

a

]
,

uµ = gµνu
ν = [−a (1 + () , avi] ,

uµuµ = −1 , (4.28)

where vi = dxi

dη
= a dxi

dt
is the matter peculiar velocity with respect to the general

expansion.
A note about the definition of the peculiar velocity is in order here. From

Eq. (2.58) the comoving distance at redshift z is given by (after setting c = 1



46 Basics of cosmological perturbation theory

and a0 = 1)

dc(z) =
∫ z

0

dz̃

H (z̃)
. (4.29)

However, due to the peculiar velocity of the source, the redshift is the sum of
cosmological expansion and peculiar velocity Doppler effect,

z = zc + zp = zc + vp

a
(zp ≪ zc) , (4.30)

where vp = azp is the projection of the peculiar velocity vector along the line of
sight. Then we have

dĉ(z) =
∫ zc+zp

0

dz̃

H (z̃)
≃

∫ zc

0

dz̃

H (z̃)
+ zp

H (zc)
=

∫ zc

0

dz̃

H (z̃)
+ (1 + zc)vp

H (zc)
. (4.31)

The extra apparent distance induced by the peculiar velocity is therefore (1 +
z)H (z)−1vp. This can be always neglected, except when one is interested in the
properties of the redshift space/real space conversion, see Section 14.3.

4.3 Single-fluid model

Let us consider a single-fluid model with an energy-momentum tensor Tµν . For a
general fluid the energy momentum tensor is given by

Tµν = (ρ + P )uµuν + Pgµν +
[
qµuν + qνuµ + πµν

]
, (4.32)

where, beside the familiar symbols ρ, P , uµ for the energy density, the pressure
and the four-velocity vector, we meet the heat flux vector qµ and the viscous shear
tensor πµν . The terms inside square brackets in Eq. (4.32) are important only for
fluids whose internal energy is a sizable fraction of the total energy density. We
have qµ = 0 and πµν = 0 for perfect fluids. In the following we limit ourselves to
perfect fluids. We also assume that the perturbed fluid remains a perfect fluid. This
implies that =i

j ≡ δT i
j = 0 (i ̸= j ), a condition that will be used below.

The notation for the perturbed quantities is

δ ≡ δρ

ρ
, θ ≡ ∇iv

i , (4.33)

where δρ/ρ ≡ (ρ(x) − ρ̄)/ρ̄ is the density contrast (ρ(x) is the density field and ρ̄

is the spatial average) and θ is the velocity divergence. In general there are several
pairs δi , θi , one for each perfect fluid composing the Universe. All of the perturbed
quantities are functions of space x and time t .

A simple observation can avoid much confusion later on: we will often speak
loosely of δ(x) as if it were a deterministic quantity and we will say that δ grows
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or decays. However δ(x) is in reality a random field which by definition has a zero
mean value ⟨δ⟩ = 0. What we mean is that in the linear regime the value of δ(x) at
any point x grows or decays so that δ(x, t) = D(t)δ(x, 0), where D(t) is the growth
(or decay) function. In the linear regime the spatial part is always factored out and
its properties are assigned by initial conditions. We will always assume Gaussian
initial conditions as predicted in standard inflationary models.

From Eq. (4.32) the perturbed energy-momentum tensor for a perfect fluid with
the equation of state w = P/ρ can be written as

δT µ
ν = ρ[δ(1 + c2

s )uνu
µ + (1 + w)(δuνu

µ + uνδu
µ) + c2

s δ δµ
ν ] , (4.34)

where δµ
ν should not be confused with the density contrast δ. Here we have intro-

duced the sound velocity, c2
s ≡ δP/δρ. If P , even when perturbed, depends on ρ

alone (which is the case called barotropic fluid) then

c2
s ≡ δP

δρ
= dP

dρ
= Ṗ

ρ̇
. (4.35)

The last passage is valid only in the FLRW metric where at background level
everything depends on time alone (cs is calculated at zero-th order since it will
always appear as a factor of first-order variables). Since cs , just as w, depends at
first-order only on background quantities, in this case the perturbation equations
do not introduce any new free function. In general, however, the pressure P can
depend on internal degrees of freedom of the fluid, say, entropy s. Then one has

c2
s = δP (ρ, s)

δρ
= ∂P

∂ρ
+ ∂P

∂s

∂s

∂ρ
= c2

s(a) + c2
s(na) , (4.36)

where cs(a) ≡
√

Ṗ /ρ̇ is called the adiabatic sound speed and cs(na) is, guess what,
the non-adiabatic sound speed. The non-adiabatic sound speed in general will
depend on microphysical properties of the fluid and appears as a new free function
only at the level of perturbations. The gravitational equations at first-order are then
completely specified only if we give for each fluid the equation of state w(a) and
the total sound speed cs(a) or, equivalently, if we assign to the fluid a function
P (ρ, s) which determines both.

The components of the energy-momentum tensor are

δT 0
0 = −δρ , (4.37)

δT 0
i = −δT i

0 = (1 + w)ρvi , (4.38)

δT 1
1 = δT 2

2 = δT 3
3 = c2

s δρ . (4.39)
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Then the perturbed Einstein equations (4.14) lead to

3H(H( − '′) + ∇2' = −4πGa2δρ , (4.40)

∇2('′ − H() = 4πGa2(1 + w)ρθ , (4.41)

( = −' , (4.42)

'′′ + 2H'′ − H( ′ − (H2 + 2H′)( = −4πGa2c2
s δρ . (4.43)

Note that Eqs. (4.40)–(4.43) come from the (00), (0i), (ij ), and (ii) components.
Equation (4.42) follows from the property δT i

j = 0.
One can also derive some useful equations by using the continuity equation

(4.27). Recall that the operation of covariant divergence of a tensor T µ
ν is

T µ
ν;µ = T µ

ν,µ − 4α
νβT β

α + 4α
βαT

β
ν . (4.44)

Then the ν = 0 component of Eq. (4.27), i.e. δT
µ

0;µ = 0, reads

δT
µ

0,µ − δ4α
0βT β

α − 4α
0βδT β

α + δ4α
0αT

0
0 + 4α

βαδT
β

0 = 0 , (4.45)

which reduces to

(δρ)′ + 3H(δρ + δP ) = −(ρ + P )(θ + 3'′) , (4.46)

where we have employed Eqs. (4.16)–(4.19). Using the unperturbed conserva-
tion equation ρ ′ + 3H(ρ + P ) = 0 together with the relations w = P/ρ and
c2
s = δP/δρ, we find that Eq. (4.46) can be expressed as

δ′ + 3H(c2
s − w)δ = −(1 + w)(θ + 3'′) , (4.47)

which is called the (perturbed) continuity equation. For non-relativistic matter with
w = 0 and c2

s = 0, this equation reduces to

δ′ = −θ − 3'′ (for non-relativistic matter). (4.48)

This equation tells us that the density at position x increases if there is a velocity
divergence in the same place, that is, if there is more matter coming in than going
out. The '′ term, absent in Newtonian dynamics, is negligible at small scales and,
of course, for a slowly varying gravitational potential.

The equation δT
µ
ν;µ = 0 for ν = i leads to

δq ′ + 3Hδq = −aδP − (ρ + P )a( , (4.49)

where δq ≡ a(ρ + P )v and v is a velocity potential related to vi via vi = ∇ iv.
Writing Eq. (4.49) in terms of vi and taking the divergence ∇i , we obtain

θ ′ +
[
H(1 − 3w) + w′

1 + w

]
θ = −∇2

(
c2
s

1 + w
δ + (

)
. (4.50)
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For non-relativistic matter, this reduces to

θ ′ + Hθ = −∇2( − ∇2(c2
s δ) (for non-relativistic matter) , (4.51)

where now we have included the ∇2(c2
s δ) term. This is called the Euler equation in

the Newtonian context. It says that the (peculiar) acceleration depends on the sum
of the potential and pressure gradients.

We go now to the Fourier space. This means that all perturbation quantities will
be Fourier expanded (we do not need to bother with pre-factors here):

' =
∫

eik·r'kd3k, ( =
∫

eik·r(kd3k , (4.52)

δ =
∫

eik·rδkd3k , θ =
∫

eik·rθkd3k . (4.53)

The subscript k represents a Fourier mode for each wavenumber k. Note that k is
a comoving quantity that remains fixed. In the following we drop the subscript k

as long as no confusion arises by doing so. In Fourier space we assume that the
perturbation variables (δ, θ, (, ' etc.) are the sum of plane waves δke

ik·r . Since
the equations are linear, each plane wave obeys the same equations with a different
comoving wavenumber k. Throughout the linear evolution, the physical scale λp of
the perturbation expands with the cosmic expansion as λp = (2π/k)a. Of course,
if the perturbation enters a non-linear regime, then this treatment breaks down
and the perturbation decouples from the Hubble expansion and starts collapsing.
When we calculate the perturbation equations with an algebraic manipulator it
is very convenient to introduce from the beginning all perturbation variables as
Fourier modes, e.g., δ(x, y, z, t) = δk(t)eik·r . Since we are always interested in the
direction-averaged equations (i.e. the equations that depend only on the modulus
k), we could simply put k · r = k(x + y + z)/

√
3.

In practice, each perturbation quantity φ and its derivatives can be substituted
as follows

φ(x, η) → eik·rφ(η) , (4.54)

∇φ(x, η) → ieik·r k φ(η) , (4.55)

∇2φ(x, η) ≡ ∇i∇ iφ(x, η) → −eik·rk2φ(η) . (4.56)

Notice that when there are two repeated spatial indices we sum over them with-
out the help of the metric coefficients gij (more exactly, we use the induced
3-dimensional spatial metric which for spatially flat spaces is just the Euclidean
metric). Furthermore, the Fourier modes eik·r can be simply dropped out, since the
equations are linear and therefore decoupled between different modes.
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From Eqs. (4.40)–(4.43), (4.47), and (4.50) we obtain the following equations
for each Fourier mode:

k2' + 3H('′ − H() = 4πGa2ρδ , (4.57)

k2('′ − H() = −4πGa2(1 + w)ρθ , (4.58)

( = −' , (4.59)

'′′ + 2H'′ − H( ′ − (H2 + 2H′)( = −4πGa2c2
s ρδ , (4.60)

δ′ + 3H(c2
s − w)δ = −(1 + w)(θ + 3'′) , (4.61)

θ ′ +
[
H(1 − 3w) + w′

1 + w

]
θ = k2

(
c2
s

1 + w
δ + (

)
, (4.62)

where now

θ = ik · v . (4.63)

Although the six equations above are not independent they are all useful. Let us
remark again that we are considering here the fluctuations of a Universe composed
of a single fluid. In the next sections we will solve the general set of equations
(4.57)–(4.62) in several different regimes: during the epochs of radiation and matter
eras, and both at large and small scales.

Finally, one can combine Eqs. (4.57) and (4.58) to get the relativistic Poisson
equation

k2' = 4πGa2ρ[δ + 3H(w + 1)θ/k2] = 4πGa2ρδ∗ , (4.64)

where we define the total-matter variable:

δ∗ ≡ δ + 3H(w + 1)θ/k2 . (4.65)

Notice that in our conventions an overdensity δ∗ > 0 generates opposite gravita-
tional potentials, ' > 0 and ( < 0, on small scales.

Combining Eqs. (4.57), (4.59), and (4.60), we can get an equation for ' alone:

'′′ + 3H(1 + c2
s )'′ + (c2

s k
2 + 3H2c2

s + 2H′ + H2)' = 0 . (4.66)

Similarly, using the relativistic Poisson equation (4.64), this becomes an equation
for δ∗:

(δ∗)′′ + H(1 + 3c2
s − 6w)(δ∗)′ −

[
3
2
H2(1 − 6c2

s − 3w2 + 8w) − c2
s k

2
]

δ∗ = 0 ,

(4.67)
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where cs, w are arbitrary functions of time and where we have employed the useful
relation

H′ = −1
2

(1 + 3w)H2 . (4.68)

4.4 Scales larger than the horizon

Now that we have derived the perturbation equations, we can begin wondering how
to solve them. As a first example we work out the simplest case, the large-scale limit
k ≪ H = aH . This corresponds to the scale on which the physical wavelength
λp = (2π/k)a of perturbations is much larger than the Hubble radius H−1, i.e.
super-horizon scales (although notice that the horizon corresponds approximately
to 1/H only for some particular case). If the pressure depends only on the energy
density and the equation of state w is a constant then we have c2

s = w, which is
valid both for matter and radiation. In this case Eq. (4.66), using Eq. (4.68), reduces
to

'′′ + 3H(1 + c2
s )'′ = 0 . (4.69)

Then '′ = 0 is a solution. Equation (4.57) becomes

3H2' = 4πGa2ρδ . (4.70)

Using the Friedmann equation, 3H2 = 8πGρa2, it follows that

δ = 2' . (4.71)

Hence ' = constant at large scales implies that δ = constant. One easily finds
that the result (4.71) is consistent with the other Einstein equations. Equation
(4.69) is second-order, so we must have two solutions. It appears immediately that
' = constant is a growing mode or a dominating solution (at least for c2

s > −1).
Thus we have shown that the gravitational potential remains constant for scales
outside the Hubble radius whenever c2

s = w for the total fluid. During the transition
from radiation to matter eras this condition is violated and as we will see in
Section 4.10 the gravitational potential changes.

4.5 Scales smaller than the Hubble radius

Next, we work out the opposite case, k ≫ H, i.e. scales deep inside the Hubble
radius (sub-horizon scales). The fluctuation of a pressureless fluid can grow indef-
initely because there is no counteracting force. In general, however, the pressure
of the fluid resists gravity and stops the collapse. It is then instructive to derive the
equations for a fluid which is pressureless (w = 0) in the absence of perturbations,
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but has a small sound speed:

c2
s = δP

δρ
≪ 1 . (4.72)

Then Eq. (4.58) tells us that '′ − H( ≃ 0, so that Eq. (4.57) corresponds to
the Fourier transformed Poisson equation

k2' = 4πGa2ρδ = 3
2
H2δ . (4.73)

Taking the derivative of Eq. (4.73) and substituting it into Eq. (4.61), we obtain

δ′ = −θ − 9
2
H2

k2
δ

(
2
H′

H
+ δ′

δ

)
≃ −θ . (4.74)

Hence this equation reduces to the energy conservation equation in the Newtonian
limit.

Then the perturbation equations in the sub-horizon limit become

δ′ = −θ , (4.75)

θ ′ = −Hθ + c2
s k

2δ − k2' , (4.76)

and Eq. (4.73). Differentiating Eq. (4.75) with respect to η and using Eq. (4.76), it
follows that

δ′′ + Hδ′ +
(

c2
s k

2 − 3
2
H2

)
δ = 0 . (4.77)

In the Minkowski limit, H → 0, this equation reduces to the classical fluid wave
equation δ′′ + c2

s k
2δ = 0, where cs is indeed the sound velocity. Equation (4.77)

shows at once that the perturbation does not grow if

c2
s k

2 − 3
2
H2 > 0 , (4.78)

i.e. if the physical wavelength λp = (2π/k)a is smaller than the Jeans length,

λJ = cs

√
π

Gρ
. (4.79)

For scales smaller than λJ the perturbations undergo damped oscillations. For the
CDM particles the velocity dispersion is always negligible, at least in the regime
of validity of our linear treatment. For the photons we have cs = c/

√
3, so that

λJ ≈ H−1 . (4.80)

Hence the growth of perturbations is prevented on all scales smaller than the
Hubble radius. For the baryons, the sound velocity is comparable to the photon
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velocity before the decoupling epoch, so that baryon perturbations are damped out
(more precisely they drop rapidly to a comoving scale of less than 1 Mpc just after
decoupling). Then the baryons are free to fall inside the dark matter potential wells,
and their perturbation spectrum catches the dark matter one (more on this in the
next section).

When csk ≪ H, the perturbations grow freely because gravity overcomes the
pressure: this is the all-important regime of gravitational instability. The sub-
horizon equation for a single pressureless fluid becomes

δ′′ + Hδ′ − 3
2
H2δ = 0 . (4.81)

It is often useful to employ the number of e-foldings N = ln a. Then Eq. (4.81)
can be written as

d2δ

dN2
+

(
1
H

dH
dN

+ 1
)

dδ

dN
− 3

2
δ = 0 . (4.82)

We can rewrite Eq. (4.68) as

1
H

dH
dN

= −1
2

− 3
2
w . (4.83)

For a pressureless fluid (w = 0), Eq. (4.82) then reduces to

d2δ

dN2
+ 1

2
dδ

dN
− 3

2
δ = 0 . (4.84)

The direct substitution δ = AeλN gives the solution λ = 1, −3/2. Then the evolu-
tion of growing and decaying modes during the matter era is given by

δ+ = Aa, δ− = Ba−3/2 . (4.85)

In terms of the cosmic time t , the growing solution evolves as δ+ ∝ t2/3. The
pre-factor is of course fixed by the initial conditions, ultimately established during
inflation. The decaying solutions (or in general the slower one) become soon
negligible with respect to the growing ones and we will systematically neglect
them throughout this book.

Inserting δ+ into the Poisson equation (4.73), we see that ' ∝ a2H 2δ+ ∝
a2a−3a1 ∝ constant. Hence the gravitational potential remains constant during
the pure matter-dominated epoch.

4.6 Two-fluid solutions

We generalize the single-fluid case to the more realistic case in which both matter
(wm = c2

s = 0) and radiation (wr = c2
s = 1/3) are present. We introduce the matter
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perturbation variables δm, θm and the radiation perturbation variables δr , θr (here
radiation means all the components which are massless or relativistic, in partic-
ular the neutrinos). Since we are considering dark matter as a dominant matter
component, there is no explicit interaction term between matter and radiation. The
baryonic fraction is also effectively decoupled after z ≈ 1000, while before this
epoch it can be considered as a part of a relativistic photon–baryon plasma. In
Fourier space we then have a system of gravitationally coupled equations for the
perturbations on sub-horizon scales:

δ′
m = −(θm + 3'′) , (4.86)

θ ′
m = −Hθm − k2' , (4.87)

δ′
r = −4

3
(θr + 3'′) , (4.88)

θ ′
r = k2

(
3
4
c2
s δr − '

)
, (4.89)

k2('′ + H') = −4πG(1 + weff)a2ρtθt , (4.90)

k2' + 3H('′ + H') = 4πGa2ρtδt . (4.91)

The subscript t represents total perturbation variables, i.e.

ρt = ρm + ρr , (4.92)

weff = &rwr + &mwm = ρr/3
ρm + ρr

, (4.93)

θt = (1 + wm)&mθm + (1 + wr )&rθr

1 + weff
, (4.94)

δt = &mδm + &rδr . (4.95)

Here the total effective equation of state weff = Pt/ρt is given by

weff = −1 − 2
3

Ḣ

H 2
, (4.96)

which follows from Eqs. (2.17)–(2.18) and K = 0.
We remind the reader that &m and &r are functions of time. These should be

distinguished from their present values &(0)
m and &(0)

r . In the sub-horizon limit,
Eq. (4.91) gives

k2' ≃ 4πGa2(ρmδm + ρrδr ) = 3
2
H2(&mδm + &rρr ) . (4.97)
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Following the derivation similar to Eq. (4.77), we obtain the following equations
for sub-horizon perturbations

δ′′
m + Hδ′

m − 3
2
H2(&mδm + &rδr ) = 0 , (4.98)

δ′′
r + k2

3
δr = 0 . (4.99)

During the radiation-dominated epoch we have &m ≃ 0 and &r ≃ 1. Moreover
the second equation shows that the radiation density contrast oscillates rapidly
around zero (since we are considering sub-horizon modes, k ≫ H). The same is
true for the coupled baryon–photon plasma. Therefore, we can average over the
radiation oscillations and put ⟨δr⟩ ≃ 0 in the first equation. It then follows that
&mδm + &rδr ≃ 0 and

δ′′
m + Hδ′

m ≃ 0 . (4.100)

The solution of this equation is given by δm = C1 + C2
∫

dη/a. During the radi-
ation era the integral

∫
dη/a gives only a logarithmic correction, so the matter

perturbations evolve only mildly.
During the matter era we have |&mδm| ≫ |&rδr | in Eq. (4.98), so that the

evolution of matter perturbations is described by δm ∝ a as we have explained in
the previous section.

If we consider cold dark matter (perturbation δc) and baryonic matter (perturba-
tion δb) instead of matter and radiation, Eq. (4.98) can be generalized as

δ′′
c + Hδ′

c − 3
2
H2(&cδc + &bδb) = 0 , (4.101)

δ′′
b + Hδ′

b − 3
2
H2(&cδc + &bδb) = 0 . (4.102)

Since baryons correspond to a small fraction of the total matter fluid, we can assume
|&bδb| ≪ |&cδc|. This shows that Eq. (4.101) decouples from δb and reduces to the
standard equation for matter perturbations.

At the same time the baryon equation is “forced” by the term &cδc. For such
coupled differential equations the asymptotic solution of δb will approach the
forcing term δc. In other words, the perturbations in baryons will catch up with those
in dark matter. This expresses mathematically (in the linear regime) the common
expression according to which the baryons fall into the dark matter potential wells.

Analogously, if we consider the sum of pressureless matter and the cosmological
constant ! instead of matter and radiation, we get the term &!δ! in addition to
&mδm. However ρ! is constant by definition and δ! = 0, so that we have a slight



56 Basics of cosmological perturbation theory

modification of Eq. (4.81):

δ′′
m + Hδ′

m − 3
2
H2&mδm = 0 . (4.103)

This equation can be rewritten in terms of the derivative N :

d2δm

dN2
+

(
1
H

dH
dN

+ 1
)

dδm

dN
− 3

2
&mδm = 0 . (4.104)

If we assume that &m = constant, then the solution is given by δm ∼ aλ± with

λ± = 1
4

(
−1 ±

√
1 + 24&m

)
. (4.105)

This case occurs when the fraction 1 − &m is into some form of energy density
which has w ≈ 0 but contrary to ordinary CDM it does not cluster on sub-horizon
scales. The major example of this is massive neutrinos after they become non-
relativistic. Supposing for a moment we could apply it also for !CDM, this would
show that the cosmological constant slows down the perturbation growth. In the
limit &m → 0 we have λ+ → 0 from Eq. (4.105), which is qualitatively correct.
However, the density parameter

&m = ρm

ρm + ρ!

= ρ(0)
m a−3

ρ
(0)
m a−3 + ρ!

(4.106)

is obviously not a constant. A much better approximation, obtained by an empirical
fit, is given by defining the growth rate f of matter perturbations [95]:

f ≡ d ln δm

d ln a
= &γ

m , (4.107)

that is

δm(a) = δm(ai) exp
(∫ a

ai

&m(ã)γ
dã

ã

)
, (4.108)

where the growth index γ is ≈ 0.55 for the !CDM model (see Section 11.1 for the
derivation and for a generalization to dark energy). With this behavior we realize
that the term H2δm in the Poisson equation is no longer constant and therefore
the gravitational potential ' on sub-horizon scales is not constant. For the !CDM
model the gravitational potential is almost constant during the matter era, but it
begins to decrease after the universe enters the dark-energy-dominated epoch.

4.7 Velocity field

The mass power spectrum can be studied also by analyzing the peculiar motion of
the galaxies. It is intuitive, in fact, that a more clustered distribution of matter will
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induce stronger peculiar velocities. The importance of this is that the velocity field
depends on the total mass distribution, including any unseen component. Let us
start from Eq. (4.75) with θ = ∇iv

i . In Fourier space this can be written as

δ′
k = −ikiv

i . (4.109)

In this section we recover the subscript k for Fourier modes. This equation applies
to each pressureless component such as baryons and CDM separately. However,
due to the gravitational coupling, each component will be driven by a dominating
density contrast, as we have seen explicitly for the baryons.

We also assume that the velocity field v can be represented by the galaxy
velocity field, vg. This of course assumes that the galaxy velocities are not biased
with respect to the dark matter velocity field, an expectation based on the fact that
galaxies move because of the common gravitational field. Strictly speaking, this
only implies that the acceleration, not the velocity, is the same, and only if all
matter components share the same equation of state and sound speed. Assuming
similar initial conditions, universality of the gravitational interaction, and identical
equation of state and sound speed, however, the galaxies can be seen as test
particles of a universal peculiar velocity field. Under these assumptions, observing
the peculiar velocity field vg of galaxies gives information on the total density
contrast. So in this section we take v to refer to the velocity field of galaxy “test
particles” and δk to refer to the total mass.

Consider Eq. (4.51) for cs = 0:

vi ′ = −Hvi + iki'k . (4.110)

Since we are dealing only with scalar perturbations, the velocity can be written
as the gradient of a velocity potential v, i.e. vi = ∇ iv → ikiv. Then it is clear
that vi is parallel to ki and we can look for solutions of Eq. (4.109) in the form
vi = F (k, a)ki . This gives immediately from Eq. (4.109) the relation between the
peculiar velocity field vi and the density fluctuation δk in linear perturbation theory
(in the Newtonian regime):

vi = iHf δk

ki

k2
, (4.111)

where f is the growth rate defined in Eq. (4.107). Substituting Eq. (4.111) into
Eq. (4.109), one can easily confirm that the relation f = δ′

k/(Hδk) = d ln δk/d ln a

follows. During the standard matter-dominated era we have already seen that δk ∝ a

and hence f = 1 while more in general f = &m(a)γ .
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Let us consider the present epoch (and motion on a local scale, say, less than
100 Mpc). Since a = a0 = 1 and hence H = H0, we have

v = iH0f δk

k
k2

. (4.112)

The peculiar velocity v(r) at location r can be obtained by Fourier anti-
transformation:

v(x) = iH0f
V

(2π )3

∫
δk

k
k2

eik·rd3k . (4.113)

Here we implicitly assumed f to be k-independent. As we have seen this is true in
!CDM but not necessarily in other models. The average in a volume VR of radius
R is

vR = iH0f
V

(2π )3 VR

∫
δk

k
k2

eik·rW (r)d3k d3r = −iH0f
V

(2π )3

∫
δk

k
k2

W (kR)d3k .

(4.114)
Here W (kR) is the Fourier transform of the window function, defined as

W (kR) ≡ 1
VR

∫
W (r)e−ik·r d3r . (4.115)

Therefore, the average of the square of the velocity is

⟨v2⟩R = H 2
0 f 2 V 2

(2π )6

∫
⟨δkδ

∗
k′ ⟩

k
k2

k′

k′2 W (kR)W (k′R)d3kd3k′

= H 2
0 f 2

(2π )3

∫
P (k)δD(k − k′)

k
k2

k′

k′2 W (kR)W (k′R)d3kd3k′

= H 2
0 f 2

2π2

∫
P (k)W 2(kR)dk , (4.116)

where in the second line we have used the definition in Eq. (3.26) and in the last line
we integrated over the solid angle 4π . The square root of ⟨v2⟩R is the magnitude
of the peculiar flow on the scale R and is called bulk flow. Estimates of the bulk
flow can be used to constrain or normalize the mass power spectrum (see e.g.,
Refs. [96, 97]). On the other hand, independent measures of P(k) and ⟨v2⟩R can
give f 2 ≃ &

2γ
m .

4.8 The redshift distortion

The galaxy distances are mostly measured through their redshifts. However, the
redshift includes the peculiar velocity of the galaxies themselves, so that there is
an error in the distances we assign to galaxies. On very small scales, i.e. in the
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cluster cores, the peculiar velocity of a galaxy is more or less randomly oriented,
so that the error in the distance is statistical, and can be taken into account along
with the experimental errors. On redshift maps, the small scale peculiar velocities
cause the fingers-of-god effect: galaxies in a cluster acquire an additional random
redshift that distorts the cluster distribution, making it appear elongated along the
line of sight.

On large scales, however, the galaxies tend to fall toward concentrations, so that
the velocity field is coupled to the density field. This correction is systematic and
can be accounted for in the following way [98].

Given a peculiar velocity v of a source at position r , one can define the line-of-
sight component

u(r) ≡ v · r
r

, (4.117)

where r = |r|. The coordinate transformation from real space (r) to redshift space
(s) is given by

s = r
[

1 + u(r) − u(0)
r

]
. (4.118)

Here we express velocities in Megaparsecs through division by H0.
If dVs and dVr are the volume elements in the two coordinates with number

densities n(s) and n(r), respectively, we have

n(r)dVr = n(s)dVs . (4.119)

The volume element dVs can be written in terms of the r coordinate as

dVs =
(

1 + 9u(r)
r

)2

|J | (r2 sin θ )drdθdφ =
(

1 + 9u(r)
r

)2

|J | dVr , (4.120)

where 9u(r) ≡ u(r) − u(0). The Jacobian |J | is given by the derivative of s =
r[1 + (u(r) − u(0))/r] with respect to r:

|J | =
∣∣∣∣
∂s

∂r

∣∣∣∣ = 1 + du

dr
. (4.121)

Using the average density n0, the density contrast in s-space is

δs = n(s)dVs

n0dVs

− 1 = n(r)dVr

n0dVs

− 1 = n(r)

n0 (1 + 9u(r)/r)2 |J |
− 1 , (4.122)
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where we have used Eq. (4.120). To first order, this yields

δs ≃ n(r)
n0

[
1 − 2

9u(r)
r

− du

dr

]
− 1

= δr − 2
9u(r)

r
− du

dr
, (4.123)

where in the last line we have employed the fact that to first-order we can approx-
imate n(r) to be n0. Therefore, we see that the density contrast is different in the
two spaces. As a consequence, the correlation function and the power spectrum
measured in redshift space will have to be corrected to be expressed in real space.
To do so, we have to take the velocity field from the linear perturbation theory.

However what we observe is the galaxy density contrast δg, which is different
from the total density contrast δm. The two quantities can be assumed to be related
by a bias factor b defined by

b ≡ δg

δm

, (4.124)

so that instead of f δk we have δ(g)kf/b in Eq. (4.112). In other words, wherever we
write f , we should in fact write β ≡ f/b. If we assume b to be scale-independent,
then Eq. (4.113) can be written as

v = iH0β

∫
δ(g)ke

ik·r k
k2

d3k∗ , (4.125)

where the Fourier factor V/ (2π )3 is included in the differential d3k∗. Notice the
apparent oddity: in this equation we have both the total δ (in β) and the galaxy
δ(g). In general however b can depend on scale and time. Notice that if b depends
on space then Eq. (4.124) in real space is different from the analogous relation in
Fourier space.

An immediate consequence of Eq. (4.124) written in Fourier space is that for the
power spectra we have

Pg(k) = b2Pm(k) . (4.126)

One should take note however what this standard procedure is assuming. If lin-
ear gravity were the only force at work, then any bias in δ should induce a bias
in v due to the continuity equation, while here we are implicitly assuming that
biased galaxies possess an unbiased velocity field. In other words, a value b ̸= 1
implies that galaxies violate the linear continuity equation, while dark matter still
obeys it. This could only occur if some additional force acts on baryons but not on
dark matter. If gravity does not violate the equivalence principle (see Section 11.2
for an example of this), one needs to invoke some non-gravitational effect, e.g.,
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the hydrodynamical effect, that makes the galaxies “appear” or “disappear” and
therefore breaks continuity. Examples of these are merging processes or evolu-
tionary processes that render galaxies brighter or dimmer and therefore visible or
invisible to our telescopes. We can say that the whole idea of a simple biasing
scheme tries to capture glimpses of physics beyond the purely linear gravitational
treatment. Ultimately, its validity can only be judged against N -body simulations
and observations. In problem 4.1 you can work out an example of constant bias.

Using Eq. (4.125), the line-of-sight component (4.117) in Megaparsec units
(H0 = 1) is (we drop now the subscript g in δ but we add a subscript r to remind
ourselves that this quantity is in real space)

u(r) = iβ

∫
δrke

ik·r k · r

k2r
d3k∗ , (4.127)

while its derivative is

du

dr
= −β

∫
δrke

ik·r
(

k·r
kr

)2

d3k∗ , (4.128)

where we have used the relation

d
dr

eik·r = i
k·r
r

eik·r . (4.129)

Finally, from Eq. (4.123), we have

δs = δr − du

dr
= δr + β

∫
δrke

ik·r
(

k·r
kr

)2

d3k∗ , (4.130)

where we have neglected the second term in (4.123) because it is negligible for
large r .

Now, we can multiply Eq. (4.130) on both sides by V −1e−ik′·rd3r and integrate
it. We then obtain from Eq. (3.14) the Fourier transform of (4.130) as

δsk = δrk + β

∫
δrk′I (k, k′)d3k′ , (4.131)

(we switched k, k′) where

I (k, k′) = (2π )−3
∫

ei(k′−k)·r
(

k′ · r

k′r

)2

d3r . (4.132)

The redshift distortion then introduces a mode–mode coupling. This coupling can
be broken in the useful limit of surveys of very small angular scales. In fact, if we
can assume that the cosine

µ = k · r

kr
(4.133)
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is almost constant (that is, the survey spans a small solid angle), then we have
I (k, k′) = µ2δD(k′ − k) and

δsk = δrk(1 + βµ2) . (4.134)

The power spectrum defined in Eq. (3.19) reads

Ps(k) = V δ2
rk(1 + βµ2)2 = Pr (k)(1 + βµ2)2 . (4.135)

If we average it over angles, we get

Ps(k) = Pr (k)(1 + 2β⟨µ2⟩ + β2⟨µ4⟩) , (4.136)

where the average ⟨f (µ)⟩ = (4π )−1
∫ π

0 f (µ) sin θdθ
∫ 2π

0 dφ = (1/2)
∫ 1
−1 f (µ)dµ

gives

⟨µ2⟩ = 1
2

∫ 1

−1
µ2dµ = 1

3
, ⟨µ4⟩ = 1

2

∫ 1

−1
µ4dµ = 1

5
. (4.137)

We then obtain [98]

Ps(k) = Pr (k)(1 + 2β/3 + β2/5) . (4.138)

The power spectrum is then boosted in redshift space, because the velocity field is
directed toward mass concentrations. As a result, galaxies seem more concentrated
when seen in redshift space. Remember that we have dropped the subscript g but
both Pr and Ps refer to the galaxies.

As we anticipated, at very small scales, on the other hand, the velocity orientation
can be assumed to be random. Then, on these scales, the net effect is that galaxies
in redshift space seem distributed over a larger volume and the power spectrum
is therefore decreased. Empirical studies have shown that an approximation valid
both at small and large scales is given by the following correction [99]:

Ps(k) = Pr (k)G(β, y) , (4.139)

where

G(β, y) = π1/2

8
erf(y)

y5
(3β2 + 4βy2 + 4y4) − e−y2

4y4
[β2(3 + 2y2) + 4βy2] ,

(4.140)
and y = kσvH

−1
0 with σv being the cloud velocity dispersion along the line of sight.

On small scales the effect is to change the slope by a factor k−1, whereas on large
scales the effect is to raise the amplitude as in Eq. (4.138).

4.9 Baryons, photons, and neutrinos

So far we have considered only perfect fluids which do not possess anisotropic
shear (i.e. T i

j = 0) and do not interact except gravitationally. Because of this,
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their perturbation dynamics has been completely described by functions of the
wavenumber modulus k alone, the density contrast, and the gradient of velocity
field.

However, the cosmic mix contains imperfect fluids for which such a description is
insufficient. When the interaction terms or the energy-momentum tensor depend on
the full momentum vector P , the fluid needs to be described by its full distribution
function f (P, x, t). Radiation, baryons, and neutrinos are such fluids and in the
following we discuss their full perturbation equations. This section is only meant
to summarize the main results that will be used elsewhere. We urge the reader
to familiarize themselves with the full treatment in standard cosmology textbooks
(e.g., [74], whose notation we follow closely).

We shall take the perturbed metric (4.13) with the cosmic time t =
∫

adη, i.e.

ds2 = −(1 + 2()dt2 + a2(t)(1 + 2')δij dxidxj . (4.141)

Given a distribution function f (P, x, t), the energy-momentum tensor for a fluid
in the full general relativistic framework is

T µ
ν (x, t) = gi

(2π )3

∫
dP1dP2dP3

√
−g

P µPν

P 0
f(P, x, t) , (4.142)

where P 0 ≡ dt/dλs , P i ≡ dxi/dλs (λs is a parameter that characterizes the parti-
cle’s path), and gi are the internal degrees of freedom. For a particle of mass m one
has P µPµ = −m2. From the expression (4.142) we can derive the usual energy
density −T 0

0 and pressure T i
i /3. We see that the term that contributes to the shear

T i
j is proportional to

P iPj

(P 0)2
= dxidxj

dt2
= vivj , (4.143)

which is a second-order quantity and therefore is negligible in linear perturbation
theory. For massless particles, however, this is not the case. Photons and neutrinos
(massless or massive but relativistic) therefore contribute to the shear term. Because
of the mass constraint on P µ there are only three momentum degrees of freedom.
We can choose the spatial magnitude

p2 ≡ gijP
iP j , (4.144)

and the unit direction vector

p̂i ≡ P i/|P | , (4.145)

such that δij p̂
i p̂j = 1.

Plugging P i = |P |p̂i into Eq. (4.144), we find

p2 = a2(1 + 2')(δij p̂
i p̂j )P 2 = a2(1 + 2')P 2 , (4.146)
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which gives |P | = p(1 − ')/a at first-order. Hence the spatial vector P i can be
written as

P i = 1 − '

a
pp̂i . (4.147)

The photons satisfy the relation gµνP
µP ν = 0, which translates into the follow-

ing condition

− (1 + 2()(P 0)2 + p2 = 0 . (4.148)

We then obtain the time-component of P µ:

P 0 = p(1 − () . (4.149)

The process of collisions between particles can be described by the Boltzmann
equation

df

dt
= ∂f

∂t
+ ∂f

∂xi

dxi

dt
+ ∂f

∂p

dp

dt
+ ∂f

∂p̂i

dp̂i

dt
(4.150)

= C[f ] , (4.151)

where f (p, p̂i, xi, t) is the distribution function and C[f ] describes a collision
term. The r.h.s. of Eq. (4.150) should be evaluated up to the first-order for the line
element (4.141). The last term in Eq. (4.150) vanishes at the linear level, since
both ∂f/∂p̂i and dp̂i/dt are first-order terms. The collision term in Eq. (4.151)
is different depending on the kind of matter species. For photons we need to
compute it for the process of Compton interaction between protons and electrons
(i.e. baryons). Dark matter interacts very weakly with other particles so that the
collision term is set to zero.

Let us consider the Boltzmann equation (4.151) for the photons. From
Eqs. (4.147) and (4.149) it follows that

dxi

dt
= P i

P 0
= 1 − ' + (

a
p̂i . (4.152)

From the time component of the geodesic equation dP 0/dλs = −40
µνP

µP ν , we
obtain the following relation [74]

dp

dt
= −p

(
H + ∂'

∂t
+ p̂i

a

∂(

∂xi

)
. (4.153)

Then the l.h.s. of the Boltzmann equation (4.151) yields

df

dt
= ∂f

∂t
+ p̂i

a

∂f

∂xi
− p

∂f

∂p

(
H + ∂'

∂t
+ p̂i

a

∂(

∂xi

)
. (4.154)
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Note that we have neglected the product of ∂f/∂xi and ' (() because ∂f/∂xi is a
first-order term (f does not depend on xi at zero-th order).

Recall that in the unperturbed background the photons with the temperature T

obey the Bose–Einstein distribution function

f (0)(t, p) =
[
exp(p/T ) − 1

]−1
, (4.155)

where we have neglected the chemical potential µ. Note that in this background the
temperature T depends on the time t only: T ∝ 1/a(t). In the perturbed Universe
we can define the temperature perturbation:

)(t, x, p̂i) ≡ δT/T , (4.156)

which is chosen as a perturbation variable of photons instead of δγ = 4δT/T (recall
that ρr ∝ ργ ∝ T 4). We assume that ) does not depend on the magnitude p since
in a Compton scattering this is approximately conserved. The distribution function
is given by

f (t, p, x, p̂) =
{

exp
[

p

T (t)[1 + )(t, x, p̂i)]

]
− 1

}−1

. (4.157)

If ) ≪ 1, one can expand this about the background value f (0) by using the relation
T ∂f (0)/∂T = −p∂f (0)/∂p:

f = f (0) − p
∂f (0)

∂p
) , (4.158)

which is valid at first-order. Plugging Eq. (4.158) into Eq. (4.154) and collecting
the first-order terms, we obtain

df (1)

dt
= −p

∂f (0)

dp

[
∂)

∂t
+ p̂i

a

∂)

∂xi
+ ∂'

∂t
+ p̂i

a

∂(

∂xi

]
. (4.159)

In Fourier space, we expand ) as

)(r) = 1
(2π )3

∫
d3k )ke

ik·r , (4.160)

where the time dependence on the l.h.s. is implicit. Instead of the unit vector p̂, we
can use the direction cosine

µ = k · p̂
k

, (4.161)

where k = |k| is the magnitude of the wavevector k.
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It turns out convenient to integrate out the angular dependence of )(k) by
defining the multipoles

)ℓ ≡ 1
(−i)ℓ

∫ 1

−1

dµ

2
Pℓ(µ))(µ) , (4.162)

where Pℓ is the Legendre polynomial of order ℓ. The first polynomials are P0(µ) =
1,P1(µ) = µ, andP2(µ) = (3µ2 − 1)/2. So ℓ = 0 defines the monopole )0, which
is simply the angular average of ), while ℓ = 1 gives the dipole term.

The next step is to evaluate the collision term C[f ] for the photons, determined
mainly by the Compton scattering process e− + γ ↔ e− + γ . The interested reader
may wish to consult the textbook [74], since its complete derivation requires several
pages. The final result is however pretty simple:

C[f ] = −p
∂f (0)

∂p
neσT [)0 − )(p̂) + p̂ · vb] , (4.163)

where ne is the electron density, σT is the Thomson cross section, and vb is
the velocity of the electrons (here classified as usual in cosmology among the
“baryons”). In the absence of vb, a strong coupling (i.e. the limit of large neσT )
means that ) ≈ )0, i.e. that the perturbation is fully described by its monopole
term.

Equating (4.159) and (4.163) we obtain

∂)

∂t
+ p̂i

a

∂)

∂xi
+ ∂'

∂t
+ p̂i

a

∂(

∂xi
= neσT [)0 − )(p̂) + p̂ · vb] . (4.164)

In Fourier space we have that ∂)/∂xj → ikj), and as usual we omit the subscript
k for Fourier-transformed quantities. Moreover, since we always assume the fluid
to be irrotational, vb is directed along k so that

vi
b = vbk

i/k , (4.165)

where vb is the velocity modulus. Then Eq. (4.164) can be written as

∂)

∂t
+ ikµ

a
) + ∂'

∂t
+ ikµ

a
( = neσT [)0 − )(p̂) + µvb] . (4.166)

In terms of the conformal time η, this equation reduces to

)′ + ikµ) + '′ + ikµ( = −τ ′
op[)0 − )(p̂) + µvb] , (4.167)

where we have introduced the optical depth τop defined as

τop ≡
∫ η0

η

neσT a dη̃ . (4.168)
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Note that a prime represents a derivative with respect to η (with η0 being the
conformal time today). The optical depth is small when the free electron density
ne is small, i.e. at late times. In the limit τop → 0, the photon fluctuations decouple
from the baryons. In this limit, i.e. putting the r.h.s. of Eq. (4.167) to zero, the
equation can be applied as well to massless neutrinos. On the contrary, when ne

is large such that τop ≫ 1, i.e. before the recombination epoch, the photons and
baryons are tightly coupled.

Now we should redo the calculations for massive particles, in order to derive
the Boltzmann equation for baryons. Instead of the momentum magnitude p, we
introduce the energy E =

√
p2 + m2. For non-relativistic matter, all terms of order

v2 = (p/E)2 or higher can be neglected. This allows us to write the Boltzmann
equations for the distribution fm in terms of the first and second moments, i.e. of
the number density and velocity

nm ≡
∫

d3p

(2π )3
fm , vi

m ≡ 1
nm

∫
d3p

(2π )3

pp̂i

E
fm . (4.169)

Recall that in Section 4.3 we have derived the set of perfect fluid equations
(4.48) and (4.51) for the pressureless matter component. For the baryons, however,
there is again a collisional term on the r.h.s. of the Boltzmann equation. This term
contributes only to the velocity equation (4.51), i.e. the first moment of the baryon
distribution fb, since both Compton scattering (that couples electrons and photons)
and Coulomb scattering (that couples electrons and protons) conserve the number
of “baryons.” Therefore the velocity equation acquires an additional term coming
from the scattering process. In Fourier space the full set of coupled photon–baryon
equations reads

)′ = −'′ − ikµ() + () − τ ′
op()0 − ) + µvb) , (4.170)

δ′
b = −ikvb − 3'′ , (4.171)

v′
b = −Hvb − ik( +

τ ′
op

Rs

(3i)1 + vb) , (4.172)

where

Rs ≡ 3
4

ρb

ργ

. (4.173)

Note that we have used the relation θb = ikjv
j
b = ikvb to convert θb to vb in

Eqs. (4.171) and (4.172).
The cold dark matter does not have an electromagnetic interaction so that the

perturbations are not affected by the collision term unlike the baryons. Hence the
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CDM perturbations δc and vc obey the following equations

δ′
c = −ikvc − 3'′ , (4.174)

v′
c = −Hvc − ik( , (4.175)

which are of course identical to the matter equations we derived in Eqs. (4.86) and
(4.87) (with ( = −').

Now we can derive an equation for the monopole term )0 that will be useful
later on. MultiplyingP0(µ) andP1(µ) for Eq. (4.170) and integrating them in terms
of µ in the range [−1, 1], we obtain

)′
0 + k)1 = −'′ , (4.176)

)′
1 − k

3
()0 + () = τ ′

op

(
)1 − i

3
vb

)
, (4.177)

where we have neglected the term )2 (see problem 4.2). In the tight coupling regime
(τop ≫ 1) one has |τ ′

op)1| ≫ |)′
1| in Eq. (4.177). Then the second term, (k/3))0,

in Eq. (4.177) is the same order as the r.h.s., giving )1 ∼ k)0/τ
′
op ∼ (kη/τop))0.

In the tight coupling limit (τop ≫ 1) this means that )1 ≪ )0 for the modes
around the Hubble radius (kη ∼ 1). This property generally holds for the multipole
moments )ℓ, i.e. )ℓ+1/)ℓ ∼ kη/τop. Hence it is a good approximation to neglect
the moments )ℓ (ℓ ≥ 2) compared to monopole and dipole moments in the tight
coupling regime.

If we rewrite Eq. (4.172) in the form vb = −3i)1 + (Rs/τ
′
op)[v′

b + Hvb + ik(],
then the term (Rs/τ

′
op)[v′

b + Hvb + ik(] is suppressed relative to others by a factor
of 1/τop, giving the relation vb ≃ −3i)1 at the lowest order. Substituting this
relation into Eq. (4.172), we get

vb ≃ −3i)1 − 3i
Rs

τ ′
op

(
)′

1 + H)1 − k

3
(

)
. (4.178)

Plugging Eq. (4.178) into Eq. (4.177) and taking the η derivative of Eq. (4.176) to
eliminate the term ( ′, we find (see the problem 4.3)

)′′
0 + Rs

1 + Rs

H)′
0 + k2c2

s )0 = −k2

3
( − Rs

1 + Rs

H'′ − '′′ , (4.179)

where

c2
s ≡ δPγ

δργ + δρb

= 1
3(1 + Rs)

(4.180)

is the effective sound speed squared of the coupled baryon–photon plasma. Recall
that Rs is defined in Eq. (4.173). The last equality in Eq. (4.180) holds by using
the relations δPγ = δργ /3 and δργ /ργ = (4/3)δρb/ρb (the second one comes from
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ργ ∝ a−4 ∝ T 4 and ρb ∝ a−3 ∝ T 3). In the absence of baryons the sound speed
reduces to that for a relativistic fluid: cs = c/

√
3, where we have recovered the

speed of light c. When baryons are present, the sound speed decreases because the
fluid becomes heavier.

Equation (4.179) is very convenient because it shows how the direction-averaged
temperature anisotropy )0 responds to gravity, i.e. to ( and '. In Section 5.3 we
shall discuss the solution of this equation to confront the predicted temperature
anisotropies with CMB observations.

The gravitational potentials ' and ( are determined by the combined action
of all the matter fields, baryons (b), cold dark matter (c), photons (γ ), neutrinos
(ν), and dark energy (DE). If we neglect the contribution of dark energy, the (00)
component of the Einstein equation (4.57) reads

k2' + 3H('′ − H() = 4πGa2 (
ρmδm + 4ρr)r,0

)
, (4.181)

where

ρmδm ≡ ρbδb + ρcδc , (4.182)

ρr)r,i ≡ ργ )i + ρνNi , (i = 0, 1, 2, . . .). (4.183)

Here )0 andN0 are the monopoles of photons and massless neutrinos, respectively,
which are related to the energy momentum tensors via (γ )T 0

0 = −ργ (1 + 4)0) and
(ν)T 0

0 = −ρν(1 + 4N0). From Eqs. (4.58) and (4.181) it follows that

k2' = 4πGa2
[
ρmδm + 4ρr)r,0 + 3H

k
(iρmvm + 4ρr)r,1)

]
, (4.184)

where we have used the fact that the velocity vr for radiation is related to the dipole
)r,1 via vr = −3i)r,1 [74].

There is also another relation that relates the sum of the gravitational potentials
' and ( with the anisotropic stresses of photons and neutrinos:

k2(' + () = −32πGa2ρr)r,2 . (4.185)

If the quadrupole )r,2 is negligibly small, it follows that ' ≃ −(. Equation
(4.185) assumes a particularly simple form during the radiation-dominated era
and for super-horizon scales. During the radiation-dominated era we can use the
Friedmann equation (2.17) in flat space to rewrite it as

k2(' + () = −12H2fνN2 , (4.186)

where

fν = ρν

ρν + ργ

. (4.187)
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In fact, the dominant term in the quadrupole )r,2 is the neutrinos since the photon–
baryon plasma behaves almost as a perfect fluid. Note that fν ≈ &ν ≈ constant
during the radiation-dominated era but not afterward. For adiabatic initial condi-
tions the large-scale fluctuations in radiation equal the fluctuations in the neutrino
component since they are both relativistic. Therefore we can put )r,0 = N0. Now
from Eq. (4.181), assuming k ≪ H and constant ' (i.e. discarding the first and
second term on the l.h.s.) and negligible ρm, we obtain

3H2( = −16πGa2ρr)r,0 . (4.188)

It then follows that

( = −2)r,0 = −2N0 . (4.189)

This replaces Eq. (4.71) when we cannot assume ' = −(. For the neutrinos we
can use Eqs. (4.176) and (4.177) with N0,1 instead of )0,1 and no coupling to
baryons. However the quadrupole N2 that we neglected in Eq. (4.177) is no longer
negligible. Multiplying Eq. (4.170) by P2(µ) and integrating it with respect to µ,
we obtain an equation for N2. Neglecting N3 for k ≪ H and eliminating N1, one
finds

N ′′
2 = 2k2

15
(( + N0 − 2N2) . (4.190)

Equation (4.186) can be written as

N2 = AH−2 , (4.191)

where A = −k2(' + ()/(12fν) is approximately constant since the potentials are
constant on super-horizon scales. Differentiating Eq. (4.191) twice with respect to
η (notice that H′/H2 ≃ −1 = constant in this regime) we obtain

N ′′
2 = 2A = −k2(' + ()/(6fν) . (4.192)

Combining Eqs. (4.189), (4.190), (4.192) and taking the limit k ≪ H, it follows
that

' = −(

(
1 + 2

5
fν

)
. (4.193)

This sets the initial condition for the relation between the potentials at early times.

4.10 The matter power spectrum

The large-scale structure of the Universe started to grow after the epoch of the
radiation–matter equality. Since non-relativistic matter has a negligible pressure
relative to its energy density, the gravitational attraction becomes stronger than the
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pressure repulsion in the matter-dominated epoch. The perturbations of pressureless
matter, especially the CDM perturbations, are responsible for the formation of
galaxies. We can quantify the matter distribution in the Universe by measuring the
correlation function or the power spectrum of the galaxies we observe in the sky.

In order to derive the spectrum of matter perturbations today, we need to know
the evolution of '(k, t) from the early Universe to the present epoch. The cosmic
inflation in the early Universe that is needed to solve the problems of flatness and
horizon is believed to have generated the seeds of anisotropies through the quantum
fluctuations of a scalar field (called “inflaton”) [70] .

In the simplest version of the single-field inflation scenario the perturbations are
“frozen” after the scale λp = (2π/k)a of perturbations leaves the Hubble radius
(H−1) during the accelerated expansion (we are considering the perturbations
whose wavelengths are smaller than the Hubble radius at the onset of inflation). The
perturbations in the super-horizon regime (characterized by k ! H = aH ) evolve
only adiabatically after the first Hubble radius crossing (k = H). After inflation
the comoving Hubble radius, H−1, begins to increase as long as the Universe
undergoes a decelerated expansion (a ∝ tp with p < 1). During radiation and
matter eras, the perturbations cross inside the Hubble radius again (k " H). The
epoch of this second Hubble radius crossing (k = H) depends upon the wavelength
of perturbations. The crossing occurs earlier for smaller scale perturbations.

During inflation nearly scale-invariant density perturbations are generated from
the quantum fluctuation of a scalar field with a potential, which sets up initial
conditions for the gravitational potential. Inflation generally predicts nearly scale-
invariant density perturbations, which are consistent with the CMB anisotropies
observed by COBE and WMAP. The initial power spectrum of ' generated during
inflation is given by

P
(i)
' ≡ ⟨|'(k, ai)|2⟩ = 50π2

9k3

(
k

H0

)ns−1

δ2
H , (4.194)

(conventionally there is no factor of volume in this definition of power spectrum)
where ns is the spectral index and δ2

H represents the amplitude of the gravitational
potential (see Refs. [70, 74, 94] for the derivation of Eq. (4.194)). The WMAP
5-year observations constrain these values to be ns = 0.960+0.014

−0.013 and δ2
H ≃ 3.2 ×

10−10 [15]. Note that ns = 1 corresponds to the scale-invariant spectrum with
k3⟨|'(k, ai)|2⟩ = constant.1

1 Although in mathematics “scale-invariant” means generally a power-law behavior, cosmologists use this term
to denote a flat spectrum k0. In the context of inflation the power spectrum is usually defined by P̂

(i)
' ≡

k3/(2π2)⟨|'(k, ai )|2⟩, but we adopt the definition (4.194) to match with the standard notation used to evaluate
the matter power spectrum.
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In order to obtain the gravitational potential today, we need to solve the equation
for '(k, t) from the beginning of the radiation-dominated epoch to the present. The
evolution of the gravitational potential during the early cosmological epoch depends
on the modes k. The wavenumber keq that characterizes the border of “large-scale”
and “small-scale” modes corresponds to the one that entered the Hubble radius at
the radiation–matter equality, i.e. keq = aeqH (aeq). Using Eq. (2.78) together with
H (aeq)/H0 = [2&(0)

m /a3
eq]1/2, we find

keq = H0

√
2&

(0)
m

aeq
= 0.073 &(0)

m h2 Mpc−1 . (4.195)

Let us first consider the large-scale modes with k ≪ keq. In Section 4.4 we have
already seen that there is a solution with ' = constant for a single-fluid system.
However it remains to see what happens during the transition from the radiation
era to the matter era. In the following we shall neglect the contribution of baryons
as well as the quadrupole )r,2. Under the super-horizon approximation (k ≪ H),
we obtain the following approximate equations from Eqs. (4.181), (4.174), and
(4.176):

3H('′ + H') = 4πGa2(ρcδc + 4ρr)r,0) , (4.196)

δ′
c = −3'′ , (4.197)

)′
r,0 = −'′ . (4.198)

In Eqs. (4.196) and (4.198), )r,0 includes the contributions of both radiation and
neutrinos. From Eqs. (4.197) and (4.198) it follows that δc = 3)r,0 + C, where C

is an integration constant. As we have already mentioned in the previous section,
the radiation perturbations δr = δρr/ρr are related to the matter perturbation δm =
δρm/ρm via δr = (4/3)δm by noting that ρr ∝ T 4 and ρm ∝ T 3. This translates into
δm = 3)r,0, which is called the adiabatic condition (applied to both dark matter and
baryons). This shows that C = 0 for CDM as long as the adiabatic initial condition
is respected.

Plugging )r,0 = δc/3 into Eq. (4.196) and introducing the variable y ≡ a/aeq =
ρc/ρr , we find

y
d'

dy
+ ' = 3y + 4

6(y + 1)
δc , (4.199)

where we have used the relations dy/dη = Hy and 3H 2 = 8πGρc(1 + 1/y). Tak-
ing the y-derivative of Eq. (4.199) and using Eq. (4.197), we obtain

d2'

dy2
+ 21y2 + 54y + 32

2y(y + 1)(3y + 4)
d'

dy
+ 1

y(y + 1)(3y + 4)
' = 0 . (4.200)
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This has the following analytic solution [90]

'(y) = c1

√
y + 1
y3

+ c2
9y3 + 2y2 − 8y − 16

y3
, (4.201)

where the integration constants c1 and c2 are determined by imposing the initial
conditions 'i = '(0) and (d'/dy)i = 0. This gives c1 = 16c2 = (8/5)'(0), so
that the solution is

'(y) = '(0)
9y3 + 2y2 − 8y − 16 + 16

√
y + 1

10y3
. (4.202)

In the limit that y = a/aeq → ∞, the gravitational potential approaches ' →
(9/10)'(0). Hence, for super-horizon perturbations, the gravitational potential
decreases by 10% during the transition from the radiation era to the matter era.

Let us next consider the evolution of ' during the deep radiation-dominated
epoch. Since c2

s ≃ 1/3, H′ ≃ −H2, and H ≃ 1/η in this regime, Eq. (4.66) gives

'′′ + 4
η
'′ + k2

3
' = 0 . (4.203)

The solution of this equation satisfying the initial conditions ' = 'I and d'/dη =
0 at η = 0 is

'(k, η) = 3'I

sin(kη/
√

3) − (kη/
√

3) cos(kη/
√

3)

(kη/
√

3)3
. (4.204)

For the modes outside the Hubble radius (k ≪ H, i.e. kη ≪ 1) we have '(k, η) ≃
'I

[
1 − (kη)2/10

]
, which means that the gravitational potential is nearly con-

stant, as we know already. The modes with k ≫ keq crossed inside the Hubble
radius (kη > 1) before the radiation–matter equality. These small-scale perturba-
tions started to decay after the Hubble radius crossing. Asymptotically (kη ≫ 1)
the gravitational potential decreases as 1/(kη)2 with oscillations (during the radi-
ation era). For larger k this decay started earlier, which implies that the amplitude
of the resulting gravitational potential is suppressed for perturbations on smaller
scales. After the Universe enters the matter-dominated epoch, the amplitude of '

approaches a constant value.
Thus we have shown that the evolution of the gravitational potential depends on

the scales of perturbations. In order to describe its evolution for each wavenumber
k during the transfer epoch (from the radiation era to the epoch at a = aT ), we
introduce the transfer function

T (k) ≡ '(k, aT )
'LS(k, aT )

, (4.205)
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where 'LS(k, aT ) is the large-scale solution decreased by an amount 9/10 compared
to the primordial value '(k, ai) generated during inflation:

'LS(k, aT ) = 9
10

'(k, ai) . (4.206)

The typical value of aT is around aT ∼ 0.03. Note that for a > aT the evolution of
' becomes independent of k (i.e. ' = constant during the matter era).

In general, the transfer function has to be derived numerically by integrating the
equations for each k mode. A popular fit has been given by Bardeen, Bond, Kaiser,
and Szalay (BBKS) [100]:

T (x) = ln(1 + 0.171x)
0.171x

[
1 + 0.284x + (1.18x)2 + (0.399x)3 + (0.490x)4]−1/4

,

(4.207)

where x ≡ k/keq. On large scales characterized by the condition x = k/keq ≪ 1
the BBKS transfer function reduces to T (x) ≃ 1, which means that '(k, aT ) =
(9/10)'(k, ai) as expected. On small scales with x = k/keq ≫ 1 the transfer func-
tion has a k-dependence T (k) ∝ (ln k)/k2, which means that the gravitational
potential '(k, aT ) is suppressed for increasing k. Note that the logarithmic correc-
tion comes from matching two solutions of dark matter perturbations during the
radiation and matter eras.

When a > aT the gravitational potential ' remains constant during the matter
era at least in standard General Relativity, but after the Universe has entered the
epoch of cosmic acceleration ' is expected to vary. In order to quantify this, we
introduce the growth function D(a):

'(a)
'(aT )

= D(a)
a

(a > aT ) . (4.208)

In Fig. 4.1 we illustrate the evolution of the quantity D(a)/a in both CDM and
!CDM models. In the CDM model the gravitational potential is constant for
a > aT and hence D(a) = a. In the !CDM model, the constant evolution of '(a)
is followed by its decay around the end of the matter era. This is associated with
the decreases of both &m and the growth rate of δm. This variation of ' leads to
the integrated Sachs–Wolfe (ISW) effect in the CMB temperature anisotropies, as
we will see in more detail in Sections 4.11 and 5.3.

Combining Eqs. (4.205), (4.206), and (4.208), we find that the gravitational
potential today is given by

'(k, a0) = 9
10

'(k, ai)T (k)D(a0) , (4.209)

where we have used a0 = 1.
After the Universe enters the matter era, the radiation perturbation )r,0 is neg-

ligible relative to the matter perturbation δm. For the !CDM model or the models
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Figure 4.1 The evolution of the quantity D(a)/a versus the redshift z for the
!CDM model with &(0)

m = 0.28 and the CDM model with &(0)
m = 1.0. Since the

gravitational potential ' does not vary in time during the matter-dominated era,
the quantity D(a)/a remains constant for the CDM model. However, in the !CDM
model, the decrease of the gravitational potential at late times leads to the variation
of D(a)/a.

in which dark energy does not cluster, we can also ignore the dark energy pertur-
bation compared to the matter perturbation. Under the sub-horizon approximation
(k ≫ H), Eq. (4.181) then reduces to

k2' = 4πGa2ρmδm . (4.210)

Using the relations ρm = ρ(0)
m /a3 and &(0)

m = 8πGρ(0)
m /(3H 2

0 ), Eq. (4.210) can be
expressed as

δm(k, a) = 2k2a

3&
(0)
m H 2

0

'(k, a) . (4.211)

Using Eqs. (4.194), (4.209), and (4.211), the power spectrum of matter pertur-
bations at the present epoch is

Pδm
≡ ⟨|δm(k, a0)|2⟩ = 2π2δ2

H

(&(0)
m )2

(
k

H0

)ns

T 2(k)D2(a0)H−3
0 . (4.212)

On large scales characterized by x = k/keq ≪ 1 the matter power spectrum has
a scale-dependence Pδm

∝ kns , which grows for increasing k. On small scales
(x = k/keq ≫ 1) one has Pδm

∝ kns−4 (ln k)2, which decreases for increasing k.
Therefore there is a peak for the matter power spectrum, whose wavenumber is
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determined by keq given in Eq. (4.195). As we will see in Section 5.5, the matter
power spectrum is important in measuring dark energy properties.

4.11 Perturbed photon propagation

So far we have studied the evolution of matter density perturbations. However,
what we really observe in cosmology is radiation emitted from sources. It is then
time to face the question of the propagation of radiation in a perturbed Universe.
That is, what happens to photons (their energy, their path) when they propagate
through a perturbed space time?

The general answer is provided by the two equations of light propagation (we
do not consider polarization here). If kµ = dxµ/dλs is the photon momentum, then
the null condition and the geodesic equation read

kµkµ = 0 , (4.213)

dkµ

dλs

+ 4
µ
αβkαkβ = 0 , (4.214)

where λs is an affine parameter that plays no explicit role because we can always
use the µ = 0 geodesic equation to convert λs to the conformal time η. Solving
these equations in the perturbed metric (4.13) gives the general equations of photon
propagation. The solution will give the variation in the photon’s frequency and path
due to the inhomogeneous metric. By observing the inhomogeneities in frequency
and in the angular direction, we can constrain the perturbations that the photon went
through during its long cosmic ride. We will see in Chapter 14 that these effects,
in particular the ISW effect and the weak lensing, are very useful cosmological
probes.

Let us start by splitting the momentum vector kµ = dxµ/dλs into a background
and a perturbed value

kµ = k̂µ + δkµ . (4.215)

We consider a photon that, in the unperturbed metric, propagates along the direction
r , so that the background propagation equation in flat space is dη = dr . In this
section the perturbed quantities are in real space, not in Fourier space, since we
need to deal with physical trajectories. Also we use the explicit derivation symbol
∂/∂η instead of the prime because we want to distinguish carefully between partial
and total derivatives.

At background level, the geodesic equation (index 0) gives simply

dk̂0

dλs

= −2H(k̂0)2 , (4.216)
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where we have used 40
00 = H for the flat FLRW metric with the conformal time η.

Equation (4.216) is integrated to give

k̂0 = dη

dλs

∝ a−2 . (4.217)

This is all we need to convert λs to η. Since the photon frequency is ν ≡ dt/dλs =
adη/dλs , we see that the frequency redshifts in proportion to 1/a, as it should. We
also need the perturbed null-geodesic condition

δkµk̂µ + k̂µδkµ = 0 . (4.218)

For radial trajectories the null path condition ds2 = 0 gives

(1 + ()dη = (1 + ')dr , (4.219)

or

dη

dλs

= (1 + ' − ()
dr

dλs

, (4.220)

which gives

k̂0 + δk0 = (1 + ' − ()(k̂r + δkr ) . (4.221)

We obtain k̂0 = k̂r from the zero-th order equation. The first-order terms give

δk0 = δkr + k̂0(' − () . (4.222)

Now we may be tempted to derive the first-order perturbed µ = 0 equation
(4.214) straightforwardly as dδk0/dλs = −4Hk̂0δk0 − (k̂0)2(∂'/∂η + ∂(/∂η +
2(,r ). However, that would be wrong, since the affine parameter λs needs to be
perturbed as well. We cannot take it to be the same as for the zeroth-order case.
The way to proceed is then to derive the full expression up to first-order:

dk0

dλs

= −2H[(k̂0)2 + 2k̂0δk0] − (k̂0)2
(

∂'

∂η
+ ∂(

∂η
+ 2(,r

)
, (4.223)

where we used Eq. (4.222) and where k0 = k̂0 + δk0, so there is only one affine
parameter for the full momentum k0. The situation is simplified if we “complete”
the expression (k̂0)2 + 2k̂0δk0 with an extra second-order term (δk0)2 to obtain
(k0)2 and similarly substitute (k0)2 for (k̂0)2. This is allowed because we are adding
second-order terms that will be automatically discarded later on. Then we obtain

dk0

dλs

= −2H(k0)2 − (k0)2
(

∂'

∂η
+ ∂(

∂η
+ 2(,r

)
. (4.224)
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Dividing Eq. (4.224) with respect to k0 = dη/dλs , we can rewrite it in the form

1
a2k0

d(a2k0)
dη

= −
(

∂'

∂η
+ ∂(

∂η
+ 2(,r

)
. (4.225)

Now we split the momentum k0 to be k0 = k̂0 + δk0. Using the fact that Eq. (4.216)
is equivalent to d(a2k̂0)/dη = 0, it follows that

1
a2k0

d(a2k0)
dη

→ d(δk0/k0)
dη

, (4.226)

where, at first-order, we can put equivalently k0 or k̂0 at the denominator. We then
obtain the following equation

d(δk0/k0)
dη

= −
(

∂'

∂η
+ ∂(

∂η
+ 2(,r

)
. (4.227)

For the spatial equations we need to derive only the two directions x1 and x2

orthogonal to the propagation direction r . For i = 1, 2, using the geodesic condition
dη2 − dr2 = 0, we find from Eq. (4.214)

d2xi

dλ2
s

+ 2H
dη

dλs

dxi

dλs

=
(

dη

dλs

)2

(',i − (,i) . (4.228)

Here we do not need to worry about the unperturbed λs because there is no
unperturbed propagation along the directions x1 and x2. We write this equation
explicitly in terms of the perturbed coordinates xi(λs) of the light ray instead of
ki since this will be useful in the weak lensing observation. Notice that in several
derivations at this stage one encounters additional terms proportional to ki',i which
are then eliminated by invoking the so-called thin-lens approximation. Since we
are considering first-order quantities, these terms are automatically canceled from
the beginning.

Now the problem splits neatly in two: (i) the solution to Eq. (4.227) leads to
the discussion of the Sachs–Wolfe effect, i.e. the change of a photon’s redshift in
passing through a gravitational potential, (ii) the solution to Eq. (4.228) leads to
weak lensing, i.e. the deviation of a light ray passing through the same.

4.11.1 The Sachs–Wolfe effect

Let us begin with Eq. (4.227). First we notice the following relation

k̂0
(

∂(

∂η
+ (,r

)
= ∂(

∂η

dη

dλs

+ ∂(

∂r

dr

dλs

= d(

dλs

→ ∂(

∂η
+ (,r = d(

dη
,

(4.229)
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where we have used k̂0 = dη/dλs and also dη = dr along the unperturbed light
ray. We then find that Eq. (4.227) can be written as

d(δk0/k0)
dη

= −2
d(

dη
−

(
∂'

∂η
− ∂(

∂η

)
, (4.230)

which is integrated to give

δk0

k0

∣∣∣∣
O

E

= −2(|OE −
∫ O

E

(
∂'

∂η
− ∂(

∂η

)
dη , (4.231)

where “O” and “E” represent the instants of observation and emission, respectively,
and (|OE ≡ (O − (E . Notice that the last term does not integrate to (' − ()OE
since the potentials must be calculated along the light-ray null path r(η) and the
integral contains the partial, not total, derivative with respect to η.

This is our first result. The frequency shifts by an amount that depends on the
difference between the potential at emission and at observation and on the line-
of-sight integral of ' − (. The first effect is referred to as the Sachs–Wolfe effect
(although often another term gets counted as Sachs–Wolfe, see below) and the
second as the integrated Sachs–Wolfe effect. The most important application of
this result is the calculation of the CMB temperature anisotropies.

The temperature of a black body distribution of photons is proportional to their
average frequency ν̂. More exactly, for photons propagating with four-momentum
kµ and emitted by a body moving with respect to us with velocity uµ, the tem-
perature we measure is proportional to −kµuµ = ν̂ . The same applies if uµ is
our own velocity with respect to the source. Therefore if a photon is emitted at E

and observed at O, the emission temperature TE and observed temperature TO are
related with each other via

TO

TE

= (kµuµ)O
(kµuµ)E

. (4.232)

The observed temperature fluctuation is

δT

T

∣∣∣∣
O

= δT

T

∣∣∣∣
E

+ δ(kµuµ)
kµuµ

∣∣∣∣
O

− δ(kµuµ)
kµuµ

∣∣∣∣
E

. (4.233)

As usual we assume a radial propagation along the coordinate r , i.e. dη = dr .
Recall that the four-velocity is given by uµ = [−a(1 + (), avi] for the perturbed
metric (4.13). Notice that at zero-th order we have kµuµ = k0u0. Let us consider
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the second term on the r.h.s. of Eq. (4.233). The non-zero first-order elements are

k0δu0

kµuµ

= δu0

u0
= ( , (4.234)

kiδui

kµuµ

= kiδui

k0u0
= − ki

k0
vi = eivi , (4.235)

where ei ≡ −ki/k0 is the unit direction vector, and the term (δk0)u0/(kµuµ) =
δk0/k0 is given in Eq. (4.231).

We can now put the pieces together. We find

δT

T

∣∣∣∣
O

= δT

T

∣∣∣∣
E

+ eivi |OE − (|OE +
∫ O

E

(
∂(

∂η
− ∂'

∂η

)
dη . (4.236)

The term (|OE = (O − (E can be further simplified since the temperature dis-
tortion induced by the local gravitational potential (O is unobservable (it affects
equally the whole CMB). Then we are left with four other terms in Eq. (4.236),
which in turn are called the intrinsic temperature fluctuation (δT/T |E), the Doppler
shift (eivi |OE ), the Sachs–Wolfe (SW) effect ((E), and the integrated Sachs–Wolfe
(ISW) effect (

∫ O

E
(∂(/∂η − ∂'/∂η)dη), respectively. When we discuss photons

coming from the last scattering surface of the CMB, the intrinsic temperature fluc-
tuation is also counted as the SW effect (the separation between these effects is in
fact gauge dependent). As we have mentioned in Section 4.10 the adiabatic initial
condition of the baryon–photon fluid system in the tight coupling regime corre-
sponds to δm = 3δT/T |E , where δm is the matter perturbation. From Eq. (4.71)
the matter perturbation satisfies the relation δm = −2( on scales larger than
the Hubble radius as long as the matter dominates the overall fluctuations and the
anisotropic stress is neglected such that ' = −(. So finally one arrives at the
(adiabatic, large-scale, shear-free) familiar result

δT

T

∣∣∣∣
SW

= −2
3
(E + (E = 1

3
(E , (4.237)

where the subscript E refers to the epoch of last scattering. Since the dark energy
density in most models is negligible at early times, (E is hardly affected by it.

In contrast, the last term in Eq. (4.236), the ISW term, is a line-of-sight term
and does therefore contain potentially much information on the recent Universe.
Moreover, we have already seen that the gravitational potential is constant for a
matter-dominated Universe and therefore yields no ISW signal. This shows that the
ISW effect is a direct diagnostic of something which is not ordinary pressureless
matter, just as we are looking for. The constraint on dark energy models through
the ISW effect will be further discussed in Section 14.1.1.



4.11 Perturbed photon propagation 81

4.11.2 Weak lensing

Let us now tackle the spatial part of the geodesic equations. Using Eqs. (4.228)
and (4.217), we obtain the propagation equation for i = 1, 2:

d2xi

dr2
= ψ,i , (4.238)

where ψ is the lensing potential defined by

ψ ≡ ' − ( . (4.239)

In standard General Relativity with ordinary matter, ψ = −2(. Since the displace-
ment vector x = (x1, x2) is small, we can put xi = rθ i and hence Eq. (4.238) is
written as

d2

dr2
(rθ i) = ψ,i . (4.240)

If the light ray reaches the observer located at r = 0 through the direction
θ i

0 = (θ1
0 , θ2

0 ) the integration of Eq. (4.240) twice leads to (here and in the rest of
this section we use primes to denote dummy integration variables, not derivatives)

θ i = θ i
0 + 1

r

∫ r

0
dr ′′

∫ r ′

0
dr ′ψ,i(r ′θ1

0 , r ′θ2
0 , r ′) , (4.241)

where the integration constant is to be equal to the observed angle θ i
0 so that

the angle remains the same in the absence of metric perturbations (ψ = 0). The
region of the integral with respect to r ′ and r ′′ is restricted to be in the region
0 < r ′′ < r, 0 < r ′ < r ′′, or in other words, r ′ < r ′′ < r, 0 < r ′ < r . Carrying out
the r ′′ integral of Eq. (4.241) in the latter region, it follows that

θ i = θ i
0 +

∫ r

0
dr ′

(
1 − r ′

r

)
ψ,i(r ′θ1

0 , r ′θ2
0 , r ′) . (4.242)

Two light rays separated by a small interval 9x will obey the equation

9θ i = 9θ i
0 + 9θ

j
0

∫ r

0
dr ′

(
1 − r ′

r

)
r ′ψ,ij (r ′θ1

0 , r ′θ2
0 , r ′) , (4.243)

where the term r ′ψ,ij arises by taking the variation of ψ,i with respect to θ
j
0

(j = 1, 2). Therefore, if the separation 9θ i is taken on the source plane at r = rs ,
we have an equation that connects the source plane with the observation plane at
r = 0. The entire phenomenon can be described by the symmetric transformation
matrix (see Fig. 4.2)

Aij ≡ ∂θ i
s

∂θ
j
0

= δij + Dij , (4.244)
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Figure 4.2 The geometry of the weak lensing.

where

Dij =
∫ rs

0
dr ′

(
1 − r ′

rs

)
r ′ψ,ij =

(
−κwl − γ1 −γ2

−γ2 −κwl + γ1

)
, (4.245)

is the distortion tensor. The parameter

κwl = −1
2

∫ rs

0
dr ′

(
1 − r ′

rs

)
r ′(ψ,11 +ψ,22 ) , (4.246)

is called the convergence and describes the magnification of the source image. The
quantities γ1, γ2 are the two components of the shear field

γ1 = −1
2

∫ rs

0
dr ′

(
1 − r ′

rs

)
r ′(ψ,11 −ψ,22 ) , (4.247)

γ2 = −
∫ rs

0
dr ′

(
1 − r ′

rs

)
r ′ψ,12 , (4.248)

and describe the distortion of the source image. Although in principle both magni-
fication and shape distortion could be used as cosmological tools, the noise in the
former (i.e. the large intrinsic variation of galaxy luminosities) has not allowed so
far a practical use of the magnification in cosmology. In Section 14.4 we will study
how to employ the distortion as a test of cosmology.
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4.12 Problems

4.1 Let the distribution function of the density contrast δx be given by the Gaussian

Px(δx) = 1
(2πσ 2)1/2

exp
(

− δ2
x

2σ 2

)
. (4.249)

Suppose that the fluctuations δx, δy at any two given points x, y separated by r are
distributed as a two-dimensional Gaussian field with the probability distribution

Pxy(δx, δy) = 1
2π (σ 4 − ξ 2

12)1/2
exp

[
−1

2
δiC

−1
ij δj

]
, (4.250)

where δi = (δx, δy) and the covariance matrix is

Cij ≡
∫

δiδjPxy(δx, δy)dδxdδy =
(

σ 2 ξ12(r)
ξ12(r) σ 2

)
. (4.251)

Let us now cut the field so that we consider only fluctuations above a given threshold.! (1) Find the general expression of the probability of having δx > νσ given that
δy > νσ at a distance |x − y| = r , where ν is a positive parameter that defines a
threshold in units of σ .! (2) Suppose that we divide a galaxy distribution into many small equal-volume
regions above threshold (δ > νσ ) and below threshold. Find the expected value
of the fraction of regions above threshold within a distance r of a region above
threshold, divide this for the fraction of regions above threshold and interpret this
as the correlation function 1 + ξ>b of regions above threshold.! (3) Find the limit of ξ12 ≪ 1 and ν ≫ 1 and interpret b = ν/σ as the bias of regions
above threshold with respect to the general field. (From Ref. [101].)

Useful relations are:

1
2

erfc
(

ν√
2

)
≡ 1√

2πσ

∫ ∞

νσ

e− x2

2σ2 dx , (4.252)

erfc(x) ≃ e−x2

x
√

π
, for x ≫ 1 , (4.253)

erfc[x(1 + ε)] ≃ erfc(x) − 2√
π

εxe−x2
, for ε ≪ 1 . (4.254)

4.2 Derive Eqs. (4.176) and (4.177) from Eq. (4.170) by neglecting the contribution of the
quadrupole moment )2.

4.3 Confirm that Eq. (4.179) follows from Eqs. (4.176)–(4.178).
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Observational evidence of dark energy

The existence of dark energy is supported by a number of observations. This
includes (i) the age of the Universe compared to oldest stars, (ii) supernovae
observations, (iii) Cosmic Microwave Background (CMB), (iv) baryon acoustic
oscillations (BAO), and (v) large-scale structure (LSS).

Even before 1998 it was known that in a CDM Universe the cosmic age can
be smaller than the age of the oldest stars. Dark energy can account for this
discrepancy because its presence can make the cosmic age longer. The first strong
evidence for the acceleration of the Universe today came however by measuring the
luminosity distance of the type Ia supernovae (SN Ia). The CMB observations are
also consistent with the presence of dark energy, although the constraint coming
from the CMB alone is not so strong. The measurements of BAO have provided
another independent test for the existence of dark energy. The power spectrum of
matter distributions also favors a Universe with dark energy rather than the CDM
Universe. In the following we shall discuss this observational evidence for dark
energy. The statistical method used to constrain cosmological parameters will be
discussed in Chapter 13. More details on present and future observational aspects
to detect dark energy will be presented in Chapter 14.

5.1 The age of the Universe

As we already mentioned, the inverse of the Hubble constant H0 is a rough measure
of the age t0 of the Universe. Here we shall compute t0 more precisely and compare
it with the age of the oldest stars. For simplicity we assume that the equation of
state of dark energy is a constant, in which case we have ρDE = ρ

(0)
DE(1 + z)3(1+wDE)

from Eq. (2.81). Taking into account radiation, non-relativistic matter, and dark
energy as components of the Universe, Eq. (2.84) gives the Hubble parameter H (z)

84
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normalized by H0:

E(z) =
[
&(0)

r (1 + z)4 + &(0)
m (1 + z)3 + &

(0)
DE(1 + z)3(1+wDE) + &

(0)
K (1 + z)2

]1/2
.

(5.1)

On using the relation dt = −dz/[(1 + z)H ], the age of the Universe is expressed
as

t0 = H−1
0

∫ ∞

0

dz

E(z) (1 + z)
. (5.2)

The integral (5.2) is dominated by the terms at low redshifts. Since &(0)
r is of the

order of 10−5–10−4 from Eq. (2.47), radiation becomes important only for high
redshifts (z " 1000). Hence it is a good approximation to neglect the contribu-
tion from radiation when we evaluate Eq. (5.2). Let us consider the case of the
cosmological constant (wDE = −1). Then the age of the Universe is given by

t0 = H−1
0

∫ ∞

1

dx

x
[
&

(0)
m x3 + &

(0)
DE + &

(0)
K x2

]1/2 , (5.3)

where x ≡ 1 + z and &(0)
m + &

(0)
DE + &

(0)
K = 1.

For the flat Universe (&(0)
K = 0), Eq. (5.3) is integrated to give

t0 = H−1
0

3
√

1 − &
(0)
m

ln

⎛

⎝1 +
√

1 − &
(0)
m

1 −
√

1 − &
(0)
m

⎞

⎠ , (5.4)

where we have used the relation &(0)
m + &

(0)
DE = 1. In the limit &

(0)
DE → 0 we have

t0 = 2
3
H−1

0 . (5.5)

On using the value (2.36) together with h = 0.72 ± 0.08, the age of the Universe in
the absence of the cosmological constant is in the range 8.2 Gyr < t0 < 10.2 Gyr.
Carretta et al. [102] estimated the age of globular clusters in the Milky Way to
be 12.9 ± 2.9 Gyr, whereas Jimenez et al. [103] obtained the value 13.5 ± 2 Gyr.
Hansen et al. [104] constrained the age of the globular cluster M4 to be 12.7 ±
0.7 Gyr by using the method of the white dwarf cooling sequence. In most cases
the ages of globular clusters are larger than 11 Gyr. Then the cosmic age estimated
by Eq. (5.5) is inconsistent with the ages of the oldest globular clusters.

This problem can be circumvented by taking into account the cosmological
constant (or dark energy with an equation of state wDE close to −1). Equation
(5.4) shows that t0 gets larger for decreasing &(0)

m . In the limit &(0)
m → 0 we have

t0 → ∞. In Fig. 5.1 we plot the cosmic age (5.4) versus &(0)
m together with the
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Figure 5.1 The cosmic age t0 in the unit of H−1
0 versus &(0)

m . The thin-solid curve
describes a flat Universe in the presence of the cosmological constant ! with the
relation &(0)

m + &
(0)
DE = 1. The dashed curve corresponds to an open Universe with-

out the cosmological constant. The thick-solid line is a minimum age allowed from
the ages of oldest globular clusters (> 11 Gyr). We also show the bound coming
from the WMAP 5-year data with h = 0.70. The flat Universe with the cosmo-
logical constant is consistent with the WMAP bound for 0.271 < &(0)

m < 0.289.

boundary allowed from the oldest stellar ages. In order to satisfy the condition
t0 > 11 Gyr we require that 0 < &(0)

m < 0.55. The WMAP 5-year constraint on
the cosmic age (assuming the !CDM model) is given by t0 = 13.73 ± 0.12 Gyr
[15]. Under this bound we find that the density parameter of non-relativistic matter
is constrained to be 0.245 < &(0)

m < 0.261 for h = 0.72. Of course this bound
changes if different values of h are chosen. When h = 0.70 the constraint becomes
0.271 < &(0)

m < 0.289 (see Fig. 5.1).
In the open Universe (&(0)

K > 0) it is also possible to make the cosmic age larger
than (2/3)H−1

0 even in the absence of dark energy. Setting &
(0)
DE = 0 in Eq. (5.3),

we obtain

t0 = H−1
0

1 − &
(0)
m

⎡

⎣1 + &(0)
m

2
√

1 − &
(0)
m

ln

⎛

⎝1 −
√

1 − &
(0)
m

1 +
√

1 − &
(0)
m

⎞

⎠

⎤

⎦ , (5.6)

where &(0)
m + &

(0)
K = 1. In the limit &(0)

m → 1 we recover the value (5.5) in the
flat Universe. Meanwhile, in the limit &(0)

m → 0, we have t0 → H−1
0 . The cosmic
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age in the open Universe does not become so large compared to the case of the
flat Universe with the cosmological constant. Since the curvature |&(0)

K | has been
constrained to be much smaller than unity from the WMAP measurements [15], it
is not possible to satisfy the condition t0 > 11 Gyr for h = 0.72 ± 0.08 in the open
Universe without dark energy.

The above discussion shows that the existence of dark energy is crucially impor-
tant to solve the cosmic age problem.

5.2 Supernova observations

In 1998 Riess et al. [High-redshift Supernova Search Team (HSST)] [1] and
Perlmutter et al. [Supernova Cosmology Project (SCP)] [2] independently reported
the late-time cosmic acceleration by observing distant supernovae of type Ia (SN
Ia). Up to 1998 Riess et al. had discovered 16 high-redshift SN Ia together with 34
nearby supernovae, while Perlmutter et al. had found 42 supernovae in the redshift
range z = 0.18–0.83.

The explosion of supernovae is extremely luminous and causes a burst of radia-
tion. The supernovae can be classified according to the absorption lines of chemical
elements. If the spectrum of a supernova includes a spectral line of hydrogen, it
is classified Type II. Otherwise it is called Type I. If a supernova contains an
absorption line of singly ionized silicon, it is further classified Type Ia (note that
Type Ib contains a line of helium, whereas Type Ic lacks the lines of both silicon
and helium). The explosion of Type Ia occurs when the mass of a white dwarf
in a binary system exceeds the Chandrasekhar limit [105] by absorbing gas from
another star. Since the absolute luminosity of Type Ia is almost constant at the peak
of brightness, the distance to a SN Ia can be determined by measuring its observed
(apparent) luminosity. Thus the SN Ia is a kind of “standard candle” by which
luminosity distance can be measured observationally.

In reality things are more complicated than this simple view. The intrinsic spread
in absolute magnitudes is actually too large to produce stringent cosmological
constraints. However, at the end of the 1990s, a high-quality sample of “local”
(i.e. z ≪ 1) supernovae allowed the absolute magnitude to be correlated with the
width of the light curve [106]: brighter supernovae have a broader light curve. By
measuring at the same time the apparent magnitude and the light curve it is possible
therefore to predict the absolute magnitude. Although in the following we refer to
a universal SN Ia absolute magnitude, we always mean the magnitude corrected
for the light curve width.

The apparent magnitude, m, is often used as a measure of brightness of stars
observed on Earth. Let us consider two stellar objects whose apparent fluxes are
given byF1 andF2. The apparent magnitudes of those stars (m1 and m2) are related
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to the fluxes according to

m1 − m2 = −5
2

log10

(
F1

F2

)
. (5.7)

This implies that a star with m1 = 1 is about 100 times brighter than one with m2 =
6. From the definition (5.7) the apparent magnitude is smaller for brighter objects.
Choosing an appropriate reference flux, for Sun and Moon we have m = −26.7
and m = −12.6, respectively.

We define the absolute magnitude M of an object in terms of an apparent
magnitude m and a luminosity distance dL:

m − M = 5 log10

(
dL

10 pc

)
. (5.8)

If the distance is expressed in Megaparsec then the relation can be written as

m − M = 5 log10dL + 25 . (5.9)

In other words the absolute magnitude corresponds to the apparent magnitude the
object would have if it were located at the luminosity distance dL = 10 pc from
the observer. An additional correction, denoted as K-correction, is due to the fact
that as the redshift increases we observe different parts of the source spectrum:
we always assume that this correction has been already included in the estimation
of m.

The absolute magnitude of SN Ia is known to be around M = −19 at the peak
of brightness. If we consider two SN Ia whose apparent magnitudes are m1 and
m2 with luminosity distances dL1 and dL2 , respectively, we obtain the following
relation from Eq. (5.9):

m1 − m2 = 5 log10

(
dL1

dL2

)
. (5.10)

Since the observed flux F is proportional to dL
−2 from Eq. (2.63), we find that

Eq. (5.7) is consistent with Eq. (5.10).
Since the (corrected) peak absolute magnitude M is the same for any SN Ia under

the assumption of standard candles, the luminosity distance dL(z) is obtained from
Eq. (5.9) by observing the apparent magnitude m. The redshift z of the correspond-
ing SN Ia can be found by measuring the wavelength λ of light [see Eq. (2.28)]. The
observations of many SN Ia provide the dependence of the luminosity distance dL

in terms of z. Comparing observational data with the theoretical distance (2.68), it
is possible to know the expansion history of the Universe for the redshift z ! O(1).

Let us consider the case in which the Universe is dominated by a non-relativistic
fluid and dark energy with an equation of state wDE. In this case the Hubble
parameter H (z) is given by Eq. (2.84) with &(0)

r ≃ 0. Using the expansion (2.69)
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Figure 5.2 The luminosity distance dL versus the redshift z for three cases: (a) a
flat Universe without dark energy, (b) an open Universe (&(0)

K = 0.0085) without
dark energy, and (c) a flat Universe with the cosmological constant (&(0)

DE = 0.7
and wDE = −1). The presence of dark energy leads to a larger luminosity distance
relative to the case without it. In the open Universe the luminosity distance also
gets larger than that in the flat Universe.

around z = 0 we find that the luminosity distance, in the region z ≪ 1, is given
by

dL(z) = c

H0

[
z + 1

4

(
1 − 3wDE&

(0)
DE + &

(0)
K

)
z2 + O(z3)

]
. (5.11)

In the flat Universe without dark energy we have dL(z) = (c/H0)[z + z2/4 +
O(z3)]. In the presence of dark energy (wDE < 0 and &

(0)
DE > 0) the luminosity

distance gets larger (see Fig. 5.2). Especially for smaller (negative) wDE and for
larger &

(0)
DE this tendency becomes more significant. In an open Universe (K < 0)

the effect of the cosmic curvature also leads to a larger luminosity distance com-
pared to the flat Universe. Since the curvature of the Universe is constrained to be
close to the flat one (−0.0175 < &

(0)
K = −K/(a2

0H
2
0 ) < 0.0085 [15]) from WMAP

5-year data, it is difficult to give rise to a significant difference relative to the flat
Universe without dark energy. This property can be seen in Fig. 5.2, which shows
that the difference is small in the region z < 1.5.

In 1998 Riess et al. [1] and Perlmutter et al. [2] released observational data of the
apparent luminosity of high-redshift Type Ia supernovae (0.2 ! z ! 0.8). The data
of low-redshift regions (z < 0.1) reported previously was also used in their analysis.
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Let us pick up a few examples of data to understand how the luminosity distance
is known observationally. First, consider two data of the apparent magnitudes
in the low-redshift region of SN Ia: (i) 1990O: m = 16.26 (z = 0.03) and (ii)
1992bg: m = 16.66 (z = 0.036). Since the luminosity distance in the region z ≪ 1
is well approximated by dL ≃ cz/H0 from Eq. (5.11), the absolute magnitude M is
known from Eq. (5.9). We take the value h = 0.7 for the Hubble constant given in
Eq. (2.33). We then obtain M = −19.29 and M = −19.28 for 1990O and 1992bg,
respectively. This shows that the absolute luminosity of SN Ia is nearly constant
(M ≃ −19), as we already mentioned.

Let us next use the high-redshift data reported by Perlmutter et al. [2]. Consider
the two SN Ia data of the apparent magnitudes: (a) 1997R: m = 23.83 (z = 0.657),
(b) 1995ck: m = 23.57 (z = 0.656). Employing the value M = −19.15 for the
absolute magnitude, we find from Eq. (5.9) that the luminosity distance is given
by H0dL/c = 0.920 for 1997R and H0dL/c = 0.817 for 1995ck. Notice that the
approximation, dL ≃ cz/H0, is no longer valid in the high-redshift regime. Let
us consider a flat Universe with a dark energy equation of state wDE = −1 (i.e.
the cosmological constant). Since E(z) = [&(0)

m (1 + z)3 + &
(0)
DE]1/2 in this case, the

luminosity distance (2.68) reads

dL(z) = c(1 + z)
H0

∫ z

0

dz̃

[(1 − &
(0)
DE)(1 + z̃)3 + &

(0)
DE]1/2

, (5.12)

which can be evaluated numerically for given &
(0)
DE. In order to satisfy the observa-

tional data (H0/c)dL(z = 0.657) = 0.920 for 1997R, we require that &
(0)
DE = 0.70.

Similarly we get &(0)
DE = 0.38 from the 1995ck data. Both data indicate the existence

of dark energy.
Since observational data are prone to statistical and systematic errors, a few

data are not enough to conclude that the present Universe is accelerating. Using 42
high-redshift SN Ia at redshifts between 0.18 and 0.83 together with 18 low-redshift
SN Ia data from the Calan/Tololo Supernova Survey [106], Perlmutter et al. [2]
showed that the cosmological constant is present at the 99% confidence level. They
also found that the open Universe without the cosmological constant does not fit
the data well. From Eq. (5.9) the apparent luminosity m gets larger for increasing
luminosity distance dL. Figure 5.3 shows that the observational data in the high-
redshift regime favor the luminosity distance larger than the one predicted by the
CDM model (&(0)

m = 1 and &
(0)
! = 0). From the likelihood analysis of the SN Ia data

accumulated by the year 1998, Perlmutter et al. found that the density parameter of
non-relativistic matter is constrained to be &(0)

m = 0.28+0.09
−0.08 (1σ statistical) in the

flat Universe with the cosmological constant [2].
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redshift SN Ia from the SCP [2] and 18 low-redshift SN Ia from the Calan/Tololo
Supernova Survey [106]. Note that mB involves the corrections of both sets for
the SN Ia light-curve width-luminosity relation to the apparent luminosity m.
The inner and outer error bars represent the uncertainty of measurements and the
total uncertainty when the luminosity dispersion, 0.17 mag, of light-curve-width-
corrected SN Ia is added in quadrature, respectively. The horizontal error bars
show the assigned peculiar velocity uncertainty of 300 km s−1. The solid curves
are the theoretical prediction for mB for a number of cosmological models without
the cosmological constant: (&(0)

m ,&
(0)
! ) = (0, 0) (top), (1, 0) (middle), and (2, 0)

(bottom). The dashed curves correspond to a number of flat cosmological models:
(&(0)

m ,&
(0)
! ) = (0, 1) (top), (0.5, 0.5) (second from top), (1, 0) (third from top), and

(1.5,−0.5) (bottom). From Ref. [2].



92 Observational evidence of dark energy

0.0 0.1 0.2 0.3 0.4
-1.5

-1.0

-0.5

w

Union08
Davis 07

0.0 0.1 0.2 0.3 0.4 0.5

Union08
Union08 w/o NB99

0.0 0.1 0.2 0.3
(0)

0.4

0.0

m
(0)
m

(0)
m

w
D

E

Union08 
Riess Gold

Figure 5.4 68.3%, 95.4%, and 99.7% confidence level contours on (&(0)
m ,wDE)

from the SN Ia observations only for constant wDE. In each column the filled
contours correspond to the results coming from the Union data by Kowalski et al.
[112]. The empty contours in the left and middle columns represent the constraints
from the Gold sample [108, 109] and the ESSENCE data [110, 111], respectively.
The right column shows the impact of the SCP nearby 1999 data. From Ref. [112].

After 1998 more SN Ia data have been collected by a number of high-redshift
surveys – including SuperNova Legacy Survey [107] (SNLS), Hubble Space Tele-
scope [108, 109] (HST), and “Equation of State: SupErNovae trace Cosmic Expan-
sion” [110, 111] (ESSENCE) survey. The SNLS project, which is based on the
Canada-France-Hawaii Telescope, consists of two components: (i) a large imaging
survey to detect about 2000 supernovae and monitor their light curves, and (ii) a
large spectroscopic survey to obtain supernovae identification and redshift. The
HST survey is based on the image subtraction to search the SN Ia data in the
high-redshift region z > 1 by including search depth, efficiency, timing, and false-
positive discrimination. These data have been classified as the “Gold” data sets
[109]. The ESSENCE project is a ground-based survey designed to detect about
200 SN Ia in the redshift range z = 0.2–0.8 to measure the equation of state of dark
energy to better than 10%. In Fig. 5.4 the observational contours on (&(0)

m , wDE)
are plotted from the SN Ia data by Kowalski et al. [112]. Note that the equation of
state of dark energy is assumed to be constant. While the SN Ia data alone are not
yet sufficient to place tight bounds on wDE, Fig. 5.4 clearly shows the presence of
dark energy responsible for the late-time cosmic acceleration (wDE < −1/3).

If the equation of state of dark energy varies in time, we need to parametrize wDE

as a function of the redshift z. If the SN Ia data are accurate enough to measure the
luminosity distance dL(z) in terms of z, it is possible to determine the evolution of
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wDE by using Eqs. (2.86) and (2.88). However the error bars in the SN Ia data are
still too large to determine wDE(z) without assuming some form of parametrization
with respect to z. In particular, there is very little information on wDE at z > 0.5
[112]. The parametrization of wDE(z) will be discussed in Section 7.5.

5.3 Cosmic Microwave Background

The observations of temperature anisotropies in the CMB provide another indepen-
dent test for the existence of dark energy. The oldest sky we can see is the so-called
last scattering surface at which electrons are trapped by hydrogen to form atoms
(dubbed “decoupling” or “recombination”). The photons were tightly coupled to
baryons and electrons before the decoupling epoch at z ≃ 1090, but they could
freely move to us after that. In 1963 Penzias and Wilson [113] first detected the
CMB photons thermalized to an almost uniform temperature across the sky. The
temperature anisotropies of the CMB were first measured at large angular separa-
tions by the COBE satellite in 1992 [12]. The precise measurement of temperature
anisotropies by high-precision experiments like BOOMERanG [114], MAXIMA
[115], and especially WMAP [13] opened up a new opportunity to determine
cosmological parameters to high precision.

All of the matter components in the Universe (dark matter, neutrinos, . . . ) are
coupled to gravity through the Einstein equations. The scalar part of the pertur-
bations is the main source for the CMB temperature anisotropies. As we already
mentioned the vector perturbations decay in the expanding Universe, whereas the
tensor perturbations contribute to the CMB anisotropies as gravitational waves
[90, 92]. However the amplitude of gravitational waves is suppressed relative to
that of scalar perturbations if they originate from inflation (see Ref. [94]). Since the
main feature of the CMB anisotropies is determined by scalar metric perturbations,
we focus on scalar perturbations in the following discussion.

Numerical simulations are required to derive the complete spectra of temperature
and polarization anisotropies because the Einstein and Boltzmann equations for
photons as well as other matter components are coupled to each other. In spite of
this complexity, Hu and Sugiyama [116, 117] obtained many fitting formulae which
are very helpful to understand the CMB physics and also derived analytic solutions
under some approximations. In the following we shall discuss how the presence
of dark energy affects the CMB anisotropies. The first effect is the change of the
position of acoustic peaks coming from the modification of the angular diameter
distance. The second effect is the so-called integrated Sachs–Wolfe (ISW) effect
caused by the variation of the gravitational potential [118] (see Section 4.11.1).
Since the latter is limited to very large scales, the first effect is typically more
important.
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We have already derived in Section 4.9 the first-order equation for the direction-
averaged (i.e. monopole) temperature anisotropy )0 in the tight coupling regime
(τop ≫ 1):

)′′
0 + Rs

1 + Rs

H)′
0 + k2c2

s )0 = −k2

3
( − Rs

1 + Rs

H'′ − '′′ , (5.13)

where the sound speed squared is given by c2
s = 1/3(1 + Rs) with the baryon-to-

photon density ratio Rs = 3ρb/4ργ . This ratio evolves as

Rs = 3ωb

4ωγ

1
1 + z

, (5.14)

where we have defined

ωb ≡ &
(0)
b h2 , ωγ ≡ &(0)

γ h2 . (5.15)

If we take the value ωb = 0.02267 and ωγ = 2.469 × 10−5 we have Rs = 2.7 ×
104/(1 + z), which is much smaller than unity for redshifts larger than 105 (corre-
sponding to the regime of tight coupling between photons and baryons).

Taking the derivative of Rs with respect to η and using the definition of the
redshift (2.28), we obtain the relation R′

s = HRs . Then Eq. (5.13) can be written
as

[
d2

dη2
+ R′

s

1 + Rs

d
dη

+ k2c2
s

]
()0 + ') = k2

3

(
1

1 + Rs

' − (

)
. (5.16)

The second term on the l.h.s. of Eq. (5.16) is of the order of (Rs/η
2)()0 + ') ≈

Rs H2()0 + '), whereas the third term is of the order of k2c2
s ()0 + '). Hence

the second term can be neglected under the condition Rs ≪ c2
s (k/H)2. In the tight-

coupling regime (Rs ≪ 1) this condition is well satisfied for the modes inside the
Hubble radius (k > H). Hence the homogeneous solution to Eq. (5.16) can be
described by the sum of the solutions exp(±i

∫
kcsdη), i.e.

()0 + ')(hom)(k, η) = c1f1(k, η) + c2f2(k, η) , (5.17)

where f1(η) = sin[krs(η)], f2(η) = cos[krs(η)], and rs is the sound horizon defined
by

rs(η) ≡
∫ η

0
dη̃ cs(η̃) . (5.18)

It is clear from Eq. (5.17) that the homogeneous solution leads to oscillations in
CMB anisotropies with a time-dependent frequency ωk(η) = krs(η).
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The general solution to Eq. (5.16) can be obtained by the usual Green’s function
method. In the tight-coupling regime (Rs ≪ 1) it is given by

()0 + ')(k, η) = c1f1(η) + c2f2(η)

+k2

3

∫ η

0
dη̃ ['(η̃) − ((η̃)]

f1(η̃)f2(η) − f1(η)f2(η̃)
f1(η̃)f ′

2(η̃) − f ′
1(η̃)f2(η̃)

.

(5.19)

We take the initial conditions )′
0 = 0 and '′ = 0 at η = 0, which determine the

coefficients c1 and c2. Then Eq. (5.19) reduces to

()0 + ')(k, η) = [)0(0) + '(0)] cos(krs)

+ k√
3

∫ η

0
dη̃ ['(η̃) − ((η̃)] sin [k(rs(η) − rs(η̃))] . (5.20)

Using Eqs. (4.176) and (5.20), the solution to the dipole moment is given by

)1(k, η) = 1√
3

[)0(0) + '(0)] sin(krs)

−k

3

∫ η

0
dη̃ ['(η̃) − ((η̃)] cos [k(rs(η) − rs(η̃))] . (5.21)

The first term on the r.h.s. of Eq. (5.20) shows that there is a peak for the homoge-
neous solution of )0 + ' at the position satisfying the relation

krs = nπ , (5.22)

where n are integers. The peak position is subject to change by the presence of
the last term in Eq. (5.20). The dipole solution (5.21) also contributes to the CMB
spectrum.

Recall that Eqs. (5.20) and (5.21) have been derived in the tight-coupling limit
(τop ≫ 1). In order to obtain the CMB anisotropies observed today, we need to
take into account the evolution of perturbations after the photons began to stream
freely. (i.e. the epoch in which the tight coupling approximation is no longer valid).
Moreover the contribution of higher-order moments ()ℓ with ℓ ≥ 2) and the ISW
effect modifies the shape of the power spectrum. Hu and Sugiyama [116] derived
the following semi-analytic expression for the present temperature field (see also
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[74] for the derivation):

)ℓ(k, η0) ≃ [)0(k, η∗) + ((k, η∗)] jℓ [k(η0 − η∗)]

+ 3)1(k, η∗)
{
jℓ−1 [k(η0 − η∗)] − (ℓ + 1)jℓ [k(η0 − η∗)]

k(η0 − η∗)

}

+
∫ η0

0
dηe−τop

[
( ′(k, η) − '′(k, η)

]
jℓ [k(η0 − η)] , (5.23)

where jℓ(x) are spherical Bessel functions (see the Mathematical Appendix in
Chapter 17) and η∗ is the time at which the visibility function

g(η) ≡ −τ ′
ope

−τop (5.24)

takes a peak value. At the early stage much before the decoupling epoch (where
the optical depth τop is much larger than 1), the visibility function g(η) is nearly
zero. It takes a peak value roughly around z ∼ 1000. The scattering rate (−τ ′

op)
decreases rapidly after the decoupling epoch and hence g(η) approaches 0 again.

The analytic solution (5.23) reproduces numerical solutions within 10%
accuracy. The first term on the r.h.s. of Eq. (5.23) comes from the integral∫ η0

0 dη g(η) [)0(k, η) + ((k, η)] jℓ[k(η0 − η)]. This carries the information of the
monopole solution (5.20) derived under the tight-coupling approximation. The
effect of free streaming of photons appears in the visibility function g(η) whose
main contribution to the integral comes from the value at η = η∗ [note that g(η)
defined in Eq. (5.24) satisfies the normalization condition

∫ η0

0 dη g(η) = 1]. The
position of acoustic peaks estimated by Eq. (5.22) is shifted toward larger scales by
the effect of free streaming of photons [74]. The second term in Eq. (5.23) coming
from the dipole contribution )1 also leads to the modification of the CMB power
spectrum. The third term in Eq. (5.23) is responsible for the so-called ISW effect,
which is induced by the variation of the gravitational potentials ( and '. While (

and ' remain nearly constants during the matter-dominated epoch, the dominance
of dark energy at late times gives rise to their variations. We have already dis-
cussed this issue in Section 4.11.1. In the limit ℓ ≫ 1 the spherical Bessel function
jℓ(x) has a dependence jℓ(x) ≃ (1/ℓ)(x/ℓ)ℓ−1/2, which is suppressed for large ℓ.
Hence the dominant contribution to the ISW effect corresponds to the low ℓ modes
(ℓ = O(1)).

When we confront the predicted temperature anisotropies with CMB observa-
tions, we expand the perturbation ) in terms of spherical harmonics:

)(x, η) =
∞∑

ℓ=1

ℓ∑

m=−ℓ

aℓm(x, η)Yℓm(n̂) , (5.25)

where the subscripts ℓ and m are conjugate to a real space unit vector n̂ represent-
ing the direction of incoming photons. The spherical harmonics Yℓm satisfies the
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Figure 5.5 The CMB power spectrum ℓ(ℓ + 1)Cℓ/2π versus the multiple moment
ℓ and the angular size θ . The relation between ℓ and θ is θ = π/ℓ. The curve shows
the theoretical prediction of the power spectrum, whereas the black points present
the WMAP 5-year data. From the webpage of WMAP: http://map.gsfc.nasa.gov/

normalization condition
∫

d&Yℓm(n̂)Y ∗
ℓ′m′(n̂) = δℓℓ′δmm′ . (5.26)

The coefficients aℓm in Eq. (5.25) are assumed to be statistically independent. This
means that the mean value of aℓm’s is zero (⟨aℓm⟩ = 0) with a non-zero variance
defined by

Cℓ ≡ ⟨|aℓm|2⟩ . (5.27)

The variance Cℓ can be expressed in terms of the temperature field )ℓ(k) in Fourier
space (this equation will be derived in Section 14.1.1):

Cℓ = 2
π

∫ ∞

0
dk k2 |)ℓ(k)|2 . (5.28)

In Fig. 5.5 we show the predicted CMB temperature anisotropies ℓ(ℓ + 1)Cℓ/2π

versus the multipole moment ℓ together with the WMAP 5-year observational data
[15]. The theoretical power spectrum agrees with the observational data with flying
colors. The measured angle θ has a relation θ = π/ℓ [rad] with the multipole ℓ.



98 Observational evidence of dark energy

Hence the larger scales correspond to lower values of ℓ. The large-scale power
spectrum (ℓ ! 10) is dominated by the monopole mode )0, which inherits the
information of nearly scale-invariant density perturbations generated during infla-
tion. The reason why the quantity ℓ(ℓ + 1)Cℓ/2π is plotted instead of Cℓ itself
is that the former is constant for scale-invariant perturbations on large scales,
i.e. ℓ(ℓ + 1)Cℓ = (π/2)δ2

H , where δ2
H is the amplitude of curvature perturbations

generated during inflation [74].
Equation (5.22) shows that the comoving wavelength corresponding to acoustic

peaks can be approximately estimated as λc = 2π/k = (2/n)rs . We then define
the following characteristic angle for the location of peaks:

θA ≡ rs(zdec)

d
(c)
A (zdec)

, (5.29)

where zdec is the redshift at the decoupling epoch and d
(c)
A is the comoving angular

diameter distance defined by

d
(c)
A (z) ≡ dA(z)

a
= (1 + z)dA(z) . (5.30)

The physical (proper) diameter distance dA(z) is given by Eq. (2.73). The multipole
ℓ corresponding to the angle (5.29) is

ℓA = π

θA

= π
d

(c)
A (zdec)
rs(zdec)

. (5.31)

From Eqs. (2.73) and (5.30) the comoving angular diameter distance d
(c)
A (zdec) is

expressed as

d
(c)
A (zdec) = c

H0

1
√

&
(0)
m

R , (5.32)

where R is the so-called CMB shift parameter defined by

R =

√√√√&
(0)
m

&
(0)
K

sinh
(√

&
(0)
K

∫ zdec

0

dz

E(z)

)
. (5.33)

From Eqs. (4.180) and (5.18), the sound horizon rs(zdec) is

rs(zdec) = c√
3a0H0

∫ ∞

zdec

dz√
1 + Rs E(z)

. (5.34)

For the redshift zdec there is a fitting formula by Hu and Sugiyama [117]

zdec = 1048
(
1 + 0.00124ω−0.738

b

) (
1 + g1ω

g2
m

)
, (5.35)
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where ωm ≡ &(0)
m h2 and

g1 = 0.0783ω−0.238
b /

(
1 + 39.5ω0.763

b

)
, g2 = 0.560/

(
1 + 21.1ω1.81

b

)
.

(5.36)
The bounds coming from the WMAP 5-year data correspond to ωb = 0.02265 ±
0.00059 and ωm = 0.1369 ± 0.0037. Taking the values ωb = 0.02265 and ωm =
0.1369, we obtain zdec = 1090.98 from Eq. (5.35).

Since the contribution of dark energy to E(z) in Eq. (5.34) is negligible for

z > zdec, one can estimate this quantity to be E = (
√

a + aeq/a
2)

√
&

(0)
m , where

aeq = (1 + zeq)−1 is the scale factor at the radiation–matter equality [see Eq. (2.78)].
Then the integral (5.34) can be written as

rs(zdec) = c√
3H0

1
√

&
(0)
m

∫ adec

0

1√
1 + Rs(a)

1
√

a + aeq
da , (5.37)

where

Rs(a) = (3ωb/4ωγ ) a . (5.38)

Equation (5.37) is integrated to give

rs(zdec) = 4
3

ch

H0

√
ωγ

ωmωb

ln

⎛

⎜⎝

√
R

(dec)
s + R

(eq)
s +

√
1 + R

(dec)
s

1 +
√

R
(eq)
s

⎞

⎟⎠ , (5.39)

where R(dec)
s ≡ Rs(adec) and R

(eq)
s ≡ R(aeq).

From Eqs. (5.32) and (5.39) the multipole ℓA in Eq. (5.31) is

ℓA = 3π

4

√
ωb

ωγ

R

⎡

⎢⎣ln

⎛

⎜⎝

√
R

(dec)
s + R

(eq)
s +

√
1 + R

(dec)
s

1 +
√

R
(eq)
s

⎞

⎟⎠

⎤

⎥⎦

−1

, (5.40)

which shows that ℓA is proportional to R. The CMB shift parameter defined in
Eq. (5.33) is affected by the cosmic expansion history from the decoupling to the
present. The presence of dark energy leads to a shift of R compared to the CDM
model, thereby changing the value of ℓA. Hence the CMB shift parameter can be
used to place constraints on dark energy. The bound on R according to the WMAP
5-year data is given by

R = 1.710 ± 0.019 (68% confidence level) . (5.41)

For example, let us compute the multipole ℓA for R = 1.710, ωb = 0.02265, ωm =
0.1369, and ωγ = 2.469 × 10−5. Using Eqs. (2.77), (5.35), and (5.38) we obtain
the value ℓA = 299. This is different from the location of the first acoustic peak
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Figure 5.6 The CMB shift parameter R versus &
(0)
DE for wDE = −1 and wDE =

−0.5 in the flat Universe. We also show the bound coming from the WMAP 5-year
observational data. For the cosmological constant (wDE = −1) the observational
constraint on &

(0)
DE coming from the CMB shift parameter is 0.72 < &

(0)
DE < 0.77.

which is located around ℓ1 = 220 (see Fig. 5.5). As we already explained, this shift
comes from several effects such as the free streaming of photons and the dipole
contribution. We write the general relation for all peaks and troughs of observed
CMB anisotropies as

ℓm = ℓA(m − φm) , (5.42)

where m represents peak numbers (m = 1 for the first peak, m = 1.5 for the first
trough, . . . ) and φm is the shift of multipoles. It is known that φm depends weakly
on ωb and ωm for a given cosmic curvature &

(0)
K . According to the fits by Doran and

Lilley [119] the shift of the first peak is about φ1 = 0.265, which gives ℓ1 = 220
for ℓA = 299.

In the flat Universe the CMB shift parameter (5.33) reduces to

R =
√

&
(0)
m

∫ zdec

0

dz

E(z)
, (5.43)

where E(z) = [&(0)
m (1 + z)3 + &(0)

r (1 + z)4 + &
(0)
DE(1 + z)3(1+wDE)]1/2 for the con-

stant dark energy equation of state. In Fig. 5.6 we plot R versus &
(0)
DE for the cases

wDE = −1 and wDE = −0.5 together with the WMAP bound (5.41). For larger
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Figure 5.7 Observational contours (68% and 95% confidence level) on the con-
stant dark energy equation of state wDE and the present dark energy density &

(0)
DE for

the flat Universe. The WMAP 5-year data alone do not provide strong constraints
on wDE and &

(0)
DE. This is slightly improved by adding the measurement of H0 from

the Hubble key result. The observational contours coming from WMAP+BAO,
WMAP+SN Ia, and WMAP+BAO+SN Ia are also shown. The combined analy-
sis of WMAP+SN Ia data provide a tight constraint −1.098 < wDE < −0.841 at
the 95% confidence level. From Ref. [15].

&
(0)
DE the CMB shift parameter (5.43) gets smaller. When wDE = −1 the density

parameter is constrained to be 0.72 < &
(0)
DE < 0.77 from the bound (5.41). From

Fig. 5.6 we find that the observationally allowed values of &
(0)
DE become smaller for

increasing wDE. Since the CMB shift parameter depends only weakly on wDE, the
equation of state wDE is not strongly constrained by the CMB data alone.

In Fig. 5.7 the combined observational bounds on &
(0)
DE and (constant) wDE

are plotted in the flat Universe. This is the joint analysis derived by using the
observational data of WMAP 5-year, SN Ia, and BAO. As expected, the WMAP
5-year data alone do not provide strong constraints on wDE, although the evi-
dence for the accelerated expansion (wDE < −1/3) can be seen in Fig. 5.7. Notice
that the WMAP bound in Fig. 5.7 is consistent with the bound coming from the
CMB shift parameter discussed above. For decreasing wDE the observationally
allowed range of &

(0)
DE shifts to larger values. The prior on the Hubble constant

H0 = 72 ± 8 km sec−1 Mpc−1 from the Hubble Key Project [72] improves the
constraint a bit: −1.47 < wDE < −0.58 at the 95% confidence level. Adding the
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Figure 5.8 The large-scale redshift-space correlation function of the SDSS sample.
The inset shows an expanded view with a linear vertical axis. From top to bottom
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m h2 = 0.12, 0.13, 0.14 with &
(0)
b h2 = 0.024 and a

pure CDM (no baryons) model with &(0)
m h2 = 0.15. The observational data clearly

show the existence of an acoustic peak around the comoving separation scale
100 h−1 Mpc, in agreement with the predictions except for the pure CDM model.
From Ref. [68].

“Union” SN Ia data by Kowalski et al. [112] significantly improves the constraint:
−1.098 < wDE < −0.841 at the 95% confidence level. This shows the importance
of combined analysis using independent observational data. In the next subsection
we shall proceed to the constraint coming from baryon acoustic oscillations.

5.4 Baryon acoustic oscillations

Since baryons are tightly coupled to photons before the recombination epoch, the
oscillations of sound waves should be imprinted in the baryon perturbations as
well as the CMB temperature anisotropies. Eisenstein et al. [68] found a peak of
baryon acoustic oscillations in the large-scale correlation function at 100 h−1 Mpc
separation measured from a spectroscopic sample of 46,748 luminous red galaxies
from the Sloan Digital Sky Survey (SDSS), see Fig. 5.8. This detection of baryon
oscillations provided another independent test for constraining the property of
dark energy, which contributes to breaking residual degeneracies in the CMB
data [121].
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At the tight coupling epoch in which baryons are strongly coupled to pho-
tons the perturbations in baryons, δb ≡ δρb/ρb, satisfy the following equation of
motion

δ′′
b + Rs

1 + Rs

Hδ′
b + k2c2

s δb = −k2( − 3Rs

1 + Rs

H'′ − 3'′′ . (5.44)

If we substitute the relation δb = 3)0 into Eq. (5.44), we obtain the same equation
as Eq. (5.13) for the temperature field )0. Since )0 = (1/4)δγ , this corresponds to

δb = 3
4
δγ , (5.45)

which is the adiabatic condition we have already mentioned after Eq. (4.198). This
is also associated with the fact that the ratio nb/s of the number density of baryons
(nb) to the entropy density (s = (ρ + P )/T ) does not vary in time. During the
radiation era the entropy density is dominated by the contribution of relativistic
particles, which gives s ∝ T 3 ∝ ρ

3/4
γ . Using the relation ρb ∝ nb, we find

δ(nb/s)
nb/s

= δnb

nb

− δs

s
= δb − 3

4
δγ , (5.46)

which vanishes under the condition (5.45). Since the baryon–entropy ratio is inde-
pendent of the temperature T , it takes a constant value at different spatial posi-
tions when the perturbations are generated. Hence the condition δb = (3/4)δγ

sets the (adiabatic) initial condition for baryon perturbations. This relation is pre-
served in the tight-coupling era so that baryons and photons evolve as a single
fluid.

The sound horizon at which baryons were released from the Compton drag of
photons plays a crucial role to determine the location of baryon acoustic oscillations.
This epoch, called the drag epoch, occurs at the redshift zdrag. The sound horizon
at z = zdrag is

rs(zdrag) =
∫ ηdrag

0
dη cs(η) , (5.47)

where cs is given in Eq. (4.180). We caution that the drag epoch does not coincide
with the recombination epoch at which photons were released from electrons. For
the redshift zdrag there is a fitting formula by Eisenstein and Hu [120]:

zdrag = 1291ω0.251
m

1 + 0.659ω0.828
m

(
1 + b1ω

b2
b

)
, (5.48)

where

b1 = 0.313ω−0.419
m

(
1 + 0.607ω0.674

m

)
, b2 = 0.238ω0.223

m . (5.49)
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The WMAP 5-year data constrain the values of zdrag and rs(zdrag) to be zdrag =
1020.5 ± 1.6 and rs(zdrag) = 153.3 ± 2.0 Mpc [15].

We observe the angular and redshift distributions of galaxies as a power
spectrum P (k⊥, k∥) in the redshift space, where k⊥ and k∥ are the wavenum-
bers perpendicular and parallel to the direction of light respectively. As we will
show in more detail in Section 14.2, it is possible to measure the following two
ratios [122]

θs(z) =
rs(zdrag)

(1 + z)dA(z)
, (5.50)

δzs(z) =
rs(zdrag)H (z)

c
, (5.51)

where the denominator in Eq. (5.50) corresponds to the comoving diameter dis-
tance d

(c)
A (z) = (1 + z)dA(z) defined in Eq. (5.30). The angle θs(z) is completely

analogous to the CMB acoustic peak angle introduced in Eq. (5.29) and corre-
sponds to observations orthogonal to the line of sight. The quantity δzs is instead
measured by identifying in the fluctuation spectrum the oscillations along the line
of sight.

So far the BAO data have not been accumulated sufficiently to measure the
two distances θs(z) and δzs(z) separately [123]. However it is possible to obtain a
combined distance scale ratio from the spherically averaged spectrum:

[
θs(z)2δzs(z)

]1/3 ≡
rs(zdrag)

[(1 + z)2d2
A(z)c/H (z)]1/3

, (5.52)

or the related effective distance [68]

DV (z) ≡
[

(1 + z)2d2
A(z)

cz

H (z)

]1/3

, (5.53)

obtained from the combination of two spatial dimensions orthogonal to the direction
of sight and one dimension along the direction of sight. The current constraint from
SDSS data is DV (z = 0.35) = 1370 ± 64 Mpc at a typical redshift z = 0.35 [68].

Another observational constraint comes from the 2-degree Field (2dF) Galaxy
Redshift Survey. Defining the relative BAO distance

rBAO(z) ≡ rs(zdrag)/DV (z) , (5.54)

we have at the two redshifts (z = 0.2 and z = 0.35) [124]

rBAO(z = 0.2) = 0.1980 ± 0.0058 , rBAO(z = 0.35) = 0.1094 ± 0.0033 .

(5.55)
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Figure 5.9 The BAO distance ratio (5.54) versus the redshift z in the flat Universe
(K = 0) with the cosmological constant (wDE = −1) for three different cases:
(i) &

(0)
DE = 0.75, (ii) &

(0)
DE = 0, and (iii) &

(0)
DE = 0.95. We choose the values ωγ =

2.469 × 10−5 and ωb = 0.02265. We also show the most likely observational
values of rBAO(z) at z = 0.2 and z = 0.35 as black points. The observational data
favor the dark energy density around &

(0)
DE = 0.75.

The sound horizon rs(zdrag) can be obtained by replacing R(dec)
s in Eq. (5.39) for

R
(drag)
s ≡ Rs(zdrag), whereas the angular diameter distance dA is given in Eq. (2.73).

This gives the explicit form for rBAO(z):

rBAO(z) = 4
3

√
ωγ

&
(0)
m ωb

[
z

E(z)

]−1/3
⎡

⎣ 1
√

&
(0)
K

sinh
(√

&
(0)
K

∫ z

0

dz̃

E(z̃)

)⎤

⎦
−2/3

× ln

⎛

⎝

√
R

(drag)
s + R

(eq)
s +

√
1 + R

(drag)
s

1 +
√

R
(eq)
s

⎞

⎠ . (5.56)

In Fig. 5.9 we plot rBAO(z) versus z for the !CDM model in the flat Universe
(wDE = −1 and K = 0). This shows that the !CDM model with &

(0)
DE = 0.75 is

favored over the CDM model from the BAO data at z = 0.2 and z = 0.35.
If the equation of state of dark energy wDE is not −1 but a constant, the models

with wDE < −1, dubbed “phantoms,” are favored by the present BAO data. This
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Figure 5.10 The predicted matter power spectra Pδm
in the flat Universe for

the !CDM model with &(0)
m = 0.28 and the CDM model with &(0)

m = 1.0. We
use the expression (4.212) of the power spectrum with model parameters δ2

H =
3.2 × 10−10, ns = 0.96, and h = 0.7. For smaller &(0)

m the position of the peak is
shifted toward smaller k.

can be seen in the combined analysis of WMAP 5-year and BAO data in Fig. 5.7,
which shows that even the equation of state such as wDE = −1.5 can be allowed.
However the addition of the SN Ia data provides a tight constraint: −1.097 <

wDE < −0.858 at the 95% confidence level. This constraint is not much different
from the joint analysis of the WMAP+SN Ia data without the BAO data (−1.098 <

wDE < −0.841 at the 95% confidence level).
The non-linear evolution of baryon acoustic oscillations was extensively studied

in Refs. [125, 126] by comparing N -body simulations with analytically estimated
spectra for the !CDM model.

5.5 Large-scale structure

The observations of large-scale structure such as the galaxy clustering provides
another test for the existence of dark energy. The wavenumber at the peak position
of Pδm

corresponds to keq given in Eq. (4.195). This shows that keq decreases for
smaller values of &(0)

m . In Fig. 5.10 we plot the predicted matter power spectrum for
the flat !CDM model (&(0)

m = 0.28) and for the CDM model (&(0)
m = 1.0). In the

presence of dark energy the peak position shifts toward larger scales (i.e. for smaller
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Figure 5.11 Measured power spectra with error bars for the full luminous red
galaxies (LRG) and main galaxy samples of the 2dF survey. The solid curves
show the theoretically predicted spectra for the !CDM model obtained in the
linear perturbation theory with galaxy bias b = 1.9 (top) and b = 1.1 (bot-
tom) relative to the z = 0 matter power spectrum. The dashed curves include
the non-linear correction to the matter spectrum by Cole et al. [88]. The
non-linear effect becomes important for the scales k " 0.09h Mpc−1. From
Ref. [127].

k). For &(0)
m = 1 and &(0)

m = 0.28 with h = 0.7 we have keq = 0.051 h Mpc−1 and
keq = 0.014 h Mpc−1, respectively. Hence the scale of the peak position can be
used as a probe of dark energy.

As we have seen in Section 4.8 the matter spectrum Pδm
is related to the observed

galaxy power spectrum Pδg
via the relation

Pδg
= b2Pδm

, (5.57)

where b is the bias parameter. In Fig. 5.11 the galaxy power spectra of luminous
red galaxies (LRG) and main galaxy samples of the SDSS are plotted [127]. The
position of the peak, around the scale 0.01 h Mpc−1 < k < 0.02 hMpc−1, shows
that the !CDM model is favored over the CDM model. Although the galaxy power
spectra alone do not provide tight bounds on the density parameter &

(0)
DE as well

as wDE, the important point is that the observations of LSS are consistent with
the existence of dark energy. Notice that the linear spectrum plotted in Fig. 5.10
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is modified for the scales k " 0.09 h Mpc−1 because non-linear effects become
important on smaller scales [88].

5.6 Problems

5.1 Integrate Eq. (5.12) numerically for four different values &
(0)
DE = 0, 0.3, 0.7, 1 and plot

the luminosity distance dL (in units of cH−1
0 ) in the flat Universe as a function of z.

5.2 Plot the BAO distance ratio (5.56) versus the redshift z for &
(0)
DE = 0, &(0)

DE = 0.75, and
&

(0)
DE = 0.95.
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Cosmological constant

The simplest candidate for dark energy is the cosmological constant !, which
is so called because its energy density is constant in time and space. In fact the
!CDM model has been systematically proved consistent with a large number of
observations. The Lagrangian density for the !CDM model is simply given by
the linear term in R plus !, see Eq. (6.2). Despite its simplicity it is generally
difficult to explain why the energy scale of the cosmological constant required
for the cosmic acceleration today is very small relative to that predicted by par-
ticle physics. As we already mentioned, the vacuum energy density evaluated by
summing the zero-point energy of a scalar field is about 10121 times larger than
the observed dark energy density (for a momentum cut-off around the Planck
scale).

The problem of a large value of ! was present long before the observational dis-
covery of the late-time cosmic acceleration. In fact, even if we had no observational
evidence of dark energy we would still need to understand why the cosmological
constant vanishes. Models of dark energy alternative to !CDM are based on the
assumption that ! is zero or negligible. So the problem of the cosmological con-
stant is to find some mechanism that either makes it vanish or renders it a very
small value compatible with the present cosmological density. In the former case
the origin of dark energy needs to be explored further, but in the latter case the
problems of the cosmological constant and dark energy are solved at the same time.

In this chapter we first present the action for the !CDM model and show that
the Einstein equations follow from this by the action principle. We then proceed to
the history of the cosmological constant and its fine-tuning problem. We review a
number of attempts to solve the cosmological constant problem in the framework
of supergravity and superstring theories. We also discuss several topics related to
the cosmological constant – such as the anthropic selection, and the decoupling of
! from gravity.

109
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6.1 Einstein equations with the cosmological constant

The energy-momentum tensor Tµν on the r.h.s. of the Einstein equations (2.8)
obeys the conservation law Tµν

;ν = 0. Since the metric gµν satisfies the relation
gµν

;ν = 0, it is possible to add the term !gµν to the Einstein equations:

Rµν − 1
2
gµνR + !gµν = 8πGTµν , (6.1)

where ! is the cosmological constant. It is interesting to note that these are the
most general equations of second-order in the metric in four dimensions. In scalar-
tensor metric theories an additional term coupled to a Gauss–Bonnet term is also
allowed.

The Einstein equations (6.1) can be derived by the action principle. It is based
on the linear action in terms of the Ricci scalar R = gµνRµν and the matter action
Sm:

S = 1
16πG

∫
d4x

√
−g (R − 2!) + Sm . (6.2)

Let us derive the Einstein equations (6.1) from the action (6.2). It is important
to understand this procedure because similar steps are taken when we consider
modified gravity models in Chapter 9.

The variation of the action (6.2) with respect to gµν gives

δS = 1
16πG

∫
d4x

[
δ(

√
−g)(gµνRµν − 2!)

+
√

−g δgµνRµν +
√

−g gµνδRµν

]
+ δSm . (6.3)

Since δRµν = (δ4α
µν);α − (δ4α

µα);ν we have gµνδRµν = (gµνδ4α
µν − gµαδ4ν

µν);α

and hence
∫

d4x
√

−g gµνδRµν =
∫

d4x
√

−g(gµνδ4α
µν − gµαδ4ν

µν);α = 0 , (6.4)

where we have employed Gauss’s theorem in the last equality. This shows that the
last term in the square bracket of Eq. (6.3) vanishes. Now we also use the relation
δ(

√−g) = −(1/2)
√−ggµνδg

µν . This can easily be derived by differentiating with
respect to gµν the determinant g written as gµνM(µν) where M(µν) is the determi-
nant of the cofactor matrix, which does not depend on the element gµν itself, and
then replacing M(µν) = ggµν . Then Eq. (6.3) reads

δS = 1
16πG

∫
d4x

√
−g

(
Rµν − 1

2
Rgµν + !gµν

)
δgµν + δSm . (6.5)
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The energy-momentum tensor Tµν is defined from the variation of δSm in terms of
gµν :

δSm = −1
2

∫
d4x

√
−g Tµνδg

µν . (6.6)

Then Eq. (6.5) reduces to

δS = 1
16πG

∫
d4x

√
−g

(
Rµν − 1

2
Rgµν + !gµν − 8πGTµν

)
δgµν . (6.7)

The Einstein equations (6.1) follow from the action principle, δS = 0.

6.2 History of the cosmological constant

After Einstein constructed General Relativity in 1915–1916 [128], he tried to
apply his theory to the Universe in 1917 [23]. In the absence of the cosmological
constant it is obvious from Eq. (2.19) that the scale factor a can dynamically
change in time (except in the case of a fluid at rest with a specific equation of state:
w = P/ρ = −1/3). In the 1910s, however, Einstein believed that the Universe was
static and introduced the cosmological constant to realize such a Universe.

For the FLRW metric (2.1) the Einstein equations (6.1) read

H 2 = 8πG

3
ρ − K

a2
+ !

3
, (6.8)

ä

a
= −4πG

3
(ρ + 3p) + !

3
. (6.9)

From Eq. (6.9) it is clear that ! works as a repulsive force against gravity at the
background level. In the Universe dominated by a pressureless matter (P = 0), we
find that the static Universe (ȧ = ä = 0) corresponds to

ρ = !

4πG
,

K

a2
= ! . (6.10)

This equation, the first relativistic cosmology ever, shows that the density ρ in the
Universe is determined by !. Einstein believed that this solution (a “crazy idea”
according to his own words in a letter to de Sitter) was a way to embody Mach’s
idea of linking mass (ρ) to inertia, here represented by space-time geometry gµν .
He thought that he could eventually show that matter was necessary to define a
non-Minkowskian metric. However, the above static solution is unstable against
perturbations of the density ρ as was later demonstrated by Lemaı̂tre. In fact, if
!/3 > (4πGρ)/3, Eq. (6.9) shows that the Universe departs from the static point
given in Eq. (6.10) with the growth of a. If !/3 < (4πGρ)/3 the Universe is
also away from the static point with the decrease of a. Einstein did not realize
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this instability since he did not write down the differential equation for a(t).
Shortly after, in the same year 1917, de Sitter [129] found his accelerated solution
H =

√
!/3 in empty space, paving the way to the dismissal of Mach’s principle

in cosmology.
At the same time, from 1910 to the mid 1920s, Slipher was observing the

spectra of galaxies (spiral nebulae) and found most of them to be red-shifted. In
1922 Friedmann found the evolving solution that represents the expanding Universe
[130]. In 1927 Lemaı̂tre [131] studied the relation between the observed results of
the redshift and the homogeneous Universe dominated by a pressureless dust. In
Lemaı̂tre’s model there are three distinct periods for the evolution of the Universe:

! (i) A period of cosmic expansion (a ∝ tn with 0 < n < 1) from a point source during
which the basic elements were formed. This corresponds to the expanding Universe
dominated by matter (either the pressureless matter or the radiation).! (ii) A period of a very slow expansion (a ∝ constant) during which nebulae were formed.
This resembles the static Universe proposed by Einstein.! (iii) A period of a fast expansion (a ∝ tn with n > 1) during which the recession of the
nebulae is accelerating. This period can be realized by the de Sitter solution (H =

√
!/3)

in the presence of the cosmological constant.

Lemaı̂tre’s model is the first “hot Big Bang” model, in which the matter density
ρ goes to infinity as a → 0. Apart from the existence of the period (ii) Lemaı̂tre’s
model describes well the evolution of the Universe even in the modern context. The
loitering period (ii) should be replaced by a short transient period from the matter
era to the accelerated epoch during which the system crosses the point ä = 0,
while the nebulae formed during the matter-dominated epoch [the period (i)]. The
period (iii) is exactly the phase of the late-time cosmic acceleration realized by
the presence of !. We can say that Lemaı̂tre, influenced by de Sitter’s accelerated
solution, produced the first consistent dark energy model.

In 1929 Hubble formulated Hubble’s law (2.32) by combining his measurements
of galaxy distances with Slipher’s measurements of the redshifts associated with
the galaxies [71]. This was the first direct quantitative evidence for the expansion of
the Universe. The existence of the cosmological constant was clearly not required
to give rise to a (decelerated) cosmic expansion. In the book “The Meaning of
Relativity” written by Einstein in 1945 [132], he stated that “if Hubble’s expansion
had been discovered at the time of the creation of the general theory of relativity,
the cosmological member (the cosmological constant) would never have been
introduced.” In 1970 Gamov [133] recalls that “when I was discussing cosmological
problems with Einstein, he remarked that the introduction of the cosmological term
was the biggest blunder he ever made in his life.” In spite of Einstein’s regret, the
cosmological constant returned at the end of the century to account for the late-time
cosmic acceleration.
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6.3 The fine tuning problem

In order to realize the cosmic acceleration today, we require that the cosmological
constant ! is of the order of the square of the present Hubble parameter H0 [see
Eq. (6.8)]:

! ≈ H 2
0 = (2.1332h × 10−42 GeV)2 . (6.11)

If we interpret this as an energy density, it is equivalent to

ρ! ≈
!m2

pl

8π
≈ 10−47 GeV4 ≈ 10−123m4

pl , (6.12)

where we have used h ≈ 0.7 and mpl ≈ 1019 GeV.
Suppose that the energy density (6.12) comes from the vacuum energy ⟨ρ⟩ of

an empty space. The zero-point energy of some field of mass m with momentum k

and frequency ω is given by E = ω/2 =
√

k2 + m2/2 (in the units of ! = c = 1).
Summing over the zero-point energies of this field up to a cut-off scale kmax (≫ m),
we obtain the vacuum energy density

ρvac =
∫ kmax

0

d3k

(2π )3

1
2

√
k2 + m2 . (6.13)

Since the integral is dominated by the mode with large k (≫ m), we find that

ρvac =
∫ kmax

0

4πk2dk

(2π )3

1
2

√
k2 + m2 ≈ k4

max

16π2
. (6.14)

General Relativity is believed to be valid up to the Planck scale mpl. Taking the
cut-off scale kmax to be mpl, the vacuum energy density can be estimated as

ρvac ≃ 1074 GeV4 . (6.15)

This is about 10121 times larger than the observed value (6.12). Note that this
situation is not improved much by taking other energy scales appearing in particle
physics. For the QCD scale kmax ≈ 0.1 GeV we have ρvac ≈ 10−3 GeV4, which is
still much larger than ρ!.

The above problem was present even before the observational discovery of dark
energy in 1998. At that time most people believed that the cosmological constant
was exactly zero and tried to explain why it was so. The vanishing of a constant
usually implies the existence of some symmetry. In supersymmetric theories, for
example, the bosonic degree of freedom has its Fermi counterpart that contributes
to the zero-point energy with an opposite sign. If supersymmetry is unbroken, there
exists an equal number of bosonic and fermionic degrees of freedom such that the
total vacuum energy vanishes [134] [see Eq. (6.22) in Section 6.5]. However it
is known that supersymmetry is broken at sufficient high energies (around the
scale MSUSY = 103 GeV if it is relevant to the hierarchy problem of gravitational
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Figure 6.1 Plot of d&!/dN versus log10 a, assuming flat space with &
(0)
! = 0.7.

The spike is very close to the present epoch: this is the coincidence problem.

interaction and weak interaction). Hence the vacuum energy is generally non-zero
in the world of broken supersymmetry. Nevertheless, it is not impossible to obtain
a vanishing ! or a tiny amount of ! even if supersymmetry is broken. We shall
address this problem in Section 6.5.

6.4 The coincidence problem

The second problem of the cosmological constant as dark energy is that its value is
not only at odds with all possible fundamental energy scales and requires therefore
fine tuning, but also that this particular value is almost identical to a totally unrelated
number, the present matter energy density. In other words, &

(0)
! is doubly unlikely:

because it is too small in absolute terms and because its value coincides (to a
factor of two or three) with &(0)

m , for no obvious reason. The matter density ρm =
ρ(0)

m (1 + z)3 coincides with the cosmological density ρ
(0)
! at

zcoinc =
(

&
(0)
!

1 − &
(0)
!

)1/3

− 1 , (6.16)

which, for &
(0)
! = 0.7, amounts to zcoinc ≈ 0.3. This problem is called the coinci-

dence problem.
To illustrate the issue, we plot the evolution of the derivative d&!/dN (where

N = ln a) in Fig. 6.1. We find that the only epoch in which this quantity is not
close to zero is the present.1 If ρ

(0)
! /ρ(0)

m was just 10 or 100 times smaller, we would
not see any accelerated expansion. If it were a few orders of magnitude larger than

1 We note, however, that the choice of a natural time scale to define the coincidence problem is matter of debate,
see e.g. Ref. [135].
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unity, the spike would occur at a large redshift and probably we would not call it a
coincidence at all.

The coincidence problem is not specific to the cosmological constant. Almost
all acceptable dark energy models we will see in the next chapters behave similarly
to the cosmological constant and their zcoinc also turn out to be very close to zero.
Therefore we discuss this problem in terms of a general dark energy density ρDE.

Barring the case that this coincidence is after all just a coincidence, or that
all the observational evidence in favor of acceleration is systematically wrong,
cosmologists have proposed several ways out of this problem. The first class of
explanations is based on models in which ρDE responds to the trend of ρm and
catches up with it irrespective of the initial conditions of ρDE. In this case &DE is
non-zero for a considerable duration and this alleviates the coincidence problem.
However, the acceleration starts very recently and therefore a coincidence arises
again. The problem is in fact that this behavior is based on attractor-like solutions
such as the so-called tracker models, see Section 7.2.3.

The second class of explanation argues that there is no coincidence and in fact
&m and &DE have always, or most of the time, been similar. In principle this is not
difficult to realize: it is sufficient to postulate two components, one that clusters, the
other that does not because of a large sound speed, and to regulate their equations
of state so that they are always similar. The main problem here is that either (i) the
common equation of state always satisfies the condition for cosmic acceleration
and hence it is difficult or impossible to be consistent with many observations such
as the growth of large-scale structure, or (ii) the equation of state changes right
when it is needed, i.e. today, and therefore another coincidence arises – this time
between the epoch of acceleration and the present. Models that belong to this class
are for instance the scaling attractors, which will be discussed in Section 8.5.3. A
related possibility is to build a model with several epochs of acceleration; it is then
just a matter of reasonable chance to be witnessing one. Here again the difficulty
is to realize a sufficient period of structure formation.

The third class is the anthropic one. According to it we live in a Universe with
ρDE ≈ ρm because this is the highest dark energy density allowed by the requisite of
sufficient structure formation and, in general, higher energy vacua are more likely
than lower ones. So our Universe is the most likely among the “life-sustaining”
universes. We discuss anthropic arguments in Section 6.6.

The fourth class is the “backreaction” argument. The coincidence between ρDE

and ρm may appear as a by-product of another more fundamental one, the coin-
cidence between acceleration and structure formation. This can be explained if
one causes the other: in particular, if the growth of structures causes acceleration
through cumulative non-linear effects. We discuss these models in Section 10.2. A
related way out is that actually there is no real acceleration and no dark energy. The
acceleration is only an apparent consequence of adopting the wrong background
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cosmological model, the FLRW spacetime. If instead we interpret observations
with a strongly inhomogeneous model like the Lemaı̂tre–Tolman–Bondi void, the
acceleration of the recession rate between nearby and distant sources becomes a
distance-dependent, but practically always decelerated, Hubble rate. We discuss
this interpretation in Section 10.1.

A quick summary of this section is that the coincidence problem is far from
solved. It is difficult to imagine a convincing explanation of the nature of dark
energy which does not at the same time provide a solution to the coincidence
problem. Until then, we can use the coincidence problem, just as the fine-tuning
problem, as a guide to select interesting directions of research.

6.5 Supersymmetric models

From here to the end of this section we discuss the status of the cosmological
constant in supersymmetric models. This material is more advanced than most of
this book and requires knowledge of quantum field theory and supersymmetry.
However it is not a necessary prerequisite for the subsequent chapters.

Supersymmetric theoretical models consist of a set of quantum fields having a
symmetry between bosons and fermions (see Ref. [136] for introductory review).
In particular a supersymmetric model covariant under general coordinate transfor-
mations (or a model having local supersymmetry) is called a supergravity model.
Supergravity aims to unify the gravitational force with other interactions. When
we quantize gravity, the problem of renormalizability is crucial. In renormalizable
theories the divergence of integrals which appears in the perturbative expansion
for physical processes can be avoided by redefining a finite number of theoretical
parameters. Unfortunately supergravity is a non-renormalizable theory and hence
it should not be regarded as “a theory of everything.” Superstring theory is the
only known theory containing gravity that is renormalizable. Supergravity can be
regarded as an effective low-energy theory derived from more fundamental string
theory. In the following we shall briefly review supersymmetric theories and then
proceed to possible solutions to the cosmological constant problem. The read-
ers who are interested in the details of supergravity and superstring theories may
consult the books of Bailin and Love [137] and Green, Schwarz, and Witten [138].

The transformations of supersymmetry are based on quantum operators Qs

which change bosonic states into fermionic ones and vice versa,

Qs |boson⟩ = |fermion⟩ , Qs |fermion⟩ = |boson⟩ . (6.17)

From this definition the Qs’s change the spin of states. The Qs’s are identified
as spinor operators transforming like tensor operators of spin 1/2. It is known
that the Qs’s are invariant under coordinate translations. More technically, the
Qs’s commute with the four generators P µ of the translation group. We use the
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Hermitian generator for P µ = (E, P), so that E and P correspond to the energy
operator and the momentum operator, respectively. Then the commutation relation
is given by

[Qs, P
µ] ≡ QsP

µ − P µQs = 0 . (6.18)

The anti-commutator of a generator Qs with its Hermitian adjoint Q
†
s is a linear

combination of energy and momentum operators:

{Qs, Q
†
s } ≡ QsQ

†
s + Q†

sQs = αE + β P . (6.19)

If we sum up all supersymmetry generators, then the β P terms cancel whilst the
αE terms add up. This then gives the following dependence

∑

all Qs

{Qs, Q
†
s } = cE . (6.20)

Here the proportionality factor c is positive for a physically meaningful theory with
energies bounded from below.

The state corresponding to the lowest energy is called a vacuum and is denoted
as |0⟩. Supersymmetry is unbroken if the following condition is satisfied:

Qs |0⟩ = 0 , and Q†
s |0⟩ = 0 , for all Qs , (6.21)

which means that the vacuum is symmetric under the transformation by the Qs’s.
Under the condition (6.21), Eq. (6.20) shows that the vacuum has a vanishing
energy

E|0⟩ = 0 . (6.22)

If supersymmetry is broken, the vacuum state is not invariant under all super-
symmetry transformations. This means that Qs |0⟩ ̸= 0 and Q

†
s |0⟩ ̸= 0 for some

operators Qs . Hence the energy of the vacuum is not exactly zero.
If the vacuum energy is the only contribution to the cosmological constant !,

the above discussion shows that ! ̸= 0 in the world of broken supersymmetry.
Note, however, that this result is based on a globally supersymmetric theory with-
out including gravity. If we take into account gravity, any globally supersymmetric
theory becomes a locally supersymmetric supergravity theory. In supergravity the-
ory an (effective) cosmological constant is given by an expectation value of the
potential V for chiral scalar fields ϕi [137]:

V (ϕ, ϕ∗) = eκ2K
[
DiW (Kij∗

)(DjW )∗ − 3κ2|W |2
]

, (6.23)

where κ2 = 8πG, K and W are the so-called Kähler potential and the superpo-
tential, respectively, which are functions of ϕi and ϕi∗. The quantity Kij∗

is the
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inverse of the following derivative

Kij∗ ≡ ∂2K

∂ϕi∂ϕj∗ , (6.24)

whereas the derivative DiW is defined by

DiW ≡ ∂W

∂ϕi
+ κ2W

∂K

∂ϕi
. (6.25)

The four-dimensional effective supergravity action is given by

S =
∫

d4x
√

−g

[
1

2κ2
R − Kij∗∂µϕi∂µϕj∗ − V (ϕ, ϕ∗)

]
, (6.26)

where the second term represents the kinetic term of chiral scalar fields.
The supersymmetry is preserved under the condition DiW = 0. This gives rise

to an anti de Sitter (AdS) minimum for the potential (6.23):

VAdS = −3κ2eκ2K |W |2 , (6.27)

which is negative. If the conditions DiW = 0 and W = 0 hold for all i in lowest
order of perturbation theory, it follows that the theory possesses a supersymmetric
configuration with V = 0 to all orders of perturbation theory [139].

6.5.1 Vanishing cosmological constant under broken supersymmetry

The breaking of the supersymmetry corresponds to the condition DiW ̸= 0. In this
case it is possible to find scalar field values giving a vanishing potential (V = 0),
but this is not in general an equilibrium point of the potential V . Nevertheless
there is a class of Kähler and superpotentials which give a stationary scalar-field
configuration at V = 0 (see Ref. [140] for an early work). Consider, for example,
the gluino condensation in E8 × E8 superstring theory [141]. The reduction of
the 10-dimensional action to 4 dimensions gives rise to a so-called modulus field
T . This field characterizes the scale of the compactified 6-dimensional manifold.
There exists another complex scalar field S of 4-dimensional dilaton/axion fields.
The fields T and S are governed by the Kähler potential [141]

K(T , S) = − 3
κ2

ln (T + T ∗) − 1
κ2

ln (S + S∗) , (6.28)

where (T + T ∗) and (S + S∗) are positive definite. Here the factor 3 comes from the
compactification on a complex manifold with (10 − 4)/2 = 3 complex dimensions.
The field S couples to the gauge fields, while T does not. An effective superpotential
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for S can be obtained by integrating out the gauge fields under the use of the R-
invariance [142]:

W (S) = M3
pl

[
c1 + c2 exp(−3S/2b)

]
, (6.29)

where c1, c2, and b are constants.
Substituting Eqs. (6.28) and (6.29) into Eqs. (6.24) and (6.25), it follows that

(DT W )KT T ∗
(DT W )∗ = 3κ2|W |2 , (6.30)

for the modulus field T . This cancels out the last term in Eq. (6.23), thereby yielding
the field potential

V = 1
(T + T ∗)3(S + S∗)

(DSW )KSS∗
(DSW )∗

=
M4

pl

(T + T ∗)3(S + S∗)

∣∣∣∣c1 + c2 exp(−3S/2b)
{

1 + 3
2b

(S + S∗)
}∣∣∣∣

2

. (6.31)

The kinetic term in Eq. (6.26) is given by

Lkin ≡ −Kij∗∂µϕi∂µϕj∗
(6.32)

= − 3
κ2(T + T ∗)2

∂µT ∂µT − 1
κ2(S + S∗)2

∂µS∂µS . (6.33)

For the real scalar fields T and S this reduces to the standard canonical kinetic term,
Lkin = −(1/2)∂µT̃ ∂µT̃ − (1/2)∂µS̃∂µS̃, by redefining T̃ ≡

√
3/2κ2 ln T and S̃ ≡√

1/2κ2 ln S.
The potential V in Eq. (6.31) is found to be positive because of the cancellation

of the last term in Eq. (6.23). The stationary field configuration with V = 0 is
realized under the condition

DSW = ∂W

∂S
− W

S + S∗ = 0 . (6.34)

Note that the derivative,

DT W = κ2W
∂K

∂T
= − 3W

T + T ∗ , (6.35)

does not necessarily vanish. When DT W ̸= 0 the supersymmetry is broken with a
vanishing potential energy. Hence it is possible to obtain a stationary field configu-
ration with V = 0 even if supersymmetry is broken. Note that the field S is fixed at
the potential minimum, while the field T is undetermined. The latter appears only
for the overall scale of the potential, see Eq. (6.31). Hence such models are called
“no-scale” models.
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In the above discussion the existence of the term (−3/κ2) ln(T + T ∗) is impor-
tant to get a positive potential V by canceling out the −3κ2|W |2 term. The appear-
ance of this term is natural in superstring theory after the compactification from
10 to 4 dimensions [137]. In order to get a stationary minimum with V = 0 in the
world of broken supersymmetry, the fact that the superpotential W depends on the
field S is also important. For example, Witten found a model in which W depends
on a chiral field C but not on S and T after the compactification of 10-dimensional
supergravity on Calabi–Yau manifolds, i.e. W = W (C) [143]. The Kähler potential
in this model is given by

K = − 3
κ2

ln(T + T ∗ − 2CC∗) − 1
κ2

ln (S + S∗) . (6.36)

In this case we require that DSW = 0 and DCW = 0 to obtain a vanishing potential
V . Since W does not depend on S, the condition DSW = 0 leads to W = 0 and
hence DT W = 0 (see problem 6.1). Then the field configuration with V = 0 does
not correspond to a broken supersymmetry in this model. This argument shows that
the superpotential W is required to have a dependence on S as in the model (6.29)
to realize a non-supersymmetric field configuration with V = 0.

We caution that the discussion above is based on the lowest-order perturbation
theory. It is not guaranteed that this picture is valid to all finite orders of perturbation
theory because the non-supersymmetric field configuration is not protected by any
symmetry. Moreover some non-perturbative effect can provide a large contribution
to the effective cosmological constant. As we will see below, the so-called flux
compactification in type IIB string theory allows us to realize a metastable de Sitter
vacuum by taking into account a non-perturbative correction to the superpotential
(coming from Euclidean D-brane instantons) as well as a number of anti D3-branes
in a warped geometry [24]. Hence it is not hopeless to obtain a small value of !

or a vanishing ! even in the presence of some non-perturbative corrections. See
Refs. [144, 145, 146, 147, 148, 149, 150] for other interesting works that aim to
solve the cosmological constant problem.

6.5.2 de Sitter vacua in string theory

Before the observational discovery of dark energy the main interest of cosmologists
was to find a mechanism to render the effective cosmological constant zero. After
1998 the interest shifted to finding de Sitter vacua to realize the late-time cosmic
acceleration. In the context of superstring or M-theory, the no-go theorem by
Gibbons [151] and Maldacena and Nuñez [152] states that when the 6 or 7 extra
dimensional space is a time-independent non-singular compact manifold without
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boundary a scalar field with a positive potential does not exist at least in the lowest-
order action. However the higher-order corrections to the leading-order action or
the presence of extended objects like D-branes [153] allow the possibility to realize
de Sitter (dS) vacua by invalidating the no-go theorem.

Kachru, Kallosh, Linde, and Trivedi (KKLT) [24] constructed dS solutions in the
type II string theory compactified on a Calabi–Yau (CY) manifold in the presence
of flux. The construction of the dS vacua in the KKLT scenario consists of two
steps. The first step is to freeze all moduli fields in the flux compactification at
a supersymmetric anti de Sitter (AdS) vacuum. Then a small number of the anti
D3-brane is added in a warped geometry with a throat, so that the AdS minimum
is uplifted to yield a de Sitter vacuum with broken supersymmetry.

Let us consider the effective 4-dimensional action derived from the flux com-
pactification of type IIB string theory on the CY manifold. There exist the so-called
volume (radial or Kähler) modulus ρ and the complex structure moduli zα as well
as the dilaton field τ . Here the complex structure moduli are associated with the
structure of an orientifold in CY theory. In the so-called F -theory compactified on
an elliptic CY fourfold, the complex structure moduli zα of the fourfold can be
completely fixed, leaving only the volume modulus ρ. The dilaton field τ , which
characterizes the strength of a string coupling gs , is also fixed under this compact-
ification scheme. For a single volume modulus ρ, the Kähler potential following
from the 10-dimensional action is given by

K(ρ) = −3 ln
[
−i(ρ − ρ∗)

]
, (6.37)

where we use the unit κ2 = 1. Note that this is equivalent to the first term on the
r.h.s. of Eq. (6.28) by setting ρ = iT . The Kähler potential for the dilaton and the
complex structure moduli is

K(τ, zα) = −ln
[
−i(τ − τ ∗)

]
− ln

(
−i

∫

M
& ∧ &∗

)
, (6.38)

where & is a holomorphic three-form on the CY space M. The expression (6.38)
follows from the so-called Weil–Petersson metric, see Ref. [154] for details.

The fluxes generate the following superpotential [155]

W0 =
∫

M
& ∧ G(3) , (6.39)

where G(3) is defined by G(3) ≡ F(3) − τH(3) with F(3) and H(3) the Ramond–
Ramond (R-R) flux and the Neveu–Schwarz (NS)-NS flux, respectively, on the
3-cycles (non-contractible 3-sphere embedded in the compact manifold) of the
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internal CY manifold.2 Note that the superpotential (6.39) is independent of ρ.
KKLT [24] considered a non-perturbative correction to the superpotential (6.39),
which is given by

W = W0 + Aeicρ , (6.40)

where A and c are constants. This correction is related to the effect of Euclidean
D-brane instantons [156].

Since the dilaton τ and the complex structure moduli zα can be fixed for a
suitable choice of flux, we focus on the effective field theory for the volume
modulus ρ. We set ρ = iσ and take A, c, and W0 to be real with W0 < 0. For the
Kähler potential (6.37) and the superpotential (6.40) the supersymmetric vacuum,
DρW = 0, corresponds to

W0 = −Ae−cσc

(
1 + 2

3
cσc

)
, (6.41)

where σc is the field value at which the potential V has an AdS minimum.
From Eq. (6.23) the field potential is given by

V = cAe−cσ

2σ 2

(
1
3
Acσe−cσ + W0 + Ae−cσ

)
. (6.42)

The AdS minimum corresponds to the potential energy

VAdS = −c2A2e−2cσc

6σc

. (6.43)

In Fig. 6.2 we plot the potential (6.42) versus σ for A = 1, c = 0.1, and W0 =
−10−3 as a dotted curve. As estimated by Eq. (6.41) the potential has a negative
minimum at σc ≃ 88.3. This minimum corresponds to a supersymmetric AdS
vacuum with all moduli fixed (including the dilaton).

KKLT introduced a supersymmetry breaking by adding a few anti D3-brane
in a warped background with a throat. The branes as well as fluxes serve as the
sources for a warp factor, which allows the possibility to have an exponentially large
warping [157]. The Einstein frame metric describing the warped compactification
is given by

ds2
10 = e2A(y)gµνdxµdxν + e−2A(y)g̃mn(y)dymdyn , (6.44)

where y characterizes the compact dimension and g̃mn is the unwarped metric on
M. Note that the factor eA(y) can be computed in the region close to a conifold

2 The sectors corresponding to periodic boundary conditions and anti-particle boundary conditions are called the
Ramond sector and the Neveu–Schwarz sector, respectively. For both left and right moving fermions there are
four possible sectors: R-R, NS-NS, NS-R, and R-NS. The spacetime bosonic excitations arise from the RR and
NS-NS sectors, whereas the fermions arise from the R-NS and NS-R sectors.
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Figure 6.2 The potential of the KKLT model (multiplied by the factor 1012) for
the model parameters A = 1, c = 0.1, W0 = −10−3, and D = 3.0 × 10−7. The
dotted curve (a) illustrates the potential (6.42) derived from the Kähler potential
(6.37) and the superpotential (6.40). The solid curve (b) shows the potential (6.47)
including the D/σ 3 correction to the potential (6.42).

singularity of M. In Ref. [157] it was shown that the warp factor at the tip of the
throat is given by

eAmin ≃ exp
(

− 2πN

3gsM

)
, (6.45)

where M and N are the numbers of R-R and NS-NS three-form fluxes, respectively.
While the warp factor is of the order of one at generic points in the y-space, the
minimum value eAmin can be extremely small for a suitable choice of fluxes.

The addition of the anti-D3 brane does not give rise to additional moduli because
the background fluxes generate a potential for the world-volume scalars to be frozen
[158]. Meanwhile the anti-D3 brane provides an additional energy to the potential
(6.42):

δV = 2b4
0T3

g4
s

1
(Im ρ)3

, (6.46)

where T3 is the brane tension and b0 is the warp factor at the location of the anti-D3
brane. The anti-D3 brane energetically prefers to sit at the tip of the throat and
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hence b0 = eAmin . The total potential is the sum of Eqs. (6.42) and (6.46),

V = cAe−cσ

2σ 2

(
1
3
Acσe−cσ + W0 + Ae−cσ

)
+ D

σ 3
, (6.47)

where D = 2b4
0T3/g

4
s .

For suitable choices of D (i.e. by tuning the flux integers M and N ) the AdS
minimum given in Eq. (6.43) is uplifted by the additional energy (6.46) to give
rise to a dS minimum, see the solid curve in Fig. 6.2. There is a local maximum
separating the dS minimum from the potential at infinity. As long as D is not chosen
to be large, the existence of this local maximum prevents the field σ from evolving
toward infinity. If we want to use the dS minimum derived above for the present
cosmic acceleration, we require that the potential energy VdS at the minimum is
of the order of VdS ≃ 10−47 GeV4. Although a fine-tuning of the flux integers M

and N is needed, it is in principle possible to obtain a tiny amount of the effective
cosmological constant.

The above discussion shows that many de Sitter vacua can be present depending
on the flux integers. The question why the vacuum we live in has a very small
energy density among many possible vacua has been sometimes answered with
anthropic arguments. We discuss some of these ideas in the next section.

6.6 Cosmological constant and the anthropic principle

The anthropic principle is based on the idea that physical theories need to take
into account the existence of life on Earth. The expression “anthropic principle”
was first used by Carter in 1973 in his contribution to the IAU Krakow symposium
[159]. Carter proposed two variants for the anthropic principle.

! (i) Weak anthropic principle (WAP): The WAP states that the spacetime position of life
in the Universe is privileged to the extent of being compatible with our existence as
observers.! (ii) Strong anthropic principle (SAP): The SAP states that the Universe and fundamental
physical constants must be such as to admit the creation of observers within it at some
stage.

Barrow and Tipler [160] applied the WAP to fundamental physical constants by
stating that “The observed values of all physical and cosmological quantities are not
equally probable but they take on values restricted by the requirement that there
exist sites where carbon-based life can evolve and by the requirements that the
Universe be old enough for it to have already done so.” According to the definition
of Barrow and Tipler, the very low value of the cosmological constant is associated
with the WAP rather than SAP unlike the definition of Carter.
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Let us discuss the cosmological constant problem in association with the WAP.
The formation of large-scale structure needs to be completed before a positive
cosmological constant dominates the Universe. Also, a negative cosmological con-
stant leads to the collapse of the Universe if it dominated before the present epoch.
Both conditions can be employed to put limits on the anthropically acceptable !.
In 1987 Weinberg placed the bound on the vacuum energy density to be [161]

−10−123m4
pl ! ρ! ! 3 × 10−121m4

pl . (6.48)

The upper bound comes from the requirement that the vacuum energy does not
dominate over the matter density for redshifts z " O(1), whereas the lower bound
comes from the condition that ρ! does not cancel the present cosmological density.
Of course the present dark energy density (6.12) lies within Weinberg’s bound
(6.48).

Even before Weinberg’s paper, there had been a number of works about the
anthropic principle related to the cosmological constant problem. In the Proceed-
ings of the Nuffield Symposium held in 1982, Linde proposed possible implications
of the anthropic principle in inflationary cosmology [162]. This was motivated by
the fact that the phase transition in the “new” inflationary scenario [163, 164] can
lead to many possible mini-universes isolated from each other. In 1984 Linde sug-
gested an anthropic solution to the cosmological constant problem, which is related
to quantum cosmology [165]. The idea is as follows.

Let us assume that quantum creation of the Universe is not suppressed if it
is created at the Planck energy density. A scalar field φ with a potential energy
V1(φ) can appear by the quantum creation of the Universe. Also there should
exist some classical fields of the type of the anti-symmetric tensor field Aµνλ.
The vacuum energy density V (φ, F ) is the sum of V1(φ) and the energy density
V2(F ) associated with the field strength Fµνλσ ≡ ∂[µAνλσ ] of the anti-symmetric
tensor field, i.e. V (φ, F ) = V1(φ) + V2(F ). The equation of motion for Fµνλσ in
the absence of sources is given by ∂µ(

√−gFµνλσ ) = 0, which has the solution

Fµνλσ = cϵµνλσ . (6.49)

Here c is an arbitrary constant and ϵµνλσ is a unit totally anti-symmetric tensor.
The square of the 4-form field strength is FµνλσFµνλσ = 24c2. This gives rise to
the energy density

V2(F ) = 1
2 · 4!

FµνλσFµνλσ = c2

2
, (6.50)

which remains constant. The Universe is created most probably in a state with
V (φ, F ) ≃ m4

pl. After the field φ rolls down to its potential minimum at φ = φ0,
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the vacuum energy takes a completely different value

! = V1(φ0) + V2(F ) . (6.51)

Note that V1(φ) can take any initial value such that V1(φ) + V2(F ) ≃ m4
pl. Then the

final value of the cosmological constant ! appears with approximately the same
probability. This may provide a possible anthropic solution to the cosmological
constant problem.

In 1987–1988 Brown and Teitelboim tried to find a mechanism to make the
effective cosmological constant variable by using the 4-form field Fµνλσ [166, 167]
(see also Ref. [168]). This anticipated the work of Bousso and Polchinski in
2000 [169] as well as the landscape of string theory [25]. In string theory there
are “electric charges” (membranes) sourcing the 4-form field dual to “magnetic
charges” (5-branes). The constant c appearing in Eq. (6.49) can be quantized in
integer multiples of the membrane charge q:

c = nq . (6.52)

Then the energy density (6.50) for the 4-form field yields

V2(F ) = n2q2

2
. (6.53)

Let us consider a bare cosmological constant !b in addition to the flux energy
density (6.53). Then the effective cosmological constant is given by

! = !b + n2q2

2
. (6.54)

This is similar to Eq. (6.51) apart from the fact that the constant c is discrete because
of the quantization.

As in the KKLT model, let us consider the AdS minimum (!b < 0) in the
presence of the flux energy density n2q2/2. The membranes can spontaneously
appear by a quantum tunneling effect (which is similar to the appearance of an
electron and a positron from the tunneling effect out of the vacuum). The field
strength of the 4-form field is slowly discharged by such a Schwinger pair creation
of field sources [nq → (n − 1)q]. This leads to the decrease of the vacuum energy
of the 4-form field by a discrete amount

δ! = [n2q2 − (n − 1)2q2]/2 = (n − 1/2)q2 . (6.55)

In order to get the smallest value of ! in Eq. (6.54) we need to take the flux integer
n0 nearest to

√
2|!b|/q. Then the step size near ! = 0 is (n0 − 1/2)q2 ≃ q

√
|!b|.

From the requirement that this is of the order ρ! ≃ 10−123 or smaller in Planck
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units (mpl = 1), this relation provides the constraint

q ! 10−123|!b|−1/2 . (6.56)

Since the bare cosmological constant cannot be taken so small, Eq. (6.56) shows
that the membrane charge q is constrained to be unnaturally small. The anthropic
principle may state that such a small charge is selected for our existence, but the
problem is that there is no consistent mechanism to obtain such a tiny charge in
string theory.

Bousso and Polchinski [169] tackled this problem by considering J (> 1) 4-form
fields together with J membrane species with charges q1, q2, . . . , qJ . The config-
uration with J of the order of 100 naturally appears in the context of string theory.
Using the quantized field strength, F

µνλσ
i = niqiϵ

µνλσ , the effective cosmological
constant is given by

! = !b + 1
2

J∑

i=1

n2
i q

2
i , (6.57)

which is the generalization of Eq. (6.54) to multiple 4-form fields. It is possible to
obtain the value ! ≃ 10−123 if there exists a set of integers ni such that

2|!b| <

J∑

i=1

n2
i q

2
i < 2(|!b| + 9!) , (6.58)

where 9! ≃ 10−123. Let us consider a J -dimensional grid with axes corresponding
to niqi . The displacement of the 4-form field is given by discrete grid points with
integers ni . The region described by Eq. (6.58) corresponds to a thin-shell with
radius r =

√
2|!b| and width 9r = 9!/

√
2|!b|. When J = 2, for example, the

thin-shell has an area with VS = 2πr9r = 2π9!. For general J the thin-shell has
a volume

VS = &J−1r
J−19r = &J−1|2!b|J/2−19! , (6.59)

where &J−1 = 2πJ/2/4(J/2) is the area of a unit J − 1 dimensional sphere (4(x)
is the Gamma function). The volume of a grid cell is given by

VC =
J∏

i=1

qi . (6.60)

There is at least one value of ! if VC < VS , i.e.

J∏

i=1

qi <
2πJ/2

4(J/2)
|2!b|J/2−19! . (6.61)
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When J = 100, |!b| = 1 and 9V = 10−123 with equal charges (qi = q, for i =
1, 2, . . . , J ), we find that the condition (6.61) can be satisfied for q < 0.035. Since
the charge

√
q has the dimension of mass from Eq. (6.57), this condition translates

into
√

q < 0.19 in the unit of the Planck mass. Hence the natural values of the
charge q are allowed by considering multiple 4-form fields.

In string theory, 6-dimensional compactified manifolds (such as Calabi–Yau
manifolds) have hundreds of different 3-cycles. A 5-brane wrapping a 3-cycle can
be viewed as a 2-brane (membrane) to a macroscopic observer. The 5-brane can
wrap any of these 3-cycles, which gives rise to hundreds of different membranes in
four-dimensional spacetime. The charges qi are determined by the 5-brane charge,
the volume of compactified manifolds M, and the 3-cycle volume. Generally the
charges qi are slightly smaller than unity, which is consistent with the discussion
above. Since the volumes of the 3-cycles are in general different from each other,
the qis also differ from each other.

The number of vacua appearing in string theory can be enormously large. If we
consider 500 3-cycles with each cycle wrapped by up to 10 fluxes, then there will
be 10500 vacua. The fact that there is a large number of possible de Sitter vacua in
string theory has led to the so-called string landscape [25]. This landscape includes
so many possible configurations of local minima, among which our Universe
corresponds to at least one of them. Then, the argument goes on, it should be
possible to find a vacuum with a very small energy density among 10500 vacua. In
this way the landscape of string theory can be used as a concrete implementation
of the anthropic principle.

Each vacuum with flux configuration (n1, . . . , ni, . . . nJ ) is stable at least at the
classical level. At the quantum level the spontaneous creation of a membrane can
change the number of fluxes. As we have discussed in Eq. (6.55), the cosmological
constant will jump by the amount (ni − 1/2)q2

i after the spontaneous creation of
membranes. Since this tunneling process is generally exponentially suppressed,
the discrete vacua have sufficiently long lifetimes. Note that the KKLT model also
has a large amount of such metastable vacua. In Ref. [24] it was shown that the
lifetimes of the KKLT vacua are much larger than the cosmological time scale
given in Eq. (2.36).

The picture of string landscape has changed our way of thinking how string
theory makes other predictions. Each vacuum in the landscape has different matter
and coupling constants. The standard model is not predicted uniquely in this picture.
We need to perform a statistical prediction for our vacuum relative to the abundance
in the landscape. Some people have studied landscape statistics by considering
the relative abundance of long-lived low-energy vacua [170, 171]. In the context
of eternal inflation (producing different vacua in widely separate regions of the
Universe) some vacua are selected preferably compared to others, whose properties
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enter in the statistical predictions [172, 173, 174]. These statistical approaches are
still under study, but it will be interesting to pursue the possibility to obtain high
probabilities for the appearance of low-energy vacua.

Ultimately all these approaches make use of Weinberg’s bound or something
similar to select values of ! compatible with life or observers or simply suffi-
cient complexity. One has to notice however that Weinberg’s argument assumes a
standard scenario of structure formation. A much faster growth of perturbations
could be compatible with a much larger ! since then structures have the time
to form before the !-domination. This reflects a general problem with anthropic
arguments, namely that often they are applied to a single parameter while fixing
all the others (instead of marginalizing over them, using the Bayesian language of
Chapter 13). A parameter value that is “ruled out” in one case could be acceptable
if something else is changed at the same time. Since “intelligent life” is a very
complex phenomenon, it is likely to be related to a vast number of parameters and
it is hard to see how one could consider all possibilities.

6.7 The decoupling of the cosmological constant from gravity

Whether or not the vacuum energy we have evaluated in Eq. (6.14) really contributes
to dark energy is still a debatable problem. Usually this energy can be eliminated by
the normal ordering prescriptions in quantum field theory or it can be normalized
to any value. If we really try to link the vacuum energy with dark energy, the theory
should be enlarged to include gravity.

Usually the gravitational field equations are obtained from the variation of the
action

S =
∫

d4x
√

−g
[
Lgrav(gµν) + Lm(gµν, (i)

]
, (6.62)

by varying the metric gµν , where Lgrav(gµν) is a gravitational Lagrangian which
depends on the metric and Lm(gµν, (i) is a matter Lagrangian dependent on both
the metric gµν and the matter fields (i . The resulting gravitational field equations
are of the form Eµν = κ2Tµν , where Eµν is some geometric quantity (in Einstein
theory Eµν = Gµν) and Tµν is the energy-momentum tensor. The theory is not
invariant under the shift of the energy-momentum tensor: Tµν → Tµν + !gµν .
This gives rise to the additional contribution from ! to the Friedmann equation
(2.17). Note that in the absence of gravity the equation of motion for matter is
invariant under such a transformation. In this case the value of ! is undetermined.
This means that gravity breaks the symmetry which is present in the matter sector
without gravity. The root of the cosmological constant problem is intimately related
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to the fact that the conventional gravitational theory derived by the variation of the
metric gµν does not allow a symmetry under the shift Tµν → Tµν + !gµν [175].

If we obtain a theory in which such a symmetry is respected, then the vacuum
energy can be decoupled from gravity. This means that the bulk cosmological
constant is gravitationally inactive, which allows the possibility to explain why the
bulk gravitational constant is irrelevant and may be taken to be zero. A realization of
this possibility called degravitation of the vacuum has been discussed by a number
of authors. In one of them, known as cascading gravity [176, 177], gravity is shut
off for large-scale density perturbations, whereas another possibility is to introduce
an incompressible gravitational Aether fluid to degravitate the vacuum [178]. In a
series of works Padmanabhan [175, 179, 180] has shown how to construct a theory
which has a symmetry under the shift Tµν → Tµν + !gµν . In the following we
shall focus on this latter possibility.

Instead of taking the metric gµν to vary the action, we take normalized vector
fields na(x) in the spacetime with a norm fixed at every event, i.e. nan

a = ϵ(x) where
ϵ(x) is a fixed function. This is motivated by the analogies with the ordinary solids
in elasticity – the macroscopic elastic dynamics is described by a displacement
vector field which occurs in the equation xµ → xµ + ξµ(x). As in the displacement
vector ξµ(x), the vector na(x) captures the spacetime macroscopic description for
gravity. The general action to describe the effective description of a D-dimensional
spacetime is [179, 180]

S = Sgrav + Sm , (6.63)

where

Sgrav = −4
∫

V
dDx

√
−g Pab

cd∇cn
a∇dn

b ,

Sm =
∫

V
dDx

√
−g Tabn

anb , (6.64)

where V is a spacetime volume, Tab is an energy-momentum tensor of matter, and
Pab

cd is a geometric tensor specified later.
We vary the action (6.63) with respect to na and derive the equations of motion

according to δS/δna = 0. Such a procedure is possible if (i) the tensor P abcd has
algebraic symmetries (such as P abcd = −P abdc) similar to the Riemann tensor
Rabcd and (ii) the tensor P abcd satisfies the relation ∇aP

abcd = 0 [179]. An explicit
form of P abcd should be determined by the macroscopic limit of some microscopic
theory, but such a theory is absent so far. Alternatively, we expand P abcd in powers
of derivatives of the metric

P abcd(gij , Rijkl) = c0

(0)
P abcd(gij ) + c1

(1)
P abcd(gij , Rijkl) + · · · , (6.65)
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where c0 and c1 are constants. The zero-th-order term depends on the metric gij

only. The m-th-order term is dependent on the m-th-order curvature tensor as well
as gij . The tensor P abcd can be uniquely determined as

(m)
P ab

cd ∝ δ
cda3...a2m

abb3...b2m
Rb3b4

a3a3
· · ·Rb2m−1b2m

a2m−1a2m
, (6.66)

where δ
cda3...a2m

abb3...b2m
is an alternating tensor (i.e. a completely anti-symmetric tensor).

The zero-th-order term is

(0)
P ab

cd = 1
16π

1
2
δa1a2
b1b2

= 1
32π

(δa
c δ

b
d − δa

dδ
b
c ) , (6.67)

where the coefficient is chosen to lead to Einstein theory (as we will see below).
The first-order term can give rise to the Gauss–Bonnet curvature corrections [see
Eq. (9.163) for the definition of the Gauss–Bonnet term].

Let us vary the action (6.63) with respect to the normalized vector field na

under the constraint δ(nana) = 0. Imposing the constraint δ(nana) = 0 allows the
possibility to add the integral of the form

∫
dDx

√−g λ(x)gabn
anb to the action

(6.63). Then the variation of the modified action gives

δS = −2
∫

V
dDx

√
−g

[
4Pab

cd∇cn
a(∇dδn

b) − Tabn
aδnb − λgabn

aδnb
]

, (6.68)

where we have used Pab
cd = Pba

dc and Tab = Tba . Integrating this equation by
parts under the use of the condition ∇dPab

cd = 0, we find

δS = 2
∫

V
dDx

√
−g

[
4Pab

cd(∇d∇cn
a) + (Tab + λgab)na

]
δnb

− 8
∫

∂V
dD−1x

√
h

[
ℓdPab

cd(∇cn
a)

]
δnb , (6.69)

where ℓd is a vector normal to the spacetime boundary (horizon) ∂V , and h is the
determinant of an intrinsic metric on ∂V . For the validity of the variational principle
we require that the vector variation δna vanishes at the boundary, so that the last
term in Eq. (6.69) disappears. Using the anti-symmetric relation, Pab

cd = −Pab
dc,

the variational principle δS = 0 gives

2Pab
cd(∇c∇d − ∇d∇c)na − (Tab + λgab)na = 0 . (6.70)

Since the Riemann tensor Rcde
a satisfies (∇c∇d − ∇d∇c)na = −Rcde

ane, Eq. (6.70)
reduces to

2Pab
cdRcde

ane + (Tab + λgab)na = 0 . (6.71)
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Multiplying gebgae for Eq. (6.71) and changing the indices suitably, we obtain
(

2P
ijk
b Ra

ijk − T a
b − λδa

b

)
na = 0 . (6.72)

Demanding that the condition (6.72) holds for arbitrary vector fields na , it follows
that

2P
ijk
b Ra

ijk − T a
b − λδa

b = 0 . (6.73)

Plugging the zero-th-order term (6.67) into Eq. (6.73), we find

1
8πG

Ra
b − T a

b − λδa
b = 0 . (6.74)

Using the Einstein tensor Ga
b = Ra

b − (1/2)δa
bR, Eq. (6.74) can be written as

Ga
b − 8πGT a

b = F (g)δa
b with F (g) = −8πGλ − R/2. Because of the constraint

∇a(Ga
b − 8πGT a

b ) = 0 it follows that ∂bF = ∂b(−8πGλ − R/2) = 0. Hence F is
an integration constant, say !. This gives the relation ! = −8πGλ − R/2. The
resulting field equation is given by

Ga
b = 8πGT a

b + !δa
b , (6.75)

which corresponds to the Einstein equations with the cosmological constant !.
Interestingly the cosmological constant appears as an integration constant. Note
that the first-order term (6.65) gives rise to the Gauss–Bonnet curvature correction
in addition to the field equation (6.75).

If we make the shift Tab → Tab + ρgab for the energy-momentum tensor, the
matter action Sm in Eq. (6.64) is transformed as

∫

V
dDx

√
−gTabn

anb →
∫

V
dDx

√
−gTabn

anb +
∫

V
dDx

√
−g ϵρ . (6.76)

The quantity ϵ is not varied when we vary na , which means that the theory is
invariant under the shift Tab → Tab + ρgab. Hence it is possible to gauge away
the cosmological constant from gravity according to the variational principle with
respect to the normalized vector na . Naturally, we still have the problem to explain
why the observed dark energy has a very small energy scale. If the cosmological
constant is completely decoupled from gravity, we need to find out alternative
models of dark energy consistent with observations.

In the following chapters we shall consider alternative models of dark energy
under the assumption that the cosmological constant problem is solved in such a
way that it vanishes completely.
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6.8 Problems

6.1 For the Kähler potential (6.36) and the superpotential W (C) that depends on the field
C only, derive the field potential V . Show that the field configuration with V = 0
corresponds to the supersymmetric state.

6.2 Derive the potential (6.42) from the Kähler potential (6.37) and the superpotential
(6.40). Show that the potential (6.42) has a minimum satisfying the condition (6.41).
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Dark energy as a modified form of
matter I: Quintessence

If the cosmological constant problem is solved in a way that ! completely vanishes,
we need to find alternative models of dark energy. As we already mentioned in
the Introduction, there are basically two approaches for the construction of dark
energy models. The first approach is based on “modified matter models” in which
the energy-momentum tensor Tµν on the r.h.s. of the Einstein equations contains
an exotic matter source with a negative pressure. The second approach is based
on “modified gravity models” in which the Einstein tensor Gµν on the l.h.s. of the
Einstein equations is modified.

It is however important to realize that within General Relativity this division is
mostly a practical way to classify the variety of dark energy models but does not
carry a fundamental meaning. One can always write down Einstein’s equations in
the standard form Gµν = 8πGTµν by absorbing in Tµν all the gravity modifications
that one conventionally puts on the l.h.s.. In other words, one can define a covari-
antly conserved energy-momentum tensor that equals the Einstein tensor. There is
no way, within General Relativity, i.e. by using only gravitational interactions, to
distinguish modified matter from modified gravity. At first-order in perturbation
theory, for instance, one can define the equation of state and the sound speed of a
dark energy field so that it reproduces any modified gravity model [181]. Of course,
from the viewpoint of quantum field theory the situation is different and the field
content of the two classes are in general different and in principle distinguishable.

In this chapter we study the so-called quintessence model as one of the repre-
sentative modified matter models. We will discuss other modified matter models
in Chapter 8 and modified gravity models in Chapter 9.

Caldwell et al. [35] named quintessence a canonical scalar field φ with a potential
V (φ) responsible for the late-time cosmic acceleration.1 Unlike the cosmological

1 According to ancient Greek science, the quintessence (from the Latin “fifth element”) denotes a fifth cosmic
element after earth, fire, water, and air. See the Introduction.

134
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constant, the equation of state of quintessence dynamically changes with time. The
cosmological dynamics for quintessence in the presence of matter and radiation
has a long history – already in the 1980s the cosmological consequences for
such a system had been discussed by a number of authors [26, 28, 29, 30]. The
cosmological evolution can be easily understood by a dynamical system approach,
as we will see in this chapter.

The energy density of quintessence does not need to be very small with respect to
radiation or matter in the early Universe unlike the cosmological constant scenario.
The existence of the so-called “tracker” field [39] is important to alleviate the
coincidence problem of dark energy. The tracker fields correspond to attractor-like
solutions in which the field energy density tracks the background fluid density for
a wide range of initial conditions. We shall discuss conditions under which such
tracking behavior occurs. The constraint on the quintessence energy density in the
early cosmological epoch will be also discussed.

There have been many attempts to construct particle physics models of
quintessence. In so doing one needs to find field potentials flat enough to lead
to the slow-roll inflation today with an energy scale ρDE ≃ 10−123m4

pl and a mass
scale mφ ! 10−33 eV. Although this is an obstacle for the model building, it is not
impossible to construct viable models of quintessence in the framework of particle
physics. We shall discuss this issue in considerable detail.

7.1 Quintessence

Many scalar fields are present in particles physics – including string theory and
supergravity. We use the term “quintessence” to denote a canonical scalar field φ

with a potential V (φ) that interacts with all the other components only through
standard gravity. The quintessence model is therefore described by the action

S =
∫

d4x
√

−g

[
1

2κ2
R + Lφ

]
+ SM , Lφ = −1

2
gµν∂µφ∂νφ − V (φ) ,

(7.1)

where κ2 = 8πG and R is the Ricci scalar. Note that we have taken into account
the matter action SM .

We consider a perfect fluid with the energy density ρM , the pressure PM , and
the equation of state wM = PM/ρM . Here the subscript “M” is used for a general
perfect fluid (including the case of a total fluid) without specifying non-relativistic
matter or radiation. Later we shall use the subscript “m” to specify non-relativistic
matter. The fluid satisfies the continuity equation (2.20), i.e.

ρ̇M + 3H (ρM + PM ) = 0 . (7.2)
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The energy-momentum tensor of quintessence is [73]

T (φ)
µν = − 2

√−g

δ(
√−gLφ)
δgµν

(7.3)

= ∂µφ∂νφ − gµν

[
1
2
gαβ∂αφ∂βφ + V (φ)

]
. (7.4)

In a FLRW background, the energy density ρφ and the pressure Pφ of the field are

ρφ = −T 0
0

(φ) = 1
2
φ̇2 + V (φ) , Pφ = 1

3
T i

i

(φ) = 1
2
φ̇2 − V (φ) , (7.5)

which give the equation of state

wφ ≡ Pφ

ρφ

= φ̇2 − 2V (φ)
φ̇2 + 2V (φ)

. (7.6)

In the flat Universe (K = 0) the following equations of motion follow from
Eqs. (2.17) and (2.18):

H 2 = κ2

3

[
1
2
φ̇2 + V (φ) + ρM

]
, (7.7)

Ḣ = −κ2

2

(
φ̇2 + ρM + PM

)
, (7.8)

where κ2 = 8πG. The variation of the action (7.1) with respect to φ gives

φ̈ + 3H φ̇ + V,φ = 0 , (7.9)

where V,φ ≡ dV/dφ. The Klein–Gordon equation (7.9) can be also derived by
using the continuity equation ρ̇φ + 3H (ρφ + Pφ) = 0 or by combining Eqs. (7.2),
(7.7), and (7.8).

During radiation- or matter-dominated epochs, the energy density ρM of the
fluid dominates over that of quintessence, i.e. ρM ≫ ρφ . We require that ρφ tracks
ρM so that the dark energy density emerges at late times. Whether this tracking
behavior occurs or not depends on the form of the potential V (φ). If the potential
is steep so that the condition φ̇2/2 ≫ V (φ) is always satisfied, the field equation
of state is given by wφ ≃ 1 from Eq. (7.6). In this case the energy density of the
field evolves as ρφ ∝ a−6, which decreases much faster than the background fluid
density.

We require the condition wφ < −1/3 to realize the late-time cosmic acceleration,
which translates into the condition φ̇2 < V (φ). Hence the scalar potential needs to
be shallow enough for the field to evolve slowly along the potential. This situation
is similar to that in inflationary cosmology and it is convenient to introduce the
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following slow-roll parameters [94]

ϵs ≡ 1
2κ2

(
V,φ

V

)2

, ηs ≡ V,φφ

κ2V
. (7.10)

If the conditions ϵs ≪ 1 and |ηs | ≪ 1 are satisfied, the evolution of the field is
sufficiently slow so that φ̇2 ≪ V (φ) and |φ̈| ≪ |3H φ̇| in Eqs. (7.7) and (7.9).

From Eq. (7.9) the deviation of wφ from −1 is given by

1 + wφ =
V 2

,φ

9H 2(ξs + 1)2ρφ

, (7.11)

where ξs ≡ φ̈/(3H φ̇). This shows that wφ is always larger than −1 for a positive
potential. In the slow-roll limit, |ξs | ≪ 1 and φ̇2/2 ≪ V (φ), we obtain 1 + wφ ≃
2ϵs/3 by neglecting the matter fluid in Eq. (7.7), i.e. 3H 2 ≃ κ2V (φ). The deviation
of wφ from −1 is characterized by the slow-roll parameter ϵs .

So far many quintessence potentials have been proposed. Crudely speaking they
have been classified into (i) “freezing models” and (ii) “thawing” models [182].
In class (i) the field was rolling along the potential in the past, but the movement
gradually slows down after the system enters the phase of cosmic acceleration. The
representative potentials that belong to this class are

(i) Freezing models! V (φ) = M4+nφ−n (n > 0) ,! V (φ) = M4+nφ−n exp(αφ2/m2
pl) .

The first potential does not possess a minimum and hence the field rolls down the
potential toward infinity [30, 38]. This appears, for example, in the fermion conden-
sate model as a dynamical supersymmetry breaking [48]. The second potential has
a minimum at which the field is eventually trapped (corresponding to wφ = −1).
This potential can be constructed in the framework of supergravity [50].

In class (ii) the field (with mass mφ) has been frozen by Hubble friction (i.e. the
term H φ̇) until recently and then it begins to evolve once H drops below mφ . The
equation of state of dark energy is wφ ≃ −1 at early times, which is followed by
the growth of wφ . The representative potentials that belong to this class are

(ii) Thawing models! V (φ) = V0 + M4−nφn (n > 0) ,! V (φ) = M4 cos2(φ/f ) .

The first potential is similar to the one of chaotic inflation (n = 2, 4) used in the
early Universe (with V0 = 0) [183], while the mass scale M is very different. Note
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that the model with n = 1 was originally proposed in Ref. [184] to replace the
cosmological constant by a slowly varying field and was revised in Ref. [185] in
connection with the possibility to allow for negative values of V (φ). The Universe
will collapse in the future if the system enters the region with V (φ) < 0. The
second potential appears as a potential for the Pseudo-Nambu–Goldstone Boson
(PNGB). This was introduced by Frieman et al. [47] in response to the first tentative
suggestions that the Universe may be dominated by the cosmological constant. In
this model the field is nearly frozen at the potential maximum during the period in
which the field mass mφ is smaller than H , but it begins to roll down around the
present (mφ ≃ H0).

7.2 Dynamical system approach

In order to study cosmological dynamics in the presence of a scalar field and
a background fluid, it is convenient to introduce the following dimensionless
variables:

x1 ≡ κφ̇√
6H

, x2 ≡ κ
√

V√
3H

. (7.12)

Then Eq. (7.7) can be written as

&M ≡ κ2ρM

3H 2
= 1 − x2

1 − x2
2 . (7.13)

We also define the energy fraction of dark energy

&φ ≡ κ2ρφ

3H 2
= x2

1 + x2
2 , (7.14)

which satisfies the relation &M + &φ = 1. From Eq. (7.8) we obtain

Ḣ

H 2
= −3x2

1 − 3
2

(1 + wM )(1 − x2
1 − x2

2 ) , (7.15)

in which case the effective equation of state (4.96) is given by

weff = wM + (1 − wM )x2
1 − (1 + wM )x2

2 . (7.16)

The equation of state of dark energy (7.6) can be expressed as

wφ = x2
1 − x2

2

x2
1 + x2

2

. (7.17)

Differentiating the variables x1 and x2 with respect to the number of e-foldings
N = ln a together with the use of Eqs. (7.9) and (7.15), we obtain the following
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equations

dx1

dN
= −3x1 +

√
6

2
λx2

2 + 3
2
x1

[
(1 − wM )x2

1 + (1 + wM )(1 − x2
2 )

]
, (7.18)

dx2

dN
= −

√
6

2
λx1x2 + 3

2
x2

[
(1 − wM )x2

1 + (1 + wM )(1 − x2
2 )

]
, (7.19)

where

λ ≡ −V,φ

κV
. (7.20)

The quantity λ characterizes the slope of the field potential, which obeys the
following equation

dλ

dN
= −

√
6λ2(4 − 1)x1 , (7.21)

where

4 ≡ V V,φφ

V 2
,φ

. (7.22)

If λ is constant, the integration of Eq. (7.20) yields an exponential potential

V (φ) = V0e
−κλφ . (7.23)

From Eq. (7.22) this potential corresponds to 4 = 1. In this case the autonomous
equations (7.18) and (7.19) are closed. The cosmological dynamics can be well
understood by studying fixed points of the system [37], as we will see below.

If 4 is constant but λ is not, we have to solve Eq. (7.21) as well as Eqs. (7.18) and
(7.19). For the power-law potential, V (φ) = M4+nφ−n (n > 0, φ > 0), we have that
4 = (n + 1)/n > 1 and x1 > 0, in which case the quantity λ (> 0) decreases from
Eq. (7.21). Of course, for general field potentials, 4 is not necessarily constant. In
such cases we need to obtain the field φ as a function of N by solving Eqs. (7.15)
and (7.19) together with the use of the relation κ

√
V =

√
3Hx2. Then the evolution

of the variable λ = λ(φ) is known accordingly.
In the following we first discuss cosmological dynamics for the exponential

potential given in Eq. (7.23) and then proceed to the case of non-constant λ.

7.2.1 Exponential potential

We can derive fixed points of the system by setting dx1/dN = dx2/dN = 0 in
Eqs. (7.18) and (7.19). The fixed points are in general the solution of the dynamical
system and give a first qualitative description of the phase space. As we discuss
below they can be classified according to their stability properties. If there are no
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singularities or strange attractors, the trajectories with respect to x1(N) and x2(N),
in general to be obtained numerically, run from unstable fixed points to stable
points, coasting along “saddle” points.

When λ is constant they are given by

! (a) (x1, x2) = (0, 0), &φ = 0, weff = wM , wφ : undefined.! (b1) (x1, x2) = (+1, 0), &φ = 1, weff = 1, wφ = 1.! (b2) (x1, x2) = (−1, 0), &φ = 1, weff = 1, wφ = 1.! (c) (x1, x2) = (λ/
√

6, [1 − λ2/6]1/2), &φ = 1, weff = −1 + λ2/3, wφ = −1 +
λ2/3.! (d) (x1, x2) = (

√
3/2(1 + wM )/λ, [3(1 − w2

M )/2λ2]1/2), &φ = 3(1 + wM )/λ2,
weff = wM , wφ = wM .

The point (a) is a fluid-dominated solution (&M = 1). The kinetic energy of
quintessence is dominant for the points (b1) and (b2), in which case ρφ decreases
rapidly (ρφ ∝ a−6) relative to the background density. The point (c) corresponds to
a scalar-field-dominated solution, which exists for λ2 < 6. The cosmic acceleration
is realized if weff < −1/3, i.e. λ2 < 2. In the limit that λ → 0 (i.e. V (φ) → V0)
we recover the equation of state of cosmological constant (weff = wφ = −1). The
point (d) is the so-called scaling solution [37] in which the ratio &φ/&M is a
non-zero constant. The existence of the scaling solution demands the condition
λ2 > 3(1 + wM ) from the requirement &φ < 1. Since wφ = wM for scaling solu-
tions, it is not possible to realize cosmic acceleration unless the matter fluid has an
unusual equation of state (wM < −1/3).

In order to find the stability about the fixed points (x(c)
1 , x

(c)
2 ) derived above, we

consider linear perturbations (δx1, δx2) as follows:

x1 = x
(c)
1 + δx1 , x2 = x

(c)
2 + δx2 . (7.24)

Linearizing Eqs. (7.18) and (7.19) leads to the first-order differential equations

d
dN

(
δx1

δx2

)
= M

(
δx1

δx2

)
, (7.25)

where M is a 2 × 2 matrix whose components depend upon x
(c)
1 and x

(c)
2 . The

eigenvalues of the matrix M are given by

µ1,2 = 1
2

[
a11 + a22 ±

√
(a11 + a22)2 − 4(a11a22 − a12a21)

]
, (7.26)

where aij are the components of the matrix. The general linearized solution around
each fixed point can be written then as

xi = x
(c)
i + αi 1e

µ1N + αi 2e
µ2N , (7.27)
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where αi 1 and αi 2 are coefficients obtained from the eigenvectors. The eigenvalues
determine therefore the behavior of solutions near the fixed points.

Denoting the determinant of the matrix M as D ≡ (a11 + a22)2 − 4(a11a22 −
a12a21), the stability of the fixed points can be generally classified in the following
way:

! (i) Stable node: D > 0 and µ1 < 0, µ2 < 0.! (ii) Unstable node: D > 0 and µ1 > 0, µ2 > 0.! (iii) Saddle point: D > 0 and µ1 < 0, µ2 > 0 (or µ1 > 0 and µ2 < 0).! (iv) Stable spiral: D < 0 and the real parts of µ1 and µ2 are negative.! (v) Unstable spiral: D < 0 and the real parts of µ1 and µ2 are positive.

If D = 0 the matrix M is singular and the system becomes effectively one-
dimensional around the fixed point. This classification can be extended to more
dimensions: a fixed point is stable if all the real parts of the eigenvalues are negative,
unstable if they are all positive, and a saddle when there are negative and positive
real parts. If an eigenvalue vanishes then the stability can be established expanding
to higher orders. We will use this dynamical system approach repeatedly in the
course of this book.

The eigenvalues of the above fixed points are given by (see problem 7.1)

! Point (a): µ1 = − 3
2 (1 − wM ), µ2 = 3

2 (1 + wM ).! Point (b1): µ1 = 3 −
√

6
2 λ, µ2 = 3(1 − wM ).! Point (b2): µ1 = 3 +

√
6

2 λ, µ2 = 3(1 − wM ).! Point (c): µ1 = 1
2 (λ2 − 6), µ2 = λ2 − 3(1 + wM ).! Point (d): µ1,2 = − 3(1−wM )

4

[
1 ±

√
1 − 8(1+wM )[λ2−3(1+wM )]

λ2(1−wM )

]
.

Let us consider a realistic case in which the equation of state of the fluid is in
the region 0 ≤ wM < 1. Then the stability of the fixed points is summarized as
follows.

! Point (a): Saddle.! Point (b1): Unstable node for λ <
√

6 and saddle point for λ >
√

6.! Point (b2): Unstable node for λ > −
√

6 and saddle point for λ < −
√

6.! Point (c): Stable node for λ2 < 3(1 + wM ) and saddle point for 3(1 + wM ) < λ2 < 6.! Point (d): Saddle for λ2 < 3(1 + wM ), stable node for 3(1 + wM ) < λ2 < 24(1+wM )2

7+9wM
and

stable spiral for λ2 > 24(1+wM )2

7+9wM
.

The radiation (wM = 1/3) and matter (wM = 0) dominated epochs can be realized
either by the point (a) or (d). When λ2 > 3(1 + wM ) the solutions approach the
stable scaling fixed point (d) instead of the point (a). In this case, however, the
solutions do not exit from the scaling era (&φ = constant) to connect to the accel-
erated epoch. In order to give rise to tracking behavior in which &φ evolves to catch
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Figure 7.1 The trajectories of solutions for the exponential potential (7.23) with
model parameters λ = 1 and wM = 0. In this case the attractor is the accelerated
point (c) (x1, x2) = (0.4082, 0.9129). The matter point (a) is a saddle, whereas
the points (b1) and (b2) are unstable nodes. The thick curve is the border of the

allowed region characterized by x2 =
√

1 − x2
1 .

up with &M , we require that the slope of the potential gradually decreases. This
can be realized by the field potential in which λ gets smaller with time (such as
V (φ) = M4+nφ−n). We will discuss this case in Section 7.2.2. It is worth mention-
ing that the exponential potential corresponds to the border that separates regions
where such tracking behavior occurs from those where it does not.

The point (c) is the only fixed point giving rise to a stable accelerated attractor
for λ2 < 2. When λ2 < 2, a physically meaningful solution (d) does not exist
because &φ > 1 for both radiation and matter fluids. In this case the radiation- and
matter-dominated epochs are realized by the point (a). Note that when λ is close to
0 the solution starting from the point (a) and approaching the point (c) is not much
different from the cosmological constant scenario. Nevertheless, since the equation
of state of the attractor is given by wφ = −1 + λ2/3, we can still find a difference
from wφ = −1.

In Fig. 7.1 we plot the trajectories of solutions in the (x1, x2) plane for λ = 1
and wM = 0. Since &M ≥ 0 in Eq. (7.13), the allowed region corresponds to

0 ≤ x2 ≤
√

1 − x2
1 . The kinetic-energy-dominated points (b1) and (b2) are unstable

in this case. Since the matter point (a) is a saddle, the solutions starting from
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x2 ≪ 1 temporarily approach this fixed point. The trajectories finally approach the
accelerated fixed point (c), because this is stable for λ2 < 3.

7.2.2 Other potentials

If λ is not constant, we need to solve Eq. (7.21) to know the evolution of λ.
In this case, the fixed points derived in the constant λ case can be regarded as
“instantaneous” fixed points changing in time [186, 187], provided that the time
scale for the variation of λ is much less than H−1.

Let us consider the “freezing” models of quintessence without a potential mini-
mum (such as V (φ) = M4+nφ−n). We then have λ > 0 and x1 > 0 for V,φ < 0 and
λ < 0 and x1 < 0 for V,φ > 0. If the condition

4 = V V,φφ

V 2
,φ

> 1 (7.28)

is satisfied, the absolute value of λ decreases toward 0 irrespective of the sign of
V,φ . This means that the solutions finally approach the accelerated “instantaneous”
point (c) even if λ2 is larger than 2 during radiation and matter eras. The condition
(7.28) is the so-called tracking condition under which the field density eventually
catches up that of the background fluid.

The condition (7.28) can also be derived in the following way [39]. We first
define the following quantity

x ≡ 1 + wφ

1 − wφ

= φ̇2

2V
. (7.29)

Taking the derivative of x in terms of N and using the definition (7.14), we find

V,φ

κV
= ±

√
3(1 + wφ)

&φ

(
1 + 1

6
d ln x

dN

)
, (7.30)

where the plus and minus signs correspond to the cases φ̇ < 0 and φ̇ > 0, respec-
tively. Differentiating Eq. (7.30) with respect to φ, we get the following relation
(see problem 7.2):

4 = 1 + 3(1 − &φ)(wM − wφ)
(1 + wφ)(6 + y ′)

− y ′

(1 + wφ)(6 + y ′)(1 + x)

− 2y ′′

(1 + wφ)(6 + y ′)2
, (7.31)

where y ′ ≡ d ln x/dN . Let us consider the evolution during the radiation- and
matter-dominated epochs where &φ can be negligible relative to 1. If 4 varies
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slowly in time, Eq. (7.31) implies that there is a solution in which wφ is nearly
constant and its derivatives (y ′ and y ′′) are negligible. Hence the equation of state
of quintessence is nearly constant:

wφ ≃ wM − 2(4 − 1)
1 + 2(4 − 1)

. (7.32)

The exponential potential corresponds to 4 = 1, giving the scaling solution with
wφ = wM . If 4 > 1, we have wφ < wM so that the quintessence energy den-
sity evolves more slowly than the background energy density. Hence the track-
ing solution can be realized under the condition (7.28) for 4 nearly constant
(|d(4 − 1)/dN | ≪ |4 − 1|).

Let us consider the inverse power-law potential V (φ) = M4+nφ−n (n > 0). Since
4 = (n + 1)/n in this case, the tracking condition (7.28) is automatically satisfied.
The epoch of the late-time cosmic acceleration is quantified by the condition
λ2 = V 2

,φ/(κ2V 2) < 2, i.e.

φ >
n

4
√

π
mpl , (7.33)

which is independent of the mass scale M . The field value at the onset of the acceler-
ated expansion is of the order of the Planck mass for n = O(1). From the Friedmann
equation (7.7) one can estimate the present potential energy of quintessence to be
V (φ0) ≈ H 2

0 m2
pl, where φ0 ≈ mpl. Then the mass M is constrained to be

M ≈
(

H0

mpl

) 2
4+n

mpl ≈ 10− 46−19n
4+n GeV , (7.34)

where we have used H0 ≈ 10−42 GeV. For n = 2 and n = 4 we have that M ≈
10−1 GeV and M ≈ 104 GeV, respectively. These energy scales can be compatible
with those appearing in particle physics.

Let us consider the thawing models of quintessence in which the field was frozen
in the past and started to move only recently. For example, in the case of the potential
V (φ) = M4−nφn (n > 0), we have 4 = (n − 1)/n < 1 and hence the model does
not satisfy the tracking condition (7.28). Since |λ| = (n/

√
8π )(mpl/|φ|), the late-

time acceleration occurs only in the region |φ| > nmpl/4
√

π . This shows that the
initial field displacement φi and the field mass mφ about the potential minimum
are crucially important to get the cosmic acceleration. As long as |φi | " mpl and
mφ ! H0, the Universe enters a temporary phase of accelerated expansion. The
cosmic acceleration ends after the field |φ| drops down to the order of mpl. The
potential V (φ) = M4 cos2(φ/f ) also exhibits similar cosmic expansion history.
The situation is different for the model in which the potential has a non-vanishing
energy V0 at the potential minimum, e.g., V (φ) = V0 + M4−nφn with V0 > 0. In
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this case |λ| eventually approaches 0 so that the potential energy at φ = 0 can be
responsible for dark energy.

7.2.3 Tracker solutions

Beside fixed points, phase spaces can be characterized also by special trajectories
that “attract” other trajectories. Tracker solutions have approximately constant wφ

and &φ along these special attractors. A wide range of initial conditions converge
to a common, cosmic evolutionary tracker.

In this section we shall discuss tracker solutions in detail. To be concrete we
consider the inverse power-law potential

V (φ) = M4+nφ−n , (n > 0) . (7.35)

We study the evolution of the scalar field in the region φ > 0, i.e. V,φ < 0 and
φ̇ > 0. We take into account both radiation (energy density ρr ) and non-relativistic
matter (energy density ρm) together with the quintessence field. In this case the
total energy density ρM and the pressure PM of fluids in Eqs. (7.7) and (7.8) are
given by ρM = ρr + ρm and PM = ρr/3, respectively. In addition to the variables
x1 and x2 defined in Eq. (7.12) we introduce another variable: x3 ≡ κ

√
ρr/(

√
3H ).

Then the density parameters for quintessence, radiation, and non-relativistic matter
are

&φ = x2
1 + x2

2 , &r = x2
3 , &m = 1 − x2

1 − x2
2 − x2

3 . (7.36)

The effective equation of state defined in Eq. (4.96) reads

weff = x2
1 − x2

2 + x2
3/3 . (7.37)

The equation of state of quintessence is the same as Eq. (7.6).
The equations for x1, x2, and x3 are

dx1

dN
= −3x1 +

√
6

2
λx2

2 + 1
2
x1(3 + 3x2

1 − 3x2
2 + x2

3 ) , (7.38)

dx2

dN
= −

√
6

2
λx1x2 + 1

2
x2(3 + 3x2

1 − 3x2
2 + x2

3 ) , (7.39)

dx3

dN
= −2x3 + 1

2
x3(3 + 3x2

1 − 3x2
2 + x2

3 ) . (7.40)

Using the fact that 4 = (n + 1)/n for the potential (7.35), the equation for λ reads

dλ

dN
= −

√
6
λ2

n
x1 . (7.41)
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Note that λ > 0 because we are considering the case V,φ < 0. Since x1 > 0 (because
φ̇ > 0), the r.h.s. of Eq. (7.41) is negative so that λ decreases with time. The
equations (7.38)–(7.41) are the autonomous equations to be solved numerically.

From Eq. (7.32) the equation of state of quintessence in the tracking regime is
given by

wφ ≃ nwM − 2
n + 2

. (7.42)

If the tracking occurs during the matter-dominated epoch (wM = 0), then wφ ≃
−2/(n + 2). From Eq. (7.30) the following relation holds

1
6

d ln x

dN
= 9(t) − 1 , where 9(t) ≡ λ

√
&φ

3(1 + wφ)
. (7.43)

From the definition of x in Eq. (7.29) we also obtain

1
6

d ln x

dN
= 1

3(1 − w2
φ)

dwφ

dN
. (7.44)

Since wφ is nearly constant for tracker solutions, it follows from Eqs. (7.43) and
(7.44) that 9 ≃ 1. Hence the tracker solution is characterized by

&φ ≃ 3(1 + wφ)
λ2

, (7.45)

where wφ is given in Eq. (7.42). Recall that the scaling fixed point (d) for constant
λ corresponds to &φ = 3(1 + wM )/λ2 and wφ = wM . In this case the tracker
solution (7.45) recovers the scaling solution in the regime λ2 > 3(1 + wM ) (under
which the scaling solution is stable). The accelerated fixed point (c) for constant
λ corresponds to &φ = 1 and wφ = −1 + λ2/3. The tracker solution (7.45) also
covers this case and the accelerated solution is stable for λ2 < 3(1 + wM ). Hence
the tracker solution can be regarded as a stable attractor. For constant λ the stable
scaling solution (d) does not exit to the accelerated attractor (c), but for decreasing
λ the transition to the stable accelerated phase occurs through the tracking solution.

Unlike the cosmological constant scenario we are interested in the case where
the energy density of quintessence is not completely negligible relative to the
background energy density even during the radiation era. Given the fact that λ grows
toward the past, the parameter 9 defined in Eq. (7.43) can be much larger than
unity at the beginning of the radiation era. Under the initial conditions 9(ti) ≫ 1
the Universe finally converges to the tracking solution in the following way [38].

! (i) Since 9 ≫ 1 at the initial stage, it follows from Eqs. (7.43) and (7.44) that wφ is
driven to the maximum value, wφ → 1. Since this corresponds to the stage in which the
kinetic energy of quintessence is dominant, the field rolls down the potential quickly.
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Figure 7.2 Evolution of &φ , &m, and &r for the model V (φ) = M5φ−1 versus
the redshift z. Initially &φ rapidly decreases because the field equation of state is
given by wφ ≃ 1. This is followed by the phase with a nearly frozen scalar field
so that &φ begins to grow. Finally the solution enters the tracking regime in which
the field energy density tracks the background fluid density. Initial conditions
are chosen to be x1 = 5.0 × 10−5, x2 = 1.0 × 10−8, x3 = 0.9999, and λ = 109 at
log10(z + 1) = 7.21.

! (ii) During the rapidly rolling phase of the scalar field both λ and &φ decrease, which
leads to the decrease of 9. The quantity 9 eventually reaches a tracker value, 9 = 1.
However, Eqs. (7.43) and (7.44) imply that dwφ/dN > 0 for 9 > 1. Hence wφ stays
around wφ = 1 up to the moment at which 9 crosses 1. In this situation the kinetic
energy of quintessence is too large for φ to join the tracker solution. The field overshoots
the tracker solution with a fast rolling down along the potential.! (iii) After the overshooting of the tracker solution, one has 9 < 1 so that wφ begins to
decrease and approaches the value −1. Once wφ becomes close to −1, the field is almost
frozen so that λ becomes close to 0. However &φ starts to grow and hence this leads
to the increase of 9. As long as 9 < 1, wφ remains around −1 because the condition
dwφ/dN < 0 is satisfied.! (iv) Once 9 becomes larger than 1, wφ begins to increase from −1. Then the field
starts to evolve again along the potential hill. The sign of Eq. (7.43) changes again.
Consequently 9 approaches unity after a few oscillations and the field enters the tracking
regime.

In Fig. 7.2 we plot an example for the evolution of &φ , &m, and &r for the
potential V (φ) = M5φ−1 . The present epoch (z = 0 and N = N0) is identified as
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Figure 7.3 Evolution of wφ for the model V (φ) = M5φ−1 with two different
initial conditions. The solid curve corresponds to the case shown in Fig. 7.2. The
dashed curve corresponds to the case with initial conditions x1 = 1.0 × 10−8,
x2 = 1.0 × 10−8, x3 = 0.9999, and λ = 109 at log10(z + 1) = 7.23. Both curves
finally converge to the tracking solution whose equation of state is given by
wφ ≃ −2/3 during the matter-dominated epoch (10 ! z ! 103).

&φ = 0.72. The relation between z and N is given by z = eN0−N − 1. Here the
Universe is initially in the regime 9 ≫ 1 and wφ ≃ 1 so that the quintessence
energy density rapidly decreases (see also the solid curve in Fig. 7.3). The equation
of state wφ starts to decrease for 9 < 1 and stays around wφ ≃ −1 for the redshift
104 ! z ! 105. The field is nearly frozen in this regime so that &φ grows rapidly.
The equation of state wφ begins to grow from −1 and then it approaches a nearly
constant value after small oscillations. Note that the tracking solution in this case
corresponds to the redshift z ! 103, i.e. the matter-dominated epoch (wM = 0).
Hence from Eq. (7.42) it follows that the equation of state in the tracker regime is
given by wφ ≃ −2/3. In fact the numerical simulation in Fig. 7.3 shows that wφ is
close to −2/3 for the redshift 10 ! z ! 103. Recall that in order to derive Eq. (7.32)
from Eq. (7.31) we have used the approximation that 4 is nearly constant. Since 4

begins to vary once the contribution of the quintessence energy density becomes
important, the equation of state wφ starts to decrease in the low-redshift region
(z ! 10).

In Fig. 7.3 we also show the evolution of wφ for another initial condition as a
dashed curve. Since the kinetic energy of quintessence does not dominate over its
potential energy at the initial stage, the early evolution of wφ is different from the
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case of the solid curve discussed above. However this solution also enters the track-
ing regime so that the late-time evolution of wφ is the same as the “overshooting”
case. Hence the solutions finally approach the tracking attractor independent of
initial conditions. This property is attractive to alleviate the coincidence problem.
However since &φ grows in the future to unity it remains to be explained why it
equals &m near the present epoch.

7.3 Early dark energy

One of the differences between quintessence and the !CDM model is that the
energy density of the former can contribute to the total energy density even in the
early epoch of the cosmological evolution. It is then possible to place constraints
on quintessence models by studying the evolution of the field during radiation and
matter dominated epochs. For the exponential potential (7.23) we have shown that
there exists the scaling solution (d) with &φ = 3(1 + wM )/λ2 and wφ = wM , which
is stable for λ2 > 3(1 + wM ). In this case the solutions approach the scaling fixed
point (d) rather than the saddle fluid dominated point (a) in radiation- and matter-
dominated epochs. For scaling solutions the energy density of the field decreases
in proportion to the background fluid. Since &φ = 4/λ2 and &φ = 3/λ2 during
radiation and matter eras, respectively, the existence of stable scaling solutions
requires the condition λ2 > 4.

Of course the solutions need to finally exit from the scaling regime to the epoch
dominated by dark energy. Since the exponential potential V (φ) = V0e

−κλφ with
λ2 > 4 is too steep to give rise to the late-time acceleration, we require that the
potential becomes shallow or it has a minimum to slow down the movement of the
scalar field. One explicit model is the double exponential potential [188]

V (φ) = V1e
−κλφ + V2e

−κµφ . (7.46)

Let us consider the case λ2 > 4 and µ2 < 2. During radiation and matter eras
the field is in a scaling regime driven by the steep potential V (φ) ≃ V1e

−κλφ . The
solutions exit from the scaling era to the epoch of cosmic acceleration once the
exponential potential with the slope µ becomes important. An attractive point of
this model is that the solutions are temporarily trapped by the scaling solution
irrespective of the initial conditions of the field, see Fig. 7.4. Other potentials, as
e.g., V (φ) = V0 [cosh(λφ) − 1]p, exhibit similar properties [189].

This scenario can be generalized to an N -scalar quintessence whose potential is
the sum of exponential potentials with multiple fields (φ1, φ2, . . . , φN ):

V =
N∑

i=1

Vie
−κλiφi , (7.47)
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Figure 7.4 Evolution of the quintessence energy density ρφ and the background
fluid density ρr + ρm for the model (7.46) with parameters λ = 20 and µ = 0.5.
Several initial conditions are chosen to admit an &φ = 0.7 flat Universe today.
The solid line shows the evolution which emerges from equipartition at the end of
inflation and the dotted line represents the evolution of ρr + ρm. From Ref. [188].

where Vi and λi are constants. This model leads to the so-called assisted inflation
phenomenon where several scalar fields cooperate to drive the cosmic acceleration
even if none is able to individually. In the context of inflation Liddle et al. [190]
showed that the N -scalar fields evolve to give dynamics matching a single-field
model with an effective slope λeff defined by (see problem 7.3)

1
λ2

eff

=
N∑

i=1

1
λ2

i

. (7.48)

The solutions approach the stable accelerated attractor for λ2
eff < 2. If there is a

large number of exponential potentials with different slopes and initial conditions,
more and more fields would join the assisted quintessence attractor as the Universe
expands so that λeff reduces. Even if one of the exponential potentials with a large
slope dominates at the early epoch of the cosmological evolution, the solutions
eventually exit from the (nearly) scaling regime to the accelerated attractor [191,
192, 193].

For the quintessence potentials given by Eqs. (7.46) and (7.47), the field energy
density is non-negligible relative to the background density even in the early
epoch of cosmological evolution. There is a class of models dubbed quintessential
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inflation [194] in which a single scalar field φ is responsible for both inflation and
dark energy. If the field has a potential minimum just after inflation, it decays to
radiation during the reheating stage. For the potential, V (φ) = ! + m2

φφ2/2, one
can realize inflation for mφ ≃ 10−6mpl [94] and the late-time cosmic acceleration
for ! ≃ 10−123m4

pl. However, the field is stabilized at the potential minimum soon
after inflation. Hence this model cannot be distinguished from the cosmological
constant scenario.

A potential without a minimum can be described as [194]

V (φ) =
{

λ(φ4 + M4) (φ < 0) ,

λM4/ [1 + (φ/M)n] (φ ≥ 0) .
(7.49)

In the regime of a negative scalar field with |φ| ≫ M , this corresponds to the
self-coupling chaotic inflation potential: V (φ) ≃ λφ4. The COBE normalization
constrains the coupling λ to be λ ≈ 10−13 [94]. In the positive field regime with
φ ≫ M , Eq. (7.49) reduces to the inverse power-law potential: V (φ) ≃ M̃4+nφ−n

with M̃ ≡ λ1/(4+n)M . From the requirement (7.34) of the cosmic acceleration today,
the mass scale M̃ is constrained to be M̃ ≈ 10− 46−19n

4+n GeV. Since the potential does
not possess a minimum, the reheating after inflation should proceed through grav-
itational particle production rather than through direct matter couplings between
the field φ and other scalar fields. This mechanism is generally inefficient to lead
to a complete decay of the inflaton field to radiation [195]. As we will see below,
it is problematic if the quintessence energy density is comparable to the radiation
density at the epoch of nucleosynthesis. We note, however, that the instant preheat-
ing scenario proposed by Felder et al. [196] may alleviate the reheating problem
of quintessential inflation through the rapid decay of φ into another field χ with an
interaction (1/2)g2φ2χ2.

Let us discuss observational constraints on the density parameter &φ in the early
epoch of cosmological evolution. The tightest bound comes from the Big Bang
Nucleosynthesis (BBN), which provides an upper bound on &φ from a number
of observations around the temperature T = 1 MeV. The presence of the scaling
scalar field leads to a larger expansion rate of the Universe. This leads to the change
of the ratio of neutrons to protons at freeze-out and hence the abundances of light
elements such as helium (He) and deuterium (D) are modified.

Using the observed values for the mass fraction of helium, YHe = 0.244 ± 0.002,
and a relative abundance for deuterium, D/H= (3.0 ± 0.4) × 10−5, one can find
constraints on the parameter space (&BBN

φ h2, &
(0)
b h2). Here &BBN

φ is the density
parameter of quintessence at the BBN epoch. As we see in Fig. 7.5, the bound on
&BBN

φ is given by [197]

&BBN
φ < 0.045 , (7.50)
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Figure 7.5 Observational contours (1, 2, 3σ confidence levels) on the parameters
(&BBN

φ ,&
(0)
b h2) derived from the abundances YHe = 0.244 ± 0.002 and D/H =

(3.0 ± 0.4) × 10−5. From Ref. [197].

at the 95% confidence level. Note that the bound on the density parameter &BBN
φ can

be interpreted in terms of the maximum number of relativistic degrees of freedom
9Neff coming from the scalar field [33]:

&BBN
φ <

79Neff/4
10.75 + 79Neff/4

, (7.51)

where 10.75 in the denominator is the number of effective degrees of freedom in the
standard model. Then the constraint (7.50) corresponds to the bound 9Neff < 0.3. If
we use a more conservative bound 0.9 < 9Neff < 1.5 adopted in Refs. [198, 199],
the constraint on &BBN

φ becomes weaker: &BBN
φ < 0.13-0.2 [33].

The presence of scaling radiation and matter eras also modifies the CMB power
spectrum. There are several effects on CMB [17, 197]: (i) the change of the
radiation–matter equality modifies the structure of CMB acoustic peaks, (ii) the
change of the matter content of the Universe leads to a shift for the position of
peaks, (iii) the modified evolution of gravitational potential changes the large-scale
CMB spectrum through the ISW effect. Using the Boomerang and DASI data,
Bean et al. [197] derived the constraint &BBN

φ < 0.39 at the 95% confidence level,
which is weaker than the bound (7.50).
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Taking the bound (7.50), the constraint on λ for the model (7.46) is given by

λ > 9.4 . (7.52)

If we take a conservative bound &BBN
φ < 0.2, the constraint becomes λ > 4.5.

In Section 8.3 we will see that another way to realize an early dark energy
scenario is to couple dark energy and dark matter.

7.4 Quintessence potentials in particle physics

We now turn to the construction of quintessence models under the framework
of particle physics. It is generally not so easy to construct viable quintessence
models because the energy scale of dark energy is too low (ρφ ≃ 10−123 m4

pl)
relative to typical scales appearing in particle physics. In order to lead to the
cosmic acceleration today we require that the potential is flat enough to satisfy the
condition |ηs | ! 1, where ηs is the slow-roll parameter defined in Eq. (7.10). This
corresponds to the condition

∣∣∣∣
M2

plV,φφ

V

∣∣∣∣ ! 1 , (7.53)

where Mpl is the reduced Planck mass. Hence the quintessence mass squared,
m2

φ ≡ V,φφ , needs to satisfy

|m2
φ| ! V0/M

2
pl ≃ H 2

0 , → |mφ| ! H0 ≈ 10−33 eV , (7.54)

where V0 is the potential energy today. This means that to be compatible with
the present cosmic acceleration the field mass must be extremely small. Such a
light scalar field can give rise to couplings to ordinary matter which should lead to
observable long-range forces [36]. Moreover the mass is unstable against radiative
corrections in the absence of supersymmetry. The radiative corrections can disrupt
the flatness of the quintessence potential required for the cosmic acceleration [200].

Despite these difficulties it is not entirely hopeless to construct viable models of
quintessence. In the following we shall present a number of interesting attempts to
obtain quintessence potentials based on particle physics.

7.4.1 A fermion condensate model in global supersymmetric theory

The inverse power-law potential (7.35) appears in globally supersymmetric QCD
theories with Nc colors and Nf (< Nc) flavors [48]. This theory is based upon
quarks φi (i = 1, 2, . . . , Nf ) in fundamentals of SU (Nc) and anti-quarks φ̄i in anti-
fundamentals of SU (Nc). The effective degrees of freedom below the scale of the
breaking of the gauge symmetry M are the fermion condensate fields Aij ≡ φi φ̄j .
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From supersymmetry and anomaly-free global symmetries the superpotential W is
constrained to be [201]

W = (Nc − Nf )M
3Nc−Nf
Nc−Nf (det A)

− 1
Nc−Nf . (7.55)

We are interested in the dynamics of the field expectation values with pertur-
batively flat directions, i.e. ⟨φij ⟩ = ⟨φ̄†

ij ⟩, where j = 1, . . . , Nc is the gauge index.
In this case the so-called D-term, Dµ ≡ φ

†
i t

µφi − φ̄i t
µφ̄

†
i , vanishes in the scalar

potential (tµ is a generator of the gauge group). Then, for the flat Kähler potential,
the field potential in the global supersymmetric theory is given by

V (φi , φ̄i) =
Nf∑

i=1

(
|Fi |2 + |Fī |2

)
, (7.56)

where Fi = ∂W/∂φi and Fī = ∂W/∂φ̄i . Under gauge and flavor rotations, ⟨φij ⟩
can be diagonalized in the form ⟨φij ⟩ = ⟨φ̄†

ij ⟩ = φiδij for 1 ≤ j ≤ Nf and ⟨φij ⟩ =
⟨φ̄†

ij ⟩ = 0 for Nf < j ≤ Nc. Taking the expectation values of all Nf scalars to
be equal, i.e. ⟨φi⟩ = φ (i = 1, . . . , Nf ), the determinant in Eq. (7.55) is given by
det A = φ2Nf . Hence the field potential (7.56) reads

V (φ) = λM4+nφ−n , (7.57)

where λ is a dimensionless constant and

n = 2
Nc + Nf

Nc − Nf

. (7.58)

Thus the inverse power-law potential appears with the power n dependent on Nc

and Nf . In the tracking regime, Eq. (7.42) gives the field equation of state

wφ ≃ Nc + Nf

2Nc

wM − Nc − Nf

2Nc

. (7.59)

From Eq. (7.33) the field φ is required to be at least of the order of mpl today. Hence
the potential energy needs to satisfy λM4+nm−n

pl ≃ ρ(0)
c , where ρ(0)

c is the present
cosmological density.

7.4.2 Supergravity models

The fermion condensate model discussed above corresponds to the globally super-
symmetric theory. In particular the field φ becomes of the order of the Planck mass
today. This implies that supergravity corrections to such models need to be taken
into account. Recall that the potential for chiral scalar fields ϕi in the presence
of supergravity corrections is given by Eq. (6.23). The appearance of the term
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(−3κ2|W |2) can give rise to a negative potential unless the superpotential W and
the Kähler potential K are appropriately chosen.

For example, Brax and Martin [50] adopted a superpotential W = M4+αϕ−α

(as in the fermion condensate model) and a flat Kähler potential K = ϕϕ∗. In
this case the kinetic field Lagrangian in Eq. (6.26) yields Lkin = −(1/2)∂µφ∂µφ

by introducing a real scalar field φ defined by ϕ = ϕ∗ = φ/
√

2. Since DiW =
M3+αϕ−α(−αϕ−1 + κ2ϕ∗) and Kϕϕ∗ = 1 in Eq. (6.23), the field potential is given
by

V (φ) = e
1
2 κ2φ2

M6+2α

(
φ2

2

)−α−1 [
α2 − 1

2
(2α + 3)κ2φ2 + 1

4
κ4φ2

]
. (7.60)

This potential becomes negative for φ of the order of the Planck mass. Hence this
cannot be used for realizing the cosmic acceleration today. In order to eliminate
the negative contribution, one can impose the constraint ⟨W ⟩ = 0 [50]. In this case
the scalar potential is

V (φ) = eκ2K

(
∂W

∂ϕ

) (
∂W

∂ϕ

)∗
= M̃6+2α

φ2+2α
e

1
2 κ2φ2

, (7.61)

where M̃6+2α ≡ 2α+1α2M6+2α. This has a potential minimum at φmin =√
2(1 + α)/κ with a positive energy V (φ) = M̃6+2ακ2+2α(e/(2 + 2α))1+α. When

α = 2, for example, we have that V (φ) ≃ 10−47 GeV4 for M̃ ≃ 106 GeV.
While it is possible to realize the condition ⟨W ⟩ = 0 in the presence of matter

fields in addition to quintessence [50, 51], this is in general a tight restriction
because such a constraint is not easily compatible with models of supersymmetry
breaking. Generally, for different choices of the Kähler potential, the field potential
can be made positive definite. Recall that the Kähler potential of the form (6.28),
which appears at tree-level supersymmetric theories, leads to the cancellation of
the negative term (−3κ2|W |2). Let us then consider a model with the Kähler
potential K = −[ln (κϕ + κϕ∗)]/κ2 and the superpotential W = M4+αϕ−α [52].
For this choice the kinetic term becomes canonical by introducing a new scalar
field: φ = ln(κϕ)/(

√
2κ). In this case the field potential (6.23) becomes of the

exponential type

V (φ) = M̃4e−
√

2βκφ , (7.62)

where M̃4 ≡ κβ+1Mβ+5(β2 − 3)/2 and β ≡ 2α + 1. For the positivity of the poten-
tial we require that β >

√
3 and hence the slope of the potential, λ ≡

√
2β, sat-

isfies the condition λ >
√

6. In this case there exists a scaling solution in which
the quintessence energy density &φ is proportional to the background density &M .
Note, however, that the shape of the potential needs to be modified at late times in
order to enter the epoch dominated by dark energy.
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A more general Kähler potential can also be studied [52]:

K =
[
ln

(
κϕ + κϕ∗)]2

/κ2 , (7.63)

with the superpotential W = M3+αϕ−α. We consider a real scalar field with ϕ = ϕ∗.
By introducing a new scalar field

φ ≡
∫ √

2Kϕϕ∗ dϕ = − 2
3κ

[1 − ln(2κϕ)]3/2 , (7.64)

the kinetic term becomes canonical [the integration constant is set to be 0 in
Eq. (7.64)]. The field potential in this case is given by (see problem 7.4)

V = M̃4 [
2X2 + (4α − 7)X + 2(α − 1)2] 1

X
exp

[
(1 − X)2 − 2α(1 − X)

]
,

(7.65)

where M̃4 ≡ 22ακ2+2αM6+2α and

X ≡ 1 − ln(2κϕ) = (−3κφ/2)2/3 . (7.66)

The field exists in the region −∞ < φ < 0 and hence the parameter X is in the range
0 < X < ∞. When |κφ| ≪ 1 (i.e. X ≪ 1), we have that V ∝ (−φ)−2/3. Mean-
while, when |κφ| ≫ 1 (i.e. X ≫ 1), the potential behaves as V ∝ (−φ)2/3eφ4/3

.
In the intermediate region there exists a potential minimum at φ = φmin with a
positive energy density.

In Fig. 7.6 we plot the field potential for α = 5 and M = 5.36 × 1010 GeV. In
this case the potential minimum corresponds to κφmin ≃ −0.02 with V (φmin) ≃
10−47 GeV4 (i.e. the present cosmological energy density). If the field starts to
evolve from the region |κφ| ≪ 1, its dynamics during radiation and matter eras is
dominated by the potential V (φ) ∝ φ−2/3. Then the field will show the tracking
behavior as we have already explained previously for the inverse power-law poten-
tial. Since the potential minimum exists in the present case, the field is eventually
trapped at this point so that the equation of state approaches wφ = −1. If the field
is initially in the region |κφ| ≫ 1, the exponential term in Eq. (7.65) is important
so that the quintessence density exhibits a scaling-like behavior relative to the
background density [52]. The field finally approaches the potential minimum and
leads to the late-time cosmic acceleration.

A problem for supersymmetric quintessence models is associated with the fact
that supersymmetry must be broken if it is to be realized at all in nature. The
supersymmetry breaking is supposed to occur for the scale MS " 1010 GeV in
the gravity-mediated scenario to have a viable low-energy phenomenology. The
squared of the breaking scale MS is related to the first term (so-called F -term) on the
r.h.s. of Eq. (6.23), i.e. ⟨F ⟩ ∼ M2

S , if we write the potential (6.23) in the form V =
F 2 − 3eκ2K |W |2. In order to cancel the F -term contribution and give only a small
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Figure 7.6 The potential (7.65) in the unit of GeV4 (multiplied by the factor
1047) for the model parameters α = 5 and M = 5.36 × 1010 GeV. There exists a
potential minimum around κφ = −0.02 in this case.

amount of dark energy we require that W ∼ ⟨F ⟩κ−1 ∼ m3/2κ
−2, where m3/2 is the

gravitino mass.2 Recall that the superpotential W = M3+αϕ−α adopted to derive
the potential (7.65) corresponds to the scale W ∼ M3+ακα ∼ (10−3 eV)2κ−1 ≪
⟨F ⟩κ−1 today, where we have used the fact that M̃4 ∼ (M3+ακ1+α)2 ∼ (10−3 eV)4.
This shows that the superpotential W = M3+αϕ−α cannot be a dominant source for
the supersymmetry breaking. If we consider the superpotential of the form W =
M3+αϕ−α + m3/2κ

−2, then the scalar potential acquires the following modification
[52]

δV = m2
3/2κ

−2 + m3/2M
3+ακ−α . (7.67)

The first term leads to a significant disruption of the quintessence potential. The
supersymmetry breaking with ⟨F ⟩ > 1010 GeV gives rise to an energy scale of the
order m2

3/2/M
2
pl, which is much greater than the scale of dark energy.

While the above problem looks serious, it is anticipated that some string theory
models may allow a possibility to overcome this problem due to mechanisms of
unconventional supersymmetry breaking. For example, Witten [202] advocated
that we may live in a 4-dimensional world with unbroken supersymmetry and that

2 The gravitino is a supersymmetric fermionic partner of the graviton. Since it mediates supergravity interactions,
the broken supersymmetry gives rise to a gravitino mass directly related to the supersymmetry breaking
scale.
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the mass splitting between the superpartners occurs as a result of the excitations
of the system while maintaining a supersymmetric ground state. If this is the case,
we do not need to worry about the contribution of the supersymmetry breaking
terms to the quintessence potential. Recall also that in “no-scale” supersymmetric
models discussed in Section 6.5.1 the supersymmetry breaking F -term vanishes at
tree-level. Hence there exists “no-scale supersymmetry” to protect a small mass at
least in the framework of supergravity.

We also have a class of supergravity models where the above-mentioned problem
can be avoided. In the so-called N ≥ 2 extended supergravity models the mass
squared of any ultra-light scalar fields can be quantized in unit of squared of the
Hubble constant H0 of de Sitter solutions [203, 204, 205]. The de Sitter solutions
correspond to the extrema of an effective potential V (φ) for some scalar field
φ. Around the extremum at φ = 0 the field potential is given by V (φ) = ! +
(1/2)m2

φφ2 with ! > 0. In extended supergravity theories the mass mφ is always
related to ! via the relation m2

φ = n!/(3M2
pl), where n is an integer of the order

of unity [203, 204]. Since H 2
0 = !/(3M2

pl) in the de Sitter space, it follows that
m2

φ = nH 2
0 . In the N = 2 gauged supergravity we have n = 6 for a stable de Sitter

vacuum [205], giving the field potential

V (φ) = 3H 2
0 M2

pl

[
1 +

(
φ/Mpl

)2
]

. (7.68)

The N = 8 supergravity theories correspond to a negative mass squared m2
φ =

−6H 2
0 [204] and the resulting potential is

V (φ) = 3H 2
0 M2

pl

[
1 −

(
φ/Mpl

)2
]

. (7.69)

The constant ! determines the energy scale of the supersymmetry breaking. In
order for the above models to be compatible with the cosmic acceleration today
we require that ! ≃ H 2

0 M2
pl ≃ 10−47 GeV4. The supersymmetry breaking scale is

so small that the ultra-light mass mφ of the order of 10−33 eV can be protected
against quantum corrections. Note that the potentials (7.68) and (7.69) fall into
the class of thawing models in which the field is nearly frozen until recently and
starts to evolve when the Hubble parameter decreases and becomes comparable
to |mφ|.

7.4.3 Pseudo-Nambu–Goldstone models

There is another class of models based on Pseudo-Nambu–Goldstone Bosons
(PNGB) to protect the light mass of quintessence by the U (1) symmetry. An
example of a very light PNGB is the axion field, which is associated with the
Peccei–Quinn (PQ) symmetry [79] introduced to address the strong CP problem.
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When a global U (1)PQ symmetry is spontaneously broken, the axion appears as
an angular massless field φ with an expectation value ⟨ϕ⟩ = fse

iφ/fs of a complex
scalar at the scale fs .

The key model parameters of PNGB models are the mass scale of spontaneous
symmetry breaking f and the energy scale of explicit symmetry breaking µ. The
representative PNGB potential is given by [47]

V (φ) = µ4 [1 + cos(φ/f )] . (7.70)

The mass squared of the field, m2
φ = V,φφ , is m2

φ = −µ4/f 2 at φ = 0. In the limit
that µ → 0 the potential (7.70) vanishes so that the symmetry becomes exact. In
this situation radiative corrections to V do not give rise to an explicit symmetry-
breaking term because they are simply proportional to µ4. Hence the small mass
associated with dark energy (mφ ≃ 10−33 eV) can be protected against radiative
corrections [47].

If the PNGB potential (7.70) is responsible for the cosmic acceleration today,
we require that H 2

0 ≈ µ4/M2
pl. Hence the field mass squared around φ = 0 can be

estimated as

m2
φ ≈ −

M2
pl

f 2
H 2

0 . (7.71)

The slow-roll condition, |ηs | = |V,φφ/(κ2V )| ! 1, leads to f " Mpl. From
Eq. (7.71) the field mass is constrained to be |mφ| ! H0. Hence the field begins to
evolve only recently from the potential maximum when the Hubble rate H drops
down to the order of |mφ|. The PNGB model, which belongs to the class of thawing
quintessence models, leads to similar cosmological evolution to the corresponding
evolution in the N = 8 supergravity model in Eq. (7.69).

There have been a number of attempts to explain the small energy scale µ ≈
10−3 eV required for the PNGB quintessence in supersymmetric theories [206, 207,
208, 209]. For instance, Hall et al. [209] proposed an interesting idea to relate µ

with two fundamental scales, the Planck scale Mpl ≈ 1018 GeV and the electroweak
scale v ≈ 103 GeV. There is an induced seesaw scale, v2/Mpl ≈ 10−3 eV, which
is the same order as µ. If we assume the relation µ ≈ v2/Mpl then we have
|m2

φ| ≈ µ4/f 2 ≈ v8/M6
pl, where we have used f ≈ Mpl (f can be fixed because

Mpl and v are two fundamental scales of the theory). This gives rise to the mass of
the order

|mφ| ≈ v4

M3
pl

≈ 10−33 eV , (7.72)

as required for quintessence.



160 Dark energy as a modified form of matter I: Quintessence

How is the relation µ ≈ v2/Mpl justified? Hall et al. considered models with an
axion in a hidden sector of the theory [209]. If the fundamental scale of supersym-
metry breaking in nature is of the order of the TeV scale (i.e. v ≈ 103 GeV), any
sector of the theory that feels this symmetry breaking indirectly through gravity
mediation has an effective supersymmetry breaking scale mB = v2/Mpl. Let us
consider the case in which the hidden sector has a supersymmetric gauge interac-
tion which acts on chiral superfields Q and Qc. After the supersymmetry breaking
the squarks and gluinos acquire a mass of the order of mB . We also assume that
the quark acquires the same order of mass. If the hidden sector has a PQ symmetry
broken at f of the order of Mpl, the interacting Lagrangian between the axion φ

and the quarks q, qc at the scale M is given by

Laxion = mqqqceiφ/f + h.c. , (7.73)

where mq (≈ mB) is the quark mass. The axion has a PQ symmetry U (1)PQ broken
around the Planck scale, whereas the quark bilinear qqc has an axial U (1) symmetry
denoted as U (1)A. The interaction (7.73) breaks the U (1)PQ × U (1)A symmetry
explicitly. If at least one of the quark flavors in Eq. (7.73) has a mass smaller than
the order of M then a quark condensate forms such that ⟨qqc⟩ ≈ M3eiφ̃/M with
an angular field φ̃. Then the interaction term (7.73) gives rise to the following
potential

V = µ4 cos
(

φ

f
+ φ̃

M

)
, µ4 = mqM

3 . (7.74)

Since both M and mq are close to mB , it follows that the scale µ is of the order
of the seesaw scale mB , i.e. µ ≈ mB = v2/Mpl. Interestingly the axion model in a
hidden sector provides a natural explanation for the smallness of µ as well as mφ

without having an instability problem against radiative corrections.

7.4.4 Dilatonic quintessence

In string theory, gauge and gravitational couplings are not fixed a priori, but are
related to the vacuum expectation value of a scalar field, the dilaton φ [64, 210].
Precisely speaking, at the tree level in the string loop expansion, the vacuum
expectation value of the 4-dimensional dilaton φ is related to the gauge cou-
pling αGUT and to the (reduced) Planck mass Mpl through eφ ≃ M2

s /M2
pl ≃ αGUT,

where Ms ≡
√

2/α′ is the string mass and α′ is a universal Regge slope param-
eter of the string. The weak coupling regime corresponds to the dilaton coupling
with eφ ≪ 1.

The presence of the dilatonic coupling can give rise to the violation of the
equivalence principle as well as the variation of the coupling constants. Usually it
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is assumed that the dilaton and other moduli of string theory acquire masses by
some non-perturbative mechanism, in such a way that their long-range interactions
are suppressed and their vacuum expectation values (VEVs) are frozen at some
phenomenologically reasonable value. An alternative approach is that the dilaton
decouples from other fields at the level of the low-energy effective action in the
regime eφ " 1. This is the runaway dilaton scenario [211, 212] in which the gauge
and gravitational coupling with dilaton approaches constant values in the limit that
eφ → ∞.

To be more explicit, let us consider a generic effective string action at lowest
order in the Regge slope parameter α′:

S = 1
α′

∫
d4x

√
−g

[
Bg(φ)R + Bφ(φ) g µν ∂µφ ∂νφ − α′U (φ)

+ higher order terms
]
+ Sm[φ, gµν, (i] , (7.75)

where U (φ) is a potential of the dilaton field φ and Sm is the action for matter
fields (i which are generally coupled to the dilaton. The dilaton-dependent loop
effects as well as the non-perturbative corrections are encoded, at the lowest order
of approximation in α′, in the coupling functions Bi(φ) (where i = g, φ, . . .). In
the weak coupling regime where the tree-level string coupling g2

s ≡ eφ is much
smaller than unity, the functions Bi(φ) can be expressed by an expansion of the
form

Bi(φ) = e−φ + c0 + c1e
φ + · · · (eφ ≪ 1). (7.76)

In the weak coupling limit (g2
s → 0) the first term dominates to give the couplings

Bi(φ) ≃ e−φ .
In the runaway dilaton scenario the effective couplings Bi(φ) reach extrema at

infinite coupling eφ → ∞ and they exhibit the following general behavior

Bi(φ) = Ci + Die
−φ + O(e−2φ) (eφ ≫ 1). (7.77)

This is motivated by the fact that the couplings Bi are, for the most part, induced
by the quantum corrections of many moduli and gauge bosons of the theory [213].
In this scenario the dilaton gradually decouples from gravity and the matter fields
by evolving towards infinity: φ → ∞. The coefficients Ci and Di are of order
102 and unity, respectively, where the coefficients Ci correspond to the number of
independent degrees of freedom which have been integrated over.

The action (7.75) can be transformed to the so-called Einstein frame action in
which the Ricci scalar R̃ does not have an explicit coupling with the field φ. We
introduce the conformally related Einstein frame metric

g̃µν = &2 gµν , (7.78)
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where &2 is called a conformal factor. For the action of the form S =∫
d4x

√−g f (φ, R) + · · · we obtain the Einstein frame action SE =∫
d4x

√
−g̃ R̃/(2κ2) + · · · by choosing [214]3

&2 = 2κ2 ∂f

∂R
. (7.79)

For the theories given by (7.75), this corresponds to

&2 = 2κ2 Bg

α′ = Bg

M2
s

M2
pl

, (7.80)

where we have introduced the string mass scale Ms =
√

2/α′ as well as the reduced
Planck mass Mpl = 1/κ . Since the string frame action (7.75) approaches the Gen-
eral Relativistic action in the limit φ → ∞, it follows that M2

pl ≃ CgM
2
s [211, 212].

Under the conformal transformation (7.78) with (7.80), the action in the Einstein
frame reads

SE =
∫

d4x
√

−g̃

[
M2

pl

2
R̃ − ϵ

2
g̃µν∂µϕ∂νϕ − V (ϕ) + higher order terms

]

+ Sm[ϕ, &−2g̃µν, (i] , (7.81)

where we have introduced a canonically defined scalar field ϕ with the dimensions
of mass and the Einstein frame potential V (ϕ) as follows

M2
pl

[
3
2

(
1
Bg

dBg

dφ

)2

− Bφ

Bg

]

dφ2 = ϵ dϕ2 , V (ϕ) = U (φ)/&4 , (7.82)

with ϵ = ±1. If the expression in the square bracket of Eq. (7.82) is positive, then
the dilaton behaves as a normal (non-ghost) scalar field (ϵ = +1). For the tree-
level action in the weak coupling limit (eφ → 0), we have Bφ = Bg = e−φ so that
the sign of the field kinetic energy is normal in the Einstein frame. There is the
possibility that ϵ becomes negative depending on the coupling functions Bg(φ) and
Bφ(φ). Although such a ghost scalar field is generally plagued by an instability
problem of quantum fluctuations, it is possible to make the system stable by taking
into account higher-order field derivative corrections to the action (7.75). We shall
discuss this possibility in the next chapter in connection with k-essence.

Since the potential U (φ) for the dilaton vanishes at the tree level, it must be of
non-perturbative origin with an exponential damping in the weak coupling limit
(φ → −∞). We shall assume that it also goes to zero in the regime φ → ∞. A
viable ansatz is [211]

U (φ) = M4
0

[
exp(−e−φ/β1) − exp(−e−φ/β2)

]
, (7.83)

3 See also Chapter 9 for detailed explanation about the conformal transformation.
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where M0 is some mass scale, and β1 and β2 are constants satisfying 0 < β2 < β1.
This is a bell-type potential having a maximum in an intermediate regime between
φ → −∞ and φ → ∞. In the regime eφ ≫ 1 the potential behaves as

U (φ) ≃
(

1
β2

− 1
β1

)
M4

0e−φ . (7.84)

We need to caution that the matter fields (i have direct couplings with the dilaton
field in the Einstein frame. In this sense, when ϵ = +1, the Einstein frame action
(7.81) corresponds to a coupled quintessence scenario [17] with an exponential
potential (7.84) in the regime eφ ≫ 1. If this coupling is strong, it can give rise
to a violation of equivalence principle as well as a non-standard matter-dominated
epoch inconsistent with observations. The strength of the matter coupling Q(ϕ) is
proportional to the derivative δSm/δϕ. In the runaway dilaton scenario the matter
fields gradually decouple from the field ϕ so that the coupling decreases to Q(ϕ) →
0 in the limit eφ ≫ 1. In Ref. [211] it was shown that the runaway dilaton can be
responsible for the present cosmic acceleration while satisfying the equivalence
principle constraints. In Chapter 8 we shall present the detailed cosmological
dynamics of the coupled quintessence scenario and will study the consistency with
local experimental constraints.

7.5 Reconstruction of quintessence from observations

From the point of view of cosmological observations, the crucial differences
between the cosmological constant and quintessence are that the equation of state
of the latter changes in time and that quintessence fluctuates and, at some level, may
cluster. Here we discuss the possibility to distinguish quintessence models from
the !CDM model from the background cosmic expansion history. In Chapter 11
we discuss the clustering properties of dark energy.

7.5.1 Reconstructing the potential and the equation of state of quintessence

In SN Ia observations the Hubble parameter H (z) is estimated by measuring the
luminosity distance dL(z), see Eq. (2.86). This allows for the reconstruction of
the equation of state of dark energy wDE(z) by using the relation (2.88). In the
case of quintessence it is also possible to reconstruct the field potential V (φ).
Let us consider a non-relativistic matter with an equation of state wm = 0 as
well as a quintessence field φ. For the analysis of SN Ia observations we can
neglect radiation. Using the relations ρm = ρ(0)

m (1 + z)3 and dt = −dz/[H (1 + z)],
we find that Eqs. (7.7) and (7.8) can be rewritten as [215, 216, 217, 218, 219]
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(see problem 7.5)

κ2

2

(
dφ

dz

)2

= 1
1 + z

d ln E(z)
dz

− 3&(0)
m

2
1 + z

E2(z)
, (7.85)

κ2V

3H 2
0

= E(z) − 1 + z

6
dE2(z)

dz
− 1

2
&(0)

m (1 + z)3 . (7.86)

Since (dφ/dz)2 is positive, it follows from Eq. (7.85) that the condition,

dH 2

dz
≥ 3&(0)

m H 2
0 (1 + z)2 , (7.87)

must be satisfied. This corresponds to the weak energy condition, ρφ + Pφ ≥ 0.
The field φ is known as a function of z by integrating Eq. (7.85). Inverting φ(z) to
z(φ) and substituting z(φ) into Eq. (7.86), it is possible to reconstruct the potential
V with respect to φ by using the information of the observationally known values of
H (z) and H ′(z) as well as &(0)

m . Independent information on &(0)
m has to be obtained

from large-scale structure.
The reconstruction process is however subject to two general problems. The

first is that finding a model containing a trajectory with a given expansion rate
does not guarantee that the trajectory is stable. It is possible in fact that even if
a reconstructed solution exists it is never reached by realistic initial conditions or
that any arbitrarily small perturbation from the trajectory itself leads far from the
solution. After reconstructing a particular model one should then explicitly check
its stability.

The second problem is that the actual observational data such as the luminosity
distance dL(z) are known at discrete values of redshifts. Moreover the data are
affected by systematic and statistical errors. Hence it is not possible to directly
differentiate dL(z) with respect to z in Eq. (2.86) to obtain H (z). We require
some smoothing process for reconstructing the equation of state wDE(z) and the
quintessence potential V (φ). In order to address such a smoothing problem several
authors have assumed parametric forms of dL(z) [215, 216], or H (z) [219, 220, 221],
or wDE(z) [222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234]. For
example, if we parametrize wDE(z) as a function of z, the Hubble parameter in the
flat Universe is known to be [see Eq. (2.84)]

H 2(z) = H 2
0

[
&(0)

m (1 + z)3 + &
(0)
DE exp

{∫ z

0

3(1 + wDE(z̃))
1 + z̃

dz̃

}]
. (7.88)

Then the integration of Eq. (2.87) gives the luminosity distance dL(z) as a function
of z, which we can confront with observations.
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Several parametrizations of wDE(z) have been proposed so far. We can write
such parametrizations in the form

wDE(z) =
∑

n=0

wnxn(z) , (7.89)

where the expansions can be given by

(i) Redshift : xn(z) = zn , (7.90)

(ii) Scale factor : xn(z) =
(

1 − a

a0

)n

=
(

z

1 + z

)n

, (7.91)

(iii) Logarithmic : xn(z) = [ln (1 + z)]n . (7.92)

Parametrization (i) was introduced by Huterer and Turner [216] and Weller and
Albrecht [224] with n ≤ 1, i.e. wDE = w0 + w1z. Parametrization (ii) with n ≤ 1
was proposed by Chevalier and Polarski [223] and Linder [228]:

wDE(z) = w0 + w1(1 − a) = w0 + w1
z

1 + z
, (7.93)

which behaves as wDE(z) = w0 + w1 for z → ∞ and wDE(z) → w0 for z → 0. Jas-
sal et al. [231] extended this to a more general form with wDE(z) = w0 + w1z/(1 +
z)p. Parametrization (iii) with n ≤ 1 was introduced by Efstathiou [222]. While
the Taylor expansions are taken at linear order (n ≤ 1) for the above parametriza-
tions, one can also adopt functional forms that can be applied to the case of a fast
transition of wDE(z) (e.g., [226], [227]).

Figure 7.7 shows the observational allowed evolution of wDE(z) for the
parametrization (7.93). This is based on the constraint coming from SN Ia gold
data combined with WMAP 3-year data and SDSS data. The time-varying equa-
tion of state of dark energy such as quintessence is confined in the region
−1 < wDE(z) ! −0.8. While the quintessence is restricted to be in the parameter
region wDE(z) ≥ −1, the observational data allow the phantom equation of state
wDE(z) < −1. In Chapter 9 we will see that it is possible to realize wDE(z) < −1
in modified gravity theories.

The quintessence potential (7.86) can be also reconstructed from observations
by parametrizing wDE(z). As long as the potential is a smooth and slowly varying
function with respect to φ, the equation of state wDE(z) should not change rapidly.
For quintessence models in which wDE(z) evolves moderately with the redshift, the
two-parameter fit (7.93) can approximately reproduce the quintessence dynamics
in most cases. However, if the quintessence potential has abrupt features, the
equation of state can change rapidly. In such cases the parametrization proposed in
Refs. [226, 227] is more suitable than the two-parameter forms given above.
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Figure 7.7 Evolution of the equation of state of dark energy reconstructed from
the 157 “gold” SN Ia data, WMAP 3-year data, and SDSS. The central line, the
dark grey region, and light grey region represent the best-fit, 1σ region, and 2σ
region, respectively. The parametrization, wDE(z) = w0 + w1z/(1 + z), is used
for the data analysis. From Ref. [235].

It is clear that these parametrizations are purely phenomenological. They are
however a necessary step towards a more complete characterization of dark energy
and are routinely employed to analyze data, to optimize survey design and to
compare results. As such, they are an invaluable tool, but one has to remember that
in most cases the results will depend on the chosen parametrization.

7.5.2 Statefinder

From the SN Ia and other observations, we know that the sign of the deceleration
parameter,

q ≡ − ä

aH 2
, (7.94)

has changed from positive to negative around the redshift z = O(1) (although in
Section 8.3.2 we will see an alternative interpretation). In future high-precision
observations it may be possible to obtain information on the variation of q. In this
regard, Sahni et al. [236] introduced the following “statefinder” parameters

r ≡
...
a

aH 3
, s ≡ r − 1

3(q − 1/2)
. (7.95)



7.5 Reconstruction of quintessence from observations 167

These two statefinders allow us to distinguish quintessence and other dark energy
models from the !CDM model. Note that the definition in Eq. (7.95) is based on
geometrical quantities. Hence the statefinders can be applied to modified gravity
models as well.

Let us consider the Einstein gravity in a Universe dominated by dark energy and
non-relativistic fluid. The evolution equations are

3H 2 = κ2 (ρDE + ρm) , (7.96)

2Ḣ = −κ2 [(1 + wDE)ρDE + ρm] , (7.97)

where ρDE and ρm satisfy the continuity equations, ρ̇DE = −3H (1 + wDE)ρDE and
ρ̇m = −3Hρm, respectively. The first statefinder is given by r = 1 + 3Ḣ /H 2 +
Ḧ /H 3 and hence it is calculated by taking the time-derivative of Eq. (7.97).
Using Eq. (7.97) we find that the deceleration parameter can be expressed as
q = 1/2 + (3/2)wDE&DE, where &DE ≡ κ2ρDE/(3H 2). Then the statefinders in
the Einstein gravity read

r = 1 + 9wDE&DE

2
s , (7.98)

s = 1 + wDE − ẇDE

3wDEH
. (7.99)

We note that the second statefinder can be also expressed as

s = 1 + wDE

wDE

ṖDE

ρ̇DE
, (7.100)

where PDE = wDEρDE. The !CDM model (wDE = −1) corresponds to the fixed
point (r, s) = (1, 0). For general dark energy models the cosmological trajectories
evolve in the (r, s) plane, so that they can be distinguished from the !CDM model.

Let us consider quintessence models (with wDE replaced by wφ). The field
potential giving a constant equation of state wφ (−1 < wφ < 0) is [3, 237]

V (φ) = 3H 2
0 (1 − wφ)(1 − &(0)

m )1/|wφ |

2κ2&
(0)
m

β

× sinh−2β

(

|wφ|

√
3κ2

4(1 + wφ)
(φ − φ0 + φ1)

)

, (7.101)

where φ0 is the field value today and

β ≡ 1 + wφ

|wφ|
, φ1 ≡

√
4(1 + wφ)

3κ2

1
|wφ|

ln

⎛

⎝1 +
√

1 − &
(0)
m

√
&

(0)
m

⎞

⎠ . (7.102)
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Figure 7.8 The statefinder pair (r, s) for the constant wφ model and the power-
law quintessence model with the potential V (φ) = M4+αφ−α . The !CDM model
(wDE = −1) corresponds to (r, s) = (1, 0) while SCDM denotes standard CDM
(i.e. flat space, no dark energy) with (r, s) = (1, 1). For the constant wφ model, s
remains fixed at s = 1 + wφ while r asymptotically decreases to r ≃ 1 + 9wφ(1 +
wφ)/2. The two cases with wφ = −1/3,−1/2 are shown in the figure. The power-
law quintessence model starts to evolve from the tracking regime with wφ ≃
−2/(α + 2) and &φ ≪ 1, which corresponds to r → 1 and s → α/(α + 2). In
this case the solutions approach (r, s) = (1, 0) at late times. The hatched region
is the forbidden region for these models. The filled circles represent the values of
(r, s) today (&(0)

m ≃ 0.3). From Ref. [236].

The potential (7.101) can be derived by integrating Eq. (2.88) for constant wDE =
wφ to get H (z) and then by using Eqs. (7.85) and (7.86). For constant wφ the
parameter s is constant (s = 1 + wφ), while the parameter r decreases from r = 1
to r = 1 + 9wφ(1 + wφ)/2 as the dark energy density grows from &φ = 0 to
&φ = 1. In the (r, s) plane the trajectory in this case is characterized by a vertical
line, see Fig. 7.8.

Let us consider the power-law potential V (φ) = M4+αφ−α as an example of
the freezing quintessence models. The solutions are in the tracking regime during
most of the matter era, so that the equation of state of quintessence is given by
wφ ≃ −2/(α + 2), see Eq. (7.42). Since &φ ≪ 1 in the early epoch, we have that
r ≃ 1 and s ≃ α/(α + 2) at the beginning. The solutions asymptotically approach
the de Sitter point (r, s) = (1, 0) by following the curve r = 1 + 9s(s − 1)/2 from
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some time onward (note that this curve corresponds to the limit &φ → 1 for the
constant wφ case). The cosmological evolution is confined in the region s > 0 in
this case, which translates into the condition

ẇφ/H > 3wφ(1 + wφ) , (7.103)

where we have used the fact that wφ < 0.
In the thawing models of quintessence such as the PNGB model the field is

initially in the region wφ ≃ −1 and &φ ≪ 1 so that the trajectories start from the
de Sitter point (r, s) ≃ (1, 0). Since ẇφ > 0 and −1 < wφ < 0, Eq. (7.99) shows
that s > 0 and hence r < 1 from Eq. (7.98). Then the cosmological trajectories
evolve to the opposite direction compared to the freezing models. Note that the
allowed parameter space in the (r, s) plane is confined in the region r < 1 and
s > 0 in both freezing and thawing models.

The parameter spaces in the (r, s) plane are different depending on the models of
dark energy. Let us consider for instance the Chaplygin gas model (we will discuss
it fully in Section 8.6) in which the pressure PDE is related to the energy density
ρDE via PDE = −A/ρDE (A > 0) [45]. It follows from Eq. (7.100) that the second
statefinder in this case is given by

s = 1 + wDE

wDE

A

ρ2
DE

. (7.104)

Since −1 < wDE < 0 we have that s < 0 and hence r > 1 from Eq. (7.98). In this
way the Chaplygin gas model can be distinguished from the quintessence model.

7.5.3 Quintessence in the (wφ, w′
φ) plane

The statefinder parameters (r, s) involve the time derivative of wDE in their expres-
sions. In the case of quintessence the sign of ẇφ is important to distinguish the
freezing models from the thawing models. The freezing models and the thaw-
ing models are characterized by the conditions w′

φ ≡ dwφ/dN < 0 and w′
φ > 0,

respectively. Let us consider the allowed parameter region of both models in the
(wφ, w′

φ) plane.
First of all, the freezing models satisfy the condition (7.103), i.e. w′

φ > 3wφ(1 +
wφ). According to the analysis of a variety of freezing quintessence models there
is an upper bound for the variation of the equation of state: w′

φ ! 0.2wφ(1 + wφ)
[182]. Note that this bound comes from the evolution since z ∼ 1. Thus the allowed
region for the freezing models is given by

3wφ(1 + wφ) < w′
φ ! 0.2wφ(1 + wφ) , (7.105)
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Figure 7.9 The allowed region in the (wφ, w′
φ) plane for thawing and freez-

ing models of quintessence (here primes denote d/dN). The thawing mod-
els correspond to the region between two curves: (a) w′

φ = 3(1 + wφ) and (b)
w′

φ = 1 + wφ , whereas the freezing models are characterized by the region
between two curves: (c) w′

φ = 0.2wφ(1 + wφ) and (d) w′
φ = 3wφ(1 + wφ). The

dotted line shows the border between the acceleration and deceleration of the field
(φ̈ = 0), which corresponds to w′

φ = 3(1 + wφ)2.

where the upper and lower bounds correspond to the curves (c) and (d) in Fig. 7.9,
respectively.

Let us next consider the allowed region of the thawing models. Taking the
derivative of Eq. (7.6) with respect to the number of e-foldings N , we find [238]

w′
φ = (1 + wφ)(3 + 2ξ + 3wφ) , (7.106)

where ξ ≡ φ̈/(H φ̇). The border separating the acceleration and the deceleration
of the scalar field corresponds to ξ = 0, i.e. the curve w′

φ = 3(1 + wφ)2 in the
(wφ, w′

φ) plane. In thawing models, the field is almost frozen during the matter
era by the Hubble damping so that wφ ∼ −1 and ξ ≪ 1. This gives the following
relation

w′
φ ≃ 2ξ (1 + wφ) . (7.107)

The upper limit for ξ can be derived by using the condition φ̈ ! φ̇/t ≈ (3/2)H φ̇,
where we have used the relation H ≈ 2/(3t) during the matter-dominated epoch.
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This then provides the upper bound ξ ! 3/2. Caldwell and Linder obtained the
lower bound ξ " 1/2 by numerically studying several classes of thawing models
such as the PNGB model [182]. Hence the thawing models are characterized by
the following region

1 + wφ ! w′
φ ! 3(1 + wφ) , (7.108)

where the upper and lower bounds correspond to the curves (a) and (b) in Fig. 7.9,
respectively.

In both freezing and thawing models the equation of state ranges in the region
−1 < wφ ! −0.8. While the observational data up to now are not sufficient to
distinguish freezing and thawing models by the variation of wφ , we may be able to
do so with high-precision observations in the next decade.

7.6 Problems

7.1 Derive Eq. (7.25) for the linear perturbations about the fixed points for quintessence
with an exponential (7.23) and then find the eigenvalues as given in the text.

7.2 Derive Eqs. (7.30) and (7.31) from the definition of x given in Eq. (7.29).
7.3 For the two-field quintessence with the potential V (φ1,φ2) = V1e

−κλ1φ1 + V2e
−κλ2φ2 ,

show that the effective equation of state weff for the stable fixed point responsible for
cosmic acceleration is given by weff = −1 + λ2

eff/3. Here λeff is defined by Eq. (7.48),
i.e. 1/λ2

eff ≡ 1/λ2
1 + 1/λ2

2.
7.4 Find the field potential (7.65) from the Kähler potential K = [ln(κϕ + κϕ∗)]2/κ2 and

the superpotential W = M4+αϕ−α .
7.5 Derive the reconstruction equations (7.85) and (7.86) from Eqs. (7.7) and (7.8).
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Dark energy as a modified form of matter II

In the previous section we have discussed quintessence as one of the basic examples
of “modified matter models” of dark energy. There are other classes of modified
matter models such as k-essence, phantoms, coupled dark energy, and unified
models of dark energy and dark matter. These models are more complicated but
also have phenomenologically rich properties. In this section we shall discuss these
dark energy candidates.

8.1 k-essence

8.1.1 k-essence models

Quintessence is based on scalar field models using a canonical field with a slowly
varying potential. It is known however that scalar fields with non-canonical kinetic
terms often appear in the context of particle physics. The action for such models is
in general given by

S =
∫

d4x
√

−g

[
1

2κ2
R + P (φ, X)

]
+ Sm , (8.1)

where P (φ, X) is a function in terms of a scalar field φ and its kinetic energy
X = −(1/2)gµν∂µφ∂νφ ≡ −(1/2)(∇φ)2. The possibility to realize an accelerated
expansion of the Universe according to the action (8.1) was suggested in Ref. [239]
in the context of inflation. The application of this scenario to dark energy was first
carried out in Ref. [42]. Later this analysis was extended to more general cases and
the models based on the action (8.1) were named “k-essence” [43, 44]. The central
point is that the cosmic acceleration can be realized by the kinetic energy X of the
field φ.

The following models belong to k-essence.

172



8.1 k-essence 173! (i) Low-energy effective string theory with derivative terms higher-order than X

The low-energy effective string theory gives rise to higher-order derivative terms coming
from α′ and loop corrections to the tree-level action [64]. Let us consider the following
low-energy effective string action in the presence of a derivative term (∇̃φ)4:

S = 1
2κ2

∫
d4x̃

√
−g̃

[
Bg(φ)R̃ + B

(0)
φ (φ)(∇̃φ)2 + α′c1B

(1)
φ (φ)(∇̃φ)4 + O(α′2)

]
, (8.2)

where we set V (φ) = 0 and Sm = 0. Note that we have used a tilde for quanti-
ties in the string frame unlike the action (7.75). Performing a conformal transforma-
tion, gµν = Bg g̃µν , the action (8.2) is transformed to the Einstein frame action (see
Section 7.4.4):

SE =
∫

d4x
√

−g

[
1

2κ2
R + K(φ)X + L(φ)X2 + · · ·

]
, (8.3)

where

K(φ) = 3
(

1
Bg

dBg

dφ

)2

− 2
B

(0)
φ

Bg

, L(φ) = 2c1
α′

κ2
B

(1)
φ (φ) . (8.4)

The action (8.3) belongs to the k-essence action (8.1) with

P = K(φ)X + L(φ)X2 . (8.5)

! (ii) Ghost condensate model
In Section 7 we have seen that the current observations allow an equation of state wDE

smaller than −1. It is possible to explain such an equation of state by considering a
negative kinetic energy −X with a field potential V (φ), which is called a phantom
or a ghost field. However the phantom field is plagued by severe ultra-violet quantum
instabilities because its energy density is not bounded from below. If we take into account
the derivative term X2, the vacuum can be stabilized against the catastrophic particle
production of ghosts and normal fields. This model, dubbed the ghost condensate model
[240], has the Lagrangian density given by

P = −X + X2/M4 , (8.6)

where M is a constant having a dimension of mass. The model can be regarded as the
specific case of (8.5), i.e. K = −1 and L = 1/M4. As we will see later, there exists
a de Sitter solution at X/M4 = 1/2. There is also a modified version of the above
model:

P = −X + eκλφX2/M4 , (8.7)

which is called dilatonic ghost condensate model [241]. The correction of the type
eκλφX2/M4 can arise as a dilatonic higher-order correction to the tree-level string action,
as we have discussed in case (i).
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In string theories there exist unstable D-branes called non-Bogomol’nyi–Prasad–
Sommerfield (BPS) D-branes besides stable BPS D-branes. These unstable branes are
characterized by having a single tachyonic mode of a negative mass living on their
world-volume. If we consider the dynamics of the tachyon on a non-BPS D3-brane, the
effective 4-dimensional action is given by [242, 243]

P = −V (φ)
√

−det(gµν + ∂µφ∂νφ) , (8.8)

where V (φ) is a field potential. In open string theory the tachyon starts to roll down from
the top of the potential located at φ = 0 and evolves toward a ground state at |φ| → ∞.
The typical potential is V (φ) = V0/ cosh(βφ/2), where β = 1 for the bosonic string
and β =

√
2 for the non-BPS D-brane in the superstring (in the unit of α′ = 1) [244].

This potential is too steep in the large |φ| region to sustain inflationary expansion of the
Universe at late times. Tachyon potentials shallower than the inverse squared potential
(V (φ) ∝ φ−2) can account for the late-time cosmic acceleration [245, 246, 247, 248].
There is another tachyon scenario based on a massive scalar field with mass m on the
anti D3-brane, in which case the potential is given by V (φ) = V0e

1
2 m2φ2

[249]. Since
the potential energy is present at φ = 0, it is possible to have the late-time cosmic
acceleration in this scenario.! (iv) Dirac–Born–Infeld (DBI) theories
The motion of a scalar field can be slowed down through the so-called “D-cceleration”
mechanism [250, 251] in which the field φ parametrizes a direction on the approxi-
mate Coulomb branch of the system in N = 4 supersymmetric Yang–Mills theory. The
speed of the field is restricted by the causality of the gravity side of the Anti de Sitter/
Conformal Field Theory (AdS-CFT) correspondence [252]. This dynamics is well
described by the DBI action for a probe D3-brane domain wall moving in the radial direc-
tion of the AdS5 spacetime. The Lagrangian density describing this theory is given by
[250, 251]

P = −f (φ)−1
√

1 − 2f (φ)X + f (φ)−1 − V (φ) , (8.9)

where V (φ) is a field potential and f (φ) is a warp factor of the AdS-like throat. For
the AdS throat we have f (φ) = λ/φ4, where λ is the ’t Hooft coupling related to the
Yang–Mills coupling g2

YM via the relation λ = g2
YMN in the large N limit of the field

theory. In the non-relativistic limit, 2f (φ)X ≪ 1, the Lagrangian density (8.9) reduces to
P = X − V (φ), i.e. the one corresponding to a canonical scalar field. In the cosmological
set up, it is possible to realize the accelerated expansion of the Universe even when the
γ factor defined by γ = 1/

√
1 − f (φ)φ̇2 is much larger than unity (i.e. f (φ)φ̇2 ≃ 1).

This situation is different from the tachyon field where the condition φ̇2 ≪ 1 is required
for the cosmic acceleration. The application of the DBI theories to dark energy has been
discussed in Refs. [253, 254].
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8.1.2 Equation of state for k-essence

The energy-momentum tensor of the scalar field following from the action Sφ =∫
d4x

√−g P (φ, X) is given by

T (φ)
µν = − 2

√−g

δ(
√−gP )
δgµν

= P,X∂µφ∂νφ + gµνP , (8.10)

where a suffix “, X” or “,φ” represents a partial derivative with respect to X or φ,
respectively. The energy-momentum tensor of k-essence is that of a perfect fluid,
Tµν = (ρ + P )uµuν + gµνP , with velocity µµ = ∂µφ/

√
2X, pressure Pφ = P ,

and energy density

ρφ = 2XP,X − P . (8.11)

Then the equation of state of k-essence is

wφ = Pφ

ρφ

= P

2XP,X − P
. (8.12)

As long as the condition |2XP,X| ≪ |P | is satisfied, wφ can be close to −1. In the
flat FLRW background in the presence of a matter fluid with energy density ρM

and pressure PM , the Einstein equations are

3H 2 = κ2 (
ρφ + ρM

)
, (8.13)

2Ḣ = −κ2 (
2XP,X + ρM + PM

)
, (8.14)

ρ̇φ + 3H (ρφ + Pφ) = 0 . (8.15)

For the ghost condensate model (8.6) we have

wφ = 1 − X/M4

1 − 3X/M4
, (8.16)

which gives −1 < wφ < −1/3 for 1/2 < X/M4 < 2/3. In particular the de Sitter
solution (wφ = −1) is realized at X/M4 = 1/2. Since the field energy density
is ρφ = M4/4 at the de Sitter point, it is possible to explain the present cosmic
acceleration for M ∼ 10−3 eV.

In the flat FLRW spacetime the pressure and the energy density of the tachyon
field follow from the action (8.8):

Pφ = −V (φ)
√

1 − φ̇2 , ρφ = V (φ)
√

1 − φ̇2
, (8.17)

which give the equation of state

wφ = −1 + φ̇2 . (8.18)
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In order to realize wφ ≈ −1 we require that φ̇2 ≪ 1. In the sense that the kinetic
energy of the tachyon needs to be suppressed to realize cosmic acceleration, this
scenario is different from k-essence. We simply classified the tachyon field as
k-essence because it belongs to a class of the action (8.1).

Similarly the pressure and the energy density of the DBI field follow from the
action (8.9):

Pφ = γ − 1
f γ

− V (φ) , ρφ = γ − 1
f

+ V (φ) , (8.19)

where

γ = 1
√

1 − f (φ)φ̇2
. (8.20)

Hence the equation of state is

wφ = (γ − 1)/(f γ ) − V (φ)
(γ − 1)/f + V (φ)

. (8.21)

In the slow-roll limit, f (φ)φ̇2 ≪ 1, one has wφ → −1. If we introduce the follow-
ing variables

x1 ≡ κ√
3H

√
γ

f
, x2 ≡

κφ̇
√

γ

H
, x3 ≡ κ

√
V√

3H
, (8.22)

the equation of state (8.21) can be written as

wφ = [(1 − 1/γ )/γ ]x2
1 − x2

3

(1 − 1/γ )x2
1 + x2

3

, (8.23)

where

γ = 1
√

1 − x2
2/3x2

1

. (8.24)

From Eq. (8.13) we obtain the constraint equation, &M = 1 − (1 − 1/γ )x2
1 − x2

2 .
In the case of the quadratic potential, V (φ) = (1/2)m2

φφ2, there is a fixed point that
can be responsible for the cosmic acceleration [254]:

x1 =
[
µ(

√
µ2+12−µ)/6

]1/2
, x2 = −

√
3x1, x3 =

√
3(

√
µ2+12−µ)/6,

weff = −1 + µ(
√

µ2 + 12 − µ)/6 , &M = 0 , (8.25)

where weff is defined by weff ≡ −1 − 2Ḣ /(3H 2) and

µ ≡ V,φ

κf 1/2V 3/2
= 2

√
2

κ
√

λmφ

. (8.26)
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The cosmic acceleration occurs for weff < −1/3, i.e. µ < 2. Since x2 = −
√

3x1,
Eq. (8.24) shows that this fixed point exists in the ultra-relativistic region, γ → ∞.
Thus the DBI model allows inflationary solutions even if the field is not in the
slow-roll regime.

In order to understand the cases in which the late-time cosmic acceleration is
realized by the tracking of the k-essence field, it is important to derive conditions
for the existence of scaling solutions where the energy density &DE of dark energy
relative to the energy density &M of a background fluid remains constant (but
non-zero). We will prove in Section 8.4.4 that the existence of scaling solutions
restricts the form of the Lagrangian density to be

P (φ, X) = Xg(Xeκλφ) , (8.27)

where λ is a constant and g is an arbitrary function in terms of Y ≡ Xeκλφ .
If we choose g(Y ) = 1 − c/Y then we obtain p = X − ce−κλφ , which corre-

sponds to quintessence with an exponential potential. We have shown in Section 7.2
that this model in fact has a scaling fixed point (d) with &φ = 3(1 + wM )/λ2. The
dilatonic ghost condensate model belongs to the class of the Lagrangian den-
sity (8.27) by setting g(Y ) = −1 + Y/M4. One can also show that the tachyon
field has a scaling solution for the potential V (φ) = M6φ−2 (see problem 8.1).
The tachyon potential shallower than the inverse power-law potential enters a
tracking regime [247, 248]. The DBI model also possesses scaling solutions for
the potential V (φ) = (1/2)m2

φφ2 in the case of the AdS throat (f (φ) = λ/φ4)
[254].

8.1.3 Stability conditions for k-essence

In k-essence it can happen that the linear kinetic energy in X has a negative sign.
Such a field, called a phantom or ghost scalar field [83], suffers from a quantum
instability problem unless higher-order terms in X or φ are taken into account in
the Lagrangian density. In the (dilatonic) ghost condensate scenario it is possible
to avoid this quantum instability by the presence of the term X2.

Let us derive stability conditions of k-essence by considering small fluctuations
δφ(t, x) around a background value φ0(t) which is the solution in the FLRW
spacetime. Then the field φ(t, x) can be decomposed in the form

φ(t, x) = φ0(t) + δφ(t, x) . (8.28)

Since we are interested in ultra-violet (UV) instabilities, it is not restrictive to
consider a Minkowski background. Expanding P (φ, X) at the second order in
δφ it is straightforward to find the Lagrangian and then the Hamiltonian for the
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fluctuations. The perturbed Hamiltonian reads

δH =
(
P,X + 2XP,XX

) (δφ̇)2

2
+ P,X

(∇δφ)2

2
− P,φφ

(δφ)2

2
. (8.29)

The positive definiteness of the Hamiltonian is guaranteed if the following condi-
tions hold

ξ1 ≡ P,X + 2XP,XX ≥ 0 , ξ2 ≡ P,X ≥ 0 , (8.30)

ξ3 ≡ −P,φφ ≥ 0 . (8.31)

When we discuss the stability of classical perturbations, the quantity often used is
the speed of sound cs defined by [255]

c2
s ≡ Pφ,X

ρφ,X

= ξ2

ξ1
, (8.32)

where we have used Pφ = P and ρφ = 2XP,X − P . In cosmological perturbation
theory c2

s appears as a coefficient of the k2/a2 term, where a is the scale factor
and k is the comoving wavenumber [90, 92]. While the classical fluctuations may
be regarded as stable when c2

s is positive, the stability of quantum fluctuations
requires both the conditions ξ1 ≥ 0 and ξ2 ≥ 0. These two conditions prevent an
instability related to the presence of negative energy ghost states. If these conditions
are violated, the vacuum is unstable under a catastrophic production of ghosts and
photons pairs [256, 257]. The production rate from the vacuum is proportional to the
phase space integral on all possible final states. Since only a UV cut-off can prevent
the creation of modes of arbitrarily high energies, this is essentially a UV instability.
The phantom model with the Lagrangian density P (φ, X) = −X − V (φ) violates
both the conditions ξ1 ≥ 0 and ξ2 ≥ 0, which means that the vacuum is unstable.

If we take into account higher-order terms such as X2 in P (φ, X), it is possible to
avoid the quantum instability mentioned above. Let us consider the dilatonic ghost
condensate model with P = −X + eκλφX2/M4. Since ξ1 = −1 + 6eκλφX/M4

and ξ2 = −1 + 2eκλφX/M4 in this case, the quantum instability is ensured for
eκλφX/M4 ≥ 1/2. The equation of state for the dilatonic ghost condensate is

wφ = 1 − eκλφX/M4

1 − 3eκλφX/M4
. (8.33)

Hence we have wφ ≥ −1 under the condition eκλφX/M4 ≥ 1/2, which means
that the phantom equation of state (wφ < −1) is not realized if we ensure the
quantum stability. The tachyon model corresponds to ξ1 = V (φ)(1 − 2X)−3/2 > 0
and ξ2 = V (φ)(1 − 2X)−1/2 > 0, so that the quantum stability is ensured. The
situation is similar for the DBI model in which ξ1 = (1 − 2f (φ)X)−3/2 > 0 and
ξ2 = (1 − 2f (φ)X)−1/2 > 0.
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The instability prevented by the condition (8.31) is of the tachyonic type and
generally much less dramatic, as long as the conditions (8.30) are satisfied. If
P,φφ > 0 there are large-scale modes with k2 < P,φφ/P,X, which undergo a clas-
sical exponential growth. This is an instability of the infra-red (IR) type as we
often encounter cosmological perturbations of super-horizon modes in inflationary
cosmology [94]. The ordinary cosmological (light) scalar field with a Lagrangian
density P = X − V (φ) corresponds to ξ3 = −P,φφ = V,φφ ≃ H 2. Even if the field
has a negative mass squared such that ξ3 = V,φφ < 0, the modes deep inside the
Hubble radius (k2/a2 ≫ H 2) are not subject to this negative instability. For
the above reasons we shall adopt (8.30) but not (8.31) as fundamental criteria
for the consistency of the theory on the physical scales we are interested in.

The sound speed of the field becomes superluminal (c2
s > 1) depending on the

models of k-essence. This superluminal propagation is not favorable as the causality
could be violated (although see Ref. [258]). Under the stability conditions (8.30)
we find that the sound speed of k-essence does not exceed the speed of light for
2XP,XX ≥ 0, i.e.

P,XX ≥ 0 . (8.34)

Since P,XX = V (φ)(1 − 2X)−3/2 > 0 for the tachyon field and P,XX =
f (φ)(1 − 2f (φ)X)−3/2 > 0 for the DBI field, the superluminal propagation does
not occur in these models. This is also the case for the dilatonic ghost condensate
model in which P,XX = 2eκλφ/M4 > 0. If we consider the model of the type
P = c1X + c2X

2, where c1 and c2 are constants, we have that P,XX = 2c2. Hence
the sound speed becomes superluminal for c2 < 0. As we will see in Section 8.1.5,
this situation arises for k-essence models that aim to solve the coincidence problem
of dark energy.

8.1.4 Cosmological dynamics for the dilatonic ghost condensate

As an example of k-essence, let us study the cosmological dynamics of the dilatonic
ghost condensate model (8.7) in the flat FLRW background. As a matter fluid we
take into account both non-relativistic matter (energy density ρm) and radiation
(energy density ρr ). Since Pφ = −X + eκλφX2/M4 and ρφ = −X + 3eκλφX2/M4

in Eqs. (8.13), (8.14), and (8.15), we obtain

3H 2 = κ2
(

−1
2
φ̇2 + 3

4
eκλφ φ̇4

M4
+ ρm + ρr

)
, (8.35)

2Ḣ = κ2 (
φ̇2 − eκλφφ̇4/M4 − ρm − 4ρr/3

)
, (8.36)

φ̈(3eκλφφ̇2/M4 − 1) + 3H φ̇(eκλφφ̇2/M4 − 1) + 3κλeκλφφ̇4/(4M4) = 0 . (8.37)
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Defining the following variables

x1 ≡ κφ̇√
6H

, x2 ≡ φ̇2eκλφ

2M4
, x3 ≡

κ
√

ρr√
3H

, (8.38)

we find that these satisfy the following autonomous equations

dx1

dN
= −x1

6(2x2 − 1) + 3
√

6λx1x2

2(6x2 − 1)
+ x1

2
(3 − 3x2

1 + 3x2
1x2 + x2

3 ) , (8.39)

dx2

dN
= x2

3x2(4 −
√

6λx1) −
√

6(
√

6 − λx1)
1 − 6x2

, (8.40)

dx3

dN
= x3

2
(−1 − 3x2

1 + 3x2
1x2 + x2

3 ) , (8.41)

together with

weff = −1 − 2Ḣ

3H 2
= −x2

1 + x2
1x2 + 1

3
x2

3 , wφ = Pφ

ρφ

= 1 − x2

1 − 3x2
,

&φ = −x2
1 + 3x2

1x2 , &r = x2
3 , &m = 1 + x2

1 − 3x2
1x2 − x2

3 . (8.42)

In order to ensure the quantum stability we require that x2 ≥ 1/2. The following
fixed points are relevant for viable cosmological evolution:

! (a) Radiation point: (x1, x2, x3) = (0, 1/2, 1).
This satisfies weff = 1/3, wφ = −1, &φ = 0, &r = 1, and &m = 0.! (b) Matter point: (x1, x2, x3) = (0, 1/2, 0).
This satisfies weff = 0, wφ = −1, &φ = 0, &r = 0, and &m = 1.! (c) Accelerated point: (x1, x2, x3) = (−

√
6λf−(λ)/4, 1/2 + λ2f+(λ)/16, 0), where

f±(λ) ≡ 1 ±
√

1 + 16/(3λ2) . (8.43)

This satisfies weff = wφ = (−8 + λ2f+(λ))/(8 + 3λ2f+(λ)), &φ = 1, &r = 0, and
&m = 0. The cosmic acceleration occurs for −1 ≤ weff < −1/3, which translates into
the condition

0 ≤ λ <
√

6/3 . (8.44)

One can also show that this accelerated point is stable for 0 ≤ λ <
√

3 [241]. Hence the
stability of the accelerated point is ensured under the condition (8.44).

We also have other fixed points. For example there is another accelerated point
(x1, x2, x3) = (−

√
6λf+(λ)/4, 1/2 + λ2f−(λ)/16, 0), but this corresponds to the

quantum instability region x2 < 1/2 (i.e. the phantom equation of state wφ < −1).
During the matter era we also have the scaling solution with x1 =

√
6/(2λ), x2 = 1,

x3 = 0, &φ = 3/λ2, and wφ = 0. However the existence of a viable scaling matter
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Figure 8.1 Evolution of &φ , &m, &r , weff , and wφ for the dilatonic ghost conden-
sate model (8.7) with λ = 0.2 versus the redshift z. Initially the equation of state
wφ is close to −1 because x2 is close to 1/2. A deviation from wφ = −1 appears
in the low-redshift regime. Initial conditions are chosen to be x1 = 6.0 × 10−11,
x2 − 1/2 = 1.0 × 10−9, and x3 = 0.999 at log10(z + 1) = 6.218.

era requires the condition λ >
√

3, which is not compatible with the condition
(8.44).

In Fig. 8.1 we plot the cosmological evolution of the dilatonic ghost condensate
model with λ = 0.2. The initial conditions at the radiation era are chosen to be
close to the radiation point (x1, x2, x3) = (0, 1/2, 1) with x2 > 1/2 (in order to
ensure the stability of quantum fluctuations). In Fig. 8.1 we find that the successful
cosmological evolution is in fact realized. Since x2 ≈ 1/2 during radiation and most
matter eras, the equation of state wφ is close to −1. In these epochs the energy
density of the field is given by ρφ ≈ φ̇2/4. Since x1 = κφ̇/(

√
6H ) ≈ 0 at the

radiation and matter fixed points, ρφ is negligibly small relative to the background
fluid density. The field energy density begins to dominate over the background
fluid density after x1 grows to the order of unity. At this epoch the deviation from
x2 = 1/2 becomes important so that the solutions approach the accelerated point
(c). When λ = 0.2 we have wφ(= weff) = −0.788 for the point (c). In the numerical
simulation of Fig. 8.1 the equation of state today (corresponding to &φ ≃ 0.72)
is wφ ≃ −0.847. Since the deviation from wφ = −1 appears around the present
epoch, the dilatonic ghost condensate model corresponds to the thawing model
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of k-essence. Unlike thawing models of quintessence the field acquires a nearly
constant energy by its kinetic term.

Finally we recall that the sound speed of the dilatonic ghost condensate model
is smaller than the speed of light because the condition (8.34) holds. The sound
speed squared in this case is given by

c2
s = 2x2 − 1

6x2 − 1
. (8.45)

The condition (8.44) for the existence of the late-time accelerated point gives
1/2 ≤ x2 < 2/3. Hence the sound speed is in the region

0 ≤ cs < 1/3 , (8.46)

which means that this model does not violate causality.

8.1.5 k-essence and the coincidence problem

We have shown that the dilatonic ghost condensate model gives rise to successful
cosmological evolution while satisfying the conditions of quantum stability and the
sound speed. Recall that in this model the energy density of the field during radiation
and matter eras is negligibly small relative to the background fluid density. From the
viewpoint of alleviating the coincidence problem of dark energy, a satisfactory k-
essence model should allow a cosmological evolution in which the solutions finally
approach the accelerating phase even if they start from relatively large values of the
k-essence energy density &φ at the radiation era. In the following we shall discuss
such a possibility. Let us notice that, just as for the tracker solutions, the global
future attractor for k-essence is &φ = 1 and therefore it cannot answer the question
of why only today we observe matter and dark energy with similar densities.

Let us consider the k-essence model with the Lagrangian density

P (φ, X) = K(φ)p(X) . (8.47)

For later convenience we define the following quantities

g(y) ≡ p(X) y , y ≡ 1/
√

X . (8.48)

In order to have a scaling solution with wφ = wr at the early epoch of the radiation
era, Armendariz-Picon et al. [43, 44] have chosen the form K(φ) = 1/φ2 (in the
unit of κ2 = 1). In fact this form can be obtained by using the scaling Lagrangian
(8.27), see problem 6.1. Depending on the form of g(Y ), the k-essence scaling
solution is not necessarily stable during the radiation era so that the initial scaling
epoch is followed by other fixed points of the system. For the choice K(φ) = 1/φ2

the k-essence energy density is given by ρφ = −g′(y)/φ2, where g′(y) ≡ dg/dy.
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Since ρφ > 0, it follows that

g′(y) < 0 . (8.49)

Since the quantities ξ1 and ξ2 defined in Eq. (8.30) are given by ξ1 = y3g′′/(2φ2)
and ξ2 = Ky(g − yg′)/φ2, respectively, the conditions for the quantum stability
require that

g′′(y) > 0 , g(y) − yg′(y) > 0 . (8.50)

The condition for the avoidance of the superluminal propagation of the sound
speed of k-essence corresponds to P,XX = −y3(g − yg′ − y2g′′)/(4φ2) ≥ 0, which
translates into

g(y) − yg′(y) ≤ y2g′′(y) . (8.51)

While we have restricted the case where K(φ) = 1/φ2, the conditions (8.49),
(8.50), and (8.51) persist for any positive function of K(φ).

The equation of state wφ and the sound speed squared c2
s of k-essence are given

by

wφ = − g(y)
yg′(y)

, c2
s = g(y) − yg′(y)

y2g′′(y)
. (8.52)

The existence of the late-time accelerated solution requires the condition wφ < 0,
which implies that g(y) < 0 today. In addition to k-essence we take into account the
radiation and non-relativistic matter in Eqs. (8.13) and (8.14), i.e. ρM = ρr + ρm,
PM = ρr/3. Using Eq. (8.15) as well, we get the following equations for K(φ) =
1/φ2 (see problem 8.2):

dy

dN
= 2

√
−6g′(y)

yg′′(y)

[
r(y) −

√
&φ

]
, (8.53)

d&φ

dN
= 3&φ(1 − &φ)(wrm − wφ) , (8.54)

dwrm

dN
= wrm(3wrm − 1) , (8.55)

where

r(y) ≡
√

6
4

g(y) − yg′(y)√
−g′(y)

, &φ ≡ ρφ

3H 2
, wrm ≡ ρr

3(ρr + ρm)
. (8.56)

From the above equations the fixed points of the system are given by &φ = r2(yf )
with either &φ = 0, or &φ = 1, or wφ(yf ) = wrm. In the radiation-dominated epoch
(ρr ≫ ρm) one has wrm = 1/3, whereas after the radiation domination wrm = 0.
Both correspond to the fixed points of Eq. (8.55). We have the following fixed
points relevant to k-essence models that aim to solve the coincidence problem.
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The solutions start from the scaling radiation fixed point with wφ = wrm = 1/3 and
&φ(yr ) = r2(yr ) ! 0.045 [see the BBN bound (7.50)].! (ii) Matter era
During the matter era we have two possible fixed points. Which fixed points are reached
depends on the form of g(y) as well as initial conditions.
(a) de Sitter fixed point
This satisfies wrm = 0 and &φ = r2(ym) ≃ 0. The condition r ≃ 0 gives g ≃ yg′ from
Eq. (8.56) and hence wφ = −1 from Eq. (8.52).
(b) Dust fixed point
This corresponds to the dust scaling solution with wφ = wrm = 0 and &φ(ym) =
r2(ym) ̸= 0.! (iii) Accelerated era
The solutions finally reach the k-essence accelerated attractor with wrm = 0, −1 < wφ <

0, and &φ = r2(yk) ≃ 1.

A few examples of k-essence models satisfying the conditions (8.49) and (8.50)
are [43, 44]

P = 1
φ2

(
−2.01 + 2

√
1 + X + 3 · 10−17X3 − 10−24X4

)
, (8.57)

and

P = 1
φ2

(
− 2.05

+ 2
√

1 + X − 10−8X2 + 10−12X3 − 10−16X4 + 10−20X5 − 10−24(X/2)6
)
.

(8.58)

In Fig. 8.2 the evolution of &φ , wφ , and c2
s is plotted for the model (8.57) as a

function of the redshift z. The solution starts from the radiation scaling attractor
with &φ ≃ 0.02 and wφ ≃ 1/3. This is followed by a phase of decreasing &φ asso-
ciated with the growth of wφ(> 1/3), see Eq. (8.54). The solution then approaches
the de Sitter point with wφ = −1 and &φ = r2(ym) ≃ 0 around the beginning
of the matter-dominated epoch, which leads to the growth of &φ . The solution
finally approaches the k-essence attractor with &φ ≃ 1 and −1 < wφ < 0. Since
the present epoch is on the way from the de Sitter point to the k-essence attractor,
the evolution of the k-essence equation of state wφ is similar to that for the dilatonic
ghost condensate model in the low-redshift region. Note that the model (8.58) gives
rise to similar cosmological evolution.

Malquarti et al. [259] studied the basins of attraction of the radiation scaling
solution for both models (8.57) and (8.58) and showed that they are restricted in
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Figure 8.2 An example of the cosmological dynamics for the model (8.57) constructed to
solve the coincidence problem of dark energy. The left panel shows the evolution of the
k-essence energy &φ , whereas the right panel plots the k-essence equation of state wφ and
the sound speed squared c2

s . While the solution finally approaches an accelerated point at
late times even if &φ is large initially, it is inevitable to avoid the superluminal propagation
of the sound speed. From Ref. [260].

a very small region in the (y, &φ) plane. For the model (8.57), for example, the
solutions are not attracted by the radiation scaling solution for initial conditions
of &φ smaller than 0.01. Most of the solutions typically approach the k-essence
attractor after an increase of the scale factor by about a factor 105. This early
dominance of the k-essence attractor does not give rise to the matter-dominated
epoch and hence this case is excluded.

It is important to notice that the k-essence models constructed to solve the
coincidence problem inevitably give rise to the superluminal propagation of the
field (c2

s > 1) at some stage of the cosmological evolution [260]. The argument is
as follows. The dynamics of the k-essence models to solve the coincidence problem
starts from the radiation scaling solution with wφ(yr ) = 1/3, &φ = r2(yr ) ! 0.045
and the solutions finally approach the k-essence attractor with −1 < wφ(yk) < 0,
&φ = r2(yk) ≃ 1 > r2(yr ). Using the relation wφ = −g(y)/yg′(y) together with
the condition (8.49), it follows that g(yr) > 0 and g(yk) < 0 to realize wφ(yr ) = 1/3
and wφ(yk) < 0, respectively. Since g(y) is a monotonically decreasing function,
we always have yk > yr . Remembering that r(yk) > r(yr ), r needs to grow when
y increases from yr to yk.

Taking the derivative of r(y) with respect to y, we find

r ′(y) =
√

6
8

yg′′(y)√
−g′(y)

[
wφ(y) − 1

]
. (8.59)
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Using the condition g′′(y) > 0, the increase of r(y) occurs only for wφ(y) > 1.
Hence there is an interval between yr and yk in which wφ(y) > 1. Since the
equation of state of the k-essence attractor corresponds to wφ(yk) < 0, there exists
also an interval in which w′

φ(y) < 0 and wφ(y) > 1. From Eq. (8.52) the derivative
of wφ with respect to y is given by

w′
φ(y) = g(y)g′(y) + yg(y)g′′(y) − yg′(y)2

y2g′(y)2
. (8.60)

The conditions w′
φ(y) < 0 and wφ(y) > 1 imply that ygg′′ < yg′2 − gg′ and g >

−yg′, respectively. Since yg′′ > 0 the second inequality gives ygg′′ > −y2g′g′′.
Substituting this into the first inequality, we obtain g′(yg′ − g + y2g′′) > 0 and
hence g − yg′ > y2g′′. This corresponds to the violation of the condition (8.51).
Thus we have shown that the k-essence models constructed to alleviate the coinci-
dence problem lead to the superluminal propagation of the field sound speed.

In addition to the above-mentioned problems of initial conditions and the super-
luminal propagation of the sound speed, we should mention that the construction
of models such as (8.57) and (8.58) is difficult in the framework of particle physics.

8.2 Phantoms

The current observations allow the possibility of the equation of state wDE smaller
than −1, which is generally referred to as a phantom equation of state. As we see
from Eq. (8.12), the k-essence model with a positive energy density (ρφ > 0) gives
rise to the equation of state wφ < −1 for

P,X < 0 . (8.61)

The simplest model to satisfy this condition is a scalar field with a negative kinetic
energy [83], i.e.

P (X, φ) = −X − V (φ) , (8.62)

where V (φ) is the field potential. This is called a phantom or ghost scalar field
and its energy density and pressure are given by ρφ = −φ̇2/2 + V (φ) and Pφ =
−φ̇2/2 − V (φ), respectively. The equation of state of the phantom field is

wφ = φ̇2/2 + V (φ)
φ̇2/2 − V (φ)

. (8.63)

One has wφ < −1 for φ̇2/2 < V (φ).
The cosmological dynamics of the phantom scalar field has been discussed in a

number of papers [256, 261, 262]. The phantom field rolls up the potential because
of the negative kinetic energy. If the potential is unbounded from above, the field
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energy density continues to grow toward infinity. In the case of an exponential
potential V (φ) = V0e

−κλφ the equation of state wφ approaches a constant value
wφ = −1 − λ2/3 < −1, which results in a big-rip singularity. If the potential is
bounded from above as in the bell types such as V (φ) = V0e

−φ2/σ 2
[256] and

V (φ) = V0
[
cosh(βφ/mpl)

]−1 [261], the solutions evolve from the phantom equa-
tion of state (wφ < −1) and then approach wφ = −1 as the field settles at the
potential maximum.

Although the above cosmological dynamics might be acceptable classically,
the phantom Lagrangian density corresponds to ξ1 = P,X + 2XP,XX = −1 and
ξ2 = P,X = −1 in Eq. (8.30). This means that the stability conditions (8.30) are
not satisfied, which leads to an unstable vacuum state [256, 257]. In order to avoid
the catastrophic instability of the vacuum, we need to consider theories in which
the interaction between ghosts and normal fields is as weak as possible. Even if
decoupled from the matter fields, ghosts couple to gravitons which mediate the
vacuum decay process of the form [257]:

Vacuum → 2 φ + 2 γ , (8.64)

where φ is a ghost field. This corresponds to a spontaneous creation of a ghost pair
and a photon pair. The divergence of the phase-space integral can be avoided only
if we impose a Lorentz non-invariant momentum space cut-off at the scale !c with
the creation rate

4 ∼ !8
c/m4

pl , (8.65)

where 4 = 40→2φ+2γ .
In order to derive the density of photons which are generated by the vacuum

decay (8.64), we need to solve the equation for the phase space number density n

of ghosts and photons in an expanding Universe:

d
dt

(a3n) = a34 . (8.66)

When the evolution of the scale factor is given by a ∝ tp, we obtain the following
solution

n(t) = 4
t

3p + 1
= 4

H

p

3p + 1
. (8.67)

The number density in the present Universe is estimated to be n(t0) ∼ 4/H0 ∼
!8

c/(m4
plH0). Since the energy spectrum is peaked around E ∼ !c, we find

dn

dE
∼ !7

c

m4
plH0

. (8.68)
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The spectrum of photons with energy E around !c has been constrained by obser-
vations of the diffuse gamma ray background. The EGRET experiment measured
the derivative of the photon flux F with respect to E to be [263]

dF

dE
= (7.32 ± 0.34) × 10−9

(
E

451 MeV

)−2.1

(cm2 s sr MeV)−1 . (8.69)

From the requirement that Eq. (8.68) does not exceed the limit given in Eq. (8.69),
we obtain the following upper bound

!c ! 3 MeV . (8.70)

This means that the ghost field must originate from new physics far below the
TeV scale. Hence the standard high-energy field theory is not likely to be respon-
sible for the low-energy effective ghosts. Instead we are forced to imagine that
the ghost comes from a low-energy sector completely hidden from the stan-
dard model, except for the gravitational interaction. So far no consistent theo-
ries for such effective ghosts have been constructed in the framework of particle
physics. We also stress that the bound (8.70) has been derived under the mini-
mal coupling of gravity. The presence of other couplings can even lead to tighter
bounds.

We also note that even at the classical level the presence of the ghost field is
problematic. One would expect in fact that the Universe becomes very strongly
anisotropic with the anisotropic energy density (the positive energy density of
large-scale gravitational waves) being compensated by a negative energy density
of the ghost field. Therefore it does not successfully explain the observed isotropy
and homogeneity of the Universe [264].

In Fig. 7.7 we find that the current observations allow the evolution of the
dark energy equation of state crossing wDE = −1. A model that might cross
the cosmological constant boundary is dubbed quintom in Ref. [265]. It was
shown in Ref. [266] that such a crossing is possible with a multi-field model
(phantom + normal fields), i.e. the Lagrangian density P = (1/2)(∇φ1)2 −
V1(φ1) − (1/2)(∇φ2)2 − V2(φ2). However this model also suffers from the instabil-
ity problem mentioned above because of the negative kinetic energy. The phantom
equation of state (wDE < −1) as well as the cosmological boundary crossing can
be realized in f (R) gravity [267, 368, 371], scalar tensor theory [268, 269, 264],
and Lorentz violating models [270] without introducing a scalar field with a neg-
ative kinetic energy, while avoiding the quantum instability. In this sense it is not
necessary to introduce a phantom field to produce a dark energy equation of state
wDE smaller than −1.
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8.3 Coupled dark energy

The fact that the energy density of dark energy is the same order as that of dark
matter in the present Universe suggests that there may be some relation between
them. We discuss such coupled dark energy scenarios in this subsection.

Several different forms of the coupling between dark energy and dark matter have
been proposed. One possibility is to consider an interaction between a quintessence
field φ and dark matter with an interaction of the form Qρmφ̇ [16, 17]. In fact
this type of interaction appears in the context of scalar-tensor theories (including
Brans–Dicke theory) [56, 40, 271], f (R) gravity [272], and dilaton gravity [211]
after a conformal transformation to the Einstein frame. In Brans–Dicke theory, for
example, a coupling between a scalar field φ and a Ricci scalar R gives rise to a
constant coupling Q between φ and a non-relativistic matter in the Einstein frame
[273]. Another approach is to introduce an interaction of the form 4ρm on the
r.h.s. of the continuity equations (ρm is the dark matter energy density) with the
normalization of 4 in terms of the Hubble parameter H , i.e. 4/H = δ, where δ is
a dimensionless coupling [274, 275, 276, 277, 278, 279, 280]. This is basically a
fluid description of coupled dark energy.

In the following we start from the coupled quintessence scenario and then
proceed to coupled dark energy models with an interaction of the form δ Hρm,
where δ is a dimensionless coupling. We also discuss the mass varying neutrino
scenario and the coupling of a scalar field with an electromagnetic field.

8.3.1 Coupled quintessence with an exponential potential

Let us consider an interaction between a scalar field φ and a non-relativistic matter
in the form

∇µT
µ
ν(φ) = −Q TM∇νφ , ∇µT

µ
ν(M) = +Q TM∇νφ , (8.71)

where T
µ
ν(φ) and T

µ
ν(M) are the energy-momentum tensors of φ and non-relativistic

matter, respectively, with a trace TM = −ρM + 3PM of the matter fluid. Since
the radiation is traceless (ρM = 3PM ), the coupling-dependent terms vanish in
Eq. (8.71). Meanwhile non-relativistic matter such as dark matter and baryons
have direct couplings with the scalar field φ.

Generally the coupling strength Q of baryons is different from that of dark matter
[17, 281, 282, 271]. If we assume the baryons to be completely uncoupled they
follow geodesics (i.e. they are free of any long-range force beside gravity) and we
can directly compare the results with observations, since generally speaking in any
(classical) experiment we assume our equipment (rods, clocks, etc) not to possess
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long-range interactions beside gravity. We say that the frame in which baryons
follow geodesics is the “physical” frame, meaning simply that we can directly
compare results with observations. If on the contrary the baryons are coupled then
the physical frame has to be obtained through a conformal transformation, as we
will discuss in Section 8.4.

Although we assume the baryons to be uncoupled, as far as cosmology is con-
cerned this makes generally only a small difference, since baryons are subdominant.
Therefore for simplicity we discuss here a single matter fluid with an universal cou-
pling. We discuss in the next section a case in which uncoupled baryons can lead to
a considerable difference, e.g., the presence of a baryon-dominated epoch. We also
assume that the coupling Q is constant. A constant coupling Q arises in Brans–
Dicke theory after a conformal transformation to the Einstein frame, as we will see
in Section 9.2. In this section we shall use the unit κ2 = 1 unless otherwise stated.

The field Lagrangian density of the coupled quintessence is Lφ =
−(1/2)gµν∂µφ∂νφ − V (φ) + Lint, where the part Lint gives rise to the interact-
ing energy-momentum tensor given in Eq. (8.71).1 For the field potential V (φ) we
can take the exponential type

V (φ) = V0e
−λφ , (8.72)

although of course other choices can be made [271]. Without losing generality the
constant λ can be assumed to be positive. For the interaction given in Eq. (8.71),
the field φ, non-relativistic matter, and radiation obey the following equations of
motion, respectively, in the flat FLRW background:

ρ̇φ + 3H (ρφ + Pφ) = −Qρmφ̇ , (8.73)

ρ̇m + 3Hρm = +Qρmφ̇ , (8.74)

ρ̇r + 4Hρr = 0 , (8.75)

together with the usual Friedmann equation

3H 2 = ρφ + ρm + ρr . (8.76)

Since ρφ = (1/2)φ̇2 + V (φ) and Pφ = (1/2)φ̇2 − V (φ), Eq. (8.73) can be written
as

φ̈ + 3H φ̇ + V,φ = −Qρm . (8.77)

In order to study the dynamics of the system we introduce the following variables

x1 ≡ φ̇√
6H

, x2 ≡
√

V√
3H

, x3 ≡
√

ρr√
3H

. (8.78)

1 Although we focus on the coupled quintessence, it is possible to consider a coupling between dark matter and
a k-essence field. See Ref. [283] for cosmological dynamics of coupled k-essence fields.
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Table 8.1 The fixed points for the coupled quintessence model with an exponential
potential.

Name x1 x2 x3 &φ &r wφ weff

(a) −
√

6Q
3 0 0 2Q2

3 0 1 2Q2

3

(b1) 1 0 0 1 0 1 1
(b2) −1 0 0 1 0 1 1

(c) λ√
6

(1 − λ2

6 )1/2 0 1 0 −1 + λ2

3 −1 + λ2

3

(d)
√

6
2(Q+λ) [ 2Q(Q+λ)+3

2(Q+λ)2 ]1/2 0 Q(Q+λ)+3
(Q+λ)2 0 −Q(Q+λ)

Q(Q+λ)+3
−Q
Q+λ

(e) 0 0 1 0 1 − 1
3

(f) − 1√
6Q

0 (1 − 1
2Q2 )1/2 1

6Q2 1 − 1
2Q2 1 1

3

(g) 2
√

6
3λ

2
√

3
3λ

(1 − 4
λ2 )1/2 4

λ2 1 − 4
λ2

1
3

1
3

Taking the derivative of Eq. (8.76) in terms of the number of e-foldings N together
with the use of Eqs. (8.73)–(8.75), we obtain

1
H

dH

dN
= −1

2

(
3 + 3x2

1 − 3x2
2 + x2

3

)
. (8.79)

The effective equation of state defined in Eq. (4.96) is

weff = x2
1 − x2

2 + x2
3/3 . (8.80)

The equation of state wφ and the density parameter &φ of the scalar field are

wφ = x2
1 − x2

2

x2
1 + x2

2

, &φ = x2
1 + x2

2 . (8.81)

Note that from Eq. (8.76) we obtain the relation &m = 1 − x2
1 − x2

2 − x2
3 .

The autonomous equations for x1, x2, and x3 are given by

dx1

dN
= −3x1 +

√
6

2
λx2

2 − x1
1
H

dH

dN
−

√
6

2
Q

(
1 − x2

1 − x2
2 − x2

3

)
, (8.82)

dx2

dN
= −

√
6

2
λx1x2 − x2

1
H

dH

dN
, (8.83)

dx3

dN
= −2x3 − x3

1
H

dH

dN
. (8.84)

There are eight fixed points in total, see Table 8.1. The stability of the fixed
points can be analyzed by considering three eigenvalues of the Jacobian matrix of
perturbations δx1, δx2, and δx3 about each point (see problem 8.3).

Among the eight fixed points presented in Table 8.1, we now identify the points
responsible for radiation, matter, and accelerated eras.
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The radiation-dominated epoch can be realized either by the points (e), (f), or (g) because
they correspond to weff = 1/3. However the nucleosynthesis bound (7.50) places the
constraint Q2 > 3.7 and λ2 > 88.9 for the points (f) and (g), respectively. The former
case is not compatible with the presence of the matter-dominated epoch, whereas in the
latter case λ is too large to have a late-time accelerated solution (as we will see later).
Hence the point (e) is the only plausible radiation solution. The eigenvalues of the 3×3
Jacobian matrix for perturbations about the point (e) are

µ = −1, 1, 2 . (8.85)

This means that the point (e) is a saddle followed by a matter era.! (ii) Matter era
The matter-dominated epoch can be realized either by the points (a) or (d). Both (a) and
(d) correspond to scaling solutions with constant &φ and wφ . The point (a) is called the
“φ-matter-dominated epoch (φMDE)” [17]. In order for the φMDE to be responsible
for the matter era we require that Q2 ≪ 1 from the condition &φ = 2Q2/3 ≪ 1. The
eigenvalues of the Jacobian matrix for perturbations about the point (a) are

µ = 3
2

+ Q(Q + λ), − 3
2

+ Q2, − 1
2

+ Q2 . (8.86)

As long as Q2 ≪ 1, two of the eigenvalues are negative. One of them is positive for
Q(Q + λ) > −3/2, which is satisfied unless Q < 0 and λ ≫ 1. Hence the φMDE is a
saddle followed by a late-time accelerated point.

Since the effective equation of state for the point (d) is given by weff = −Q/(Q + λ),
it is possible to have weff ≃ 0 for |λ| ≫ |Q|. The eigenvalues of the Jacobian matrix for
perturbations about the point (d) are

µ = − 4Q + λ

2(Q + λ)
, − 3(2Q + λ)

4(Q + λ)

[

1 ±

√

1 + 8[3 − λ(Q + λ)][3 + 2Q(Q + λ)]
3(2Q + λ)2

]

.

(8.87)

This means that the point (d) is stable for |λ| ≫ |Q| (either a stable node or a stable
spiral). Hence the solutions do not exit from the matter era to the accelerated epoch.! (iii) Accelerated era
The late-time cosmic acceleration can be realized either by the point (c) or (d). When
λ2 < 2 the point (c) satisfies the condition for acceleration. The eigenvalues of the
Jacobian matrix of perturbations about the point (c) are

µ = 1
2

(λ2 − 4),
1
2

(λ2 − 6), λ(Q + λ) − 3 . (8.88)

Under the condition λ2 < 2, this point is stable for

λ(Q + λ) < 3 . (8.89)
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The energy fraction of the field for the point (d) satisfies &φ > 1 under the condition
(8.89). For the point (d) the condition for the acceleration, weff < −1/3, corresponds to
Q > λ/2 or Q < −λ (recall that λ is assumed to be positive). In both cases the inside of
the root of Eq. (8.87) is larger than unity under the condition (8.89) with − 4Q+λ

2(Q+λ) < 0

and − 3(2Q+λ)
4(Q+λ) < 0. Hence one of the eigenvalues in Eq. (8.87) is positive, which means

that the point (d) is a saddle if the point (c) is stable. If the condition

λ(Q + λ) > 3 (8.90)

is satisfied, the point (d) is stable whereas the point (c) is a saddle.
Then the late-time stable accelerated solution can be realized by the point (d) under

the conditions (8.90) and Q > λ/2 or Q < −λ. The scaling solution (d) allows the
interesting possibility of a global accelerated attractor with &φ ≃ 0.7 [40, 284]. However
it is difficult to realize the φMDE solution (a) followed by the scaling solution (d).
This comes from the fact that the condition Q2 ≪ 1 is required to have a φMDE
compatible with observations whereas large values of |Q| are needed to get the late-
time cosmic acceleration. One can show that there are no allowed regions in the (Q, λ)
plane corresponding to the sequence from the φMDE to the scaling attractor [17]. We
require a step-like function of the coupling Q in order to realize two scaling solutions
[284].

From the above discussion we find that the following sequence is cosmologically
viable:

(e) → (a) → (c) . (8.91)

The presence of the saddle φMDE demands the conditions Q2 ≪ 1 and Q(Q +
λ) > −3/2. The stability of the accelerated point requires the conditions λ2 < 2
and λ(Q + λ) < 3.

In Fig. 8.3 we plot the cosmological evolution of the density parameters
&φ, &m, &r as well as the equations of state wφ and weff for λ = 0.1 and Q = 0.3.
This shows that the matter era is in fact replaced by the φMDE with &φ = weff ≃
2Q2/3 ≃ 0.06. The φMDE is followed by the accelerated point (c) with the future
asymptotic values of the equations of state: wφ = weff = −1 + λ2/3 ≃ −0.996.

The presence of the φMDE changes the background expansion history of the
Universe. Since the evolution of the scale factor during the φMDE is given by
a ∝ t2/(3+2Q2), the Hubble parameter evolves as E(z)/E0 ≃ [&(0)

m (1 + z)3+2Q2
]1/2.

Therefore the sound horizon at the decoupling epoch, defined in Eq. (5.34), is
smaller than in the uncoupled case by roughly a factor z

Q2

dec. For Q = 0.1, for
instance, this gives a sound horizon 7% smaller. This is a large effect that can be
constrained by current measurements, although it is partially compensated by the
fact that the distance to the last scattering increases, that is, the CMB shift parameter
R given in Eq. (5.33) is smaller relative to the case Q = 0. A full comparison with
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Figure 8.3 Cosmological evolution of the coupled quintessence scenario with an expo-
nential potential for λ = 0.1 and Q = 0.3. The initial conditions are chosen to be x1 = 0,
x2 = 10−10, and x3 = 0.999 at the redshift log10(z + 1) = 5.6919. The field equation of
state wφ starts from −1 because x1 = 0 initially, but it quickly approaches wφ = 1 due
to the dominance of the field kinetic energy relative to the potential energy. This phase is
followed by the φMDE (a) in which the potential energy is completely negligible relative
to its kinetic energy (x1 = −

√
6Q/3, x2 = 0). The present epoch is on the way to the

accelerated fixed point (c) with weff = wφ = −1 + λ2/3 and &φ = 1.

CMB data varying also all other parameters shows that the coupling cannot exceed
Q ≈ 0.1 [285].

As we will see later, in coupled quintessence, the equation of matter perturbations
is subject to change compared to the uncoupled case. The presence of the coupling
between the non-relativistic matter and the scalar field leads to a larger growth
rate of matter perturbations relative to the uncoupled quintessence. Hence the
observational data of galaxy clustering can be used to place bounds on the strength
of the coupling Q. Finally, it is interesting to note that the coupling is partially
degenerate with massive neutrinos so that if large neutrino masses are found, as in
some laboratory experiment, these can be reconciled with microwave background
upper limits [286].

8.3.2 Decoupling the baryons

The scalar field coupling induces a variation of the particle masses. As it can be
seen from the conservation equation (8.74) the matter density varies as

ρm = ρ(0)
m (a/a0)−3 exp

(∫ φ

φ0

Q(φ̃)dφ̃

)
, (8.92)
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where φ0 is the field value today. This can be interpreted at the classical level as a
variation of the coupled particle’s masses as

m = m(0) exp
(∫ φ

φ0

Q(φ̃)dφ̃

)
. (8.93)

Since in gravitational interactions one always measures the product of masses
times the gravitational constant, the limits to the variation of G apply directly to
the variation of baryon masses. Current limits on the variation of G are [287]

∣∣∣∣
Ġ

G

∣∣∣∣ ! few × 10−11 yrs−1 . (8.94)

Then we have, in the case of a constant coupling Q,
∣∣∣∣

1
G

dG

dN

∣∣∣∣ =
∣∣∣∣

1
m

dm

dN

∣∣∣∣ =
∣∣∣∣Q

dφ

dN

∣∣∣∣ ! 10−1 . (8.95)

Note that we have used the present value of the Hubble parameter given in
Eq. (2.36). For instance, on the solution (d) of the previous section, one has
dφ/dN =

√
6x1 = 3/(Q + λ) so that we find Q ! (Q + λ)/30 (assuming both

Q, λ > 0). This condition implies that λ ≫ Q, in which case we have no cosmic
acceleration (weff = −Q/(Q + λ) ≈ 0).

Beside the variation of G, the field coupling Q is constrained by local gravity
experiments. There are however several ways to escape these constraints. One, to
be discussed later on, is the chameleon mechanism, that screens the effect of the
field interaction near high-density objects (as we will see in Section 8.4). Another
one is to assume that the coupling varies in time so that it is very small today but
large in the past. Yet another solution is to assume that the field couples only to
dark matter particles and not to baryons (or couples extremely weakly). In this way,
local gravity constraints are emptied of any effect on cosmology [271].

If baryons are uncoupled to the scalar field, their conservation equation is stan-
dard and another degree of freedom x4 = √

ρb/(
√

3H ) must be added to the dynam-
ical system (8.82)–(8.84) (see Ref. [288]). Since baryons correspond to only a small
fraction of the total cosmic fluid today, their effect is in general modest and the
fixed points of Table 8.1 remain.

However, there is one case in which the baryons (or in general any uncoupled
matter) make a large difference, namely the scaling attractor (d). Scaling solutions
are interesting for several reasons. First, they are particularly simple because the
density parameters &M, &φ and the equation of state are constant. Second, they
could help to solve the coincidence problem since the ratio of matter to dark energy
is constant not only at the present time but ever since the scaling attractor is reached
[288]. Third, they lead to phenomena that cannot be found in non-scaling behaviors,
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as for instance an early start of cosmic acceleration. This third point is connected
to the uncoupled component, so we discuss it now.

The coupled components, cold dark matter (density ρc) and the scalar field
(density ρφ), behave at the background level as a single fluid &eff with an effective
constant equation of state weff , i.e. ρc ∝ ρφ ∝ a−3(1+weff ). For the scaling solution
(d) we have weff = −Q/(Q + λ). Let us assume that the condition for the cosmic
acceleration is fulfilled. Then since the baryon density evolves as ρb ∝ a−3, baryons
dominate in the past for a < ab where

ab =
(
&

(0)
b /&

(0)
eff

)−1/(3weff )
, (8.96)

and &
(0)
eff = &(0)

c + &
(0)
φ = 1 − &

(0)
b (assuming a flat spacetime). Therefore the Uni-

verse undergoes a baryon-dominated epoch before ab in which the expansion and
the growth of structure are standard but driven by the baryon rather than by the
dark matter. When a > ab the cosmic expansion is governed by the total effective
fluid. If &

(0)
b ≈ 0.04 and weff ≈ −1, one finds ab ≈ 0.35 or zb ≈ 1.9. Hence we

can expect the cosmic expansion to be accelerated from zb onward. More exactly,
one can derive the onset of acceleration (redshift zacc) by solving for ä = 0 in the
flat-space Friedmann equation:

ä

a
= −4π

3
[ρeff(1 + 3weff) + ρb]

= −1
2
H 2

0

[
&

(0)
effa

−3(1+weff )(1 + 3weff) + (1 − &
(0)
eff )a

−3
]

= 0 . (8.97)

This amounts to

zacc = −1 +
[

&
(0)
eff − 1

&
(0)
eff (1 + 3weff)

]1/(3weff )

, (8.98)

which gives zacc ≈ 2.6 for &
(0)
b = 0.04 and weff = −1. This redshift can increase up

to zacc ≈ 4 for weff = −0.6, which is actually the value favored by the supernovae
data for the scaling case [289]. In general, however, the early acceleration gives a
strong integrated Sachs–Wolfe effect on the CMB and to be acceptable it would
require other modifications. Notwithstanding these difficulties it is important to
derive the conditions for the existence of scaling solutions and we will devote
Section 8.5 to this.

8.3.3 Parametrizing coupled dark energy

Let us discuss other coupled dark energy models in which a non-relativistic matter
couples to dark energy with an energy density ρX and an equation of state wX. The
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interaction between two components can be encoded in the conservation equations:

ρ̇m + 3Hρm = +4ρm , (8.99)

ρ̇X + 3H (1 + wX)ρX = −4ρm , (8.100)

where 4 characterizes the strength of the coupling. The coupled quintessence
discussed in the previous subsection corresponds to the choice 4 = Qφ̇.

Since the origin of dark energy is not yet identified as a scalar field, we take
a different approach to constraining the coupling without assuming scalar fields
[274, 275, 276, 277, 278, 279, 280]. We shall measure 4 in terms of the Hubble
parameter H and define the dimensionless coupling

δ ≡ 4/H . (8.101)

Note that a positive δ corresponds to a transfer of energy from dark energy to dark
matter, whereas for a negative δ the energy transfer is opposite. We are interested
in placing observational bounds on δ. As usual in the flat Universe the Friedmann
equation is given by

3H 2 = ρm + ρr + ρX . (8.102)

As long as we use cosmic distances whose upper limits of the redshift are smaller
than 1000, it is a good approximation to neglect the contribution of radiation.

Equation (8.99) can be written in an integrated form

ρm = ρ(0)
m (a/a0)−3 exp

(∫
δ d(ln a)

)
. (8.103)

The cosmological evolution is different depending on the form of the coupling δ.
In the following we shall consider two distinct cases.

(A) Constant δ models
For constant δ, Eq. (8.103) is integrated to give

ρm = ρ(0)
m (a/a0)−3+δ = ρ(0)

m (1 + z)3−δ . (8.104)

If wX is constant, substituting Eq. (8.104) into (8.100) leads to the following
equation

ρX = ρ
(0)
X (1 + z)3(1+wX) + ρ(0)

m

δ

δ + 3wX

[
(1 + z)3(1+wX) − (1 + z)3−δ

]
.

(8.105)
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Figure 8.4 Probability contours (1σ , 2σ , and 3σ ) for the constant δ parametrization (8.106)
obtained from the combined data analysis of SNLS [107], the CMB shift parameter R [14],
and the BAO effective distance DV [68]. The left panel shows observational contours
in the (wX, δ) plane marginalized over &

(0)
X , whereas the right panel depicts contours in

the (&(0)
X , δ) plane marginalized over wX. The !CDM model (wX = −1) with no coupling

(δ = 0) is in the 1σ contour bound. The best-fit model parameters correspond to δ = −0.03,
wX = −1.02, and &

(0)
X = 0.73. From Ref. [279].

From the Friedmann equation (8.102) and neglecting radiation we obtain

E2(z) = &
(0)
X (1 + z)3(1+wX) + 1 − &

(0)
X

δ + 3wX

[
δ(1 + z)3(1+wX) + 3wX(1 + z)3−δ

]
,

(8.106)

where E(z) = H (z)/H0 and &
(0)
X = ρ

(0)
X /(3H 2

0 ). Hence the Hubble parameter,
parametrized in terms of the three parameters (δ, wX, &

(0)
X ), is now in a conve-

nient form to confront with the SN Ia, CMB, and BAO observations.
In the high-redshift region (z ≫ 1), it follows from Eq. (8.105) that ρX behaves

as ρX ≃ −ρ(0)
m δ/(δ + 3wX)(1 + z)3−δ for 3wX < −δ. Hence the energy density

of dark energy is negative for δ < 0. We do not exclude such a possibility in the
likelihood analysis of model parameters.

Using the parametrization (8.106) it is possible to place observational constraints
on the coupling δ from the combined data analysis of the luminosity distance dL of
SN Ia, the CMB shift parameter R, and the BAO effective distance DV . In Fig. 8.4
we plot observational likelihood contours in both (wX, δ) and (&(0)

X , δ) planes for
the constant δ model using data from SNLS, CMB, and BAO. The !CDM model
(wX = −1) with no coupling (δ = 0) is in the 1σ observational contour bound.
The allowed observational contours are rather widely spread in the phantom region
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(wX < −1) with a negative coupling (δ < 0), whereas other parameter regions in
the (wX, δ) plane are also allowed.

(B) Varying δ models
In order to parametrize H (z) for the varying δ case, one way is to assume that the
following relation holds between the energy densities ρX and ρm:

ρX

ρm

= ρ
(0)
X

ρ
(0)
m

(
a

a0

)ξ

, (8.107)

where ξ is a constant [274]. When ξ = 0, Eq. (8.107) corresponds to the scaling
relation between dark energy and dark matter. In the absence of the coupling δ with
constant wX the energy density of dark energy evolves as ρX ∝ a−3(1+wX), which
gives the relation ξ = −3wX. The !CDM model corresponds to wX = −1 and
ξ = 3.

The presence of an interaction between dark energy and dark matter indicates
that ξ ̸= −3wX. Taking the time derivative of Eq. (8.107), we obtain the rela-
tion ρ̇X/(HρX) − ρ̇m/(Hρm) = ξ . Substituting Eqs. (8.99) and (8.100) into this
equation, we find that the dimensionless coupling δ can be expressed as

δ(z) = −(ξ + 3wX)&X(z) , (8.108)

where &X(z) = ρX/(3H 2). Since the density parameter &X(z) is given by &X(z) =
[(ρ(0)

m /ρ
(0)
X )(1 + z)ξ + 1]−1, the coupling δ(z) varies in time according to

δ(z) = δ0

&
(0)
X + (1 − &

(0)
X )(1 + z)ξ

, (8.109)

where δ0 ≡ −(ξ + 3wX)&(0)
X is the present value of the coupling. When ξ > 0 the

coupling |δ(z)| gets smaller for higher z.
Using Eqs. (8.99) and (8.100) together with Eq. (8.107), we obtain the following

differential equation for the total density ρT = ρm + ρX:

d ln ρT

da
= −3

a

⎡

⎣1 + wX

{
ρ(0)

m

ρ
(0)
X

(
a

a0

)−ξ

+ 1

}−1
⎤

⎦ . (8.110)

This can be integrated to give

ρT = ρ
(0)
T

(
a

a0

)−3
[

1 − ρ
(0)
X

ρ
(0)
T

{

1 −
(

a

a0

)ξ
}]−3wX/ξ

. (8.111)

Hence the evolution of the normalized Hubble parameter is

E2(z) = (1 + z)3
[
1 − &

(0)
X + &

(0)
X (1 + z)−ξ

]−3wX/ξ

. (8.112)
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There are three parameters (ξ , wX, &
(0)
X ) in this model. Since δ0 is related to

these variables by the relation δ0 = −(ξ + 3wX)&(0)
X , one can instead vary three

parameters (δ0, wX, &(0)
X ) when we carry out the likelihood analysis to confront the

model with observational data.
The likelihood analysis using the combined data analysis of SNLS [107], the

CMB shift parameter R [14], and the BAO effective distance DV [68] gives
the bounds −0.4 < δ0 < 0.1, −1.18 < wX < −0.91, and 0.69 < &

(0)
X < 0.77 at

the 95% confidence level [279]. Since δ(z) decreases for larger z, the observational
constraint on δ0 is not so severe compared to the constant coupling model.

From the above results we find that the uncoupled !CDM model is well consis-
tent with observational data. The above results are based solely on the modification
of the background expansion history of the Universe induced by the coupling. In
order to discuss galaxy clustering, for example, we need to study the evolution of
matter density perturbations in these coupled dark energy models. In Ref. [290]
it was shown that there is an instability of the matter perturbation in the deep
radiation-dominated epoch for the constant wX models. The assumption of con-
stant wX is restrictive, so one may extend the analysis to more realistic models with
varying wX. While the simple parametrization of the Hubble parameter is difficult
in such cases, it will be of interest to pursue the possibility to avoid the instabilities
of perturbations.

8.3.4 Mass varying neutrino scenario

It is known that the mass-squared difference between two different species of
neutrinos is around (10−2–10−3 eV)2 experimentally, whereas the energy scale of
dark energy is about (10−3 eV)4. The similarity between these energy scales has
motivated a number of models in which neutrinos and dark energy “know” each
other through a direct coupling. In these models, called mass varying neutrino, the
mass of the neutrino, mν , depends on a dark energy scalar field φ [291, 292, 293,
294, 295].

Assuming that the distribution of neutrinos is Fermi–Dirac and neglecting
its chemical potential, the energy density and the pressure of neutrinos can be
expressed, respectively, as [296]

ρν = T 4
ν

π2

∫ ∞

0
dy

y2
√

y2 + ξ (φ)2

ey + 1
, (8.113)

Pν = T 4
ν

3π2

∫ ∞

0
dy

y4

√
y2 + ξ (φ)2 (ey + 1)

, (8.114)

where ξ (φ) ≡ mν(φ)/Tν and y ≡ pν/Tν with Tν and pν being the temperature and
the momentum of neutrinos, respectively. We also assume that the scalar field φ
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has a standard kinetic term with a potential V (φ). Then the effective potential of
the system is given by

VT (φ) = V (φ) + (ρν − 3Pν) . (8.115)

The total energy density and the pressure are ρT = ρν + ρφ and PT = Pν + Pφ ,
respectively, where ρφ = φ̇2/2 + V (φ) and Pφ = φ̇2/2 − V (φ). The total energy
satisfies the following conservation law

ρ̇T + 3H (ρT + PT ) = 0 . (8.116)

Substituting the expression of ρT into Eq. (8.116), we obtain the equation for φ:

φ̈ + 3H φ̇ + V,φ = −Q(φ)(ρν − 3Pν) , Q(φ) ≡ d ln mν(φ)
dφ

. (8.117)

Let us consider the late-time cosmological evolution of the mass varying neutrino
scenario in the non-relativistic limit, mν ≫ Tν . Note that in the regime where
neutrinos are relativistic (ξ ≪ 1) one has ρν ≃ 3Pν so that the r.h.s. of Eq. (8.117)
is suppressed. In the non-relativistic limit (ξ ≫ 1) the neutrino energy density
(8.113) and the pressure (8.114) reduce to

ρν ≃ nνmν(φ) , (8.118)

Pν ≃ 0 , (8.119)

where nν is the number density of neutrinos given by

nν = T 3
ν

π2

∫ ∞

0

dy y2

ey + 1
= 3ζ (3)

2π2
T 3

ν . (8.120)

Hence Eq. (8.117) is approximately given by

φ̈ + 3H φ̇ + V,φ ≃ −Q(φ) ρν . (8.121)

This is the same equation as Eq. (8.77) with ρm = ρν . Thus the mass varying
neutrino scenario can be regarded as a coupled quintessence model in which the
coupling Q(φ) depends on the variation of the neutrino mass.

For non-relativistic neutrinos the effective potential (8.115) is given by

VT (φ) ≃ V (φ) + nνmν(φ) . (8.122)

Even if the field potential V (φ) does not have a minimum, the term nνmν(φ) gives
rise to instantaneous minima that vary in time. At the potential minimum we have
∂VT /∂φ = 0 and hence

nν = − ∂V (φ)
∂mν(φ)

. (8.123)
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The potential minimum is present provided that ∂V/∂mν < 0. The kinetic energy
of the field φ can be neglected relative to its potential energy at the epoch of cosmic
acceleration, so that the total energy density and pressure are approximately given
by ρT ≃ nνmν + V (φ) and PT ≃ −V (φ). Then the equation of state, w ≡ PT /ρT ,
is

w = − V (φ)
nνmν + V (φ)

. (8.124)

As long as nνmν ≪ V (φ) it follows that w ≃ −1. Hence the mass varying neutrino
scenario gives rise to the equation of state satisfying the condition for the late-time
cosmic acceleration. The cosmological consequences of the mass varying neutrino
scenario such as the effect on CMB and LSS have been extensively studied by a
number of authors [297, 298, 299, 300, 301].

A particular case of the mass varying neutrino occurs when the ratio of the
neutrino energy density to the scalar field energy density is constant during the
accelerated epoch [302]. This is the case of the asymptotic scaling solution (d)
discussed in Section 8.3.1 for the exponential potential. Since the effective coupling
on the r.h.s. of Eq. (8.117) is suppressed when the neutrino is relativistic but it grows
as the neutrino becomes non-relativistic, it is possible that the matter era is followed
by the accelerated scaling era (with constant Q asymptotically). If |Q/λ| ≫ 1 one
sees that the abundance of the coupled component, in this case neutrinos, is constant
and related to the field density by the relation &ν/&φ ≃ 4−1, while the effective
equation of state is weff ≃ −1 + 4−1, where 4 ≡ Q/λ. Therefore the ratio 4 sets at
the same time the asymptotic values of the acceleration and of the neutrino density
and its mass (averaged over the neutrino families). The fact that the present densities
of dark matter and baryons are non-zero implies that we are not yet on the final
scaling attractor, so the relations above apply only approximately to the present
epoch. In particular, for large 4 we can write &ν ≃ &φ/4 ≃ (1 − &m)/4 and
therefore weff ≃ −1 + &ν/(1 − &m). Since the present energy density of massive
neutrinos is &(0)

ν ≃
∑

ν mν/(94 h2 eV) (see e.g., [74]), it turns out that the present
equation of state in terms of the present neutrino average mass m̂ν ≡

∑
ν mν/3 is

given by [302]

weff ≃ −1 + (m̂ν(t0)/31 eV)

h2(1 − &
(0)
m )

≃ −1 + m̂ν(t0)
12 eV

. (8.125)

In this case observing the equation of state gives information on the neutrino
mass, which in turn can be compared with the value derived independently from
laboratory measurements.

Beside the equation of state/neutrino mass relation above, the accelerated scaling
model makes several definite predictions. Due to the strong coupling required for
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the scaling regime to hold, one expects a fast growth of perturbations in the neutrino
component. This might lead to interesting phenomena of neutrino-driven clustering
and of formation of large neutrino lumps but on the other hand severely limits the
viable parametric range of the model [303].

8.3.5 Couplings to the electromagnetic field

Recently there has been some controversial observational evidence in favor of a
temporal variation of the effective fine structure constant α. For example, the Oklo
natural fission reactor [304] constrained the variation of α relative to the present
value α0 to be −0.9 × 10−7 < 9α/α ≡ (α − α0)/α0 < 1.2 × 10−7 at the redshift
z ∼ 0.16. The absorption line spectra of distant quasars have given the constraints
9α/α = (−0.574 ± 0.102) × 10−5 over the redshift range 0.2 < z < 3.7 [305,
306] and 9α/α = (−0.06 ± 0.06) × 10−5 for 0.4 < z < 2.3 [307]. Although the
possibility of systematic errors still remains [308], this can provide an important
implication for dark energy.

The variation of α implies the existence of massless or nearly massless fields
coupled to gauge fields. Then quintessence or another type of scalar field (such as
k-essence) may be responsible for the time variation of α through an interaction
between the field φ and an electromagnetic field Fµν . The Lagrangian density
describing such a coupling is given by

LF (φ) = −1
4
BF (φ)FµνF

µν . (8.126)

Originally Bekenstein introduced an exponential form of the coupling: BF (φ) =
e−ζκ(φ−φ0) [309], where ζ is a coupling constant and φ0 is the field value today. Pro-
vided that |ζκ(φ − φ0)| ≪ 1, the coupling BF (φ) has the following linear depen-
dence:

BF (φ) = 1 − ζκ(φ − φ0) . (8.127)

This is only one example for the form of the coupling, see Refs. [310, 311, 312, 313,
314, 315, 316] for other choices of the coupling. Since the fine structure “constant”
α is inversely proportional to BF (φ) this can be expressed as α = α0/BF (φ), where
α0 is the present value. Then the variation of α for the coupling (8.127) is given by

9α

α
= α − α0

α0
≃ ζκ(φ − φ0) . (8.128)

Using the constraint 9α/α ≃ −10−5 around z = 3 [306] coming from the infor-
mation of quasar absorption lines, the coupling ζ can be expressed as

ζ ≃ − 10−5

κφ(z = 3) − κφ(z = 0)
. (8.129)



204 Dark energy as a modified form of matter II

The ratio of the variation of α around the present can be evaluated as
α̇

α
≃ ζκφ̇ ≃ −ζ

d(κφ)
d(1 + z)

H0 , (8.130)

where H0 is the Hubble parameter today. The bound on α̇/α from atomic clocks is
|α̇/α|z=0 < 4.2 × 10−15 yr−1 [317].

As an example, let us consider quintessence with the inverse power-law potential
V (φ) = M4+nφ−n. In the tracking regime of the matter-dominated era, we have
shown that the field equation of state is constant: wφ = −2/(n + 2), see Eq. (7.42).
It then follows that the quantity x = φ̇2/(2V ) defined in Eq. (7.29) is also constant,
i.e.

φ̇2

2M4+nφ−n
= n

n + 4
. (8.131)

Integrating this equation, we find that the evolution of the field in the tracking
regime is given by

φ ∝ t2/(n+2) ∝ a3/(n+2) . (8.132)

After the system enters the accelerated epoch, this solution begins to lose its
accuracy because the variation of wφ occurs (see Fig. 7.3). Let us proceed to
estimate the variation of α under the approximation that the field evolution is given
by Eq. (8.132) up to the present epoch, i.e.

φ ≈ φ0

(
a

a0

)3/(n+2)

= φ0(1 + z)−3/(n+2) . (8.133)

We then find that the coupling ζ in Eq. (8.129) is

ζ ≈ 10−5

1 − 4−3/(2+n)
(κφ0)−1 . (8.134)

Recall that κφ0 is of the order of unity in order to realize the present cosmic
acceleration. Since the denominator in Eq. (8.134) is slightly smaller than 1 for
n = O(1), the coupling ζ is constrained to be ζ ≈ 10−5. More careful analysis
[315] shows that ζ is in fact of this order for the consistency with the quasar bound.

Using the approximate solution (8.133), the variation of α today can be estimated
from Eq. (8.130):

(
α̇

α

)

z=0
≈ 3

n + 2
(κφ0)ζH0 ≈ ζH0 , (8.135)

where the last approximate equality holds for n = O(1). Recall that H0 is given
by H0 = (h/9.78) × 10−9 yr−1 with h ≈ 0.7. When ζ ≈ 10−5 it follows that
(α̇/α)z=0 ≈ 10−15 yr−1, which satisfies the atomic clock constraints. More strin-
gent constraints, as in Ref. [318], can be escaped by a suitable modulation of the
potential [319].
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The variation of α for other quintessence potentials was discussed in detail in
Ref. [315]. There is also a k-essence model in which a tachyon field is coupled
to electromagnetic fields [320]. In this case the form of the coupling BF (φ) is
naturally determined by underlying particle theory.

8.4 Chameleon scalar fields

If a scalar field φ couples to a non-relativistic matter as in the coupled quintessence
scenario, this gives rise to a fifth force interaction which can be constrained exper-
imentally. In fact, a coupling Q of the order of unity often arises in superstring and
supergravity theories. The existence of such a strongly coupled scalar field is not in
general compatible with local gravity experiments unless some mechanism exists
to suppress the propagation of the fifth force.

There is an interesting attempt called the chameleon mechanism to reconcile
large coupling models with local gravity constraints [321, 322]. This is based on
a coupled quintessence field whose effective mass is different depending on the
environment it is in. The matter coupling gives rise to an extremum of the field
potential the field can sit on. If the matter density is sufficiently high as in the
interior of a compact object, the field acquires a heavy mass about the potential
minimum so that it cannot propagate freely. Meanwhile the field has a lighter mass
in a low-density environment such as the exterior of the same compact object.

An effective coupling Qeff between the scalar field φ and the non-relativistic
matter can be much smaller than its bare coupling Q when a spherically symmetric
body has a thin-shell around the surface of the body [321, 322]. The field is nearly
frozen around the potential extremum at φ = φA in the region 0 < r < r1, where r1

is close to the radius rc of the body. In the thin-shell region (r1 < r < rc) the field
begins to evolve because of the dominance of the matter coupling term QρA, where
ρA is the mean density of the body. As long as the condition (rc − r1)/rc ≪ 1 is
satisfied, it is possible to make the effective coupling |Qeff| small so that the models
are consistent with local gravity experiments. In the following we shall discuss the
chameleon mechanism and the resulting field profile in detail.

The action of the chameleon scalar field φ with a potential V (φ) is similar to
that of the coupled quintessence scenario:

S =
∫

d4x
√

−g

[
1
2
R − 1

2
gµν∂µφ∂νφ − V (φ)

]
−

∫
d4x Lm(g(i)

µν, (
(i)
m ) ,

(8.136)

where g is the determinant of the metric gµν (in the Einstein frame) and Lm is a
matter Lagrangian with ((i)

m being the matter fields coupled to a metric g(i)
µν . The
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metric g(i)
µν is related to the Einstein frame metric gµν via

g(i)
µν = e2Qiφgµν , (8.137)

where Qi are the strengths of the couplings for each matter component with the
field φ. We use the unit κ2 = 8πG = 1/M2

pl = 1, but we restore Mpl or G when it
is needed.

The action (8.136) can originate from a theory in which the field φ has a direct
interaction of the form e−2QφR̃ with the Ricci scalar R̃. This belongs to a class of
scalar tensor theory whose action is given by

S̃ =
∫

d4x
√

−g̃

[
1
2
e−2QφR̃ − 1

2
(1 − 6Q2)e−2Qφ(∇̃φ)2 − U (φ)

]

−
∫

d4x Lm(g̃µν, (m) . (8.138)

Here a tilde represents quantities in a frame (called the Jordan frame) where φ

has a direct interaction with R̃. As we will see in Section 9.2, the action (8.138)
is equivalent to that in Brans–Dicke theory with a potential U (φ). Under the
conformal transformation, gµν = e−2Qφ g̃µν , we obtain the action (8.136) in
the Einstein frame, together with the field potential V (φ) = U (φ) e4Qφ . Note that
the couplings Qi are the same (Qi = Q) for each matter field. Clearly the metric
g(i)

µν in Eq. (8.136) corresponds to the metric g̃µν in the Jordan frame.
Varying the Einstein frame action (8.136) with respect to the field φ, we get

#φ − V,φ = −
∑

i

Qie
4Qiφg

µν
(i) T

(i)
µν , (8.139)

where T (i)
µν = (2/

√
−g(i))δLm/δg

µν
(i) is the energy-momentum tensor of the i-th

matter component. The trace of the i-th component is given by T (i) ≡ g
µν
(i) T

(i)
µν =

−ρ̃i for a non-relativistic fluid, where ρ̃i is an energy density. If the action (8.136)
originates from that in the Jordan frame, then ρ̃i represents the energy density in the
Jordan frame. We introduce the energy density ρi = ρ̃i e

3Qiφ which is conserved
in the Einstein frame.2 Note that this is different from the energy density ρ

(E)
i =

ρ̃i e
4Qiφ in the Einstein frame.

Equation (8.139) can be written as

#φ = V,φ +
∑

i

Qiρie
Qiφ . (8.140)

In a spherically symmetric spacetime of the Minkowski background (i.e. weak
gravity background) this reduces to

d2φ

dr2
+ 2

r

dφ

dr
= dVeff(φ)

dφ
, (8.141)

2 In the FLRW cosmological background this means that ρi satisfies the equation ρ̇i + 3Hρi = 0, while the
equation for ρ

(E)
i is ρ̇

(E)
i + 3Hρ

(E)
i = Qi φ̇ρ

(E)
i .
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where r is the distance from the center of symmetry and the effective potential Veff

is defined by

Veff(φ) ≡ V (φ) +
∑

i

ρie
Qiφ . (8.142)

In a strong gravity background, Eq. (8.141) is subject to change due to the backre-
action of gravitational potentials. In the analysis presented below we focus on the
weak gravity background in which the neglect of gravitational potentials can be
justified.

We shall consider the case where the couplings Qi are the same for each matter
component, i.e. Qi = Q together with ρ =

∑
ρi , so that the effective potential is

Veff(φ) = V (φ) + ρeQφ . (8.143)

We also assume that the spherically symmetric body has a homogeneous density
ρ = ρA and a mass Mc = (4π/3)ρAr3

c with a homogeneous density ρ = ρB outside
the body. The effective potential Veff has minima at field values φA and φB given
by

V,φ(φA) + QρAeQφA = 0 , (8.144)

V,φ(φB) + QρBeQφB = 0 . (8.145)

The former corresponds to the region with a high density (interior of the body) with
a large mass squared m2

A ≡ d2Veff
dφ2 (φA), whereas the latter to the lower density region

(exterior of the body) with a small mass squared m2
B ≡ d2Veff

dφ2 (φB). See Fig. 8.5 for
illustration.

8.4.1 The field profile of the chameleon field

Equation (8.141) shows that we need to consider the potential (−Veff) in order to
find the “dynamics” of the field with respect to r . This means that the effective
potential (−Veff) has a maximum at φ = φA, see Fig. 8.6. We impose the following
boundary conditions:

dφ

dr
(r = 0) = 0 , φ(r → ∞) = φB . (8.146)

The field φ is at rest at r = 0 and begins to roll down the potential when the matter-
coupling term QρAeQφ becomes important at a radius r1. If the field value at r = 0
is close to φA, the field is nearly frozen around φA in the region 0 < r < r1. The
body has a thin-shell if r1 is close to the radius rc of the body.

In the region 0 < r < r1, the r.h.s. of Eq. (8.141) can be approximated as
dVeff/dφ ≃ m2

A(φ − φA) around φ = φA. Hence the solution to Eq. (8.141) is given
by φ(r) = φA + Ae−mAr/r + BemAr/r , where A and B are integration constants.



208 Dark energy as a modified form of matter II

Large density rA

V
ef

f (
f)

 rAeQf

f

Small density rB

V
ef

f (
f)

f

V(f)
V(f)

 rBeQf

Figure 8.5 The effective potential Veff of a chameleon field (solid curve) for the case
V,φ < 0 and Q > 0. The effective potential is the sum of the field potential V (φ) (dashed
curve) and the coupling term ρeQφ (dotted curve). The left and right panels correspond
to large and small densities, respectively. The field tends to be more massive around the
minimum of the effective potential for larger density ρ.

Figure 8.6 The inverted effective potential (−Veff ) of a chameleon field inside (left)
and outside (right) a spherically symmetric body with constant matter densities
ρA and ρB , respectively. The black points represent the position of the field and
show how the field “evolves” with the increase of r . If the body has a thin-shell,
the field is nearly frozen in the region 0 < r < r1 with (rc − r1)/rc ≪ 1. The field
rolls down the potential for r1 < r < rc and it rolls up the potential for r > rc after
acquiring a sufficient kinetic energy in the thin-shell regime (r1 < r < rc).
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Since B = −A to avoid the divergence of φ at r = 0, the solution reduces to

φ(r) = φA + A(e−mAr − emAr )
r

(0 < r < r1) , (8.147)

which satisfies the boundary condition dφ
dr

(r = 0) = 0.
In the region r1 < r < rc the field |φ(r)| evolves toward larger values with

the increase of r . In this regime the condition |V,φ| ≪ |QρAeQφ| is satisfied. Since
Qφ ≪ 1 for most of the field potentials relevant to dark energy, one has dVeff/dφ ≃
QρA in Eq. (8.141). We then find the following solution

φ(r) = 1
6
QρAr2 − C

r
+ D (r1 < r < rc) , (8.148)

where C and D are constants.
In the region r > rc the field |φ| climbs up the potential hill toward larger values.

As long as the field acquires a sufficient kinetic energy in the thin-shell regime, the
l.h.s. of Eq. (8.141) dominates over the r.h.s. of it. Then the solution outside the
body satisfying the boundary condition φ(r → ∞) = φB is given by

φ(r) = φB + E

r
(r > rc) . (8.149)

If we take into account a small mass term mB , the solution is given by φ(r) ≃
φB + Ee−mB (r−rc)/r . In the following we neglect the contribution of the mass mB

as it does not affect the essential part of the discussion.
The coefficients A, C, D, and E are determined by imposing continuity condi-

tions of φ(r) and φ′(r) for the three solutions (8.147), (8.148), and (8.149) at r = r1

and r = rc. We then obtain the following field profile [323]

φ(r) = φA − 1
mA(e−mAr1 + emAr1 )

[
φB − φA + 1

2
QρA(r2

1 − r2
c )

]
e−mAr − emAr

r
,

(0 < r < r1), (8.150)

φ(r) = φB + 1
6
QρA(r2 − 3r2

c ) + QρAr3
1

3r

−
[

1 + e−mAr1 − emAr1

mAr1(e−mAr1 + emAr1 )

] [
φB − φA + 1

2
QρA(r2

1 − r2
c )

]
r1

r
,

(r1 < r < rc), (8.151)

φ(r) = φB −
[
r1(φB − φA) + 1

6
QρAr3

c

(
2 + r1

rc

) (
1 − r1

rc

)2

+ e−mAr1 − emAr1

mA(e−mAr1 + emAr1 )

{
φB − φA + 1

2
QρA(r2

1 − r2
c )

}]
1
r

, (8.152)

(r > rc) .
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In the original papers of the chameleon mechanism [321, 322], Khoury and
Weltman matched two solutions at r = rc by assuming that the field is frozen in
the regime 0 < r < r1. In Ref. [323] this was revisited to match three solutions
(8.147), (8.148), and (8.149) at r = r1 and r = rc. The radius r1 is determined by
the condition m2

A [φ(r1) − φA] = QρA, which translates into

φB − φA + 1
2
QρA(r2

1 − r2
c ) = 6Q'c

(mArc)2

mAr1(emAr1 + e−mAr1 )
emAr1 − e−mAr1

, (8.153)

where 'c = Mc/(8πrc) = ρAr2
c /6 is the gravitational potential at the surface of

the body. Using this relation, the field profile in the region r > rc is

φ(r) = φB − 2Qeff
GMc

r
, (8.154)

where

Qeff = Q

[
1 − r3

1

r3
c

+ 3
r1

rc

1
(mArc)2

{
mAr1(emAr1 + e−mAr1 )

emAr1 − e−mAr1
− 1

}]
. (8.155)

In Refs. [321, 324] the field equation (8.141) was numerically integrated in the
case of an inverse power-law potential V (φ) = M4+nφ−n by using the solution
(8.150) as a boundary condition around r = 0. In Ref. [324] it was found that the
approximation dVeff/dφ ≃ QρA in the region r1 < r < rc overestimates the field
value outside the body (typically about 20%). Note that taking into account the
mass term mB outside the body does not change the situation. However, since the
order of Qeff does not change, it is a good approximation to use the field profile
(8.154) with (8.155) at least for estimating the strength of the effective coupling.

The fifth force on a test particle of unit mass and a coupling Q is given by
Fφ = −Q∇φ. Hence its amplitude in the region r > rc is

Fφ = 2 |QQeff|
GMc

r2
. (8.156)

As long as |Qeff| ≪ 1 it is possible to make the fifth force suppressed relative to
the gravitational force GMc/r2. From Eq. (8.155) the amplitude of the effective
coupling can be made much smaller than |Q| provided that the conditions 9rc ≡
rc − r1 ≪ rc and mArc ≫ 1 are satisfied. Hence we require that the body has a
thin-shell and that the field is heavy inside the body for the chameleon mechanism
to work.

When the body has a thin-shell (9rc ≪ rc), one can expand Eq. (8.153) in terms
of the small parameters 9rc/rc and 1/(mArc):

ϵth ≃ 9rc

rc

+ 1
mArc

, (8.157)
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where ϵth is the so-called thin-shell parameter defined by

ϵth ≡ φB − φA

6Q'c

. (8.158)

As long as mArc ≫ (9rc/rc)−1, this recovers the relation ϵth ≃ 9rc/rc [321, 322].
The effective coupling (8.155) is approximately given by

Qeff ≃ 3Qϵth . (8.159)

Under the condition ϵth ≪ 1 one has |Qeff| ≪ |Q|, which means that the smallness
of the thin-shell parameter is crucially important for the compatibility with local
gravity constraints. From Eqs. (8.150) and (8.151) the field values at r = 0 and
r = r1 are φ(0) ≃ φA + 12Q'c/(mArce

mArc ) and φ(r1) ≃ φA + 6Q'c/(mArc)2.
This shows that, under the condition mArc ≫ 1, the field needs to be very close to
φA inside the body to avoid that the field rapidly rolls down the potential because
of the heavy mass.

If the field value at r = 0 is away from φA, it begins to roll down the potential
at r = 0. This is the “thick-shell” solution, which corresponds to taking the limit
r1 → 0 in Eq. (8.155). One has Qeff ≃ Q in this limit, so that the model does not
satisfy local gravity constraints for values of Q of the order of unity. Hence the
body needs to have a thin-shell for the chameleon mechanism to work.

8.4.2 The violation of the equivalence principle

When the spherically symmetric body has a thin-shell, we can place experimental
bounds on the thin-shell parameter ϵth from the possible violation of the equivalence
principle (EP). The tightest bound comes from the solar system tests of the weak
EP using the free-fall acceleration of the Moon (aMoon) and Earth (a⊕) toward the
Sun [322]. The experimental bound on the difference of two accelerations is given
by [325]

2
|aMoon − a⊕|
aMoon + a⊕

< 10−13 . (8.160)

Under the conditions that Earth, Sun, and Moon have thin-shells, the field profiles
outside the bodies are given as in Eq. (8.154) with the replacement of correspond-
ing quantities. For the field potential that can satisfy local gravity constraints,
the condition |φB | ≫ |φA| holds for these objects. Then the thin-shell parame-
ters are ϵth,⊕ ≃ φB/(6Q'⊕), ϵth,⊙ ≃ φB/(6Q'⊙), ϵth,Moon ≃ φB/(6Q'Moon) for
Earth, Sun, and Moon, respectively, with the same asymptotic field value φB

for each object. Note that the gravitational potentials are '⊕ ≃ 7.0 × 10−10,
'⊙ ≃ 2.1 × 10−6, and 'Moon ≃ 3.1 × 10−11, respectively. Hence we obtain the
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following relations

ϵth,⊙ ≃ '⊕

'⊙
ϵth,⊕ , ϵth,Moon ≃ '⊕

'Moon
ϵth,⊕ . (8.161)

The acceleration induced by a fifth force with the field profile φ(r) and the
effective coupling Qeff is afifth = |Qeff∇φ(r)|. Using the thin-shell solution (8.154)
for each object, the accelerations a⊕ and aMoon toward the Sun (mass M⊙) are [322]

a⊕ = GM⊙

r2

(
1 + 18Q2ϵth,⊕ϵth,⊙

)
≃ GM⊙

r2

(
1 + 18Q2ϵ2

th,⊕
'⊕

'⊙

)
, (8.162)

aMoon = GM⊙

r2

(
1 + 18Q2ϵth,Moonϵth,⊙

)
≃ GM⊙

r2

(
1 + 18Q2ϵ2

th,⊕
'2

⊕
'⊙'Moon

)
,

(8.163)

where we have used Eq. (8.161). Then the condition (8.160) translates into

ϵth,⊕ <
8.8 × 10−7

|Q|
. (8.164)

The constraint coming from the violation of strong EP provides a bound ϵth,⊕ !
10−4 [322], which is weaker than (8.164) for |Q| = O(1).

8.4.3 Solar system constraints

In Chapter 9 we will place constraints on modified gravity models by starting
from the Jordan frame action given in Eq. (8.138). One can derive the spherically
symmetric metric in the Jordan frame by using the technique of the conformal
transformation. This is useful to place solar system constraints on modified gravity
models by using the so-called post-Newtonian parameter. The spherically symmet-
ric metric in the Einstein frame is given by

ds2 = gµνdxµdxν = −[1 − 2A(r)]dt2 + [1 + 2B(r)]dr2 + r2d&2 , (8.165)

where A(r) and B(r) are functions of the distance r from the center of symmetry
and d&2 = dθ2 + sin2 θ dφ2. The metric outside the spherically symmetric body
with mass Mc is given by A(r) ≃ B(r) ≃ GMc/r for weak gravity.

In order to derive the modification induced by the coupling Q we shall consider
the metric g(i)

µν defined by Eq. (8.137) or, equivalently, the Jordan frame metric
g̃µν = e2Qφgµν . The line element in the Jordan frame is

ds̃2 = e2Qφds2 (8.166)

= −[1 − 2Ã(r̃)]dt2 + [1 + 2B̃(r̃)]dr̃2 + r̃2d&2 . (8.167)
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In the following we shall consider the case |Qφ| ≪ 1 and take only the linear terms
in Qφ. The condition |Qφ| ≪ 1 is satisfied for most of the models we will discuss
later. Then we obtain the following relations

r̃ = eQφr , Ã(r̃) ≃ A(r) − Qφ(r) , B̃(r̃) ≃ B(r) − Qr
dφ(r)

dr
. (8.168)

Provided that |Qφ| ≪ 1 we have that r̃ ≃ r . Using the thin-shell solution (8.154)
with (8.159), we find that the metrics Ã(r) and B̃(r) in the Jordan frame are

Ã(r) = GMc

r

[
1 + 6Q2ϵth (1 − r/rc)

]
, B̃(r) = GMc

r

(
1 − 6Q2ϵth

)
.

(8.169)

Here we have used the approximation |φB | ≫ |φA| and hence φB ≃ 6Q'cϵth. The
requirement that the term QφB does not exceed A(r) = GMc/r in Eq. (8.168)
gives the condition r/rc < (6Q2ϵth)−1. As long as the field φ reaches the value
φB with the distance rB satisfying the condition rB/rc < (6Q2ϵth)−1, the metric
Ã(r) does not change its sign for r < rB . The post-Newtonian parameter γ is given
by

γ ≡ B̃(r)

Ã(r)
≃ 1 − 6Q2ϵth

1 + 6Q2ϵth(1 − r/rc)
. (8.170)

The present tightest solar system constraint on the post-Newtonian parameter comes
from the time-delay effect of the Cassini tracking for the Sun [326]:

|γ − 1| < 2.3 × 10−5 . (8.171)

Since γ ≃ 1 − 6Q2ϵth for r ≈ rc the constraint (8.171) is satisfied for ϵth,⊙ < 3.8 ×
10−6/Q2, where ϵth,⊙ is the thin-shell parameter for Sun. Even when |Q| = O(1),
as long as the thin-shell parameter is much smaller than unity the models can be
compatible with solar system tests.

The bound (8.171) coming from the solar system constraint is typically weaker
than the constraint (8.164) coming from the violation of weak equivalence principle,
so we shall adopt the bound (8.164) in the following discussions.

8.4.4 Constraints on the model with an inverse power-law potential

Let us consider experimental bounds on model parameters for the inverse power-
law potential

V (φ) = M4+nφ−n . (8.172)
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In this subsection we shall consider the positive coupling Q > 0 with φ > 0. This
is a quintessence potential giving a tracking cosmological solution [38]. In the
previous section we have shown that the effective coupling Qeff can be made much
smaller than Q for thin-shell solutions with mArc ≫ 1. Using Eq. (8.158) and the
value '⊕ ≃ 7.0 × 10−10 for Earth, the bound (8.164) translates into

|φB,⊕| < 3.7 × 10−15 . (8.173)

Note that we have employed the relation |φB,⊕| ≫ |φA,⊕|.
We recall that φB,⊕ depends upon the density ρB outside Earth. We take the

value ρB ≃ 10−24 g/cm3 that corresponds to the mean dark matter/baryon density
in our galaxy. For the inverse power-law potential (8.172) we have

φB,⊕ =
[

n

Q

M4
pl

ρB

(
M

Mpl

)n+4
] 1

n+1

Mpl , (8.174)

where we have recovered Mpl.
Using the bound (8.173) with n and Q of the order of unity, we get the following

constraint

M ! 10− 15n+130
n+4 Mpl . (8.175)

This shows that M ! 10−2 eV for n = 1 and M ! 10−4 eV for n = 2.
The mass squared m2

A about the potential minimum at φ = φA is given by

m2
A = n(n + 1)

(
n

Q

)− n+2
n+1

(
ρA

M4
pl

) n+2
n+1 (

M

Mpl

)− n+4
n+1

M2
pl . (8.176)

Multiplying the square of the Earth radius rc and eliminating M with the use of
Eq. (8.174), we obtain

(mArc)2 = 6(n + 1)Q'⊕

(
ρA

ρB

) 1
n+1 1

φB,⊕
. (8.177)

Since the mean density of the Earth is ρA ≈ 10 g/cm3, the experimental bound
(8.173) leads to

mArc > 3
√

(n + 1)Q · 10
5n+30
2(n+1) . (8.178)

When Q is of the order of unity one has mArc " 109 for n = 1 and mArc " 107 for
n = 2. Hence in these cases the mass mA in fact satisfies the condition mArc ≫ 1.

From the above discussion it appears that the local gravity constraints can be
satisfied for the inverse power-law potential through the chameleon mechanism.
If the same potential is responsible for dark energy, we require that the mass M

satisfies the condition (7.34). For n of the order of unity, this requirement is not
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compatible with the condition (8.175). However, if we consider the potential of the
form V (φ) = M4 exp(Mn/φn) [327], we have V (φ) ≈ M4 + M4+nφ−n for φ " M

so that the late-time cosmic acceleration is realized for M ≈ 10−3 eV. This mass
scale can then be compatible with the bound coming from local gravity constraints.
See Refs. [328, 329] for the possibility of experimental detections of the chameleon
field.

8.5 Dark energy models with scaling solutions

We have shown in Section 7.2 that scaling solutions are present for the quintessence
scalar field with an exponential potential. The ratio of the field density ρϕ to the
fluid density ρM as well as the field equation of state wϕ is a non-zero (finite)
constant for scaling solutions:

ρϕ

ρM

= constant (̸= 0) , wϕ = constant . (8.179)

In this model this solution lies at the boundary between acceleration and decel-
eration. For a scalar field potential shallower than the exponential potential the
solutions finally enter a tracking regime.

Scaling solutions can be also found when dark energy is coupled to matter as we
have seen in Section 8.3.1. One example is what we have called φMDE which can
replace the standard matter era. Another type is represented by the fixed point (d)
in Table 8.1 that can lead to the late-time cosmic acceleration. In this section we
shall derive a class of the Lagrangian densities having scaling solutions for general
k-essence models.

8.5.1 The condition for the existence of scaling solutions

Let us start with the following general action

S =
∫

d4x
√

−gM

[
1
2
R + P (ϕ, X)

]
+ Sm(gµν, ϕ, ( (i)

m ) , (8.180)

where gM is the determinant of the metric, P (ϕ, X) is a Lagrangian density which
is the function of a scalar field ϕ and its kinetic energy X = −(1/2)gµν∂µϕ ∂νϕ. For
generality we allow for the interaction between the matter fields ( (i)

m and the scalar
field ϕ. We shall consider the same form of the coupling as given in Eq. (8.71). We
assume that the coupling is a function of the field ϕ, i.e. Q = Q(ϕ). Note that the
unit κ2 = 8πG = 1 is chosen.

We focus on the solution with a constant equation of state parameter wϕ ≡
P (ϕ, X)/ρϕ in the scaling regime, we assume that the Universe is filled only by
two components: the scalar field ϕ and the pressureless matter with an equation of
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state wm = 0. Recalling that the field energy density is given by ρϕ = 2XP,X − P ,
the energy densities ρϕ and ρm satisfy the following equations of motion in the flat
FLRW spacetime:

dρϕ

dN
+ 3(1 + wϕ)ρϕ = −Q(ϕ)ρm

dϕ

dN
, (8.181)

dρm

dN
+ 3(1 + wm)ρm = +Q(ϕ)ρm

dϕ

dN
, (8.182)

where N = ln a. The Friedmann equation is given by

3H 2 = ρϕ + ρm . (8.183)

We define the fractional densities of ρϕ and ρm as

&ϕ ≡ ρϕ

3H 2
, &m ≡ ρm

3H 2
, (8.184)

which satisfy the relation &ϕ + &m = 1 from Eq. (8.183).
We are looking for asymptotic scaling solutions where both &ϕ and wϕ

are constants. The condition ρϕ/ρm = constant translates into d(ln ρϕ)/dN =
d(ln ρm)/dN . From Eqs. (8.181) and (8.182) we obtain the following relations

dϕ

dN
= 3&ϕ

Q(ϕ)
(wm − wϕ) ∝ 1

Q(ϕ)
, (8.185)

and

d ln P

dN
= d ln ρϕ

dN
= d ln ρm

dN
= −3(1 + weff) , (8.186)

where

weff ≡ wm&m + wϕ&ϕ . (8.187)

Since P is a function of ϕ and X, Eq. (8.186) translates into

∂ ln P

∂ϕ

dϕ

dN
+ ∂ ln P

∂ ln X

d ln X

dN
= −3(1 + weff) . (8.188)

From the definition of X, one gets

2 X = H 2
(

dϕ

dN

)2

∝ ρϕ

Q(ϕ)2
∝ P (ϕ, X)

Q(ϕ)2
, (8.189)

and thus

d ln X

dN
= −3(1 + weff) − 2

d ln Q

dN
. (8.190)



8.5 Dark energy models with scaling solutions 217

Substituting Eqs. (8.185) and (8.190) into Eq. (8.188), we arrive at the following
equation for the Lagrangian density P (ϕ, X):

[
1 + 2

λ Q

dQ(ϕ)
dϕ

]
∂ ln P

∂ ln X
− 1

λ

∂ ln P

∂ϕ
= 1, (8.191)

where

λ ≡ Q
1 + wm − &ϕ(wm − wϕ)

&ϕ(wm − wϕ)
. (8.192)

The integration of Eq. (8.191) gives [330]

P (ϕ, X) = XQ2(ϕ) g
(
XQ2(ϕ) e(λ/Q)ψ(ϕ)) , (8.193)

where g is an arbitrary function and

ψ(ϕ) ≡
∫ ϕ

Q(ξ )dξ . (8.194)

If Q is a constant, we obtain [241]

P (ϕ, X) = Xg(Y ) , Y ≡ Xeλϕ . (8.195)

Note that Q2 is absorbed in the definition of X. This analysis was extended to a more
general cosmological background (H 2 ∝ ρn) in Ref. [331] (see also Refs. [332,
333]).

In the following we focus on the case of the constant coupling Q. As an example,
let us consider the Lagrangian density of the form

P (ϕ, X) = f (X) − V (ϕ) . (8.196)

Substituting this into Eq. (8.191), it follows that

X
df

dX
− f (X) = −1

λ

dV

dϕ
− V ≡ C , (8.197)

where C is a constant. The integration of this equation gives f = c1X − C and
V = c2e

−λϕ − C. Hence the following Lagrangian density has a scaling solution

P = c1X − c2e
−λϕ . (8.198)

This corresponds to the quintessence with an exponential potential.
The dilatonic ghost condensate model (8.7) also has a scaling solution

because this Lagrangian density corresponds to the choice g(Y ) = −1 + Y/M4

in Eq. (8.195). The tachyon field with the Lagrangian density P (φ, X) =
−V (φ)

√
1 − 2X has a scaling solution for the potential V (φ) ∝ φ−2, see prob-

lem 8.1.
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8.5.2 Fixed points of the scaling Lagrangian

Let us derive the fixed points of the scaling Lagrangian density (8.195) in the
presence of non-relativistic matter and radiation. We shall focus on the case λ > 0
in the following discussion. The energy density of the field is given by ρϕ =
X[g + 2Y (dg/dY )]. Substituting this into Eq. (8.181) yields

ϕ̈ + 3HAP,Xϕ̇ + λX [1 − A(g + 2g1)] = −AQρm , (8.199)

where

A(Y ) ≡ (g + 5g1 + 2g2)−1 , gn ≡ Yn∂ng/∂Yn . (8.200)

The sound speed, cs , is related to the quantity A via

c2
s = AP,X . (8.201)

From the stability of quantum fluctuations given in Eq. (8.30), we require the
conditions A > 0 and P,X > 0. The Friedmann equation is

3H 2 = X(g + 2g1) + ρm + ρr . (8.202)

We introduce the following variables

x ≡ ϕ̇√
6H

, y ≡ e−λϕ/2

√
3H

, u ≡
√

ρr√
3H

. (8.203)

Then we find that the variable Y = Xeλϕ is expressed as Y = x2/y2. The density
parameter &ϕ and the equation of state wϕ of the field are

&ϕ = x2 (g + 2g1) , wϕ = g

g + 2g1
. (8.204)

The density parameter of non-relativistic matter is given by &m = 1 − &ϕ − u2. It
is useful to notice the following relations

wϕ&ϕ = gx2 , wϕ = −1 + 2x2

&ϕ

P,X , (8.205)

where P,X = g + g1. The field behaves as a phantom (wϕ < −1) for P,X < 0
(provided that &ϕ > 0).
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The variables x, y, and u obey the following autonomous equations

dx

dN
= 3x

2

[
1 + gx2 − 2A(g + g1) + 1

3
u2

]

+
√

6
2

[
A(Q + λ)(g + 2g1)x2 − λx2 + QA(u2 − 1)

]
, (8.206)

dy

dN
= y

2

(
3 −

√
6λx + 3gx2 + u2

)
, (8.207)

du

dN
= u

2
(−1 + 3gx2 + u2) . (8.208)

The effective equation of state of the system is given by

weff = gx2 + 1
3
u2 . (8.209)

We shall derive the fixed points of the above system in the absence of the radiation
(u = 0). From Eq. (8.207) we have two distinct classes of solutions, either for 3 −√

6λx + 3gx2 = 0 or for y = 0. Using Eq. (8.205), the former case corresponds to

x =
√

6(1 + wϕ&ϕ)
2λ

. (8.210)

Substituting this into Eq. (8.206), we obtain

(&ϕ − 1)
[
(Q + λ)wϕ&ϕ + Q

]
= 0 . (8.211)

This allows the following two fixed points independent of the form of g(Y ) [334].

! (A) Point A: Scalar-field dominated solution: &ϕ = 1
Substituting &ϕ = 1 into Eqs. (8.205) and (8.210), we get the following relation at the
fixed point xA:

wϕ = −1 +
√

6λxA

3
= −1 + λ2

3P,X

, (8.212)

where xA = λ/(
√

6P,X). In the case of coupled quintessence with an exponential poten-
tial (P = X − V0e

−λφ) one has wϕ = −1 + λ2/3, which agrees with the equation of
state for the fixed point (c) in Section 7.2. The eigenvalues for the Jacobian matrix of
perturbations about the point A are given by [334] (see problem 8.4)

µ+ = −3 +
√

6(Q + λ)xA , µ− = −3 +
√

6
2

λxA . (8.213)

When Q > −λ/2 and Q ≤ −λ/2 the point A is stable for xA <
√

6/(2(Q + λ)) and
xA <

√
6/λ, respectively. For a phantom field (P,X < 0) one has xA = λ/(

√
6P,X) < 0
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so that the phantom fixed point A is classically stable for Q > −λ. For a non-phantom
field (xA > 0) the point A is stable for

P,X > λ(Q + λ)/3 , if Q > −λ/2 , (8.214)

P,X > λ2/6 , if Q ≤ −λ/2 . (8.215)! (B) Point B: Scaling solution: &ϕ = −Q/(wϕ(Q + λ))
Substituting the relation &ϕ = −Q/(wϕ(Q + λ)) into Eq. (8.210), we find

xB =
√

6
2(Q + λ)

. (8.216)

We also obtain the following relations

weff = − Q

Q + λ
, wϕ = − Q(Q + λ)

Q(Q + λ) + 3(g + g1)
, &ϕ = Q(Q + λ) + 3(g + g1)

(Q + λ)2
.

(8.217)
The condition for the cosmic acceleration corresponds to weff < −1/3, i.e.

Q > λ/2 or Q < −λ . (8.218)

In the presence of the coupling Q it is possible to have an accelerated scaling solution
with &ϕ = constant.

The eigenvalues for the Jacobian matrix of perturbations about the point B can be
derived without specifying the form of g(Y ) [334]:

µ± = −3(2Q + λ)
4(Q + λ)

⎡

⎣1 ±

√

1 − 8(1 − &ϕ)(Q + λ)3[&ϕ(Q + λ) + Q]
3(2Q + λ)2

A

⎤

⎦ , (8.219)

where A is defined in Eq. (8.200). Under the conditions (8.218), the point B is stable if

− Q

Q + λ
≤ &ϕ < 1 , and A > 0 . (8.220)

The second condition is required to avoid the ultra-violet instability of quantum fluctua-
tions (together with the condition P,X > 0). Using Eq. (8.217) we find that the condition
−Q/(Q + λ) ≤ &ϕ corresponds to −2Q(Q + λ) ≤ 3P,X, which is automatically satis-
fied for a non-phantom scalar field (P,X > 0) under the condition (8.218). The crucial
condition for the stability of the point B is &ϕ < 1, i.e.

P,X < λ(Q + λ)/3 . (8.221)

For a non-phantom point B this condition can be satisfied for Q > λ/2, but not for
Q < −λ. Hence, if Q > λ/2 and &ϕ < 1, there exists a stable, accelerated, and non-
phantom fixed point B. When Q > λ/2 the stability condition (8.221) has an opposite
inequality to that in Eq. (8.214). Hence, when the point B is stable, the point A is not
stable, and vice versa.
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Let us next study the second class of fixed points, i.e. y = 0. The function g(Y )
(where Y = x2/y2) should be non-singular at y = 0 for the existence of such points.
From this requirement the function g can be expanded in positive powers of y2/x2,
i.e.

g = c0 +
∑

n>0

cn(y2/x2)n . (8.222)

For the function (8.222) it follows that

gn(y → 0) = 0 (n > 0). (8.223)

Substituting Eq. (8.222) into Eq. (8.206), we find that the fixed points satisfy

dx

dN
= 1

2

(
3c0x +

√
6Q

)(
x2 − 1

c0

)
= 0 . (8.224)

If c0 ̸= 0 we have the following fixed points.! (C) ϕMDE point C
The ϕMDE corresponds to the point

(xC, yC) =
(

−
√

6Q

3c0
, 0

)

, (8.225)

with

&ϕ = weff = 2Q2

3c0
, wϕ = 1 . (8.226)

The ϕMDE is also a scaling solution giving constant values of &ϕ and wϕ . When c0 > 0
the requirement of the condition &ϕ < 1 gives the bound

|Q| <
√

3c0/2 . (8.227)

The eigenvalues for the matrix of perturbations about the ϕMDE are

µ1 = (Q2/c0) − 3/2 , µ2 = 3/2 + Q(Q + λ)/c0 . (8.228)

When c0 > 0, µ1 is negative under the condition (8.227), whereas µ2 > 0 for the values
of Q and λ satisfying Eq. (8.218). This shows that for positive c0 the ϕMDE corresponds
to a saddle point for all the relevant cases. When c0 < 0 the ϕMDE can be a stable point
for Q(Q + λ) > 3|c0|/2, but such cases are excluded as we will see later.! (D) Purely kinetic point
This point exists for c0 > 0 and is given by

(xD, yD) = (±1/
√

c0, 0) , (8.229)

with

&ϕ = 1 , weff = wϕ = 1 . (8.230)
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The eigenvalues for the matrix of perturbations are

µ1 = 3 ±
√

6/c0 Q, µ2 = 3 ∓
√

6/c0 λ/2 , for xD = ±1/
√

c0 , (8.231)

where the double sign corresponds to the same order. When Q > 0 one of the eigenvalues
is at least positive for both signs of xD , which means that the point D is either an unstable
node or a saddle. When Q < 0 the point corresponding to xD = 1/

√
c0 is stable for

Q < −
√

3c0/2 and λ >
√

6c0, whereas the point corresponding to xD = −1/
√

c0 is an
unstable node.

In summary the scalar-field dominated point A and the scaling solution B are present
for any form of g(Y ). Since it is possible to have weff < −1/3 for these points, they
can be used for the late-time acceleration. The solutions choose one of the points
as a final attractor depending on the initial conditions. The existence of the points
C and D depends on the form of the scalar-field Lagrangian. The quintessence
with an exponential potential (g = 1 − c/Y ) belongs to this class, but the dilatonic
ghost condensate model (g = −1 + cY ) does not. The ϕMDE point C is a kind
of scaling solution by which the standard matter era can be replaced. The point
D corresponds to &ϕ = 1, but it does not lead to the cosmic acceleration. This is
viable neither for the matter-dominated epoch nor for the dark energy dominated
epoch. We note that the radiation fixed point, (x, y, u) = (0, 0, 1), also exists for
the dynamical system (8.206)–(8.208).

8.5.3 Two scaling regimes?

For the coupled quintessence with an exponential potential we have shown in
Section 8.3 that the typical cosmological trajectory is a sequence of radiation,
ϕMDE point C, and the scalar-field dominated point A. If it is possible to realize the
ϕMDE point C followed by the scaling solution B, this is attractive for alleviating
the coincidence problem in the sense that dark energy and dark matter follow
the same scaling solution from the end of the radiation era. Unfortunately it was
shown in Ref. [17] that the coupled quintessence with an exponential potential
does not allow for such cosmological evolution. In the following we shall discuss
the possibility of realizing two scaling solutions (the ϕMDE point C followed by
the point B) for a vast class of the coupled scalar-field Lagrangian density (8.195)
having scaling solutions. Recall that the ϕMDE exists for the function

g = c0 +
∑

n>0

cnY
−n , (8.232)

where n are integers. We shall discuss three cases: (i) c0 > 0, (ii) c0 < 0, and (iii)
c0 = 0, separately.
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(i) c0 > 0
The scaling solution B can be used for the late-time cosmic acceleration provided
that Q > λ/2 > 0 or Q < −λ < 0. In the former case one has xB > 0 and xC < 0
from Eqs. (8.216) and (8.225), whereas in the latter case xB < 0 and xC > 0.
The function g given in Eq. (8.232) is singular at x = 0. This suggests that the
cosmological trajectory from the point C to the point B is prevented.

To be more concrete let us consider a single power-law function of g(Y ):

g = c0 − cY−p , (8.233)

where p is not necessarily an integer. In the limit that x → 0 with a non-zero value
of y, the term gx2y on the r.h.s. of Eq. (8.207) shows a divergence for p > 1,
whereas the term gx3 on the r.h.s. of Eq. (8.206) diverges for p > 3/2. When
p ̸= 1 we have [330]

∣∣∣∣
dy/dN

dx/dN

∣∣∣∣
x→0

→ ∞ , (8.234)

which means that the solutions cannot pass the line x = 0 in the (x, y) plane. Since
the signs of xB and xC are different, it is inevitable to hit the singularity for p > 1
if the solutions move from the point C to the point B.

We also note that there is another singularity associated with the divergence of
the sound speed cs . From Eq. (8.201) this happens for A−1 = c0 − c(p − 1)(2p −
1)Y−p = 0, i.e.

y = ±
(

c0

c(p − 1)(2p − 1)

)1/(2p)

x . (8.235)

For positive c, these lines exist for p > 1 or 0 < p ≤ 1/2 but disappear for 1/2 <

p ≤ 1.
In Fig. 8.7 we see that cosmological trajectories from the point C to the point B

cannot avoid the singularity of the sound speed in addition to the presence of the
singularity at x = 0. Thus we have shown that the ϕMDE is not followed by the
scaling attractor B for p ≥ 1.

When p = 1, i.e. for coupled quintessence with an exponential potential, we
have neither of the two singularities mentioned above. Hence it is possible to
realize the trajectories from the point C to the point B, see Fig. 8.7. How-
ever, in this model, it is not possible to satisfy the observational requirement
&(B)

ϕ = 0.7 ± 0.2 and w
(B)
eff < −0.6 ± 0.1 for the point B, while at the same time

satisfying the bound &(C)
ϕ < 0.2 for the point C to be consistent with CMB and

LSS data [17]. Hence the model with p = 1 does not allow an ideal cosmological
trajectory.
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Figure 8.7 Phase space trajectories for the model g = 1 − Y−2 with Q = 0.7 and λ = 4
(left) and for the model g = 1 − Y−1 (coupled quintessence with an exponential potential)
with Q = 1.02 and λ = 1.54 [330]. We also plot the fixed points A, B, C, D. The grey area
corresponds to the region &ϕ > 1. In the model of the left panel, there is a singularity at
x = 0 that prevents the cosmological evolution from the point C to the point B. The dotted
line represents another singularity given by Eq. (8.235) at which the sound speed diverges.
In the model of the right panel the ϕMDE point C can be followed by the scaling solution
B, but such a solution is not cosmologically viable. From Ref. [330].

While we have considered a single power p larger than 1, the result we have
obtained above can be applied for the function g of the form (8.232). In fact, if the
function g includes any power n larger than 1, this leads to a singularity at x = 0
even if the singularity of the sound speed may be avoided. Thus the model (8.232)
does not allow the sequence of two scaling solutions for positive c0.

For the model (8.233) with 0 < p < 1 the line x = 0 is not singular, but the
property (8.234) still holds. Hence it is difficult to connect the point C to the point
B. In this case there exists a nearly matter-dominated era with small positive values
of x and y, but this is different from the ϕMDE. So the sequence of two scaling
solutions is not realized in this case.

(ii) c0 < 0
When c0 < 0 the ϕMDE corresponds to a negative value of &ϕ , see Eq. (8.226).
Moreover we encounter another problem if we aim to connect the point C to the
point B without singularities. The quantity A defined in Eq. (8.200) reduces to
A−1 = c0 by using the relation (8.223) for the function (8.222). Since c0 < 0 we
have that A < 0. As we have shown in Eq. (8.220), we require that A > 0 to get
a viable scaling solution. In order to reach the point B from the point C, we need
to cross either A = 0 (x = 0) or the singularity at A−1 = 0 (which is not allowed).
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The former can be realized only for the model (8.233) with p = 1. This discussion
shows that the negative c0 case does not allow the sequence of two scaling solutions.

(iii) c0 = 0
When c0 = 0, Eq. (8.225) shows that there is no ϕMDE fixed point and hence this
case is not viable either. Although one can have a matter era for x → ∞ with n ≥ 1
or for x → 0 with the power n less than 1, A is singular in both cases.

We have thus shown that no cosmologically viable sequence of two scaling
solutions can be realized for a general class of the Lagrangian density with constant
coupling Q. We wish to stress here that the above analysis covers all of the scalar-
field scaling models proposed in the literature. The point is that we require a
small coupling Q during the matter era to keep the condition &ϕ ≪ 1, whereas a
large coupling is needed to get a sufficient cosmic acceleration at late times. For
the constant coupling Q the typical cosmological evolution is the ϕMDE point C
followed by the accelerated point A. It is possible to have two scaling regimes if
the coupling Q(ϕ) changes from a small value Q1 to a large value Q2 very rapidly.
One such example is

Q(ϕ) = 1
2

[
(Q2 − Q1) tanh

(
ϕ − ϕ1

9

)
+ Q2 + Q1

]
, (8.236)

where the growth of the coupling occurs around ϕ = ϕ1 with the variance 9. In
this case the solutions can approach a stationary global attractor with &ϕ ≃ 0.7
preceded by the ϕMDE [284]. We note that the mass-varying neutrino scenario
discussed in Section 8.3.4 also allows the growth of the effective coupling [302].

8.6 Unified models of dark energy and dark matter

Notwithstanding their radically different properties in terms of the equation of state
and clustering, the temptation to unify dark matter and dark energy in a single entity
occurred to many cosmologists almost from the beginning. This can be achieved
in several ways, with more or less theoretical justification.

In this section we discuss unified models of dark energy and dark matter using
a single fluid or a single scalar field [45, 46, 335]. In the following we shall first
present the generalized Chaplygin gas (GCG) model as an example of a single fluid
model. We then proceed to a class of unified models using a single scalar field.

8.6.1 Generalized Chaplygin gas model

The Chaplygin3 gas model has been proposed by Kamenshchik et al. [45]. In this
model the pressure P of the perfect fluid is related to its energy density ρ via

3 Named after Sergey Chaplygin (1869–1942), Russian mathematician, physicist, and engineer, who found a
similar behavior in aerodynamical studies. Chaplygin is very likely the only scientist who has a lunar crater, a
city, and a cosmological model named after him.
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P = −A/ρ. For generality, one can also work with a generalized Chaplygin gas
(GCG) model given by [46]

P = −Aρ−α , (8.237)

where A is a positive constant. If α > 0 the pressure is suppressed relative to the
energy density in the early cosmological epoch. At late times the negative pressure
becomes important so that the cosmic acceleration can be realized. A fluid with the
Chaplygin equation of state therefore interpolates between pressureless matter and
dark energy and could in principle replace both.

Plugging the relation (8.237) into the continuity equation (2.20), we obtain the
following integrated solution

ρ(t) =
[
A + B

a3(1+α)

]1/(1+α)

, (8.238)

where B is an integration constant. Here a(t) = (1 + z)−1 is the scale factor nor-
malized to unity today. From Eq. (8.238) we find that the density ρ evolves as
ρ ∝ a−3 in the early epoch (a ≪ 1) and ρ ∝ A1/(1+α) in the late epoch (a ≫ 1),
respectively. In the flat FLRW background the density ρ is related to the expansion
rate H via the relation

3H 2 = 8πGρ . (8.239)

We introduce the following quantities

ρ∗ ≡ (A + B)1/(1+α) , &∗
m ≡ B

A + B
, (8.240)

where &∗
m is interpreted as an effective matter density (which is different from

&(0)
m ). Then Eq. (8.238) can be written as

ρ(z) = ρ∗
[
1 − &∗

m + &∗
m(1 + z)3(1+α)]1/(1+α)

. (8.241)

We then obtain the equation of state

w(z) = −
[

1 + &∗
m

1 − &∗
m

(1 + z)3(1+α)
]−1

. (8.242)

In the region of high redshift (z ≫ 1) this approaches the value w ≈ 0. The present
value of w is w(0) = −(1 − &∗

m). In the asymptotic future the equation of state
approaches the value w → −1.

Thus the GCG model can account for both dark matter and dark energy at least at
the background level. Let us consider the evolution of matter density perturbations
δm in the GCG model [336, 337]. The presence of the pressure gives rise to a
modification to the matter perturbation equation given in Eq. (4.77). Each Fourier
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mode for the total matter perturbation δ∗
m [defined in Eq. (4.65)] with a comoving

wavenumber k obeys Eq. (4.67), i.e.

δ̈∗
m +

(
2 + 3c2

s − 6w
)
H δ̇∗

m −
[

3
2
H 2(1 − 6c2

s − 3w2 + 8w) −
(

csk

a

)2
]

δ∗
m = 0 ,

(8.243)
where cs is the sound speed given by

c2
s = ∂P

∂ρ
= −αw . (8.244)

Since w → 0 and c2
s → 0 in the limit z ≫ 1, the sound speed is much smaller than

unity in the deep matter era and starts to grow around the end of it. Since w < 0
from Eq. (8.242), c2

s is positive for α > 0 and negative for α < 0. From Eq. (8.243)
the perturbations satisfying the following condition grow via the gravitational
instability [337]:

|c2
s | ! 3

2

(
aH

k

)2

. (8.245)

When c2
s " 3

2 (aH/k)2, the perturbations exhibit oscillations because of the domi-
nance of the pressure term (kcs/a)2 relative to the term 3H 2/2. Using Eq. (8.239)
for c2

s > 0, the condition (8.245) is interpreted as λp > λJ , where λp = (2π/k)a
is the physical wavelength and λJ = |cs |(π/Gρ)1/2 is the Jeans length. If the con-
dition (8.245) is violated for c2

s < 0, the perturbations exhibit violent instabilities
and grow exponentially. This exponential instability tends to be stronger on smaller
scales.

The violation of the condition (8.245) mainly occurs around the present epoch
in which |w| is of the order of unity and hence |c2

s | ∼ |α|. The typical smallest
scale relevant to the galaxy matter power spectrum corresponds to the wavenumber
k = 0.1 h Mpc−1 (as long as the linear perturbations are concerned). Using the
value (2.37) for the present Hubble radius, the constraint (8.245) gives [337]

|α| ! 10−5 . (8.246)

In Fig. 8.8 the matter power spectra are plotted for several different values of α.
When α ! −10−5, the perturbations are exponentially amplified because the sound
speed squared is negative. Meanwhile the perturbations exhibit rapid oscillations
for α " 10−5. In both cases the matter power spectra are radically different from
that in the !CDM model.

The GCG model is therefore not much different from the !CDM model if we
take the constraint (8.246) at face value.4 In particular the original Chaplygin gas

4 Note that non-linear clustering may alter the evolution of density perturbations in this model, see Refs. [338, 339].
Moreover the constraints are relaxed if one assumes that beside the Chaplygin gas there is standard dark matter.
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Figure 8.8 The matter power spectra in the GCG model. From top to bottom each
curve corresponds to α = −10−4,−10−5, 0, 10−5, 10−4, respectively. The data
points of the 2dF galaxy redshift survey are also plotted. Compared to the !CDM
model (α = 0) the difference appears for |α| " 10−5. From Ref. [337].

model (α = 1) is completely ruled out from observations. The crucial point is the
role of the pressure P in the GCG model. During most of the matter era, the effect
of the pressure needs to be strongly suppressed for a successful structure formation
(at least in the regime of linear perturbations). However, a negative pressure is
required for the late-time cosmic acceleration. In the GCG model it is difficult to
satisfy these two demands at the same time.

There are various ways to escape this negative conclusion. One is to avoid the
large sound speed problem by adding to the adiabatic sound speed (8.244) a non-
adiabatic contribution that makes cs vanish (silent quartessence [340]). Another
one is to consider the Chaplygin gas as a candidate for dark energy alone, instead
of a unified fluid. Yet another is to change the equation of state, as in Ref. [341]. A
further possibility will be discussed in the next section.

8.6.2 k-essence as unified models of dark energy and dark matter

Let us discuss now the possibility of building unified models using a single field
φ. One such model using a purely kinetic Lagrangian density is [335]

P = F (X) , (8.247)
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where F (X) is a function of the kinetic energy X = −(1/2)gµν∂µφ∂νφ of the field
φ. Since the field energy density and its pressure are given by ρφ = 2XF,X − F and
Pφ = F respectively, the continuity equation (8.15) in the flat FLRW spacetime
yields

(F,X + 2XF,XX)Ẋ + 6HF,XX = 0 . (8.248)

This is integrated to give

XF 2
,X = Ca−6 , (8.249)

where C is an integration constant.
Let us now take a function F (X) with an extremum at some value X = X0, such

that F,X(X0) = 0 as for instance [335]

F (X) = F0 + F2(X − X0)2 , (8.250)

where F0 and F2 are constants. We shall find the solution of Eq. (8.248) under the
condition

ϵ ≡ X − X0

X0
≪ 1 . (8.251)

Substituting the function (8.250) into Eq. (8.248), we obtain the following linear-
order equation in terms of ϵ:

ϵ̇ = −3Hϵ . (8.252)

This gives the following solution

X = X0
[
1 + ϵ1(a/a1)−3] , (8.253)

where ϵ1 and a1 are constants. For the validity of the condition (8.251) we require
that

ϵ1(a/a1)−3 ≪ 1 . (8.254)

Hence the solutions approach the extremum at X = X0 with F,X(X0) = 0. The
field energy density is given by

ρφ ≃ −F0 + 4F2X
2
0ϵ1(a/a1)−3 , (8.255)

where we have neglected the term higher than ϵ1(a/a1)−3. For the positivity of the
energy density we require that F0 < 0. The equation of state of k-essence is

wφ ≡ Pφ

ρφ

= −
[

1 + 4F2

(−F0)
X2

0ϵ1

(
a

a1

)−3
]−1

, (8.256)
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which approaches the de Sitter value wφ → −1 at late times [ϵ1 (a/a1)−3 → 0].
Recall that the above results are valid under the condition (8.254). It is possible to
realize wφ ≃ 0 during the matter era provided that the condition 4F2X

2
0/(−F0) ≫ 1

is satisfied.
The quantities ξ1 and ξ2 defined in Eq. (8.30) are given by ξ1 = 2F2(3X − X0)

and ξ2 = 2F2(X − X0), respectively. The condition (8.34) to avoid the super-
luminal sound speed gives F2 ≥ 0. Hence the stability conditions (8.30) for quan-
tum fluctuations are satisfied for X ≥ X0. Since ϵ1 > 0 in this case, the field
energy density (8.255) remains to be positive. The sound speed squared is given
by

c2
s = X − X0

3X − X0
= 1

2
ϵ1

(
a

a1

)−3

, (8.257)

which is much smaller than unity under the condition (8.254). In the asymptotic
future it decreases toward c2

s = 0.
This property is different from the GCG model in which c2

s is small at early times
and becomes larger at late times. Recall that this growth of c2

s is the reason why the
GCG model is not compatible with the observations of large-scale structure, while
the above single-field k-essence model avoids this problem. The generalization of
the model (8.250) satisfying the condition c2

s ≪ 1 has been studied in Ref. [342].
There is another interesting unified model of dark energy and dark matter using the
Bose–Einstein condensation, see Ref. [343] for details.

8.7 Future singularities

In the context of General Relativity, if the equation of state of dark energy is less
than −1, the Universe reaches a big-rip singularity with a finite time. This case
corresponds to the violation of the null energy condition ρ + P ≥ 0. The big-rip
singularity is called the type I singularity in Ref. [344], which has the following
behavior:

(I) Type I : a → ∞, ρ → ∞, |P | → ∞ , as t → ts . (8.258)

Different types of future singularities appear [345, 346, 347, 348, 349] at a finite
time even when the null energy condition is not violated. For example, there is a
sudden future singularity [345] characterized by

(II) Type II : a → as, ρ → ρs, |P | → ∞ , as t → ts . (8.259)
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See Ref. [350] for an early related work. There are also other types of future
singularities such as

(III) Type III : a → as, ρ → ∞, |P | → ∞ , as t → ts , (8.260)

(IV) Type IV : a → as, ρ → 0, |P | → 0 ,

higher derivatives of H diverge, as t → ts . (8.261)

In the following we shall discuss the cases in which such singularities arise.
Let us consider a fluid where the pressure P and the density ρ have the following

relation

P = −ρ − f (ρ) , (8.262)

where f (ρ) is a function with respect to ρ. A function of the form f (ρ) ∝ ρα was
first considered in Ref. [351] in the context of inflationary cosmology. Substituting
Eq. (8.262) into the continuity equation (2.20), we find that the scale factor is given
by

a = a0 exp
(

1
3

∫
dρ

f (ρ)

)
, (8.263)

where a0 is a constant. If a fluid with the equation of state (8.262) is the dominant
component in the flat FLRW Universe then one has 3H 2 = κ2ρ, so that the cosmic
time t can be expressed as

t =
∫

dρ

κ
√

3ρ f (ρ)
. (8.264)

In order to show an example of the type II singularity, we take the following
function

f (ρ) = A(ρ0 − ρ)−γ , (8.265)

where A, ρ0, and γ (> 0) are constants. In the limit that ρ → ρ0, we have |P | → ∞
because of the divergence of f (ρ). From Eq. (8.263) the scale factor evolves as

a = a0 exp
[
− (ρ0 − ρ)γ+1

3A(γ + 1)

]
, (8.266)

which means that a → a0 for ρ → ρ0. The Hubble parameter H = ȧ/a ∝ √
ρ is

finite, so that ȧ also remains finite. Meanwhile the second derivative ä is divergent
as ρ → ρ0 because of the divergence of the pressure P [see Eq. (2.19)].

From Eq. (8.264) we obtain the following relation around ρ ∼ ρ0:

t ≃ ts − (ρ0 − ρ)γ+1

κA
√

3ρ0(γ + 1)
, (8.267)
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where ts is an integration constant. We then have t → ts in the limit ρ → ρ0.
From the above discussion the function f (ρ) in Eq. (8.265) gives rise to the type

II singularity. The equation of state is given by w = P/ρ = −1 − A/[ρ(ρ0 − ρ)γ ],
so that w > −1 for A < 0 and (0 <) ρ < ρ0. This means that the sudden singularity
is present even for a non-phantom dark energy (w > −1).

In order to discuss the type III singularity we take the following function

f (ρ) = Bρα , (8.268)

where B and α (> 0) are constants. From Eq. (8.263) it follows that

a = a0 exp
[

ρ1−α

3(1 − α)B

]
, (8.269)

and

t = ts + 2√
3κB

ρ−α+1/2

1 − 2α
(α ̸= 1/2) , (8.270)

t = ts + ln ρ√
3κB

(α = 1/2) , (8.271)

where ts is an integration constant.
When α > 1 the scale factor is finite even for ρ → ∞. Meanwhile, when α < 1,

one has a → ∞ (a → 0) as ρ → ∞ for B > 0 (B < 0). If α > 1/2 the divergence
of ρ occurs at the time ts , whereas, if α ≤ 1/2, ρ diverges in the infinite future
or past. Since the equation of state of dark energy is given by w = −1 − Bρα−1,
it follows that w > −1 (w < −1) for B < 0 (B > 0). From the above discussion,
we can classify the singularities as follows.

1. α > 1
There is a type III singularity with w > −1 for B < 0.

2. 1/2 < α < 1
There is a type I future singularity with w < −1 for B > 0. When B < 0, one has
a → 0 as ρ → ∞. Hence if the singularity exists in the future (past), we may call it
the Big Crunch (Big Bang) singularity.

3. 0 < α ≤ 1/2
There is no finite future singularity.

Similarly it was shown in Ref. [344] that the type IV singularity is present for
the function f (ρ) = ABρα+β/(Aρα + Bρβ).

Finally we note that the Ricci scalar R = κ2(ρ − 3P ) diverges as t → ts for the
type I, II, III singularities. In such cases higher-order curvature terms are likely
to be important as R blows up. In Ref. [344] it was found that quantum correc-
tions coming from conformal anomaly can moderate the finite-time singularities.
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It was also shown in Refs. [352, 353] that non-perturbative quantum geometric
effects appearing in loop quantum cosmology [354] can lead to the resolution of
singularities due to the ρ2 modification of the effective Friedmann equation [355].

8.8 Problems

8.1 The k-essence model with the Lagrangian density (8.27) possesses scaling solutions.
Show that the k-essence model with P (φ, X) = K(φ)p(X) and K(φ) = V0φ

−2 has a
scaling solution.

8.2 Derive Eqs. (8.53)–(8.55).
8.3 Perturb Eqs. (8.82)–(8.84) about the fixed points (e), (a), (c) in Table 8.1 and obtain

the eigenvalue of the 3 × 3 Jacobian matrix for each point.
8.4 For the Lagrangian density (8.195) let us consider linear perturbations δx, δy, and δY

about fixed points (xc, yc), i.e. x = xc + δx, y = yc + δy, and δY = Yc + δY in the
absence of radiation (u = 0). Show that the eigenvalues for the Jacobian matrix M
of perturbations for the fixed points A and B are given by Eqs. (8.213) and (8.219),
respectively.
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Dark energy as a modification of gravity

In this chapter, we discuss “modified gravity” models in which the origin of dark
energy is identified as a modification of gravity. This includes f (R) gravity, scalar-
tensor theories, Gauss–Bonnet gravity, and braneworld models of dark energy. In
these theories one modifies the laws of gravity so that the late-time accelerated
expansion of the Universe is realized without recourse to an explicit dark energy
matter component.

Clearly, the modification to the laws of gravity is in general severely restricted
from local gravity constraints and from observational constraints. It is of interest
to understand how much deviation from the !CDM model can be allowed in such
modified gravity models.

9.1 f (R) gravity

One of the simplest modified gravity models is the so-called f (R) gravity in which
the 4-dimensional action is given by some general function f (R) of the Ricci scalar
R:

S = 1
2κ2

∫
d4x

√
−gf (R) + Sm(gµν, (m) , (9.1)

where as usual κ2 = 8πG, and Sm is a matter action with matter fields (m. Here
G is a bare gravitational constant: we will see that the observed value will in
general be different. The matter fields in Sm obey standard conservation equations
and therefore the metric gµν corresponds to the physical frame (which here is the
Jordan frame). There are two approaches to derive field equations from the action
(9.1).! (I) The metric formalism

The first approach is the so-called metric formalism in which the connections 4α
βγ are the

usual connections defined in terms of the metric gµν . The field equations can be obtained

234
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by varying the action (9.1) with respect to gµν :

F (R)Rµν(g) − 1
2
f (R)gµν − ∇µ∇νF (R) + gµν#F (R) = κ2Tµν , (9.2)

where F (R) ≡ ∂f/∂R (we also use the notation f,R ≡ ∂f/∂R, f,RR ≡ ∂2f/∂R2), and
Tµν is the matter energy-momentum tensor. The steps to derive this equation are similar
to those employed to obtain the field equation (6.7). The trace of Eq. (9.2) is given by

3 #F (R) + F (R)R − 2f (R) = κ2T , (9.3)

where T = gµνTµν = −ρ + 3P . Here ρ and P are the energy density and the pressure
of matter, respectively.! (II) The Palatini formalism
The second approach is the so-called Palatini1 formalism in which 4α

βγ and gµν are
treated as independent variables. Varying the action (9.1) with respect to gµν gives

F (R)Rµν(4) − 1
2
f (R)gµν = κ2Tµν , (9.4)

where Rµν(4) is the Ricci tensor corresponding to the connections 4α
βγ . In general this is

different from the Ricci tensor Rµν(g) corresponding to the metric connections. Taking
the trace of Eq. (9.4), we obtain

F (R)R − 2f (R) = κ2T , (9.5)

where R(T ) = gµνRµν(4) is directly related to T . Taking the variation of the action (9.1)
with respect to the connection, and using Eq. (9.4), we find

Rµν(g) − 1
2
gµνR(g) = κ2Tµν

F
− FR(T ) − f

2F
gµν + 1

F
(∇µ∇νF − gµν#F )

− 3
2F 2

[
∂µF ∂νF − 1

2
gµν(∇F )2

]
. (9.6)

In General Relativity we have f (R) = R − 2! and F (R) = 1, so that the term
#F (R) in Eq. (9.3) vanishes. In this case both the metric and the Palatini formalisms
give the relation R = −κ2T = κ2(ρ − 3P ), which means that the Ricci scalar R

is directly determined by the matter (the trace T ).
In modified gravity models where F (R) is a function of R, the term #F (R)

does not vanish in Eq. (9.3). This means that, in the metric formalism, there is a
propagating scalar degree of freedom, ψ ≡ F (R). The trace equation (9.3) governs
the dynamics of the scalar field ψ (dubbed “scalaron” [8]). In the Palatini formalism
the kinetic term #F (R) is not present in Eq. (9.5), which means that the scalar-field
degree of freedom does not propagate freely.

1 Attilio Palatini (1889–1949), Italian mathematician, generalized the concept of the variational principle in
relativity.
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The de Sitter point corresponds to a vacuum solution at which the Ricci scalar
is constant. Since #F (R) = 0 at this point, we get

F (R)R − 2f (R) = 0 , (9.7)

which holds for both the metric and the Palatini formalisms. Since the model
f (R) = αR2 satisfies this condition, it possesses an exact de Sitter solution
[8].

Since the dynamics of f (R) dark energy models is different depending
on the two formalisms, we shall discuss the metric and Palatini formalisms
separately.

9.1.1 f (R) gravity in the metric formalism

We first discuss the f (R) dark energy models based on the metric formalism.
Already in the early 1980s it was known that the model f (R) = R + αR2

can be responsible for inflation in the early Universe [8]. This comes from
the fact that the presence of the quadratic term αR2 gives rise to an asymp-
totically exact de Sitter solution. Inflation ends when the term αR2 becomes
smaller than the linear term R. Since the term αR2 is negligibly small relative
to R at the present epoch, this model is not suitable to realize the present cosmic
acceleration.

Since a late-time acceleration requires modification for small R, models of
the type f (R) = R − α/Rn (α > 0, n > 0) were proposed as a candidate for dark
energy [53, 54, 55, 356]. While the late-time cosmic acceleration is possible in these
models, it has become clear that they do not satisfy local gravity constraints because
of the instability associated with negative values of f,RR [357, 358, 359, 360, 361].
Moreover a standard matter epoch is not present because of a large coupling
between the Ricci scalar and the non-relativistic matter [272].

Then, what are the conditions for the viability of f (R) dark energy models in
the metric formalism? In the following we first present such conditions and then
explain why they are required step by step.

! (i) f,R > 0 for R ≥ R0 (> 0), where R0 is the Ricci scalar at the present epoch. Strictly
speaking, if the final attractor is a de Sitter point with the Ricci scalar R1 (> 0), then the
condition f,R > 0 needs to hold for R ≥ R1.
This is required to avoid anti-gravity (see later on).! (ii) f,RR > 0 for R ≥ R0.
This is required for consistency with local gravity tests [358, 360, 361, 362], for the
presence of the matter-dominated epoch [272, 363], and for the stability of cosmological
perturbations [364, 365, 366, 367].
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This is required for consistency with local gravity tests [267, 368, 369, 370, 371] and for
the presence of the matter-dominated epoch [363].! (iv) 0 <

Rf,RR

f,R
(r = −2) < 1 at r = −Rf,R

f
= −2.

This is required for the stability of the late-time de Sitter point [372, 373, 363].

For example, the model f (R) = R − α/Rn (α > 0, n > 0) does not satisfy the
condition (ii).

Below we list some viable f (R) models that satisfy the above conditions.

(A) f (R) = R − µRc(R/Rc)p with 0 < p < 1, µ, Rc > 0 , (9.8)

(B) f (R) = R − µRc

(R/Rc)2n

(R/Rc)2n + 1
with n,µ,Rc > 0 , (9.9)

(C) f (R) = R − µRc

[
1 −

(
1 + R2/R2

c

)−n
]

with n,µ,Rc > 0 , (9.10)

(D) f (R) = R − µRctanh (R/Rc) with µ, Rc > 0 . (9.11)

The models (A), (B), (C), and (D) have been proposed in Refs. [363], [368],
[369], and [371], respectively. A model similar to (D) has also been proposed
in Ref. [370], while a generalized model encompassing (B) and (C) has been
studied in Ref. [375]. In the model (A), the power p needs to be close to 0 to
satisfy the condition (iii). In the models (B) and (C) the function f (R) asymptot-
ically behaves as f (R) → R − µRc[1 − (R2/R2

c )−n] for R ≫ Rc and hence the
condition (iii) can be satisfied even for n = O(1). In the model (D) the function
f (R) rapidly approaches f (R) → R − µRc in the region R ≫ Rc. These mod-
els satisfy f (R = 0) = 0, so the cosmological constant vanishes in the flat space-
time.

9.1.2 Cosmological dynamics of f (R) dark energy models in
the metric formalism

Let us consider cosmological dynamics of f (R) gravity in the metric formalism.
It is possible to carry out a general analysis without specifying the form of f (R).
In the flat FLRW spacetime the Ricci scalar is given by

R = 6(2H 2 + Ḣ ) , (9.12)

where H is as usual the Hubble parameter. As a matter action Sm we take into
account non-relativistic matter and radiation, which satisfy the usual conservation
equations ρ̇m + 3Hρm = 0 and ρ̇r + 4Hρr = 0 respectively. From Eqs. (9.2) and



238 Dark energy as a modification of gravity

(9.3) we obtain the following equations

3FH 2 = κ2 (ρm + ρr ) + (FR − f )/2 − 3HḞ , (9.13)

−2FḢ = κ2 [ρm + (4/3)ρr ] + F̈ − HḞ . (9.14)

We introduce the dimensionless variables:

x1 ≡ − Ḟ

HF
, x2 ≡ − f

6FH 2
, x3 ≡ R

6H 2
, x4 ≡ κ2ρr

3FH 2
, (9.15)

together with the following quantities

&m ≡ κ2ρm

3FH 2
= 1 − x1 − x2 − x3 − x4 , &r ≡ x4 , &DE ≡ x1 + x2 + x3 .

(9.16)

It is straightforward to derive the following differential equations [363]:

dx1

dN
= −1 − x3 − 3x2 + x2

1 − x1x3 + x4 , (9.17)

dx2

dN
= x1x3

m
− x2(2x3 − 4 − x1) , (9.18)

dx3

dN
= −x1x3

m
− 2x3(x3 − 2) , (9.19)

dx4

dN
= −2x3x4 + x1x4 , (9.20)

where N = ln a and

m ≡ d ln F

d ln R
= Rf,RR

f,R

, (9.21)

r ≡ −d ln f

d ln R
= −Rf,R

f
= x3

x2
. (9.22)

From Eq. (9.22) one can express R as a function of x3/x2. Since m is a function
of R, it follows that m is a function of r , i.e. m = m(r). The !CDM model,
f (R) = R − 2!, corresponds to m = 0. Hence the quantity m characterizes the
deviation from the !CDM model. Note also that the model, f (R) = αR1+m − 2!,
gives a constant value of m. The analysis using Eqs. (9.17)–(9.20) is sufficiently
general in the sense that the form of f (R) does not need to be specified.

The effective equation of state of the system defined in Eq. (4.96) is

weff = −1
3

(2x3 − 1). (9.23)
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In the absence of radiation (x4 = 0) the fixed points for the dynamical system
(9.17)–(9.20) are

P1 : (x1, x2, x3) = (0, −1, 2), &m = 0, weff = −1 , (9.24)

P2 : (x1, x2, x3) = (−1, 0, 0), &m = 2, weff = 1/3 , (9.25)

P3 : (x1, x2, x3) = (1, 0, 0), &m = 0, weff = 1/3 , (9.26)

P4 : (x1, x2, x3) = (−4, 5, 0), &m = 0, weff = 1/3 , (9.27)

P5 : (x1, x2, x3) =
(

3m

1 + m
, − 1 + 4m

2(1 + m)2
,

1 + 4m

2(1 + m)

)
,

&m = 1 − m(7 + 10m)
2(1 + m)2

, weff = − m

1 + m
, (9.28)

P6 : (x1, x2, x3) =
(

2(1 − m)
1 + 2m

,
1 − 4m

m(1 + 2m)
, − (1 − 4m)(1 + m)

m(1 + 2m)

)
,

&m = 0, weff = 2 − 5m − 6m2

3m(1 + 2m)
. (9.29)

The points P5 and P6 lie on the line m(r) = −r − 1 in the (r, m) plane.
It is important to remark that P5,6 represent actually two families of points. In

fact m(x3/x2) is a function of the coordinates and for each model one has to solve
the three equations

{x1, x2, x3} =
{

3m(x3/x2)
1 + m(x3/x2)

, − 1 + 4m(x3/x2)
2[1 + m(x3/x2)]2

,
1 + 4m(x3/x2)

2[1 + m(x3/x2)]

}
, (9.30)

for P5 and an analogous set for P6. We will call m5,6 the solutions of these equations
and

m′
5,6 ≡ dm

dr

∣∣∣∣
m5,6

(9.31)

their derivatives. For a given model there are several fixed points of type P5,6, all of
them lying on the critical line m = −r − 1. For simplicity, however, we will refer
to points P5,6 in the following discussion as if they were single points because for
every viable cosmological model only one point of each family really matters.

Among the six fixed points we have presented above, only the point P5 can be
used for the matter-dominated epoch. Since in this case we require &m ≃ 1 and
weff ≃ 0, this implies that m is close to 0. In the (r, m) plane this point exists around
(r, m) = (−1, 0). The point P2 corresponds to the φMDE [17], but in this case the
φMDE cannot be responsible for the matter fixed point because weff(P2) = 1/3. In
f (R) gravity, a scalar field degree of freedom has a large coupling (Q = −1/

√
6)

with non-relativistic matter in the Einstein frame (as we will see later).
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One can study the stability of the above fixed points by considering perturbations
δxi (i = 1, 2, 3) around them [363]. For the point P5 the eigenvalues for the 3 × 3
Jacobian matrix of perturbations are

3(1 + m′
5),

−3m5 ±
√

m5(256m3
5 + 160m2

5 − 31m5 − 16)

4m5(m5 + 1)
, (9.32)

where r5 ≈ −1. In the limit |m5| ≪ 1 the latter two eigenvalues reduce to −3/4 ±√
−1/m5. The f (R) models with m5 < 0 exhibit a divergence of the eigenvalues

as m5 → −0, in which case the system cannot remain for a long time around the
point P5. For example the model f (R) = R − α/Rn with n > 0 and α > 0 falls
into this category. On the other hand, if 0 < m5 < 0.327, the latter two eigenvalues
in Eq. (9.32) are complex with negative real parts. Then, provided that m′

5 > −1,
the point P5 corresponds to a saddle point with a damped oscillation. Hence the
Universe can evolve toward the point P5 from the radiation era and then can leave
for the late-time acceleration. In summary the condition for the existence of the
saddle matter era is

m(r) ≈ +0 ,
dm

dr
> −1 , at r = −1 . (9.33)

The first condition implies that the f (R) models need to be close to the !CDM
model during the matter-dominated epoch.

The points P1 and P6 can lead to the late-time cosmic acceleration. The point
P1 corresponds to a de Sitter solution at which r = −2. In fact the condition (9.7)
is satisfied in this case. The eigenvalues for the 3 × 3 matrix of perturbations about
the point P1 are

− 3, − 3
2

±
√

25 − 16/m1

2
, (9.34)

where m1 = m(r = −2). This shows that the condition for the stability of the de
Sitter point P1 is given by

0 < m(r = −2) < 1 , (9.35)

which corresponds to the condition (iv) given in Section 9.1.1. The trajectories
which start from the saddle matter point P5 [satisfying the condition (9.33)] and
then approach the stable de Sitter point P1 [satisfying the condition (9.35)] are
cosmologically viable.

The point P6 is on the line m(r) = −r − 1. It can satisfy the condition for the
cosmic acceleration (weff < −1/3) provided that m6 < −(1 +

√
3)/2, or −1/2 <
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m6 < 0, or m6 > (
√

3 − 1)/2. The eigenvalues for perturbations are given by

− 4 + 1
m6

,
2 − 3m6 − 8m2

6

m6(1 + 2m6)
, − 2(m2

6 − 1)(1 + m′
6)

m6(1 + 2m6)
. (9.36)

We then find that P6 is stable and accelerated in the following four regions:

[I] m′
6 > −1! (a) m6 < −(1 +

√
3)/2: P6 is accelerated with the effective equation of state, weff > −1.

One has weff → −1 in the limit m6 → −∞.! (b) −1/2 < m6 < 0: P6 corresponds to a strongly phantom behavior with weff < −7.6.! (c) m6 ≥ 1: P6 corresponds to a slightly phantom behavior with −1.07 < weff ≤ −1.
One has weff → −1 in the limit m6 → +∞ and m6 → 1.

[II] m′
6 < −1

When m′
6 < −1, the point P6 is stable and accelerated in the following region.! (d) (

√
3 − 1)/2 < m6 < 1: P6 corresponds to a non-phantom behavior with weff > −1.

Recall that the matter point P5 needs to satisfy the condition m5 ≈ +0 and m′
5(r) >

−1 at r = −1 and that both P5 and P6 are on the line m = −r − 1. If we consider
curves connecting P5 to P6, it is not possible to realize the trajectories to the point
P6 in the regions (a), (b), (c) satisfying the condition m′

6(r) > −1. In other words,
once a trajectory crosses the line m = −r − 1 with the tangent m′

5(r) > −1, then
it crosses the same line again with the tangent m′

6(r) < −1. See the curve (iv) in
Fig. 9.1 for illustration. From the above argument the viable trajectories evolve
from the point P5 to the point P6 in the region (d).

In summary we have only two qualitatively different viable cases:! Class A: Models that link P5 with P1 (r = −2, 0 < m < 1).! Class B: Models that link P5 with P6 (m = −r − 1, (
√

3 − 1)/2 < m < 1).

Let us consider a couple of viable f (R) models in the (r, m) plane. The !CDM
model, f (R) = R − 2!, corresponds to m = 0, in which case the trajectory is a
straight line from P5: (r, m) = (−1, 0) to P1: (r, m) = (−2, 0). The trajectory (ii)
in Fig. 9.1 represents the following model [267]

f (R) = (Rb − !)c , (9.37)

which corresponds to the straight line m(r) = [(1 − c)/c]r + b − 1 in the (r, m)
plane. The existence of a saddle matter epoch requires the condition c ≥ 1 and
bc ≈ 1. The trajectory (iii) represents the model f (R) = R − µRc(R/Rc)p (0 <

p < 1, µ, Rc > 0) [363, 376], which corresponds to the curve m = p(1 + r)/r .
These models fall into Class A.
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Figure 9.1 Four trajectories in the (r,m) plane. Each trajectory corresponds to the
models: (i) !CDM, (ii) f (R) = (Rb − !)c, (iii) f (R) = R − µRc(R/Rc)p (0 <
p < 1, µ,Rc > 0), and (iv) m(r) = −C(r + 1)(r2 + ar + b).

The models (9.9) and (9.10) have the same asymptotic form f (R) ≃ R −
µRc[1 − (R/Rc)−2n] in the region R ≫ Rc. In this region these models behave as

m(r) = C(−r − 1)2n+1 , (9.38)

where C = 2n(2n + 1)/µ2n. The parameter m(r) rapidly approaches 0 in the limit
r → −1 because of the presence of the power 2n + 1 larger than 1. As we will see
later, this small value of m in the region of high density is required for consistency
with local gravity constraints. These models can be categorized by either Class
A or Class B. The trajectory (iv) in Fig. 9.1 shows the model m(r) = −C(r +
1)(r2 + ar + b), which belongs to Class B. We require the conditions m′(−1) =
−C(1 − a + b) > −1 and m′(−2) = C(3a − b − 8) < −1 for the transition from
the matter point P5 to the stable accelerated point P6. The models shown in Fig. 9.1
are a couple of representative models giving viable cosmological evolution.

In the presence of the radiation (x4 ̸= 0) we have the following two points in
addition to the points P1−6:

• P7 : (x1, x2, x3, x4) = (0, 0, 0, 1), &m = 0, &DE = 0, weff = 1/3 , (9.39)

• P8 : (x1, x2, x3, x4) =
(

4m

1 + m
, − 2m

(1 + m)2
,

2m

1 + m
,

1 − 2m − 5m2

(1 + m)2

)
,

&m = 0 , &DE = 2m(2 + 3m)
(1 + m)2

, weff = 1 − 3m

3 + 3m
. (9.40)



9.1 f (R) gravity 243

Here P7 is a standard radiation point. For constant m the eigenvalues of P7 are
given by 4, 4, 1, −1, which means that P7 is a saddle in this case. The point P8

corresponds to a new radiation era having non-zero dark energy. Since the dark
energy density is constrained to be &DE < 0.045 from the BBN bound, P8 is
acceptable as a radiation point only for m8 ! 0.01.

The eigenvalues of P8 are given by

1, 4(1 + m′
8),

m8 − 1 ±
√

81m2
8 + 30m8 − 15

2(m8 + 1)
. (9.41)

In the limit m8 → 0 the last two values are complex with negative real parts, which
shows that P8 is a saddle point. Then the solutions eventually repel away from the
point P8, which are followed by one of the fixed points given above. Unlike the
matter point P5, there are no singularities for the eigenvalues of P8 in the limit
m8 → 0. We also note that P8 is on the line m = −r − 1. If the condition for the
existence of the matter point P5 is satisfied (i.e. m ≈ +0 and r ≈ −1), there exists
a radiation point P8 in the same region. Then a viable cosmological trajectory starts
around the point P8 with m ≈ +0 and then connects to the matter point P5. Finally
the solutions approach either the accelerated point P1 or P6.

The requirement m → +0 during the radiation and matter eras means that the
models need to be close to the !CDM model, f (R) = R − 2!, in the region
R ≫ R0 (where R0 is the present cosmological Ricci scalar). This corresponds
to the condition (iii) listed in Section 9.1.1. Note also that the Ricci scalar R =
6(2H 2 + Ḣ ) remains positive from the radiation era to the present epoch, as long
as it does not oscillate as in the f (R) = R + αR2 model. Under the condition
f,R > 0, the requirement m > 0 translates into the condition f,RR > 0. This is the
condition (ii) listed in Section 9.1.1, which is also required for the consistency with
local gravity constraints (as we will see later).

For the model (9.9) let us consider the case in which the solutions finally
approach the de Sitter point P1 with the Ricci scalar R1. The de Sitter point at
r = −Rf,R/f = −2 is determined by the value µ:

µ = (1 + x2n
1 )2

x2n−1
1 (2 + 2x2n

1 − 2n)
, (9.42)

where x1 ≡ R1/Rc. From the stability condition 0 < m(r = −2) < 1 we obtain

2x4n
1 − (2n − 1)(2n + 4)x2n

1 + (2n − 1)(2n − 2) > 0 . (9.43)

When n = 1, for example, we have x1 >
√

3 and µ > 8
√

3/9. Under Eq. (9.43) one
can show that the conditions f,R > 0 and f,RR > 0 are also satisfied for R ≥ R1.
For µ and n of the order of unity we find from Eq. (9.42) that R1 is the same
order as Rc. Hence Rc is roughly the same order as the present cosmological Ricci
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scalar R0. In the region R ≫ Rc the model (9.9) is close to the !CDM model with
the asymptotic form f (R) ≃ R − µRc

[
1 − (R/Rc)−2n

]
. The deviation from the

!CDM model becomes important when R decreases to the order of Rc. Note that
the model (9.10) also has a similar property.

In order to derive the equation of state of dark energy to confront with SN Ia
observations, we rewrite Eqs. (9.13) and (9.14) as follows:

3AH 2 = κ2 (ρm + ρr + ρDE) , (9.44)

−2AḢ = κ2 [ρm + (4/3)ρr + ρDE + PDE] , (9.45)

where A is some constant and

κ2ρDE ≡ (1/2)(FR − f ) − 3HḞ + 3H 2(A − F ) , (9.46)

κ2PDE ≡ F̈ + 2HḞ − (1/2)(FR − f ) − (3H 2 + 2Ḣ )(A − F ) . (9.47)

Defining ρDE and PDE in the above way, one can show that these satisfy the usual
conservation equation

ρ̇DE + 3H (ρDE + PDE) = 0 . (9.48)

A similar procedure can be carried out for a more general Lagrangian density,
f (R,φ, X) (see problem 9.1). The dark energy equation of state, wDE ≡ PDE/ρDE,
is directly related to the one used in the standard analysis of SN Ia observations.
From Eqs. (9.44) and (9.45) it is given by

wDE = −2AḢ + 3AH 2 + κ2ρr/3
3AH 2 − κ2(ρm + ρr )

≃ weff

1 − &̃m

, (9.49)

where

&̃m ≡ κ2ρm

3AH 2
= F

A
&m . (9.50)

The last approximate equality in Eq. (9.49) is valid in the regime where the radiation
energy density ρr is negligible relative to the matter density.

The viable f (R) models approach the !CDM model in the past, i.e. F → 1 as
R → ∞. In order to reproduce the standard matter era for z ≫ 1, we can choose
A = 1 in Eqs. (9.44) and (9.45). Another possible choice is A = F0, where F0 is
the present value of F . This choice is suitable if the deviation of F0 from 1 is small
(as in the scalar-tensor theory with a massless scalar field [374]). In both cases
the equation of state changes from wDE < −1 to wDE > −1 before reaching the
de Sitter attractor for viable f (R) models [368, 267, 371]. This is associated with
the decrease of the quantity F with time (coming from the condition F,R > 0 with
Ṙ < 0). Thus viable f (R) dark energy models give rise to a phantom equation of
state without violating stability conditions of the system.
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For the cosmological viability of f (R) models the constraint on m is not so
severe: m can be of the order of 0.1 around the present epoch. Meanwhile the
consistency with local gravity experiments places a tighter bound on m in the
region of high density (R ≫ R0), which corresponds to the value of m ≪ 10−9

during radiation and deep matter eras [see Eq. (9.86) in the next subsection].
The models (9.9)–(9.11) are carefully constructed to have a suppressed m in the
early cosmological epoch, while an appreciable deviation from the !CDM model
(m ! O(0.1)) can appear around the present. Note that the model (9.8) does not
allow this rapid evolution of m.

Integrating Eqs. (9.17)–(9.20) numerically, one finds that for the models in
which m quickly decreases toward +0 in the past the denominators in Eqs. (9.18)
and (9.19) give rise to the rapid oscillations of the variables xi because the mass
of the scalaron becomes very large. If we start integrating the equations from the
deep radiation era, we typically encounter this oscillating behavior [371, 377].
This is associated with the fact that the oscillating mode of perturbations tends to
dominate over the matter-induced mode of perturbations unless initial conditions
are appropriately chosen [369]. In Section 11.6 we shall discuss the evolution of
matter density perturbations for cosmologically viable f (R) models. This also
provides useful information to distinguish the f (R) model from other dark energy
models.

9.1.3 Local gravity constraints on f (R) gravity models in
the metric formalism

Gravity is severely constrained by local gravity tests. In this subsection we discuss
local gravity constraints on f (R) gravity models in the metric formalism from the
violation of the equivalence principle.

Let us consider local fluctuations on a background characterized by a curvature
R0 and a density ρ0. We shall expand Eq. (9.3) in powers of fluctuations under the
weak field approximation. We decompose the quantities ψ ≡ F (R), gµν , and Tµν

into the background part and the perturbed part: ψ = ψ0(1 + δψ ), gµν = ηµν +
hµν , and Tµν = T (0)

µν + δTµν , where we have used the approximation g(0)
µν ≈ ηµν .

Then the trace equation (9.3) yields [360, 362] (see problem 9.2)
(

∂2

∂t2
− ∇2

)
δψ + M2

ψ δψ = − κ2

3ψ0
δT , (9.51)

where δT ≡ ηµνδTµν and

M2
ψ ≡ 1

3

[
f,R(R0)
f,RR(R0)

− R0

]
= R0

3

[
1

m(R0)
− 1

]
. (9.52)
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In the case of the homogeneous and isotropic cosmological setting (without a
Hubble friction) where δψ is a function of the cosmic time t only, Eq. (9.51)
reduces to

δ̈ψ + M2
ψ δψ = κ2

3ψ0
ρ , (9.53)

where ρ ≡ −δT . For the models where the deviation from the !CDM model
is small, we have m(R0) ≪ 1 so that |M2

ψ | is much larger than R0. If M2
ψ <

0, the perturbation δψ exhibits a violent instability. Hence the condition M2
ψ ≃

f,R(R0)/(3f,RR(R0)) > 0 is needed for the stability of cosmological perturbations.
Since f,R(R0) > 0 to avoid anti-gravity (see below), we require the condition
f,RR(R0) > 0 [364, 365, 366, 367].

Let us consider a spherically symmetric body with mass Mc, constant density
ρ, radius rc, and vanishing density outside the body. In this case δψ is a function
of the distance r from the center of the body,2 so that Eq. (9.51) inside the body
yields

d2

dr2
δψ + 2

r

d
dr

δψ − M2
ψ δψ = − κ2

3ψ0
ρ . (9.54)

Outside the body the r.h.s. of Eq. (9.54) vanishes. Then the solution of the pertur-
bation δψ for M2

ψ > 0 is given by

(δψ )r>rc
= C1

e−Mψ r

r
+ C2

eMψ r

r
, (9.55)

(δψ )r<rc
= C3

e−Mψ r

r
+ C4

eMψ r

r
+ 8πGρ

3ψ0M
2
ψ

, (9.56)

where C1, C2, C3, C4 are integration constants. From the requirement that ψ takes
the background value ψ0 at infinity, we require that (δψ )r>rc

→ 0 as r → ∞. This
sets C2 to be 0. From the regularity condition at r = 0 we require that C4 =
−C3. We match two solutions (9.55) and (9.56) by using the boundary conditions
(δψ )r>rc

(rc) = (δψ )r<rc
(rc) and (δψ )′r>rc

(rc) = (δψ )′r<rc
(rc). If Mψrc ≪ 1 we obtain

the following solutions [362]

(δψ )r>rc
≃ 2GMc

3ψ0r
e−Mψ r , (9.57)

(δψ )r<rc
≃ 4πGρ

3ψ0

(
r2
c − r2

3

)
. (9.58)

The first-order solution for the fluctuation hµν of the metric g̃µν =
ψ0 (ηµν + hµν) follows from the first-order linearized Einstein equations,

2 In this subsection we use r to denote the distance instead of the quantity (−Rf,R/f ) defined in Eq. (9.22).
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δG̃µν = 8π (G/ψ0)δT̃µν , in the Einstein gravity. Note that the gravitational con-
stant G is modified because of the transformation of the metric. This gives the
standard result, h00 = 2GMc/(ψ0r) and hij = 2GMc/(ψ0r) δij . The actual metric
gµν is given by

gµν = g̃µν

ψ
≃ ηµν + hµν − δψ ηµν . (9.59)

Using the solution (9.57) outside the body, we find that the (00) and (ii) components
of the metric gµν are

g00 ≃ −1 + 2G
(N)
eff Mc

r
, gii ≃ 1 + 2G

(N)
eff Mc

r
γ , (9.60)

where G
(N)
eff and γ are the effective gravitational coupling and the post-Newtonian

parameter, respectively, defined by

G
(N)
eff ≡ G

ψ0

(
1 + 1

3
e−Mψ r

)
, γ ≡ 3 − e−Mψ r

3 + e−Mψ r
. (9.61)

Assuming conventionally the bare constant G to be positive, a positive G
(N)
eff

demands ψ0 = F0 > 0. In principle one could have F negative in the past and
positive today but generally speaking whenever F crosses zero singularities appear
[214]. Therefore we must assume F > 0 during the whole cosmological evolution.
This explains the condition (i) of Section 9.1.1.

In the massless limit Mψ → 0 these reduce to G
(N)
eff = (4/3)(G/ψ0) and γ = 1/2.

Since ψ0δψ = f,RR(R0)δR, it follows that

δR = f,R(R0)
f,RR(R0)

δψ . (9.62)

For the validity of the above linear expansion we require that δR ≪ R0, which
translates into the condition δψ ≪ m(R0). Using the value δψ ≃ 2GMc/(3ψ0rc) at
r = rc, this condition is simply expressed as

m(R0) ≫ 'c , (9.63)

where 'c ≡ GMc/(ψ0rc) is the gravitational potential at the surface of the body.
As long as m ≪ 1 we have M2

ψ ∼ R0/(3m(R0)) and R ∼ 8πGρ, so that M2
ψr2

c ∼
'c/m(R0). Hence Mψrc ≪ 1 under the condition (9.63), as expected.

From Eq. (9.61) we find that γ ≃ 1/2 for the distance r close to rc (i.e. in
the case Mψr ≪ 1). This is not compatible with the experimental bound of γ

given in Eq. (8.171). Hence the f (R) gravity models with the light scalaron mass
(Mψrc ≪ 1) do not satisfy local gravity constraints. We caution that in the region
of high-density where the condition δR ≪ R0 is violated the above linear analysis



248 Dark energy as a modification of gravity

is no longer valid. In fact this happens for compact objects such as the Earth or the
Sun. The mean density of the Earth or the Sun is of the order of ρ ≃ 1–10 g/cm3,
which is much larger than the present cosmological density ρ(0)

c ≃ 10−29 g/cm3. In
the environment of such a high density, the field mass Mψ becomes large such that
Mψrc ≫ 1. This is a non-linear regime in which δR exceeds the background value
R0. The effect of the chameleon mechanism (see Section 8.4) becomes crucially
important in this regime [367, 368, 378, 379, 380, 381]. It is possible to satisfy local
gravity constraints for the f (R) models that are designed to have a large scalaron
mass in the region of high density.

In order to discuss the chameleon mechanism in f (R) gravity, it is convenient
to transform the action (9.1) to the Einstein frame action via the conformal trans-
formation:

g̃µν = &2gµν , (9.64)

where a tilde represents quantities in the Einstein frame. The relation between the
Ricci scalars in the two frames is

R = &2(R̃ + 6#̃ω − 6g̃µνω,µω,ν) , (9.65)

where

ω,µ ≡ ∂µ&

&
, #̃ω ≡ 1√

−g̃
∂µ(

√
−g̃ g̃µν∂νω) . (9.66)

The action (9.1) can be written as

S =
∫

d4x
√

−g

(
1

2κ2
FR − U

)
+ Sm(gµν, (m) , (9.67)

where

U = RF − f

2κ2
. (9.68)

Using Eq. (9.65) and the relation
√−g = &−4√−g̃, the action (9.67) is trans-

formed to be

S =
∫

d4x
√

−g̃

[
1

2κ2
F&−2(R̃ + 6#̃ω − 6g̃µνω,µω,ν) − &−4U

]
+ Sm(gµν, (m) .

(9.69)

We obtain a linear action in R̃ for the choice

&2 = F . (9.70)
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We also introduce a new scalar field φ defined by

κφ ≡
√

3
2

ln F . (9.71)

Since & =
√

F and ω,µ = &,µ/&, it follows that ω,µ = (1/
√

6)κφ,µ. The integral∫
d4x

√
−g̃ #̃ω vanishes on account of Gauss’s theorem by using Eq. (9.66). Then

the action in the Einstein frame is

SE =
∫

d4x
√

−g̃

[
1

2κ2
R̃ − 1

2
g̃µν∂µφ∂νφ − V (φ)

]
+ Sm(gµν, (m) , (9.72)

where

V (φ) = RF − f

2κ2F 2
. (9.73)

In the rest of this subsection we shall use the unit κ2 = 1. In the Einstein frame
the scalar field φ has a direct coupling Q with non-relativistic matter. In Section 8.4
we have seen that this coupling has a relation

&2 = F = e−2Qφ , (9.74)

with the conformal factor. From Eq. (9.71) we then find that

Q = −1/
√

6 . (9.75)

In the absence of the field potential V (φ) it is not possible to satisfy local gravity
constraints because the field propagates freely with a large coupling Q whose
strength is of the order of unity [357]. Since a potential V (φ) with a gravitational
origin is present in f (R) gravity, local gravity tests can be escaped through the
chameleon mechanism [321, 322], provided that the form of f (R) is appropriately
chosen.

The action (9.72) is the same as (8.136) with the identifications g(i)
µν = gµν and

Qi = Q, apart from the difference that a tilde is used in (9.72) for the quantities
in the Einstein frame. In f (R) gravity the field φ couples to non-relativistic matter
universally with the same coupling. One can apply the discussions of Eqs. (8.139)–
(8.155) to f (R) gravity just by the replacement Q → −1/

√
6 and r → r̃ . The first

and second derivatives of the potential V (φ) in terms of the field φ are given by

V,φ =
√

2
3

2f − Rf,R

2f 2
,R

, V,φφ = 1
3f,RR

(

1 + Rf,RR

f,R

− 4ff,RR

f 2
,R

)

. (9.76)

Recall that the effective potential is Veff(φ) = V (φ) + eQφρ, where ρ is a con-
served density in the Einstein frame. In f (R) gravity the coupling Q is negative so
that the effective potential has a local minimum for V,φ > 0, i.e. for 2f > Rf,R. For
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the f (R) models in which the deviation from the !CDM model is not significant
we have Rf,RR/f,R ≪ 1 and 4ff,RR/f 2

,R ≪ 1, which gives V,φφ ≃ 1/(3f,RR). In
fact on a local minimum of V (φ) we can write

V,φφ = 1 − m

3f,RR

. (9.77)

As long as f,RR > 0 and m < 1 the mass squared of the effective potential is
positive.

Let us consider local gravity constraints on the f (R) models given in Eqs. (9.9)
and (9.10). In the region of high density where local gravity experiments are carried
out (R ≫ Rc), these models behave as

f (R) ≃ R − µRc

[
1 − (R/Rc)−2n

]
, (9.78)

which approaches the !CDM model in the limit R/Rc → ∞. Recall that Rc is
roughly the same order as the cosmological Ricci scalar R0 today for µ and n of
the order of unity. For the functional form (9.78) we have the following relations

F = e2φ/
√

6 = 1 − 2nµ(R/Rc)−(2n+1) , (9.79)

Veff(φ) ≃ 1
2
µRce

−4φ/
√

6

[

1 − (2n + 1)
( −φ√

6nµ

)2n/(2n+1)
]

+ ρe−φ/
√

6 , (9.80)

where the effective potential Veff(φ) is defined in Eq. (8.143). Inside a spherically
symmetric body with a constant energy density ρA, the effective potential (9.80)
has a minimum at

φA ≃ −
√

6nµ(Rc/ρA)2n+1 . (9.81)

In the region of high density (ρA ≫ Rc ∼ H 2
0 ∼ ρ(0)

c ∼ 10−29 g/cm3), |φA| is
very much smaller than 1. Since the quantity F (R) is close to unity from Eq. (9.79),
the deviation from the !CDM model is small in this regime (R ≫ Rc). The mass
squared about the potential minimum is given by

m2
A ≡ d2Veff

dφ2
(φA) ≃ 1

6n(n + 1)µ
Rc

(
ρA

Rc

)2(n+1)

. (9.82)

In the region of high density the mass mA is much larger than the present Hubble
parameter H0 (∼

√
Rc) for n and µ of the order of unity. The density ρB outside

the body is generally much smaller than the density ρA inside the body. In this case
the effective potential (9.80) has a minimum at φB ≃ −

√
6nµ(Rc/ρB)2n+1 with a

mass squared m2
B ≡ d2Veff

dφ2
(φB) ≪ m2

A.
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In the region R ≫ Rc, the quantity m behaves as

m ≃ 2n(2n + 1)µ(Rc/R)2n+1 . (9.83)

Since the models are close to the !CDM model for R ≫ Rc one can approximate
R ≃ ρ in this region. Then the field value φB is estimated as

φB ≃ −
√

6
2(2n + 1)

m(RB) , (9.84)

where RB is the Ricci scalar outside the body. Taking note of the relation |φA| ≪
|φB | (≪ 1), we find that the thin-shell parameter defined in Eq. (8.158) can be
estimated as

ϵth ≃ 1
2(2n + 1)

m(RB)
'c

. (9.85)

The models can be consistent with local gravity constraints if ϵth is much smaller
than unity. For n of the order of unity this translates into the condition

m(RB) ≪ 'c . (9.86)

Since '⊙ ≃ 2.1 × 10−6 and '⊕ ≃ 7.0 × 10−10 for Sun and Earth, respectively,
the deviation parameter m is required to be very much smaller than unity in the
region outside the body. Note that the condition (9.86) is opposite to the condition
(9.63) required for the validity of the linear expansion of R about the background
value R0. The region in which the chameleon mechanism works corresponds to the
non-linear regime in which such a linear expansion of R is no longer valid.

Let us consider constraints on model parameters by using the bound com-
ing from the violation of equivalence principle. Using the relation |φB,⊕| =√

6nµ(Rc/ρB)2n+1, the bound (8.173) translates into

nµ

x2n+1
1

(
R1

ρB

)2n+1

< 1.5 × 10−15 , (9.87)

where x1 is defined by x1 ≡ R1/Rc. Let us consider the case in which the Lagrangian
density is given by (9.78) for R ≥ R1. If we use the original models of Hu and
Sawicki [368] and Starobinsky [369], then there are some modifications for the
estimation of R1, but this change is not significant when we place constraints on
model parameters.

The de Sitter point for the model (9.78) corresponds to µ = x2n+1
1 /[2(x2n

1 − n −
1)]. Substituting this relation into Eq. (9.87), we find

n

2(x2n
1 − n − 1)

(
R1

ρB

)2n+1

< 1.5 × 10−15 . (9.88)
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For the stability of the de Sitter point we require that m(R1) < 1, which trans-
lates into the condition x2n

1 > 2n2 + 3n + 1. Hence the term n/[2(x2n
1 − n − 1)] in

Eq. (9.88) is smaller than 0.25 for n > 0.
We now assume that R1 and ρB are of the orders of the present cosmological

density 10−29 g/cm3 and the baryonic/dark matter density 10−24 g/cm3 in our
galaxy, respectively. From Eq. (9.88) we obtain the constraint

n > 0.9 . (9.89)

Thus n does not need to be much larger than unity. Under the condition (9.89)
one can see an appreciable deviation from the !CDM model cosmologically (m !
O(0.1)) as R decreases to the order of Rc, while satisfying the condition (9.86) in
the region of high density.

Thus we have seen that the models (9.9) and (9.10) are carefully constructed to
satisfy local gravity constraints even when n is of the order of 1. Meanwhile, other
f (R) models are likely to be plagued by the problem of tuning model parameters.
For example, let us also study the following model [363, 376]

f (R) = R − µRc(R/Rc)p , (0 < p < 1, µ,Rc > 0) . (9.90)

The model with negative p is excluded because it corresponds to f,RR < 0. Since
the field φB is given by φB = −(

√
6/2)µp (Rc/ρB)1−p, the experimental bound

(8.173) translates into

µp

(
Rc

ρB

)1−p

< 1.5 × 10−15 . (9.91)

The de Sitter point, x1 = R1/Rc, satisfies the relation µ = x
1−p
1 /(2 − p). Hence

the bound (9.91) yields

p

2 − p

(
R1

ρB

)1−p

< 1.5 × 10−15 . (9.92)

Taking R1 = 10−29 g/cm3 and ρB = 10−24 g/cm3, we obtain the constraint

p < 3 × 10−10 . (9.93)

This means that the deviation from the !CDM model is very small. Since the
power (1 − p) does not exceed unity in Eq. (9.92), we need to choose values of
p much smaller than unity to satisfy the condition (9.92). On the other hand, the
model (9.78) can easily make |φB | very small due to the presence of a larger power
2n + 1.

In summary we have shown that the models (9.9) and (9.10) can be consistent
with local gravity constraints for n " 1, whereas in the model (9.8) we require that
p < 10−10. The model (9.11) can be regarded as the special case of the models
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(9.9) and (9.10) with n ≫ 1. The models (9.9), (9.10), and (9.11) are very close to
the !CDM model for R ≫ Rc, but it is possible to see the deviation from it as R

approaches Rc. As we see from Eq. (9.79), the field value φ = 0 corresponds to
the limit R → ∞ with a finite effective potential for the models (9.9) and (9.10)
[382]. As we go back to the past, the field value φA at the potential minimum
approaches φ = 0. The perturbations in φ need to be suppressed relative to its
background value in order to avoid reaching the curvature singularity at φ = 0.
This is related to the suppression of the oscillating mode in φ with the large mass
M2

φ ≃ f,R/(3f,RR) [369, 371].
In the strong gravitational background (such as neutron stars), Ref. [383] showed

that for the model (9.10) it is difficult to obtain thin-shell solutions inside a spher-
ically symmetric body with constant density. For chameleon models with general
couplings Q, a thin-shell field profile has been analytically derived in Ref. [324]
by employing a linear expansion in terms of the gravitational potential 'c at the
surface of a compact object with constant density. Using the boundary condi-
tion set by analytic solutions, Ref. [324] also numerically confirmed the existence
of thin-shell solutions for 'c ! 0.3 in the case of inverse power-law potentials
V (φ) = M4+nφ−n. The effect of the relativistic pressure is important around the
center of the body so that the field tends to roll down the potential quickly unless
the boundary condition is carefully chosen. Note that realistic stars have densi-
ties ρA(r) that globally decrease as a function of r . The numerical simulation of
Refs. [384, 385] showed that thin-shell solutions are present for the f (R) model
(9.10) by considering a polytropic equation of state even in the strong gravitational
background.

9.1.4 The viability of f (R) gravity models in the Palatini formalism

In f (R) theory of the Palatini formalism the field equation (9.5) is of the sec-
ond order, unlike the fourth-order equation (9.3) in the metric case. Hence the
scalar-field degree of freedom does not have a dynamical evolution as in the
case of General Relativity. Recall that in the metric formalism the condition
f,RR > 0 is required in order to avoid the instability problem of perturbations
associated with the field mass squared M2

ψ . In the Palatini formalism there are
no such restrictions because of the absence of the dynamical degree of freedom
for the field. This is one of the reasons why the viable background cosmolog-
ical evolution can be realized fairly easily in the Palatini case, as we will see
below.

Let us discuss the viability of f (R) gravity models in the Palatini formalism
[386, 387, 388, 389, 390, 391]. We first study the cosmological dynamics in this
formalism. Taking into account non-relativistic matter and radiation, Eqs. (9.4) and
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(9.5) give the following equations of motion in the flat FLRW background:

6F
(
H + Ḟ /2F

)2 − f = κ2(ρm + 2ρr ) , (9.94)

FR − 2f = −κ2ρm . (9.95)

Taking the derivative of Eq. (9.95) with respect to t and using the conservation
equation for ρm, we find [399]

Ṙ = 3κ2Hρm

RF,R − F
= −3H

FR − 2f

F,RR − F
. (9.96)

Combining Eqs. (9.94) and (9.96) gives

H 2 = 2κ2(ρm + ρr ) + FR − f

6F ξ
, (9.97)

where

ξ ≡
[

1 − 3
2

F,R(FR − 2f )
F (F,RR − F )

]2

. (9.98)

We introduce the following dimensionless variables

y1 ≡ FR − f

6F ξH 2
, y2 ≡ κ2ρr

3F ξH 2
. (9.99)

In terms of these variables the constraint equation (9.97) becomes

κ2ρm

3F ξH 2
= 1 − y1 − y2 . (9.100)

Differentiating Eq. (9.97) we obtain

2
Ḣ

H 2
= −3 + 3y1 − y2 − Ḟ

HF
− ξ̇

H ξ
+ ḞR

6F ξH 3
. (9.101)

The variables y1 and y2 obey the following equations of motion [392]:

dy1

dN
= y1 [3 − 3y1 + y2 + C(R)(1 − y1)] , (9.102)

dy2

dN
= y2 [−1 − 3y1 + y2 − C(R)y1] , (9.103)

where

C(R) ≡ RḞ

H (FR − f )
= −3

(FR − 2f )F,RR

(FR − f )(F,RR − F )
. (9.104)

The following constraint equation also holds

FR − 2f

FR − f
= −1 − y1 − y2

2y1
, (9.105)
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which shows that R and thus C(R) can in principle be expressed in terms of the
variables y1 and y2.

The behavior of the variables y1 and y2 depends on the function C(R). For the
well-behaved function C(R), but excluding the cases C(R) = −3, −4, we obtain
the following fixed points for the system (9.102)–(9.103):

(i) Pr : (y1, y2) = (0, 1), (ii) Pm : (y1, y2) = (0, 0), (iii) Pd : (y1, y2) = (1, 0).

(9.106)

The eigenvalues of the Jacobian matrices for the linearized perturbation equations
about the above fixed points are given by

(i) Pr : 4 + C(R), 1, (ii) Pm : 3 + C(R), −1,

(iii) Pd : −3 − C(R), −4 − C(R). (9.107)

The effective equation of state of the system is

weff = −y1 + 1
3
y2 + Ḟ

3HF
+ ξ̇

3H ξ
− ḞR

18F ξH 3
. (9.108)

For the !CDM model, f (R) = R − 2!, we have C(R) = 0 and hence the points
Pr , Pm, and Pd correspond to radiation (weff = 1/3, unstable), matter (weff = 0,
saddle), and de Sitter (weff = −1, stable) points, respectively. Thus it is possible to
realize the sequence of radiation, matter, and de Sitter epochs.

Let us next consider the model f (R) = R − β/Rn with β > 0 and n > −1.
From Eqs. (9.104) and (9.105) this model gives the following relations

C(R) = 3n
R1+n−(2+n)β

R1+n + n(2+n)β
and R1+n = β[3y1+n(y1−y2 + 1) − y2 + 1]

2y1
.

(9.109)
We focus on the case in which the condition β/R1+n ≪ 1 is satisfied during the
radiation era (i.e. f (R) ≃ R). We then find that the points Pr, Pm, Pd behave as
radiation, matter, and de Sitter points, respectively, with the eigenvalues

(i) Pr : (3n + 4, 1) , (ii) Pm : (3n + 3, −1) , (iii) Pd : (−3, −4) . (9.110)

Note that the de Sitter point Pd satisfies the relation, R1+n = (2 + n)β, which exists
for n > −2 provided that R > 0 and β > 0. If n > −1 and β > 0, the points Pr ,
Pm, Pd correspond to an unstable node, a saddle, and a stable node, respectively.
Numerical simulations in Ref. [392] indeed confirmed that such theories admit
the sequence of radiation, matter, and de Sitter phases. This property is different
from the f (R) gravity in the metric formalism – the model f (R) = R − β/Rn

(β > 0, n > 0) does not give rise to viable cosmological evolution (because the
condition f,RR > 0 is not satisfied).
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Figure 9.2 The observational contours at the 68% and 95% confidence levels
for the model based on the theory f (R) = R − β/Rn in the Palatini formalism,
constrained by SNLS, BAO, and CMB data. From Ref. [392].

In Refs. [393, 392] observational constraints on the model f (R) = R − β/Rn

have been derived by using the SN Ia, BAO, and CMB data. As we show in
Fig. 9.2 the two parameters n and β are constrained to be n ∈ [−0.23, 0.42] and
β ∈ [2.73, 10.6] at the 95% confidence level (the unit H0 = 1 is chosen for the
normalization of β). Since the allowed values of n are close to 0, the above model
is not particularly favored over the !CDM model.

In Section 9.2 we will show that f (R) theory in the Palatini formalism
is equivalent to Brans–Dicke theory [63] with a parameter ωBD = −3/2 (and
with a field potential) [360, 387, 391]. If we transform the action (9.121) of
the Brans–Dicke theory with a field potential by a conformal transformation,
the resulting Einstein frame action corresponds to a coupled quintessence sce-
nario with a constant coupling Q between the field φ and non-relativistic mat-
ter [273]. From the relation (9.122) between ωBD and Q we see that f (R) the-
ory in the Palatini formalism (ωBD = −3/2) corresponds to the infinite coupling,
Q2 → ∞. It is expected that this large coupling should lead to some observable
effects.

In Ref. [394] the equations for matter density perturbations have been derived in
the Jordan frame of f (R) theory in the Palatini formalism. Under the sub-horizon
approximation in which the comoving wavenumber k is much larger than aH , the
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equation for matter perturbations δm is approximately given by [395]

δ̈m + 2H δ̇m − ρm

2F

(
1 + m

1 − m

k2

a2R

)
δm ≃ 0 , (9.111)

where m = Rf,RR/f,R is the deviation parameter from the !CDM model. The
second term in the bracket of Eq. (9.111) plays a crucial role when we discuss the
evolution of perturbations. Since R is of the order of H 2 we have that k2/(a2R) ∼
(k/aH )2 ≫ 1 for sub-horizon modes. For smaller scale modes (i.e. larger k) the
evolution of δm is quite different from that in the !CDM model. If m > 0 there
is violent growth of matter perturbations, whereas if m < 0 there is a damped
oscillation of δm. The constraint from the large-scale structure gives the bound
|m| ! 10−5–10−4 even at the present epoch irrespective of the form of f (R) [395].
Hence the f (R) models in the Palatini formalism are constrained to be very close
to the !CDM model from the evolution of matter perturbations. In f (R) theory in
the metric formalism the deviation parameter m can grow as large as the order of
0.1 around the present epoch, e.g., for the models (9.9)–(9.11), which means that
the models can show appreciable deviation from the !CDM model.

The f (R) theory in the Palatini formalism also gives rise to non-perturbative
corrections to the matter action as well as strong couplings between gravity and
matter. This problem was first raised by Flanagan [396] using Dirac particles for
the matter action and was studied again for the matter action of a Higgs field [397].
Starting from the Brans–Dicke action (9.121) with ωBD = −3/2 along the line of
Ref. [398] by taking into account a Higgs boson h with mass mh, one can show
that, for the model f (R) = R − β/R, a perturbative expansion for the Brans–Dicke
field φ leads to large non-perturbative corrections to a local matter action [399].
As long as the Palatini f (R) models are designed to explain the late-time cosmic
acceleration, they are in conflict with the standard model of particle physics unless
the deviation from the !CDM model is very small. This is associated with the
infinitely large coupling problem mentioned above.

9.2 Scalar-tensor theories

As we have seen in this section and in the previous chapters, most models of dark
energy rely on scalar fields. Scalar fields have a long history in cosmology, starting
from Brans–Dicke theory [63] in which gravity is mediated by a scalar field in
addition to the metric tensor field (see the book [400]). Brans–Dicke theory was
an attempt to revive Mach’s principle (according to which inertia arises when a
body is accelerated with respect to the global mass distribution in the Universe)
by linking the gravitational constant to a cosmic field. At the same time, Brans–
Dicke theory incorporated Dirac’s suggestion that G varies in time in order to
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explain the coincidence that combinations like (!2H0c
5/G)1/3 ≃ 68 h1/3 MeV or

(e4H0c
3/G)1/3 ≃ 2.5 h1/3 MeV are of the order of typical particle masses.

Brans–Dicke theory is just a particular example of scalar-tensor theories. These
are probably the simplest example of modified gravity models and as such one of
the most intensely studied alternatives to General Relativity. After the discovery
of cosmic acceleration, they have been invoked by several authors [56, 57, 58,
59, 60, 374, 401, 402] to generalize the cosmological constant and to explain the
fine-tuning and the coincidence problem. In this section we discuss their properties
as dark energy candidates.

The action for scalar-tensor theories is given by

S =
∫

d4x
√

−g

[
1
2
f (ϕ, R) − 1

2
ζ (ϕ)(∇ϕ)2

]
+ Sm(gµν, (m) , (9.112)

where f is a general function of the scalar field ϕ and the Ricci scalar R, ζ is a
function of ϕ, and Sm is a matter Lagrangian that depends on the metric gµν and
matter fields (m. We choose units such that κ2 = 1.

The action (9.112) includes a wide variety of theories such as f (R) gravity,
Brans–Dicke theory, and dilaton gravity. The f (R) gravity corresponds to the
choice f (ϕ, R) = f (R) and ζ = 0. The action in Brans–Dicke theory is f = ϕR

and ζ = ωBD/ϕ, where ωBD is called the Brans–Dicke parameter [63]. One can
generalize Brans–Dicke theory by adding the field potential U (ϕ) to the original
action, i.e. f = ϕR − 2U (ϕ) and ζ = ωBD/ϕ. The dilaton gravity arising from low-
energy effective string theory [64] corresponds to f = 2e−ϕR − 2U (ϕ) and ζ (ϕ) =
−2e−ϕ , where we have introduced the dilaton potential U (ϕ). The action (9.112)
can be transformed to the Einstein frame under the conformal transformation (9.64)
with the choice

&2 = F ≡ ∂f

∂R
, (9.113)

where F is positive in order to ensure that gravity is attractive.
Let us consider theories of the type

f (ϕ, R) = F (ϕ)R − 2U (ϕ) , (9.114)

for which the conformal factor & depends on ϕ only. Following a procedure similar
to the one we employed for f (R) gravity, we obtain the action in the Einstein frame:

SE =
∫

d4x
√

−g̃

[
1
2
R̃ − 1

2
(∇̃φ)2 − V (φ)

]
+ Sm(g̃µνF

−1, (m) , (9.115)

where we have introduced a new scalar field φ in order to make the kinetic term
canonical:

φ =
∫

dϕ

√
3
2

(
F,ϕ

F

)2

+ ζ

F
. (9.116)
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The potential V (φ) is given by

V = U/F 2 . (9.117)

Recall that the Einstein frame action (9.72) in f (R) gravity in the metric formalism
is the same as Eq. (9.115) with the correspondence φ = (

√
6/2) ln F and V =

(RF − f )/2F 2. From Eq. (9.117) the potential U in the Jordan frame is given by
U = (RF − f )/2.

In order to describe the strength of the coupling between dark energy and non-
relativistic matter, we introduce the following quantity

Q ≡ −F,φ

2F
= −F,ϕ

F

[
3
2

(
F,ϕ

F

)2

+ ζ

F

]−1/2

. (9.118)

Since F = e2φ/
√

6 in f (R) gravity in the metric formalism we have that Q =
−1/

√
6. If Q is a constant, the following relations hold from Eqs. (9.116) and

(9.118):

F = e−2Qφ , ζ = (1 − 6Q2)F
(

dφ

dϕ

)2

. (9.119)

Then the action (9.112) in the Jordan frame yields [273]

S =
∫

d4x
√

−g

[
1
2
F (φ)R − 1

2
(1 − 6Q2)F (φ)(∇φ)2 − U (φ)

]
+ Sm(gµν, (m) .

(9.120)

In the limit Q → 0 the action (9.120) reduces to the one for a minimally coupled
scalar field φ with the potential U (φ). The transformation of the Jordan frame
action (9.120) via a conformal transformation g̃µν = F (φ)gµν gives rise to the
Einstein frame action (9.115) with a constant coupling Q, which is equivalent to
the action (8.136) for the chameleon scalar field.

It is instructive to compare (9.120) with the action of Brans–Dicke theory with
a potential U :

S =
∫

d4x
√

−g

[
1
2
ψR − ωBD

2ψ
(∇ψ)2 − U (ψ)

]
+ Sm(gµν, (m) . (9.121)

Setting ψ = F = e−2Qφ , one easily finds that the two actions are equivalent if the
parameter ωBD is related to Q via the relation [273]

3 + 2ωBD = 1
2Q2

. (9.122)
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Under this condition, the theories given by (9.120) are equivalent to Brans–Dicke
theory with a potential U . In the General Relativistic limit, Q → 0, we have
ωBD → ∞ as expected.

Taking the variation of Eq. (9.121) with respect to gµν and ψ leads to the
following equations

Rµν(g) − 1
2
gµνR(g) = 1

ψ
Tµν − 1

ψ
gµνU (ψ) + 1

ψ
(∇µ∇νψ − gµν#ψ)

+ ωBD

ψ2

[
∂µψ∂νψ − 1

2
gµν(∇ψ)2

]
, (9.123)

(3 + 2ωBD)#ψ + 4U (ψ) − 2ψU,ψ = T . (9.124)

In order to find the relation of Brans–Dicke theory with the f (R) theories, let us
consider the following correspondence

ψ = F (R) , U (ψ) = 1
2

[R(ψ)F − f (R(ψ))] , (9.125)

where R = R(g) in the metric case and R = R(T ) in the Palatini case. Comparing
Eqs. (9.123) and (9.124) with Eqs. (9.2) and (9.3), it can readily be seen that f (R)
theory in the metric formalism corresponds to the above generalized Brans–Dicke
theory with ωBD = 0. Similarly the comparison of Eqs. (9.123) and (9.124) with
Eqs. (9.6) and (9.5) shows that f (R) theory in the Palatini formalism corresponds
to the generalized Brans–Dicke theory with ωBD = −3/2. Since the coupling Q for
the f (R) theory in the metric formalism is given by Q = −1/

√
6, it also follows

from Eq. (9.122) that the Brans–Dicke parameter ωBD is equivalent to 0. From
Eq. (9.122) f (R) theory in the Palatini formalism (ωBD = −3/2) corresponds to
the infinite matter coupling, Q2 → ∞.

In dilaton gravity [f (ϕ, R) = 2e−ϕR − 2U and ζ = −2e−ϕ] one has F = 2e−ϕ

and φ = ϕ/
√

2. In this case we find from Eqs. (9.118) and (9.122) that the coupling
is also constant (Q = 1/

√
2) with the Brans–Dicke parameter ωBD = −1. The

above discussion shows that the action (9.120) with F (φ) = e−2Qφ corresponds
to Brans–Dicke theory with the potential U (φ), which includes a wide variety of
theories such as f (R) theories in the metric and Palatini formalisms, and dilaton
gravity.

There are theories that give rise to varying couplings Q. For example a non-
minimally coupled scalar field with a coupling ξ corresponds to the choice
F (ϕ) = 1 − ξϕ2 and ζ (ϕ) = 1. In this case the coupling Q(ϕ) is field-dependent:

Q(ϕ) = ξϕ

[1 − ξϕ2(1 − 6ξ )]1/2
. (9.126)

Note that Q ≃ ξϕ for |ξ | ≪ 1 and Q ≃ ±1/
√

6 in the limit |ξ | ≫ 1.
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In the following we shall focus on the constant coupling models based on the
action (9.120) with F (φ) = e−2Qφ .

9.2.1 Cosmological dynamics

We shall study the cosmological dynamics for the Jordan frame action (9.120) with
F (φ) = e−2Qφ in the presence of a non-relativistic fluid with energy density ρm and
a radiation fluid with energy density ρr . We regard here the Jordan frame as a “phys-
ical” one due to the usual conservation of non-relativistic matter (ρm ∝ a−3) in this
frame. In the Einstein frame the system is described by a coupled quintessence
scenario with the potential V = U/F 2. One can study the cosmological dynamics
in the Einstein frame and transform back to the Jordan frame, but we shall carry
out the analysis directly in the Jordan frame.

In the flat FLRW background the variation of the action (9.120) with respect to
gµν and φ leads to the following equations of motion

3FH 2 = 1
2 (1 − 6Q2)F φ̇2 + U − 3HḞ + ρm + ρr , (9.127)

2FḢ = −(1 − 6Q2)F φ̇2 − F̈ + HḞ − ρm − (4/3)ρr , (9.128)

(1 − 6Q2)F
[
φ̈ + 3H φ̇ + (Ḟ /2F )φ̇

]
+ U,φ + QFR = 0 . (9.129)

We introduce the following variables

x1 ≡ φ̇√
6H

, x2 ≡ 1
H

√
U

3F
, x3 ≡ 1

H

√
ρr

3F
, (9.130)

and

&m ≡ ρm

3FH 2
, &r ≡ x2

3 , &DE ≡ (1 − 6Q2)x2
1 + x2

2+2
√

6Qx1. (9.131)

These satisfy the relation &m + &r + &DE = 1 from Eq. (9.127).
Using Eqs. (9.127)–(9.129), we obtain the differential equations for x1, x2, and

x3:

dx1

dN
=

√
6

2
(λx2

2 −
√

6x1) +
√

6Q

2

[
(5 − 6Q2)x2

1 + 2
√

6Qx1 − 3x2
2 + x2

3 − 1
]

− x1
Ḣ

H 2
, (9.132)

dx2

dN
=

√
6

2
(2Q − λ)x1x2 − x2

Ḣ

H 2
, (9.133)

dx3

dN
=

√
6Qx1x3 − 2x3 − x3

Ḣ

H 2
, (9.134)
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where

λ ≡ −U,φ/U , (9.135)

and Ḣ /H 2 is given by

Ḣ

H 2
= −1 − 6Q2

2

(
3 + 3x2

1 − 3x2
2 + x2

3 − 6Q2x2
1 + 2

√
6Qx1

)

+ 3Q(λx2
2 − 4Q) . (9.136)

The effective equation of state of the system is

weff = −1 + 1 − 6Q2

3
(3 + 3x2

1 − 3x2
2 + x2

3 − 6Q2x2
1 + 2

√
6Qx1)

− 2Q(λx2
2 − 4Q) . (9.137)

In the absence of radiation (x3 = 0), the fixed points of the system (9.132)–(9.134)
for constant λ are given by [273]

! (a) φMDE

(x1, x2) =
( √

6Q

3(2Q2 − 1)
, 0

)

, &m = 3 − 2Q2

3(1 − 2Q2)2
, weff = 4Q2

3(1 − 2Q2)
. (9.138)

! (b) Kinetic points

(x1, x2) =
(

1√
6Q ± 1

, 0
)

, &m = 0 , weff = 3 ∓
√

6Q

3(1 ±
√

6Q)
. (9.139)

! (c) Scalar-field dominated point

(x1, x2) =
( √

6(4Q − λ)
6(4Q2 − Qλ − 1)

,

[
6 − λ2 + 8Qλ − 16Q2

6(4Q2 − Qλ − 1)2

]1/2
)

, &m = 0 ,

weff = −20Q2 − 9Qλ − 3 + λ2

3(4Q2 − Qλ − 1)
. (9.140)

! (d) Scaling solution

(x1, x2) =
(√

6
2λ

,

√
3 + 2Qλ − 6Q2

2λ2

)

, &m = 1 − 3 − 12Q2 + 7Qλ

λ2
,

weff = −2Q

λ
. (9.141)

! (e) de Sitter point (present for λ = 4Q)

(x1, x2) = (0, 1) , &m = 0 , weff = −1 . (9.142)
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One can confirm that the de Sitter point (e) exists for λ = 4Q, by setting φ̇ = 0 in
Eqs. (9.127)–(9.129). This is the special case of the scalar-field dominated point
(c).

(I) Constant λ

Let us study the case of non-zero values of Q with constant λ, i.e. for the exponential
potential U (φ) = U0e

−λφ . We do not consider the special case of λ = 4Q. The
stability of the fixed points (a)–(e) can be found as usual by considering the
eigenvalues of the 2 × 2 Jacobian matrix of perturbations, see the problem 9.3.
The matter-dominated epoch can be realized either by the point (a) or by the point
(d). If the point (a) is responsible for the matter era, we require the condition
Q2 ≪ 1. We then have &m ≃ 1 + 10Q2/3 > 1 and weff ≃ 4Q2/3. When Q2 ≪ 1
the scalar-field dominated point (c) yields an accelerated expansion of the Universe
provided that −

√
2 + 4Q < λ <

√
2 + 4Q. Under these conditions the point (a)

is followed by the late-time cosmic acceleration. The scaling solution (d) can give
rise to the equation of state, weff ≃ 0 for |Q| ≪ |λ|. In this case, however, the
condition weff < −1/3 for the point (c) gives λ2 ! 2. Then the energy fraction of
the pressureless matter for the point (d) does not satisfy the condition &m ≃ 1. From
the above discussion the viable cosmological trajectory for constant λ corresponds
to the sequence from the point (a) to the scalar-field dominated point (c) under the
conditions Q2 ≪ 1 and −

√
2 + 4Q < λ <

√
2 + 4Q. In the Einstein frame this

corresponds to the coupled quintessence scenario with the exponential potential
V = U/F 2 = U0e

−(λ−4Q)φ discussed in Section 8.3.

(II) Varying λ

Let us next proceed to the case where λ varies with time. When the time scale
of the variation of λ is smaller than that of the cosmic expansion, the fixed points
derived above in the case of constant λ can be regarded as the “instantaneous” fixed
points. This allows the possibility that the matter era is realized by the point (d)
with |Q| ≪ |λ| and that the solutions finally approach either the de Sitter point (e)
with λ = 4Q or the accelerated point (c).

In the following let us focus on the case in which the matter solution (d) is
followed by the de Sitter solution (e). In order to study the stability of the point (e)
we define a variable x4 ≡ F . This satisfies the following equation

dx4

dN
= −2

√
6Qx1x4 . (9.143)

Considering the 3 × 3 matrix for perturbations δx1, δx2, and δx4 around the point
(e), we obtain the eigenvalues

− 3 , −3
2

[

1 ±
√

1 − 8
3
F1Q

dλ

dF
(F1)

]

, (9.144)
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where F1 ≡ F (φ1) is the value of F at the de Sitter point with the field value φ1.
Since F1 > 0, we find that the de Sitter point is stable for

Q
dλ

dF
(F1) > 0 , i.e.

dλ

dφ
(φ1) < 0 . (9.145)

For f (R) theory in the metric formalism (Q = −1/
√

6), this condition translates
into dλ/dF < 0. Since F = e2φ/

√
6 = df/dR and U = (RF − f )/2 in this case,

we have λ = −Rf,R/(
√

6V ). Then, together with the fact that Rf,R = 2f holds
for the de Sitter point, the condition dλ/dF < 0 is equivalent to R < f,R/f,RR. For
positive R this gives 0 < Rf,RR/f,R < 1, which agrees with the condition (9.35).

Let us consider the f (R) model (9.78) in the metric formalism. This recov-
ers the models (9.9) and (9.10) in the regime R ≫ Rc. Since e2φ/

√
6 = 1 −

2nµ(R/Rc)−(2n+1) in this case, the potential U = (FR − f )/2 in the Jordan frame
yields

U (φ) = µRc

2

[
1 − 2n + 1

(2nµ)2n/(2n+1)

(
1 − e2φ/

√
6
)2n/(2n+1)

]
. (9.146)

The parameter, λ = −U,φ/U , is then given by

λ = − 4ne2φ/
√

6

√
6(2nµ)2n/(2n+1)

[
1 − 2n + 1

(2nµ)2n/(2n+1)

(
1 − e2φ/

√
6
)]−2n/(2n+1)

×
(

1 − e2φ/
√

6
)−1/(2n+1)

. (9.147)

In the deep matter-dominated epoch where the condition R/Rc ≫ 1 is satisfied, the
field φ is very close to zero. For n and µ of the order of unity, |λ| is much larger than
unity during this stage. Hence the matter era is realized by the instantaneous fixed
point (d). As R/Rc gets smaller, |λ| decreases to the order of unity. If the solutions
reach the point λ = 4Q = −4/

√
6 and satisfy the stability condition dλ/dF < 0,

then the final attractor corresponds to the de Sitter fixed point (e).
For the theories with general couplings Q, it is possible to construct a scalar-field

potential that is the generalization of (9.146). One example is [273]

U (φ) = U0
[
1 − C(1 − e−2Qφ)p

]
(U0 > 0, C > 0, 0 < p < 1) . (9.148)

Note that the f (R) model (9.78) in the metric formalism corresponds to Q =
−1/

√
6 and p = 2n/(2n + 1). The slope of the potential (9.148) is given by

λ = 2Cp Qe−2Qφ(1 − e−2Qφ)p−1

1 − C(1 − e−2Qφ)p
. (9.149)

When Q > 0, the potential energy decreases from U0 as φ increases from 0. On the
other hand, if Q < 0, the potential energy decreases from U0 as φ decreases from
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0. In both cases we have U (φ) → U0(1 − C) in the limits φ → ∞ (for Q > 0) and
φ → −∞ (for Q < 0).

In the model (9.148) the field is stuck around the value φ = 0 during the deep
radiation and matter epochs. In these epochs one has R ≃ ρm/F from Eqs. (9.127)–
(9.129) by noting that U0 is negligibly small compared to ρm or ρr . Using
Eq. (9.129), we obtain the relation U,φ + Qρm ≃ 0. Hence, in the high-curvature
region, the field φ evolves along the instantaneous minima given by

φm ≃ 1
2Q

(
2U0pC

ρm

)1/(1−p)

. (9.150)

The field value |φm| increases for decreasing ρm. As long as the condition ρm ≫
2U0pC is satisfied, we have |φm| ≪ 1 from Eq. (9.150).

Equation (9.149) shows that |λ| ≫ 1 for field values around φ = 0. Hence the
instantaneous fixed point (d) can be responsible for the matter-dominated epoch
provided that |Q| ≪ |λ|. The variable F = e−2Qφ decreases in time irrespective of
the sign of the coupling Q and hence 0 < F < 1. The de Sitter solution corresponds
to λ = 4Q, i.e.

C = 2
(1 − F1)p−1 [2 + (p − 2)F1]

. (9.151)

Provided that the solution of this equation exists in the region 0 < F1 < 1, for
given values of C and p, the de Sitter solution is present.

From Eq. (9.149) we obtain

dλ

dφ
= −4CpQ2F (1 − F )p−2[1 − pF − C(1 − F )p]

[1 − C(1 − F )p]2
. (9.152)

When 0 < C < 1 one can easily show that the function g(F ) ≡ 1 − pF − C(1 −
F )p is positive in the region 0 < F < 1, giving dλ/dφ < 0. Hence, the condition
for a stable de Sitter point is automatically satisfied. In this case the solutions
approach the de Sitter attractor after the end of the matter era.

When C > 1, the function g(F ) becomes negative for values of F that are
smaller than the critical value Fc (< 1). The de Sitter point (e) is stable under
the condition 1 − pF1 > C(1 − F1)p. Using Eq. (9.151) we find that this stability
condition translates to

F1 > 1/(2 − p) . (9.153)

If this condition is violated, the solutions choose another stable fixed point as
an attractor. In f (R) theory in the metric formalism, for example, the solutions
can reach the stable accelerated point (c) characterized by m = −r − 1 and
(
√

3 − 1)/2 < m < 1.
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Figure 9.3 The evolution of &DE, &m, &r , and weff for the field potential (9.148)
with parameters Q = 0.01, p = 0.2, and C = 0.7. The initial conditions are given
by x1 = 0, x2 = 2.27 × 10−7, x3 = 0.7, and x4 − 1 = −5.0 × 10−13 at N = 0.
From Ref. [273].

In summary, when 0 < C < 1, the matter point (d) can be followed by the stable
de Sitter solution (e) for the model (9.148). In Fig. 9.3 we plot the evolution of &DE,
&m, &r , and weff versus N for Q = 0.01, p = 0.2, and C = 0.7. Starting from the
epoch of matter–radiation equality, the solutions first dwell around the matter point
(d) with weff ≃ 0 and finally approach the de Sitter attractor (e) with weff ≃ −1.
Initially λ is much larger than unity and eventually approaches the value λ = 4Q.

Rewriting Eqs. (9.127) and (9.128) in the forms of Eqs. (9.44) and (9.45) by
defining the dark energy density ρDE and the pressure PDE to confront with SN
Ia observations, one obtains the continuity equation (9.48) and the dark energy
equation of state (9.49) (see problem 9.1). The variable F = e−2Qφ decreases
in time irrespective of the signs of Q for the model (9.148), as in the viable
f (R) models we discussed in Section 9.1.2. Then the phantom equation of state
(wDE < −1) as well as the cosmological constant boundary crossing (wDE = −1)
arises for scalar-tensor theories with large couplings (|Q| = O(1)) [273]. Even if
|Q| ≪ 1 it was shown in Refs. [268, 403, 269, 264] that the phantom equation
of state can be realized without introducing a ghost field with a negative kinetic
energy.
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9.2.2 Local gravity constraints

Let us study the local gravity constraints for the scalar-tensor theory given by the
action (9.120). This is equivalent to the action (9.121) in Brans–Dicke theory with
the field potential U (ψ). We first consider a linear expansion of the field ψ as
ψ = ψ0(1 + δψ ) about a spherically symmetric background of the approximate
Minkowski spacetime. In f (R) theory in the metric formalism we have done a
similar procedure from Eq. (9.51) to Eq. (9.61). The difference from f (R) theory
is that the factor “3” in Eq. (9.3) is replaced by the factor “3 + 2ωBD” in Eq. (9.124)
in Brans–Dicke theory. It is then easy to show that, in the massless limit of the
field ψ (i.e. in the absence of the potential), the effective Newton constant G

(N)
eff and

the post-Newtonian parameter γ in Brans–Dicke theory are given, respectively, by
[63, 404]

G
(N)
eff = G

ψ0

4 + 2ωBD

3 + 2ωBD
, γ = 1 + ωBD

2 + ωBD
. (9.154)

In f (R) theory in the metric formalism, Eq. (9.61) gives G
(N)
eff = (4/3)(G/ψ0) and

γ = 1/2 in the limit Mψ → 0, so that the Brans–Dicke parameter corresponds to
ωBD = 0.

Using the solar system bound given in Eq. (8.171), we find that the Brans–
Dicke parameter is constrained to be ωBD > 4.3 × 104 in the massless case. This
bound also applies to the case of a nearly massless field with a potential in which
the Yukawa correction e−Mψ r is close to 1. Using the bound ωBD > 4.3 × 104 in
Eq. (9.122), we find that the coupling Q is constrained to be

|Q| < 2.4 × 10−3 (for the massless case). (9.155)

Under this constraint it is difficult to find a large difference from the uncoupled
quintessence models.

In the presence of the field-potential it is possible for large coupling models
(|Q| = O(1)) to satisfy the local gravity constraints if the mass M of the field φ is
sufficiently heavy in the region of high density. In fact the scalar-tensor potential
(9.148) is designed to have a large mass in the high-density region so that it can
be compatible with experimental tests for the violation of equivalence principle
through the chameleon mechanism even for |Q| = O(1). In the following we shall
consider the model (9.148) and derive the conditions under which the local gravity
constraints can be satisfied. If we make a conformal transformation for the action
(9.120), the resulting Einstein frame action is given by Eq. (8.136) with a constant
coupling Q. Hence one can use the results obtained in Section 8.4.

We consider a configuration in which a spherically symmetric body has a
constant density ρA inside the body and that the energy density outside the
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body is given by ρ = ρB (≪ ρA). Under the condition |Qφ| ≪ 1, one has
V,φ ≃ −2U0QpC(2Qφ)p−1 for the potential V = U/F 2 in the Einstein frame.
Then the field values at the potential minima inside and outside the body are

φA ≃ 1
2Q

(
2U0 p C

ρA

)1/(1−p)

, φB ≃ 1
2Q

(
2U0 p C

ρB

)1/(1−p)

, (9.156)

which satisfy |φA| ≪ |φB |. These are analogous to the field value φm derived in
Eq. (9.150) in the cosmological setting. In order to realize the accelerated expansion
today, U0 needs to be roughly the same order as the square of the present Hubble
parameter H0, so we have U0 ∼ H 2

0 ∼ ρ(0)
c , where ρ(0)

c ≃ 10−29 g/cm3 is the present
cosmological density. The baryonic/dark matter density in our galaxy corresponds
to ρB ≃ 10−24 g/cm3. This shows that the conditions |QφA| ≪ 1 and |QφB | ≪ 1
are in fact satisfied unless C ≫ 1. The field mass squared m2

A ≡ V,φφ at φ = φA is
approximately given by

m2
A ≃ 1 − p

(2p pC)1/(1−p)
Q2

(
ρA

U0

)(2−p)/(1−p)

U0 , (9.157)

which means that mA can be much larger than H0 because of the condition ρA ≫ U0.
Let us place constraints on model parameters by using the bound (8.173) coming

from the violation of equivalence principle. In so doing, we shall consider the case
where the solutions finally approach the de Sitter point (e). The bound (8.173)
coming from the violation of equivalence principle translates into

(2U0pC/ρB)1/(1−p) < 7.4 × 10−15 |Q| . (9.158)

At the de Sitter point (e), one has 3F1H
2
1 = U0[1 − C(1 − F1)p] with C given in

Eq. (9.151). Hence, we obtain the following relation

U0 = 3H 2
1 [2 + (p − 2)F1] /p . (9.159)

Substituting this into Eq. (9.158) we find

(R1/ρB)1/(1−p) (1 − F1) < 7.4 × 10−15|Q| , (9.160)

where R1 = 12H 2
1 is the Ricci scalar at the de Sitter point. Since the term

(1 − F1) is smaller than 1/2 from the condition (9.153) we obtain the inequal-
ity (R1/ρB)1/(1−p) < 1.5 × 10−14|Q|. Taking the values R1 = 10−29 g/cm3 and
ρB = 10−24 g/cm3 as we have done for the f (R) gravity, we get the following
bound

p > 1 − 5
13.8 − log10 |Q|

. (9.161)
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When |Q| = 10−1 and |Q| = 1 we have p > 0.66 and p > 0.64, respectively. For
the f (R) gravity model (9.146) the above bound corresponds to p = 2n/(2n +
1) > 0.65, which translates into the condition n > 0.9 [see Eq. (9.89)].

As we will see in Section 11.6, there are cosmological constraints on the values
of p and Q coming from the evolution of matter density perturbations. As long as p

is close to 1, it is possible to satisfy both cosmological and local gravity constraints
for |Q| ! 1 [273].

9.3 Gauss–Bonnet dark energy models

The f (R) and scalar-tensor theories add to the gravitational tensor field a new
degree of freedom, a scalar field. However this certainly does not exhaust the range
of possible modifications of gravity. One possibility is to add vector fields, as in
e.g., Ref. [405]. Another one is to add to the Einstein Lagrangian general functions
of the Ricci and Riemann tensors, e.g., f (R,RµνR

µν, RµναβRµναβ, . . .) [406].
However these Lagrangians are generally plagued by the existence of ghosts, i.e.
the existence of negative energy states [407, 408, 409]. Even beside the quantum
problems, this generally implies classical instabilities either at the background or
at the perturbed level.

There is however a way to modify gravity with a combination of Ricci and
Riemann tensors that keeps the equations at second-order in the metric and does not
necessarily give rise to instabilities, namely a Gauss–Bonnet (GB) term coupled to
scalar field(s) [410, 411, 412, 413]. The GB term is a topological invariant quantity,
which contributes to the dynamics in four dimensions provided that it is coupled to
a dynamically evolving scalar field. It is the unique invariant for which the highest
(second) derivative occurs linearly in the equations of motion, thereby ensuring the
uniqueness of solutions. Note that the GB term naturally arises as a correction to
the tree-level action of low-energy effective string theory [64, 210]. In what follows
we shall study the possibility of realizing the late-time cosmic acceleration in the
presence of the GB term coupled to a scalar field φ.

The model we study is given by the following action (in the unit of κ2 = 1)

S =
∫

d4x
√

−g

[
1
2
R − 1

2
(∇φ)2 − V (φ) − f (φ)R2

GB

]
+ Sm(gµν, (m) ,

(9.162)
where V (φ) and f (φ) are functions of φ, and R2

GB is the GB term defined by

R2
GB ≡ R2 − 4RµνR

µν + RµναβRµναβ . (9.163)

The action (9.162) corresponds to the Einstein frame action in which the scalar
field φ does not have a direct coupling to the Ricci scalar R. If this originates from
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the string frame action, the field φ (dilaton) has a coupling with the non-relativistic
matter in general. In the following we shall assume that this coupling is negligibly
small (as in the case of the runaway dilaton scenario [211, 212]).

Let us study the cosmological dynamics for the action (9.162) in the flat FLRW
background. We take the following exponential potential

V (φ) = V0e
−λφ (λ > 0) , (9.164)

which goes to 0 in the limit φ → ∞. The GB coupling is generally given by the
sum of the exponential terms. We shall study the following simple case [410]

f (φ) = (f0/µ) eµφ , (9.165)

where f0 and µ (> 0) are constants. As a matter action Sm we take into account
non-relativistic matter and radiation, which satisfy the usual conservation equations
(uncoupled to the field φ). The variation of the action (9.162) leads to the following
equations of motion

3H 2 = φ̇2/2 + V (φ) + 24f,φφ̇H 3 + ρm + ρr , (9.166)

φ̈ + 3H φ̇ − λV0e
−λφ + 24f,φH 2(H 2 + Ḣ ) = 0 . (9.167)

We define the following variables

x1 ≡ φ̇√
6H

, x2 ≡
√

V (φ)√
3H

, x3 ≡ f,φH 2 , x4 ≡
√

ρr√
3H

, (9.168)

together with the density parameters for each component:

&φ ≡ x2
1 + x2

2 , &GB ≡ 8
√

6x1x3 , &r ≡ x2
4 ,

&m ≡ 1 − &φ − &GB − &r . (9.169)

Note that the term 24f,φφ̇H 3 in Eq. (9.166) contributes to &GB, whereas the
usual field energy density, ρφ = φ̇2/2 + V (φ), contributes to &φ . For the functions
(9.164) and (9.165) we have the following relation between x2 and x3:

x2
2x3 = f0

3
e(µ−λ)φ . (9.170)

Taking the time derivative of Eq. (9.166) and eliminating the term φ̈ by using
Eq. (9.167), we find

(1 − 8
√

6x1x3 + 96x2
3 )

Ḣ

H 2
= −1

2
(3 + 3x2

1 − 3x2
2 + x2

4 )

− 4x3(
√

6x1 − 6µx2
1 − 3λx2

2 + 24x3) . (9.171)
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The variables xi (i = 1, 2, 3, 4) obey the autonomous equations [414, 415, 416]

dx1

dN
= −3x1 − 4

√
6x3 +

√
6

2
λx2

2 − (x1 + 4
√

6x3)
Ḣ

H 2
, (9.172)

dx2

dN
= −x2

(√
6

2
λx1 + Ḣ

H 2

)

, (9.173)

dx3

dN
= 2x3

(√
6

2
µx1 + Ḣ

H 2

)

, (9.174)

dx4

dN
= −x4

(
2 + Ḣ

H 2

)
. (9.175)

In the following we shall derive fixed points for the system (9.172)–(9.175) in the
absence of radiation (x4 = 0). Let us consider the cases: (i) λ = µ and (ii) λ ̸= µ,
separately.

(i) Case: λ = µ

When λ = µ one has x2
2x3 = f0/3 from Eq. (9.170). If f0 ̸= 0, neither x2 nor x3

is identical to zero. However, if f0 ≪ 1, x2 and x3 can be very much smaller than
1. In this case we may regard x2 ≃ 0 or x3 ≃ 0 as approximate fixed points for
Eqs. (9.173) and (9.174). We do not consider such fixed points for the case λ = µ,
but we will discuss those points when λ is not equal to µ.

From Eqs. (9.173) and (9.174), the critical points corresponding to x2 ̸= 0 and
x3 ̸= 0 obey the following equation

Ḣ

H 2
= −

√
6

2
λx1 , (9.176)

in which case the effective equation of state defined in Eq. (4.96) is

weff = −1 +
√

6
3

λx1 . (9.177)

Substituting Eq. (9.176) into Eqs. (9.171) and (9.172), the fixed points satisfy

λ(x2
1 + x2

2 ) −
√

6x1 + 4x3(
√

6λx1 − 2) = 0 , (9.178)

3(x2
1 − x2

2 ) −
√

6λx1 + 3 − 8x1x3(2
√

6 − 3λx1) = 0 . (9.179)

Eliminating the term x2
2 from Eqs. (9.178) and (9.179), we find

(2λx1 −
√

6)(8
√

6x3 + 24λx1x3 −
√

6λ + 6x1) = 0 . (9.180)

This gives the following two fixed points.
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! (a) Scaling solution: x1 =
√

6
2λ

.

In this case we have weff = 0 from Eq. (9.177). This scaling solution is similar to the
one derived in the absence of the GB coupling (f0 = 0), but the field density parameter
&φ is subject to change. Substituting x1 =

√
6/(2λ) into Eq. (9.178), it follows that

x3 = 3
16λ

[

1 −
√

1 − 64
27

f0λ3

]

, x2 =

√
f0

3x3
. (9.181)

This gives

&φ = 3
2λ2

[

1 + 32f0λ
3

27(1 −
√

1 − 64f0λ3/27)

]

, &GB = 9
2λ2

[

1 −
√

1 − 64
27

f0λ3

]

.

(9.182)

In the limit that f0 → 0 we get x2 →
√

3/(2λ2), x3 → 0, &φ → 3/λ2, and &GB → 0,
which recover the scaling solution derived in Section 7.2.

The scaling solution may be used for the matter-dominated epoch provided that
&φ ≪ 1, i.e. λ2 ≫ 1. In this case, however, the scaling solution is stable so that it does
not exit to the phase of cosmic acceleration. If µ > λ, the presence of the GB term can
lead to the exit from the scaling matter era (as we will discuss later).! (b) Scalar-field and GB-dominated point: x3 = λ −

√
6x1

8 + 4
√

6λx1
.

We call this a “scalar-field and GB-dominated” point because the relation, &φ + &GB =
1, holds. Using Eq. (9.178), the variable x1 obeys the following equation

3(λ −
√

6x1)(
√

6λx3
1 − 10x2

1 +
√

6λx1 − 2) + 4f0(2 +
√

6λx1)2 = 0 . (9.183)

When f0 = 0 this has a solution x1 = λ/
√

6. It can be responsible for the late-time
cosmic acceleration for λ <

√
2. Let us obtain the solution for (9.183) perturbatively

under the assumption that f0 is much smaller than unity. Substituting x1 = λ/
√

6 + ϵ

into Eq. (9.183) under the condition ϵ ≪ λ/
√

6, we find the following approximate
relation

x1 ≃ λ√
6

− 4
√

6f0(λ2 + 2)
3(6 − λ2)

, x2 ≃
√

1 − λ2

6
, x3 ≃ 2f0

6 − λ2
. (9.184)

The effective equation of state is given by

weff ≃ −1 + λ2

3
− 8f0λ(λ2 + 2)

3(6 − λ2)
≃ −1 + λ2

3
− λ2 + 2

6
&GB , (9.185)

where we have used &GB ≃ 16f0λ/(6 − λ2).
In the absence of the GB coupling the late-time cosmic acceleration occurs for λ2 < 2.

In this case, however, the scaling matter era does not exist because its existence requires
the condition λ2 ≫ 1. This situation does not change much even in the presence of the
GB term because the condition λ2 < 6 is required for the existence of the scalar-field
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and GB-dominated point [see the variable x2 in Eq. (9.184)]. The contribution of the GB
term tends to reduce weff in Eq. (9.185), but this effect is small for &GB ≪ 1.

From the above discussion the viable cosmological trajectory for the case λ = µ

is the standard matter era (xi ≃ 0 with i = 1, 2, 3, 4) followed by the scalar-field
and GB-dominated point with λ2 ! 1 and &GB ≪ 1. In this case the effect of the
GB term is not important for the dynamics of dark energy.

(ii) Case: λ ̸= µ
Scaling solutions are present only for λ = µ in the presence of the GB coupling.
Even when λ ̸= µ, however, they are regarded as approximate scaling solutions
as long as the contribution of the GB term is negligibly small. This corresponds
to a situation in which x3 is very much smaller than unity. Note that x3 cannot
be exactly zero since the relation (9.170) holds. Still one can regard this as an
approximate fixed point satisfying Eq. (9.170). In what follows, when we write
x2 = 0 or x3 = 0, it means that they are not exactly zero.

! When x3 = 0, we recover the five fixed points (a), (b1), (b2), (c), (d) derived in the case
of the quintessence with an exponential potential in Section 7.2.! When x2 = 0 and

√
6µx1/2 = −Ḣ /H 2, we obtain the “kinetic and GB-dominated

solution” satisfying

6µ2x4
1 − (24 +

√
6)µx3

1 + 24
√

6(µ2 + 5)x2
1 − 5

√
6µx1 + 6 = 0 ,

x3 =
√

6x1(2 − µx1)

8(3µx1 −
√

6)
, (9.186)

with the effective equation of state:

weff = −1 +
√

6
3

µx1 . (9.187)

Equation (9.186) possesses two real solutions. If µ = 10, for example,
we get (x1, x3, weff) = (8.2 × 10−2, 1.4,−3.3 × 10−1), (1.2 × 10−1, 2, 2 × 10−2, 1.7 ×
10−2). The cosmic acceleration (weff < −1/3) does not occur in either case. When µ > 0
we find that the values of x1 corresponding to two real solutions of Eq. (9.186) are larger
than

√
6/(3µ), which means weff > −1/3 from Eq. (9.187). Hence one cannot use these

solutions for dark energy.! When
√

6µx1/2 = −Ḣ /H 2 and
√

6λx1/2 = −Ḣ /H 2, there exists the following de
Sitter fixed point

(x1, x2, x3) = (0, 1, λ/8) , (9.188)

which satisfies

&φ = 1 , &GB = 0 . (9.189)
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The appearance of the de Sitter point comes from the presence of the GB term. Since
f,φH 2 = λ/8 and Ḣ = 0 at the fixed point, the effective potential Veff(φ) for the field φ

satisfies the relation
dVeff

dφ
= −λV0e

−λφ + 3λH 2
dS , (9.190)

where HdS is a Hubble parameter at the de Sitter point. The last term, which appears due
to the presence of the GB term, gives rise to a potential minimum for the field φ.
Perturbing Eqs. (9.172)–(9.174) about the de Sitter fixed point, we obtain a 3 × 3 Jacobian
matrix M for perturbations. The eigenvalues of the matrix M are

λ1 = −3, λ2,3 = 3
2

[

−1 ±

√

1 + 8λ(λ − µ)
3(2 + 3λ2)

]

. (9.191)

This explicitly shows the following property for the stability of the de Sitter point:

– (i) Stable for µ > λ.
– (ii) Saddle for µ < λ.

Provided that µ > λ the system approaches the stable de Sitter solution.

We are interested in the cosmological trajectories in which the scaling matter era
is followed by the de Sitter solution discussed above. We require that µ > λ in
order to exit from the scaling matter era. Let us consider the approximate scaling
solution present under the conditions x3 ≃ 0 and

√
6λx1/2 = −Ḣ /H 2. Perturbing

Eq. (9.174) about the fixed point, it follows that

d
dN

δx3 = 3(µ − λ)
λ

δx3 . (9.192)

If λ2 > 3, the approximate scaling solution is stable along the perturbations of δx1

and δx2 (as we have seen in Section 7.2). From Eq. (9.192) the scaling matter era
is a saddle for µ > λ, whereas it is a stable node µ < λ.

When µ > λ the saddle scaling solution can be followed by the stable de Sitter
solution (provided that λ2 > 3). In Fig. 9.4 we plot the evolution of &φ , &GB,
&m, and &r together with weff for λ = 4, µ = 12, and f0 = 10−22. The solution
starts from a radiation-dominated epoch and connects to the approximate scaling
matter era (&m ≃ constant). Since µ > λ the solution exits from the scaling regime
and finally approaches the stable de Sitter fixed point. The final attractor actually
satisfies &φ = 1 and &GB = 0.

Figure 9.4 shows that the energy fraction of the GB term grows right after
the end of the matter era, but it begins to decrease after the increase of &φ . The
effective equation of state temporally takes a local minimum value weff ≈ −0.6
around &m ≈ 0.3–0.4, which means that the accelerated expansion occurs at the
present epoch in this scenario. The rapid transition of weff just after the matter era
is associated with the growth of &GB. For increasing µ, weff tends to be smaller.
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Figure 9.4 Evolution of the variables &φ , &GB, &m, and &r together with the
effective equation of state weff for λ = 4, µ = 12, and f0 = 10−22. We choose
initial conditions x1 = 10−8, x2 = 10−7, x3 = 3.6 × 10−9, and x4 = 0.999. The
solution is in a scaling regime during the matter-dominated epoch and finally
approaches the de Sitter Universe characterized by &φ = 1, &GB = 0, and weff =
−1. The energy fraction of the field φ during the scaling regime is &φ = 3/λ2 =
0.1875. From Ref. [416].

When λ = 4, for example, we find that the phantom equation of state, weff < −1,
is realized for µ > 25. Meanwhile the increase of µ leads to a shorter period
of the matter-dominated epoch. Hence the transient phantom stage is realized at
the expense of such a short matter period. If we take larger λ, it is also difficult
to get smaller values of weff satisfying the condition for the cosmic acceleration
compatible with observations. Thus λ is bounded from above as well.

Koivisto and Mota [414] placed observational constraints on the above model
using the Gold data set of SN Ia [109] together with the CMB shift parameter data
of WMAP [14]. The parameter λ is constrained to be 3.5 ! λ ! 4.5 at the 95%
confidence level. If the solutions are in the scaling regime in the radiation era,
then the constraint coming from the BBN gives λ > 9.4 under the bound &BBN

φ <

0.045. This is relaxed down to λ > 4.47 under the milder bound &BBN
φ < 0.2, only

marginally compatible with the above constraint. In another paper [415], Koivisto
and Mota included the constraints coming from the BBN, LSS, BAO, and solar
system data and showed that these data strongly disfavor the GB model discussed
above.
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In Ref. [416] it was shown that tensor perturbations are subject to negative
instabilities in the above model when the GB term dominates the cosmologi-
cal dynamics. Decomposing tensor perturbations into eigenmodes of the spatial
Lagrangian, ∇2eij = −k2eij , with scalar amplitude h(t), i.e. hij = h(t)eij , where
eij have two polarization states, the Fourier modes of tensor perturbations obey the
equation of motion [417, 418]

1
a3QT

(a3QTḣ)· + c2
T
k2

a2
h = 0 , (9.193)

where

QT ≡ 1 − 8Hḟ , c2
T ≡ 1 − 8f̈

1 − 8Hḟ
. (9.194)

The stability of tensor perturbations requires the condition c2
T > 0. The no-ghost

state to ensure a consistent quantum field theory demands the conditions 1 − 8f̈ >

0 and 1 − 8Hḟ > 0 [407, 408] (under which the condition c2
T > 0 is ensured). For

the GB model discussed above it was found in Ref. [416] that c2
T goes negative

during the transition from the scaling matter era to the final de Sitter era. Hence
the ghosts appear during the stage in which the contribution of the GB term is
dominant.

The paper [419] studied local gravity constraints on the GB models with cou-
plings of the form f (φ)R2

GB and showed that the energy contribution coming from
the GB term needs to be strongly suppressed to be compatible with solar-system
experiments. This is typically of the order of &GB ! 10−30 and hence the GB
term of the coupling f (φ)R2

GB cannot be responsible for the current accelerated
expansion of the Universe. The above discussions show that the GB term with the
scalar-field coupling f (φ)R2

GB can hardly be the source for dark energy.
As we mentioned, there are other classes of modified gravity models in which

the Lagrangian density f is an arbitrary function of R, P ≡ RµνR
µν , and Q ≡

RµναβRµναβ [406]. While it is possible to realize the cosmic acceleration with an
appropriate choice of the function f (R,P,Q), these theories are plagued by the
appearance of spurious spin-2 ghosts unless a GB combination, i.e. f = f (R,Q −
4P ), is chosen [407, 408, 409]. The dark energy models based on the Lagrangian
density L = R/2 + f (G), where G = R2

GB is the GB term, have been studied
by a number of authors [420, 421, 422, 423]. In order to ensure the stability
of a late-time de Sitter solution and radiation/matter solutions, the most crucial
condition to be satisfied is f,GG > 0 [422]. This also comes from the stability of
cosmological perturbations [421]. In Ref. [422] the authors presented a number
of f (G) models that are cosmologically viable at least at the background level,
e.g., f (G) = λ(G/

√
G∗) arctan(G/G∗) − αλ

√
G∗, where α, λ, and G∗ are positive
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constants. These models can be consistent with solar system constraints for a wide
range of parameter space [424]. However, it was found in Ref. [426] that matter
perturbations in perfect fluids exhibit violent negative instabilities during radiation
and matter eras. This growth of perturbations gets stronger on smaller scales, which
is difficult to be compatible with the observed galaxy spectrum unless the deviation
from General Relativity is extremely small. Thus f (G) cosmological models are
effectively ruled out from this Ultra-Violet instability.

9.4 Braneworld models of dark energy

In this section we shall discuss braneworld models of dark energy motivated by
superstring/M-theory. In conventional Kaluza–Klein theories, extra dimensions are
compactified on some manifolds in order to obtain 4-dimensional (4D) effective
gravity theories. In braneworlds standard model particles are confined on a 3-
dimensional brane embedded in 5-dimensional bulk spacetime with large extra
dimensions. In braneworld models proposed by Randall and Sundrum [426, 427],
a brane with a positive tension (σ ) is embedded in a 5-dimensional Anti de Sitter
(AdS) bulk. The standard 4-dimensional gravity is recovered for distances larger
than the crossover scale between 4D and 5D gravity set by the AdS radius. If we
consider a homogeneous and isotropic cosmology in the Randall–Sundrum model,
the Friedmann equation on the brane is modified in a high-curvature regime such
that the expansion law is given by H 2 ∝ ρ2 whereas in the low-curvature regime
the standard expansion law is recovered [428, 429, 430].

There is another braneworld model proposed by Dvali, Gabadadze, and Porrati
(DGP) [431]. In this approach the 3-brane is embedded in a Minkowski bulk
spacetime with infinitely large extra dimensions. Newton’s law is recovered by
adding a 4D Einstein–Hilbert action sourced by the brane curvature to the 5D action
[432]. The presence of such a 4D term may be induced by quantum corrections
coming from the bulk gravity and its coupling with matter on the brane. In the
DGP model the standard 4D gravity is recovered for small distances, whereas the
effect from the 5D gravity manifests itself for large distances. In particular it is
possible to realize the late-time cosmic acceleration without introducing an exotic
matter source [433, 434]. In this sense this solution is called the “self-accelerating
Universe.” There is also a generalized version of the DGP model, see e.g., Ref. [62].

The DGP model is characterized by the following action

S = 1
2κ2

(5)

∫
d5X

√
−g̃ R̃ + 1

2κ2
(4)

∫
d4x

√
−gR −

∫
d5X

√
−g̃ Lm , (9.195)

where g̃AB is the metric in the 5D bulk and gµν = ∂µXA∂νX
Bg̃AB is the induced

metric on the brane [XA(xc) represents the coordinates of an event on the brane
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labeled by xc], and

κ2
(5) = M−3

(5) , κ2
(4) = M−2

(4) . (9.196)

Here M(5) and M(4) are 5D and 4D Planck masses, respectively. The first and second
terms in Eq. (9.195) correspond to Einstein–Hilbert actions in the 5D bulk and on
the brane, respectively.

Since we are considering a Minkowski bulk, there is no contribution to the
Lagrangian Lm from the bulk matter. Then the matter action consists of a brane-
localized matter whose action is given by

∫
d4x

√−g (σ + Lbrane
m ), where σ is the

3-brane tension and Lbrane
m is the Lagrangian density on the brane. Since the tension

is not related to the Ricci scalar R, it can be adjusted to be zero, as we do in the
following.

We consider a situation in which the 3-brane is located at y = 0, where y is the
coordinate of the 5-th dimension. In order to study cosmological dynamics on the
brane, we take a metric of the form:

ds2 = −n2(τ, y)dτ 2 + a2(τ, y) γij dxidxj + dy2 , (9.197)

where γij represents a maximally symmetric spacetime with a constant curvature
K . The 5D Einstein equations are given by

G̃AB ≡ R̃AB − 1
2
R̃ g̃AB = κ2

(5)T̃AB , (9.198)

where R̃AB is the 5D Ricci tensor, T̃AB is the sum of the energy-momentum tensor
T

(brane)
AB on the brane and the contribution ŨAB coming from the scalar curvature of

the brane:

T̃AB = T
(brane)
AB + ŨAB . (9.199)

Since we are considering a homogeneous and isotropic Universe on the brane, one
can write T A

B

(brane) in the form

T A
B

(brane) = δ(y) diag(−ρM, PM, PM, PM, 0) . (9.200)

Note that ρM and PM are functions of τ only. The non-vanishing components
coming from the Ricci scalar R of the brane are

Ũ00 = − 3
κ2

(4)

(
ȧ2

a2
+ K

n2

a2

)
δ(y) , (9.201)

Ũij = − 1
κ2

(4)

[
a2

n2

(
− ȧ2

a2
+ 2

ȧ

a

ṅ

n
− 2

ä

a

)
− K

]
γij δ(y) , (9.202)
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where in this section a dot represents a derivative with respect to τ . For the
metric (9.197) the non-vanishing components of the 5D Einstein tensor G̃AB

are [428, 429, 433]

G̃00 = 3
[
ȧ2

a2
− n2

(
a′′

a
+ a′2

a2

)
+ K

n2

a2

]
, (9.203)

G̃ij =
[
a2

(
2
a′′

a
+ n′′

n
+ a′2

a2
+ 2

a′n′

an

)
+ a2

n2

(
−2

ä

a
− a′2

a2
+ 2

ȧṅ

an

)
− K

]
γij ,

(9.204)

G̃05 = 3
(

ȧn′

an
− ȧ′

a

)
, (9.205)

G̃55 = 3
(

a′2

a2
+ a′n′

an

)
− 3

n2

(
ä

a
+ ȧ2

a2
− ȧṅ

an

)
− 3

K

a2
, (9.206)

where a prime represents a derivative with respect to y.
Assuming no flow of matter along the 5-th dimension, we have T̃05 = 0 and

hence G̃05 = 0. Using this relation, we find that Eqs. (9.203) and (9.206) can be
written as

G̃00 = − 3n2

2a3a′ I
′ , G̃55 = − 3

2a3ȧ
İ , (9.207)

where

I ≡ (a′a)2 − (ȧa)2

n2
− Ka2 . (9.208)

Since we are considering the Minkowski bulk, we have G̃00 = 0 and G̃55 = 0
locally in the bulk. This then gives I ′ = 0 and İ = 0. The integration of these
equations leads to

(a′a)2 − (ȧa)2

n2
− Ka2 + C = 0 , (9.209)

where C is a constant independent of τ and y.
Let us find solutions of the Einstein equations (9.198) in the vicinity of y = 0. We

require that the metric is continuous across the brane in order to have a well-defined
geometry. Note, however, that its derivatives with respect to y can be discontinuous
at y = 0. The Einstein tensor is made of the metric up to the second derivatives
with respect to y, so the Einstein equations with a distributional source (i.e. with a
Dirac’s delta centered on the brane) can be written in the form [428, 429, 433]

g′′ = T δ(y) , (9.210)
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where δ(y) is a Dirac’s delta function. Integrating this equation across the brane
gives

[g′] = T , where [g′] ≡ g′(0+) − g′(0−) . (9.211)

This shows that the jump of the first derivative of the metric is equivalent to the
energy-momentum tensor on the brane.

Notice that Eqs. (9.203) and (9.204) include the second derivatives a′′ and n′′

of the metric. Integrating the Einstein equations, G̃00 = κ2
(5)T̃00 and G̃ij = κ2

(5)T̃ij ,
across the brane, we obtain

[a′]
ab

= −
κ2

(5)

3
ρM +

κ2
(5)

κ2
(4)n

2
b

(
ȧ2

b

a2
b

+ K
n2

b

a2
b

)
, (9.212)

[n′]
nb

=
κ2

(5)

3
(3PM + 2ρM ) −

κ2
(5)

κ2
(4)n

2
b

(
ȧ2

b

a2
b

+ 2
ȧb

ab

ṅb

nb

− 2
äb

ab

+ K
n2

b

a2
b

)
, (9.213)

where the subscript “b” represents the quantities on the brane.
We assume the symmetry y ↔ −y, in which case [a′] = 2a′(0+) and [n′] =

2n′(0+). Substituting Eq. (9.212) into Eq. (9.209), we obtain the modified Fried-
mann equation on the brane:

ϵ

√

H 2 + K

a2
b

− C
a4

b

=
κ2

(5)

2κ2
(4)

(
H 2 + K

a2
b

)
−

κ2
(5)

6
ρM , (9.214)

where H ≡ ȧb/(abnb) is the Hubble parameter and ϵ = ±1 is the sign of [a′]. The
constant C can be interpreted as the term coming from the 5D bulk Weyl tensor
[430, 433, 434]. Since the Weyl tensor vanishes for the Minkowski bulk, we set
C = 0 in the following discussion. We also introduce a length scale

rc ≡
κ2

(5)

2κ2
(4)

=
M2

(4)

2M3
(5)

. (9.215)

Then Eq. (9.214) can be written as

ϵ

rc

√
H 2 + K

a2
= H 2 + K

a2
−

κ2
(4)

3
ρM , (9.216)

where we have omitted the subscript “b” for the quantities at y = 0.
Plugging the junction conditions (9.212) and (9.213) into the (05) component

of the Einstein equations, G̃05 = 0, we find that the following matter continuity
equation holds on the brane (see problem 9.4):

dρM

dt
+ 3H (ρM + PM ) = 0 , (9.217)
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where t is the cosmic time related to the time τ via the relation dt = nbdτ . If
the equation of state, wM = PM/ρM , is specified, the cosmological evolution is
obtained by solving Eqs. (9.216) and (9.217).

For a flat geometry (K = 0), Eq. (9.216) reduces to

H 2 − ϵ

rc

H =
κ2

(4)

3
ρM . (9.218)

If the Hubble radius H−1 is much smaller than the scale rc (i.e. rc ≫ H−1), the
first term in Eq. (9.218) dominates over the second one. In this case the standard
Friedmann equation, H 2 = κ2

(4)ρM/3, is recovered. Meanwhile, in the regime rc !
H−1, the presence of the second term in Eq. (9.218) leads to a modification to the
standard Friedmann equation. In the Universe dominated by non-relativistic matter
(ρM ∝ a−3), the Universe approaches a de Sitter solution for ϵ = +1:

H → HdS = 1
rc

. (9.219)

Hence it is possible to realize the present cosmic acceleration provided that rc is
of the order of the present Hubble radius H−1

0 . This accelerated expansion of the
Universe is the result of the gravitational leakage into extra dimensions at large
distances.

When ϵ = −1, we do not have a late-time de Sitter solution. In the regime
rc ≪ H−1, Eq. (9.218) gives the equation H 2 ≃ κ2

(5)ρ
2
M/18. This is similar to the

modified Friedmann equation which appears in the high-energy regime of the
Randall–Sundrum braneworld model [426, 427]. In such cases the Universe does
not exhibit the self acceleration unless a specific form of matter is introduced on
the brane.

In the following let us focus on the case ϵ = +1. Equation (9.216) can be written
as

H 2 + K

a2
=

⎛

⎝
√

κ2
(4)

3
ρM + 1

4r2
c

+ 1
2rc

⎞

⎠
2

. (9.220)

For the matter on the brane, we consider non-relativistic matter with the energy
density ρm and the equation of state wm = 0. We then have ρm = ρ(0)

m (1 + z)3 from
Eq. (9.217). We introduce the following present value quantities

&
(0)
K = − K

a2
0H

2
0

, &(0)
rc

= 1
4r2

c H 2
0

, &(0)
m =

κ2
(4)ρ

(0)
m

3H 2
0

. (9.221)
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Then Eq. (9.220) reads

H 2(z) = H 2
0

[

&
(0)
K (1 + z)2 +

{√
&

(0)
m (1 + z)3 + &

(0)
rc

+
√

&
(0)
rc

}2
]

. (9.222)

The normalization condition at z = 0 is given by

&(0)
m + &

(0)
K + 2

√
1 − &

(0)
K

√
&

(0)
rc

= 1 . (9.223)

For the flat Universe (K = 0) this relation yields

&(0)
rc

=
(

1 − &(0)
m

2

)2

. (9.224)

If one introduces an effective dark energy component with ρDE ≡ 3H/(κ2
(4)rc),

one can use the continuity equation ρ̇DE + 3H (1 + wDE)ρDE = 0 to define an effec-
tive equation of state for K = 0 [437]

wDE(z) =
&(0)

m − 1 −
√

(1 − &
(0)
m )2 + 4&

(0)
m (1 + z)3

2
√

(1 − &
(0)
m )2 + 4&

(0)
m (1 + z)3

. (9.225)

For small redshifts one can approximate wDE(z) = w0 + waz/(1 + z) with w0 ≈
−(1 + &(0)

m )−1 and wa ≈ 3&(0)
m (1 − &(0)

m )/(1 + &(0)
m )3. For instance for &(0)

m = 0.3
we have w0 ≈ −0.77 and wa ≈ 0.29.

The parametrization (9.222) of the Hubble parameter together with the normal-
ization (9.223) can be used to place observational constraints on the DGP model
at the background level [435, 436, 437, 439, 438]. In Fig. 9.5 we show the joint
constraints from observational data of SNLS, BAO, and the CMB shift parameter
[437]. While the flat DGP model can be consistent with the SN Ia data, it is under
the strong observational pressure by adding the data of the BAO and the CMB shift
parameter. The open DGP model gives a slightly better fit relative to the flat model
[437, 439].

We have to caution that the above constraints have been derived by considering
the cosmic expansion history at the background level. In order to obtain precise
constraints coming from the power spectrum of BAO and LSS, we need to know the
evolution of density perturbations in the DGP model. As we will see in Section 11.6,
a quasi-static approximation to the 5D cosmological perturbations shows that the
DGP model contains a ghost mode in the scalar sector of the gravitational field
[440, 441, 442, 443, 444]. Thus the original DGP model is effectively ruled out as a
viable dark energy model by the observational pressure and by the ghost problem.
It is however possible to construct a generalized version of the DGP model free
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Figure 9.5 Combined observational constraints on the DGP model from the SNLS
data (solid thin), the BAO (dotted), and the CMB shift parameter from the WMAP
3-year data (dot-dashed). The thick line represents the curve (9.224) for the flat
model (&(0)

K = 0). From Ref. [437].

from the ghost problem by embedding our visible 3-brane with a 4-brane in a flat
6D bulk [176].

9.5 Problems

9.1 Let us consider the following general action

S =
∫

d4x
√

−g

[
1
2
f (R,φ, X) + Lm

]
, (9.226)

where f is a function in terms of a Ricci scalar R, a scalar field φ, and a kinetic term
X = −(1/2)(∇φ)2. For the matter LagrangianLm, we take into account non-relativistic
matter with an energy density ρm. Derive field equations in the flat FLRW background.
Find an energy density ρDE and a pressure PDE to confront with SN Ia observations
and show that these satisfy the continuity equation ρ̇DE + 3H (ρDE + PDE) = 0.

9.2 From the trace equation (9.124) in the Brans–Dicke theory, derive an equation for the
linear perturbation δψ and the field mass squared M2

ψ by decomposing the field ψ into
the background and perturbed parts, ψ = ψ0(1 + δψ ), in the Minkowski background.
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The f (R) theory in the metric formalism corresponds to the Brans–Dicke theory with
ωBD = 0, ψ = F (R), and U = (1/2)(RF − f ). Show that the mass squared derived
above agrees with Eq. (9.52) by using this correspondence.

9.3 Find the eigenvalues of the 2 × 2 matrix of perturbations about the fixed points (a)–(e)
for the scalar-tensor action (9.120) with F (φ) = e−2Qφ .

9.4 Derive Eq. (9.217) by substituting Eqs. (9.212) and (9.213) into the (05) component
of the Einstein equations, G̃05 = 0.
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Cosmic acceleration without dark energy

The crucial kick to dark energy research was the interpretation in 1998 of standard
candle observations in terms of cosmic acceleration in the FLRW metric. What
we observe is however merely that distant sources (z > 0.3) recede slower than
we would predict in an Einstein–de Sitter Universe calibrated through “nearby”
sources. That is, we observe different expansion rates at different distances rather
than an increase in the expansion rate at all distances. Can this be caused by a
strong inhomogeneity rather than by an accelerating Universe?

We also noticed that cosmic acceleration seems to be a recent phenomenon, at
least for standard dark energy models. The epoch in which dark energy begins to
play a role is close to the epoch in which most of the cosmic structures formed
out of the slow linear gravitational growth. We are led to ask again: can the
acceleration be caused by strong inhomogeneities rather than by a dark energy
component?

The answer to both questions is yes, at least in principle. First, we can always
interpret a homogeneous evolution H (z) as a line-of-sight inhomogeneous rate
H (r) since we observe only along our past light cone ds2 = 0 and time and dis-
tance are inextricably related. Second, one can always arrange matter sources so
that in some region of the Universe they accelerate away from each other even
if on larger scales the expansion is decelerated. In both cases, the price to pay
is to allow for huge inhomogeneities while still retaining a compatible level of
isotropy. Although no model that could convincingly explain either has been pro-
posed so far, the motivation for linking inhomogeneities with dark energy is so
appealing that some of the ideas introduced in this context are worth explor-
ing. Among many blind alleys we could perhaps encounter some good escape
route.

In this section primes and dots refer to partial space and time derivatives, respec-
tively.

285
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10.1 Void models

The basic motivation for a void model was presented soon after the supernovae
discovery [445, 446, 447, 448]. Since we observe that nearby SN Ia recede faster
than the H (z) predicted by the Einstein–de Sitter Universe, we could assume that
we live in the middle of a huge spherical region which is expanding faster because
it is emptier than the outside. The transition redshift ze, i.e. the void edge, should
be located around 0.3–0.5, the value at which in the standard interpretation we
observe the beginning of acceleration.

The consistent way to realize such a spherical inhomogeneity has been studied
since the 1930s in the relativistic literature: the Lemaı̂tre–Tolman–Bondi (LTB)
metric. This is the generalization of a FLRW metric in which the expansion factor
along the radial coordinate r is different relative to the surface line element d&2 =
dθ2 + sin2 θ dφ2. If we assume the inhomogeneous metric

ds2 = −dt2 + X2(t, r) dr2 + R2(t, r) d&2 , (10.1)

and solve the (0, 1) Einstein equation for a fluid at rest (see problem 10.1), we find
that the LTB metric is given by

ds2 = −dt2 +
[
R′(t, r)

]2

1 + β(r)
dr2 + R2(t, r)d&2 , (10.2)

where R(t, r), β(r) are arbitrary functions. We remind the reader again that in this
section primes and dots refer to partial space and time derivatives, respectively.
The function β(r) can be thought of as a position-dependent spatial curvature. If
R is factorized so that R(t, r) = a(t)f (r) and β(r) = −Kf 2(r), then we recover
the FLRW metric (up to a redefinition of r: from now on when we seek the FLRW
limit we put R = a(t)r and β = −Kr2). Otherwise, we have a metric representing
a spherical inhomogeneity centered on the origin. An observer located at the origin
will observe an isotropic Universe. We can always redefine r at the present time to
be R0 ≡ R(t0, r) = r , so that the metric is very similar to a FLRW today.

Considering the infinitesimal radial proper length D|| = R′dr/
√

1 + β, we can
define the radial Hubble function as

H|| ≡ Ḋ||/D|| = Ṙ′/R′ , (10.3)

and similarly the transverse Hubble function:

H⊥ = Ṙ/R . (10.4)
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Of course the two definitions coincide for the FLRW metric. The non-vanishing
components of the Ricci tensor for the LTB metric are

R0
0 = 2R̈

R
+ R̈′

R′ , (10.5)

R1
1 = 2ṘṘ′ + RR̈′ − β ′

RR′ , (10.6)

R2
2 = R3

3 = Ṙ2 − β

R2
+ ṘṘ′ + R′R̈ − β ′/2

RR′ . (10.7)

In terms of the two Hubble functions, we find that the Friedmann equations for
the pressureless matter density ρm(t, r) are given by [449]

H 2
⊥ + 2H||H⊥ − β

R2
− β ′

RR′ = 8πGρm , (10.8)

6
R̈

R
+ 2H 2

⊥ − 2
β

R2
− 2H||H⊥ + β ′

RR′ = −8πGρm . (10.9)

Adding Eqs. (10.8) and (10.9), it follows that 2RR̈ + Ṙ2 = β. Integrating this
equation, we obtain a Friedmann-like equation

H 2
⊥ = α(r)

R3
+ β(r)

R2
, (10.10)

where α(r) is a free function that we can use along with β(r) to describe the
inhomogeneity. From this we can define an effective density parameter &(0)

m (r) =
&m(r, t0) today:

&(0)
m (r) ≡ α(r)

R3
0H

2
⊥0

, (10.11)

where H⊥0 ≡ H⊥(r, t0), and the effective spatial curvature is given by

&
(0)
K (r) = 1 − &(0)

m (r) = β(r)
R2

0H
2
⊥0

. (10.12)

Hence we see that the initial condition at some time t0 (which here we take as
the present time) must specify two free functions of r , for instance α(r), β(r)
or &(0)

m (r), H⊥0(r). The latter choice shows that the inhomogeneity can be in the
matter distribution or in the expansion rate or in both. This freedom can be used
to fit simultaneously for any expansion rate (and therefore luminosity and angular
diameter distances [450]) and for any source number density [451].

If one imposes the additional constraint that the age of the Universe is the same
for every observer (see problem 10.2), then only one free function is left [452].
The same occurs if one chooses &(0)

m (r) = constant (notice that this is different
from ρ(0)

m (r) = constant, which is another possible choice) i.e. if the matter density
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fraction is assumed homogeneous today (and only today) [453]. The choice of
a homogeneous Universe age guarantees against the existence of diverging inho-
mogeneities in the past. However, there is no compelling reason to impose such
restrictions.

Equation (10.10) is the classical cycloid equation whose solution for β > 0 is
given parametrically by

R(r, η) = α(r)
2β(r)

(cosh η − 1) = R0&
(0)
m (r)

2[1 − &
(0)
m (r)]

(cosh η − 1) , (10.13)

t(r, η) − tB(r) = α(r)
2β3/2(r)

(sinh η − η) = &(0)
m (r)

2[1 − &
(0)
m (r)]3/2H⊥0

(sinh η − η) ,

(10.14)

where tB(r) = t(r, η = 0) is the inhomogeneous “big bang” time, i.e. the time for
which η = 0 and R = 0 for a point at comoving distance r . This can be put to zero
in all generality by a redefinition of time. The “time” variable η is defined by the
relation

η =
∫ t β(r)1/2

R(t̃ , r)
dt̃ . (10.15)

Notice that the “time” η that corresponds to a given t depends on r; so R(r, t)
is found by solving numerically η(t, r) from Eq. (10.14) and then substituting
R[r, η(r, t)]. The present epoch η0(r) is defined by the condition R = R0. In prob-
lem 10.2 we will derive the age of the Universe tage(r) = t(r, η0) − tB(r) in terms of
&(0)

m , H⊥0. For β < 0 the η functions in Eqs. (10.13) and (10.14) become (1 − cos η)
and (η − sin η) for R and t , respectively, while for β = 0 they are η2/2 and η3/6:
we will not consider these cases further.

Since we need to have a faster expansion inside some distance to mimic cosmic
acceleration, we need to impose to our solution the structure of a void. An example
of the choice of &(0)

m (r) ≡ &m(r, t0), h(0)(r) ≡ H⊥0/(100 km sec−1 Mpc−1) is [452]

&(0)
m (r) = &out + (&in − &out)f (r, r0, 9) , (10.16)

h(0)(r) = hout + (hin − hout)f (r, r0, 9) , (10.17)

with

f (r, r0, 9) = 1 − tanh[(r − r0)/29]
1 + tanh(r0/29)

, (10.18)

representing the transition function of a shell of radius r0 and thickness 9. The six
constants &in, &out, hin, hout, r0, 9 completely fix the model. If hin > hout we can
mimic the accelerated expansion.
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In order to compare the LTB model to observations we need to generalize two
familiar concepts: redshift and luminosity distance. The propagation of photons is
described by the geodesic equations (4.213)–(4.214) discussed in Section 4.11. In
the LTB metric, the geodesic equations for an incoming photon can be written as
[455]

dt

dλs

= −

√
(R′)2

1 + β
p2 + J 2

R2
, (10.19)

dθ

dλs

= J

R2
, (10.20)

dp

dλs

= 2Ṙ′ p

√
p2

1 + β
+ J 2

R2 R′2 + 1 + β

R3R′ J
2 +

(
β ′

2 + 2β
− R′′

R′

)
p2 , (10.21)

where λs is the affine parameter, p ≡ dr/dλs , and

J ≡ R2 dθ

dλs

= constant = J0 (10.22)

is the conserved angular momentum that vanishes for a radial propagation (which
is the case only for the observer at the center as we are assuming now). For J = 0
the photon time-distance law tp(r) can be found by dividing dt/dλs by dr/dλs , so
we obtain

dtp

dr
= − R′

√
1 + β

. (10.23)

We impose the condition tp(r = 0) = t0 at the epoch of the observation. In problem
10.3 you will find that z(r) is given by the solution to the following equation

dz

dr
= (1 + z)

Ṙ′
√

1 + β
, (10.24)

where R(t, r) must be calculated on the trajectory tp(r) and we must impose
z(r = 0) = 0. Every LTB function, e.g., H⊥(t, r), R(t, r) etc., can be converted
into line-of-sight functions of redshift by evaluating the arguments rp(z), tp(z)
along the past light cone.

The proper area of an infinitesimal surface at r, t = constant is given by
A = R2(r, t) sin θ dθ dφ. The angular diameter distance is the square root of
A/(sin θ dθ dφ) so that dA(z) = R(tp(z), rp(z)). Since the duality relation dL =
(1 + z)2dA remains valid in inhomogeneous models, we have [454]

dL(z) = (1 + z)2R(tp(z), rp(z)) . (10.25)
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Figure 10.1 Apparent magnitude residuals for two best fit LTB models (with and
without the constraint of a uniform big bang time), the best fit !CDM FLRW
model, and the standard open CDM model, compared to Type Ia Supernovae data.
From Ref. [452].

This clearly reduces to dL = (1 + z)r(z) in the FLRW background. Armed with
these observational tools, we can compare any LTB model to the observa-
tions.

Beside matching the SN Ia Hubble diagram, we do not want to spoil the CMB
acoustic peaks and we also need to impose a local density &in near 0.1–0.3, a
flat space outside (to fulfill inflationary predictions), i.e. &out = 1, and finally the
observed local Hubble value hin ≈ 0.7 ± 0.1. The CMB requirement can be sat-
isfied by a small value of hout, since we know that to compensate for &out = 1
we need a small Hubble rate (remember that the CMB essentially constrains
&(0)

m h2). This fixes hout ≈ 0.5. So we are left with only r0 and 9 to be con-
strained by SN Ia. As anticipated we expect r0 to be near z = 0.5, which in the
standard !CDM model gives a distance r(z) ≈ 2 Gpc. An analysis using SN Ia data
[452] finds that r0 = 2.3 ± 0.9 Gpc and 9/r0 > 0.2, see Fig. 10.1. Interestingly,
a “cold spot” in the CMB sky could be attributed to a void of comparable size
[456, 457].

There are many more constraints one can put on such large inhomogeneities.
Matter inside the void moves with respect to CMB photons coming from outside.
So the hot intracluster gas will scatter the CMB photons with a large peculiar
velocity and this will induce a strong kinematic Sunyaev–Zel’dovich effect [458].
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Moreover, secondary photons scattered towards us by reionized matter inside the
void should also distort the black body spectrum due to the fact that the CMB
radiation seen from anywhere in the void (except from the center) is anisotropic
and therefore at different temperatures [459]. These two constraints require the
voids not to exceed 1 or 2 Gpc, depending on the exact modeling, and they are
therefore already in mild conflict with the fit to supernovae.

Other constraints will follow soon with more data and more analyses. For
instance, the whole process of structure formation should be revisited in an LTB
Universe and this will certainly add more constraints. On the other hand, the void
models can be rendered more realistic by gathering a Swiss-cheese collection of
many LTB structures [460, 461].

Moreover, while in the FLRW background the function H (z) fixes the comoving
distance χ (z) up to a constant curvature (and consequently also the luminosity and
angular diameter distances), in the LTB model the relation between χ (z) and H⊥(z)
or H∥(z) can be arbitrary. That is, one can choose the two spatial free functions
to be for instance H⊥(r, 0) and R(r, 0), from which the line-of-sight values H⊥(z)
and χ (z) would also be arbitrarily fixed. This shows that the “consistency” FLRW
relation between χ (z) and H (z) is violated in the LTB model, and in general in any
strongly inhomogeneous Universe.

To see this we need now to use again the comoving angular diameter distance
defined in Eq. (5.30), d (c)

A = (1 + z)dA, but for simplicity of notation we just denote
it as d . The duality relation dL = (1 + z)2dA leads to d = dL/(1 + z) and hence

d(z) = 1

H0

√
&

(0)
K

sinh
(√

&
(0)
K

∫ z

0

dz̃

E(z̃)

)
, (10.26)

where we have used the luminosity distance (2.68) in the FLRW background. By
differentiation of Eq. (10.26) the following consistency relation valid at any redshift
can be derived [462]:

&
(0)
K = [H (z)d,z(z)]2 − 1

[H0d(z)]2
, (10.27)

where “,z” represents a derivative with respect to z. Differentiating this equation
again we obtain the following relation in the FLRW background:

1 + H 2 (
dd,zz − d2

,z

)
+ HH,zdd,z = 0 . (10.28)

Since both H (z) and d(z) are observable, for instance with the baryon acoustic
oscillations, this test can be employed to detect large-scale deviations from homo-
geneity. The LTB model violates this relation or, equivalently, shows an apparent
present curvature &

(0)
K that depends on the redshift. By differentiating Eq. (10.25)
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and using Eqs. (10.23) and (10.24), one finds for d = dL/(1 + z) = (1 + z)R:

d,z = d

1 + z
+ d

R

(
Ṙ

dt

dz
+ R′ dr

dz

)

= d

1 + z

(
1 − H⊥

H∥

)
+

√
1 + β

H∥
. (10.29)

Since from Eq. (10.12) we have β = R2
0H

2
⊥0&

(0)
K , we obtain

&
(0)
K =

H 2
∥

H 2
⊥0

d2
,z

R2
0

[
1 − 9H

H∥

d log(1 + z)
d log d

]2

− 1
H 2

⊥0R
2
0

, (10.30)

where 9H = H∥ − H⊥. In FLRW R0 = d and 9H = 0 and hence we recover
Eq. (10.27).

Finally, a radial inhomogeneity can in principle be distinguished from a homo-
geneous Universe by the redshift drift, an effect we will study more in detail in
Section 14.6.4. The redshift drift in fact probes the local expansion rate and there-
fore separates effects due to variations along the time direction from those along
spatial hypersurfaces [463].

Centered observers violate the Copernican principle of “non-special” position
to the maximal extent. Off-center observers, however, have their own problems.
They should see direct evidence of anisotropy, either in the distribution of distant
sources or in the Hubble diagram of supernovae or as an additional CMB dipole
[455] or even as an apparent parallax of quasars [464]. If the observed CMB dipole
were entirely due to the LTB anisotropy of an off-center observer, the maximum
distance to the center would be severely constrained, rc < 10–20 Mpc, although
one cannot exclude the possibility of a chance cancellation with the Sun’s own
motion.

Finally, we should not forget that there is no valid mechanism at present to
explain the formation of such huge inhomogeneities, let alone one with our Galaxy
near the center. More than anything else, void models are useful to remind us how
many options are still open – and at the same time how difficult it is to find one
that really works.

10.2 Backreaction

Void models aim to explain the supernovae data with an apparent acceleration
induced by a strong inhomogeneity. There is however a line of research that tries
to explain cosmic acceleration by arranging inhomogeneities so that the deviation
from the FLRW metric can produce a real acceleration, at least in some region.
The whole idea rests on two facts: that the GR equations are non-linear, and that
our real world is far from homogeneous, at least on small scales and perhaps
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on super-horizon scales. Because of this, averaging the inhomogeneities and then
solving the GR equations (the usual approach) might not be the same as first
solving the full inhomogeneous GR equations and then averaging them. In other
words, the expected value of a non-linear function of x is not the same as the non-
linear function of the expected value of x. This effect is often called backreaction
because one looks for the effect of inhomogeneities on background expansion
[465, 466], although properly speaking there is no reaction in the first place since
inhomogeneities are not caused by the expansion itself.

The argument is very complex, still in full evolution and has caused bitter
controversy; as such it is more suited to a review than to an introductory book and
we refer the reader to several published accounts [465, 466, 467, 468, 469, 470,
471, 472, 473, 474]. The underlying ideas are however rather straightforward and
could serve as inspiration to the interested reader to look further.

Let us start with the Einstein equations

Gµν = 8πGTµν . (10.31)

We can expand both sides at first order:

Gµν = G(0)
µν + G(1)

µν , Tµν = T (0)
µν + T (1)

µν , (10.32)

where we take the FLRW metric as zero-th-order Universe. For pressureless matter,
the (0,0) equation can be written as

G
(0)
00 = 8πG (T (0)

00 + T
(1)

00 ) − G
(1)
00 . (10.33)

Now, if we observe some average matter density ⟨ρ⟩, we can identify at this order

⟨ρ⟩ = T
(0)

00 + T
(1)

00 , (10.34)

and by averaging the full equation we obtain

⟨G(0)
00 ⟩ = 8πG⟨ρ⟩ − ⟨G(1)

00 ⟩ , (10.35)

where G00 = 3H 2 is the usual quantity in the flat FLRW background. We imme-
diately see that 3H 2 ̸= 8πG⟨ρ⟩, as we are accustomed to see. The reason is that
normally we first average the metric, thereby obtaining ⟨g(1)

µν⟩ = 0 and then calcu-
late Gµν . This gives obviously G

(1)
00 = G00(⟨g(1)

µν⟩) = 0. Similarly, at second order
we could write

⟨G(0)
00 ⟩ = 8πG⟨ρ⟩ − ⟨G(1)

00 + G
(2)
00 ⟩ , (10.36)

and so on.
So, where is all this leading us? If the additional terms induce an acceleration

on the background expansion, then we would have a direct causal link between the
rise of perturbations and the observed acceleration and, of course, we would not
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require a dark energy field. This idea is extremely appealing, but are we any closer
to its realization?

There are three problems here, simple to express but extremely hard to answer
(which is a good sign for a scientist). They are: (a) how do we take an average?, (b) at
which perturbative order should we stop?, and (c) why, if any order is so important
as to change the background expansion, don’t we see such huge inhomogeneities?

The average problem is the basic one. Ref. [466] suggested a reasonable-looking
average of a function f (t, xi):

⟨f ⟩(t) =
∫

d3x
√

γ (t, xi)f (t, xi)
∫

d3x
√

γ (t, xi)
, (10.37)

where γ is the determinant of the perturbed metric of the spatial constant-t hyper-
surfaces. By using this average one obtains at second order a number of terms in
⟨G(2)

00 ⟩ that could contribute to the expansion rate, because of long or small wave-
lengths. Typically the contribution is small, of order 10−5, by assuming standard
power spectra. However, this is much larger than the naive expectation of some-
thing of the order of δ2 ≈ 10−10 based on the fluctuation at Hubble scales and,
moreover, could be enhanced by adding more and more higher-order terms or by
unknown super-Hubble sized fluctuations. Nevertheless, the average is performed
on constant-time hypersurfaces and not on the light cone and this is suspicious by
itself, since it implies that an instantaneous average can affect the whole cosmic
expansion. Changing the averaging procedure alters the result and the effect may
disappear or change in amplitude [470].

Then of course, if anything appears at second order that is of any importance, one
should investigate higher-order terms, as in any perturbative approach. Ref. [468]
has shown that indeed many contributions cancel each other and has discussed in
specific cases the danger of arbitrarily stopping at some order.

Finally, every model based on large inhomogeneities must provide a way to
conceal them from our sight, at least to some extent. This can be done in part by
assuming strong peculiar velocities instead of strong density fluctuations. We have
learned in the void model that this is always possible, at least at one given epoch.
As we have seen, however, there are also strong constraints on peculiar velocities
from e.g., the kinematic Sunyaev–Zel’dovich effect. Moreover, the accompanying
anisotropy is another source of observable effects difficult to accommodate with
current observations.

All these issues leave the effective impact of backreaction in a very uncertain
status. As we mentioned at the beginning of this section, this area of research is
very active, very interesting, and very controversial. It is likely it will remain so
for many years.
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In addition to the models we have discussed in this chapter, there is another
class of apparent acceleration models without dark energy based on the “Ultra
Strong” version of the equivalence principle [475, 476]. In this scenario the usual
geometric description of spacetime as a metric manifold is just a small distance
approximation – on large scales General Relativity is modified by a curvature-
dependent subleading effect such that the luminosity distance increases. It will be
of interest to see whether such Infra-Red modifications of gravity can be consistent
with SN Ia and other observations without introducing a dark energy component.

10.3 Problems

10.1 Find the grr component for the LTB metric by solving R01 = 0.
10.2 Derive the age of the Universe in the LTB model. Under which condition is it the

same for every observer?
10.3 Let us consider an electromagnetic wave emitted during time interval ε(0) and

observed during a time interval ε(λs), where λs is the affine parameter along the
geodesic. The function ε(λs) is therefore the difference between two solutions t1(λs)
and t2(λs) = t1(λs) + ε(λs) along the same trajectory of the geodesic equations. The
redshift is then

z ≡ ε(0) − ε(λs)
ε(λs)

. (10.38)

From this expression, find the redshift equation (10.24).
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Dark energy and linear cosmological perturbations

Most of the previous chapters explored general properties of dark energy models
that are connected to their background behavior. However, dark energy influences
not only the expansion rate of the Universe but also the growth of perturbations, so
to this we turn now our attention.

In this chapter we discuss several advanced topics about linear cosmological
perturbations. These include (i) perturbations for a general dark energy fluid, (ii)
perturbations for a dark energy scalar field, and (iii) perturbations in modified
gravity models.

Throughout this chapter, a prime represents a derivative with respect to N = ln a

(not to conformal time as in previous chapters), unless otherwise specified.

11.1 Perturbations in a general dark energy cosmology

The linear perturbation equations we have derived in Chapter 4 for a single fluid and
for two-fluid cases can be generalized in several ways, such as considering more
fluids, interaction terms, and various levels of approximations, but the physics and
the mathematics involved are more or less always the same. The present Universe is
well described by at least two components, matter and dark energy, where the latter
is completely unknown. It is then useful to derive the equations in a very general
case by assuming a general equation of state w(z) and a general sound speed c2

s (z)
in a multi-fluid Universe. Moreover, we will also assume that the gravitational field
is sourced by the sum of energy densities of both components. We use the subscript
t to refer to total quantities, ρt , Pt , δt etc., and the subscript X for a generic fluid,
which may represent either matter or dark energy. So for perfect fluids we will have
two equations for each fluid (for δ′

X and θ ′
X), two equations for the gravitational

field (i.e. for ' and '′), and another one that provides the relation between ' and
(.

296
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The equations in the following are best obtained by an algebraic manipulator.
In this case it is convenient to start directly with the perturbed flat-space metric in
N = ln a:

ds2 = e2N
[
−(1 + 2()H−2dN2 + (1 + 2')δij dxidxj

]
, (11.1)

and work out from the beginning a single mode k, putting '(r, a) = '(a)eik·r ,
((r, a) = ((a)eik·r etc. This new metric forces a new definition of the first-order
four-velocity:

uα = dxα

ds
=

{
dN

a(1 + ()H−1dN
,

dxi

aH−1dN

}
≈

{
H
a

(1 − () ,
vi

a

}
, (11.2)

where of course a = eN and adN = da. It is convenient also to define a new
velocity divergence:

θnew = ik · v

H
= θold

H
, (11.3)

where the old velocity divergence θold is defined in Eq. (4.63). For simplicity we
drop the subscript “new” but will remind the reader of the new definition when
necessary.

All the equations can be converted into conformal-time equations by using the
rules

d
dN

= 1
H

d
dη

, (11.4)

d2

dN2
= 1

H2

d2

dη2
− dH/dη

H2

d
dη

, (11.5)

and into ordinary time equations by the same rules and replacing η → t and
H → H .

If we have many fluids, the total energy-momentum tensor is the sum Tαβ =∑
i T(i)αβ of the individual tensors. At the perturbation level this implies that [see

Eqs. (4.37)–(4.39)]

δT 0
0 = −ρtδt = −

∑

i

ρiδi , (11.6)

ikj (δT j
0 ) = −(1 + weff)ρtθt = −

∑

i

(1 + wi)ρiθi , (11.7)

δT 1
1 = δT 2

2 = δT 3
3 = c2

s,tρtδt =
∑

i

c2
s,iρiδi , (11.8)
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where the total perturbation variables are given by

δt =
∑

i

&iδi , (11.9)

θt =
∑

i

1 + wi

1 + weff
&iθi , (11.10)

together with the total equation of state and the sound speed

weff = Pt

ρt

=
∑

i

&iwi , (11.11)

c2
s,t =

∑
i c

2
s,i&iδi

δt

=
∑

i c
2
s,i&iδi∑

i &iδi

. (11.12)

Recall that &i is defined by &i ≡ ρi/ρt .
The total equation of state weff satisfies the following relation

H′

H
= 1 + H ′

H
= −1

2
− 3

2
weff . (11.13)

The total sound speed simplifies if the i-th component is the only one to cluster
(δi ̸= 0) since then cs,t = cs,i . If that component is also barotropic, i.e. Pi = Pi(ρi),
then the adiabatic sound speed is a function of wi given by

c2
s(a),t = Ṗi

ρ̇i

= wi − w′
i

3(1 + wi)
. (11.14)

Suppose now all components are barotropic, c2
s,i = dPi/dρi . Under which condition

is the total fluid barotropic? If we impose the adiabatic condition,

δρi

ρ ′
i

= δρj

ρ ′
j

→ δi

1 + wi

= δj

1 + wj

, (11.15)

for different matter components i, j , one can express any δi as δ1(1 + wi)/(1 + w1),
where δ1 corresponds to the perturbation for one component. Substituting this into
Eq. (11.12), we find

c2
s,t =

∑
i c

2
s,i&iδ1(1 + wi)∑

i &iδ1(1 + wi)

=
∑

i c
2
s,iρi(1 + wi)∑

i ρi(1 + wi)
=

∑
i(dPi/dρi)ρ̇i∑

i ρ̇i

= Ṗt

ρ̇t

= weff − w′
eff

3(1 + weff)
.

(11.16)
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Hence the total fluid remains barotropic provided that all components satisfy the
adiabatic conditions. This occurs most notably on super-horizon scales for a Uni-
verse composed of dust and radiation, see Eq. (4.180). In general even if all the
fluids are barotropic, the total fluid is not, or in other words Pi = Pi(ρi) does not
imply Pt = Pt (ρt ).

From Eqs. (4.61) and (4.62) the perturbation equations for a generic perfect fluid
with density contrast δX and velocity divergence θX are given by

δ′
X = 3(w − c2

s )δX − (θX + 3'′)(1 + w) , (11.17)

θ ′
X =

(
3w − 1 − w′

1 + w
− H′

H

)
θX + c2

s

λ̂2(1 + w)
δX + (

λ̂2
. (11.18)

Here we have introduced the quantity

λ̂ ≡ H/k = aH/k , (11.19)

so as to check the dimensional correctness at once. Another advantage is that in
real space we can interpret λ̂−2 as the operator −H−2∇2 while in Fourier space,
λ̂ = H/k. In this way the perturbation equations can be read equivalently in real or
Fourier space. Note that the above equations are valid for w ̸= −1. From Eqs. (4.57)
and (4.58) we obtain the following equations

' = 3λ̂2
(

1
2
δt + ( − '′

)
, (11.20)

'′ = ( − 3
2
λ̂2θt (1 + weff) , (11.21)

where we have used the background equation, 3H2 = 8πGa2ρt . For C2
s = w = −1

the equations for δX and θX give rise to the solution δX = θX = 0, which means
that the cosmological constant does not fluctuate. The perturbation equations for
δX and θX are generic. For dark energy we would have w = w(a), c2

s = c2
s (a); for

cold dark matter w = 0, c2
s = 0; for radiation w = c2

s = 1/3, etc.
Equations (11.17) and (11.18) can be also applied to the total component,

replacing the subscript X for t and w, cs for weff, cs,t . So the problem is composed
of two equations for δX, θX, two for δt , θt , and two algebraic relations that couple
them through ' and (. Any non-degenerate combination of four of these will
be mathematically equivalent. These equations are therefore all we need for the
general problem of several uncoupled perfect fluid components.

As we have already explained in Chapter 4, the (i, j ) off-diagonal equations
produce an additional equation for ' and (. In the absence of anisotropic stress
this is simply given by ' = −(. Using this identity, the gravitational equations
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for ', '′ can be written as

' = 3
2
λ̂2[δt + 3λ̂2θt (1 + weff)] , (11.22)

'′ = −3
2
λ̂2[δt + θt (3λ̂2 + 1)(1 + weff)] . (11.23)

It is important to observe that a consequence of the gravitational gauge freedom is
that only gauge-invariant quantities can be compared directly to observations. It is
possible to show that a gauge-invariant combination reduces to [90]

9t ≡ δt + 3λ̂2θt (1 + weff) , (11.24)

in any gauge in which the (0, i) elements [called wi in Eq. (4.4)] of the perturbed
metric are set to zero. These elements vanish for any observer at rest with respect
to the coordinate frame and this is indeed what any observer assumes implicitly.
The combination 9t is therefore the quantity to confront with observations. This
reduces to the familiar δt only at small scales. It is therefore only in this limit that
δt can be directly compared to the observed density contrast (at least in principle:
in practice, there are a number of obstacles such as the problems of bias, of non-
linearities, of redshift distortions). From Eq. (11.22) we see that 9t essentially
measures the total potential '. Generally speaking, we will discuss the evolution
of δt only in the limit that λ̂ ≪ 1. When this limit is not respected (e.g., when
discussing CMB, ISW, lensing), we stick with ' and (.

The total variables δt and θt satisfy equations similar to (11.17) and (11.18) apart
from a subscript t (δt , cs,t etc.) and w replaced by weff . Let us write the difference
of ' and ( in the form

' = −( + σ , (11.25)

where σ (k, t) is a generic function of space and time that represents the anisotropic
stress. Differentiating Eq. (11.21) with respect to N and using Eq. (11.20) plus the
equations for δt and θt , one obtains a relatively simple second-order equation for
':

'′′ +
[

3c2
s,t +

1
2

(5 − 3weff)
]

'′ +
[
(3 + λ̂−2)c2

s,t − 3weff
]
' = 3(c2

s,t −weff)σ + σ ′.

(11.26)
Note that we have already encountered this equation for σ = 0 and in conformal
time in Eq. (4.66). If we switch off σ and also assume c2

s,t = weff (which applies
for a single fluid with constant w), then the third term on the l.h.s. of Eq. (11.26)
vanishes in the large-scale limit (λ̂ ≫ 1). This gives rise to a solution ' = constant,
as we have already mentioned. This shows that the gravitational potential is constant
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on super-horizon scales (λ̂ ≫ 1) both for matter- and radiation-dominated regimes
(but not during the transition!) and in general for any perfect fluid with constant w.

In the rest of this section we always assume σ = 0, unless otherwise stated.
From Eq. (11.26) we see that ' oscillates acoustically if λ̂2 < c2

s,t /[3(weff − c2
s,t )].

For larger scales, ' grows if c2
s,t < weff and decays otherwise. If the total sound

speed is adiabatic, the equation for ' at large scales becomes

'′′ +
(

5
2

+ 3
2
weff − w′

eff

1 + weff

)
'′ − w′

eff

1 + weff
' = 0 , (11.27)

where we have used Eq. (11.14). For a mixture of radiation and matter we have
that weff = ρr/[3(ρm + ρr )] = 1/[3(1 + a/aeq)], in which case one finds the exact
solution (4.201).

For the !CDM model (which also implies σ = 0), the total sound speed after
the radiation era is given by c2

s,t = (Ṗm + ṖDE)/(ρ̇m + ρ̇DE) = Ṗm/ρ̇m = 0. As a
consequence we immediately see that the evolution of ' is completely scale
independent. For the !CDM model we have weff = −&DE = −1 + &m or

weff = &(0)
m − 1

1 − &
(0)
m + &

(0)
m e−3N

, (11.28)

which goes as expected from 0 in the past to −1 in the future (note that the present
epoch corresponds to N = 0). Inserting this into Eq. (11.26) one can directly solve
the ' equation numerically, see Fig. 4.1. The gravitational potential stays constant
at early times, but it starts to decay after the ! term dominates.

If one has to deal with a single component, the simplest way to proceed is to
integrate Eq. (11.26) and then use Eqs. (11.17) and (11.18) to obtain δt and θt . For
more general cases the ' equation is not sufficient. For pressureless matter plus
general dark energy we have

c2
s,t =

δPDE + δPm

δρDE + δρm

=
c2
s,DE&DE

&m(δm/δDE) + &DE
= c2

s,DE&DE
δDE

δt

= c2
s,DE

(
1 − &mδm

δt

)
,

(11.29)
where c2

s,DE = δPDE/δρDE. Therefore we need to know the behavior of δDE/δt or
equivalently δm/δt . Another useful form, valid for ' = −(, is

c2
s,t = c2

s,DE

[
1 − &mδm

2'′ + 2'(1 + 1/(3λ̂2))

]
, (11.30)

where we have used Eqs. (11.22) and (11.23). We proceed to derive a general
second-order equation of δ for a generic perfect fluid component.

Differentiating Eq. (11.17) with respect to N and using Eq. (11.18), we obtain

δ′′
X + a1δ

′
X + a0δX = b0(' − σ ) + b1'

′ + b2'
′′ , (11.31)
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where

a0 = 1
2

[
c2
s (3 + 2λ̂−2 − 18w − 9weff) + 3w(−1 + 6w + 3weff) + 6(c2

s
′ − w′)

]
,

(11.32)

a1 = 1
2

(1 + 6c2
s − 12w − 3weff) , (11.33)

b0 = λ̂−2(1 + w) , (11.34)

b1 = −3
2

[
2w′ + (1 + w)(1 − 6w − 3weff)

]
, (11.35)

b2 = −3(1 + w) . (11.36)

This equation holds for each perfect fluid component in a multi-fluid medium.
Since it has been obtained by manipulating only the conservation equations, and
not the gravity sector, Eq. (11.31) applies also in any form of modified gravity that
obeys the standard conservation laws. Let us remind the reader again that in this
chapter the primes correspond to d/dN and that θ = ik · v/H.

The combination of Eqs. (11.31) and (11.26) forms a closed set of equations if no
anisotropic stress is present, to be supplemented only by the background solution
and by the specified equations of state and sound speeds. For any additional perfect
fluid component, we just need to add to the system another equation (11.31)
with the specific w, cs . Let us write it down for two cases, radiation and matter.
Since the radiation corresponds to w = c2

s = 1/3, we obtain the following equation
for the modes deep inside the Hubble radius (λ̂ ≪ 1):

δ′′
γ − 1

2
(1 + 3weff)δ′

γ + 1
3
λ̂−2δγ = 4

3
λ̂−2' + 2(1 + 3weff)'′ − 4'′′ , (11.37)

where we have set σ = 0. Since δγ is associated with the temperature anisotropy )0

via the relation δγ = 4)0, the conversion of Eq. (11.37) in terms of the derivative
of the conformal time η leads to the following equation in the deep radiation era
(weff ≃ 1/3):

d2)0

dη2
+ 1

3
k2)0 = k2

3
' − d2'

dη2
. (11.38)

This corresponds to the Rs → 0 limit of Eq. (5.13) with c2
s = 1/3 and ( = −'.

For pressureless matter, Eq. (11.31) reduces to

δ′′
m + 1

2
(1 − 3weff)δ′

m = −λ̂−2( − 3
2

(1 − 3weff)'′ − 3'′′ . (11.39)
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Equations (11.39) and (11.26) form a very general set of perturbation equations for
any pressureless matter in the presence of dark energy. From these one can then
derive algebraically all the other variables, δt , δDE, θm, etc.

At small scales λ̂ ≪ 1 and for vanishing σ , Eqs. (11.39), (11.22), and (11.30)
give

δ′′
m + 1

2
(1 − 3weff)δ′

m = '

λ̂2
, (11.40)

' = 3
2
λ̂2δt = 3

2
λ̂2(&mδm + &DEδDE) , (11.41)

c2
s,t = c2

s,DE

[

1 − 3λ̂2&mδm

2'

]

. (11.42)

If dark energy does not cluster then we have δDE = 0, so that ' = 3λ̂2&mδm/2
from Eq. (11.41). Equation (11.42) shows that in this case the total sound speed
cs,t vanishes. From Eq. (11.40) it follows that

δ′′
m + 1

2
(1 − 3&DEwDE)δ′

m − 3
2
&mδm = 0 , (11.43)

where we have used weff = &DEwDE. This equation is completely fixed by assigning
a wDE(a) given by the model and the present value &(0)

m = 1 − &
(0)
DE from which

&m(a) = &(0)
m a−3/[&(0)

m a−3 + (1 − &(0)
m )a−3(1+ŵDE)], with

ŵDE(N) = 1
N

∫ N

0
wDE(Ñ ) dÑ . (11.44)

In some simple cases an analytical solution in terms of hypergeometric functions
can be found [477]. It is often more useful however to work with an approximate
solution. By using the growth rate parameter f defined in Eq. (4.107), Eq. (11.43)
can be written in the form

f ′ + f 2 +
[

1
2

− 3
2
wDE(1 − &m)

]
f = 3

2
&m . (11.45)

By using the Friedmann equation 3H 2 = 8πG(ρm + ρDE) together with the conti-
nuity equation ρ̇DE + 3H (1 + wDE)ρDE = 0, we obtain

&′
m = 3wDE(1 − &m)&m . (11.46)

Combining Eqs. (11.45) and (11.46), it follows that

3wDE&m(1 − &m)
df

d&m

+
[

1
2

− 3
2
wDE(1 − &m)

]
f + f 2 = 3

2
&m . (11.47)
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Substituting f = &
γ
m into Eq. (11.47), we find that [478]

3wDE&m(1 − &m) (ln &m)
dγ

d&m

− 3wDE

(
γ − 1

2

)
&m + &γ

m − 3
2
&1−γ

m

+ 3wDEγ − 3
2
wDE + 1

2
= 0 . (11.48)

If the variation of wDE(z) is slow so that the condition |dwDE/d&m| ≪ 1/(1 − &m)
is satisfied, we obtain the following estimate for γ [479]:

γ = 3(1 − wDE)
5 − 6wDE

+ 3
125

(1 − wDE)(1 − 3wDE/2)
(1 − 6wDE/5)2(1 − 12wDE/5)

(1 − &m) +O((1 − &m)2) .

(11.49)
However since the present value of 1 − &m is not really small, a better approxima-
tion for the second term in γ is [478]

3
125

(1 − wDE)(1 − 3wDE/2)
(1 − 6wDE/5)3

(1 − &m). (11.50)

Note that the !CDM model corresponds to γ ≃ 6/11 ≃ 0.545.
Another fit for γ is provided by [480]

γ = 0.545 + 0.05[1 + wDE(z = 1)] . (11.51)

In Fig. 11.1 we show the behavior of the perturbation growth and the comparison
with the fit (11.51).

It is useful to remark that while γ does not depend strongly on wDE, the rate
f = &

γ
m is significantly affected by wDE. At any given z, in fact, the dark energy

component is more important for higher wDE (assuming a constant wDE for sim-
plicity). Larger &DE means smaller &m and hence f (z) decreases with increasing
wDE, i.e. structures grow more slowly. If we assign the same initial amplitude to
δm, say at z ≈ 1100 as set by CMB observations, then we conclude that the present
amplitude is smaller for larger wDE. On the other hand we may instead know the
present matter amplitude δm, for instance because we measure it through weak lens-
ing or by estimating the bias. In this case we want our model to reproduce today’s
observations and consequently we normalize δm to today. This would imply that
at any given z the linear fluctuation amplitude δm(z) was higher for larger wDE.
These considerations have an important impact on the estimates of the abundance
of collapsed objects.

Finally, it is also important to consider the limits of the &
γ
m parametrization.

Since &m is usually contained between 0 and 1, f cannot pass from values larger
than unity to values below. This rigidity in the parametrization could be a problem
for the cases in which f > 1 in the past, cases that we encounter in coupled dark
energy [481].
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Figure 11.1 Growth rate f = δ′
m/δm for wDE = −1 (full line) and wDE = −0.6

(dotted line) obtained by numerical integration compared to the approximation
(11.51) (thin lines), fixing &(0)

m = 0.3.

Let us conclude this section by counting the degrees of freedom of our problem.
For two perfect fluids (say, matter and dark energy) we have a complete system of
two second-order equations (11.31), which makes four degrees of freedom. For any
additional perfect fluid we should add two more degrees of freedom. It is possible to
choose many other sets. For instance, in Ref. [482], the authors chose for two fluids
(subscript 1, 2) gauge-invariant variables formed by ' and three combinations of
', '′, δ1, δ2 (think of fluid 1 as matter and of fluid 2 as dark energy). In our notation
these variables are defined as

R ≡ ' + 2(' + '′)
3(1 + weff)

, (11.52)

S ≡ &2
(1 + w2)δ1 − (1 + w1)δ2

1 + weff
, (11.53)

4 ≡
c2
s − c2

s(a)

1 − c2
s(a)

δ2 . (11.54)

Here S is a gauge-invariant (relative) entropy perturbation, while 4 is an intrinsic
entropy perturbation of the dark energy field 2. This set is particularly useful
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to follow the behavior of S,4 and to show that if one starts with S = 4 = 0
(adiabatic initial conditions) then S,4 remain zero on large scales, regardless of
the background evolution. For the system of non-relativistic matter and dark energy
(w2 = wDE ̸̸= −1), the condition S = 0 implies that δDE ≈ δm(1 + wDE) and hence

δt = &mδm + &DEδDE

= δm&(0)
m

&
(0)
m + (1 − &

(0)
m )a−3wDE

[
1 + (1 − &(0)

m )(1 + wDE)a−3wDE

&
(0)
m

]
. (11.55)

Taking for instance wDE = −0.9 we see that at z ≈ 1 the contribution of dark
energy fluctuations at super-horizon scales is near 3–4% of the matter one. This
contribution can be searched for as an ISW effect on the CMB and in the cross-
correlation with the large-scale structure, see Section 14.1.1.

11.2 Perturbations of a scalar field

As we have seen in Chapters 7 and 8, many models describe dark energy as a scalar
field. In this section we derive perturbation equations for a quintessence scalar
field. For generality, we include baryons and dark matter and assume explicit non-
gravitational couplings between the field and the two matter components (i.e. cou-
pled quintessence). Perturbations for scalar fields with non-canonical Lagrangians
have been studied in e.g., Refs. [255, 483, 484, 485, 342].

Our dark energy model is therefore characterized by a general scalar-field poten-
tial V (φ) and general couplings Qi(φ) to matter. Generalizing Eq. (8.71), the con-
servation equations with interacting terms for the field φ, cold dark matter (c), and
baryons (b) are:

∇µT
µ

(c)ν = Qc(φ)T(c)∇νφ , (11.56)

∇µT
µ

(b)ν = Qb(φ)T(b)∇νφ , (11.57)

∇µT
µ

(φ)ν = −[Qc(φ)T(c) + Qb(φ)T(b)]∇νφ , (11.58)

where the coupling functions Qb,c(φ) depend on the species and Ti is the trace
of the energy-momentum tensor of species i. Since radiation has a zero trace it is
uncoupled to φ. As we have seen, this coupling form is motivated, through a confor-
mal transformation, from Brans–Dicke gravity with species-dependent interaction.
One could generalize the coupling in many ways, but this scalar-tensor form is
sufficiently general for our purposes. The couplings are in general constrained by a
number of observations. The baryon coupling in particular is severely constrained
by local gravity experiments, unless the chameleon mechanism [321, 322] is at
work (see the discussion in Chapter 9). Here for generality we leave the couplings
completely free.
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As we have already seen in Section 8.3.1, the field equations in the flat FLRW
background are given by

φ̈ + 3H φ̇ + V,φ = −(Qcρc + Qbρb) , (11.59)

ρ̇c + 3Hρc = Qcρcφ̇ , (11.60)

ρ̇b + 3Hρb = Qbρbφ̇ , (11.61)

ρ̇r + 4Hρr = 0 , (11.62)

3H 2 = ρφ + ρc + ρb + ρr , (11.63)

where we have used the unit κ2 = 1. Sometimes the coupling constants βc =√
3/2Qc and βb =

√
3/2Qb are introduced instead of Qc and Qb to simplify the

background equations [17].
To study the perturbations we use the perturbed metric (11.1). In the following

we neglect the contribution of radiation because it is unimportant when we discuss
the perturbations after decoupling. If we define

uµ ≡ φ,µ

|gαβφ,αφ,β |1/2
, ρφ ≡ −1

2
gαβφ,αφ,β + V , Pφ ≡ −1

2
gαβφ,αφ,β − V ,

(11.64)
the energy-momentum tensor of the scalar field can be written as

T(φ)µν = (ρφ + Pφ)uµuν + gµνPφ . (11.65)

In fact, the energy density and the pressure can be constructed as ρφ = Tµνu
µuν

and Pφ = Tµνh
µν with the help of the projection operator hµν = gµν + uµuν . We

then obtain the following perturbations (notice here we use H not H)

δρφ = H 2(φ′ϕ′ − φ′2') + V,φϕ , (11.66)

δPφ = H 2(φ′ϕ′ − φ′2') − V,φϕ , (11.67)

θφ ≡ −
iki(δT i

0(φ))

(1 + wφ)ρφ

= λ̂−2 ϕ

φ′ , (11.68)

where V,φ ≡ dV/dφ and

ϕ ≡ δφ (11.69)

denotes the field fluctuation. We also define the field density contrast

δφ ≡ ϕ/φ . (11.70)

The sound speed is therefore

c2
s,φ = δPφ

δρφ

= H 2(φ′ϕ′ − φ′2') − V,φϕ

H 2(φ′ϕ′ − φ′2') + V,φϕ
. (11.71)
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If we put ourselves in the dark energy rest frame (that is, if we choose the gauge
where dark energy is at rest), we have θφ = 0 and hence ϕ = 0. Then we see that
the sound speed of the scalar-field rest frame equals unity.

We define also the dark energy effective mass

m2
φ ≡ d2V

dφ2
, (11.72)

together with its dimensionless version

m̂2
φ ≡ m2

φ/H 2 . (11.73)

Notice that in general mφ is a function of φ. The mass becomes a constant only near
the bottom of a harmonic potential. We also introduce the dimensionless potential

V̂ ≡ V/H 2 , (11.74)

which is at most of order unity. Perturbing the Einstein equations and the conser-
vation equations, we obtain the linear perturbation equations below.

The perturbation equations for perfect fluids with generic equations of state
wi = Pi/ρi , couplings Qi , and sound speeds cs,i are

δ′
i = 3(wi −c2

s,i)(1+3Qiφ
′)δi −(θi +3'′)(1+wi)+(1−3wi)(Qiϕ

′+Qi,φφ′ϕ) ,

(11.75)

θ ′
i = −θi

2

[
1 − 6wi − 3weff + 2w′

i

1 + wi

+ 2Qi(1 − 3wi)φ′
]

+ 1

λ̂2

[
c2
s,i

1 + wi

δi + ( + Qi(1 − 3wi)
1 + wi

ϕ

]

, (11.76)

where Qi,φ ≡ dQi/dφ. Note that these equations reduce to Eqs. (11.17) and (11.18)
in the limit Qi → 0. For the models in which the equation of state is given by the
form wi(ρ) instead of wi(a) (e.g., the Chaplygin gas model), the above equations
are still valid with the substitution c2

s,i → wi − w′
i/[3(1 + wi)]. The equation for

the scalar field coupled to several fluids with equations of state Pi = wi(a)ρi and
sound speeds cs,i is

ϕ′′ +
(

2 + H′

H

)
ϕ′ + (λ̂−2 + m̂2

φ)ϕ − φ′(3'′ − ( ′) + 2V̂,φ(

= −3
∑

i

Qi(1 − 3c2
s,i)&iδi − 6

∑

i

Qi(1 − 3wi)&i( − 3
∑

i

(1 − 3wi)Qi,φ&iϕ .

(11.77)
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This equation for Qi = 0 can be obtained also directly from the continuity equation
(11.75) by making use of the perturbation variables in Eqs. (11.66)–(11.68) and
putting δi = δφ .

Finally the equations for metric perturbations are

' = λ̂2

2

[
2V̂ ( + ϕV̂,φ + φ′(3ϕ + ϕ′) + 3

∑
&i

{
δi + 3(1 + wi)λ̂2θi

}]
, (11.78)

'′ = 1
2

[
2( − ϕφ′ − 3λ̂2

∑
(1 + wi)θi&i

]
, (11.79)

plus the usual equivalence ' = −( in the absence of anisotropic stress.
Finally, in the uncoupled case with ' = −(, the field perturbation equation

(11.77) reduces to

ϕ′′ +
(

2 + H′

H

)
ϕ′ + (λ̂−2 + m̂2

φ)ϕ − 4φ′'′ − 2V̂,φ' = 0 . (11.80)

Qualitatively, it is clear that one expects the scalar field to undergo damped oscil-
lations for scales λ̂ < 1/m̂φ . On these scales the scalar field will not contribute
to the total gravitational potential and can be approximated as homogeneous. On
larger scales the behavior depends on the mass term m̂φ . For m̂φ < 1 (i.e. mφ < H )
both the background field φ and its perturbation ϕ evolve slowly. Then we can
approximate V,φ ≃ −3H 2φ′. Neglecting the φ′-dependent terms in Eq. (11.66),
we obtain the following relation

&φδφ ≃ V,φϕ/(3H 2) ≃ −φ′ϕ . (11.81)

As a further approximation, we can take ϕ constant during slow-roll and approx-
imate φ′ ≃ [3(1 + wφ)&φ]1/2 for wφ near −1. If wφ remains constant then the
field contribution &φδφ to the total perturbation δt increases in proportion to &

1/2
φ

approximately.
For m̂φ > 1 (i.e. mφ > H ) the perturbations oscillate even on large scales. In

this case, however, the background field will oscillate as well and the effective
equation of state will depart from the one corresponding to dark energy. The field
can now act indeed as dark matter and this case will be analyzed separately.

11.3 From dark energy to dark force

Let us now assume ' = −( and derive the perturbation solutions in the sub-
horizon limit (small scales, λ̂ ≪ 1). The gravitational equations are given by

' = λ̂2

2

[
3

∑
&iδi + ϕV̂,φ + φ′(3ϕ + ϕ′)

]
, (11.82)

'′ = −1
2
ϕφ′ − ' . (11.83)
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In the first equation we have used λ̂2V̂ ! λ̂2 ≪ 1. Inserting Eqs. (11.82) and (11.83)
into Eq. (11.77) and taking the small-scale limit, we obtain

ϕ′′ +
(

2 + H′

H

)
ϕ′ +

[
λ̂−2 + m̂2

φ + 2φ′2 + 3
∑

(1 − 3wi)&iQi,φ

]
ϕ

≃ −3
∑

Qi(1 − 3c2
s,i)&iδi , (11.84)

where the sum is on the coupled components. Suppose now that (a) we can neglect
the term 2φ′2ϕ since |φ′2| (! 1) is much smaller than λ̂−2 and (b) we can assume
also that the field potential is flat enough and its coupling is almost constant so
that m̂2

φ and the term in Qi,φ are negligible with respect to λ̂−2 (later we remove
some of these approximations). In the limit of very small λ̂ the field will undergo
fast oscillations, forced by the term on the r.h.s. of Eq. (11.84). Averaging over the
rapid oscillations of ϕ, we obtain

⟨ϕ⟩ ≃ −3λ̂2
∑

Qi(1 − 3c2
s,i)&iδi . (11.85)

Since the field is oscillating very fast, we must see this equation as giving the
average of ϕ over many oscillations. This is the crucial difference between coupled
and uncoupled fields concerning perturbations. In the coupled case the perturbed
field ϕ does not oscillate around zero but acquires a non-zero average proportional
to the couplings.

Since ϕ is of order λ̂2, Eq. (11.82) reduces to the usual Poisson equation

( = −3
2
λ̂2

∑

i

&iδi . (11.86)

Now, if we substitute ⟨ϕ⟩ into Eq. (11.76), we can define a new potential acting on
the j -th component (which includes the effect of the coupling Qj )

(̂j ≡ ( + Qj (1 − 3wj )
1 + wj

⟨ϕ⟩

= −3
2
λ̂2

∑

i

&iδi

[

1 + 2QiQj

(1 − 3c2
s,i)(1 − 3wj )

1 + wj

]

. (11.87)

Assuming for instance two matter components, CDM and baryons (subscripts c, b),
we have a new potential on CDM:

(̂c = −3
2
λ̂2 [

&bδb (1 + 2QbQc) + &cδc (1 + 2Q2
c)

]
. (11.88)

In real space, this equation becomes

∇2(̂c = 4πGbcρbδb + 4πGccρcδc , (11.89)
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where we have defined

Gij = Gγij , γij ≡ 1 + 2QiQj . (11.90)

Analogous equations hold for the baryon force equation.
We can now write down the sub-horizon linear equations for CDM and baryons.

Since both ' and ϕ are of the order of λ̂2, putting w = c2
s = 0 in Eqs. (11.75) and

(11.76), we have

δ′
c = −θc , (11.91)

θ ′
c = −1

2
(1 − 3weff + 2Qcφ

′)θc + λ̂−2(̂c , (11.92)

δ′
b = −θb , (11.93)

θ ′
b = −1

2
(1 − 3weff + 2Qbφ

′)θb + λ̂−2(̂b , (11.94)

(̂c = −3
2
λ̂2(γbc&bδb + γcc&cδc) , (11.95)

(̂b = −3
2
λ̂2(γbb&bδb + γbc&cδc) . (11.96)

Differentiating Eq. (11.91) with respect to N and using Eq. (11.92), we obtain

δ′′
c + 1

2
(1 − 3weff + 2Qcφ

′)δ′
c − 3

2
(γccδc&c + γbcδb&b) = 0 . (11.97)

Similarly the equation for δb is given by

δ′′
b + 1

2
(1 − 3weff + 2Qbφ

′)δ′
b − 3

2
(γbbδb&b + γbcδc&c) = 0 . (11.98)

These equations generalize the previous uncoupled equations (4.101) and (4.102).
Since baryons and dark matter obey different equations, they will develop a bias

already at the linear level. A simple result can be obtained in the case where one
component dominates. Assuming &b ≪ &c, in fact, the baryon solution will be
forced by the dominating CDM component to follow asymptotically its evolution.
Defining the growth rate of δc as f ≡ δ′

c/δc and putting δb = bδc with b = constant,
we obtain the coupled equations

f ′ + f 2 + 1
2

(1 − 3weff + 2Qcφ
′)f − 3

2
γcc&c = 0 , (11.99)

f ′ + f 2 + 1
2

(1 − 3weff + 2Qbφ
′)f − 3

2b
γbc&c = 0 , (11.100)
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from which by subtraction

b = 3γbc&c

3γcc&c − 2(Qc − Qb)φ′f
. (11.101)

Notice that all terms on the r.h.s. are in general functions of time. This shows that a
linear bias of gravitational nature develops whenever Qc ̸= Qb. This bias extends
to all sub-horizon scales and therefore is distinguishable from the hydrodynamical
or non-linear bias that takes place in collapsed objects.

The growth rate f can be found numerically for any model by integrating
(11.99). A simple analytical solution exists if weff, Qc, &c, φ

′ are constants (we are
neglecting the baryons here):

f = −1
4

(1 − 3weff + 2Qcφ
′) ± 1

4

√
(1 − 3weff + 2Qcφ′)2 + 24γcc&c . (11.102)

This particular case occurs indeed on stationary solutions, e.g. the solution (d)
in Section 8.3.1. In a pure matter-dominated cosmology we recover the standard
solution f = 1, −3/2 for weff = Qc = 0 and &c = γcc = 1. It is interesting to
derive the limit of strong coupling for scaling solutions. This is obtained by the
condition Q ≫ λ (λ is the potential slope) for the point (d) of Table 8.1. Then we
have

φ′ =
√

6x1 = 3/(Qc + λ) . (11.103)

Inserting the values of φ′, weff, &c for the point (d) into Eq. (11.102), we find that
the growing mode solution corresponds to

f ≃
√

3Qcλ , for Qc ≫ λ. (11.104)

This diverges for Qc → ∞, which is due to the fact that in the limit of strong
coupling the correction 1 + 2Q2

c to gravity blows up. This shows that one can
have fast-growing solutions in an accelerating Universe, even in the limit that
weff → −1. On the other hand this puts strong limits to the viability of scaling
solutions since a fast growth during acceleration produces an excessive integrated
Sachs–Wolfe effect [486].

Another simple case is the φMDE scaling, i.e. the solution (a) in Section 8.3.1.
Applying Eq. (11.102) to this case we obtain f = 1 + 2Q2

c , which is faster than
the standard CDM growth by 2Q2

c .
Finally, on accelerated but not scaling solutions and for small values of Qc, it is

also possible to find approximate solutions in the traditional form f = &
γ
m, where

[487]

γ ≈ 0.55(1 − 2.6Q2
c) . (11.105)
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11.4 A massive dark energy field

It is interesting to observe that in Eq. (11.84) the terms in Qi,φ contribute to the
equation as effective masses. For a single pressureless fluid component (with a
scalar field) this gives

m̂2
Q ≡ 3&Q,φ , (11.106)

where & and Q are the density parameter and the coupling of the fluid, respectively.
Let us consider the two effective masses of the dark energy field, previously
neglected. If λ̂−2 is not much larger than m̂2 = m̂2

φ + m̂2
Q, Eq. (11.85) in Fourier

space becomes (in this section we assume that dark energy is coupled to a single
matter component, subscript m, or, equivalently, that has a universal coupling to
all fields):

ϕ = −3Y (k)λ̂2Q&mδm , (11.107)

where

Y (k) ≡ k2

k2 + a2m2
, (11.108)

and m = m̂H . If we substitute Eq. (11.107) into Eq. (11.76), we find that the
effective potential is given by (neglecting the baryons)

(̂ = −3
2
λ̂2&mδm[1 + 2Q2Y (k)]. (11.109)

Now, let us write down the present density in real space for a particle of mass
M0 located at the origin as ρ(0)

m = M0δD(0). The density contrast in “empty” space,
i.e. for ρm ≫ ρt , is therefore:

&mδm = ρm

ρt

= κ2a3ρm

3H2a
= κ2M(φ)

3H2a
, (11.110)

where

M(φ) = ρma3 = M0e
∫

Q dφ . (11.111)

Note that we have used the solution (8.92), i.e. ρm = ρ(0)
m exp(

∫
Qdφ) (a0/a)3,

together with M0 = ρ(0)
m a3

0δD(0). In Fourier space and for a unitary volume, the
expression for the density contrast remains the same but the Dirac delta drops out.
It turns out then that the potential originated by a dark matter particle in the linear
regime is given by (we put back a k subscript for clarity)

(̂k = −3
2
&mδmλ̂2[1 + 2Q2Y (k)] = −4πGM(φ)

(
1
k2

+ 2Q2

k2 + a2m2

)
1
a

,

(11.112)
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from which we can define an effective Geff in Fourier space:

Geff = G

(
1 + 2Q2k2

k2 + a2m2

)
. (11.113)

Under the Fourier transformation

(̂(x) = 1
(2π )3

∫
eik·x (̂k d3k , (11.114)

we have, using the angular integral
∫

eikx cos θ sin θdθdφ = 4π
sin kx

kx
, (11.115)

the result

(̂(x) = −2GM(φ)
πa

∫ ∞

0

sin kx

kx

(
1 + 2Q2k2

k2 + a2m2

)
dk

= −2GM(φ)
πr

∫ ∞

0

sin y

y

(
1 + 2Q2y2

y2 + m2r2

)
dy , (11.116)

where r = ax is the physical coordinate. The last integral gives finally the Yukawa
potential

(̂(r) = −GM(φ)
r

(
1 + 2Q2e−mr

)
. (11.117)

Notice that in general both Q and m can be functions of φ and therefore of space
and time. We have seen in Section 9.1.3 that the same Yukawa correction applies
to f (R) gravity (Q = −1/

√
6).

11.5 Sound speed of a scalar field

We know that an ultra-light scalar field behaves as a cosmological constant, at least
as concerns the background dynamics. But what is the behavior at the perturbation
level? And how can we understand the perturbation dynamics of a not-so-ultra-light
scalar field?

The key quantity for this is the sound speed cs,φ . This sets the scale of clustering:
if cs,φ/H is comparable to the horizon size then the field will not cluster on
these scales; if this is small then the field might cluster. That is, we can have
astrophysically sized φ fluctuations only if cs,φ < 1 (remember that velocities are
in units of c). We have already seen in Section 11.2 that the sound speed for a
scalar field is given by Eq. (11.71). Except for the case in which the potential
is very flat, V,φ → 0, for which cs,φ = 1, the field sound speed depends on the
detailed behavior of both perturbation and background quantities. There is a limit



11.5 Sound speed of a scalar field 315

however which can be treated with some generality. Let us consider Eq. (11.84)
for the uncoupled case

ϕ′′ +
(

2 + H′

H

)
ϕ′ + (λ̂−2 + m̂2

φ + 2φ′2)ϕ = 0 . (11.118)

Notice that there is another “sound speed” here, namely the coefficient of the
λ̂−2ϕ term, always equal to unity. In Minkowski space this would be the velocity
in the solution of the spacetime wave equation, ϕ ∼ exp[ik(ct ± r)]. When this
term dominates, the perturbed field ϕ oscillates acoustically and does not grow.
However, we are not interested here in ϕ but rather in the density contrast δρφ/ρφ .

Let us assume for a moment that λ̂ and m̂φ are constant with a negligible
contribution of φ′2. If the expansion rate H is also negligible, we can integrate the
equation ϕ̈ + (k2/a2 + m2

φ)ϕ = 0 to give the solution

ϕ = A exp

[

±imφ

(

1 + k2

2a2m2
φ

)

t

]

, (11.119)

where we have assumed that k2 ≪ a2m2
φ .

Let us now approximate the potential V near its minimum as V ≈ 1
2m

2
φφ2. If

the field oscillates rapidly around the minimum we can assume that averaging over
many oscillations the kinetic and the potential terms are equal:

⟨φ̇2⟩ ≃ m2
φ⟨φ2⟩ . (11.120)

Notice that the kinetic term φ′2 ≃ ⟨V̂ ⟩ ! &DE ≤ 1 is then really negligible in
Eq. (11.118) for sub-horizon modes (λ̂ ! 1). Similarly, averaging over many oscil-
lations, we also have

⟨ϕ̇2⟩ ≃ m2
φ

(

1 + k2

a2m2
φ

)2

⟨ϕ2⟩ . (11.121)

In fact, we can assume both φ and ϕ to be described by some sinusoidal sin(µt + θ )
where µ = mφ for φ and µ = mφ[1 + k2/(2a2m2

φ)] for ϕ. Then averaging over
many cycles we also have

⟨φ̇ϕ̇⟩ ≃ m2
φ

(

1 + k2

2a2m2
φ

)

⟨φϕ⟩ . (11.122)

Since the ' term in Eq. (11.71) is negligible for small scales, the sound speed
squared is

c2
s,φ = δP

δρ
≃

⟨φ̇ϕ̇⟩ − m2
φ⟨φϕ⟩

⟨φ̇ϕ̇⟩ + m2
φ⟨φϕ⟩

≃ k2

4a2m2
φ

. (11.123)
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Therefore for k ≪ amφ we have

cs,φ = k

2amφ

≪ 1 . (11.124)

The conclusion is that the k-th mode of the scalar field begins to cluster only
for k ≪ amφ . All this is in a linear regime, so this growth is observable only for
scales which are still linear today or became non-linear only recently. The inverse
mass 1/mφ sets the field Compton wavelength: only modes larger than 1/mφ can
be localized and feel the pull of gravity. For masses near 10−28 eV the Compton
wavelength m−1

φ (that is, !/mφc) approximates the size of a galaxy. Such a field
could therefore be considered as a form of dark matter rather than dark energy. In
Ref. [488] such a field has been called “fuzzy dark matter.”

The mass scale mφ sets also the timing for the onset of the oscillations. One could
say that for a field slow-rolling over a quadratic potential the field begins oscillating
when mφ " H and begins clustering on sub-horizon scales when k ! amφ . If
mφ ! H0 ≈ 10−33 eV neither of these two conditions is met yet and the field is
not practically distinguishable from the cosmological constant. Then the Compton
wavelength is as large as the present horizon scale of the Universe:

!
mφ

" c

H0
= 2998 h−1 Mpc . (11.125)

In this case we can neglect altogether the fluctuation in the φ field on sub-horizon
scales. However they are still relevant for super-horizon scales.

Finally, notice that there are cases in which the field is neither dark energy nor
dark matter. The fields oscillating at the bottom of their potential with masses
near mφ ≈ 10−30 eV cannot accelerate the present expansion (and therefore are not
candidates for dark energy) nor can they clump into galaxies (and therefore are not
candidates for dark matter). However they might still exist as a minor component
of the Universe. The phenomenon is very similar to the massive neutrino case, in
which an effective sound speed cs ≃ T (0)

ν /(amν) can be defined when the neutrino
becomes non-relativistic, where T (0)

ν is the present neutrino temperature.
This intermediate massive component can cluster on sub-horizon scales larger

than a Jeans (or “free-streaming”) scale corresponding to the wavenumber [see
Eq. (4.79)]

kJ =
√

3
2

H
cs,φ

=
√

3
2

2a2mφH

kJ

. (11.126)

During the matter-dominated epoch we have H 2 = H 2
0 &(0)

m a−3, so that kJ is given
by

kJ (a) ≈ a1/4m
1/2
φ H0

1/2&(0)
m

1/4
. (11.127)
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Each scale k therefore grows from the time when the field starts oscillating, given by
the oscillation condition H ≃ mφ or amin ≃ (H 2

0 &(0)
m /m2

φ)1/3, until the value amax

such that k = kJ (amax), at which point the field enters the free-streaming regime.
At this epoch, the field energy density stops sourcing the matter fluctuations and
the growth is slowed down as in Eq. (4.105). Therefore we expect that between amin

and amax matter perturbations on the scales k > kJ grow slower than those at larger
scales. This will give rise to a drop in power in the matter power spectrum. The larger
the fraction &φ is, the stronger the drop is, because more perturbations stop growing.
This break in the spectrum can be quantified and compared to observations. The
result is that a density fraction of a few percent of an intermediate massive field is
allowed by observations [489].

11.6 Perturbations in modified gravity models

So far we have discussed the evolution of matter density perturbations in the
framework of General Relativity. In this section we shall extend our analysis to
modified gravity models of dark energy. This includes models such as f (R) gravity,
scalar-tensor gravity, and DGP braneworld models.

11.6.1 f (R) gravity

First of all, let us consider the case of f (R) gravity in the metric formalism in
the presence of non-relativistic matter. The equations for matter perturbations are
given by Eqs. (11.17) and (11.18) with wm = c2

s = 0:

δ′
m = −

(
θm + 3'′) , (11.128)

θ ′
m = (/λ̂2 −

(
1 + H′/H

)
θm . (11.129)

Combining these equations gives Eq. (11.39) that we rewrite here in this form:

δ′′
m +

(
1 + H′

H

)
δ′
m + 1

λ̂2
( = −3

(
1 + H′

H

)
'′ − 3'′′ . (11.130)

For the modes deep inside the Hubble radius (λ̂ ≪ 1) the r.h.s. of Eq. (11.130) can
be neglected relative to the l.h.s., i.e.

δ′′
m +

(
1 + H′

H

)
δ′
m + 1

λ̂2
( = 0 . (11.131)

In f (R) gravity the quantity F (R) = ∂f/∂R has a perturbation δF . Perturb-
ing Eq. (9.2), we obtain the following equations in Fourier space (in the unit of
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κ2 = 1) [417, 371]

−k2

a2
' + 3H (H( − '̇)

= 1
2F

[
3H ˙δF −

(
3Ḣ + 3H 2 − k2

a2

)
δF − 3HḞ( − 3Ḟ (H( − '̇) − δρm

]
,

(11.132)

¨δF + 3H ˙δF +
(

k2

a2
− R

3

)
δF = 1

3
δρm + Ḟ (3H( + (̇ − 3'̇)

+ (2F̈ + 3HḞ )( − 1
3
F δR , (11.133)

( + ' = −δF

F
, (11.134)

where we used the time derivative with respect to cosmic time t . For the modes deep
inside the Hubble radius, the terms including k2/a2 and δρm in Eq. (11.132) are
the dominant contributions. Hence we obtain the following approximate relations
from Eqs. (11.132) and (11.134):

' = 1
2F

(
a2

k2
δρm − δF

)
, ( = − 1

2F

(
a2

k2
δρm + δF

)
. (11.135)

Provided that |Ḟ | ! |HF | and |F̈ | ! |H 2F |, the second and third terms on the
r.h.s. of Eq. (11.133) are much smaller than δρm and (k2/a2)δF for the modes
deep inside the Hubble radius. Using the relation δR = δF/f,RR, we find that
Eq. (11.133) is approximately given by

¨δF + 3H ˙δF +
(

k2

a2
+ M2

)
δF = 1

3
δρm , (11.136)

where

M2 ≡ f,R

3f,RR

. (11.137)

In order to derive Eq. (11.136) we have used the following condition
{

k2

a2
, M2

}
≫ R ∼ H 2 . (11.138)

Note that the condition M2 ≫ R is satisfied for viable f (R) models in the
past cosmic expansion history of the Universe [369, 371], see Eq. (9.52). From
the stability of cosmological perturbations we require that M2 > 0, which gives
the condition f,RR > 0 (provided that f,R > 0). In the following we shall discuss
two cases: (A) M2 ≫ k2/a2 and (B) M2 ≪ k2/a2, separately. In terms of the
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characteristic function m(r) introduced in Eq. (9.21) the conditions (A) and (B)
can be written as m ≪ λ̂2 and m ≫ λ̂2, respectively. We recall that for viable f (R)
models the mass squared M2 is large in the past and gradually decreases toward
the present. Hence the transition from the region (A) to (B) can occur in the past,
depending on the modes k.

(i) Evolution of perturbations in the regime M2 ≫ k2/a2.
The general solutions for Eq. (11.136) are given by the sum of the oscillating
solution δFosc obtained by setting δρm = 0 and the special solution δFind of
Eq. (11.136) induced by the presence of matter perturbations δρm. The oscillating
part δFosc satisfies the equation (a3/2δFosc)·· + M2(a3/2δFosc) ≃ 0. By using the
WKB approximation, we obtain the solution

δFosc ∝ a−3/2 f,RR
1/4 cos

(∫
1

√
3f,RR

dt

)

. (11.139)

Note that we have used f,R ≃ 1 because the viable f (R) models are close to the
!CDM model when the mass M is heavy.

In the following let us consider the model (9.78) that corresponds to the asymp-
totic form of the models (9.9) and (9.10) in the region R ≫ Rc. During the matter
era in which the background Ricci scalar evolves as R(0) = 4/(3t2), the quan-
tity f,RR has a dependence f,RR ∝ R−2(n+1) ∝ t4(n+1). Hence the evolution of the
perturbation, δRosc = δFosc/f,RR, is given by

δRosc ≃ c t−(3n+4) cos(c0 t−2(n+1)) , (11.140)

where c and c0 are constants. As we go back to the past the perturbation δRosc

dominates over R(0) ∝ t−2, unless the coefficient c is chosen to be very small.
Since the Ricci scalar R can be negative in this case, this can lead to the violation
of the stability conditions (f,RR > 0 and f,R > 0).

The special solution δFind of Eq. (11.136) can be derived by neglecting the first
and second terms relative to others, giving

δFind ≃ δρm

3M2
, δRind ≃ δρm . (11.141)

Under the condition |δFosc| ≪ |δFind| we have δF ≃ δρm/(3M2), so that
Eq. (11.135) reduces to

( = −' = − 1
2F

a2

k2
δρm . (11.142)
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Substituting Eq. (11.142) into Eq. (11.131), we find that the matter perturbation
obeys the following equation

δ′′
m +

(
1 + H′

H

)
δ′
m − 3

2
&mδm = 0 , (11.143)

where &m = ρm/(3FH 2). This is the same form as the usual equation of matter
perturbations in General Relativity, which has the growing solution

δm ∝ t2/3 . (11.144)

From Eq. (11.141) we get

δFind ∝ t4(n+2/3) , δRind ∝ t−4/3 . (11.145)

Compared to the oscillating mode (11.140), the induced matter mode δRind

decreases more slowly and thus dominates in the late Universe. Relative to the
background value R(0), the perturbation, δR = δRosc + δRind, evolves as

δR

R(0)
≃ b1 t−(3n+2) cos(c0t

−p) + b2 t2/3 , (11.146)

where b1 and b2 are constants. In order to avoid the dominance of the oscillating
mode at the early epoch, the coefficient b1 needs to be suppressed relative to b2.
Note that this property also persists for the evolution of matter perturbations during
the radiation-dominated epoch [369, 371].

(ii) Evolution of perturbations in the regime M2 ≪ k2/a2.
Since the scalaron mass decreases as M ∝ t−2(n+1), the modes that initially exist
in the region M2 ≫ k2/a2 can enter the regime M2 ≪ k2/a2 during the matter-
dominated epoch. It is sufficient to discuss the matter-induced mode because the
oscillating mode is already suppressed during the evolution in the regime M2 ≫
k2/a2. The matter-induced special solution of Eq. (11.136) in the regime M2 ≪
k2/a2 is approximately given by

δFind ≃ a2

3k2
δρm . (11.147)

From Eq. (11.135) the gravitational potentials satisfy

( = −4
3

· 1
2F

a2

k2
δρm , ' = 2

3
· 1

2F

a2

k2
δρm . (11.148)

Plugging Eq. (11.148) into Eq. (11.131), it follows that

δ′′
m +

(
1 + H′

H

)
δ′
m − 4

3
· 3

2
&mδm ≃ 0 . (11.149)
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Figure 11.2 The evolution of δR, δR/R(0), and δm for the model (9.78) with n = 1
for the mode k/(a0H0) = 335. This corresponds to the case in which the coefficient
b1 in Eq. (11.146) is small so that the oscillating mode δRosc is negligible relative
to the matter-induced mode δRind. In this case the transition from the region
M2 ≫ k2/a2 to the region M2 ≪ k2/a2 occurs around the redshift z = 5. From
Ref. [371].

Notice that the factor 4/3 in the last term can be simply understood as the value of
the Yukawa correction (11.113) in the limit of large k and for Q = −1/

√
6.

During the matter era with &m ≃ 1 and a ∝ t2/3, the matter perturbation evolves
as

δm ∝ t
√

33−1
6 . (11.150)

The growth rate of δm is larger than that in the region M2 ≫ k2/a2.
Let us consider the model (9.78). During the matter era we obtain δFind ∝ t

√
33−5
6

from Eqs. (11.147) and (11.150), and hence

δRind ∝ t−4n+
√

33−29
6 ,

δRind

R(0)
∝ t−4n+

√
33−17

6 . (11.151)

In Fig. 11.2 we plot the evolution of δR, δR/R(0) and δm for the model (9.78)
with n = 1 for the mode k/(a0H0) = 335 (corresponding to roughly 2π/k ≈
60h−1 Mpc, i.e. a scale that is well within a linear regime). Note that we have chosen
initial conditions so that the oscillating mode is negligible relative to the matter-
induced mode. Initially the perturbation is in the region M2 ≫ k2/a2 and hence
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Figure 11.3 The evolution of the matter perturbation δm for the model (9.78)
with n = 0.5. The curves correspond to k/(a0H0) = 6, 300, 3000. The transition
redshift zk increases for larger k. For the mode k = 300a0H0, zk = 9.6. Non-linear
effects are not taken into account. From Ref. [371].

the evolution of δm and δR/R(0) is given by Eqs. (11.144) and (11.146) respec-
tively. The sudden decrease of δR/R(0) means that the system enters the region
M2 ≪ k2/a2 in which the evolution of perturbations is given by Eqs. (11.150) and
(11.151).

(iii) Matter power spectra
The evolution of the matter perturbation is given by δm ∝ t2/3 for M2 ≫ k2/a2 and
δm ∝ t (

√
33−1)/6 for M2 ≪ k2/a2. We shall use the subscript “k” for the quantities

at which k is equal to aM , whereas the subscript “!” is used for the onset of cosmic
acceleration (ä = 0). While the redshift z! is independent of k, zk depends on k

and also on the mass M .
For the model (9.78) the variable m = Rf,RR/f,R can grow fast from the regime

m ≪ λ̂2 (i.e. M2 ≫ k2/a2) to the regime m ≫ λ̂2 (i.e. M2 ≪ k2/a2). In fact we
recall that m can grow to as large as the order of 0.1 even if m is much smaller
than 10−9 in the deep matter era. If the transition characterized by the condition
M2 = k2/a2 occurs during the deep matter era (z ≫ 1), one can estimate the
critical redshift zk. We use the asymptotic forms m ≃ C(−r − 1)2n+1 with C =
2n(2n + 1)/µ2n and r ≃ −1 − µRc/R as well as the approximate relations H 2 ≃
H 2

0 &(0)
m (1 + z)3 and R ≃ 3H 2. The present value of the dark energy density may be
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approximated as ρ
(0)
DE ≈ µRc/2. Hence we have that µRc ≈ 6H 2

0 &
(0)
DE, where &

(0)
DE

is the density parameter of dark energy today. Then the condition M2 = k2/a2, i.e.
m ≃ (aH/k)2, translates into the critical redshift

zk ≃
[(

k

a0H0

)2 2n(2n + 1)
µ2n

(2&
(0)
DE)2n+1

&
(0)
m

2(n+1)

] 1
6n+4

− 1. (11.152)

For n = 1, µ = 3, k = 300a0H0, and &(0)
m = 0.28 the numerical value for the

critical redshift is zk = 4.5, which shows good agreement with the analytical value
estimated by Eq. (11.152). We caution, however, that Eq. (11.152) begins to lose
its accuracy for zk close to 1. Equation (11.152) shows that zk tends to be smaller
for larger n and µ.

As n gets larger, the period of a non-standard evolution of δm becomes shorter.
Since the scalaron mass evolves as M ∝ t−2(n+1) for the model (9.78), the time tk
has a scale-dependence tk ∝ k− 3

6n+4 . This means that the smaller-scale modes cross
the transition point earlier. The matter power spectrum Pδm

= |δm|2 at the time t!
shows a difference compared to the case of the !CDM model:

Pδm
(t!)

Pδm
!CDM(t!)

=
(

t!

tk

)2
( √

33−1
6 − 2

3

)

∝ k
√

33−5
6n+4 . (11.153)

While the galaxy matter power spectrum is modified by this effect, the CMB
spectrum is hardly affected except for low multipoles around which the ISW effect
becomes important. Thus there is a difference for the spectral indices of two power
spectra, i.e.

9n(t!) =
√

33 − 5
6n + 4

. (11.154)

For larger n the redshift zk can be as close as z!, which means that the estimation
(11.154) is not necessarily valid in such cases. One finds that the estimation (11.154)
agrees well with the numerically obtained 9n(t!) for n ! 2 [371].

We note that the estimation (11.154) does not take into account the evolution
of δm after z = z! to the present epoch (z = 0). After the system enters the epoch
of cosmic acceleration, the momentum k can again become smaller than aM .
Hence the k-dependence is not necessarily negligible even for z < z!. However,
numerical simulations show that 9n(t0) is not much different from 9n(t!) derived
by Eq. (11.154) [371]. Thus the analytic estimation (11.154) is certainly reliable
to place constraints on model parameters except for n ≫ 1. Observationally we do
not find any strong difference for the slopes of the spectra of LSS and CMB. If we
take the mild bound 9n(t!) ! 0.05, we obtain the constraint n " 2. In this case
local gravity constraints are also satisfied, see Eq. (9.89).
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The modified growth of matter perturbations also affects the evolution of the
gravitational potentials ( and '. As we have seen the effective potential ψ =
' − ( is important in discussing the ISW effect on the CMB as well as the weak
lensing observations, see Eqs. (4.236) and (4.238). From Eq. (11.135) this potential
is given by

ψ = 3a2H 2

k2
&mδm . (11.155)

In the !CDM model the potential ψ remains constant during the standard matter
era, but it decays after the system enters the accelerated epoch, producing the ISW
contribution for low multipoles on the CMB power spectrum. In f (R) gravity the
additional growth of matter perturbations in the region z < zk changes the evolution
of ψ .

From CMB observations, however, we do not obtain a constraint on n tighter than
the one derived by the spectral index of matter perturbations [490]. This comes from
the fact that the ISW effect is important only for the modes with k/(a0H0) = O(1)
whose transition redshift zk is smaller than the modes relevant to the galaxy power
spectrum. In the weak lensing observations, the modified evolution of the lensing
potential ψ directly leads to the change even for the small-scale shear power
spectrum [491, 492]. Hence this can be a powerful tool to constrain f (R) gravity
models from future observations.

11.6.2 Scalar-tensor gravity

Let us next discuss the case of scalar-tensor gravity. To be concrete we shall study
the evolution of matter perturbations for the Jordan frame action (9.120), i.e. Brans–
Dicke theory with the potential U (φ) and the coupling F (φ) = e−2Qφ . We define
the field mass squared to be

M2 ≡ d2U

dφ2
. (11.156)

If the scalar field is light such that the condition M ! H0 is always satisfied
irrespective of high- or low-density regions, the coupling Q is constrained to be
|Q| ! 10−3 from local gravity tests. Meanwhile, if the mass M in the region of
high density is much larger than that on cosmological scales, it is possible to satisfy
local gravity constraints by the chameleon mechanism even if |Q| is of the order of
unity. Cosmologically the mass M can decrease from the past to the present, which
can allow the transition from the “GR regime” to the “scalar-tensor regime” as
happens in f (R) gravity. An example of the field potential showing this behavior
is given by Eq. (9.148).
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As in f (R) gravity, the matter perturbation δm satisfies Eq. (11.131). The dif-
ference appears in the expression of the gravitational potential (. In Fourier space
the scalar metric perturbations obey the following equations [417, 273]

−k2

a2
' + 3H (H( − '̇) = − 1

2F

[
ωφ̇ϕ̇ + 1

2
(ω,φφ̇2−F,φR + 2U,φ)ϕ

+
(

3Ḣ+3H 2−k2

a2

)
δF − 3H δḞ

+ (3HḞ − ωφ̇2)( + 3Ḟ (H( − '̇) + δρm

]
,

(11.157)

ϕ̈ +
(

3H+ω,φ

ω
φ̇
)

ϕ̇ +
[

k2

a2
+

(ω,φ

ω

)

,φ

φ̇2

2
+

(
2U,φ − F,φR

2ω

)

,φ

]

ϕ

= φ̇(̇+
(

2φ̈ + 3H φ̇ + ω,φ

ω
φ̇2

)
( + 3φ̇(H( − '̇) + 1

2ω
F,φδR , (11.158)

( + ' = −δF

F
= −F,φ

F
ϕ , (11.159)

where ϕ = δφ is the perturbed field, ω = (1 − 6Q2)F , and

δR = 2
[

3('̇ − H()· − 12H (H( − '̇) +
(

k2

a2
− 3Ḣ

)
( + 2

k2

a2
'

]
.

(11.160)

As long as the mass M defined in Eq. (11.156) is sufficiently heavy to satisfy
the conditions M2 ≫ R, we can approximate [(2U,φ − F,φR)/2ω],φ ≃ M2/ω in
Eq. (11.158). The solution to Eq. (11.158) consists of the sum of the matter-induced
mode ϕind sourced by the matter perturbation and the oscillating mode ϕosc, i.e.
ϕ = ϕind + ϕosc. The oscillating mode corresponds to the solution of Eq. (11.158)
without the matter perturbation.

Let us first derive the matter-induced mode on sub-horizon scales. In so doing
we use the approximation that the terms containing k2/a2, δρm, δR, and M2 are the
dominant contributions in Eqs. (11.157)–(11.160).1 Under this approximation, we
have δRind ≃ 2(k2/a2)[' − (F,φ/F )ϕind] from Eqs. (11.159) and (11.160), where
the subscript “ind” represents the matter-induced mode. Then from Eq. (11.158)

1 This approximation was first used in Ref. [374] for the scalar-tensor theory with the Lagrangian density
L = (1/2)F (φ)R − (1/2)∇(φ)2 − U (φ) in the massless limit: M2 ≪ k2/a2.
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we find

ϕind ≃ − 2QF

(k2/a2)(1 − 2Q2)F + M2

k2

a2
' . (11.161)

Using Eqs. (11.157) and (11.159) we obtain

k2

a2
( ≃ −δρm

2F

(k2/a2)(1 + 2Q2)F + M2

(k2/a2)F + M2
,

k2

a2
' ≃ δρm

2F

(k2/a2)(1 − 2Q2)F + M2

(k2/a2)F + M2
. (11.162)

In the massive limit M2/F ≫ k2/a2, we recover the standard result of General Rel-
ativity. In the massless limit M2/F ≪ k2/a2, one has (k2/a2)( ≃ −(δρm/2F )(1 +
2Q2) and (k2/a2)' ≃ (δρm/2F )(1 − 2Q2). Note that this recovers Eq. (11.148) in
f (R) gravity by setting Q = −1/

√
6.

Substituting Eq. (11.162) into Eq. (11.131), we obtain the equation for matter
perturbations

δ′′
m +

(
1 + H′

H

)
δ′
m − 3

2
&mδm

(k2/a2)(1 + 2Q2)F + M2

(k2/a2)F + M2
= 0 . (11.163)

This equation can be also written as [273]

δ′′
m +

(
1 + H′

H

)
δ′
m − 4πGeffρmδm

H 2
= 0 , (11.164)

where the (cosmological) effective gravitational “constant” is

Geff = G

F

(k2/a2)(1 + 2Q2)F + M2

(k2/a2)F + M2
= G

F

[
1 + 2Q2k2

k2 + a2M2/F

]
. (11.165)

Note that we have recovered the bare gravitational constant G by using G = 1/(8π ).
In the massless limit this reduces to

Geff ≃ G

F
(1 + 2Q2) = G

F

4 + 2ωBD

3 + 2ωBD
(M2/F ≪ k2/a2) , (11.166)

where in the last line we have used the relation (9.122) between the coupling Q and
the Brans–Dicke parameter ωBD. Note that the cosmological effective gravitational
constant (11.166) agrees with the Newton gravitational constant (9.154).

Let us pause to compare the Jordan frame Geff in Eq. (11.165) with the similar
result (11.113) in the Einstein frame. The two expressions are in a similar, but
not identical, form if we identify M/F 1/2 as the field dimensionless mass m.
The difference is due to the fact that the real observable is not Geff but rather the
dimensionless (if c = 1) combination GeffM/r: it is this combination that gives the
strength of the interaction. Upon a conformal transformation with conformal factor
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F = e−2Qφ as in Section 9.1.3 the distances in the two frames scale as r̃ = F 1/2r

(as usual the tilded quantity is in the Einstein frame). In coupled dark energy the
physical frame is the Einstein one and we have from (11.117):

GeffM(φ)
r̃

= GM0e
Qφ(1 + Yc)

e−Qφr
= GM0(1 + Yc)

re−2Qφ
, (11.167)

where Yc is the Yukawa correction. It appears therefore that this coincides indeed
with the Jordan frame result

GeffM0

r
= GM0(1 + Yc)

Fr
= GM0(1 + Yc)

re−2Qφ
. (11.168)

Next, let us derive the approximate equation for the oscillating mode. Using
Eqs. (11.157) and (11.158) under the condition k2/a2 ≫ H 2 the gravitational
potentials for δρm = 0 are expressed by ϕosc. Then from Eq. (11.160) the perturba-
tion δR corresponding to the oscillating mode is given by

δRosc ≃ 6Q

(
ϕ̈osc + 3H ϕ̇osc + k2

a2
ϕosc

)
. (11.169)

Substituting this relation into Eq. (11.158), we find

ϕ̈osc + 3H ϕ̇osc +
(

k2

a2
+ M2

F

)
ϕosc ≃ 0 , (11.170)

which is valid in the regime M2 ≫ R.
When |Q| = O(1) the field potential U (φ) needs to be heavy in the region of

high density for the consistency with local gravity constraints. We shall consider the
potential (9.148) as an example of a viable model. During the matter era the field φ

sits at the instantaneous minima characterized by the condition (9.150). Hence, we

have the relations φ ∝ ρ
1

p−1
m and M2 ∝ ρ

2−p
1−p

m during the matter-dominated epoch.
The field φ can initially be heavy to satisfy the condition M2/F ≫ k2/a2 for
the modes relevant to the galaxy power spectrum. Depending upon the model
parameters and the mode k, the mass squared M2 can be smaller than k2/a2 during
the matter era [273].

In the regime M2/F ≫ k2/a2 the matter perturbation equation (11.163) reduces
to the standard one in Einstein gravity, which gives the evolution δm ∝ t2/3. For
the model (9.148) the matter-induced mode of the field perturbation evolves as
ϕind ∝ δρm/M2 ∝ t

2(4−p)
3(1−p) . Meanwhile, the WKB solution to Eq. (11.170) is given

by ϕosc ∝ t
p

2(1−p) cos(ct−
1

1−p ), where c is a constant. Since the background field φ

during the matter era evolves as φ ∝ t
2

1−p , we find

ϕ/φ = (ϕind + ϕosc)/φ ≃ c1t
2/3 + c2t

− 4−p
2(1−p) cos

(
ct−

1
1−p

)
. (11.171)
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As long as the oscillating mode is initially suppressed relative to the matter-induced
mode, the matter-induced mode remains the dominant contribution. This property
also holds during the radiation-dominated epoch.

In the regime M2/F ≪ k2/a2 the effective gravitational constant is given
by Eq. (11.166), which shows that the effect of modified gravity becomes
important. Solving Eq. (11.164) in this case, we obtain the solution for matter
perturbations

δm ∝ t

√
25+48Q2−1

6 . (11.172)

Setting Q = −1/
√

6, this recovers the solution δm ∝ t (
√

33−1)/6 in f (R) gravity.
The potential (9.148) has a heavy mass M which is much larger than H in the

deep matter-dominated epoch, but it gradually decreases to become of the order
of H around the present epoch. Depending on the modes k, the system crosses
the point M2/F = k2/a2 at t = tk. Since for the potential (9.148) M evolves as
M ∝ t−

2−p
1−p during the matter era, the time tk has a scale-dependence given by

tk ∝ k− 3(1−p)
4−p . When t < tk the evolution of δm is given by δm ∝ t2/3, but for t > tk

its evolution changes to the form given by (11.172).
During the matter era the mass squared is approximately given by

M2 ≃ 1 − p

(2p p C)1/(1−p)
Q2

(
ρm

U0

) 2−p
1−p

U0 . (11.173)

Using the relation ρm = 3F0&
(0)
m H 2

0 (1 + z)3, we find that the critical redshift zk at
time tk can be estimated as

zk ≃
[(

k

a0H0

1
|Q|

)2(1−p) 2ppC

(1 − p)1−p

1

(3F0&
(0)
m )2−p

U0

H 2
0

] 1
4−p

− 1 , (11.174)

where a0 is the present scale factor. The critical redshift increases for larger
k/(a0H0). The matter power spectrum, in the linear regime, has been observed
for the scales 0.01h Mpc−1 ! k ! 0.2h Mpc−1, which corresponds to 30a0H0 !
k ! 600a0H0. In Fig. 11.4 we plot the evolution of the growth rate f = δ̇m/(H δm)
for the mode k = 600a0H0 and the coupling Q = 1.08 with three different values
of p. Note that the asymptotic values of f in the regions t ≪ tk and t ≫ tk are
given by f = 1 and f = (

√
25 + 48Q2 − 1)/4, respectively. We find that, for the

scales 30a0H0 ! k ! 600a0H0, the critical redshift exists in the region zk " 1 and
that zk increases for smaller p. When p = 0.7 we have zk = 3.9 from Eq. (11.174),
which is consistent with the numerical result in Fig. 11.4. The growth rate f

reaches a maximum value fmax and then begins to decrease around the end of the
matter era.
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Figure 11.4 The evolution of the growth rate f of matter perturbations in terms
of the redshift z for Q = 1.08 and k = 600a0H0 with three different values of
p. For smaller p the critical redshift zk gets larger. The growth rate f reaches
a maximum value and begins to decrease after the system enters the accelerated
epoch. For smaller p the maximum value of f tends to approach the analytic value
f = (

√
25 + 48Q2 − 1)/4. From Ref. [273].

McDonald et al. [493] derived the constraint f = 1.46 ± 0.49 around the
redshift, z = 3, from the measurement of the matter power spectrum from the
Lyman-α forests. The more recent data reported by Viel and Haehnelt [494] in
the redshift range 2 < z < 4 show that even the value f = 2 can be allowed in
some of the observations. If we use the criterion f < 2 for the analytic esti-
mation f = (

√
25 + 48Q2 − 1)/4, we obtain the bound Q < 1.08. Figure 11.4

shows that fmax is smaller than the analytic value f = 2 (which corresponds to
Q = 1.08). When p = 0.7, for example, we have that fmax = 1.74. For the val-
ues of p that are very close to 1, fmax can be smaller than 1.5. However these
cases are hardly distinguishable from the !CDM model. In any case the current
observational data on the growth rate f are not enough to place tight bounds on Q

and p.
As in the case of f (R) gravity, the matter power spectrum Pδm

at time t = t! (at
which ä = 0) shows a difference compared to the !CDM model given by

Pδm
(t!)

P !CDM
δm

(t!)
=

(
t!

tk

)2
(√

25+48Q2−1
6 − 2

3

)

∝ k
(1−p)(

√
25+48Q2−5)
4−p , (11.175)



330 Dark energy and linear cosmological perturbations

for small (k ≫ MaF−1/2), but still linear, scales. The CMB power spectrum is also
modified by the non-standard evolution of the effective gravitational potential

ψ = ' − ( = 3a2H 2

k2
&mδm , (11.176)

which mainly affects the low multipoles because of the ISW effect. Since the smaller
scale modes in CMB relevant to the galaxy power spectrum are hardly affected by
this modification, there is a difference between the spectral indices of the matter
power spectrum and of the CMB spectrum on the scales, k > 0.01h Mpc−1:

9n(t!) = (1 − p)(
√

25 + 48Q2 − 5)
4 − p

. (11.177)

This reproduces the result (11.154) in f (R) gravity by setting Q = −1/
√

6 and
p = 2n/(2n + 1). If we use the criterion 9n(t!) < 0.05, as in the case of the f (R)
gravity, we obtain the bounds p > 0.96 for Q = 1 and p > 0.86 for Q = 0.5. As
long as p is close to 1, it is possible to satisfy both cosmological and local gravity
constraints for |Q| ! 1.

11.6.3 DGP braneworld model

Finally, we discuss the evolution of linear matter perturbations in the DGP
braneworld model. The perturbed metric in the 5-dimensional longitudinal gauge
with four scalar metric perturbations (, ', B, E is given by [441, 495]

ds2 = −(1 + 2()n(t, y)2dt2 + (1 + 2')A(t, y)2δij dxidxj

+ 2rcB,idxidy + (1 + 2E)dy2 , (11.178)

where the brane is located at y = 0 in the 5-th dimension characterized by the
coordinate y (we are considering a flat FLRW spacetime on the brane). Note that
B can be identified as a brane bending mode describing a perturbation of the brane
location and that rc is the crossover scale defined in Eq. (9.215). The solution for
the background metric describing the self-accelerating Universe is [433]

n(t, y) = 1 + H (1 + Ḣ /H 2)y , A(t, y) = a(t)(1 + Hy) . (11.179)

Recall that the Hubble parameter H = ȧ/a satisfies Eq. (9.218) with ϵ = +1.
In the following we shall neglect the terms suppressed by the factor aH/k ≪ 1

because we are considering sub-horizon perturbations. We also neglect the terms
such as (A′/A)'′, where a prime represents a derivative with respect to y. This
comes from the fact that '′ is of the order of (k/a)', as we will show later. The
time-derivative terms can be also dropped under a quasi-static approximation. Then
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the perturbed 5-dimensional Einstein tensors δG̃A
B obey the following equations

locally in the bulk [495]:

δG̃0
0 = 3'′′ + 2

A2
∇2' + ∇2

A2
(E − rcB

′) − 2
rc

A2

(
A′

A

)
∇2B = 0 , (11.180)

δG̃i
j = − 1

A2
(∇ i∇j − δi

j∇2)(' + ( + E − rcB
′) + δi

j (( ′′ + 2'′′)

+ rc

A2
(∇ i∇j − δi

j∇2)
(

A′

A
+ n′

n

)
B = 0 , (11.181)

δG̃5
i = −(( ′ + 2'′),i = 0 , (11.182)

δG̃5
5 = 1

A2
∇2(( + 2') − rc

A2

(
2
A′

A
+ n′

n

)
∇2B = 0 . (11.183)

Taking the divergence of the traceless part of Eq. (11.181), we get

∇2

A2
(' + ( + E − rcB

′) − rc

A2

(
A′

A
+ n′

n

)
∇2B = 0 . (11.184)

For the consistency between Eqs. (11.182) and (11.183), it is required that

B ′ = 0, ( ′ + 2'′ = 0 . (11.185)

From Eqs. (11.183) and (11.184) we obtain

∇2

A2
(E − rcB

′) = −1
2

∇2

A2
( + rc

2A2

n′

n
∇2B . (11.186)

Substituting Eqs. (11.183) and (11.186) into Eq. (11.180) together with the use of
Eq. (11.185), we find

( ′′ + ∇2

A2
( − n′

n

rc

A2
∇2B = 0 . (11.187)

Under the sub-horizon approximation (k ≫ aH ) the solution of Eq. (11.187), upon
the Fourier transformation, is given by

( − n′

n
rcB =

[
c1(1 + Hy)−k/aH + c2(1 + Hy)k/aH

]
, (11.188)

where c1 and c2 are integration constants. In order to avoid the divergence of the
perturbation in the limit y → ∞ we shall choose c2 = 0.

The junction condition at the brane can be written in terms of an extrinsic
curvature Kµν and an energy-momentum tensor on the brane:

Kµν − Kgµν = −
κ2

(5)

2
Tµν + rcGµν , (11.189)
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where K ≡ Kµ
µ . Note that the extrinsic curvature is defined as Kµν = hλ

µ∇λ nν ,
where nν is the unit vector normal to the brane and hµν = gµν − nµnν is the
induced metric on the brane. The (0, 0) and spatial components of the junction
condition (11.189) give

2
a2

∇2' = −κ2
(4)δρm + 1

a2
∇2B − 3

rc

'′ , (11.190)

' + ( = B, (11.191)

( ′ + 2'′ = 0 , (11.192)

where δρm is the matter perturbation on the brane. Note that Eq. (11.192) is
consistent with the latter of Eq. (11.185).

From Eq. (11.188) it follows that '′ ∼ (k/a)' in Fourier space. For the per-
turbations whose wavelengths are much smaller than the cross-over scale rc, i.e.
rc k/a ≫ 1, we find that the term (3/rc)'′ in Eq. (11.190) is much smaller than
(k2/a2)'. In Fourier space Eq. (11.190) is approximately given by

2k2

a2
' = κ2

(4)δρm + k2

a2
B . (11.193)

Using the projection of Eq. (11.183) as well as Eqs. (11.191) and (11.193), we find
that metric perturbations ( and ' obey the following equations

k2

a2
( = −

κ2
(4)

2

(
1 + 1

3β

)
δρm ,

k2

a2
' =

κ2
(4)

2

(
1 − 1

3β

)
δρm , (11.194)

where

β(t) ≡ 1 − 2rc

3

(
2
A′

A
+ n′

n

)
= 1 − 2Hrc

(
1 + Ḣ

3H 2

)
. (11.195)

The matter perturbation δm satisfies the same form of equation as given in (11.131)
for the modes deep inside the horizon [440, 441]. Substituting the former of
Eq. (11.194) into Eq. (11.131), we find that the matter perturbation obeys the
following equation

δ′′
m +

(
1 + H′

H

)
δ′
m − 3

2

(
1 + 1

3β

)
&mδm = 0 , (11.196)

where &m ≡ κ2
(4)ρm/(3H 2).

In the deep matter era one has Hrc ≫ 1 and hence β ≃ −Hrc, so that β is largely
negative (|β| ≫ 1). In this regime the evolution of the matter perturbation is similar
to that in General Relativity (δm ∝ t2/3). The system finally approaches the de Sitter
solution characterized by HdS = 1/rc. We then have β ≃ 1 − 2Hrc ≃ −1 around
the de Sitter solution. Since 1 + 1/(3β) ≃ 2/3, the growth rate in this regime is
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smaller relative to the case of General Relativity. The index γ of the growth rate
f = &

γ
m is approximated by γ ≈ 0.68 [480], which is different from the value

γ ≃ 0.55 for the !CDM model. If the future imaging survey of galaxies can
constrain γ within 20%, it may be possible to distinguish the !CDM model from
DGP modified gravity observationally [496, 497].

From Eq. (11.196) one can regard that the effective gravitational “constant” is
given by Geff = G[1 + 1/(3β)]. Comparing this with the effective gravitational
constant (11.166) in Brans–Dicke theory with a massless limit (or the absence of
the field potential), we find that the Brans–Dicke parameter ωBD has the following
relation with β:

ωBD = 3
2

(β − 1) . (11.197)

Since β < 0 for the self-accelerating DGP solution, this implies that ωBD < −3/2.
This corresponds to the theory with ghosts, because the kinetic energy of a scalar
field degree of freedom becomes negative in the Einstein frame [404]. The DGP
ghost is a ghost mode in the scalar sector of the gravitational field, which is more
serious than the ghost in a phantom scalar field. Note that another normal branch
of solutions in the DGP model does not suffer from this problem because the
minus sign of Eq. (11.195) is replaced by the plus sign. In other words, the self-
accelerating solution in the original DGP model can be realized at the expense of
an appearance of the ghost state.

11.6.4 Reconstruction of the metric at first order

We have shown that modified gravity models generally lead to a change of the
growth rate of matter perturbations relative to the !CDM model. Given the matter
perturbation δm, the first-order metric perturbations ', ( are completely fixed
by solving the conservation equations. Since there are two free functions that
determine the (scalar part of the) first-order metrics ( and ', dark energy models
can be classified according to how the gravitational potentials are linked to δm. In
order to quantify this, we introduce two quantities q(k, t) and ζ (k, t) defined by

k2

a2
' = 4πGqδmρm , (11.198)

' + (

'
= ζ , (11.199)

where G is the 4-dimensional bare gravitational constant. Note that ζ characterizes
the strength of the anisotropic stress. The !CDM model corresponds to q = 1 and
ζ = 0 (recall that the cosmological constant does not cluster). A non-clustering
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dark energy in Einstein gravity will also have q = 1, ζ = 0 at small scales. In
this case the background evolution fixes the equation of state of dark energy and
from this one can derive all the cosmological dynamics. On the other hand, any
model in which dark energy clusters or gravity is modified (or both) can induce
different values of q, ζ relative to the !CDM model. Therefore the functions q

and ζ completely characterize a gravity theory for first-order scalar perturbations
on small scales.

For instance, if gravity is Einsteinian but δDE ̸= 0, we find from Eq. (11.41) that
the gravitational potential ' on sub-horizon scales satisfies

k2

a2
' = 4πG

(
1 + &DEδDE

&mδm

)
δmρm , (11.200)

which gives q = 1 + &DEδDE/(&mδm). Hence the clustered dark energy leads to
the deviation from the !CDM model.

In the scalar-tensor model discussed in Section 11.6.2, the gravitational poten-
tials are given by Eq. (11.162) on sub-horizon scales. In this case we have

q = 1
F

(k2/a2)(1 − 2Q2)F + M2

(k2/a2)F + M2
, ζ = − 4F (k2/a2)Q2

(k2/a2)(1 − 2Q2)F + M2
,

(11.201)

where we have used the unit 8πG = 1. In the regime M2/F ≫ k2/a2 (and F ≃ 1)
it follows that q ≃ 1 and ζ ≃ 0. In the regime M2/F ≪ k2/a2 we have q ≃
(1 − 2Q2)/F and ζ ≃ −4Q2/(1 − 2Q2), so that the deviation from the !CDM
model becomes important. Recall that the expression (11.201) covers the case of
f (R) gravity by setting Q = −1/

√
6. In Ref. [498] the quantities q and ζ have

been evaluated for the more general Lagrangian density f (R,φ, X).
In the DGP model the gravitational potentials obey Eq. (11.194), which gives

q = 1 − 1
3β

, ζ = 2
1 − 3β

. (11.202)

In the deep matter era one has |β| ≫ 1, so that q ≃ 1 and ζ ≃ 0. The deviation
from (q, ζ ) = (1, 0) appears when |β| decreases to the order of unity, i.e. when the
Universe enters the epoch of late-time cosmic acceleration.

In order to confront dark energy models with the observations of weak lensing,
it may be convenient to introduce the following quantity [497]

= ≡ q(1 − ζ/2) . (11.203)
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From Eqs. (11.198) and (11.199) we find that the weak lensing potential ψ =
' − ( can be expressed as

ψ = 8πG
a2

k2
ρmδm= . (11.204)

Notice that for the DGP model we have = = 1 while for scalar-tensor models
= = 1/F . This is ultimately a consequence of the fact that scalar-tensor theories
are conformally equivalent to ordinary gravity and therefore null geodesics remain
the same (i.e. the equation ds2 = 0 is conformally invariant). Then the photon
propagation equation (4.213) and its first-order version (4.222) are unchanged and
thus the lensing potential ψ is unchanged as well, except for an overall rescaling.

The effect of modified gravity theories manifests itself in weak lensing observa-
tions in at least two ways. One is the multiplication of the term = on the r.h.s. of
Eq. (11.204). Another is the modification of the evolution of δm. The latter depends
on the two parameters q and ζ , or, equivalently, = and ζ . These two parameters
(=, ζ ) will be useful to detect signatures of modified gravity theories from future
surveys of weak lensing.

11.7 Problems

11.1 Take Eq. (11.43) and find the analytical solution in the case where &DE and w are
constants.

11.2 In f (R) gravity, find the (cosmological) effective gravitational “constant” Geff from
the equation of matter perturbations.
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Non-linear cosmological perturbations

Cosmology is, by and large, the realm of linear gravitational processes. When grav-
itational instability reaches a regime of non-linearity, astrophysical objects form
(galaxies, black hole, stars) and the memory of the global structure of spacetime,
and therefore of cosmology, is lost or diluted in new physics and new interactions.
There is however an intermediate regime in which gravity is still the only player but
effects beyond linearity begin to be observable. This regime lies between the linear
perturbation theory we have explored in the previous chapter and the full non-
linear dynamics that can be dealt with only in N -body simulations or by focusing
on single objects.

It may be expected that the presence of dark energy will not influence small-scale
non-linear processes. This is probably true for standard dark energy, i.e. a smooth
component with negligible clustering described by a slowly varying equation of
state. However we have learned how rich the possible phenomenology of dark
energy is. We cannot exclude that weakly non-linear processes might keep some
record on the cosmological conditions in which they developed. We know of at
least one such process, the epoch of the beginning of structure formation and, as a
consequence, the abundance of collapsed objects.

This chapter will present the effects of non-linearity in higher-order cosmological
perturbation theory that are of interest in dark energy research. Primes here denote
differentiation with respect to N = ln a.

12.1 Second-order perturbations

We have seen that the perturbation equations in the sub-horizon regime reproduce
the linearized, Newtonian versions of the continuity equation, the Euler equation,
and the Poisson equation of classical fluid dynamics. We could then as well make
a step further and derive the full equation, without linearization. In fact, at least for
dust, they remain identical to the Newtonian laws in physical coordinates.

336
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Consider a pressureless perfect fluid with density ρ moving with a velocity u
under an influence of gravity characterized by a gravitational potential 'N . The
continuity equation (the conservation of mass) and the Euler equation (the Newton’s
equation of motion with the gravitational force f = −∇r'N ) in the fluid dynamics
are given, respectively, by

(
∂ρ

∂t

)

r

+ ∇r · (ρu) = 0 , (12.1)

(
∂u
∂t

)

r

+ (u · ∇r )u = −∇r'N , (12.2)

where 'N is the gravitational potential in Newton’s gravity satisfying the Poisson
equation

∇2
r 'N = 4πGρ . (12.3)

The subscript r means that the physical (proper) coordinate r is used in Eqs. (12.1)
and (12.2).

In the expanding Universe it is convenient to change variables from the proper
locally Minkowski coordinate r to the expanding coordinate x = r/a(t) comoving
in the background model. Then the fluid velocity u = ṙ is given by

u = ȧx + v(x, t) , (12.4)

where v = a ẋ is the peculiar velocity. Note that the transformation laws hold

∇x = a∇r ,

(
∂f (x, t)

∂t

)

r

=
(

∂f

∂t

)

x

− ȧ

a
(x · ∇x)f , (12.5)

where f is an arbitrary function with respect to x and t . We define as usual the
matter density contrast

δ(x, t) ≡ δρ(x, t)
ρ̄(t)

, δρ ≡ ρ(x, t) − ρ̄(t) , (12.6)

where ρ̄(t) is the background matter density.
Carrying out the transformation of Eqs. (12.1), (12.2), and (12.3) to the comoving

coordinate, we obtain [95, 499]

∂δ

∂t
+ 1

a
∇x · (1 + δ)v = 0 , (12.7)

∂v

∂t
+ Hv + 1

a
v · ∇xv = 1

a
∇x' , (12.8)

1
a2

∇2
x' = −4πGδρ , (12.9)
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where

' ≡ −
(

'N + 1
2
aäx2

)
. (12.10)

See problem 12.1 for the derivation of Eqs. (12.7)–(12.9). Note that the conservation
equation, ˙̄ρ(t) + 3H ρ̄(t) = 0, also follows from Eq. (12.1) as the zero-th order. In
order to derive Eq. (12.9) together with the effective gravitational potential (12.10),
we have used the relation ä/a = −(4πG/3)ρ̄(t). Equations (12.7)–(12.9) are the
master equations to describe the evolution of pressureless matter perturbations
including the effect of non-linearity. In the following we drop the subscript x for
brevity.

For convenience we rewrite Eqs. (12.7)–(12.9) by using the derivative with
respect to N = ln a, the velocity vector vi , and the density parameter &m =
8πGρm/(3H 2):

Hδ′ = −∇ i[(1 + δ)vi] , (12.11)

Hv′
i = −Hvi − vj∇j vi + ∇i' , (12.12)

∇2' = −3
2
&mH2δ , (12.13)

where repeated indices are summed over. All the perturbation variables depend
both on space and time.

These equations are derived under a number of simplifying assumptions. First,
they refer to pressureless matter (w = c2

s = 0). Second, they are valid in the sub-
horizon, small velocity regime. Since the non-linear effects are expected to be more
important at small scales this seems well justified. Third, we have neglected any
shear term in the Euler equation, that is, we have assumed that the pressureless
fluid has no viscosity. This property allows the set of equations to be closed. The
absence of shear implies that spherical perturbations at the initial stage remain
spherical throughout.

The velocity vector vi can be generally decomposed in transverse and parallel
parts. As before we neglect the transverse (or vorticity) part on the grounds that
if it is initially zero it remains zero throughout – but again for this to be true a
vanishing shear stress is required. Building a total derivative

dδ

dN
≡ δ′ + vi

H
∇iδ , (12.14)

where a prime represents a partial derivative with respect to N , the continuity
equation (12.11) can be written as

dδ

dN
= −θ (1 + δ) . (12.15)
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As in the previous chapter, θ = ∇ ivi/H. Taking the divergence of the Euler equa-
tion (12.12) and using Eq. (12.13), we obtain

θ ′ = −
(

1 + H′

H

)
θ − 1

H2
∇ i(vj∇j vi) − 3

2
&mδ . (12.16)

Now we have

∇ i(vj∇j vi) = (∇ ivj )(∇j vi) + vj∇j∇ ivi . (12.17)

The last term is Hvj∇jθ and can be absorbed into the l.h.s. of Eq. (12.16) to
form a total derivative dθ/dN . The first term on the r.h.s. of Eq. (12.17) can be
simplified by recalling that the shear-free peculiar velocity field in an initially
spherical perturbation remains purely radial and therefore depends only on r . In
other words, one can write v = (v/

√
3){1, 1, 1} so that

(∇ ivj )(∇j vi) = 1
3
H2θ2 . (12.18)

So Eq. (12.16) depends on θ, δ alone:

dθ

dN
= −

(
1 + H′

H

)
θ − 1

3
θ2 − 3

2
&mδ . (12.19)

Notice that we do not need to derive the peculiar velocity to second-order since
the second-order terms are proportional to the gravitational potential ' [compare
Eq. (4.28)] and are therefore negligible on small scales. From Eqs. (12.15) and
(12.19) we obtain

d2δ

dN2
+

(
1 + H′

H

)
dδ

dN
− 3

2
&mδ = 4

3
1

1 + δ

(
dδ

dN

)2

+ 3
2
&mδ2 , (12.20)

where on the l.h.s. we retrieve the usual linearized terms of Eq. (4.104) while on
the r.h.s we have the new non-linear terms. Since we are still assuming δ = δ(x, a)
the total derivative includes the spatial part as well.

If, more in general, we do not make the assumption of radial perturbations,
Eq. (12.20) becomes

dδ2

dN2
+

(
1+H′

H

)
dδ

dN
− 3

2
&mδ = 1

1 + δ

(
dδ

dN

)2

+ 3
2
&mδ2 + (∇ ivj )(∇j vi)

1 + δ

H2
.

(12.21)
In order to see the effects of non-linear terms, we expand δ(x, a) in a pertur-
bative series, δ =

∑∞
n=1 δ(n), where the terms are assumed to be of order n. At

first order we are then left with the usual separable linear perturbation equation
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δ(1) = δ1(x)DL(a). You can show in problem 12.2 that at second order we obtain

δ(2)′′ +
(

1 + H′

H

)

δ(2)′ − 3
2
&mδ(2) = 3

2
&m

f 2
D′2

L [δ2
1 + δ1,i9,i]

+D′2
L [δ2

1 + 2δ1,i9,i + 9,ij9,ij ] , (12.22)

where f ≡ D′
L/DL is the linear growth rate, and

9(x) ≡ − 1
4π

∫
δ1(x′)

|x − x′|
d3x ′ . (12.23)

Note that spatial derivatives are denoted with commas and that 9(x) is the general
solution of the Poisson equation ∇29 = δ1(x).

Following Ref. [506] we can now solve Eq. (12.22) by assuming that the solution
is dominated by the inhomogeneous terms (which is indeed the case). If we denote
with D2a a particular solution of

D′′
2a +

(

1 + H′

H

)

D′
2a − 3

2
&mD2a = 3

2
&m

f 2
D′2

L , (12.24)

and with D2b a particular solution of

D′′
2b +

(

1 + H′

H

)

D′
2b − 3

2
&mD2b = D′2

L , (12.25)

then the general solution can be written as

δ(2) = (D2a + D2b)δ2
1 + (D2a + 2D2b)δ1,i9,i + D2b9,ij9,ij , (12.26)

where D2b = (D2
L − D2a)/2. To respect the assumption of initial Gaussianity we

assume D′
2a = D2a = 0 at the initial time (i.e. far into the past). For a spherical

perturbation, the last term on the r.h.s. in Eq. (12.26) is D2bδ
2
1/3 and sums with the

first to give (D2a + 4D2b/3)δ2
1. If, moreover, the gradient term δ1,i9,i is negligible

(for instance near the center of a top-hat perturbation), then the second-order
solution is separable, δ(2) = δ2

1(x)D2(a), where D2 is the solution of the equation

D′′
2 +

(

1 + H′

H

)

D′
2 − 3

2
&mD2 =

(
3
2

&m

f 2
+ 4

3

)
D′2

L . (12.27)

This can be obtained from Eq. (12.20) by neglecting the gradient terms in
the total derivatives. This approximation can be extended to all orders. In the
simple Einstein–de Sitter case (H′

/H = −1/2 and &m = 1) all coefficients in
Eq. (12.27) are constant and to order n = 2, 3 we obtain (you can check by direct
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substitution) [95]

D2 = 17
21

D2
L , D3 = 341

567
D3

L . (12.28)

12.2 The bispectrum and the higher-order correction to the power spectrum

Let us start again from Eqs. (12.11)–(12.13). Since we are assuming the flow to
be directed along the gravitational potential gradient, we can write vi

k = kiα in
Fourier space. Since θk = ikiv

i
k/H we obtain α = −iθkHk−2 and hence

vi
k = − iki

k2
Hθk . (12.29)

Equation (12.11) can be written as

Hδ′ + Hθ = −∇i(δ vi) . (12.30)

Performing the Fourier transformation and using Eq. (12.29), we find1

∫
d3kH

(
δ′
k + θk

)
eik·x = −(2π )−3

∫
d3k1d3k2∇i[δk1v

i
k2

ei(k1+k2)·x] ,

= −i(2π )−3
∫

d3k1d3k2 δk1v
i
k2

(k1i + k2i)ei(k1+k2)·x

= −H(2π )−3
∫

d3k1d3k2 δk1θk2

ki
2

k2
2

(k1i + k2i)ei(k1+k2)·x

= −HA(k12) , (12.31)

where k12 = k1 + k2 and

A(k12) = (2π )−3
∫

d3k1d3k2 δk1θk2

k12 · k2

k2
2

eik12·x . (12.32)

We can introduce the Dirac delta function δD to write

A(k12) =
∫

d3k A(k)δD(k − k12) . (12.33)

Therefore we have
∫

d3k eik·xH
[
δ′
k + θk +

∫
d3k1d3k2δk1θk2

k · k2

k2
2

δD(k − k12)
]

= 0 . (12.34)

The term inside square brackets has to vanish on account of the completeness and
unicity of the Fourier expansion (of course the same property has been silently

1 The volume factor V in the Fourier pre-factor can be conveniently put to unity when performing a series of
Fourier transformations.
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used all along the treatment of linear perturbations). We then arrive at the Fourier
space version of the continuity equation to second-order

δ′
k + θk = −

∫
d3k1d3k2δk1θk2

k
2

·
(

k1

k2
1

+ k2

k2
2

)
δD(k − k12) . (12.35)

Similar steps lead directly to the Fourier-transformed Euler equation:

θ ′
k +

(
1 + H′

H

)
θk + 3

2
&mδk = −

∫
d3k1d3k2 θk1θk2

k2
12(k1 · k2)

2k2
1k

2
2

δD(k − k12) .

(12.36)
Since there is symmetry between k1 and k2, we used the substitutions

k · k2

k2
2

→ k
2

·
(

k1

k2
1

+ k2

k2
2

)
, (12.37)

and

(k1 · k2)k2 · (k1 + k2) → 1
2

[(k1 · k2)k2 · (k1 + k2) + (k1 · k2)k1 · (k1 + k2)]

= 1
2
k2

12(k1 · k2) , (12.38)

to symmetrize the result. The solution of these coupled equations can be obtained
numerically [500, 501], but for an Einstein–de Sitter Universe we can proceed
in the following way. Since we know already from the previous section that the
n-th order growth function Dn grows like Dn

L, we can expand the general growing
solution in the form

δ(k, a) =
∑

n

Dn
Lδn(k) , θ (k, a) = −

∑

n

Dn
Lθn(k) . (12.39)

Then we see that at any order the time-dependent factors Dn
L in Eqs. (12.35, 12.36)

can be factored out and we can deal with the geometric (k-dependent) factors
alone. We can now differentiate δ′

k in Eq. (12.35) and replace θk, θ
′
k by making use

of Eq. (12.36). Then we use the first-order solutions

δk1 = DLδ1(k1) , θk1 = −D′
Lδ1(k1) = −DLδ1(k1) , (12.40)

(remember that DL = D′
L = a) and similarly for k2 to obtain, for n = 2,

[
(D2

L)′′ + 1
2

(D2
L)′ − 3

2
D2

L

]
δ2(k)

= D2
L

∫
d3k1d3k2 δD(k − k12)δ1(k1)δ1(k2)

[
5
4

k ·
(

k1

k2
1

+ k2

k2
2

)
+ k2

12(k1 · k2)
2k2

1k
2
2

]
,

(12.41)



12.2 Higher-order corrections to the power spectrum 343

where we used &m = 1 and H′/H = −1/2. Solving for δ2 and repeating for θ2 we
obtain the following result [502]

δ2(k) =
∫

d3k1d3k2δD(k − k1 − k2)F2(k1, k2)δ1(k1)δ1(k2) , (12.42)

θ2(k) =
∫

d3k1d3k2δD(k − k1 − k2)G2(k1, k2)θ1(k1)θ1(k2) , (12.43)

where

F2 = 5
7

+ 1
2

k1 · k2

k1k2

(
k1

k2
+ k2

k1

)
+ 2

7
(k1 · k2)2

k2
1k

2
2

, (12.44)

G2 = 3
7

+ 1
2

k1 · k2

k1k2

(
k1

k2
+ k2

k1

)
+ 4

7
(k1 · k2)2

k2
1k

2
2

. (12.45)

By the same procedure, the kernels Fn, Gn can be calculated recursively at all
orders and generalized to non-flat spaces (see e.g., Refs. [503, 504] and the review
[505]).

A direct way to compare the theoretical result with observations is to estimate
the third-order moment or skewness, ⟨δ3⟩. From Eq. (12.39) we have

⟨δ3(k, a)⟩ = ⟨(DLδ1 + D2
Lδ2 + · · · )3⟩ ≃ ⟨δ1

3⟩D3
L + 3⟨δ2

1δ2⟩D4
L + · · · (12.46)

The first term vanishes because the initial field is Gaussian and its odd moments
are zero. Then we have

⟨δ3(k, a)⟩ ≃ 3⟨δ2
1δ2⟩D4

L

= D4
L

∫
d3k1d3k2d3k3d3k4δD(k − k1 − k2)

× F2(k1, k2)⟨δ1(k1)δ1(k2)δ1(k3)δ1(k4)⟩.

Notice that the first non-trivial moment is then of fourth order in DL, rather than
third as one could have naively expected. The correlation term ⟨. . .⟩ for Gaussian
variables vanishes except for identical k pairs, since in a Gaussian field different
modes are independent. So we can have non-zero terms only when k1 = k2 or
when

⟨δ1(k1)δ1(k1)δ1(k3)δ1(k3)⟩ = ⟨δ1(k1)δ1(k1)⟩⟨δ1(k3)δ1(k3)⟩ . (12.47)

Since ⟨δ2(k)⟩ = 0, however, the integral over the pair k3 = k4 must vanish.
Moreover, the two other possible pairs are identical:

⟨δ1(k1)δ1(k2)δ1(k1)δ1(k2)⟩ = ⟨δ1(k1)δ1(k2)δ1(k2)δ1(k1)⟩

= ⟨δ1(k1)δ1(k1)⟩⟨δ1(k2)δ1(k2)⟩ . (12.48)
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This shows that ⟨δ1(k1)δ1(k2)δ1(k3)δ1(k4)⟩ = 2δD(k1 − k3)δD(k2 − k4)P (k1)
P (k2), where P is the power spectrum. Then we obtain (here we assume an
isotropic spectrum)

⟨δ3(k, a)⟩ = 3⟨δ2
1δ2⟩D4

L = 6D4
L

∫
d3k1d3k2e

i(k1−k2)·xF2(k1, k2)P (k1)P (k2)

= 6D4
L

∫
k2

1dk1k
2
2dk2Ik1Ik2P (k1)P (k2)

∫
d&1d&2F2(k1, k2) ,

(12.49)

where Ik = sin(kx)/kx. Similarly, we have

⟨δ2(k, a)⟩ = 4πD2
L

∫
k2

1 dk1Ik1P (k1) . (12.50)

Since F2(k1, k2) only depends on the moduli and on the cosine µ12 of the k1, k2

angle, the angular part in Eq. (12.49) can be evaluated analytically. Then the
skewness for a matter-dominated flat Universe is given by [95]

S3 ≡ ⟨δ3⟩
⟨δ2⟩2

= 3
8π2

∫
d&1d&2F2(µ12, k1, k2) = 3

∫ 1

−1
dµ12F2(µ12, k1, k2) = 34

7
,

(12.51)

where we have used the expression F2 = 5/7 + (µ12/2)(k1/k2 + k2/k1) +
(2/7)µ2

12 and the identity
∫

d&1d&2f (µ12, k1, k2) = 8π2
∫

dµ12f (µ12, k1, k2) . (12.52)

Similar expressions can be given to any desired order.
An expression that applies to the general solution Eq. (12.26) is [506]

F2 = 1
2

[
1 + α + k1 · k2

k1k2

(
k1

k2
+ k2

k1

)
+ (1 − α)

(k1 · k2)2

k2
1k

2
2

]
, (12.53)

where α = D2a/D
2
L. For the Einstein–de Sitter model the solution to Eq. (12.24) is

given by D2a = (3/7)D2
L and hence α = 3/7. Then the skewness can be evaluated

as

S3 = 4 + 2α = 34
7

+ 6
7

(
7
3
α − 1

)
. (12.54)

In Ref. [507] the generalization for a single dark energy component with an equation
of state wDE = constant is given.

The observable S3 is however different from the theoretical calculation above
because the continuous density field δ can be obtained only by smoothing the
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galaxy counts over some region of space. In practice, this means that what we
observe is not δ(r) but rather

δ
(1)
R =

∫
d3k δke

ik·rW (kR) , (12.55)

at first-order and

δ
(2)
R =

∫
d3k δk1δk2F2(k1, k2)ei(k1+k2)·r W (|k1 + k2|R) , (12.56)

at second-order. Note that W (kR) is the Fourier transform of the window function
with a characteristic scale R (see Section 3.3). One may think that the overall effect
of the smoothing will amount to a minor correction to S3, but this is not the case.
The reason is that smoothing a non-Gaussian field is likely to reduce the overall
non-Gaussianity since it is effectively a way to average over many random variables
and by the central limit theorem we can expect the average to be more Gaussian
than the individual components. Strictly speaking the limit theorem applies only to
independent variables, while here the field δ(x) is supposed to be correlated. Still
the overall effect of the smoothing is indeed to reduce the skewness, at least for not
too steep spectra. The remarkably simple result is [500]

S
(R)
3 = S3 + d ln σ 2(R)

d ln R
, (12.57)

where σ 2(R) is the variance in cells defined in Eq. (3.58). For a power-law spectrum
P ∝ kn the correction is simply given by −(n + 3) [508]. For instance, on the scales
R ≈ 10 h−1Mpc, one can approximate P ∝ k−1.5 and the correction reduces S3 by
as much as one-third.

Equation (12.24) can be solved for any dark energy model. In uncoupled dark
energy models all one has to do is to input the appropriate functions &m(a),H(a).
It turns out that S3 has a very weak dependence on &(0)

m . In Ref. [505] the following
expression is reported

S3 = 34
7

+ 6
7

[
(&(0)

m )−0.03 − 1
]

. (12.58)

In Ref. [509] a very weak dependence on the dark energy equation of state is also
reported, no more than a few percent for realistic wDE’s.

Equation (12.27) can also be generalized to coupled dark energy models. If one
compares Eqs. (12.11)–(12.13) with their corresponding equations in Section 11.3,
one realizes that the interacting model introduces two simple modifications: a
modified friction term in the Euler equation [see Eq. (11.92)] and a modified
Poisson equation [see Eq. (11.95)]. These reflect immediately onto the non-linear
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equation (12.27) which becomes

D′′
2 + F (a)D′

2 − 3
2
&mS(a)D2 = 4

3
D′

L
2 + 3

2
&mS(a)D2

L , (12.59)

where

F (a) = 1 + H′

H
+ Qφ′ , S(a) = 1 + 2Q2 , (12.60)

to be coupled to the background equations that give φ,H, &m as functions of time.
In Ref. [487] it has been found that the skewness depends on Q in a weak but non-
negligible way as long as the couplings between dark energy and non-relativistic
matter (dark matter, baryons) are not the same. For f (R) gravity and the scalar-
tensor gravity models we have discussed in Chapter 9, it was shown instead in
Ref. [510] that the skewness is not much different from the value in the !CDM
model.

We can now use the expressions above to evaluate the higher-order correc-
tions to the power spectrum. Inserting Eq. (12.39) into the spectrum definition
(pay attention that the prime in k′ does not denote differentiation and that we
are putting V = 1)

⟨δ(k, a)δ(k′, a)⟩ = δD(k − k′)P (k, a) , (12.61)

we obtain to the first non-trivial order (i.e. fourth order in δ)

δD(k − k′)P (k, a) = D2
L⟨δ1(k)δ1(k′)⟩

+ D4
L[⟨δ3(k)δ1(k′)⟩ + ⟨δ1(k)δ3(k′)⟩ + ⟨δ2(k)δ2(k′)⟩]. (12.62)

Defining

Dn+m
L ⟨δn(k, a)δm(k′, a)⟩ = δD(k − k′)Pnm(k, a) , (12.63)

we can write the correction as

P (k, a) = PL + 2P13 + P22 , (12.64)

where PL = P11 is the “linear” spectrum. Inserting δ2 from Eq. (12.42) and δ3 (that
we have not written out explicitly) into P22 and P13, we find (see e.g., [505])

P22(k, a) = 2
∫

[F s
2 (k − k′, k′)]2PL(|k − k′|, a)PL(k′, a) d3k′ , (12.65)

P13(k, a) = 3PL(k, a)
∫

F s
3 (k, k′, −k′)PL(k′, a) d3k′ , (12.66)

where the subscript s indicates the symmetrized versions of the kernels.
Further progress may be achieved only numerically and we refer the interested

reader to the literature, for instance the review [505]. Naturally, the endeavor of
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estimating non-linear corrections to the power spectrum is of the highest impor-
tance, given that the P (k) contains so much information on cosmology, as we have
already seen and will see more in Chapter 14. However, it must be said that the
comparison of the higher-order corrections to N -body simulations of the present
Universe is not totally satisfactory (see e.g., Ref. [501]). The fact that higher-order
terms in P (k) make a significant contribution signals that the perturbative treatment
is about to fail. So the practical usefulness of analytical higher-order corrections
to P (k) appears limited; new methods based on renormalization groups have been
shown to improve upon standard perturbation theory, see Refs. [511, 512, 513]. An
alternative way, to which nowadays most research is devoted, is to find empirical
fits of N -body simulations; the relevant literature is cited in Section 12.5.

The concept of the power spectrum may be extended to higher-order correlations.
So in place of Eq. (12.61) one writes

⟨δ(k1)δ(k2)δ(k3)⟩ = δD(k1 + k2 + k3)B(k1, k2, k3) , (12.67)

which defines the bispectrum B. Since the odd powers of δ1 vanish on account of
Gaussianity, the leading term is [using Eq. (12.39)]

⟨δ(k1)δ(k2)δ(k3)⟩ = D4
L⟨δ1(k1)δ1(k2)δ2(k3)⟩ + cyclic (231, 321) , (12.68)

from which we derive

B(k1, k2, k3) = 2PL(k1)PL(k2)F (s)
s (k1, k2) + cyclic (23, 31) . (12.69)

The bispectrum finds an interesting application as a tool to estimate the bias between
the observed galaxy δ and the underlying δm, if we assume a scale-independent
bias, since it can be shown that the bispectrum depends on the bias in a way that
varies with the shape of the triangles k1, k2, k3 = −k1 − k2 in Fourier space [514].
Estimating the bispectrum for several shapes allows then to constrain the bias. This
method has been discussed and applied to real data in Ref. [515]. The potential of
the bispectrum for estimating dark energy parameters has still to be investigated in
detail.

12.3 Spherical collapse

The full equation (12.20) corresponds to the evolution of the density contrast in a
spherical perturbation. It can be derived on purely Newtonian grounds by noting
that a shell of matter at distance R from the center of a spherical overdensity with
uniform density ρ moves according to the Newtonian force law

d2R

dt2
= −GM(R)

R2
= −4

3
πGρR , (12.70)
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where M(R) = 4πρR3/3 is the constant mass inside the shell. Since for pressure-
less matter the background density scales as ρ0 = (3M(R0)/4π )(R0a(t))−3, where
R0 is the initial size of the perturbation, we can define the density contrast as

δ =
(

a(t)R0

R

)3

− 1 , (12.71)

inside the shell and δ = 0 outside. The crucial assumption here is that δ is a step, or
top-hat, function, which in fact allows all spatial derivatives to be cancelled. The
equation for δ in our time variable N is then exactly as in Eq. (12.20):

δ′′ +
(

1 + H′

H

)
δ′ − 3

2
&mδ = 4

3
δ′2

1 + δ
+ 3

2
&mδ2 . (12.72)

Of course, this is nothing more than a consequence of the fact that Eq. (12.20) has
been derived for a shear-free fluid and therefore an initially spherical perturbation
remains spherical [516].

Multyiplying Eq. (12.70) on both sides by 2dR/dt the equation can be integrated
once as

(
dR

dt

)2

= 2GM

R
− C , (12.73)

where C is an integration constant. This is the cycloid equation, whose solution
for C > 0 can be given parametrically as R = GM(1 − cos τ )/C and t =
GM(τ − sin τ )/C3/2 where τ ∈ (0, 2π ). Substituting in δ and putting a(t) =
a0(t/t0)2/3 we obtain in the Einstein–de Sitter case:

δ = 9
2

(τ − sin τ )2

(1 − cos τ )3
− 1 , (12.74)

δL = 3
5

[
3
4

(τ − sin τ )
]2/3

, (12.75)

where δL (> 0) is the solution of the linearized equation and where the integration
constant C has been chosen to set δ(τ = 0) = 0. It is convenient to use δL as
a bookkeeping device: we express the behavior of δ as a function of δL instead
of the parameter τ . A similar solution exists for an underdensity δL < 0. We
have assumed a constant mass M(R): this implies that our analysis is valid only
until shell-crossing occurs. As one expects, the radius R first increases (a small
perturbation expands with the cosmological expansion), reaches a turnaround point
and then decreases to zero (the perturbation collapses under its own gravity). The
final singular phase is of course unphysical because the dust assumption will fail
at some high density, non-radial fluctuations will develop and even the dark matter
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collisionless component will undergo the so-called “violent relaxation” mechanism
and will set into virial equilibrium.

The main result we get from this model is the critical or collapse value δcoll

of the linear fluctuation δL that is reached at the time of collapse. This quantity
is of cosmological relevance because it is used in the Press–Schechter theory
[517, 518] as a first approximation to the epoch of galaxy formation and to calculate
the abundance of collapsed objects, as we will discuss below. It can be seen
from Eq. (12.75) that when τ = 0 the perturbations are zero, then δ reaches a
turnaround at τ = π (for which δT ≡ δ(π ) = (3π/4)2 − 1 ≈ 4.6 and δL ≈ 1.063)
and finally for τ = 2π the overdensity δ (but of course not δL) becomes singular.
This singularity occurs when

δL = δcoll = (3/5)(3π/2)2/3 ≈ 1.686 , (12.76)

and it takes exactly twice as much time as for the turnaround. Notice that this value
is independent of time: a spherical perturbation in the Einstein–de Sitter Universe
collapses to a singularity whenever the linear density contrast equals 1.686. For
other models, however, δcoll depends on time. An approximation for dark energy
with constant wDE in flat space is [519]

δcoll(z) = 1.686
[
1 + α(wDE) log10 &m(z)

]
, (12.77)

α(wDE) = 0.353w4
DE + 1.044w3

DE + 1.128w2
DE + 0.555wDE + 0.131 . (12.78)

One can define other phenomenologically interesting epochs that are sometimes
used: the epoch of non-linearity (δ = 1, corresponding to δL ≈ 0.57) and the epoch
of expected virialization. The latter is defined to correspond to the instant in which
the kinetic energy K is related to the gravitational potential energy U by the
condition

K = R

2
∂U

∂R
. (12.79)

However, it is by no means obvious that this condition is enough to realize viri-
alization, especially when dark energy is present. For an inverse-power potential
(U ∝ −1/R), the virialization implies K = −U/2. The radius and the density of
the perturbation at virialization can be calculated by assuming conservation of
energy at turnaround (when the kinetic energy vanishes; subscript T ) and at a
virialization epoch tV when the kinetic energy satisfies KV = −UV /2, i.e.

UT = UV + KV = UV /2 . (12.80)

Since for a uniform sphere U = −3GM/5R (and remembering once again
we are assuming M = constant), we obtain the relation RV = RT /2. Hence the
virialized radius is half the turnaround radius. The density inside this radius turns
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out to be δV ≈ 178 and the epoch of this occurrence is very close to the final
collapse time (see problem 12.3). A numerical fit for wDE = constant models in
flat space gives [519]

δV ≈ 178[1 + b1θ
b2 (z)] , (12.81)

θ ≡ 1 − &m(z)
&m(z)

, (12.82)

b1 ≡ 0.399 − 1.309(|wDE|0.426 − 1) , (12.83)

b2 ≡ 0.941 − 0.205(|wDE|0.938 − 1) , (12.84)

if z is the collapse redshift.
It is not easy to extend this method to a general dark energy model because

the clustering properties of dark energy are quite difficult to deal with, even at the
linear order. For instance, even if dark energy clusters on the relevant scales, it is
not obvious whether it also virializes, whether it virializes at the same epoch as
matter, and whether we can assume energy conservation. If we simply assume dark
energy does not cluster at all then one can simply generalize Eq. (12.70) to

d2R

dt2
= −GM(R)

R2
= −4

3
πG [ρm + (1 + wDE)ρDE] R , (12.85)

where for a constant equation of state wDE we have ρDE ∼ a−3(1+wDE) both inside and
outside the overdensity and as before ρm ∝ R−3. Then we obtain Eq. (12.72) again,
where (dH/dN )/H = −(1 + 3weff)/2 ≃ −(1 + 3&DEwDE)/2. The critical value
δcoll must now be obtained numerically. In this case the correct initial condition is
found by assuming zero initial velocity for the shells. This corresponds to a mixture
of growing and decaying modes δ±, so that the initial perturbation corresponds to
δi = (5/3)δ+. A range of values δcoll = 1.6–1.686 was found in Ref. [478], with
little dependence for constant wDE in the range (−1, −1/3).

If dark energy does not cluster we have ρDE ∼ a−3(1+wDE); if it clusters just as
a perfect fluid with a constant equation of state wDE then we can expect ρDE ∼
R−3(1+wDE). Some authors suggested that a tentative way to take into account
dark energy clustering is to parametrize the transition between the two forms as
[520, 521]

ρDE ∼ R−3(1−β)(1+wDE)a−3β(1+wDE) , (12.86)

so that β = 1 means dark energy does not cluster at all, β = 0 means matter-like
clustering, and intermediate β means some intermediate form of clustering. The
main point of this parametrization is to demonstrate that the values of RV and δV

depend sensitively on the dark energy properties. When matter alone virializes, the
final RV /RT ratio is smaller than 1/2. When both matter and dark energy virialize,
the final ratio is larger. Other authors generalized Eq. (12.72) to fluids with finite
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sound speed, assuming that a top-hat perturbation remains a good approximation
[522]. Spherical collapse in coupled dark energy models has been studied in Ref.
[523].

It is difficult to go much beyond this kind of phenomenological parametrization.
A full understanding of non-linear physics in dark energy would require extensive
N -body simulations coupled to lattice simulations of scalar fields, a technical feat
which is still largely to be explored.

12.4 The mass function of collapsed objects

The main reason why it is worthwhile to discuss the abstract phenomenon of a
“spherical collapse” is that the critical value δcoll and the virial radius RV (or rather
the mass contained within that radius) enter the Press–Schecther (PS) formula for
the abundance of virialized objects. The main idea behind the PS formula is that
we can estimate the number of collapsed objects formed in a random Gaussian
field by simply counting at any given time how many regions have an overdensity
above the collapse threshold given by δcoll.

Suppose at some redshift z we smooth a random Gaussian field of density fluctu-
ations over cells of radius R, each containing on average the mass M = 4πR3ρ/3
with ρ(z) the background density. Since the smoothing is a linear operation, if the
field is Gaussian then also the density contrast δ in the cells will be distributed as
a Gaussian probability distribution function with variance σ 2

M (z). Suppose that all
the cells with δ > δcoll undergo collapse and virialization. The fraction of collapsed
regions (i.e. the fraction of space containing objects of mass larger than M) will
be then

p(M, z)|δ>δcoll = 1

σM (z)
√

2π

∫ ∞

δcoll

exp
(

− δ2
M

2σ 2
M (z)

)
dδM = 1

2
erfc

(
δcoll√

2σM (z)

)
,

(12.87)

where erfc(x) is the error function. The fraction containing objects of mass within
the range [M,M + dM] is given by

dp(M, z) =
∣∣∣∣
∂p(M, z)|δ>δcoll

∂M

∣∣∣∣ dM . (12.88)

Remember that in general the threshold δcoll depends on z. Although the boxes
with δ > δcoll are certainly not in the linear regime, the idea is to use the linear
regime to estimate the fraction of collapsed regions. We are then implicitly assuming
that the variance σM (z) is in the linear regime (σM ≪ 1) and therefore that it can
be calculated from Eq. (3.58) with the linear spectrum at any redshift. By using the
growth function D(z) we have σM (z) = D(z)σM (0).
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Now, suppose in a volume V we find N collapsed objects, each occupying a
volume VM = M/ρ. Then by definition the volume occupied collectively by the N

objects is the fraction dp of V , i.e.

NVM = V dp , (12.89)

and therefore the number density dn of collapsed halos with mass in the dM range
(the mass function) will be

dn = N

V
= dp

VM

= ρ

M

∣∣∣∣
∂p(M, z)|δ>δcoll

∂M

∣∣∣∣ dM

=
√

2
π

ρ

M2

δcoll

σM

∣∣∣∣
d ln σM

d ln M

∣∣∣∣ e
−δ2

coll/(2σ 2
M )dM . (12.90)

The extra factor of two that we have inserted in the last step is required because
we want all the masses to end up in some object, so that we impose the
condition

V

∫ ∞

0

(
dn

dM

)
dM = 1 . (12.91)

This factor-of-2 adjustment can be justified with a random walk analysis of fluctua-
tions [524]. In any case, one finds it necessary to fit N -body simulations. Sometimes
the number density n(M, z) is taken to be the comoving number density (i.e. is
multiplied by a3): in this case also ρ should be identified with the comoving
background density.

Equivalently, Eq. (12.90) is sometimes written as

M

ρ

∣∣∣∣
dn

d ln σM

∣∣∣∣ = f (σM, z) , (12.92)

where all the cosmological information is contained in the function

f (σM, z) =
√

2
π

δcoll

σM

e−δ2
coll/(2σ 2

M ) . (12.93)

The number density dn(M, z) can then be “directly” confronted with the observed
densities of objects (clusters, galaxies, quasars) at any redshift. The most relevant
example of this comparison will be discussed in Section 14.5. The mass M is often
taken to be the virial mass of that class of objects. Because of the exponential
dependence on δcoll/σM , the PS formula is quite sensitive to the cosmological
model (see Fig. 12.1).

The simplicity of the PS approach must not hide the fact that it relies on a
dangerous extrapolation of the linear theory, on the critical assumption of spherical
collapse with top-hat filter, on a dubious definition of virialization, and on the
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Figure 12.1 The sensitivity of the cluster mass function to cosmological models. Left
panel: The cumulative mass function at z = 0 for M > 5 × 1014 h−1M⊙ (M⊙ is the solar
mass) for three cosmologies, as a function of σ8; solid line: &(0)

m = 1; short-dashed line:
&(0)

m = 0.3, &
(0)
! = 0.7; long-dashed line: &(0)

m = 0.3,&
(0)
! = 0. The shaded area indicates

the observational uncertainty in the determination of the local cluster space density. Right
panel: Evolution of n (> M, z) for the same cosmologies and the same mass limit, with
σ8 = 0.5 for the &(0)

m = 1 case and σ8 = 0.8 for the low-density models. From Ref. [528].

absence of processes like merging, dissipation, shell crossing. Surprisingly, this
shaky foundation did not prevent the PS formula proving itself a valuable first
approximation to the abundances obtained through numerical simulations. Not
surprisingly, many works have been dedicated to improving the original PS formula
by including corrections due to departure from sphericity [525] or merging [526]
or by directly fitting to large N -body simulations. A remarkably successful fit is
given by [527]

f (σM, z) = 0.315 exp(−|0.61 − ln σM (z)|3.8) . (12.94)

This fit has been found to hold for a large range of masses, redshifts, and cosmo-
logical parameters, including dark energy with constant or varying wDE [529].

12.5 Dark energy N -body simulations

Beyond the few and uncertain non-linear islands we have seen in the previous
sections, lies the frightening ocean of numerical simulations. In that vast ocean, a
full treatment of dark energy dynamics is still beyond the horizon, so this section
is no more than a sketchy guide to the first explorations.

The idea behind most work on cosmological N -body simulations is to find a
general formula that takes as input the linear power spectrum PL(k) and gives as
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output an approximate non-linear version that can be directly compared to data
down to relatively small scales:

PNL(k) = fNL[PL(k)] . (12.95)

The transformation fNL will in general depend on all the cosmological parameters
and is obtained by an empirical fit to the results of the numerical simulations.

Since we have very little clues on the behavior of fNL, except perhaps that we
expect the non-linear power spectrum to have more power than the corresponding
linear one at galactic scales, most researchers have adopted one of the following
two empirical/intuitive approaches. We refer to the cited literature for the full fitting
formulae for the non-linear spectra.

The first one, first proposed in Ref. [530] and extended in Ref. [531], is to assume
that non-linearity can be well approximated by a remapping of scales: as a collapse
brings an initial radius R0 into a virialized radius RV , so an initial wavenumber kL

will be carried into a final wavenumber kNL. If we find the relation kNL = fNL(kL)
we could simply write

PNL(kNL) = PL[fNL(kL)] . (12.96)

The second approach is based on the idea that non-linearity mostly concerns
objects that form within large dark matter halos. Then we can approximate the
halo distribution with the linear spectrum and describe the sub-halo distribution
by some “occupation number,” i.e. the number of structures within the same halo.
This will be an empirically determined function of the halo density profile. The
linear part will dominate at large scales while the sub-halo one will do at small
scales. Assuming the processes are essentially independent, the two contributions
will simply add in the power spectrum. This program has been first carried out in
Ref. [532].

The first work to include explicitly a cosmological constant in the non-linear
fitting formula has been done in Ref. [531] using the kL → kNL mapping. In
Ref. [532] the fitting formula including the cosmological constant was obtained
by using the halo model, see Fig. 12.2. Extending this work to non-clustering dark
energy is demanding but straightforward, since the change comes from the back-
ground expansion rate [533, 534]. Improvements for dynamical dark energy upon
previous fits have been found in Ref. [535]. Other works considered modifications
of the Newtonian force inspired by coupled dark energy [536, 537] or by general
models of modified gravity [538, 539, 540, 541, 542], still assuming unclustered
dark energy. Since this approach changes the force itself, rather than the back-
ground expansion, it is clear that it is possible to find important deviations from
standard results in terms of halo profile and mass functions.



12.6 Problems 355

0.1

0.
1

1
10

10
0

∆2
N

L
(k

)

10
00

1 10

Virgo ΛCDM

k /h Mpc−1

100

Figure 12.2 The triangles represent the power spectrum 92 ∼ k3P (k) of N -body
simulations for the !CDM model at various epochs z = 0, 0.5, 1, 2, 3 (low to
high). The full line corresponds to the non-linear fit by Smith et al. [532]. The
dotted lines are the decomposition into “self-halo” and “halo-halo” terms. The
short dashed line corresponds to the old fit of Ref. [531]. From Ref. [532].

The next step is of course to include in full the dark energy clustering. If we
model dark energy with a scalar field this will require an N -body simulation
coupled to a lattice scalar field simulation, opening a new frontier for high-level
computing [539]. This will be more interesting for those models that couple dark
energy to matter since here one can expect the matter non-linearity will have a
direct and strong influence on dark energy non-linearity. Whether this influence
will bear some surprise remains to be seen.

12.6 Problems

12.1 Show that Eqs. (12.7)–(12.9) follow from (12.1)–(12.3) under the transformation
(12.5).

12.2 Derive Eq. (12.22).
12.3 Show that the value of the density contrast at virialization in the Einstein–de Sit-

ter Universe is δV ≈ 178 (see Section 12.3). Assume that the virialization occurs
practically at the same time as the final singularity.

12.4 What is the conservation equation for ρDE that reproduces Eq. (12.86)?
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Statistical methods in cosmology

As a technical introduction to the methods that will be discussed in the next chap-
ter, we review some statistical tools most employed in modern cosmology, e.g.,
likelihood analysis, Bayes’ theorem, model selection, Fisher matrix, and principal
component analysis. Note that some of these statistical methods have been implic-
itly used in previous chapters for observational constraints on dark energy models.
The Bayesian approach is particularly suitable for dark energy research because
of its flexibility in combining results from different observations and in allowing a
direct comparison between various parametrizations.

13.1 The likelihood function

Let us suppose we know, or have good reasons to suspect, that a random variable
x, e.g., the apparent magnitude of a supernova, has a probability distribution func-
tion (PDF) f (x; θ ) that depends on an unknown parameter θ , e.g., the absolute
magnitude. The “;” is meant to distinguish the random variables x from the param-
eter θ . Such a probability is called a conditional probability of having the data x

given the theoretical parameter θ . We may for instance suppose that the apparent
magnitude m is distributed as a Gaussian variable with a given variance σ 2 (the
observational error on m), but we do not know one of the cosmological parameters
that enter the expected value mth = 5 log10 dL(z; &(0)

m , &
(0)
! ) + constant, where dL

is the luminosity distance.
If we repeat the measure and we obtain x1, x2, x3 . . . , then the law of joint

probability tells us that the probability of obtaining x1 in the interval dx1 around
x1, x2 in the interval dx2 around x2 and so forth is

f (xi ; θ )dnxi ≡
∏

i

fi(xi ; θ )dxi = f1(x1; θ )f2(x2; θ )f3(x3; θ ) . . . dx1dx2dx3 . . . ,

(13.1)

356
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if the measures are independent of each other. Clearly, for every θ this multivariate
PDF will assume a different value. It is logical to define the best θ as the value for
which

∏
i f (xi ; θ ) is maximal. Indeed, if we generate random variables distributed

as f (x; θ ), the most likely outcome for x is the value that maximizes f (x; θ ).
Conversely, if we have a particular outcome x, then our best bet is to assume that θ

is such as to maximize the occurrence of that x. We used as an example independent
data and a single parameter but this is by no means necessary. We define the best θi

as those parameters that maximize the joint function f (x1, x2, . . . xn; θ1, θ2, . . . θm).
Since in general we have many parameters to estimate, we write the function simply
f (xi ; θj ), meaning all the xi’s and all the θj ’s.

The maximum likelihood method of parameter estimation consists therefore in
finding the parameters that maximize the likelihood function f (xi ; θj ) by solving
the system

∂f (xi ; θj )
∂θj

= 0 , j = 1, . . . , m . (13.2)

Let us denote the solutions of these equations as θ̂i . They are functions of the data xi

and therefore are random variables, just as the data are. So the classical frequentist
approach would try to determine the distribution of the θ̂j s knowing the distribution
of the xis; if this is possible, one can assign probabilities to θ̂j ’s ranges, for instance
determine the interval of θ̂j that contains 95% probability that a particular set
of data has been drawn from the theoretical distribution. One problem with this
approach is that it is often too difficult to derive the θ̂j ’s distribution analytically
and very demanding to derive them numerically through simulated datasets. But
the main problem is that this approach does not take into account what we already
know concerning the theoretical parameters, for instance the result of previous
experiments. To handle this information properly we need to switch to the Bayesian
approach. Instead of looking for the probability f (xi ; θj ) of having the data given
the model, we estimate the probability L(θj ; xi) of having the model given the data.

This problem is solved by the fundamental theorem of conditional probabilities,
the so-called Bayes’ theorem1:

P (T ; D) = P (D; T )P (T )
P (D)

, (13.3)

where we denote the known data xi with D and the unknown theory (that is,
the theoretical parameters θj ) with T . On the r.h.s., P (D; T ) is the conditional
probability of having the data given the theory; P (T ) and P (D) are the probability
of having the theory and the data, respectively; finally, on the l.h.s., P (T ; D) is the

1 Reverend Thomas Bayes (1702–1761) studied what in modern terminology is the binomial distribution and
introduced the concept of conditional probability. His work was published posthumously in 1763.
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conditional probability of having the theory given the data. Bayes’ theorem is a
consequence of the definition of conditional probability P (A; B) ≡ P (A,B)/P (B)
and of the symmetry of the joint probability P (A,B) (the probability of having
both A and B) under the exchange of A,B.

It follows that

L(θj ; xi) = f (xi ; θj )p(θj )
g(xi)

, (13.4)

where p(θi) is called the prior probability for the parameters θi , while g(xi) is the
PDF of the data xi . The final function L(θj ; xi) (or simply L(θj ) for shortness)
is called posterior although sometimes it is also loosely called likelihood just as
f (xi ; θj ) and generally denoted as L. The posterior contains the information we are
looking for: the probability distribution of the parameters given that we observed
the data xi and that we have some prior knowledge about the parameters themselves.
In fact the whole method in the Bayesian context should be called “the posterior
method” rather than the “likelihood” method.

Since L(θj ; xi) is a probability distribution function for θj , it has to be normalized
to unity:

∫
L(θj ; xi)dnθj = 1 =

∫
f (xi ; θj )p(θj )dnθj

g(xi)
, (13.5)

and therefore
∫

f (xi ; θj )p(θj )dnθj = g(xi) . (13.6)

As we will see in the next section the integral on the l.h.s. is called evidence and the
same name is sometimes given also to g(xi). The function g(xi) does not depend on
the parameters θi and therefore it is of no help in estimating the parameters. From
the point of view of L(θj ) it is just a normalization factor. The prior p(θj ) is also
often unknown. Normally we do not know the probability distribution of theories,
that is, whether the !CDM model is more probable, from an absolute point of
view, than a modified gravity model or whether &

(0)
! = 0 is more probable than

&
(0)
! = 0.7. However, we often do know something which, while not quite absolute

in any sense, still represents some form of information independent of the data
at hand. Namely, we know the results of previous experiments. If an experiment
convincingly excluded, say, &(0)

m < 0.1, then we could use this information, putting
p(&(0)

m < 0.1) = 0. If instead we believe that h = 0.72 ± 0.08, then we could use
as p(h) a Gaussian with mean 0.72 and standard deviation 0.08. These are typical
prior distributions.

Priors can be of many kinds. Beside including other experiments, we could
simply exclude unphysical values, e.g., &(0)

m < 0 or weigh down some regions of
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parameter space that we, perhaps subjectively, consider less likely. What matters is
not so much what we decide to include as prior but rather that we make this decision
explicit to the reader and to the potential user of our results. Every posterior, sooner
or later, will become a prior for us or for somebody else, and it is our responsibility
to make it explicit which prior information we adopted, no less to avoid that a
future user includes twice the same information. The easiness of including prior
information of all kinds is one of the major advantages of the Bayesian approach.

There are two important facts to note about priors. First, priors matter. Clearly
the final result depends on the prior, just as our bet on the result of a football
match depends on what we know about the teams based on previous games (and on
our personal interpretation of those results). One can say that priors quantify our
physical intuition. Second, priors are unavoidable. Even if we are not consciously
choosing a prior, the way we manage the statistical problem at hand always implies
some form of prior. No prior on a parameter means in fact p(θ ) = 1 in the domain
where θ is defined and p(θ ) = 0 outside. Even when θ is defined in the whole real
range we are still choosing a “flat” prior, p(θ ) = 1, over other possible choices.
One could push this argument as far as saying that our choice of theory and its
parameters θ already constitute a strong prior. So, again, the important issue is to
specify exactly what prior is employed.

Once we have L(θj ) we need to search the maximum to obtain the maximum
likelihood estimators θ̂i . Because of the priors, this will differ in general from the
maximum of f (xi ; θj ). Equation (13.2) is then replaced by

∂L(θi)
∂θi

= 0 , i = 1, . . . , n . (13.7)

If, as is usually the case, we discard the denominator g(xi) in Eq. (13.4), the
posterior L is not normalized and its normalization has to be recalculated. The
overall normalization N is the integral over the parameter space:

N =
∫

L(θi) dnθi , (13.8)

where the integral extends to the whole parameter domain. From the normalized
likelihood [i.e. L(θi)/N which we keep calling L(θi)], we can derive the regions
of confidence (or belief ) for the parameters. These are defined as regions R(α)
delimited by constant L(θi) for which

∫

R(α)
L(θi) dnθ = α . (13.9)

The region R(α) is the region for which the integral above evaluates to 0 < α < 1
(remember that now L is normalized and therefore its integral over the whole
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domain is 1). To find R one evaluates
∫

L̂(Li) dnθ = αi , (13.10)

where L̂(Li) = L if L > Li and 0 elsewhere (i.e. the volume lying within the
curve of “height” Li , smaller than the peak of L). By trial and error (or by inter-
polating over a grid of Li) one finds the preferred αi . The typical choices are
α = 0.683, 0.954, 0.997 (also denoted as 1, 2, 3σ , respectively, but sometimes
other reference values are also employed. The value Li that corresponds to αi is
the level at which we have to cut L to find the region R(αi).

Often, we are interested in some subset of parameters and consider the others as
“nuisance” which we would gladly get rid of. For instance, if we are analyzing a

set of supernovae apparent magnitudes mi and comparing them to the theoretical
predictions mth = 5 log10 dL(z; &(0)

m , &
(0)
! ) + C, we may be interested in &(0)

m , &
(0)
!

but not in the constant C. As we have seen in Section 5.2 this constant depends
on the K correction and on the standard absolute magnitude M , to which we can
add also the constant log10 H−1

0 . Our general likelihood is therefore a function
of C, &(0)

m , &
(0)
! but we can transform it into a function of &(0)

m , &
(0)
! alone by

integrating out C:

L(&(0)
m , &

(0)
! ) ≡

∫
L(C, &(0)

m , &
(0)
! ) dC , (13.11)

where the integration extends over the domain of definition of C, which in absence
of better information could as well be from −∞ to +∞ [there should be no
confusion by denoting both the “old” and the “new” likelihood by the same symbol
in Eq. (13.11)]. This very common procedure is called marginalization.

Often one wants to marginalize a multidimensional problem down to a more
manageable and plottable two-dimensional likelihood. Also, one could quote final
confidence regions by marginalizing in turn to single parameters, e.g.,

L(&(0)
! ) =

∫ ∞

0
L(&(0)

m , &
(0)
! ) d&(0)

m . (13.12)

For instance, if the maximum likelihood estimator of &(0)
m is 0.3 and

∫

R

L(&(0)
m )d&(0)

m = 0.683 , (13.13)

when R is the interval &(0)
m = [0.1, 0.4], we will write as our final result &(0)

m =
0.3+0.1

−0.2 at 68.3% confidence level (or, less precisely, at 1σ : notice that this will
absolutely not imply that at 2σ one should expect −0.1 as lower limit of &(0)

m !).
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In the common case in which we want to marginalize over a constant offset or
over a multiplicative factor one can often obtain an analytical result. Here we work
out the first case, leaving the second to problem 13.2.

Taking again the example of supernovae, suppose that we have N standard can-
dle sources at redshifts zi with apparent magnitudes mi and that our preferred cos-
mological model predicts magnitudes mth,i = M + 5 log10 dL(zi ; θj ) + 25, where
dL(zi ; θj ) is the luminosity distance measured in Megaparsecs. The luminos-
ity distance is proportional to 1/H0. We can therefore take this factor out
of the logarithm and write mth,i = α + µi , where µi = 5 log10 d̂L(zi ; θj ) and
α = M + 25 − 5 log10 H0 and d̂L is dLH0. We have very little information on
α, so we decide to marginalize it over:

L(θj ) = N

∫
dα exp

[

−1
2

∑

i

(mi − µi − α)2

σ 2
i

]

, (13.14)

where N is an unimportant normalization factor. Then we have

L(θj ) = N

∫
dα exp

[

−1
2

∑

i

(mi − µi)2 + α2 − 2α(mi − µi)
σ 2

i

]

= N exp(−S2/2)
∫

dα exp(αS1 − α2S0/2)

= N exp
[
−1

2

(
S2 − S2

1

S0

)] ∫
dα exp

[

−1
2

(
α − S1

S0

)2

S0

]

, (13.15)

where S0 =
∑

(1/σ 2
i ), S1 =

∑
yi/σ

2
i , S2 =

∑
y2

i /σ
2
i , and yi = mi − µi . The inte-

gration in the region (−∞, +∞) gives a constant independent of µi and therefore
independent of the theoretical parameters that we absorb in N :

L(θj ) = N exp
[
−1

2

(
S2 − S2

1

S0

)]
. (13.16)

This is then the new likelihood marginalized over the nuisance additive param-
eter α. Notice that the parameters θj ended up inside µi which are inside
S1, S2. A similar analytic integration can get rid of multiplicative parame-
ters. If the analytical integration is impossible, then one has to marginalize
numerically.

Sometimes one prefers to fix a parameter, rather than marginalizing over it,
perhaps because one wants to see what happens for particularly interesting values
of that parameter. So for instance one may fix &

(0)
! to be &

(0)
! = 0 and evalu-

ate L(&(0)
m , &

(0)
! = 0). Then the result will obviously depend on the fixed value.
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When that value is the maximum likelihood estimator, the likelihood is said to be
maximized (as opposed to marginalized) with respect to that parameter.

If this is your first encounter with maximum likelihood methods, warm up by
proving that if we have the Gaussian likelihood f (xi ; µ, σ 2)

f (xi ; µ, σ 2) = (2πσ 2)−n/2 exp

[

−1
2

n∑

i

(xi − µ)2

σ 2

]

, (13.17)

then the maximum likelihood estimator of µ is given by

µ̂ = 1
n

n∑

i

xi . (13.18)

Analogously, you can prove that the maximum likelihood variance estimator
is

σ̂ 2 = 1
n

n∑

i

(xi − µ̂)2 . (13.19)

You may notice that this falls short of the standard result according to which
the estimate of the sample variance has (n − 1) instead of n at the denomi-
nator. In this case in fact the maximum likelihood estimator is biased, which
means that its expectation value does not equal the “true” or “population”
value. Indeed, maximum likelihood estimators are not necessarily unbiased
although under some general conditions they are asymptotically (i.e. for n → ∞)
unbiased.

Let us conclude on a philosophical tone. One could say that the use of priors
constitutes the whole difference between the Bayesian approach and the so-called
frequentist one. The frequentist approach prefers not to deal with priors at all
and therefore refuses to use Bayes’ theorem to convert theoretical parameters
into random variables. Once a frequentist finds a maximum likelihood estimator
(which as any other estimator is a function of data and therefore is a random
variable), he or she tries to determine its distribution as a function of the assumed
distribution of the data. In most cases, this is done by generating numerically
many mock datasets and calculating for each dataset the estimator, deriving then
its approximate distribution. This Monte Carlo approach is the hallmark of the
frequentist approach. It is powerful, objective, and general but by rejecting priors
fails to take into account previous knowledge. It is therefore suitable only when
one can afford not to fully consider previous knowledge. This applies for instance
when new experiments are much better than previous ones so that priors do not
really matter and when each experiment measures only one parameter, say the
mass of a particle, so that the outcome does not depend on other poorly measured
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parameters. Both features characterize most particle physics experiments and this
explains why most particle physicists are frequentist. Astrophysics and cosmology
live in another experimental world: data are hard to come by, observations cannot
be twisted and repeated as easily as in a laboratory, models are characterized by
many correlated parameters, and every drop of previous information, even loosely
related to a given parameter, has to be taken into account. Most of the evidence
for dark energy comes from combining CMB and supernovae priors, each of them
measuring many correlated parameters at once. It is no surprise that Bayesian
methods are so popular in astrophysics and cosmology.

13.2 Model selection

So far we have been working within a given model. When we choose a model to test,
we also select some free functions that define the model and that we parametrize
in some convenient way. If we decide to change a model, e.g., from the uncoupled
dark energy model with wDE = constant to a specific f (R) model, we have to start
a new process so that the likelihood will give us a new set of best fit parameters. But
how do we decide whether the f (R) model is better than the dark energy model
with wDE = constant?

This is a problem of model selection, rather than model optimization. One
possibility (the frequentist approach) is to simply evaluate the “goodness of fit”:
once we have the best fit parameters for models A and B, we calculate the χ2

statistics of the model prediction with respect to data and choose the one with bet-
ter χ2 statistics (which is not necessarily the one with lowest χ2 because the
χ2 statistics depends also on the number of degrees of freedom, namely on
the number of independent data minus the number of free parameters). Beside
the intrinsic problem of any frequentist approach (e.g., lack of priors), this is often
too rough a guide to selection, mostly because if the model B includes a parameter
that is poorly constrained by the data it would not help in the fit but it would still be
counted as an extra degree of freedom and this would unfairly penalize it. Imagine
for instance two very similar dark energy models, A and B, with two parameters
each. Suppose that the model B predicts some peculiar feature at the redshift z = 3,
e.g., cluster abundance, and that feature depends on a third parameter. The model B
is interesting also because of this unique prediction but it would be unfairly penal-
ized by current constraints, since we have very limited knowledge of high-redshift
clusters so far. A χ2 test would presumably conclude that the model A fits existing
data as well as the model B but with one parameter less and therefore it would
win.

To overcome this problem we can instead use another model selection procedure,
called evidence or marginal likelihood. We have already seen in Eq. (13.6) that the
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evidence is defined as the likelihood integral over the whole domain

E(x; M) =
∫

f (x; θM
i )p(θM

i ) dnθM
i , (13.20)

where as before x = (x1, x2, . . .) are random data, θM
i are n theoretical parameters

that describe the model M , f is the likelihood function, and p is the prior probability
of the parameter θM

i . Note that we have added a superscript M to remember that
the parameters refer to some model M .

If we want to compare two models M1 and M2, then we calculate the Bayes’
ratio [543]

B12 =
∫

f (x; θM1
i )p(θM1

i )dnθM1
i∫

f (x ; θM2
i )p(θM2

i )dnθM2
i

. (13.21)

A Bayes’ ratio B12 > 1 (< 1) says that the current data favors the model M1 (M2).
If we have any reason to weigh the models in some way, we can assign a model
prior p(Mj ) and use Bayes’ theorem again to write

L(M; x) ∝ E(x; M)p(M) , (13.22)

and evaluate the ratio

L(M1; x)
L(M2; x)

= B12
p(M1)
p(M2)

. (13.23)

Generally, however, one assumes that p(M1) = p(M2).
Suppose now that a certain parameter θn is very poorly constrained by the data

xi . This implies that the likelihood f (xi ; θi) is practically independent of θn, that
is, f remains almost constant when varying θn. Then if the prior is factorizable
(which is often the case) so that p(θi) = Aipi(θi), we see that the integral over θn

decouples. Since the priors are just standard probability distribution functions we
have

∫
pn(θn)dθn = 1, so that as expected θn does not enter the evidence integral.

The evidence therefore correctly discards poorly constrained parameters and does
not penalize models for introducing them. The blame is where it belongs: poor
data.

If the likelihood and the prior can both be approximated by Gaussian distribu-
tions, we can evaluate the evidence analytically. Let us assume then an uncorrelated
Gaussian likelihood with best fit parameters θ

(B)
i and variances σB,i and an uncor-

related Gaussian prior with means θ
(P )
i and variances σP,i . The posterior can be
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written as

L(θi) =
∏

i

f (x; θi)p(θi)

=
∏

i

fmax,i(2πσ 2
P,i)

−1/2 exp

[

− (θi − θ
(B)
i )2

2σ 2
B,i

− (θi − θ
(P )
i )2

2σ 2
P,i

]

=
∏

i

fmax,i(2πσ 2
P,i)

−1/2 exp
[
−1

2
(θi − θ∗

i )2

σ 2
i∗

]
exp

[

−1
2

(θ (B)
i − θ

(P )
i )2

σ 2
B,i + σ 2

P,i

]

,

(13.24)

where fmax,i is the i-th likelihood maximum and where the posterior mean and
variance for each i are given, respectively, by

θ∗
i =

σ 2
B,iθ

(P )
i + σ 2

P,iθ
(B)
i

σ 2
B,i + σ 2

P,i

, (13.25)

σ 2
i∗ =

σ 2
P,iσ

2
B,i

σ 2
B,i + σ 2

P,i

. (13.26)

The evidence is therefore

E =
∫

f (x; θi)p(θi)dθi

=
∏

i

fmax,i

σi∗

σP,i

exp

⎧
⎨

⎩−1
2

⎡

⎣
(

θ
(B)
i

σB,i

)2

+
(

θ
(P )
i

σP,i

)2

−
(

θ∗
i

σi∗

)2
⎤

⎦

⎫
⎬

⎭ . (13.27)

We see that the evidence is determined by three factors. The first, fmax,i , is the
likelihood maximum and expresses how well the model fits the data. The second
is a ratio of parameter volumes: if we take the variance as a measure of the
available parameter space for the i-th parameter, this factor expresses how the
parameter volume changes from the prior to the posterior. Every factor σi∗/σP,i =
σB,i/(σB,i + σP,i)1/2 is smaller than unity, so adding more parameters penalizes
the evidence, quantifying Ockham’s razor argument.2 If however the data do not
constrain the i-th parameter, i.e. if σB,i ≫ σP,i , then the i-th factor σi∗/σP,i is close
to unity and there is no penalization. Finally the third factor penalizes the evidence
if the best-fit i-th parameter or the prior mean differ appreciably from the posterior
mean θ∗

i : although the new data might justify that parameter, the overall agreement

2 William of Ockham (c.1288–c.1348), a Franciscan theologian, was known for his principle “Entia non sunt
multiplicanda sine necessitate” (although this particular formulation is probably apocryphal) – one should not
multiply entities beyond necessity.
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including the prior does not seem to require it. Here again, if data constraints are
very weak (large σB,i) then there is no penalization. You can work out another
example in problem 13.3.

It is a matter of straightforward algebra to extend the expression to correlated
Gaussian parameters. If the evidence integral is

E =
∫

f (x; θi)p(θi)dθi

≈ fmax

∫
exp

[
−1

2
(θi − θ

(B)
i )Lij (θj − θ

(B)
j ) − 1

2
(θi − θ

(P )
i )Pij (θj − θ

(P )
j )

]
dθi ,

(13.28)

where θ
(B)
i are the best fit estimators, θ (P )

i are the prior means, Lij in the exponential
factor is the inverse of the covariance matrix of the likelihood (or Fisher matrix,
see the next section) and Pij is the inverse of the covariance matrix of the prior, we
obtain

E = fmax
|F|−1/2

|P |−1/2
exp

[
−1

2
(θ (B)

i Lijθ
(B)
j + θ

(P )
i Pijθ

(P )
j − θ̃iFij θ̃j )

]
, (13.29)

where F = P + L and θ̃i = (F−1)im[Lmjθ
(B)
j + Pmjθ

(P )
j ].

The evidence is often not easy to evaluate because it requires a multidimensional
integration over the whole parameter space. Several approximation or alternative
model selection techniques have been proposed (see for instance the excellent
review [544]). They are however only justified in specific cases and may give con-
flicting results, sometimes leading to controversies [545, 546]. Whenever possible,
the evidence integral should be used instead.

Let us now come back to the Bayes’ factors, i.e. the ratio of the evidences.
Once we have calculated this ratio we are still to decide how to gauge it in favor
of the model A or B. There is no absolute way to achieve this: large or small
factors should incline us towards one of the two models over the other one, but
there is no absolute “statistics” to associate to any specific level. The scale most
used in literature is called Jeffrey’s scale. If | ln B12| < 1 there is no evidence in
favor of any of the models (“inconclusive evidence”); if | ln B12| > 1 there is a
“weak evidence”; | ln B12| > 2.5 means “moderate evidence”; | ln B12| > 5 means
“strong evidence.” Of course this terminology is purely suggestive and not to be
taken literally. We can consider it as a practical bookkeeping device. When the data
promote a model from weakly to moderately to strongly “evident,” it is time to take
it seriously and challenge aggressively.
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13.3 Fisher matrix

As straightforward and versatile as the likelihood method is, it is still often too
complicated or computing-expensive to implement, especially when there are more
than a few parameters involved. In fact there are some cases in which several tens
or hundreds of parameters are present.

One could think that a model with more than 3 or 4 free parameters does not
deserve the name of model and even less that one of “theory”. However every
theory begins by representing a vast dataset with a smaller set of numbers. And
since cosmological experiments may easily collect terabytes of data, reducing them
to 10, 100, or 1000 numbers should be seen already as a great progress towards a
unified description (if there is one!).

Anyway, the problem with the likelihood is that we need to evaluate L(θi) for
every θi , or at least for many θi , e.g., for a grid of, say, 10 values for each dimension in
parameters space. If there are 10 parameters, this means 1010 different evaluations.
If each evaluation takes a second (say, a run of a CMB code), we are in for a waiting
time of 300 years . . .

One way out is to use a Monte Carlo approach. Instead of building a full grid,
one explores the landscape with random jumps. The size of the jumps in turn may
be related to the steepness of the function (smaller jumps over rough terrain, larger
ones over flatlands). This technique will grow with the number D of dimensions
(parameters) as D, instead of exponentially as in full grid method. But this might
still be a lot: a typical Markov chain exploration can take hundred of thousands of
computations.

It is time to think of something faster: the Fisher matrix. The idea is straight-
forward: to approximate the full likelihood with a (multivariate) Gaussian
distribution,

L ≈ N exp
[
−1

2
(θi − θ̂i)Fij (θj − θ̂j )

]
, (13.30)

where the values θ̂i , the maximum likelihood estimators, are functions of the data,
and Fij , the Fisher (or information) matrix, is the inverse of the correlation matrix.
It is crucial to pay attention to the fact that the likelihood is a Gaussian function
of the parameters, not (or not only) of the data. We often assumed in the previous
sections the data to be Gaussian but never, so far, did the same for the parameters.
The form (13.30) is of course a crude approximation. One could hope however that
it is a reasonable approximation at least near the peak of the distribution, given
that around a local maximum every smooth function (in this case ln L) can be
approximated as a quadratic function. Therefore we expect this approximation to
work better for θi close to their estimators θ̂i .
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Expanding the exponent of a generic likelihood near its peak (i.e. near the
maximum likelihood (ML) value θ̂i of the parameters) as

ln L(θi) ≈ ln L(θ̂i) + 1
2

∂2 ln L(θi)
∂θi∂θj

∣∣∣∣
ML

(θi − θ̂i)(θj − θ̂j ) (13.31)

(naturally the first derivatives are absent because they vanish at the peak) we find,
comparing with Eq. (13.30), that the normalization N = L(θ̂i) depends only on the
data and that the Fisher matrix (FM) is defined as

Fij ≡ −∂2 ln L(θ )
∂θi∂θj

∣∣∣∣
ML

. (13.32)

Before proceeding further, let us remark that actually the FM is defined as the
expected value of the matrix −∂2 ln L/∂θi∂θj , to be obtained by averaging the
matrix over the data distribution, i.e.

Fij ≡ −
〈
∂2 ln L(θ )
∂θi∂θj

〉
= −

∫
∂2 ln L(θ )
∂θi∂θj

L(x; θ )dx . (13.33)

However, within the approximation (13.30), the two definitions coincide.
You may say now that in order to find the ML estimator we still have to build

the full likelihood: does this again require the 1010 evaluations of L(θi) that we
mentioned above? Well, we could answer that there are fast numerical methods
to search for maxima in a multidimensional function without spanning the whole
parameter space. For instance, in one dimension, if we can guess that the parameter
is near θ (0) then we can expand the derivative of the log-likelihood L = − ln L as
follows

L,θ (θ ) ≈ L,θ (θ (0)) + L,θθ (θ − θ (0)) , (13.34)

and estimate the minimum of L (i.e. the maximum of L) by putting L,θ (θ ) = 0.
Then we find the approximation

θ (1) = θ (0) − L,θ

L,θθ

∣∣∣∣
θ (0)

, (13.35)

which could be iterated by assuming a new guess θ (1) instead of θ (0). This method,
called Newton–Raphson, is extremely fast for well-behaved likelihood functions
and can be directly generalized to the multidimensional case. However perhaps the
most useful application of the Fisher formalism is to the cases in which we do not
need to search for the likelihood peak because we already know from the start the
ML estimator: when we are simulating an experiment.

Suppose we want to forecast how well a future supernovae experiment, which
is supposed to collect n = 10 000 supernovae light curves and to derive their peak



13.3 Fisher matrix 369

magnitude mi with errors σi , is capable of constraining the cosmological parameters
&(0)

m , &
(0)
! . Let us start by assuming that the n random variables mi(zi) follow a PDF

with known variance σi and mean mth(zi ; &(0)
m , &

(0)
! ) = 5 log10 dL(zi ; &(0)

m , &
(0)
! ) +

C. Here we take the PDF to be Gaussian but we could also assume another
PDF if we think it describes the data. Since the data PDF is assumed to be
Gaussian we can immediately form the likelihood (neglecting the normalization
constant):

Lm ≈ exp

[

−1
2

∑

i

(mi − mth(zi))2

σ 2
i

]

= exp
(

−1
2
µiC

−1
ij µj

)
. (13.36)

Here we have expressed the argument of the exponential in a slightly more general
way: we have introduced the vector µi ≡ mi − mth(zi) and the correlation matrix
Cij , that in this particular case is rather trivial

C = diag(σ 2
1 , σ 2

2 , σ 2
3 . . .) . (13.37)

When we discuss dark energy, we are interested in the parameters such as
&(0)

m , &
(0)
! . So we wish to produce a likelihood function of &(0)

m , &
(0)
! , something in

the form of Eq. (13.30) like

L(&(0)
m , &

(0)
! ) = exp

[
−1

2
(&(0)

i − &̂
(0)
i )Fij (&(0)

j − &̂
(0)
j )

]
, (13.38)

where Fij is of course our Fisher matrix and i, j run over the subscripts m, !.
Since real data are not yet present, we do not have the ML estimators &̂

(0)
i . How-

ever we are simulating the future experiment, so we may take for estimators the
values mth(zi ; &(0)F

m , &
(0)F
! ) obtained using some fiducial cosmology &(0)F

m , &
(0)F
! ,

for instance &(0)F
m = 0.3, &

(0)F
! = 0.7. This means that we will find the confidence

regions only around this particular parameter set. If we decide to change fiducial
values, we have to redo our calculations and all our results will change in some
way.

The Fisher matrix of the likelihood (13.36) is then

Fij = − ∂ ln Lm

∂&
(0)
i ∂&

(0)
j

∣∣∣∣
F

=
∑

n

1
σ 2

n

∂2mth(zn; &(0)
m , &

(0)
! )

∂&
(0)
i ∂&

(0)
j

∣∣∣∣
F

. (13.39)

Notice that Fij is not diagonal even if the original correlation matrix Cij was. Since
the same &(0)

m , &
(0)
! appear in all mth(zn), we vary the likelihood of obtaining all mi

by varying &
(0)
m,!. We can now use Eq. (13.38) to derive the confidence errors for

&(0)
m , &

(0)
! . In practice, what we have developed so far is a formalism to propagate

the errors from the observational errors σi to the cosmological parameters. The
errors σi , in turn, must be based on the expected performance of the experiment



370 Statistical methods in cosmology

and often their derivation is the most complicated step, involving many fine details
of the observations. Calculating numerically the second-order partial derivatives in
the Fisher matrix requires only a few estimations of the likelihood for each of the
parameters; if we have 10 parameters this makes a few tens of calculations instead
of the 1010 we mentioned at the beginning of this section.

Once we have reduced our likelihood into a Gaussian form, the Fisher matrix is
all we need to derive all the properties. The rest of this section is concerned with
various ways to manipulate the Fisher matrix to achieve several results.

Suppose we decide to switch from a set of parameters xi to another one yj (xi),
for instance from &(0)

m , &
(0)
! to the spatial curvature &

(0)
K = 1 − &(0)

m − &
(0)
! and

their ratio Rm! = &(0)
m /&

(0)
! . If we know the Fisher matrix for xi , the approximate

likelihood is

L = exp
(

−1
2
x̃iF

(x)
ij x̃j

)
, (13.40)

where x̃i = xi − xML
i . Approximating yj near xML

i as

yj ≈ yML
j + ∂yj

∂xi

∣∣∣∣
ML

(xi − xML
i ) , (13.41)

where yML
j ≡ yj (xML), we can write

ỹj ≡ yj − yML
j = J−1

j i x̃i . (13.42)

Here Jji ≡ (∂xj/∂yi)ML is the transformation Jacobian evaluated on the ML esti-
mators. Then we have

x̃i = Jiℓỹℓ , (13.43)

and we can find the new Fisher matrix by substituting into Eq. (13.40) simply as

F
(y)
ℓm = JiℓF

(x)
ij Jjm , (13.44)

which is summed over indices. We can say that the Fisher matrix transforms as a
tensor. Notice that the Jacobian matrix does not need to be a square matrix. The old
parameters xj can be projected in fact onto a smaller number of new parameters yi .

One may wonder why the Jacobian does not enter also in the transforma-
tion from the volume element dxidx2 . . . to the new element dyidy2 . . . , so that
L(yj ) = |J |L[xi(yj )]. This would imply an additional logarithmic term ln |J | in
the transformed probability function, spoiling the Gaussian approximation alto-
gether. However near the ML values we can approximate |J | with |JML| and
include this constant factor in the overall normalization. That is, forget about it.

Let us apply the transformation technique to an interesting problem. We have
used extensively the parametrization around a0 = 1 of the equation of state
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wDE(a) = w0 + w1(1 − a) [Eq. (7.93)]. We could however have expanded wDE(a)
around any other point ap and write instead wDE(a) = wp + w1(ap − a), where

wp = w0 + w1(1 − ap) . (13.45)

We can now ask the question whether the constraint we obtain on wp (i.e. σ 2
w0

) is
tighter than the one on w0, that is whether we can better rule out say wDE = −1 at
ap than at a0. The problem consists therefore in finding the value ap (called pivot
point) that minimizes the variance of wDE(a). Denoting the maximum likelihood
estimators (or fiducial values) with ŵ0, ŵ1, this occurs for the value of a which is
the solution of the following equation,

d
da

[
⟨[(w0 − ŵ0) + (1 − a)(w1 − ŵ1)]2⟩

]

= d
da

[
σ 2

w0
+ (1 − a)2σ 2

w1
+ 2(1 − a)ρσw0σw1

]

= −2(1 − a)σ 2
w1

− 2ρσw0σw1 = 0 . (13.46)

Here σ 2
wi

≡ ⟨(wi − ŵi)2⟩ for i = 0, 1 and ρ ≡ ⟨(w0 − ŵ0)(w1 − ŵ1)⟩/(σw0σw1 ) is
the correlation coefficient. Then we obtain [547]

ap = 1 + ρσw0

σw1

. (13.47)

In terms of the two-dimensional Fisher matrix Fij for w0, w1, we can write

σ 2
w0

= (F−1)11 , σ 2
w1

= (F−1)22 , ρσw0σw1 = (F−1)12 . (13.48)

The transformation from p = (w0, w1) to q = (wp, w1) is achieved by using
Eq. (13.44) with the transformation matrix

J = ∂ p
∂q

=
(

1 1 − ap

0 1

)
. (13.49)

It is straightforward to verify that with this transformation the new matrix Fp =
J t F J is diagonal (the superscript t denotes transpose) and its inverse is:

F−1
p =

(
σ 2

w0
(1 − ρ2) 0

0 σ 2
w1

)
. (13.50)

The parameters wp, w1 are therefore uncorrelated. Moreover, as expected, the error
on wp, σ 2

wp
≡ σ 2

w0
(1 − ρ2), is always smaller than σ 2

w0
.

What if we want to maximize the likelihood with respect to some parameter? This
means, if you remember, to fix one of the parameters to its maximum likelihood
estimator. With the Fisher matrix this is really trivial, since fixing a parameter to
its maximum likelihood estimator means putting the difference θi − θ̂i = 0 and
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therefore to discard all entries in the Fisher matrix related to the i-th parameter. In
practice, this means that one removes from the Fisher matrix the rows and columns
of the maximized parameters.

What about marginalization then? Take a general two-dimensional Gaussian
PDF

G(x1, x2) = N exp
[
− 1

2(1 − ρ2)

(
x2

1

σ 2
1

+ x2
2

σ 2
2

− 2
ρx1x2

σ1σ2

)]
, (13.51)

where ρ is the correlation factor. This PDF can be written as

G(Xi) = N exp
[
−1

2
(XiC

−1
ij Xj )

]
, (13.52)

where Xi ≡ xi − µi (generalizing to non-zero µ’s), and

C =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
. (13.53)

Let us now evaluate the integral
∫

G(x1, x2) dx2 over the whole real domain. The
result is given by

G(x1) = Ñ exp[−x2
1/(2σ 2

1 )] , (13.54)

where Ñ is a new normalization constant. The new correlation “matrix” is now
simply C11 = σ 2

1 .
In terms of the Fisher matrix F = C−1 we see that the outcome of the marginal-

ization has been the removal from F−1 = C of the rows and columns related to
the second parameter. This trick remains true for any number of dimensions: to
marginalize over the j -th parameter, one simply needs to remove from the inverse
of the Fisher matrix F−1 the j -th row and column; to marginalize at once over
several parameters, one removes all the rows and columns related to those parame-
ters. As a consequence, the diagonal of the inverse Fisher matrix contains the fully
marginalized 1σ errors of the corresponding parameters (i.e. the errors one gets on
the i-th parameter after marginalizing over all the others)

σ 2
i = (F−1)ii . (13.55)

This latter property is probably the most useful and time-saving feature of the whole
Fisher method. Be warned however that the procedure of inverting and striking out
rows and columns is in general numerically unstable if the matrix contains small
eigenvalues. There are more stable algorithms that perform this operation [547].

Often we want to reduce the Fisher matrix to a 2 × 2 matrix F2 for two param-
eters, say θ1, θ2, because then it is easy to plot the resulting two-dimensional
confidence regions, defined as the regions of constant likelihood that contain a
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predetermined fraction of the total likelihood volume. Since the problem has been
reduced from the start to Gaussianity, we will necessarily have ellipsoidal con-
fidence regions on the plane θ1, θ2. Looking at the form of the two-dimensional
Gaussian PDF (13.51), you will realize that the semiaxes of the ellipses are oriented
along the eigenvectors of F−1

2 , that is, they form an angle

tan 2α = 2ρσ1σ2

σ 2
1 − σ 2

2

, (13.56)

with the coordinate axes. Moreover, the semiaxes ratio is equal to the square root
of the eigenvalues ratio. The length of the semiaxes depends clearly on the level of
confidence. If we take the semiaxes length along the i-th eigenvector equal to

√
λi ,

where λi is the i-th eigenvalue, we are finding the 1σ region, but because we are in
two dimensions, this level does not contain 68.3% of the probability but rather less
than 40%. Instead, we find by integrating a two-dimensional Gaussian that the one-
dimensional “1σ” region corresponding to 68.3% of probability content is found
for semiaxes which are roughly 1.51 times the eigenvalues. Regions at 95.4% and
99.7% correspond to semiaxes 2.49 and 3.44 times the eigenvalues, respectively.
The area of the 68.3% ellipses is πab, if a and b are the semiaxes length, that
is 1.51 times the eigenvalues. The area is therefore equal to (1.51)2π (det F2)−1/2.
Since an experiment is more constraining when the confidence region is smaller,
one can define a simple but useful figure of merit (FOM) as [547]

FOM =
√

det F2 . (13.57)

Notice however that the FOM is often defined to be the area at 95%, or some other
similar but not equivalent choice.

The FOM is particularly relevant to dark energy parameters such as w0, w1

[see, e.g., Eq. (7.93)]. The FOM naturally depends on how many parameters have
been marginalized. Every parameter marginalization increases (or more exactly,
does not reduce) the amount of uncertainty with respect to a maximized likelihood
and therefore decreases the available information and the FOM of the final set of
parameters, as we show in Fig. 13.1.

All these simple rules are really good news for practical work. The bad news
comes when they do not work. The major problem, in practice, is when the Fisher
matrix itself is singular. Then there is no inverse and no marginalization. But
the Fisher matrix can be singular only when rows or columns are not linearly
independent. It is easy to see when this happens. If L(θ1, θ2) depends on the two
parameters through a constant combination, e.g., aθ1 + bθ2, then the Fisher matrix
will be singular.

Let us turn this bug into a feature. If the Fisher matrix is singular, then it means
that there is a linear combination of two or more parameters hidden somewhere
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Figure 13.1 The first bar on the left is the FOM for w0, w1 with the parametriza-
tion (7.93) in a weak lensing experiment assuming all the other cosmological
parameters have been fixed to their fiducial values. When additional parameters
(listed on the bottom of the histogram) are marginalized, instead of being held
fixed, the FOM reduces. From Ref. [497].

in the likelihood. Therefore, we can substitute a new parameter θ̂ in place of
that combination, e.g., θ̂ = aθ1 + bθ2 and remove the singularity by restricting
ourselves to θ̂ instead of the original pair. Actually we should have done this from
the start, since if the physics depends only on the combination aθ1 + bθ2 there is no
way we can distinguish between θ1, θ2. It is only this combination that matters and
we should replace it by θ̂ . We say in this case that there is a degeneracy between θ1

and θ2. Sometimes, however, it is not obvious at all that this was the case and the
singularity of the Fisher matrix is a warning for us to look harder.

The only real problem is when there is almost a singularity. If the combination
is given by aθ1 + bθ2 + cf (z)θ2

1 , then there should be no singularity because of the
non-constant term (we are thinking here of observations at several z’s). However,
if a, b are of the order of unity while c = 10−10, then there is a high degree of
degeneracy, albeit not a total one. In this case the Fisher matrix may behave in
a dangerous way, with extremely small eigenvalues and unstable inversions. This
is the case that requires a human brain. It is our duty to understand the physical
cause of this quasi-degeneracy and redefine the parameters, perhaps giving up the
possibility of discriminating between θ1, θ2 and focusing on the combined term θ̂ =
aθ1 + bθ2 + cf (z)θ2

1 . Or we may find additional priors (e.g., other experiments)
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that give separate information on one of the quasi-degenerate parameters and break
the degeneracy.

This brings us to another advantage of the Fisher matrix approach. How do we
add priors to a Fisher matrix Fij ? If the prior is the outcome of another experiment
and we have the Fisher matrix F

(p)
ij of that experiment, then the problem reduces to

multiplying a Gaussian likelihood by another Gaussian likelihood, obtaining a new
Gaussian likelihood. If the experiments have the same ML estimators or the same
fiducial model, as in the case in which we simulate them, the new Fisher matrix is
given by

F
(tot)
ij = Fij + F

(p)
ij . (13.58)

As simple as this: combining the information from two forecasts (with the same
fiducial model) means summing their Fisher matrices. In so doing one has to ensure
that the parameters and their order are exactly the same for both matrices: trivial,
but a most likely source of practical confusion. If one of the experiments constrains
only a subset of the total parameters (for instance, supernovae experiments do
not constrain the primordial perturbation slope ns), it means that it contains no
information on that subset, and therefore the corresponding rows and columns
are to be put to zero. This means that the two Fisher matrices are rendered of
the same rank by filling the one with less parameters (say F(p)) with zeros in the
correct position. For instance if we only want to add the information that the single
m-th parameter comes with an error σm then we add the Fisher matrix (no sum
on m)

F
(p)
ij =

δm
i δm

j

σ 2
m

. (13.59)

So you see that in this case F(p) would be utterly singular but the total F(tot) is not
(unless of course F was singular as well for the same parameter, bad luck really).

Let us mention the final point about the Fisher matrix. A statistical theorem
known as Cramer–Rao inequality states that the minimal variance of an unbiased
estimator cannot be less than (F−1)ii (which means first to take the inverse and
then take the i-th term on the diagonal). In this sense the Fisher matrix gives the
minimal error one can hope to achieve. If you are very optimistic then the Fisher
matrix is your tool. Notice, however, that the maximum likelihood estimators need
not be unbiased estimators at all, although they are unbiased for large samples
(asymptotically unbiased) otherwise they would be of little utility. So we could
end up in producing the best possible error estimate for some unbiased estimators
which we do not know how to determine!

Once we accept the Gaussian approximation, the Fisher matrix embodies
all the information we have on the problem. The manipulation of the Fisher
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matrix therefore is all we need. To recapitulate, there are five golden rules of
fisherology:

1. To transform variables, multiply the Fisher matrix on the right and on the left by the
transformation Jacobian.

2. To maximize over some parameters, remove from the matrix the rows and the columns
related to those parameters.

3. To marginalize over some parameters, remove from the inverse matrix the rows and
the columns related to those parameters (being careful about the numerical instability
pointed out above).

4. To combine Fisher matrices from independent experiments with the same fiducial,
sum the corresponding Fisher matrices, ensuring the same order of parameters, and, if
necessary, inserting rows and columns of zeros for unconstrained parameters.

5. The ellipsoidal confidence regions have semiaxes lengths equal to the square root of
the eigenvalues of the inverse Fisher matrix, while the semiaxes are oriented along
the corresponding eigenvectors. The area of the ellipse (or volume of ellipsoid) is
proportional to the square root of the determinant of the inverse Fisher matrix. The
determinant of the Fisher matrix is an indicator of performance or a figure of merit.

If one wishes, one could define a new set of parameters by diagonalizing the Fisher
matrix, obtaining (by an axes rescaling) circular (or spherical) confidence regions.
In some cases this is useful because it reveals hidden properties (see Section 13.5).
There are other cases in which the new parameters are so remote from any physical
direct meaning that the exercise is futile. Notice that the confidence region volume
(and therefore the FOM) does not change under the diagonalization.

13.4 The Fisher matrix for the power spectrum

Now we have all the tools to derive a very useful result, the Fisher matrix for an
experiment that measures the galaxy power spectrum.

Suppose a future experiment will provide us with the Fourier coefficients δk of a
galaxy distribution and their power spectrum calculated for a set of m wavenumbers
ki in some redshift bin z, z + 9z. Our theory predicts the spectrum P (k, z; pi) as a
function of, say, pi ≡ &(0)

m , &
(0)
b , h, ns etc. In any real survey with a galaxy density

n(z), however, the power spectrum will include the Poisson noise part that we
estimated in Eq. (3.34):

92
k ≡ ⟨δkδ

∗
k⟩ = ⟨δkδ−k⟩ = P (k, z) + 1

n
. (13.60)

Since the average galaxy density is estimated from the survey itself we have by
construction ⟨δ(x)⟩ = 0 and therefore ⟨δki

⟩ = 0 for any ki . The coefficients δki
are

complex variables in which the real and imaginary parts obey the same Gaussian
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statistics. So now we calculate the Fisher matrix for only, say, the real parts of δki

and the Fisher matrix for the whole δki
is simply the sum of two identical Fisher

matrices, i.e. twice the result for the real parts. However when we count the total
number of independent modes we have to remember that only half of them are
statistically independent since δ∗

k = δ−k so in fact we should finally divide by two
the final result. That is, we can forget both factors.

If we assume the galaxy distribution to be well approximated by a Gaussian we
can write the likelihood:

L = 1
(2π )m/2Ai9i

exp

[

−1
2

m∑

i

δ2
i

92
i

]

, (13.61)

(where to simplify notation we write 9i = 9ki
, δi = Re δki

) assuming that the
measures at every ki are statistically independent. When we simulate a future
experiment, P (k, z) is taken to be the theoretical spectrum of our fiducial model
described by the parameters p

(F )
j . Then we have

L = − ln L = m

2
ln(2π ) +

∑

i

ln 9i +
∑

i

δ2
i

292
i

. (13.62)

We further simplify the notation by suppressing the index i running over the k bins
from 9i , δi and denote the differentiation with respect to the j -th parameter as 9,j .
Now from Eq. (13.32) the Fisher matrix for a particular z bin is

Fℓm =
〈

∂2L
∂pℓ∂pm

〉
=

∑ [
9,ℓm

9
− 9,ℓ9,m

92
− ⟨δ2⟩

(
9,ℓm

93
− 3

9,ℓ9m

94

)]

= 1
2

∑

i

∂ ln Pi

∂pℓ

∂ ln Pi

∂pm

(
nPi

1 + nPi

)2

, (13.63)

[where we used ⟨δ2⟩ = 92 from Eq. (13.60)] calculated on the fiducial model.
For a more compact expression we can now approximate the sum with an

integral over k. To do this we need to count how many modes lie in the bin defined
by the modulus interval k, k + dk and cosine interval dµ, i.e. in the Fourier volume
2πk2dkdµ. The number of modes we can really use is limited by two factors: the
size of the volume and the shot noise. Modes larger than the survey volume cannot
be measured. Short modes sampled by only a few galaxies cannot be reliably
measured either.

To take into account these limitations we discretize the Fourier space
into cells of volume Vcell = (2π )3/Vsurvey, so that we have 2πk2dkdµ/Vcell =
(2π )−2Vsurveyk

2dkdµ modes in the survey volume. The integral form of the Fisher
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matrix is therefore given by [548, 549]

Fℓm = 1
8π2

∫ +1

−1
dµ

∫ kmax

kmin

k2dk
∂ ln P (k, µ)

∂pℓ

∂ ln P (k, µ)
∂pm

[
nP (k, µ)

nP (k, µ) + 1

]2

Vsurvey .

(13.64)

The factor

Veff =
[

nP (k, µ)
nP (k, µ) + 1

]2

Vsurvey (13.65)

can be seen as an effective survey volume. When nP ≫ 1 the sampling is good
enough to derive all the cosmological information that can be extracted from the
survey and there is no need of more sources. For nP ≪ 1 the effective volume is
severely reduced. If we subdivide the data into several z independent bins, we can
simply sum the Fisher matrices for every bin.

It is straightforward to extend the Fisher matrix calculation to a more general
likelihood with full correlation. Consider a set of n Gaussian data x with mean µ

and covariance matrix C distributed according to the likelihood

L = 1

(2π )n/2
√

det C
exp

[
−1

2
(x − µ)t C−1(x − µ)

]
, (13.66)

where t denotes the transpose. We define the data matrix D = (x − µ)(x − µ)t .
Then the covariance matrix is defined in all generality as the expected value of D:

⟨D⟩ = C . (13.67)

We can write, up to a constant

L = − ln L = 1
2

[ln det C + Tr C−1 D] = 1
2

Tr [ln C + C−1 D] , (13.68)

where we used the matrix identity: ln det C = Tr ln C. We suppose now that the
theoretical parameters θ are both in µ and in C . The Fisher matrix is then the
expected value

Fij =
〈

∂2L
∂θi∂θj

〉
≡ ⟨L,ij ⟩ . (13.69)

To calculate ⟨L,ij ⟩ we use the fact that for Gaussian data ⟨x⟩ = µ , and consequently

⟨D,i⟩ = 0 , ⟨D,ij ⟩ = µ,iµ
t
,j + µt

,jµ,i . (13.70)

Notice that ⟨D,i⟩ ̸= ⟨D⟩,i . Then we have

2L,i = Tr [C−1C ,i(I − C−1 D) + C−1 D,i] , (13.71)
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(I is the identity matrix) which averages to zero,

⟨L,i⟩ = 0 . (13.72)

This result is actually true for any distribution, not just Gaussian, since it corre-
sponds to the derivative with respect to the parameters of the norm of the distribu-
tion. Notice that the average only acts on D since the random variables, the data,
are only there, while of course derivatives act only on C and µ since parameters
are only there. To evaluate ⟨L,ij ⟩ we notice that all first derivatives ⟨D,i⟩ vanish
and that ⟨I − C−1 D⟩ = 0. Then we are finally left with [550, 551]

Fij ≡ ⟨L,ij ⟩ = 1
2

Tr
[
C−1C ,iC−1C ,j + C−1⟨D,ij ⟩

]

= 1
2
C−1

ℓm

∂Cmn

∂θi

C−1
np

∂Cpℓ

∂θj

+ C−1
ℓm

∂µℓ

∂θi

∂µm

∂θj

(13.73)

(sum over repeated indices) where in the last equality we have written down the full
index expression to be more explicit. Equation (13.63) is recovered when µ = 0
and Cℓm = 92

mδℓm.

13.5 Principal component analysis

So far we have almost always assumed a very specific model, for instance a
model of the equation of state wDE(z), and have proceeded to get constraints on
the parameters. The likelihood method will certainly find some constraints, no
matter how wrong is our modeling. For instance, take the expansion wDE(z) =
w0 + w1z + w2z

2 + · · · and suppose that we stop at w1. Given a dataset of SN
Ia, we could end up with very good constraints on w0 but very loose on w1. We
may content ourselves with that and blame the experimenters for their poor data.
However, how can we be sure that the data do not contain good constraints on, say,
w2 or some other higher-order parameters? If the data do not extend very far we
do not expect this, but still it would be nice to quantify which parameters (and how
many) we can reasonably constrain for a given dataset. In other words we would
like to find the best parametrization, rather than to assume one.

One way of doing this is to approximate the function wDE(z) in the range za, zb

with many stepwise constant values:

1 + wDE(z) =
N∑

i=1

θi(z)wi , (13.74)

where θi = 1 for z inside the bin (zi, zi + 9z) and 0 outside. So now we have N (≫
1) parameters wi instead of two or three. Technically, this is just a bigger Fisher
matrix problem and we could proceed as before. In this case, however, it would be
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really nice to have uncorrelated errors on the parameters, since they all measure
the same quantity, wDE, and it will be difficult to compare different experiments
if the errors are correlated (and compactifying to a single FOM would discard too
much information). What we would like is in fact an expansion [552, 553]

1 + wDE(z) =
N∑

i=1

αiei(z) , (13.75)

where the coefficients αi are uncorrelated. Since uncorrelated parameters mean a
diagonal Fisher matrix, the problem is solved by diagonalizing the Fisher matrix
for the original N parameters wi , thus obtaining a diagonal FD

ij . The orthogonal
basis functions ei(z) will be then the eigenvectors, with N eigenvalues λi . The new
parameters αi will have the variance σ 2

i = 1/λi = [(FD)−1]ii (i.e. the elements on
the diagonal of the inverse Fisher matrix).

Now, a parameter with a large error is a badly measured parameter. It means
that the data are not able to measure that parameter very well. On the contrary, a
parameter with small error is well measured. Therefore we can rank the parameters
αi according to their errors, that is, according to the magnitude of the eigenvalues
of Fij . The highest eigenvalues (smallest errors) are called “principal components”
and the whole method is called principal component analysis (PCA). This method
is based on the fact that every well-behaved function can be expanded in piecewise
constant fragments and that every non-singular Fisher matrix can be diagonalized.
That is, the PCA can always be used when we need to reconstruct an unknown
function.

So we have now a few well-measured components plus many others with large
errors. The eigenvectors ei(z) associated with the principal components are func-
tions of z, built up by linear combinations of the θi(zi). They tell us the range of z

which is best measured by the data. We can plot them and have at once a view of
the range of z most sensitive to that particular dataset, see Fig. 13.2. This is perhaps
the best feature of the PCA since it allows us to optimize an experiment towards
any range we are interested in.

The coefficients αi themselves are rarely interesting. They can be evaluated by
employing the property that the eigenvectors are orthogonal. Let us also normalize
them by

∫
e2
i (z) dz = 1 , (13.76)

where the integration is taken in the whole za, zb region. Multiplying Eq. (13.75)
by ei(z) and then integrating, we obtain

αi =
∫

[1 + wDE(z)] ei(z)dz . (13.77)
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Figure 13.2 An example of the first principal component for three individual
observational probes, and all of the techniques combined. From Ref. [554].

In comparing different experiments PCA might help, but care has to be taken
when interpreting the results. In general the distribution of eigenvalues can be very
different among different experiments and it is not obvious whether it is preferable
to have a few well-measured components in a small range or many not-so-well-
measured components in a large range. Reducing everything to a single FOM
would kill the whole spirit of the PCA method and at the end of the day a sensible
theoretical expectation is the principal component of any analysis.

13.6 Problems

13.1 Suppose 1% of the hypotheses are correct (in any sense one decides to define “correct-
ness”). Suppose also that 80% of the times, an experiment testing a correct hypothesis
confirms the hypothesis. On the other hand, 10% of the times an experiment tests a
wrong hypothesis, it confirms that hypothesis due to experimental errors. What is the
probability that a hypothesis that is confirmed by data is correct?

13.2 We denote the observational data as mi , their errors σi , and the theoretical predictions
as µi , where we assume that µi depend on a number of parameters θ1, θ2, . . . .
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Marginalize the following likelihoods over the multiplicative nuisance parameter α:

L1 = exp

[

−1
2

∑

i

(αmi − µi)2

σ 2
i

]

, (13.78)

L2 = exp

[

−1
2

∑

i

(mi − αµi)2

σ 2
i

]

. (13.79)

13.3 Find the Bayes’ ratio for two models: model A predicting that a quantity θ = 0 with
no free parameters, and model B which assigns θ a Gaussian prior distribution with
0 mean and variance =. Assume that we perform a measurement of θ described by a
normal likelihood of standard deviation σ , and with the maximum likelihood value
lying λ standard deviations away from 0, i.e. |θmax/σ | = λ. (From Ref. [544]).
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Future observational constraints on the nature
of dark energy

The observables used to obtain information about the global properties of the Uni-
verse are not many: distances, background radiation, source positions and veloci-
ties, galaxy shapes as an indicator of lensing shear, galaxy or cluster densities, all of
them as functions of redshift. All these observables can in principle be employed to
constrain the properties of dark energy. Five methods emerged so far as possibly the
best tools for exploring the property of dark energy: SN Ia, CMB, LSS (including
BAO), weak lensing and galaxy clusters. In some cases this selection was based on
the actual current performance (e.g., the SN Ia method that gave birth to the whole
dark energy concept); in others, on good promises for the next decade (e.g., weak
lensing).

In Section 5.2 we already addressed the SN Ia method in some detail. In this
chapter we discuss the other techniques and their prospects. We also explain the
potential of alternative methods such as age tests, gamma ray bursts, strong lensing,
and redshift drift.

14.1 Dark energy and the CMB

The physics of CMB is a wonderful playground for cosmologists. The initial
conditions are set by inflation; the evolution of perturbations involves the delicate
interplay of photons, baryons, neutrinos, dark matter, and dark energy, all coupled
either directly or via the gravitational field. Finally, the observation and the analysis
of the anisotropies themselves also involve very interesting physics, mathematics,
and statistics. The outcome of this grand tour of physics is a powerful probe of the
Universe from its very early stages down to the present time, providing us with
fundamental (and in some case unique) constraints on many cosmological issues,
from the spectrum of primordial scalar and tensor perturbations to the mass of
neutrinos and the reionization epoch.

383
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There are three aspects of CMB that deal most directly with dark energy: the
acoustic peak position, the integrated Sachs-Wolfe (ISW) spectrum and the cross-
correlation between ISW and LSS. We already discussed the peak position in
Section 5.3. Here we discuss the ISW and ISW-LSS effects. A summary of WMAP
results in the (&(0)

m , &
(0)
! ) plane is illustrated in Fig. 14.1.

14.1.1 Cross-correlation ISW-matter fluctuations

As we have seen in Section 4.11.1, the temperature anisotropy in the direction
θ = (θx, θy) due to the ISW effect is an integral of the time variation of the quantity
ψ ≡ ' − ( along the line-of-sight:

δT

T

∣∣∣∣
ISW

≡ δT (θx, θy) = −
∫ η0

ηi

dη e−τop(η) ∂ψ

∂η
, (14.1)

where the conformal time η is integrated from some early pre-recombination epoch
to the present. The only difference relative to the expression in Section 4.11.1 is
the optical thickness factor e−τop(η), where the optical depth τop(η) is defined in
Eq. (4.168). The function e−τop(η) weighs the photon path so that every dη bin
counts proportionally to its optical thickness.

In the context of photon propagation in linearly perturbed spaces we always
consider photons propagating almost radially, i.e. for small deviation angles θ , and
then we can put x ≈ rθ cos φ ≡ rθx and y ≈ rθ sin φ ≡ rθy . Therefore one can
think of the dx2 + dy2 part as the approximate Cartesian version of the angular
interval r2dθ2 + r2 sin2 θ dφ2. In a non-flat metric as Eq. (2.54) we have instead
x = fK (χ )θx, y = fK (χ )θy where fK (χ ) is defined in Eq. (2.56) and χ is the
comoving distance

χ = η0 − η , (14.2)

which also corresponds to the look-back conformal time. Unless otherwise specified
we work however in flat space and put χ = r so that dχ = dr = −dη.

The ISW fluctuations due to the line-of-sight propagation of CMB photons are
superimposed on the last-scattering surface fluctuations and are therefore difficult
to disentangle. However, since the gravitational potentials ( and ' are traced by
the density fluctuations δ, we expect a non-zero correlation between δT and δ, as
first proposed in Ref. [555]. The density fluctuations should include contributions
from all sources, including dark energy fluctuations. The density fluctuations along
the line-of-sight direction θ are

δ(θx, θy) =
∫

dr W (r)δ(r) , (14.3)
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where as usual W (r) is the selection function normalized so that
∫ ∞

0 W (r)dr = 1.
All the r integrals in this subsection and the next one extend from 0 to the last
scattering surface. If matter is represented by galaxies then W (r) is the differential
number density dNg/dr of galaxies normalized to unity. In this case δ will be in
fact δg/b.

Now we expand δ(θ) in spherical harmonics with coefficients

aℓm =
∫

d2θY ∗
ℓm(θ )δ(θ )

= (2π )−3
∫

drd2θd3k Y ∗
ℓm(θ )W (r)eik·rδ(k)

= (2π )−3
∫

drd3k W(r)δ(k)
∫

d2θY ∗
ℓm(θ )eik·r , (14.4)

where we expanded the field in Fourier modes and assumed statistically isotropic
fluctuations. As usual we discard the volume factors in the Fourier transforms. Now
we can use the relativistic Poisson equation (4.64) and (4.59) to write

ψ = ' − ( = 3
H2

k2
δ , (14.5)

where δ is the total matter variable. This equation links the density fluctuations to
the potential ones in standard gravity. If the only contribution to fluctuations comes
from pressureless matter then δ = &mδm and we can use the growth factor D(η)
normalized to present

δm(η, k) = D(η)δ(0)
m (k) , (14.6)

to write the Fourier modes of ∂ψ/∂η as

∂ψ(η, k)
∂η

= 3(H2&mD),η
k2

δ(0)
m (k) . (14.7)

The factor (H2&mD),η evaluates to zero for an Einstein–de Sitter Universe and
consequently there is no cross-correlation. From Eqs. (14.1), (14.4), and (14.7) we
can write the multipole coefficients for matter and ISW fluctuations in a unified
and compact way:

a
(m,T )
ℓn = (2π )−3

∫
drd3kWm,T (r)δ(0)

m (k)
∫

d2θY ∗
ℓn(θ )eik·r , (14.8)

where

Wm ≡ WD , WT = 3k−2(H2&mD),η . (14.9)

If the optical depth is not negligible, there is an extra factor of e−τop(η). For modified
gravity we have instead WT = 3k−2(=H2&mD),η, where = has been defined in
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(11.203). We need now a classical result for spherical harmonics:
∫

eik·rY ∗
nℓ(r̂)d2θ = 4π iℓjℓ(kr)Y ∗

nℓ(k̂) , (14.10)

where r̂ = r/r , k̂ = k/k are unit vectors and jℓ(kr) are spherical Bessel functions.
This can be obtained by first expanding the plane wave in spherical harmonics (see
equation 16.127 in Jackson’s textbook [556]):

eik·r = 4π
∑

ℓn

iℓjℓ(kr) Y ∗
nℓ(k̂)Ynℓ(r̂) , (14.11)

and by integrating over the angles. Then we have

a
(m,T )
ℓn = iℓ

2π2

∫
drd3kWm,T jℓ(kr)Y ∗

nℓ(k̂)δ(0)
m (k) . (14.12)

The multipole cross-correlation spectrum is then [555, 557, 558, 559, 560]

Cℓ ≡ ⟨a(m)
ℓn a

(T )∗
ℓn ⟩

= 2
π

∫
dr1jℓ(kr1)Wm

∫
dr2jℓ(kr2)WT

∫
k2dkP

(0)
δ (k)

∫
d2θY ∗

nℓ(k̂)Ynℓ(k̂) ,

(14.13)

where we have used

⟨δm(k, η0)δ∗
m(k′, η0)⟩ = (2π )3δ

(3)
D (k − k′)P (0)

δ (k) . (14.14)

Finally, the last integral in Cℓ evaluates to unity due to the orthonormality of the
spherical harmonics. Then we obtain

Cℓ = 2
π

∫ ∞

0
k2dkI ISW

ℓ Im
ℓ P

(0)
δ (k) , (14.15)

where

I ISW
ℓ =

∫
drjℓ(kr)WT = 3k−2

∫
dre−τop(η)jℓ(kr)(=H2&mD),η , (14.16)

Im
ℓ =

∫
drjℓ(kr)WD . (14.17)

If dark energy also contributes to the fluctuations then we can put &t = 1 in place
of &m and write

I ISW
ℓ =

∫
drjℓ(kr)WT = 3k−2

∫
dre−τop(η)jℓ(kr)(=H2Dt ),η , (14.18)

I t
ℓ =

∫
drjℓ(kr)WDt , (14.19)

where Dt is the growth factor of the total matter, Dt = δ(k, η)/δ(0)(k).
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Figure 14.2 Marginalized contours in the (wDE,&
(0)
DE) plane for CDM plus

dark energy with wDE = constant model (68% and 95% confidence level). The
solid (dashed) line represents constraints from using WMAP+ISW+weak lensing
(WMAP alone). From Ref. [562].

Note that = and D in general can be functions of both k and η. For completeness
in I ISW

ℓ we reintroduced the optical depth. The r integrals extend from r = 0 to
some early epoch when the fluctuations were negligible. If the window functions
Wm,T are given in redshift, one has to change from r to z by using the relation
dr/dz = 1/H (z) in flat space.

It is now possible to use the cross-correlation ISW signal to test dark energy
models. The theory gives us P

(0)
δ ,H(η), &m(η), D(k, η) as functions of model

parameters (we also need τop(z) but for z less than a few we may put τop ≈ 0).
The data are obtained by cross-correlating various large-scale surveys (e.g., the
SDSS optical galaxies, the 2MASS infrared catalogue, the HEAO X-ray maps
etc.) and the CMB sky maps. As usual, the galaxy fluctuations must be corrected
for the bias before comparing to the predictions. In Fig. 14.2 we present the results
obtained combining ISW with other probes. The signal has been detected to good
significance (4–5σ ), but the constraints on dark energy parameters are rather weak
and strongly depend on the assumed sound speed of dark energy [561, 562]. Future
large-scale surveys will no doubt improve considerably [563].

As a final note, we remark that the derivation of Eq. (14.15) is very general: it
provides the link between the isotropic power spectrum P (k) of a three-dimensional
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field δ(x) weighted according to a unit-normalized radial selection function W (r)
and its multipole spectrum Cℓ:

Cℓ = 2
π

∫ ∞

0
k2dkP (k)

[∫ ∞

0
drjℓ(kr)W (r)

]2

. (14.20)

We can derive also another similar expression (that we already used in Sec-
tion 5.3) in the following way. Let us assume that the window function W (r) is a
Dirac delta centered on the last scattering surface at distance r = r∗. It is possible
to write the fluctuations as δ(k) = δi(k)δ̂(k, µkr ), where δi is the initial fluctuation.
From Eq. (14.4) we then obtain

aℓm = (2π )−3
∫

δi(k)d3k

∫
d2 θ δ̂(k, µkr )Y ∗

ℓm(r̂)eik·r∗
, (14.21)

where δ̂(k, µkr ) can be developed in Legendre series:

δ̂(k, µkr ) =
∑

ℓ

(−i)ℓ(2ℓ + 1)Pℓ(µkr )δℓ(k) . (14.22)

Now we use the power spectrum definition ⟨δi(k)δ∗
i (k′)⟩ = (2π )3δD(k − k′)Pi(k).

Without loss of generality it is possible to set Pi = 1 since we can absorb in δ̂ the
initial amplitude.

Squaring and averaging aℓm, we obtain

Cℓ = (2π )−3
∫

d3k
∑

ℓℓ′

(−i)ℓ(i)ℓ
′
(2ℓ + 1)(2ℓ′ + 1)δℓδ

∗
ℓ′I (k)I ∗(k) , (14.23)

where

I (k) =
∫

d2θY ∗
ℓ′′m(r̂)Pℓ(µkr ) = 4π

2ℓ + 1
Yℓm(k̂)δℓℓ′′ . (14.24)

Finally, by integrating over the angles, we have

Cℓ = 2
π

∫ ∞

0
dk k2|δℓ|2 , (14.25)

which corresponds to Eq. (5.28) with )ℓ in place of δℓ.

14.1.2 ISW effect on the CMB

In the previous section we have discussed the cross-correlation between galaxies
and ISW. Here we consider instead the power spectrum of ISW alone as can be
seen on the microwave background. From Eq. (14.15) it is clear that the result for
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the correlation of the ISW with itself is

Cℓ = 2
π

∫
k2dkPδ(k)

(
I ISW
ℓ

)2
. (14.26)

An approximate result can be obtained by estimating

I ISW
ℓ ≈ 3

k2
e−τop(zp)(=H2&mD),ηp

∫
drjℓ(kr)

≈ 3
√

π

2k3
e−τop(zp)(=H2&mD),ηp

4[(ℓ + 1)/2]
4[(ℓ + 2)/2]

, (14.27)

[see Eq. (17.11) in the Mathematical Appendix] where we have approximated the
integral by taking (0, ∞) as limits and where ηp is the conformal time evaluated at
the peak of the spherical Bessel function, which can be obtained by the formula

r(zp) = ηp − η0 = ℓ + 1/2
k

, (14.28)

so that ηp or zp = z(ηp) are functions of k and ℓ.
Then we have

Cℓ = 9
2

(
4[(ℓ + 1)/2]
4[(ℓ + 2)/2]

)2 ∫
dk

k4
Pδ(k)[e−τop(zp)(=H2&mD),ηp

]2 . (14.29)

The functions D and = have to be obtained by solving the general perturbation
equations we have discussed in Section 11.2 (see problem 14.1). The ISW effect
is in general important for small ℓ’s (ℓ ! 10) and it appears as a tilt of the low ℓ

spectrum in the CMB (see Fig. 14.3). This contribution of the ISW to the CMB
anisotropy spectrum is superimposed on all the others and it is not possible to
single it out in general terms.

There are many effects that determine the amplitude of the ISW tail on the
CMB spectrum. The potential ψ can vary in time due to either the background
expansion H or the perturbation growth D. The two effects compensate exactly for
a standard matter-dominated expansion but not in general. The total perturbation
δ receives contributions also from dark energy perturbations, which are controlled
by the dark energy sound speed cs . In general, for the same background expansion
and for wDE > −1, if c2

s decreases, the dark energy clusters more and more like
dark matter. This leads to the suppression of the ISW effect [564, 557].

On its own, the ISW effect is not a strong test of dark energy because it occurs
at large angular scales, or low ℓ’s. Since we have a single sky, there are but a
few “independent” large angle patches we can use to constrain the model. In other
words, the low multipoles are affected by a large cosmic variance. Only rather
extreme models can be convincingly ruled out by the ISW effect, e.g., models with
long epochs of acceleration with fast growth of structure [486].
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Figure 14.3 CMB anisotropies for CDM plus dark energy with wDE = −0.6 with
several different values of the sound speed. From top to bottom each line corre-
sponds to c2

s = 5, 1, 0.2, 0.05, 0.01, 0.0 with dark energy perturbations, whereas
the low dashed line corresponds to c2

s = 1 without dark energy perturbations.
From Ref. [564].

14.2 Large-scale structure

We have seen in Section 5.4 that the baryons leave a non-negligible imprint on
the total perturbations in the form of a coherent pattern of fluctuations at a fixed
physical scale, see Fig. 14.4. This is only one example of physical mechanisms that
can be observed in the matter power spectrum and that depend on cosmological
parameters. Other features of the power spectrum that depend on cosmology are
the position of the overall peak (or turnaround), the overall amplitude, and the
slope. The problem we want to tackle in this section is how to extract all the
cosmological information from the power spectrum. As before, we use the Fisher
matrix approach. Most of the discussion in this section is based on the work of Seo
and Eisenstein [549, 565].

One obvious way would be to calculate from scratch the power spectrum for
all values of the cosmological parameters we want to study. However this would
obscure the dependence of the parameters and could require long computations.
Here we illustrate a way to make the dependence on cosmology as explicit as
possible. The problem at hand is the following. If we know the power spectrum at
redshift z = 0 for a given reference or fiducial cosmology (subscript r), e.g., the
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Figure 14.4 Ratio of the full observed power spectra to suitably smoothed spectra
to show the oscillating BAO component. Power spectra are calculated from (a)
the combined SDSS and 2dFGRS main galaxies, (b) the SDSS DR5 LRG sample,
and (c) the combination of these two samples (solid symbols with 1σ errors). The
solid line in each panel is a fit to the data. From Ref. [124].

standard !CDM, how do we find the spectrum for any other cosmology at any
other redshift?

The cosmological model influences the spectrum in many ways. It changes the
shape of the spectrum at z = 0. It changes the amplitude of the spectrum at any z

through the growth factor. It affects the separation between galaxies and therefore
also the wavenumbers k in the spectrum. Finally, it also changes the volume in
which the spectrum is calculated. Let us discuss the latter two effects first.

If we observe an angle θ subtending a transverse comoving scale λ1 at z, then the
angular diameter distance is d1(z) = λ1/(1 + z)θ where the subscript 1 indicates
a given cosmology, i.e. some values of &(0)

m , &
(0)
! etc. In a different cosmology

(subscript 2), the relation will be d2(z) = λ2/(1 + z)θ , i.e. the scale has to change
in order to keep the same subtending angle at the same redshift. It follows that for
any cosmology the combination d/λ for each given angle is a constant. The same
goes for the combination k⊥d if k⊥ is the transverse wavenumber corresponding to
that transverse scale. Therefore, if we take a reference cosmology r , we have that
for any other cosmology the transverse wavenumber is given by

k⊥ = kr⊥dr/d . (14.30)
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A similar argument can be applied to the comoving scale extending along the
line of sight from z1 to z2. The scale is then λ = dz/H (z) and in order for this
scale to be seen at the same dz = z2 − z1 the product λH has to remain constant
when changing cosmology. Therefore, along with (14.30), we have for radial
modes

k∥ = kr∥H/Hr . (14.31)

Clearly, any wave vector k can be decomposed into k∥ and k⊥. The relations above
apply therefore to any perturbation mode. Every mode k in the power spectrum
can be written in terms of the reference mode kr with an explicit dependence on
the cosmological parameters inside d and H . We know then how the wavenumber
changes with cosmology. This implies that if a power spectrum is isotropic for
the reference cosmology, it will become anisotropic for any other cosmology,
because k∥ and k⊥ change differently: this is called the Alcock–Paczynski effect
[566]. However we are measuring more than just the anisotropy since if we have
a feature in P (k, z) at a fixed comoving scale then we have θ1dA(z1)(1 + z1) =
θ2dA(z2)(1 + z2) and we can measure the ratio

θ1

θ2
= dA(z2)(1 + z2)

dA(z1)(1 + z1)
, (14.32)

and analogously the ratio H (z2)/H (z1). And we do have such a feature: the
baryon acoustic oscillations we have already encountered in Section 5.4 that man-
ifest themselves as small oscillations superimposed on the smooth matter power
spectrum. Therefore, by observing the power spectrum at two or more redshifts
we can measure the wavevectors at which the baryon acoustic scale is located
and determine separately the ratios of H (z) and of dA(z). In the method we
illustrate below we do not need to identify “by hand” the features we want to
measure: all the scale-dependent information contained in the power spectrum
will be automatically employed to constrain cosmology. To the galaxy clus-
tering we can finally add the measure of the baryon acoustic oscillations on
the CMB.

From the relations (14.30) and (14.31) we derive the relation between the
wavenumber modulus k and the direction cosine µ = k · r/k (here r is the unit
vector parallel to the line of sight) in the reference cosmology and in the generic
cosmology

k = (k2
∥ + k2

⊥)1/2 = Rkr , (14.33)

µ = k∥

(k2
∥ + k2

⊥)1/2
= Hµr

HrR
, (14.34)
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where

R =
√

H 2d2µ2
r − H 2

r d2
r (µ2

r − 1)
Hrd

. (14.35)

Since the power spectrum is proportional to the volume V in which we measure
the perturbations, we need to evaluate also how V depends on cosmology. If we
measure the spectrum in a solid angle θ2 rad2 and a shell of thickness dz, then the
volume is

V = θ2r2dr = d2(z)r,z(z)dz = d2

H
dz , (14.36)

where r,z = dr/dz = 1/H (z) and d = r(z)θ . It follows that V H/d2 is independent
of the cosmology and therefore

V = Vr

Hrd
2

Hd2
r

. (14.37)

For the purpose of obtaining a power spectrum from real data, we need to assume a
reference cosmology to convert angles and redshifts into distances or wave vectors.
The relations (14.33, 14.34, 14.37) above allow us to relate this reference power
spectrum to a general power spectrum for any d, H , i.e. for any given cosmology.
The power spectrum P (k) = V δ2

k for the true cosmology can be converted into the
power spectrum in the reference cosmology (the one we use to convert observed
redshifts into distances) by multiplying by Vr/V and by converting k, µ into kr, µr .
Hence we can write at any redshift [567]

Pr (kr, z) = H (z)d2
r (z)

Hr (z)d2(z)
P(Rkr, z) . (14.38)

Notice that R depends on z.
As long as the perturbations grow in time independently of their wavelengths

(which is the case in most simple scenarios), we can write the spectrum at any
z by multiplying the present spectrum by the growth factor squared: P (k, z) =
D(z)2P (k, 0), where D(z) = δm(z)/δm(0). Then, we can relate the observed galaxy
power spectrum to the theoretical matter power spectrum by the bias factor b2(k, z).
Finally, we must connect the observations in redshift space to the theoretical pre-
dictions which are performed in real space. As we have seen in Section 4.8 this
requires an extra factor (1 + βµ2)2. Putting everything together, we finally obtain

Pr,obs(kr, µr ; z) = Ps(z) + H (z)d2
r (z)

Hr (z)d2(z)
D2(z)b2(z)

[
1 + β(z)µ2]2

P (k, z = 0) .

(14.39)
We have also added Ps(z), a scale-independent offset which can arise if our removal
of the shot-noise [see Eq. (3.38)] is incomplete. It is always a good idea to imagine
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possible sources of systematic error and to insert them in the Fisher analysis.
Notice that we have assumed that b and β do not depend on the scale but only
on z. However this assumption is not completely tested and is certainly false on
small non-linear scales. The last factor on the r.h.s. of Eq. (14.39) is the matter
power spectrum at z = 0, which in turn depends on the cosmological parameters
(&(0)

m , &
(0)
b , ns, h, dark energy parameters, etc). These parameters are not as explicit

as the others inside d, H and when we calculate in the Fisher matrix (13.64) the
terms ∂Pr,obs/∂&(0)

m , for instance, we have to remember to differentiate also P (k, 0).
The parameter β is defined by β = f/b, where f = δ̇m/(H δm) is the growth

rate of matter perturbations. Whenever f is approximated to be f ≈ &
γ
m(z), we

can use γ as an extra free parameter (or fix it to 0.55 if we restrict ourselves to the
!CDM model). If we assume this growth factor, then D(z) evaluates to

D(z) = exp
[∫ 0

z

&γ
m(z̃)

dz̃

1 + z̃

]
. (14.40)

Note that sometimes in literature one meets with the different definition D(a) ∼
δ/a, instead of our D ∼ δ.

Finally, we wish to include a redshift error in the observed power spectrum. The
typical redshift error for spectroscopic surveys is very small (less than 0.1%) and
probably negligible, but in other cases (photometric or broad-band surveys) the
redshift determination can be quite noisy, up to a few percent. To derive this extra
source of error one can proceed as follows. Since dr = dz/H (z), an error of σz in
redshift measurement means an error of σr = σz/H (z) in distance. Suppose that
the observed radial distances r are Gaussian distributed around the true distances
r0:

f (r, r0) = 1√
2πσr

e−(r−r0)2/(2σ 2
r ) . (14.41)

Then the observed correlation function is given by the convolution

ξ (σ, r0) =
∫ ∞

0
ξ [σ, r]f (r, r0)dr . (14.42)

After the Fourier transformation, the convolution becomes a product:

P = Pr,obs e−k2µ2σ 2
r , (14.43)

where

σr = σz/H (z) . (14.44)

The observed power spectrum depends therefore on a number of parameters,
denoted collectively pi , such as &(0)

m , H0, ns, w0. Then we calculate, numerically
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or analytically, the derivatives
(

∂ ln P

∂pi

)

r

, (14.45)

evaluated for the reference (or “fiducial”) model. Finally, as we have already seen
in Section 13.4 the Fisher matrix is

Fij = 1
8π2

∫ 1

−1
dµ

∫ kmax

kmin

k2dk

(
∂ ln P

∂pi

∂ ln P

∂pj

)

r

Veff(k, µ) , (14.46)

where

Veff(k, µ) =
[

nP (k, µ)
nP (k, µ) + 1

]2

Vsurvey . (14.47)

Note that n is the number density of galaxies. The small scale cut-off kmax should be
such as to discard the non-linear part of the spectrum, since the theoretical prediction
of the galaxy spectrum is rather uncertain due to the possible scale-dependence
of the bias and hydrodynamical effects difficult to model properly with N -body
simulations. Often this cut-off is realized by imposing kmax = π/2Rmax such that
the amplitude σ (Rmax) defined in Eq. (3.58) is much smaller than unity, say, 0.3.
The other limit kmin is instead less important in general and can be taken to vanish
because the integrand goes rapidly to zero for small k.

As we have noticed, we can measure P (k, z) for several redshift bins, i.e.
grouping galaxies according to their redshift. In this case we have an independent
Fisher matrix for each bin centered at zn and the final Fisher matrix is their sum:

F
(tot)
ij =

∑

n

Fij (zn) . (14.48)

Clearly each bin will have its own expected density n(z) and bias b(z) that
depend on the survey specification. The cosmological parameters pi are typi-
cally &(0)

m , &
(0)
b , h, ns plus the dark energy parameters according to the model one

is testing. One can also work with an intermediate set of parameters formed by (the
logarithm is just for convenience)

di ≡ ln d(zi), hi ≡ ln H (zi), gi ≡ ln[D(zi)b(zi)], βi ≡ ln β(zi) , (14.49)

so that we have four parameters for each redshift bin (to which we can add a
shot noise parameter Ps,i for each bin), plus the cosmological parameters that enter
directly into the present spectrum P (k, z = 0). Of course here we are assuming that
all these functions can be approximated as constant inside the bins, which therefore
should be taken small enough for this to be approximately true, and yet populated
enough for the noise not to dominate the signal. Then from this set one can project
onto the final set of cosmological parameters following the steps in Section 13.4.
Notice that D, b occur only as a product and therefore they form collectively a
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Figure 14.5 Likelihood surfaces in the (&(0)
m ,wDE) plane assuming a flat space

with constant dark energy equation of state, for spectra in the 2dF and SDSS
redshift surveys. The shaded regions show the likelihood from the redshift surveys
alone. The solid contours are calculated by modeling the CMB sound horizon
scale and the dashed contours by including the CMB peak position measurement.
Notice how strong is the effect on the confidence regions on &(0)

m , but much weaker
on wDE. The dotted line shows wDE = −1. From Ref. [124].

single parameter, D · b, for each redshift bin. If we treat them separately then the
Fisher matrix would be singular, since ∂ ln P/∂ ln D = ∂ ln P/∂ ln b and therefore
the D-row in Fij would be equal to the b-row. In principle this degeneracy could
be broken since b appears also in β = f/b. In general, however, since we know so
little of the bias (for instance how it depends on scale and time) it appears safer to
marginalize over it.

The ability to constrain the dark energy parameters depends crucially on com-
bining several redshift bins. If we have a single bin, i.e. a single pair Hi, di , we
see that the dark energy equation of state wDE(zi) enters in an identical way in
both so that there is full degeneracy between e.g., w0, w1 in the parametrization of
wDE(zi) = w0 + w1zi/(1 + zi). The acoustic peaks in the CMB give us a z ≈ 1100
bin to which we can compare present-day observations but the wDE(z) information
at that redshift is very diluted so that we still need intermediate redshift spectra in
order to exploit the full cosmological power of P (k). Figure 14.5 shows that the
effect of adding CMB information is important to reduce the overall errors, but the
final uncertainty on wDE is only weakly affected.
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The Fisher method presented here can be easily adapted to include several other
parameters, from a general growth factor to modified gravity parameters [569],
or it can be made more robust by discarding part of the information contained in
the power spectrum that is judged more prone to depend on uncontrolled effects.
For instance the spectrum broad shape depends in general on other phenomena we
have not included so far, like massive neutrinos or other light components, on the
primordial initial slope, on non-linear corrections, and on the scale-dependence
of the bias factor. So one may wish to discard this information and retain only
the peak position, which being a pure geometrical effect is hard to spoil with-
out invoking ad hoc phenomena. This can be done in several ways, all amount-
ing to methods for extracting the oscillations from the spectrum, for instance
smoothing the spectrum or subtracting the “continuum” [570, 571, 565]. Non-
linear broadening of the wiggles could also be accounted for in a parametric way
[565].

Next decade surveys plan to catalog tens or hundreds of million redshifts, so
as to measure P (k) at high redshift, up to z ≈ 2. This will allow a reconstruction
of H, d in bins and to unleash the power of large-scale structure to characterize
dark energy. Using the specifications for a full-sky redshift survey of a total of 108

galaxies in the redshift range z < 2, it will be possible to find constraints on wDE of
the order of 0.01 and 0.1 respectively [568]. One example of the forecast is given
in Fig. 14.6, which shows the observational constraints for future redshift surveys
on the dark energy equation of state.

14.3 Growth function

We have seen that an ingredient of the observed power spectrum is the redshift
distortion induced by the peculiar motion, embodied in the correction 1 + βµ2.
Although this term can be analyzed just as all the other ones in the full P (k), it is
also possible to isolate it from the other effects. The interest in doing so is that it
can directly give us β = f/b and, if we know the bias, the growth rate f . As we
have seen, any deviation of f = &

γ
m from the standard value γ ≈ 0.55 is a signal

that something well beyond a simple cosmological constant or a slowly varying
dark energy component is at work.

As we have studied in Section 4.8, this redshift correction generates an anisotropy
in the correlation function or the power spectrum. Since we expect the galaxy
distribution to be statistically isotropic, any deviation from an isotropic spectrum
or correlation function can be used to estimate β. Most works in this area have
been performed using directly the correlation function, rather than the spectrum
[572, 573, 574], so we discuss this approach here.
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We have seen in Section 4.8 that the relation between the power spectrum in real
space (subscript r) and the spectrum in redshift space (subscript s) is given by

Ps(k) = Pr (k)(1 + βµ2)2 . (14.50)

If kπ is the component of the wavenumber along the line-of-sight vector π , then
µ2 = k2

π/k2. We can derive a similar relation for the correlation simply by Fourier
anti-transforming, i.e.

ξs(r) =
∫

Ps(k)eik·rd3k =
∫

Pr (k)(1 + βµ2)2 eik·rd3k . (14.51)

By expanding ξs(r) in Legendre polynomials Pℓ(µ), you can show in problem 14.2
that [572]

ξs(r, µ) = ξ0(r)P0(µ) + ξ2(r)P2(µ) + ξ4(r)P4(µ) , (14.52)
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where µ is now the cosine angle between the line of sight and the separation r , and

ξ0 =
(

1 + 2
3
β + 1

5
β2

)
ξr (r), ξ2 =

(
4
3
β + 4

7
β2

)
[ξr (r) − I2],

ξ4 = 8
35

β2
[
ξr (r) + 5

2
I2 − 7

2
I4

]
, (14.53)

with

I2 = 3r−3
∫ r

0
ξr (y)y2dy , I4 = 5r−5

∫ r

0
ξr (y)y4dy . (14.54)

The first few Legendre polynomials are P0 = 1,P2 = (3µ2 − 1)/2, and P4 =
(35µ4 − 30µ2 + 3)/8. We see that if β = 0 then ξs does not depend on µ and there
is no distortion of the correlation function; any anisotropy of ξs can then be used
to estimate β.

However there is an extra complication. The linear approach fails on small
scales. In redshift galaxy catalogs we see clearly that in the core of clusters the
galaxies appear distributed in an elongated way along the line of sight, due to the
extra dispersion in redshift induced by the strong and random peculiar motions.
This is the so-called “fingers-of-god” effect. Of course in principle we could simply
limit ourselves to large scales, but the separation between large and small scales is
not easy. On the other hand, we can estimate the velocity distribution in the high-
density cores of clusters and use this information to derive the redshift distortion
on small scales. It turns out observationally that a good fit to the galaxy velocity
distribution at small scales is given by an exponential form

f (v) = 1√
2σv

e−
√

2|v|/σv , (14.55)

where σv ≈ 500 km/sec. That is, we can assume that the observed line-of-sight
separation π equals the true distance πt plus an “error” due to the peculiar velocity
v [see Eq. (4.31)]:

π = πt + v(1 + z)
H (z)

, (14.56)

distributed according to f (v) (while the transverse component σ is unaffected).
Therefore the observed correlation function is given by taking the theoretical one
ξs(σ,πt ) and convolving with the velocity distribution:

ξs(σ,π ) =
∫ ∞

0
ξs

[
σ,π − v(1 + z)

H (z)

]
f (v) dv . (14.57)

In this way one obtains (numerically, unless one approximates ξs as a power
law, which is rather doubtful) a correlation function ξs(σ,π ; β, σv) that depends
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simultaneously on β, σv and that can be fitted to the real data. In Eq. (4.139) we
found an empirical form for the Fourier-space version of (14.57).

But what do we assume as undistorted ξr (r) in Eq. (14.52)? The linear matter
power spectrum can be Fourier anti-transformed, but since we want to go beyond
linearity this approach is not helpful. The simplest way to go is then not to assume
but to estimate the undistorted correlation. And we have one: it is the transverse
correlation, i.e. the correlation along σ . We can derive it by integrating away the π

part:

C(σ ) = 2
∫ ∞

0
ξ (σ,π )dπ , (14.58)

(the integrand can be equivalently in real or redshift space) where the factor of 2
appears because ξ is even in π . Setting r2 = σ 2 + π2, Eq. (14.58) can be written
as

C(σ ) = 2
∫ ∞

σ

rξr (r)
(r2 − σ 2)1/2

dr . (14.59)

Finally, this equation can be inverted to give [576]

ξr (r) = − 1
π

∫ ∞

r

(dC(σ )/dσ )
(σ 2 − r2)1/2

dσ , (14.60)

which is called the Abel transform (you can verify it in problem 14.3). Hence we
can derive from the data themselves the undistorted ξr (r), plug it into Eq. (14.52),
then perform the convolution given by (14.57) and finally fit for the parameters β

and σv. An example of a correlation in redshift space that shows both the linear
flattening and the fingers-of-god effect is illustrated in Fig. 14.7.

Naturally, all this sweeps under the rug a host of important assumptions: just to
name a few, that σ is independent of scale and redshift, that β is independent of
scale and redshift, and that the function f (v) is also universal, not to speak of the
problem of performing the inversion (14.60) which certainly cannot be carried out
to infinity and which requires a noisy derivative of C.

Presumably the most dangerous assumption we have made is that we know how
to derive the separation between two sources from the observed redshifts. The
distance to each source in general requires an integral over the geometry, which in
flat space is given by r(z) =

∫ z

0 dz̃/H (z̃). This in turn requires the knowledge of
cosmological parameters. If we assume a cosmological model from the beginning,
our final result for β is bound to depend on this assumption. Any change in
cosmological parameters will induce a change in r and, what is worse, a change
that will affect the transverse and the radial separation in a different way. This is
of course the same Alcock–Paczynski effect we have seen in the previous section
in k-space. In fact, even beside the redshift distortion, the assumption of a wrong



402 Future observational constraints on dark energy

0
100

200

300

400

500

600

0.2

b

0.4 0.6 0.8 1 1.2 1.4 1.6

0

0

5

5

10

15

20

10 15

0.01

0.1

1

20

σ 12
[k

m
/s

]

σ[Mpc/h]

π[
M

pc
/h

]

β

a
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cosmological model by itself already induces an anisotropy on ξ so that one would
be better off by including directly the cosmological parameters into the function
ξ (σ,π ) or to revert to the full P (k) method of the previous section.

14.4 Cosmic shear

The second pillar of future dark energy observations is likely to be the detection of
cosmic shear induced by weak lensing (for very useful reviews see Refs. [577, 578]).
This has already been observed in limited areas of the sky and there are plans to
cover almost all-sky cosmic shear surveys (see Refs. [579, 580, 581, 582] for the
first weak lensing detection and Ref. [583] for a review of recent observations). The
great advantage of weak lensing is that it is due to the overall mass distribution and
not to the luminous matter component alone. Contrary to the clustering method, it
is therefore not affected by the biasing uncertainty.

Let us start again from the usual flat perturbed conformal metric

ds2 = a2(η)[−(1 + 2()dη2 + (1 + 2')(dr2 + dx2 + dy2)] , (14.61)

and consider a light ray propagating, in the unperturbed metric, along the r axis. The
unusual coordinate notation r, x, y instead of x, y, z is useful to avoid confusion
between the redshift and the coordinate z. For small angles θ we have as usual x ≈
rθ cos φ and y ≈ rθ sin φ. This problem of photon propagation has been already
addressed in Section 4.11.2. The conclusion was that the distortion of an image
which is described in the source plane by the vector components θ s

i = {θx, θy} =
{θ s cos φs, θ s sin φs} and in the observed or lens plane by the analogous vector
θi is entirely described at first-order by the transformation matrix Aij given in
Eq. (4.244).

Let us see how to calculate the distortion observationally. In practice, one mea-
sures the ellipticity of each galaxy in the survey, finds the correlation of the mea-
sures, and subtracts the expected random noise. A galaxy, for an observer, is just a
function I (θx, θy) of luminous intensity distributed over the sky, centered at θ = 0.
The quadrupole moment of the image is given by

qij =
∫

d2θ I (θ )θiθj , (14.62)

and two simple measures of ellipticity are

ε1 = qxx − qyy

qxx + qyy

, ε2 = 2qxy

qxx + qyy

. (14.63)
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For small angles we have θi = (A−1)ijθ s
j , where [see Eq. (4.244)]

Aij = δij + Dij =
(

1 − κwl − γ1 −γ2

−γ2 1 − κwl + γ1

)
, (14.64)

and the ellipticity ε1,2 can be expressed as a function of the distortion tensor Aij

and therefore of κwl, γ1, γ2. An intrinsically circular object, I (θ s
x , θ

s
y ) = f [(θ s

x )2 +
(θ s

y )2] (where f (x) is an arbitrary function describing the luminous intensity), is
distorted into an elliptical one whose luminosity distribution can be expanded at
first-order for small κwl, γ1,2:

I (θx, θy) = f [(Axjθj )2 + (Ayjθj )2]

≈ f (θ2) + 2κwlθ
2f,θ2 (θ2) − 2(γ1θ

2
x − γ1θ

2
y + 2γ2θxθy)f,θ2 (θ2) , (14.65)

where θ2 = θ2
x + θ2

y and f,θ2 = df/d(θ2). Then we can break the qij integral into
the sum of two parts, a circular and an elliptical one, and evaluate

q
(circ)
ij =

∫
dθxdθy (f + 2κwlθ

2f,θ2 )θiθj , (14.66)

q
(ell)
ij = −2

∫
dθxdθy (γ1θ

2
x − γ1θ

2
y + 2γ2θxθy)f,θ2θiθj . (14.67)

The result at first-order is (see problem 14.4)

ε1 ≈ 2γ1 , ε2 ≈ 2γ2 . (14.68)

Hence we can estimate γ1,2 by measuring ε1,2. The distortion components γ1,2

are then calculated for each galaxy in the field, thereby creating an ellipticity map
on the sky. Just as for the CMB map we can then estimate its power spectrum and
compare it with the theoretical prediction. Naturally the measured ellipticity will be
the sum of an intrinsic or “noise” galaxy ellipticity and the weak-lensing-induced
ellipticity, γi = γ

(N)
i + γ

(WL)
i . Assuming the two components to be uncorrelated,

the power spectrum is just the sum of the intrinsic and cosmic spectra. The intrinsic
spectrum can be derived from the same shot noise spectrum we have derived earlier
in Eq. (3.36) by substituting the weight wi with the average intrinsic ellipticity
⟨w2

i ⟩ = ⟨(γ (N)
1 )2⟩ = ⟨(γ (N)

2 )2⟩ ≡ γ 2
int. If there are N sources in a volume V the

intrinsic power is given by

Pint = γ 2
int

V

N
. (14.69)

A realistic value is γint = 0.22 [584].
So far we have calculated the distortion of the image of sources at a given

comoving distance r . Since we are in the linear regime, we can add up all the
transformation matrices for many sources at different distance. If n(r)dr is the



14.4 Cosmic shear 405

number of sources (i.e. galaxies) in a shell dr with the normalization
∫ ∞

0 n(r)dr =
1, we can write the full transformation matrix Dij [see Eq. (4.245)] as

Dij =
∫ ∞

0
n(r ′) dr ′

∫ r ′

0
dr

(
1 − r

r ′

)
rψ,ij =

∫ ∞

0
dr w(r)ψ,ij , (14.70)

where

w(r) ≡
∫ ∞

r

dr ′
(

1 − r

r ′

)
rn(r ′) . (14.71)

In the last step of Eq. (14.70) we have changed the order of integration by using
the identity

∫ ∞

0
dxf (x)

∫ x

0
dyg(x, y) =

∫ ∞

0
dy

∫ ∞

y

dxg(x, y)f (x) . (14.72)

All the integrations in r can be written as integrations in terms of z by the relation
dr = dz/H (z). In a non-flat space the coordinate r has to be replaced by χ as
defined in Eq. (2.54). Therefore we obtain finally

Dij =
∫ ∞

0

dz

H (z)
w(z)ψ,ij [θxr(z), θyr(z), r(z)] . (14.73)

Now we need to use a theorem that projects along the z-axis the 3-dimensional
power spectrum of a fluctuation field into a two-dimensional power spectrum: the
Fourier-space Limber equation. If we have a field f (x, y, r) projected along the
r-direction with some unit-normalized weight w(r), i.e.

F (θx, θy) =
∫ ∞

0
drw(r)f (θxr, θyr, r) , (14.74)

then the two-dimensional power spectrum of F is given by [585]

P (q) =
∫ ∞

0
dr

w(r)2

r2
p

(q

r

)
, (14.75)

provided that p(k) is the power spectrum of f , and where q is the modulus of
q = (q1, q2). See problem 14.5 for the derivation of Eq. (14.75). Now, the distortion
field (14.70) is indeed such a projected field so that we can write

κwl = −1
2

(D11 + D22) = −1
2

∫ ∞

0
dr w(r)ψ,ii , (14.76)

(sum over i). Applying Limber’s theorem we obtain the power spectrum of the
convergence field κwl:

Pκwl (q) = 1
4

∫ ∞

0
dr

w(r)2

r2
Pψ,ii

(q

r

)
= 1

4

∫ ∞

0
dz

W (z)2

H (z)
Pψ,ii

(q

r

)
, (14.77)
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where W (z) ≡ w[r(z)]/r(z). What is the spectrum of ψ,ij ? In Fourier space we
have ψ → ψke

ik·x and ψ,ij → −kikjψk, so that the diagonal component is given
by

Pψ,ii
= k4Pψk

. (14.78)

If there is no anisotropic stress then ψ = ' − ( = 2' and from the Poisson
equation for ' one obtains

k2ψk = 3a2H 2&mδm , (14.79)

where we have assumed that the fluctuations are only produced by the component
with subscript m and that gravity is described by General Relativity. Then we can
write

Pψ,ii
= k4Pψk

= 9H 4&2
m(1 + z)−4Pδm

. (14.80)

Finally, by using Eqs. (14.77) and (14.80), we find that the power spectrum of the
convergence κwl is [585, 586]

Pκwl (q) = 9H 3
0

4

∫ ∞

0
dz

W (z)2E3(z)&2
m(z)

(1 + z)4
Pδm

(
q

r(z)

)
, (14.81)

where E(z) = H (z)/H0 and

W (z) =
∫ ∞

z

dz̃

H (z̃)

[
1 − r(z)

r(z̃)

]
n[r(z̃)] . (14.82)

For small angles (large q) one can also write q = ℓ/π and estimate the spec-
trum as a function of the approximate multipole ℓ. If the m component is pres-
sureless and uncoupled matter, then the expression can be simplified by noting
that E4(z)&2

m/(1 + z)4 = (&(0)
m )2(1 + z)2. Notice that the selection function n(z)

is often directly given (normalized so that
∫

n(z)dz = 1) instead of n(r). In this
case one has to remember that n(z)dz = n(r)dr and therefore n[r(z)] = n(z)H (z).
A typical observational distribution function is often parametrized as

n(z; z0, α) = z2 exp
[
−(z/z0)α

]
, (14.83)

where α is a number of order unity that is fixed by observations. In the region
z ≪ 1 one has n(z)dz ∼ z2dz, so that we are sampling all (or a constant fraction
of) the galaxies in the spherical volume whose radius grows as ∝ z. The decrease
of n(z) in the limit z → ∞ takes into account that our survey is missing galaxies
because they are too faint and red-shifted.

For the other components ψ,ij instead of Eq. (14.80) we have

Pψ,ij
= kikjkmknPψ = 9H 4&2

m(1 + z)−4 kikj kmkn

k4
Pδm

. (14.84)



14.4 Cosmic shear 407

The general form of the power spectrum for Dij is then

Pijmn(q) = 4kikjkmkn

k4
Pκwl (q) . (14.85)

Now we have γ1 = (D22 − D11)/2 and γ2 = −D12 thus

Pγ1 = (P2222 + P1111 − 2P1122)/4 = c1Pκwl , (14.86)

Pγ2 = P1122 = c2Pκwl , (14.87)

where c1 = (k2
x − k2

y)2/(4k4) and c2 = k2
xk

2
y/k4.

Since the shear spectra are proportional to the convergence spectrum (at linear
order) one can build combinations of the shear that are equal to Pκwl and also
combinations which are zero, as e.g., (c2Pγ1 ± c1Pγ2 )/(2c1c2). Defining the so-
called electric and magnetic shear components as

E = cos(2φ)γ1 + sin(2φ)γ2 , (14.88)

B = −sin(2φ)γ1 + cos(2φ)γ2 , (14.89)

where the angle φ is the polar angle defined by the relation k = {k cos(φ), k sin(φ)},
we find that

PE = Pκwl , (14.90)

PB = 0 . (14.91)

Therefore, at first order the convergence power spectrum is all we need to test for
cosmology with weak lensing. The power spectrum of the magnetic part B of the
shear field, not excited by scalar perturbations, can be used as an observational test
for consistency.

We can easily generalize the convergence power spectrum to the case in which
we correlate sources in a redshift bin centered around zi with sources in a bin
around zj [587]. In this case one sees that the spectrum (14.81) becomes

Pij (ℓ) = 9H 3
0

4

∫ ∞

0
dz

Wi(z)Wj (z)E3(z)&2
m(z)

(1 + z)4
Pδm

(
ℓ

πr(z)

)
, (14.92)

where

Wi(z) =
∫ ∞

z

dz̃

H (z̃)

[
1 − r(z)

r(z̃)

]
ni[r(z̃)] . (14.93)

Now the distribution ni(z) will be non-zero only inside the i-th redshift bin and for
small bins Wi(z) may be approximated by 9z[1 − r(z)/r(zi)] ni/H (zi) for z < zi

and zero outside. The weak lensing window function is always a broad function of
z. The cosmological information is then less “localized” in z than in other methods
(e.g., supernovae or clustering).
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The expression above for the convergence power spectrum holds only when we
can neglect the non-linear distortions of Pδm

. However, this would be acceptable
only up to relatively small ℓ’s, say up to ℓ < 500 at most. Discarding all the infor-
mation above would weaken a lot the constraints on the cosmological parameters.
It is then necessary to employ the non-linear corrections to the power spectrum
we have seen in Section 12.5. The spectrum Pδm

will then be replaced by its cor-
rected version that we can schematically indicate with PNL(Pδ). Of course then
the problem arises of calibrating the non-linear corrections with extensive N -body
simulations.

The estimate of the matter power spectrum via cosmic shear can be compared
directly with the direct estimate of the galaxy spectrum to determine the bias. This
is more effectively achieved by cross-correlating the galaxy density field and the
weak lensing convergence field [588]. Further information is contained in higher-
order correlations of ellipticities induced by the non-Gaussianity of the matter
distribution.

We have derived in Section 13.4 the Fisher matrix for the power spectrum. Since
in Eq. (14.92) Pij is a linear function of the power spectrum Pδm

, one can derive a
similar expression for the weak lensing case. In general, instead of calculating the
spectrum at all ℓ’s (which is computationally demanding), we can calculate it at
some interval 9ℓ and then linearly interpolate, considering that there are (2ℓ + 1)
modes per multipole ℓ. If the survey covers a fraction fsky of the full 4π sky, then
only such fraction of modes are measurable independently. In this case the final
result for a survey is (for the full derivation, see Refs. [589, 590]):

Fαβ = fsky

∑

ℓ

(2ℓ + 1)9ℓ

2
∂Pij (ℓ)

∂pα

C−1
jk

∂Pkm(ℓ)
∂pβ

C−1
mi , (14.94)

which is summed over repeated indices (calculated as usual on the fiducial values).
This is indeed of the form we have seen in Eq. (13.73). Here the cosmological
parameters are pα and the covariance matrix is given by

Cjk = Pjk + δjk γ 2
int n

−1
j , (14.95)

where the second term is the intrinsic ellipticity term (14.69) and nj is the number
of galaxies per steradians belonging to the i-th bin. We can also write

nj = 3600
(

180
π

)2

Nfj , (14.96)

where N is the total number of galaxies per square arcminute and fj is the fraction
belonging to the j -th bin.
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If there is anisotropic stress and the Poisson equation is not standard, the lensing
potential is given by Eq. (11.204) in Section 11.6, i.e.

k2ψ = 3a2H 2&mδm= , (14.97)

where = is defined in Eq. (11.203). Then in this case the convergence spectrum is
given by

Pij (ℓ) = 9H 3
0

4

∫ ∞

0
dz

Wi(z)Wj (z)E3(z)&2
m(z)

(1 + z)4
=2Pδm

(
ℓ

πr(z)

)
, (14.98)

where = = q(1 − ζ/2) in general will depend on z and ℓ. However this neglects the
non-linear correction PNL(Pδm

) that we have mentioned above. A full non-linear
correction for general q, ζ does not exist so far. In this case one could assume as
a first approximation that applying the non-linear correction to [q(1 − ζ/2)]2Pδm

would work, but this should be further tested with N -body simulations. Notice that
the matter linear power spectrum Pδm

depends also on the linear growth function
which itself depends on the functions q(k, z) and ζ (k, z).

Beside the problem of the non-linear correction, there are several sources of sys-
tematic uncertainty that can affect the scientific outcome of cosmic shear surveys.
We have assumed the intrinsic galaxy ellipticity to be completely uncorrelated with
the cosmic signal, but this is clearly an oversimplification. Nearby galaxies tend to
align due to tidal effects. In general galaxies respond to the average gravitational
field by orienting themselves toward concentrations, thereby inducing an effect
which is opposite to the cosmic shear in which galaxies are distorted tangentially
with respect to the potential gradient. Moreover, if the redshift is estimated pho-
tometrically, the z-bins will be estimated with some error and will in fact overlap.
All this lies of course on top of the technical challenge of estimating the ellipticity
of tens of thousands, and soon hundreds of millions, of faint tiny objects, which
requires extremely precise knowledge of the telescope point spread function. A
good example of a work dealing with many of these important details and how to
control their effect is given in Ref. [591].

So far, the existing cosmic shear estimations have provided interesting and
complementary constraints on &(0)

m and on the spectrum amplitude σ8 (see Fig. 14.8)
but not yet directly on dark energy parameters, due to the limited depth. Several
future projects, from ground to space, promise to fully exploit the cosmological
potential of weak lensing.

14.5 Cluster abundances and baryon fraction

We have seen in Section 12.4 that analytical or numerical methods can estimate the
number of objects that form at any given redshift, i.e. the mass function n(M, z).
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Figure 14.8 Constraints on &(0)
m and σ8 from the weak lensing observation

(CFHTLS [592]) and the CMB observation (WMAP3 [14]) adopting a !CDM
model. The combined constraints are indicated by the central region, demonstrat-
ing complementarity. From Ref. [583].

This quantity has a strong dependence on the linear mass variance σM (z), obtained
by filtering the fluctuation field with cells of size R that contains the mass M . It
is important to stress the two words in italic in the previous sentence. The fact
that we can use linear theory and that we refer to the total mass, not the luminous
fraction, is the key to the interest in the mass function as a test of dark energy.
The variance σM , in turn, depends directly on all the parameters that determine
the mass power spectrum and its growth rate: &(0)

m , &
(0)
DE, wDE(z), ... etc. Since the

cell size is R ∝ [M/(&(0)
m ρc)]1/3, where ρc is the critical density, we expect the

mass abundance at a particular scale M and redshift to be mostly sensitive to
some combination of σ8 (the power spectrum normalization) and &(0)

m (which fixes
the filter scale). It turns out from numerical estimates and from a comparison to
N -body simulation that this relation can be conveniently written in the form (see
e.g., Ref. [593])

σ8(&(0)
m )α ≈ β , (14.99)

with values α ≈ β ≈ 0.5 ± 0.1. Evaluating this relation at several masses and
redshifts gives a precious independent test of cosmology.
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The main difficulty in carrying out such a program is the determination of the
mass of astrophysical objects. In principle we can use galaxies and clusters of any
mass as target to estimate n(M, z). However the most reliable application so far
involves clusters of galaxies, mostly because their large scales bring them closer to
linearity and because their masses can be estimated by more numerous and more
robust methods than for galaxies.

There are indeed at least three independent methods to determine the mass of
clusters: (i) hydrostatic equilibrium between the intra-cluster medium (ICM) and
the gravitational potential, (ii) dynamics of member galaxies, and (iii) lensing.
Among them, the first one has already provided some interesting results and it also
looks very promising in the future.

Hydrostatic equilibrium for the ICM gas means that the gradient of the pressure
Pgas equals the gravitational force:

∇Pgas = −ρgas∇'N , (14.100)

where ρgas is the density and 'N is the gravitational potential. Assuming spherical
symmetry we obtain

dPgas

dr
= −

GMρgas

r2
, (14.101)

where we have used 'N = −GM/r . Assuming the ideal gas equation of state
[594]

Pgas =
kBρgasT

µmp

, (14.102)

where kB is Boltzmann’s constant and µ ≈ 0.6 is the mean molecular weight for
a gas with the expected primordial composition and mp is the proton mass, we
obtain for the mass within a radius r:

M(r) = − r

G

kBT

µmp

(
d ln ρgas

d ln r
+ d ln T

d ln r

)
. (14.103)

This provides a relation between the gas temperature T , the density profile ρgas, and
the total cluster mass profile M(r). In turn, the gas temperature can be estimated
by comparing the X-ray bremsstrahlung emission with plasma models. The gas
density profile is often parametrized by the so-called β-model distribution [595]

ρgas = ρ0

[1 + (r/rc)2]3β/2
, (14.104)

where β = µmpσ 2
r /(kBT ) is the ratio of the gas kinetic energy (σr is the line-of-

sight velocity dispersion) to temperature. If, in addition, the temperature gradient
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d ln T/d ln r is negligible (isothermal distribution) then the mass–temperature
(M–T) relation reduces to

M(r) = 3βkBT (r)
Gµmp

r3

r2
c + r2

≈ (1.1 × 1014h−1M⊙)β
T (r)r3

r2
c + r2

, (14.105)

where in the last expression r and T are in units of h−1 Mpc and keV, respectively.
Although β is in principle measurable, it is always left as a free parameter in
order to take into account at some level departures from the various assumptions
(spherical model, ideal gas equation of state, isothermal distribution, etc.).

More complicated, and hopefully more realistic, models for the M–T relation
have been proposed (see e.g., Ref. [596]). Using such mass–temperature relations
the mass of several clusters has been established, for instance, by the satellites
Chandra and XMM-Newton. Averaging over many clusters it is also possible to fit
a universal simple mass–temperature relation. The simple fit provided by Ref. [596]
is

M = M5

(
T

5 keV

)α

, (14.106)

with α ≈ 1.5–1.6 and M5 ≈ 1014M⊙. A value α = 3/2 is indeed predicted for
a virialized cluster, since in this case the velocity Vvir scales as M1/3 and the
gas kinetic energy is proportional to the temperature, so that V 2

vir ∝ M2/3 ∝ T .
Ultimately, a calibration of the mass–temperature relation will be provided by
lensing mass estimations [597]. Once one has a well-calibrated M–T relation, it is
possible to infer the cluster masses directly by measuring the temperature of the
hot gas through a comparison of their X-ray spectra to plasma models. From the
mass of several clusters one can finally reconstruct the mass function and compare
it to the theoretical prediction we have seen in Section 12.4.

Using such methods, the following result for the relation σ8(&(0)
m )α ≈ β was

found in Ref. [478]

α = 0.21 − 0.22wDE + 0.33&(0)
m + 0.25) , (14.107)

β = 0.5 − 0.1) , (14.108)

) = (ns − 1) + (h − 0.65) , (14.109)

for flat, wDE = constant models. Combining the cluster counts test with the other
cosmological probes (e.g., CMB, SN Ia), it is possible to break the degeneracy
between σ8, &

(0)
m and also to add other parameters to the analysis, e.g., the growth

rate.
Clusters can contribute to constrain dark energy parameters in another way, first

proposed by Sasaki [598] and Pen [599], expanding over previous work. As we
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have seen for the supernovae, what is needed for cosmology is not necessarily a
standard candle but rather a standardizable candle, i.e. a source whose absolute
luminosity depends in a known way on an independent observable. If in clusters
the mass of baryons that emit light, either X-ray emitting hot intracluster gas or
optical galaxies, is a fixed universal fraction of the total mass, then by estimating
the total mass we can estimate the total baryon mass and the total luminosity. This
works just as for the supernovae: there, we estimate the total luminosity correlating
it with the light-curve width; here, we correlate it with the total mass. In both cases
we do not need to know the value of the absolute luminosity but only that it is
constant or varies in a controlled way.

In clusters most of the baryons are actually in the intra-cluster medium, so for
sake of simplicity we only consider the X luminosity. The fundamental assumption
is that

Mgas

Mtot
= &b

&m

= constant , (14.110)

for all clusters. This is indeed likely because clusters are very large: to make up
their mass, one has to pile up all the matter in a radius of roughly 10 Mpc. It is
difficult to imagine such large volumes containing wildly varying proportions of
baryons and dark matter. There would simply be no time for any reasonable process
to segregate matter on such large scales. Of course this ratio would not be constant
for models that assume a species-dependent interaction like the ones we explored
in Section 11.3.

So at least in standard cosmology, one expects all clusters to contain the
fixed ratio of baryons to total matter set by cosmology. Now, the X-ray ther-
mal bremsstrahlung luminosity LX that comes from those baryons is proportional
to the volume V ∝ r3 of the emitting region and to the square of the electron
density ρe, i.e. to ρ2

e r
3. Since the mass Mgas is in proportion to ρeV , it follows

that LX ∝ M2
gas/r3 or Mgas ∝ (LXr3)1/2. We also notice that the X-luminosity is

measured by an observed flux FX = LX/(4πd2
L) [dL is the luminosity distance

defined in Eq. (2.63)], so we can also write Mgas ∝ dLr3/2. On the other hand,
from the hydrostatic equilibrium condition (14.103), we deduce that the total mass
is Mtot(r) ∝ r , if we assume an isothermal distribution and that d ln ρgas/d ln r

depends weakly on r (which is true for instance for all power-law ρgas ∼ rn). So
finally we have

Mgas

Mtot
∝ dLr3/2

r
∝ dLr1/2 . (14.111)

There is a final step to make. The size r of the emission region is seen under the
angle θ = r/dA (dA is the angular diameter distance) and therefore the gas fraction
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within a fixed angle θ scales as

fgas =
Mgas

Mtot

∣∣∣∣
<θ

= A1dLr1/2 = A2dLd
1/2
A = A3d

3/2
A , (14.112)

where A1, A2, A3 are constants. Note that we have used the reciprocity relation
(2.74) in the last step and absorbed the (1 + z)2 factor in A3. All the other constants
of proportionality in the above relations are collected in the Ai’s factors. These
factors contain a lot of interesting physics but no cosmological parameters, so
we are not concerned with them here (see e.g., Refs. [598, 599]). Then we see
that fgasd

−3/2
A is independent of cosmological parameters. If we have a reference

cosmology (superscript “ref”) and another cosmology (2), we have

f (ref)
gas = f (2)

gas (d (ref)
A /d

(2)
A )3/2 . (14.113)

If (2) is the true cosmology then f (2)
gas = &b/&m and we can finally say that the

predicted gas fraction obtained by using a reference cosmology is

f (ref)
gas = &b

&m

(
d

(ref)
A

dA

)3/2

. (14.114)

Fitting f (ref)
gas to the real data obtained by converting X-ray flux and temperature

within the angle θ , we can constrain the cosmological parameters in dA.
As you have presumably expected by now, it is time for the caveats. The sim-

ple fgas prediction above relies on many things, from hydrostatic equilibrium to
universal composition. Some approximations are easy to improve. For instance we
can take into account the baryons contained in the galaxies rather than in the ICM.
Other effects can be estimated from N -body, such as the typical departure from
hydro-equilibrium or from universal composition. For instance, Ref. [600] found a
depletion parameter (the fraction of baryons that are thermalized within the cluster
potential) near 87%. Some other uncertainties can be marginalized over in the like-
lihood. Allowing for considerable freedom in parametrizing these effects, a table
of constraints on various cosmological parameters has been derived in Ref. [601]
from 42 clusters observed by the Chandra X-ray satellite. The constraint from the
fgas test alone gives wDE = −1.14 ± 0.31, for flat space and constant wDE (all
results here and below are at 1σ ). The results in Ref. [602] on a different cluster
dataset give &(0)

m = 0.32+0.04
−0.05 and wDE = −1.1+0.60

−0.45. In combination with SN Ia and
CMB, the constraint of Ref. [601] tightens to wDE = −0.98 ± 0.07 (see Fig. 14.9).

Ref. [603] combined the fgas test with the cluster abundance to derive simul-
taneous constraints on the equation of state and the growth rate parameter γ (see
Section 11.1): wDE = −0.927+0.066

−0.074 and γ = 0.44+0.17
−0.15 for the flat wDE = constant

model.
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Figure 14.9 The 1σ and 2σ observational constraints on the parameters &(0)
m and

the constant equation of state wDE of dark energy from the analysis of the Chandra
fgas data. We also show the bounds obtained from the CMB data [15] using a weak
uniform prior on h (0.2 < h < 2.0) and SN Ia data [111]. The combined constraint
from all three data sets is given by &(0)

m = 0.253 ± 0.021 and wDE = −0.98 ± 0.07
at the 1σ confidence level. Adapted from Ref. [601].

14.6 Other probes

All astrophysical phenomena depend on the cosmological landscape on which they
take place. A new and weighty ingredient of the cosmic recipe such as dark energy
changes the landscape and, to various degrees, most of the phenomena we may
observe. It is no wonder then that many ingenuous tests of dark energy have been
proposed. As we have emphasized several times, independent tests are precious
even when they are not competitive, because they test possible systematic effects
and help in identifying unknown biases.

The short list we propose below is certainly partial but gives a sample of the
main promising ideas floating around.

14.6.1 Gamma-ray bursts

Gamma-ray bursts (GRBs) are powerful explosions produced by compact objects
through several mechanisms. Long-duration bursts (from a few seconds to a few
minutes) are probably generated by the collapse of a rapidly rotating, high-mass
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star into a black hole. Since the radiation emission is so large (≈ 1050–1054 erg),
GRBs can be seen at very large distances, the current record being GRB 090423
at z ≈ 8.3 [604], the most distant astrophysical object ever seen. The emission is
probably highly collimated along the star rotation axis and the GRB flash is seen
only if the axis is beamed towards the Earth.

Although the properties and physics of the GRBs are still very uncertain, several
works have been devoted to finding correlations between their absolute luminosities
and other observables so that they could be used as standard candles. Due to their
typical high redshift, their use as candles would be extremely welcome to extend
the reach of SN Ia.

There are several observables that could be used as luminosity correlators. These
include the light-curve peak energy Epk, the time-lag τlag between the arrival time
of high- and low-energy photons, the variability of the light-curve (which in turn
has been defined in several ways), the time tbreak at which the afterglow has a break
in power (which is attributed to the beaming of the emission), and the rise-time
or duration of the light curve. Those observables can be correlated directly to
the isotropic luminosity Liso or to the beamed luminosity Eγ , i.e. the luminosity
corrected for the beaming, which requires an estimate of the beam angular size
through tbreak. As we can expect, the use, validity, and interpretation of the various
observables have generated much controversy that only further data can help to
resolve (see Refs. [605, 606, 607] for the current status). So far, using only a
few dozens of GRBs, the best correlations have been obtained using Epk and Eγ ,
with significant improvement adding a second observable as tbreak or the variability
[608, 609]. The constraints on dark energy models are very preliminary and still
very weak; they show general agreement with SN Ia.

14.6.2 Age tests

As we have seen in Section 5.1, the oldest stars we can observe in the globular
clusters provided another independent test for the presence of dark energy. We
recall that the Hubble parameter H (z) is given by

H (z) = − 1
1 + z

dz

dt
. (14.115)

This equation suggests that if we know the age difference 9t between two galaxies
separated by the redshift 9z it is possible to obtain H (z) directly [610, 611, 612].
The idea of using stellar ages to map the expansion rate is very appealing because it
makes use of a set of assumptions totally different from the standard candles/rulers.
Here it is the cosmic chronology that we are testing, not the geometry of light
propagation. The difficulty of this method is to find accurate and readable clocks.
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Figure 14.10 Correlation between GRB peak luminosity Epk, beamed luminosity
Liso and a duration parameter (here called T0.45) for 19 GRBs. The best fit and
its 1σ uncertainty are represented by the solid line and by the shaded region,
respectively. From Ref. [609].

Computing age differences avoids the problem of determining the absolute
galaxy age that would require knowledge of the galaxy evolution before star forma-
tion, which cannot be estimated by methods based on stellar population evolution.
Alternatively the pre-formation time delay can be marginalized over, although this
implies that there is a single time delay for all systems.

Globular clusters are particularly useful since their low gravity halts the process
of star generations and in many cases we can safely assume that most of their
stars were born in a single star-burst episode. However, individual stars or globular
clusters can be seen only in our Galaxy and in some nearby systems. Hence we have
to use integrated signals to go further, i.e. the cumulative light of stellar populations.
This of course introduces the problem of mixing different populations, i.e. young
stars with old ones.

The method of galaxy age dating implies therefore a careful comparison of mod-
els of population synthesis, i.e. the numerical evolution of the integrated spectrum
of stellar populations with the galaxy spectra. The present numerical codes are very
sophisticated, including parameters that model metallicities and multiple star-burst
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Figure 14.11 Left panel: absolute age for 32 passively evolving galaxies deter-
mined from fitting stellar population models as a function of the redshift z. Right
panel: the value of the Hubble parameter versus z as derived from the differential
ages of galaxies in the left panel. The dotted line is the value of H (z) for the
!CDM model. From Ref. [612].

episodes. It is reassuring that in most cases the results of independent codes agree
to quite a surprising precision.

Combining galaxy ages from a sample of 32 early-type galaxies for the redshift
z < 1.8 which are supposed to have been evolving passively (i.e. with very low
star formation) with CMB observations, Ref. [612] finds that the !CDM model is
consistent with the data. Using the same galaxy sample data, Ref. [613] finds the
constraint −1.21 < wDE < −0.88 (2σ ) for the constant equation of state of dark
energy.

14.6.3 Strong lensing

Just as we can estimate the abundance of collapsed objects via semi-analytical
means, so we can estimate how much strong gravitational lensing we can expect
from these objects. The advantage with respect to cluster and galaxy number counts
is that lensing depends only on the lens gravitational potential and therefore we can
use directly the mass power spectrum predicted by the models. The disadvantage
is that the number of lensed sources depends on the detailed profile of the lens and
there is therefore an extra layer of parametrization.

Strong lensing effects are of various kinds: one can consider the number of
image multiples, of giant arcs, or even the statistics of time delay between variable
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signals in multiple images. Here we limit ourselves to a short discussion of the
expected probability of multiple images.

Let us then calculate how many multiple images we can expect in a survey as
a function of cosmological parameters and of the survey properties. We want to
estimate the probability P (> 9θ0, zs) that a source at redshift zs is split into two
(or more) images separated by an angle larger than 9θ0 by (the dark matter halos
of) galaxies and clusters along the line of sight. If a halo of mass M at redshift z is
sufficiently massive to split the source image by at least 9θ0 we associate with it
a non-zero cross section σ (M, z,9θ0) equal to the area within which the lensing
takes place. If in a space volume dV = A dr of area A and comoving depth dr we
have N lenses of mass M each offering a target area σ for a lensing event, and
defining n(M, z)dM as the number density of lenses of mass within M,M + dM

(i.e. the mass function), we have that the probability of a lensing event is Nσ/A,
i.e. [615]

dP (M, z) = Nσ

A
= (ndV )σ

A
dM = nσ (dr)(dM) = nσ

dr

dz
(dz)(dM) , (14.116)

as the differential probability of a lensing event induced by lenses of mass M at
redshift z. The mass function is normalized so that in a survey of volume V we
have V

∫
n(M)dM = 1. Integrating over the masses we obtain

dP = dr

dz
dz

∫ ∞

0
n(M, z)σ (M, z,9θ0) dM . (14.117)

The integrated probability of a lensing splitting larger than 9θ0 along the line
of sight is then

P (> 9θ0) =
∫ zs

0
dz

dP (z, 9θ0)
dz

. (14.118)

This quantity can be directly compared to the observed number of lenses: if we
take a sky survey of N sources at redshift zs , we should see PN objects split by
more than 9θ0. Let us estimate then P (> 9θ0).

A background source S is split by an angle 9θ0 by a lens L if S lies within a
radius ξ0(9θ0) of the lens, called critical radius. This radius depends of course on
the model of the lens itself, i.e. on its radial profile and on its sub-structure. The lens
modeling is the main uncertainty in this kind of study since the only information on
the dark halo profiles depends on N -body simulations and on lensing maps (which
however can be performed only for some clusters). Let us assume here as a model
for the lenses the simplest case, the singular isothermal sphere (SIS), characterized
by a mass density ρ ∼ r−2. This profile might be a first rough approximation to
the spherical halos of galaxies and clusters. The SIS produces in fact flat rotation
curves and therefore could approximate the true halo at least in the outer regions.
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It is customary to choose the normalization constant as

ρ(r) = σ 2
v

2πGr2
, (14.119)

where σv is the velocity dispersion of the stars (for the galaxies) or the member
galaxies (for clusters). Typical values are of the order of 200–300 km/sec. We can
relate the velocity dispersion to the halo mass by assuming that the virial theorem
holds within a distance r200 that contains an average mass density 200 times the
cosmic density (see the spherical collapse model in Section 12.3). Considering the
cosmological evolution in z we can write therefore ρ(r200) = 200E2(z)ρ(0)

c , where
E(z) = H (z)/H0. Then we have

σ 2
v ≈ GM

2r200
, (14.120)

where M is the mass within r200. Combining with Eq. (14.119) applied to r200, we
obtain the following explicit relation

M(z) ≈ 0.656 · 1015h−1M⊙

(
σv

1000 km/sec

)3

E−1 , (14.121)

where E(z) depends on the cosmological model (1M⊙ ≈ 2 · 1033 grams).
The deflection of a beam passing through a SIS is discussed at length in textbooks

[614], so we just quote the result [615]

β = 4π
(σv

c

)2 dls

ds

, (14.122)

where ds,l,ls are the angular diameter distances to the source, the lens, and between
lens and source respectively.

Let us define the impact parameter b as the transverse distance on the lens plane
between the unperturbed line of sight to S and the line of sight to l, i.e. b = dlθ ,
where θ is the angular separations between the two lines of sight. A splitting occurs
only if θ < β that is if b < ξ0 ≡ dlβ and the splitting angle in arcminutes and in
radians is simply

9θ = 2β ≈ 0.96′
(

σv

1000 km/sec

)2
dls

ds

≈ 3.7 · 10−4
(

M(z)E(z)
M15

)2/3
dls

ds

,

(14.123)

where M15 ≡ 1015h−1M⊙. We can invert the last equivalence to obtain explicitly
the mass M that is needed to produce a 9θ splitting:

M ≡ 0.7 · 1015h−1M⊙

(
9θ

1′

)3/2 (
ds

dls

)3/2

E(z)−1 . (14.124)
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Then the cross section for splitting 9θ equal to or larger than 9θ0 is

σ = πξ 2
0 = π

4
d2

l (9θ )2 , (14.125)

while it is zero (i.e. no lensing event) for 9θ < 9θ0.
We can now put everything together into Eq. (14.118) and obtain (see Refs. [616,

617])

P (> 9θ0) = π

4

∫ zs

0
dz

dr

dz
d2

l

∫ ∞

M0

n(M, z)(9θ )2dM

= 1.36 · 10−7 π

4

∫ zs

0
dz

E1/3d2
l d

2
ls

H0d2
s

∫ ∞

M0

n(M, z)
(

M(z)
M15

)4/3

dM , (14.126)

where we have used dr/dz = 1/(H0E(z)), and M0 is the mass that produces the
split 9θ0. To evaluate the mass function n(M, z) we can use the Press–Schechter
approximation we discussed in Section 12.4. Notice that Eq. (14.126) is dimen-
sionally correct since n(M, z)dM has the dimension of the inverse of a volume.

A similar estimate of P (> 9θ0) can be produced with more realistic lens models,
for instance a generalized Navarro–Frenk–White profile [618, 619]

ρNFW(r) = ρsr
3
s

rα(r + rs)3−α
, (14.127)

with 0 < α < 3. Here rs is the core radius and ρs is a normalization constant. This
profile fits halos over a large range of masses and scales and therefore can be used
to improve upon the isothermal sphere.

Before we can compare P to the frequency of lenses in real surveys we need
to consider that the lenses are also magnified and therefore we are likely to see
more lenses than one would predict in a given survey to some limiting magnitude.
This biasing depends on the lens model and on the source distribution in apparent
magnitude and can lead to a number of observed lenses several times larger than
predicted without the magnification effect [617].

The bias-corrected Pobs can then be compared to observations, i.e. to the number
of lenses in catalogs like the Cosmic Lens All-Sky Survey (CLASS) [620] and
SLACS [621, 622], whose total number does not exceed ∼ 100–150 confirmed
lenses. Similar estimates of strong lensing probabilities can be applied to the
statistics of giant arcs in the background of clusters comparing observations to N -
body simulations [623, 624, 519, 625] and to time delays between multiple images
[626].

The use of strong lens statistics to constrain dark energy will depend more and
more on the availability of high resolution N -body simulations capable of taking
into account cluster sub-structure. The analytical modeling we have discussed
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above depends in fact strongly on the lens model and on various other parameters,
from the lens redshift distribution to the magnification bias. For instance, changing
the parameter α in Eq. (14.127) from 1 to 2 decreases the predicted number of
lenses by four orders of magnitude. The present constraints on dark energy are
consequently still very weak (see e.g., Ref. [627]).

14.6.4 The redshift drift

All the probes we have reviewed in this chapter deal with position, brightness,
spectrum, or shape of astrophysical sources. This section is exceptional in that it
makes use of the time variation of the above observables. What we mean is that we
can observe in real time the variation induced by cosmic expansion on the properties
of the sources. This general concept has been dubbed real-time cosmology [464].

The idea of measuring the cosmic expansion as it occurs sounds daunting and
this was the conclusion in 1962 on the first paper ever to consider this possibility
[628]. Sandage considered the change in redshift of distant galaxies after a suitable
time span, say, 10 years. Since during that time the expansion rate H (z) changes
by some 9H , the recession velocity of the source and its redshift should change
accordingly. If the Universe decelerates (accelerates), the redshift z should decrease
(increase). If the Universe goes through phases of deceleration and acceleration,
as implied in the !CDM model, then one should be able to detect increments
or decrements according to the distance. Sandage thought that the redshift drift
would have produced a clear discrimination between steady-state and big bang
cosmologies.

It is easy to derive an order of magnitude value. In a time span of 9t years,
the dimensionless change 9z/(1 + z) will be near the dimensionless combination
H09t . For 9t = 10 yrs we can expect an effect of the order of 10−9. For a recession
velocity near c this amounts to a change in velocity of a few centimeters per second
per year. Daunting, indeed.

Many years after Sandage’s proposal (and after other efforts at revitalizing the
issue, e.g., [629, 630, 631]1), Loeb [632] reconsidered the idea and realized that
the current technology applied to the Lyman-α absorption lines in the quasar line
of sights allows Doppler redshift measurements of a few meters per second, not
that far from Sandage’s effect. According to recent studies, the ultra-stable, high-
resolution spectrograph of the European Extremely Large Telescope (EELT), an
optical telescope with diameter in the range 40–50 m planned for the second or third
decade of this century may achieve the required sensitivity [633]. The measure will

1 It is interesting to note that Rüdiger in 1982 considered the possibility of using the redshift drift to test for the
acceleration predicted by a Brans–Dicke model [631].
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be realized by monitoring the shift of Lyman-α absorption lines in some dozens of
distant quasars for a period of one or two decades. Lyman-α lines are known to be
very stable (because they do not contain pointlike sources) and with low peculiar
velocities (because the Lyman-α clouds reside mostly in underdense regions).

Let us derive the redshift variation in the FLRW metric. The observed redshift
of a given source, which emitted its light at a time ts , is today (i.e. at time t0)

zs(t0) = a(t0)
a(ts)

− 1 . (14.128)

After a time interval 9t0 (9ts for the source) it becomes

zs(t0 + 9t0) = a(t0 + 9t0)
a(ts + 9ts)

− 1 . (14.129)

The observed redshift variation of the source is, then,

9zs = zs(t0 + 9t0) − zs(t0) = a(t0 + 9t0)
a(ts + 9ts)

− a(t0)
a(ts)

. (14.130)

This can be re-expressed, after an expansion at first order in 9t/t , as:

9zs ≃ 9t0

(
ȧ(t0) − ȧ(ts)

a(ts)

)
, (14.131)

where we have used the relation a(t0)/a(ts) = 9t0/9ts . In terms of the Hubble
parameter H = ȧ/a, we finally obtain

9zs

1 + zs

= H09t0

[
1 − H (zs)

(1 + zs)H0

]
. (14.132)

The Sandage effect can then in principle map the expansion rate H (z) directly, as
we show in Fig. 14.12 [634, 635, 636]. In terms of an apparent velocity shift of
the source, the result can be written as 9v = c9zs/(1 + zs). From Eq. (14.131)
we find that the effect vanishes at all redshifts for a constant-velocity expansion
ȧ = constant, for instance, a model with total equation of state weff = −1/3.

The Extremely Large Telescopes collaboration [633] has provided some detailed
calculations of the expected error on the velocity shift 9v. They predict a typical
error:

σ9v = 2
(

2370
S/N

) (
30

NQSO

)1/2 (
5

1 + zQSO

)1.7

cm/s , (14.133)

where S/N is the signal to noise ratio for pixels of 0.0125 Å, NQSO is the number
of QSO’s spectra observed, and zQSO is their redshift.

Detecting the Sandage effect is extremely challenging, to put it mildly. Despite
this, it has so many interesting features that it deserves to be pursued to the maximal
extent. First, it would provide the first direct probe of the cosmological expansion.
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Figure 14.12 Sandage effect. Plot of the velocity shift after 10 years for three
different values of the dark energy equation of state wDE.

One must not forget that the whole of cosmology relies on the (extremely well
grounded) assumption that the redshift is almost entirely due to the expansion.
Second, it would be a completely independent test of acceleration. Third, its validity
does not depend on calibration and extrapolation (unlike the supernovae test), nor
on a complex modeling with many unknowns (such as e.g., the baryon acoustic
oscillations or the cosmic shear). Fourth, the signal increases directly with the time
span, while the statistical noise scales as t−1/2, so that the signal-to-noise ratio
increases as t3/2. Time is a costly but virtually inexhaustible resource. Fifth, in
principle it can be searched for not only in Lyman-α lines but in all extragalactic
sources. Sixth, it can distinguish between a true acceleration and an apparent one
induced by line-of-sight inhomogeneities as we have seen in Section 10.1.

The Sandage effect is just one example of real-time cosmology. Another possi-
bility is to detect changes in the angular separation of distant sources [464]. Any
anisotropic Universe (including some proposed to explain the cosmic accelera-
tion, see Refs. [637, 455, 638] and Section 10.1) undergoes an expansion rate that
depends on the source distance or direction. This in turn implies that the angular
separation between any two sources will vary in time. Here again, assuming a time
span of 10 years one can expect an effect of 10−9. The good news is that this
requires a purely astrometric measurement: taking as order of magnitude a value
of 10−9 rad we obtain about 200 microarcseconds (µ as), which is easily within
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current or near future capability. The satellite mission GAIA for instance has a
goal of a few microseconds of arc for millions of stellar and extragalactic sources
[639], so we could expect to be able to put strong constraints on anisotropy. The
bad news is that the anisotropic models proposed to explain the cosmic acceleration
are already pretty much constrained and allow only for a marginal anisotropy.

The parallax 9γ induced by the Earth’s own motion vpec on distant sources in
say 10 years is also of the order of a microarcsecond, or more exactly

9γ =
(

vpec

500 km/s

) (
dA

1 Gpc

)−1 (
9t

10 years

)
µ as , (14.134)

where dA is the diameter distance of the source. This dipolar effect competes with
the cosmic anisotropic signal. However it is interesting on its own because this
could allow a determination of quasar distances completely independent of standard
candles, rulers, or clocks [640] and with much less unknown systematics. Cosmic
parallax effects could be within reach of future astrometric satellite experiments
and, along with the radial component measured by the Sandage effect, could
complete the three-dimensional picture of the cosmic flow.

14.6.5 Comparing luminosity and angular diameter distance

Finally, we conclude our review of dark energy probes by a test not of dark
energy itself but of a fundamental assumption that underlies many of the tests seen
above, namely that photons are not created nor destroyed during their ride across
the Universe. Of course we know that photons are indeed propagating through a
perturbed Universe, so they undergo deviations, scattering, gravitational redshifts,
and absorptions. However, most of these effects leave some footprint that we can
detect and use to correct for the perturbation. For example, we can use image lensing
to detect photon deviations, we can see sources at different wavebands to detect
phenomena of absorptions and reemission, we can compare photons from different
directions to detect red or blue shifts, and so on. But how can we tell whether a
photon emitted by some supernovae just disappeared along its run, maybe because
due to some exotic physics it decayed into some particles we do not see or because
it slipped into an extra dimension?

In fact, we can test for such effects by recalling that we measure light ray
paths in two different ways, by measuring luminosity distance (i.e. using standard
candles) and by measuring angular diameter distances (standard rulers). While the
first changes if the flux we receive is depleted by some exotic photon physics or by
unaccounted astrophysical attenuation, the second remains unaltered. If this is the
case, then the reciprocity or Etherington relation (2.74) does not hold anymore. This
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relation is true in any general metric theory of gravity, regardless of the background,
if photon flux is conserved. Its violation is a test of cosmic transparency.

We can then test for the reciprocity relation by writing it as

dL = (1 + z)2+αdA . (14.135)

Comparing the dL distance measured by SN Ia with the dA distance measured by,
e.g., BAO, it is possible to place constraints on α. In fact, a discrepancy between the
two measures was reported in Ref. [641]. The most updated result using supernovae
and H (z) from age tests gives however a result perfectly compatible with the
reciprocity relation [642],

α = −0.01+0.08
−0.09 . (14.136)

So although there is no indication of a departure from standard physics, there is
still considerable room for some surprise here.

14.7 Problems

14.1 Evaluate the ISW spectrum (14.29) analytically for standard gravity (= = 1) with
τop = 0 under the assumption of a power-law spectrum Pδ(k) = Akn, a constant total
equation of state weff < −1/3, and a total perturbation growth Dt ∼ ap (p > 0).

14.2 Derive Eq. (14.52).
Hint: use Eq. (14.51) and expand

eikrµkr =
∞∑

0

(2ℓ + 1)iℓPℓ(µkr )jℓ(kr) , (14.137)

where µkr denotes the cosine of the angle between k and r . Make use also of
Eqs. (17.8), (17.9), (17.10), and (17.14) in the mathematical Appendix. From
Ref. [643].

14.3 Verify Eq. (14.60).
Hint: first integrate C(σ ) by parts.

14.4 Derive Eq. (14.68).
14.5 Derive Eq. (14.75).
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Conclusion and outlook

The expression “dark energy” was put for the first time in print in a paper by
Huterer and Turner in 1998 [216], just a few months after the discovery of cosmic
acceleration with supernovae Ia. In December 1998 the name was already featured
in the New York Times. The idea of a smooth, invisible, accelerating component of
the Universe is however much older than this. Beside the original suggestion of a
cosmological constant by Einstein, already in the 1980s some scientists suggested
that one way of solving the conflict between the inflationary prediction &(0) = 1 and
the observations of clustered matter &(0)

m ≈ 0.3 ± 0.1 was to introduce a cosmo-
logical constant [644, 645, 646] or a slowly varying scalar field [30]. The idea was
pursued at a low intensity for several years (e.g., [647]), until the supernovae boom.
Since then, the number of papers with “dark energy” in the title has grown almost
exponentially (see Fig. 15.1), achieving stabilization only around 2008, probably
also because the variety of models on the market has rendered the expression “dark
energy” no longer fully informative.

This bewildering variety points directly to the essence of the dark energy concept:
after many years of research, dark energy is still a question, not an answer. It is
the name we give to the fact that something, a very weighty something, is missing
from our knowledge of the cosmic dynamics. The main teaching is that what we
thought was a rather simple Universe, with essentially matter and radiation or if
you wish matter-like and radiation-like particles, revealed itself not only more
complicated (the cosmological constant is actually the least complicated form of
energy one can think of) but certainly more unknown. We faced the fact that we
have “direct” information only on a few snapshots of the cosmic evolution: the
inflationary perturbations, the primordial nucleosynthesis, the Cosmic Microwave
Background, the present galaxy distribution, and a few and sparse observations in
between. Too few to tell the whole story.

The sober realization that we still have a lot to learn has opened up many avenues
that perhaps would not have been thought of if everything did conform to our naive

427
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Figure 15.1 Papers with “dark energy” in the title from 1999 to 2008 in the SLAC
Spires (www.slac.stanford.edu/spires/hep/).

expectations. The idea of seriously considering deviation from the Einstein gravity
at large scales, rather than in the laboratory or in the solar system; the search for
better probes of cosmic expansion and clustering at high redshift; the investigation
of large-scale effects of inhomogeneities; many new ideas on how to exploit all
astrophysical observables to complete our picture; all this research would probably
have aroused much less interest if the dark energy mystery was not demanding it.

So this book is not as much about results as it is about suggestions and methods.
Many models we have considered in turn might all be deadly wrong but they all
teach us new ways of looking at the cosmological problem. The observations that
institutions around the globe are proposing, financing, and carrying out are showing
us the way to look further, harder, and deeper.

Where will the dark energy research go in the next years? The mere list of
observational projects related to dark energy that is planned or underway is impres-
sive [648]. The knowledge that will be acquired by these data will no doubt keep
on constraining the classical cosmological parameters and maybe at some point
will require something beyond a pure cosmological constant. This alone would
probably classify as the most important discovery in cosmology since the Cosmic
Microwave Background and the acceleration itself. If instead the error bars will
keep focusing on the ! spot, then the puzzles of coincidence and fine tuning will
loom even more urgent over us. But on the way we can safely expect to reach several
other goals: to probe gravity beyond the solar system, to reconstruct the clustering
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evolution down to high redshifts, to map the total matter content over vast patches
of sky, to confirm or confine the use of standard candles, rulers or clocks, to define
to high precision the landscape on which astrophysical phenomena take place, to
cross-check the many assumptions we currently make on our interpretations of the
real data. Even if the nature of dark energy will continue to elude us, all the effort
in this direction will not be in vain. It could as well happen that instead of a shorter
route to the East we will find a whole new world.
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Answers to the problems

Chapter 2

2.1 In the FLRW spacetime the energy-momentum tensor T µ
ν is a function of the cosmic

time t only. Then the conservation equation (2.90) yields

∇µT
µ

0 = Ṫ 0
0 + 4i

0iT
0

0 − 4i
i0T

i
i = 0 , (16.1)

where the Latin indices i = 1, 2, 3 are summed over. Since T 0
0 = −ρ, T i

j = P δi
j , and

4i
0j = H δi

j , it follows that ρ̇ + 3H (ρ + P ) = 0.
2.2 From Eqs. (2.42) and (2.43) the entropy densities of relativistic particles, for each spin

state, are given by s = 2π2T 3/45 and s = (7/8) 2π2T 3/45 for bosons and fermions,
respectively. Before the annihilation of electrons and positrons, there were photons
(2 spin states), 3 flavor neutrinos and anti-neutrinos (1 spin state for each), electrons
(2 spin state) and positrons (2 spin state). Then the entropy before the annihilation
with temperature T1 and scale factor a1 is

S(a1) = s(a1)a3
1 = 2π2

45
T 3

1 [2 + (7/8)(3 + 3 + 2 + 2)] a3
1 = 43

90
π2T 3

1 a3
1 . (16.2)

After the annihilation of electrons and positrons, neutrinos decoupled from the cosmic
plasma so that the neutrino temperature Tν and the photon temperature Tγ are different.
Then the entropy after the annihilation is

S(a2) = 2π2

45

(
2T 3

γ + 7
8

· 6T 3
ν

)
a3

2 . (16.3)

The equality S(a1) = S(a2) holds because of the entropy conservation. Using this
equality together with the relation a1T1 = a2Tν for neutrinos, we obtain Tν/Tγ =
(4/11)1/3.

2.3 In the non-relativistic limit, m2 ≫ p2, we have the approximate relation E ≃ m +
p2/(2m) from the relation E2 = p2 + m2. Plugging this into Eq. (2.40) it follows that

ρ ≃ g∗

2π2
m exp[−(m − µ)/T ]

∫ ∞

0
p2 exp(−p2/2mT ) dp . (16.4)
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Using the integral
∫ ∞

0 x2e−x2
dx =

√
π/4, we arrive at the density (2.48). Under the

same non-relativistic approximation, the pressure (2.41) yields

P = g∗

6π2

1
m

exp[−(m − µ)/T ]
∫ ∞

0
p4 exp(−p2/2mT ) dp . (16.5)

Using the integral
∫ ∞

0 x4e−x2
dx = 3

√
π/8, the pressure (2.49) follows.

2.4 For the solution (2.89) the Hubble parameter is given by H = n/(trip − t) with n ≡
−2/[3(1 + wDE)] > 0. Then the scalar curvature evolves as

R = 6(2H 2 + Ḣ ) = 6n(2n + 1)
(trip − t)2

, (16.6)

which diverges as t → trip. Under the approximation H0 ≃ n/(trip − t0), which corre-
sponds to neglecting the contribution of non-relativistic matter today, it follows that

trip − t0 ≃ 2
3|1 + wDE|

1
H0

. (16.7)

Using Eq. (2.36) with h = 0.72 for the equation of state wDE = −1.5, we obtain
trip − t0 ≃ 18 Gyr.

Chapter 3

3.1 Consider N points randomly distributed on the equatorial plane of a sphere of radius
R. The density of points in the sphere is n = N/V = 3N/(4πR3). The superficial
density on the plane is instead ns = N/(πR2). The expected number of points inside
a spherical shell of volume 4πr2dr will be equal to the area of the plane 2πrdr times
the superficial density: p(r) = 2πrnsdr = 2Nrdr/R2. To calculate the correlation
function as in Eq. (3.5), we simply divide this by the expected number pP (r) =
4πr2ndr = 3Nr2dr/R3 in a Poisson distribution of N points in the sphere (i.e. without
confining the points to the plane). Then we have

ξ (r) = p(r)
pP (r)

− 1 = 2R

3r
− 1 . (16.8)

Therefore the correlation function η(r) ≡ 1 + ξ (r) decreases as r−1. This is the corre-
lation function of a planar distribution in 3-dimensional space. This can be generalized
to a d-dimensional distribution in a D-space to rd−D . Conversely, a distribution whose
correlation function η(r) in D dimensions decreases as a power-law rd−D is said to
be d-dimensional. If d is not an integer, then the distribution is a fractal of dimension
d . Notice that in this case the amplitude of the correlation η(r) depends on R, i.e. on
the “survey” size. This is a manifestation of the fact that a planar distribution in 3D is
never close to homogeneity, no matter how large we take the survey volume. For the
same reason, in this case the amplitude of the power spectrum depends on the survey
size R and is totally unrelated to the level of homogeneity of the distribution.



432 Answers to the problems

3.2 For the Gaussian power spectrum given by P = P0 exp[−k2/(2σ 2
k )] the correlation

function in Eq. (3.23) is

ξ (r) = P0

(2π )3

∫
exp

(
− k2

2σ 2
k

)
eik·rd3k . (16.9)

We can integrate the angular part of k:

ξ (r) = P0

(2π )3

∫ ∞

0
k2 exp

(
− k2

2σ 2
k

)
dk

∫ π

0
eikr cos θ sin θdθ

∫ 2π

0
dφ

= P0

2π2

∫ ∞

0
k2 exp

(
− k2

2σ 2
k

)
sin(kr)

kr
dk

= P0

2r3π2

∫ ∞

0
x exp

[
− x2

2(rσk)2

]
sin x dx

=
√

π

2
P0σ

3
k

2π2
e− 1

2 σ 2
k r2

, (16.10)

where in the last line we used
∫ ∞

0 x exp[−x2/(2c2)] sin x dx =
√

π/2 c3e−c2/2. The
correlation function has a maximum at r = 0 and then declines to zero at large r .
Although the power spectrum has a maximum at k = 0 (infinite wavelengths), the
number of modes, proportional to P (k)k2dk, goes to zero for small k and therefore the
distribution reaches homogeneity at large scales.

3.3 We proceed as in Eq. (3.53):

⟨N3⟩ = ⟨
∑

ni

∑
nj

∑
nk⟩ =

∑
⟨n3

i ⟩ + 3
∑

⟨n2
i ⟩

∑
⟨ni⟩ +

∑
⟨ninjnk⟩

= N0 + 3N2
0 + N3

0

∫
WiWjWk(1 + ξij + ξik + ξjk + ςijk) dVidVj dVk

= N0 + 3N2
0 + N3

0 + 3N3
0

∫
WiWjξij dVidVj + N3

0

∫
WiWjWkςijk dVidVj dVk,

where in the second line we used the definition of the three-point correlation given in
Eq. (3.10) and in the third line we used the fact that the integrals over the functions ξij

are all identical. We then find the third-order moment

M3 = N−3
0 ⟨(9N )3⟩ = N−3

0 ⟨N3 − 3N2N0 + 3NN2
0 − N3

0 ⟩

= N−3
0 ⟨N3⟩ − 3⟨N2⟩N−2

0 + 2 . (16.11)

Now from Eq. (3.54) we have

⟨N2⟩N−2
0 = N−1

0 +
∫

WiWj (1 + ξij )dVidVj = N−1
0 + 1 +

∫
WiWjξij dVidVj ,

(16.12)
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so that finally

M3 = N−2
0 + 3N−1

0 + 3
∫

WiWjξij dVidVj +
∫

WiWjWkςijk dVidVj dVk

−3N−1
0 − 3

∫
WiWjξij dVidVj

= N−2
0 +

∫
WiWjWk ςijk dVidVj dVk . (16.13)

Chapter 4

4.1 (1) If Pxy(δx, δy) is the probability of having δx, δy in the interval dδxdδy , the probability
of having both δx > νσ and δy > νσ is simply

P2 =
∫ ∞

>νσ

dδx

∫ ∞

>νσ

dδyPxy(δx, δy)

= 1
2π (σ 4 − ξ 2

12)1/2

∫

>νσ

dδx

∫

>νσ

dδye
− 1

2(σ4−ξ2
12)

(σ 2δ2
x+σ 2δ2

y−2ξ12δxδy )

= 1
2π (σ 4 − ξ 2

12)1/2

∫

>νσ

dδxe
− (σ2−ξ2

12σ−2)δ2
x

2(σ4−ξ2
12)

∫

>νσ

dδye
− σ2(δy−ξ12δx σ−2)2

2(σ4−ξ2
12)

= 1

2σ
√

2π

∫

>νσ

dδxe
− δ2

x
2σ2 erfc

(
νσ − ξ12δxσ

−2

√
2(σ 2 − σ−2ξ 2

12)1/2

)

. (16.14)

The probability of having δx > νσ is similarly

P1 =
∫

>νσ

dδxP (δx) = 1
2

erfc
(

ν√
2

)
. (16.15)

By the law of conditional probabilities the conditional probability of having δx > νσ

given that δy > νσ is

Pc = P2

P1
. (16.16)

(2) If we divide a distribution into many small equal-volume regions above and below
threshold νσ , then the fraction of regions above threshold at distance r from a region
above threshold equals the conditional probability Pc we have just evaluated. If we
consider a shell encompassing N regions at distance r of volume Vr around a region
above threshold, then a number NPc will be above threshold and their numerical density
will be ρc = NPc/Vr . On the other hand the fraction of regions above threshold equals
P1 and by the same argument their numerical density will be ρ0 = NP1/Vr . Therefore
the requested ratio is P2/P

2
1 . Now this can be interpreted as in Eq. (3.5) as a conditional

correlation function for regions above threshold:

1 + ξ>νσ = ρc

ρ0
= P2

P 2
1

. (16.17)
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This amounts to

1 + ξ>νσ =
2

∫
>νσ

dδxe
− δ2

x
2σ2 erfc

(
σ 3ν−ξ12δx√

2σ (σ 4−ξ 2
12)1/2

)

σ
√

2π [erfc(ν/
√

2)]2
. (16.18)

(3) In the limit of ξ12 ≪ 1 we have

erfc

(
σ 3ν − ξ12δx√

2σ (σ 4 − ξ 2
12)1/2

)

≃ erfc
[
x

(
1 − ξ12δx

νσ 3

)]
≃ erfc(x) + 2√

π

ξ12δx

νσ 3
xe−x2

,

(16.19)
where x = ν/

√
2 . We have then

1 + ξ>νσ ≃
2

∫
>νσ

dδxe
− δ2

x
2σ2

(
erfc(x) + 2√

π

ξ12δx

νσ 3 xe−x2
)

σ
√

2π [erfc(x)]2

≃ 1 + 4ξ12xe−x2

νσ 3
√

π [erfc(x)]2

1√
2πσ

∫

>νσ

dδxδxe
− δ2

x
2σ2

= 1 + 4ξ12x

νσ 2π [erfc(x)]2

e−2x2

√
2

. (16.20)

Since erfc(x) ≃ e−x2
/(x

√
π ) for large x, we finally have

ξ>νσ ≃ 4ξ12x
3

√
2νσ 2

≃
( ν

σ

)2
ξ12 . (16.21)

This shows that in the limit of ξ12 ≪ 1 and ν ≫ 1 the correlation functions of regions
above the threshold is (ν/σ )2 times the underlying correlation function. The ratio
b = ν/σ can be seen then as the bias between the regions and the density field. This
is an example of how a linear, constant bias can arise if we identify the regions above
threshold as sites of galaxy formation.

4.2 Multiplying the term P0(µ) = 1 for Eq. (4.170) and integrating it in the range [−1, 1],
we obtain

)′
0 + '′

∫ +1

−1

dµ

2
+ ik

∫ +1

−1

dµ

2
µ)(µ) + ik(

∫ +1

−1

dµ

2
µ

= −τ ′
op

(
)0 − )0 + vb

∫ +1

−1

dµ

2
µ

)
, (16.22)

which shows that the r.h.s. of this equation vanishes. Since the dipole moment is given
by )1 = −(1/i)

∫ +1
−1 (dµ/2)µ)(µ), the above equation reduces to Eq. (4.176).

Similarly the multiplication of the term P1(µ) = µ for Eq. (4.170) yields

)′
1 − k

∫ +1

−1

dµ

2
µ2)(µ) − 1

3
k( = τ ′

op

(
)1 − i

3
vb

)
. (16.23)
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Figure 16.1 The luminosity distance dL versus the redshift z in the flat Universe
for &

(0)
! = 0, 0.3, 0.7, 1.

The quadrupole moment is given by )2 =
∫ +1
−1 (dµ/2)P2(µ))(µ), where P2(µ) =

(3µ2 − 1)/2. It then follows that
∫ +1

−1

dµ

2
µ2)(µ) = 1

3
)0 − 2

3
)2 . (16.24)

Neglecting )2 relative to )0 and substituting Eq. (16.24) into Eq. (16.23), we obtain
Eq. (4.177).

4.3 Substituting Eq. (4.178) into Eq. (4.177), we get

)′
1 = 1

3
k( + k

3(1 + Rs)
)0 − Rs

1 + Rs

a′

a
)1 . (16.25)

Taking the derivative of Eq. (4.176) in terms of η and using Eq. (16.25) to eliminate
)′

1, we find

)′′
0 + 1

3
k2( + k2

3(1 + Rs)
)0 − Rs

1 + Rs

a′

a
k)1 = −'′′ . (16.26)

After eliminating the term )1 with the use of Eq. (4.177), we arrive at Eq. (4.179).

Chapter 5

5.1 In Fig. 16.1 we plot dL(z) versus z for several different values of &
(0)
! (derived by using

a fortran code). The luminosity distance gets larger for increasing &
(0)
! .

5.2 The numerical plot of rBAO(z) is given in Fig. 5.9.
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Chapter 6

6.1 For the Kähler potential (6.36) and the superpotential W (C) that depends on C only,
the field potential is given by

V = κ2

(T + T ∗ − 2CC∗)3(S + S∗)

[
|DCW |2 (T + T ∗−2CC∗)2

6(T + T ∗)
+|DSW |2(S+S∗)2

]
,

(16.27)

where

DCW = ∂W

∂C
+ 6C∗W

T + T ∗ − 2CC∗ , DSW = − W

S + S∗ . (16.28)

If the potential V vanishes we have that DCW = 0 and DSW = 0, thereby giving
W = 0 and ∂W/∂C = 0. In this case DT W = −3W/(T + T ∗) = 0 and hence the
field configuration with V = 0 corresponds to the supersymmetric state.

6.2 For the Kähler potential (6.37) and the superpotential (6.40) with ρ = iσ , we obtain
DρW = i

[
cAe−cσ + (3/2)(W0 + Ae−cσ )/σ

]
and Kρρ∗ = 3/(4σ 2). We then find that

the field potential V is given by Eq. (6.42). Taking the derivative of Eq. (6.42) in terms
of σ , it follows that

dV

dσ
= −cA

6
e−2cσ σ−3(2 + cσ )

[
3W0e

cσ + A(3 + 2cσ )
]

, (16.29)

which has a minimum at the value σ = σc satisfying the condition (6.41).

Chapter 7

7.1 The equation for perturbations about the fixed point is given by Eq. (7.25) with the
matrix element

a11 = −3 + 9
2

(1 − wM )x2
1 + 3

2
(1 + wM )(1 − x2

2 ) , (16.30)

a12 =
√

6λx2 − 3(1 + wM )x1x2 , (16.31)

a21 = −
√

6
2

λx2 + 3(1 − wM )x1x2 , (16.32)

a22 = −
√

6
2

λx1 + 3
2

(1 − wM )x2
1 + 3

2
(1 + wM )(1 − 3x2

2 ) . (16.33)

From Eq. (7.26) we obtain the eigenvalues of this matrix for each fixed point.
7.2 Taking the derivative of the quantity x = φ̇2/(2V ) in terms of N , we find

1 + 1
6

d ln x

dN
= −V,φ

V

φ̇2 + 2V

6H φ̇
. (16.34)
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Using the relation
√

(1 + wφ)/&φ = 2
√

3H |φ̇|/(φ̇2 + 2V ), we obtain Eq. (7.30). Dif-
ferentiating Eq. (7.30) with respect to φ gives

4 − 1 = V

V,φ

H

φ̇

[
w′

φ

2(1 + wφ)
−

&′
φ

2&φ

+ y ′′

6 + y ′

]
, (16.35)

where a prime represents a derivative with respect to N . Substituting w′
φ/(1 + wφ) =

y/(x + 1) and &′
φ/&φ = 3(1 − &φ)[wM (x + 1) − x + 1]/(x + 1) into Eq. (16.35),

we arrive at Eq. (7.31).
7.3 We consider the two-field system in the presence of a barotropic fluid with an equation

of state wM . Defining the following dimensionless quantities

xi ≡ κφ̇i√
6H

, yi ≡ κ
√

Vie−κλiφi

√
3H

, (16.36)

we obtain the following autonomous equations (i = 1, 2)

dxi

dN
= −3xi + λi

√
3
2
y2

i + 3
2
xi

[
2x2

1 + 2x2
2 + (1 + wM )(1 − x2

1 − y2
1 − x2

2 − y2
2 )

]
,

(16.37)

dyi

dN
= −λi

√
3
2
xiyi + 3

2
yi

[
2x2

1 + 2x2
2 + (1 + wM )(1 − x2

1 − y2
1 − x2

2 − y2
2 )

]
,

(16.38)

together with

1
H

dH

dN
= −3

2

[
2x2

1 + 2x2
2 + (1 + wM )(1 − x2

1 − y2
1 − x2

2 − y2
2 )

]
, (16.39)

&M = 1 − x2
1 − y2

1 − x2
2 − y2

2 . (16.40)

Setting dxi/dN = dyi/dN = 0, we get eight fixed points for the above sys-
tem [192]. Among them the stable fixed point that can be used for the late-
time acceleration is (x1, y1, x2, y2) = (λ2

eff/
√

6λ1, (λeff/λ1)(1 − λ2
eff/6)1/2, λ2

eff/
√

6λ2,

(λeff/λ2)(1 − λ2
eff/6)1/2) with weff = −1 + λ2

eff/3 and &φ = 1. Considering linear
perturbations about this fixed point, we find that it is stable under the condition
λ2

eff < 3(1 + wM ).
7.4 Substituting the relations

Kϕϕ∗ = 1 − ln(2κϕ)
2κ2ϕ2

= X

2κ2ϕ2
, DiW = −M3+αϕ−α−1(α − 1 + X) ,

(16.41)

into Eq. (6.23), we get the potential (7.65).
7.5 Using the derivative with respect to z, Eq. (7.8) can be written as

κ2

2

(
dφ

dz

)2

= − 1
(1 + z)2

(
κ2ρm

2H 2
− 1 + z

H

dH

dz

)
. (16.42)
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This reduces to Eq. (7.85) by substituting ρm = ρ(0)
m (1 + z)3. Plugging Eq. (7.85) into

Eq. (7.7), we obtain Eq. (7.86).

Chapter 8

8.1 We introduce a new scalar field defined by ϕ = eκαλφ/(καλ). Since ∂ϕ/∂φ =
eκαλφ it follows that X = X̃(καλϕ)−2 and Xeκλφ = X̃(καλϕ)(1−2α)/α , where X̃ ≡
−(1/2)gµν∂µϕ∂νϕ. Hence the scaling Lagrangian (8.27) can be written as

P (ϕ, X) = (καλϕ)−2X̃g
(
X̃(καλϕ)(1−2α)/α)

. (16.43)

For the choice α = 1/2 this Lagrangian density reduces to P (ϕ, X̃) = K(ϕ)p(X̃) with

K(ϕ) = (κλ/2)−2ϕ−2 , p(X̃) = X̃g(X̃) . (16.44)

This shows that the k-essence model with the Lagrangian density P (φ, X) =
V0φ

−2 p(X) has a scaling solution.
8.2 Substituting the relations Pφ = K(φ)g(y)/y and ρφ = −K(φ)g′(y) into Eq. (8.15),

we obtain

dy

dN
= 3

g′′(y)

[
g(y) − yg′(y)

y
− K̇

3HK
g′(y)

]
. (16.45)

For the choice K(φ) = 1/φ2 one has

K̇

HK
= − 2φ̇

Hφ
= −2

√
6

y

√
&φ

−g′(y)
, (16.46)

where we have used the relations 1/(Hφ) =
√

3&φ/(−g′(y)) and φ̇ =
√

2/y. Substi-
tuting Eq. (16.46) into Eq. (16.45), we arrive at Eq. (8.53).

Taking the derivative of the relation &φ = ρφ/(3H 2) in terms of N , it follows that

d&φ

dN
= &φ

[
−3(1 + wφ) − 2

Ḣ

H 2

]
, (16.47)

where we have used ρ̇φ/(Hρφ) = −3(1 + wφ). From Eq. (8.14) we find

2
Ḣ

H 2
= − 1

H 2φ2

g(y) − yg′(y)
y

− 3ρm + 4ρr

3H 2

= −3&φ(1 + wφ) − 3(1 − &φ)(1 + wrm) . (16.48)

At the second equality we have employed the relations g(y) − yg′(y) = −yg′(y)(1 +
wφ) and (3ρm + 4ρr )/(3H 2) = 3(1 − &φ)(1 + wm). Substituting Eq. (16.48) into
Eq. (16.47) results in Eq. (8.54).

Using the definition of wrm and the relation ρ̇r = −4Hρr , we can obtain Eq. (8.55)
easily.



Chapter 8 439

8.3 Perturbing Eqs. (8.82)–(8.84) about the fixed points (x1, x2, x3), we obtain the pertur-
bation equations

d
dN

δx1 =
(

−3
2

+ 9
2
x2

1 +
√

6Qx1 − 3
2
x2

2 + 1
2
x2

3

)
δx1

+ x2

[√
6(Q + λ) − 3x1

]
δx2 + x3(x1 +

√
6Q)δx3 , (16.49)

d
dN

δx2 = x2

(

3x1 −
√

6
2

λ

)

δx1 + 1
2

(3 + 3x2
1 − 9x2

2 + x2
3 −

√
6λx1)δx2+x2x3δx3,

(16.50)

d
dN

δx3 = 3x1x3δx1 − 3x2x3δx2 + 1
2

(−1 + 3x2
1 − 3x2

2 + 3x2
3 )δx3 . (16.51)

For the fixed points (e), (a), (c) the eigenvalues of the 3 × 3 Jacobian matrix of
perturbations are given by Eqs. (8.85), (8.86), and (8.88), respectively.

8.4 At the linear level the perturbation of the quantity Y about Yc is given by δY =
2[(xc/y

2
c )δx − (x2

c /y
3
c )δy]. When we consider linear perturbations of the term g + g1,

we need to take into account the second-order derivative of g in terms of Y . Then it
follows that δ(g + Yg′) = (2g′

c + Ycg
′′
c )δY , where g′

c ≡ dg(Yc)/dY . The perturbation
of the density parameter, &ϕ = x2(g + 2Yg′), is

δ&ϕ = 2(xc/Ac)δx − 2(x2
c /yc)(3Ycg

′
c + 2Y 2

c g′′
c )δy , (16.52)

where Ac = [gc + 5Ycg
′
c + 2Y 2

c g′′
c ]−1. Recalling that the fixed points A and B satisfy

Eqs. (8.210) and (8.211), we find that the components of the Jacobian matrix M of
perturbations are

a11 = −3 +
√

6
2

(2Q + λ)xc + 3x2
c (gc + Ycg

′
c) , (16.53)

a12 = yc

[
−3g′

cxcY
2
c + 3xc

y2
c

−
√

6(Q + λ)Yc +
√

6Ac

(Q + λ)&ϕ + Q

2y2
c

]
,

(16.54)

a21 = yc

2

[
−

√
6λ + 6xc(gc + Ycg

′
c)

]
, (16.55)

a22 = −3g′
cx

2
c Yc . (16.56)

We then obtain the eigenvalues (8.213) and (8.219) for the fixed points A and B,
respectively.
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Chapter 9

9.1 The variation of the action (9.226) with respect to gµν and φ leads to the following
equations

FGµν = 1
2 (f − RF )gµν + ∇νF,µ − gµν#F + 1

2f,Xφ,µφ,ν + T (m)
µν , (16.57)

∇c(f,Xφ,c) + f,φ = 0 , (16.58)

where F = ∂f/∂R and T (m)
µν is the energy-momentum tensor of non-relativistic matter.

In the flat FLRW spacetime Eqs. (16.57) and (16.58) give

3FH 2 = f,XX + 1
2 (FR − f ) − 3HḞ + ρm , (16.59)

−2FḢ = f,XX + F̈ − HḞ + ρm , (16.60)

1
a3

(
a3φ̇f,X

)· − f,φ = 0 . (16.61)

We define

ρDE ≡ f,XX + 1
2 (FR − f ) − 3HḞ + 3H 2(A − F ) , (16.62)

PDE ≡ F̈ + 2HḞ − 1
2 (FR − f ) − (2Ḣ + 3H 2)(A − F ) , (16.63)

where A is some constant. Then Eqs. (16.59) and (16.60) can be written as Eqs. (9.44)
and (9.45) with ρr = 0. Moreover one can easily show that ρDE and PDE defined above
satisfy the continuity equation ρ̇DE + 3H (ρDE + PDE) = 0.

9.2 Expanding Eq. (9.124) under the linear expansion of the variable ψ = ψ0(1 + δψ ), we
find

(
∂2

∂t2
− ∇2

)
δψ + M2

ψδψ = − δT

(3 + 2ωBD)ψ0
, (16.64)

where

M2
ψ ≡ 2(ψ0U,ψψ − U,ψ )

3 + 2ωBD
. (16.65)

Since ψ = F (R), U = (RF − f )/2, and ωBD = 0 for f (R) theory in the metric for-
malism, we have U,ψ = R/2 and U,ψψ = 1/(2f,RR). In this case we obtain the field
mass squared (9.52) from Eq. (16.65).
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9.3 The eigenvalues for the fixed points (a)–(e) are given by

(a) − 3 − 2Q2

2(1 − 2Q2)
,

3 + 2Qλ − 6Q2

2(1 − 2Q2)
, (16.66)

(b1)
3(

√
6 + 4Q − λ)√

6 + 6Q
,

3 +
√

6Q

1 +
√

6Q
, (16.67)

(b2)
3(

√
6 − 4Q + λ)√

6 − 6Q
,

3 −
√

6Q

1 −
√

6Q
, (16.68)

(c) − 6 − λ2 + 8Qλ − 16Q2

2(1 − 4Q2 + Qλ)
, −3 − λ2 + 7Qλ − 12Q2

1 − 4Q2 + Qλ
, (16.69)

(d)
3(2Q − λ)

4λ

⎡

⎣1 ±

√

1 + 8(6Q2 − 2Qλ − 3)(12Q2 + λ2 − 7Qλ − 3)
3(2Q − λ)2

⎤

⎦ ,

(16.70)

(e) − 3, − 3 . (16.71)

9.4 Taking the derivative of Eq. (9.212) in terms of τ , we obtain

[ȧ′]
ab

= −
κ2

(5)

3
ρ̇M −

κ2
(5)

3
ȧb

ab

ρM − ȧb

ab

κ2
(5)

κ2
(4)n

2
b

(
ȧ2

b

a2
b

+ 2
ȧb

ab

ṅb

nb

− 2
äb

ab

+ K
n2

b

a2
b

)
.

(16.72)

Substituting Eqs. (16.72) and (9.213) into the equation, (ȧb/ab)([n′]/nb) − [ȧ′]/ab =
0, we get

dρM

dτ
+ 3

ȧb

ab

(ρM + PM ) = 0 , (16.73)

which is equivalent to Eq. (9.217).

Chapter 10

10.1 The component R01 of the Ricci tensor for the metric equation (10.1) is

R01 = 2R′Ẋ − 2XṘ′

XR
. (16.74)

Therefore R01 = 0 implies

Ẋ

X
= Ṙ′

R′ , (16.75)

which is solved by

X(r, t) = R′(r, t)f (r) , (16.76)
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where f (r) is an arbitrary function of r . By choosing β(r) = f −2 − 1 we recover the
LTB metric in the form of Eq. (10.2).

10.2 Let us rewrite Eq. (10.10) as

H 2
⊥ =

(
Ṙ

R

)2

= H 2
⊥,0

[
&(0)

m R3
0

R3
+

&
(0)
K R2

0

R2

]

, (16.77)

where &
(0)
K = 1 − &(0)

m . Using the relation dt = dR/(H⊥R) = dx/(H⊥x), where x =
R/R0, the cosmic age tage is given by

H⊥,0 tage =
∫ 1

0

dx

[&(0)
m /x + &

(0)
K ]1/2

= 1

&
(0)
K

− &(0)
m

(&(0)
K )3/2

sinh−1

√
&

(0)
K

&
(0)
m

. (16.78)

Therefore, if one chooses the Hubble function and the &(0)
m function so that

H⊥,0 = T −1
0

⎡

⎣ 1

&
(0)
K

− &(0)
m

(&(0)
K )3/2

sinh−1

√
&

(0)
K

&
(0)
m

⎤

⎦ , (16.79)

then the time since big bang, tage = T0, would be the same for every observer. (From
Ref. [452].)

10.3 From the redshift

z ≡ ε(0) − ε(λs)
ε(λs)

, (16.80)

we obtain the derivative

dz

dλs

= − dε

dλs

ε(0)
ε2(λs)

= −(1 + z)
dε

dλs

1
ε

. (16.81)

The next step is to derive dε/dλs . Let us rewrite the dt/dλs geodesic equation for
J = 0 for a light ray t1(λs) [see Eq. (10.23)]:

dt1

dλs

= − dr

dλs

R′(t1, r)√
1 + β(r)

. (16.82)

Consider now the geodesic of the same light ray: t2(λs) = t1(λs) + ε(λs). At first-
order in ε we have

dt2

dλs

= dt1

dλs

+ dε

dλs

= − dr

dλs

R′(t1 + ε, r)√
1 + β(r)

= − dr

dλs

R′(t1) + εṘ′(t1, r)√
1 + β(r)

. (16.83)

By subtraction we obtain

dε

dλs

= − dr

dλs

εṘ′(t1, r)√
1 + β(r)

. (16.84)

The redshift is then found as

dz

dλs

= dr

dλs

(1 + z)Ṙ′(t, r)√
1 + β(r)

, (16.85)
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or

dz

dr
= (1 + z)Ṙ′(t, r)√

1 + β(r)
, (16.86)

which corresponds to Eq. (10.24). (From Ref. [453].)

Chapter 11

11.1 The equation to be solved is

δ′′
m + 1

2
(1 − 3&DEwDE)δ′

m − 3
2
&mδm = 0 . (16.87)

If both weff = &DEwDE and &m = 1 − &DE are constants, the above equation can
be solved immediately by substituting δm = AeαN where N = ln a is the number of
e-foldings. We then obtain

α2 + 1
2

(1 − 3weff)α − 3
2
&m = 0 , (16.88)

which gives

α = 1
4

[
−1 + 3weff ±

√
24&m + (1 − 3weff)2

]
. (16.89)

11.2 As long as the oscillating mode can be neglected relative to the matter-induced
mode in Eq. (11.136), we obtain δF ≃ δρm/[3(k2/a2 + M2)]. Plugging this into
Eq. (11.135), we find

( ≃ −δρm

2F

a2

k2

4k2/a2 + 3M2

3(k2/a2 + M2)
. (16.90)

Then the matter perturbation equation (11.131) reduces to

δ′′
m +

(
1 + H′

H

)
δ′
m − 3

2
&mδm

4k2/a2 + 3M2

3(k2/a2 + M2)
≃ 0 . (16.91)

This gives the effective gravitational “constant”:

Geff = G

F

4k2/a2 + 3M2

3(k2/a2 + M2)
, (16.92)

where we recovered the gravitational constant G.

Chapter 12

12.1 Substituting the relations ρ = ρm + δρm and u = ȧx + v into Eq. (12.1) and taking
the zero-th-order part, we find

ρ̇m + 1
a
∇x(ȧρmx) = 0 → ρ̇m + 3Hρm = 0 . (16.93)
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The perturbed part corresponds to the equation

∂(δρm)
∂t

− H (x · ∇x)δρm + 1
a
ρm∇xv + H∇x · (δρmx) + 1

a
∇x · (δρmv) = 0 .

(16.94)
On using Eq. (16.93) and the relation H∇x · (δρmx) = H (x · ∇x)δρm + 3H δρm,
Eq. (16.94) reduces to Eq. (12.7).

On using Eqs. (12.4) and (12.5), the following relations hold
(

∂u
∂t

)

r

= äx +
(

∂v

∂t

)

x

− Hȧx − H (x · ∇x)v , (16.95)

(u · ∇r )u = Hȧx + Hv + H (x · ∇x)v + 1
a

(v · ∇x)v . (16.96)

Substituting these relations into Eq. (12.2), we obtain Eq. (12.8) with ' given in
Eq. (12.10).

Equation (12.3) can be written as

∇2
x

(
'N − 2

3
πGa2ρmx2

)
= 4πGa2δρm . (16.97)

On using the relation ä/a = −(4πG/3)ρm, we obtain Eq. (12.9).
12.2 At second order Eq. (12.21) can be written as

δ(2)′′ +
(

1 + H′

H

)

δ(2)′ − 3
2
&mδ(2)

= δ2
1D

′2
L

(
3
2

&m

f 2
+ 1

)
+ (∇ iδ1)

(
v′

i

H
DL + 2

vi

H
D′

L + vi

H
DL

)
+ (∇ ivj )(∇j vi)

H2
.

(16.98)

In the absence of shear the linear velocity is irrotational, so we can define a velocity
potential vp such that vi ≡ ∇ivp. Then Eq. (12.11) is of the Poisson type at first order
and it can be solved to give

vp = HD′
L9 . (16.99)

Then finally we can write Eq. (12.12) at first order as

v′
i =

(
−1 + 3

2
&m

f

)
HD′

L∇i9 , (16.100)

and use it to simplify Eq. (16.98), which now becomes as in Eq. (12.22).
12.3 The virialization condition gives

RV = RT /2 , (16.101)

where RT is the turnaround radius. The time tV at virialization is twice the time tT it
takes to turnaround. Therefore the scale factor that grows as a ∝ t2/3 in the Einstein–
de Sitter Universe is aV = 22/3aT at virialization. The density contrast inside the
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radius R is defined as

δ = (aR0/R)3 − 1 . (16.102)

Then at RV one has δV = (aV R0/RV )3 − 1 ≃ 32(aT R0/RT )3 − 1 while at turnaround
δT = (aT R0/RT )3 − 1, so that we obtain

δV ≃ 32(1 + δT ) − 1 . (16.103)

Since we have already calculated in Section 12.3 that δT ≃ 4.6, we obtain δV ≃ 178.
The value of τ corresponding to this is ≃ 4.77, which in turn implies that δL ≃ 1.59.
This is very close to the singular value δc ≃ 1.686, as expected.

12.4 The expression

ρDE ∼ R−3(1−β)(1+w)a−3β(1+w) (16.104)

is the solution of the conservation equation

ρ̇DE + 3
Ṙ

R
(1 + w)ρDE = β4ρDE (16.105)

where 4 = 3(1 + w)(Ṙ/R − ȧ/a). (From Refs. [520, 521].)

Chapter 13

13.1 We have! the probability that a hypothesis is correct: P (C) = 0.01,! the probability that a hypothesis is in agreement with data given that it is correct:
P (A|C) = 0.8,! the probability that a hypothesis is in agreement with data although it is wrong:
P (A|C) = 0.1.

From the first we obtain P (C) = 0.99. From Bayes’ theorem the probability for a
hypothesis to be correct given that it is confirmed by data is

P (C|A) = P (A|C)P (C)
P (A)

. (16.106)

We can evaluate P (A) using the definition of conditional probabilities as follows:

P (A) = P (A,C) + P (A, C) = P (A|C)P (C) + P (A|C)P (C)

= 0.8 · 0.01 + 0.1 · 0.99 ≈ 0.107 . (16.107)

Then we have

P (C|A) = P (A|C)P (C)
P (A)

= 0.8 · 0.01
0.107

≃ 0.075 . (16.108)

That is, given our assumptions, a hypothesis confirmed by data is correct less than
8% of the times.
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13.2 For the likelihood L1 we need to perform the integral (we ignore the normalization
constant)

L =
∫ ∞

−∞
dα exp

[

−1
2

∑

i

(αmi − µi)2

σ 2
i

]

= e
− 1

2

∑
i

µ2
i

σ2
i

∫ ∞

−∞
dα exp

[

−1
2

∑

i

α2m2
i − 2αµimi

σ 2
i

]

. (16.109)

We define now

Sab ≡
∑

i

ma
i µ

b
i

σ 2
i

, (16.110)

and complete the square in the integrand exponential by summing and subtracting
S2

11/S20 as follows

L = e
− 1

2

(
S02−

S2
11

S20

) ∫ ∞

−∞
dα exp

[
−1

2

(
α2S20 − 2αS11 + S2

11

S20

)]

= e
− 1

2

(
S02−

S2
11

S20

) ∫ ∞

−∞
dα exp

[

−1
2

(
α
√

S20 − S11√
S20

)2
]

. (16.111)

The Gaussian integral gives
√

2π/S20, which does not depend on the theoretical
parameters and can be absorbed in the normalization constant N . Therefore the
marginalized function becomes

L = Ne
− 1

2

(
S02−

S2
11

S20

)

. (16.112)

For the likelihood L2 we need to perform the integral

L =
∫ ∞

−∞
dα exp

[

−1
2

∑

i

(mi − αµi)2

σ 2
i

]

= e
− 1

2

∑
i

m2
i

σ2
i

∫ ∞

−∞
dα exp

[

−1
2

∑

i

α2µ2
i − 2αµimi

σ 2
i

]

. (16.113)

We complete the square as follows

L = e
− 1

2

(
S20−

S2
11

S02

) ∫ ∞

−∞
dα exp

[
−1

2

(
α2S02 − 2αS11 + S2

11

S02

)]

= e
− 1

2

(
S20−

S2
11

S02

) ∫ ∞

−∞
dα exp

[

−1
2

(
α
√

S02 − S11√
S02

)2
]

. (16.114)

The Gaussian integral gives
√

2π/S02, which now depends on the theoretical param-
eters and must be included in the final likelihood. On the other hand the S20 term in
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the first factor can be absorbed in the normalization. So we have

L = Ne
1
2 (

S2
11

S02
−ln S02)

. (16.115)

13.3 The prior of model A is a Dirac δD function centered on θ = 0, whereas the prior of
model B is e−θ2/2=2

/
√

2π=2. The data are described by a Gaussian e−(θ−θmax)/2σ 2
with

θmax = λσ . We calculate Bayes’ ratio as

BAB =
∫

f (x; θM1
i )p(θM1

i )dθM1
i∫

f (x ; θM2
i )p(θM2

i )dθM2
i

=
∫

e−(θ−θmax)/2σ 2
δ(θ )dθ

(2π=2)−1/2
∫

e−(θ−θmax)/2σ 2
e−θ2/2=2 dθ

=
√

1 + r−2 e
− λ2

2(1+r2) , (16.116)

where r = σ/=. If the best-fit parameter θmax is many σ away from the predicted
θ = 0 (i.e. λ ≫ 1), then it follows that BAB ≪ 1, favoring model B that allows for the
extra freedom =. But if λ is not too large and r ≪ 1, i.e. the data is much more peaked
than the B prior and close to the predicted value, then we have BAB ≈ 1/r ≫ 1 so
that the extra parameter introduced by model B is not needed and A is favored. This is
in line with Ockham’s razor argument. If r ≫ 1, then BAB ≈ 1 and hence there is not
enough information to decide between A and B. Although B has more parameters,
the fact that the data have a large error and are too poor to constrain θ implies that
no preference must be given to either A or B.

Chapter 14

14.1 We need to evaluate

Cℓ = 9
2

(
4[(ℓ + 1)/2]
4[(ℓ + 2)/2]

)2 ∫
dk

k4
Pδ(k)[(H2D),ηp

]2 , (16.117)

where ηp is the solution of

χ (ηp) = ℓ + 1/2
k

. (16.118)

Since weff = constant we have H 2 = H 2
0 (1 + z)3(1+weff ) and

χ (zp) =
∫ zp

0

dz̃

H (z̃)
= 2

H0

1 − (1 + zp)−(1+3weff )/2

1 + 3weff
, (16.119)

from which Eq. (16.118) gives

1 + zp =
[

1 − H0(2ℓ + 1)(1 + 3weff)
4k

]−2/(1+3weff )

=
(

1 − k0

k

)−2/(1+3weff )

,

(16.120)
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Figure 16.2 ISW spectra for n = 1, 2 in arbitrary units.

where k0 = H0(2ℓ + 1)(1 + 3weff)/4. Moreover, we have

H2D = H 2a2D = H 2
0 ap−1−3weff , (16.121)

(H2D),η = H
d(H2D)

dN
= (p − 1 − 3weff)H3D = (p − 1 − 3weff)H 3

0 ap− 3
2 (1+3weff ),

(16.122)

so that for n < −3 we have

Cℓ = 9
2

(
4[(ℓ + 1)/2]
4[(ℓ + 2)/2]

)2

AH 6
0 (1 + 3weff − p)2

∫ ∞

0
dk kn−4(1 + zp)3(1+3weff )−2p

= A1

(
4[(ℓ + 1)/2]
4[(ℓ + 2)/2]

)2

kn−3
0

∫ ∞

0
dq qn−4

(
1 − 1

q

)− 2(3−2p+9weff )
1+3weff

= A2

(
4[(ℓ + 1)/2]
4[(ℓ + 2)/2]

)2 (
ℓ + 1

2

)n−3

, (16.123)

where q = k/k0, A1 = 9AH 6
0 (1 + 3weff − p)2/2, and A2 = A1(H0|1 +

3weff|/2)n−34[3 − n]4[−3 + β + n]/4[β] with β = −2(9weff − 2p + 3)/(1 +
3weff). The spectrum Cℓ is shown in Fig. 16.2 for some values of n.

14.2 Let us expand a plane wave in Legendre polynomials

eikrµkr =
∞∑

0

(2ℓ + 1)iℓPℓ(µkr )jℓ(kr) , (16.124)
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where µkr denotes the cosine of the angle between k and r . Equation (14.51) can be
written as

ξs(r) =
∫

Pr (k)(1 + 2βµ2
kd + β2µ4

kd ) eik·rd3k

= ξr (r) + C1 + C2 , (16.125)

where µkd denotes the angle between r and the line of sight d and

C1 ≡ 2β

∫
Pr (k)µ2

kd eik·rd3k , C2 ≡ β2
∫

Pr (k)µ4
kd eik·rd3k . (16.126)

Now µ2
kd in C1 can be expanded in Legendre polynomials as

µ2
kd =

∞∑

ℓ=0

bℓPℓ = 1
3
P0(µkd ) + 2

3
P2(µkd ) , (16.127)

and similarly µ4
kd in C2:

µ4
kd = 1

5
P0 + 4

7
P2 + 8

35
P4 . (16.128)

Expanding eik·r , we then have

C1 = 2β

∫
Pr (k)

[
1
3
P0(µkd )+ 2

3
P2(µkd )

][ ∞∑

0

(2ℓ + 1)iℓPℓ(µkr )jℓ(kr)

]

k2dk d&k ,

(16.129)
where d&k denotes the integration over the angular coordinates of k. Now we need
to use the generalization of the orthonormality relation given by Eq. (14.144):

∫
d&krPℓ′(µkd )Pℓ(µkr ) = 4π

2ℓ + 1
Pℓ(µrd )δℓℓ′ . (16.130)

Then we obtain

C1 = 8πβ

∫
Pr (k)

[
1
3
P0(µrd )j0(kr) − 2

3
P2(µrd )j2(kr)

]
k2dk , (16.131)

and similarly

C2 = 4πβ2
∫

Pr (k)
[

1
5
P0(µrd )j0(kr)− 4

7
P2(µrd )j2(kr)+ 8

35
P4(µrd )j4(kr)

]
k2dk .

(16.132)
The integrals on j0 = sin(x)/x give the isotropic correlation function

ξr (r) = 4π

∫
Pr (k)j0(kr)k2dk . (16.133)

For instance in C1 we have

8πβ

∫
Pr (k)

1
3
P0(µrd )j0(kr) k2dk = 8π

3
β

∫
Pr (k)

sin(kr)
kr

k2dk = 2
3
βξr (r) .

(16.134)
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Let us consider now the term in C1:

A ≡ −4
3
βP2(µrd ) · 4π

∫
Pr (k)j2(kr) k2dk . (16.135)

We want to express j2(kr) in terms of j0(kr), so we can write I2 in terms of the
isotropic correlation function ξr . To do so we need to notice that

I2(r) ≡ 3
r3

∫ r

0
ξr (y)y2dy = 4π

r3

∫
Pr (k)k2dk

∫ r

0
y2dy

3 sin(ky)
ky

= 4π

∫
Pr (k)

k2

(kr)3
dk

∫ kr

0

3 sin(z)
z

z2dz

= 4π

∫
Pr (k)

k2

(kr)3
dk(kr)3[j2(kr) + j0(kr)]

= 4π

∫
Pr (k)k2dk[j2(kr) + j0(kr)]

= ξr (r) + 4π

∫
Pr (k)k2dkj2(kr) , (16.136)

so that

A = −4
3
βP2(µrd )[I2(r) − ξr (r)] . (16.137)

Analogously, we can use the relation

I4 ≡ 5
r5

∫ r

0
ξr (y)y4dy = 4π

r5

∫
Pr (k)k2dk

∫ r

0
y4dy

5 sin(ky)
ky

= 4π

∫
Pr (k)

k2

(kr)5
dk

∫ kr

0

5 sin(z)
z

z4dz

= 4π

∫
Pr (k)

k2

(kr)5
dk(kr)5

[
−2

7
j4(kr) + 5

7
j2(kr) + j0(kr)

]

= ξr (r) + 5
7

[I2 − ξr (r)]− 8
7
π

∫
Pr (k)k2j4(kr)dk , (16.138)

to simplify the j4 term in C2:

B ≡ 8
35

β2P4(µrd ) · 4π

∫
Pr (k)j4(kr) k2dk

= 8
35

β2P4(µrd )
[

7
2
ξr + 5

2
(I2 − ξr ) − 7

2
I4

]
. (16.139)
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Then we have

C1 = 2
3
βξr − 4

3
βP2(µrd )[I2(r) − ξr (r)] , (16.140)

C2 = 1
5
β2ξr − 4

7
β2P2(µrd )[I2(r) − ξr (r)] + 8

35
β2P4(µrd )

(
ξr + 5

2
I2 − 7

2
I4

)
.

(16.141)

So finally the expansion Eq. (14.52) in multipoles ℓ = 0, 2, 4 is

ξs = P0(µrd )
(

1 + 2
3
β + 1

5
β2

)
ξr + P2(µrd )

(
4
3
β + 4

7
β2

)
[ξr (r) − I2(r)]

+ 8
35

β2P4(µrd )
(

ξr + 5
2
I2 − 7

2
I4

)
. (16.142)

14.3 Integrating the right-hand side of Eq. (14.59) by parts we obtain (replacing r with s

for later convenience)

C(σ ) = 2
∫ ∞

σ

sξ (s)
(s2 − σ 2)1/2

ds = [ξ (s)(s2 − σ 2)1/2]∞σ − 2
∫ ∞

σ

ξ ′(s)(s2 − σ 2)1/2ds .

(16.143)
The boundary term vanishes if ξ (s) decreases to 0 faster than 1/s for s → ∞ and if
it is not singular at s = σ . Differentiating Eq. (16.143) with respect to σ , we find

C′(σ ) = 2
∫ ∞

σ

ξ ′(s)σ
(s2 − σ 2)1/2

ds . (16.144)

Inserting this into the r.h.s. of Eq. (14.60) we obtain

The r.h.s. of Eq. (14.60) = − 2
π

∫ ∞

r

dσ

∫ ∞

σ

ds
ξ ′(s)σ

(s2 − σ 2)1/2(σ 2 − r2)1/2

= − 2
π

∫ ∞

r

dsξ ′(s)
∫ s

r

σdσ

(s2 − σ 2)1/2(σ 2 − r2)1/2

= −
∫ ∞

r

dsξ ′(s) = ξ (r) , (16.145)

where we have assumed ξ (∞) = 0. The change of the integral limits in the third line is
possible because the two-dimensional domain of integration s ∈ (σ,∞) ∩ σ ∈ (r,∞)
is identical to σ ∈ (r, s) ∩ s ∈ (r,∞).

14.4 We need to evaluate the integrals

q
(circ)
ij =

∫
dθxdθy (f + 2κwlθ

2f,θ2 )θiθj , (16.146)

q
(ell)
ij = −2

∫
dθxdθy (γ1θ

2
x − γ1θ

2
y + 2γ2θxθy)f,θ2θiθj . (16.147)
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Let us define

Enm ≡
∫

dθxdθy f,θ2θn
x θm

y . (16.148)

Since f is a function that depends only on θ2, we have Enm = 0 if either n or m is
odd and Enm = Emn. Then we are left with

q
(ell)
ij = −2

(
γ1(E40 − E22) 2γ2E22

2γ2E22 γ1(E04 − E22)

)
. (16.149)

We have also

q
(circ)
ij =

(
U 0
0 U

)
+ O(κwl) , (16.150)

where U ≡
∫

dθxdθy f θ2
x =

∫
dθxdθy f θ2

y . Changing to polar coordinates θx =
θ cos α, θy = θ sin α, integrating over α, and putting v = θ2, the quantity U can
be written as

U = 1
2

∫
dθxdθy f θ2 = π

∫
dθf θ3 = π

2

∫
dvf (v)v . (16.151)

Then we can evaluate the ellipticity

ε1 = qxx − qyy

qxx + qyy

= −2γ1
E40 − 2E22 + E04

2U
. (16.152)

The numerator can be integrated by changing again to polar coordinates and then by
carrying out the partial integration:

E40 − 2E22 + E04 =
∫

dθxdθyf,θ2 (θ2
x − θ2

y )2

=
∫

θ5f,θ2 dθ

∫
dα(cos2 α − sin2 α)2

= π

2

∫
v2 df

dv
dv = −π

∫
f vdv = −2U . (16.153)

So finally we obtain

ε1 = 2γ1 . (16.154)

The O(κwl) term in q
(circ)
ij is clearly a second-order correction. Similarly, we can write

E22 =
∫

dθxdθyf,θ2θ2
x θ2

y = π

4

∫
θ5dθf,θ2 = −π

4

∫
f vdv = −U

2
, (16.155)

and hence

ε2 = 2qxy

qxx + qyy

= −8γ2
E22

2U
= 2γ2 . (16.156)
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14.5 Suppose we have a field f (x, y, r) projected along the r-direction in flat space with
some unit-normalized weight w(r),

F (θx, θy) =
∫ ∞

0
drw(r)f (r) . (16.157)

In what follows we always assume small angular deviations from the survey refer-
ence direction θ so that spatial vectors are written as r = (θxr, θyr, r). The angular
correlation function of F is

wF (9θ ) = ⟨F (θ )F (θ + 9θ )⟩

=
∫

drdr ′w(r)w(r ′)⟨f ([θxr, θyr, r]f [(θx + 9θx)r ′, (θy + 9θy)r ′, r ′]⟩

≃
∫

dr w2(r)
∫

dr ′ξ (θ ′
xr

′ − θxr, θ
′
yr

′ − θyr, r
′; r)

≃
∫

dr w2(r)
∫

dr ′ξ (9θxr,9θyr, r
′; r) , (16.158)

where ξ (x; y) is the spatial correlation function at line-of-sight distance y for points
separated by x. In Eq. (16.158) we have assumed that the spatial angular correlation
ξ depends only on the separation between two points, that it rapidly drops for large
r ′ − r (hence we can approximate θ ′

xr
′ − θxr ≃ r9θ ), and that w(r) is slowly varying

compared to the scale of fluctuations so that w(r ′) ≃ w(r).
Now we define the angular transform

F (q) =
∫

d2θF (θ)e−iq·θ , (16.159)

for which the analog of Eq. (3.26) holds

⟨F (q)F ∗(q ′)⟩ = (2π )2δD(q − q ′)PF (q) , (16.160)

(we neglect the volume factors) where PF is the power spectrum of F and the Fourier
transform of w(θ ). Denoting the power spectrum of f (r) as pf (k), we have

PF (q) =
∫

d2θ wF (θ )e−iq·θ

=
∫

d2θ

∫
dr w2(r)

∫
dr ′ξ (θxr, θyr, r

′; r)e−iq·θ

=
∫

d2θ

∫
drw2(r)

∫
dr ′

∫
d3k pf (k; r)ei(kr r

′+kxθx r+kyθy r)−iq·θ

=
∫

d3k pf (k; r)
∫

drw2(r)
∫

d2θdr ′e−i(qx−kxr)θx−i(qy−kyr)θy eikr r
′
. (16.161)
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Notice that in the integration variables we denoted 9θ as θ . The last integral gives a
Dirac function δD(kxr − qx, kyr − qy, 0) so that using the formula

∫
dkxdkydkzδD(kxr − qx, kyr − qy, 0)f (kx, ky, kz)

=
∫

d(k̃x)d(k̃y)dkzr
−2δD(k̃x − qx, k̃y − qy, 0)f = r−2f

(qx

r
,
qy

r
, 0

)
,

(16.162)

we obtain

PF (q) =
∫

dr
w2

r2
pf

(q
r
, 0; r

)
. (16.163)

Assuming that both spectra are isotropic, i.e. they depend only on the modulus of
their argument, we obtain Eq. (14.75). In a non-flat space the result would be

PF (q) =
∫

dz
w(z)2

χ (z)2
pf

[
q

χ (z)
; z

]
, (16.164)

where χ is the comoving distance defined in Eq. (2.57) and the selection function
w(z) is normalized to unity in dz.
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Mathematical Appendix

Here we collect some of the mathematical relations and definitions we have used
throughout the book.

Our convention for the Fourier transformation is

f (x) = V

(2π )3

∫
fke

ik·xd3k , (17.1)

fk = 1
V

∫
f (x)e−ik·xd3x . (17.2)

Dirac’s delta function δD(x) is defined as

δD(x) = (2π )−3
∫

eik·xd3k . (17.3)

The expansion in Legendre polynomials of a function )(µ) is

)(µ) =
∑

ℓ

(2ℓ + 1)iℓ)ℓPℓ(µ) , (17.4)

where

)ℓ ≡ 1
(−i)ℓ

∫ 1

−1

dµ

2
Pℓ(µ))(µ) , (17.5)

and Pℓ is the Legendre polynomial of order ℓ. The first polynomials are P0(µ) = 1,
P1(µ) = µ, and P2(µ) = (3µ2 − 1)/2. They obey the normalization rule

∫ 1

−1
Pm(µ)Pn(µ)dµ = 2

2n + 1
δnm . (17.6)

A plane wave can be expanded in Legendre polynomials as follows:

eikrµkr =
∞∑

ℓ=0

(2ℓ + 1)iℓPℓ(µkr )jℓ(kr) , (17.7)
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where µkr denotes the cosine of the angle between k and r . The first spherical
Bessel functions are

j0(x) = sin(x)/x , (17.8)

j2(x) = −3 cos(x)/x2 + (3 − x2) sin(x)/x3 , (17.9)

j4(x) = 5(2x2 − 21) cos(x)/x4 + (105 − 45x2 + x4) sin(x)/x5 . (17.10)

A useful integral is
∫ ∞

0
jℓ(x)dx =

√
π

2
4[(ℓ + 1)/2]
4[(ℓ + 2)/2]

. (17.11)

Because of the addition theorem

Pℓ(µkr ) = 4π

2ℓ + 1

∑

n

Y ∗
nℓ(k̂)Ynℓ(r̂) , (17.12)

we have also

eik·r = 4π
∑

ℓn

iℓjℓ(kr) Y ∗
nℓ(k̂)Ynℓ(r̂) . (17.13)

Another useful relation is a theorem on Legendre polynomials which generalizes
the orthonormality relation. If we have two vectors k, r and the line of sight d
and denote with µkd the cosine of the angle between k and d, and analogously the
cosines µkr, µrd , then we have that the integration over the angular coordinates of
k is

∫
d&kPℓ′(µkd)Pℓ(µkr ) = 4π

2ℓ + 1
Pℓ(µrd)δℓℓ′ . (17.14)

This implies also
∫

d&kY
∗
ℓ′m(k̂)Pℓ(µkr ) = 4π

2ℓ + 1
Yℓm(r̂)δℓℓ′ . (17.15)

The spherical harmonics are orthonormal functions, satisfying
∫

d&Yℓm(r̂)Y ∗
ℓ′m′(r̂) = δℓℓ′δmm′ . (17.16)
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action principle, 110
adiabatic condition, 72, 103, 298
affine parameter, 76, 289
age of the Universe, 85, 416
Alcock–Paczynski effect, 393, 401
angular diameter distance, 21, 93

comoving, 98
anisotropic models, 424
anisotropic stress, 69, 300, 333, 409
anthropic principle, 124
anti de Sitter (AdS) bulk, 277
anti de Sitter (AdS) vacuum, 118, 121
Anti de Sitter/Conformal Field Theory (AdS-CFT)

correspondence, 174
anti-symmetric tensor, 125
Aristotle, ix
assisted inflation, 150
assisted quintessence, 150
atomic clock, 204
attractor, 142, 142, 150, 182, 225, 264, 274
autonomous equations, 180, 191, 219, 271
average

ensemble, 28
sample, 28

axion, 18

backreaction, 293
baryon acoustic oscillations (BAO), 5, 102, 282, 393

effective distance, 104, 198
relative distance, 104

baryon-dominated epoch, 196
baryon–photon plasma, 55
baryonic/dark matter density, 252, 268
baryons, 1, 63, 69

big bang nucleosynthesis, 16
coupling to, 190
decoupling, 194
perturbations, 55

Bayes’ theorem, 357
Bayesian approach, 356

confidence regions, 359
estimators, 362
evidence, 358

forecasts, 368
Jeffrey’s scale, 366
marginalization, 360
model selection, 363
nuisance parameters, 360
posterior probability, 358
prior probability, 358

Bessel functions, 96
bias, 57, 397

from non-linearity, 347
in coupled models, 312
in the growth rate, 398
Kaiser’s formula, 83

Big Bang Nucleosynthesis (BBN), 15, 151
big-rip, 25, 187, 230
bispectrum, 347
black body radiation, 1
black hole, 416
Boltzmann equation, 64, 67, 93
Boltzmann’s constant, 6
Bose–Einstein distribution, 13, 65
bosonic string, 174
bosons, 14, 116
brane tension, 123
braneworld, 4, 277, 330
Brans–Dicke parameter, 258, 260, 267, 326
Brans–Dicke theory, 5, 206, 256, 258, 333
bremsstrahlung emission, 411
broken supersymmetry, 118
bulk flow, 58

Calabi–Yau (CY) manifold, 121
Calan/Tololo Supernova Survey, 90
cascading gravity, 130
Cassini tracking, 213
chameleon mechanism, 195, 205, 306

in f (R) gravity, 248
in scalar-tensor models, 267

Chandra satellite, 412, 414
Chandrasekhar limit, 87
Chaplygin gas, 225, 308
chemical potential, 13
chiral field, 117, 160
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Christoffel symbol, 8
perturbed, 44

COBE, 2, 15, 71, 93
coincidence problem, 3, 114, 182, 428
Cold Dark Matter (CDM), 17, 23, 74, 106

perturbations, 68, 72, 310
collision term, 64
comoving distance, 12, 19, 45
comoving gauge, 41
comoving wavenumber, 49, 178, 227, 256
compactification, 118, 120, 128

flux, 121
complex structure moduli, 121
Compton scattering, 66, 67
conditional probability, 358
conformal anomaly, 232
conformal factor, 162, 249, 258
conformal time, 41, 77, 384
conformal transformation, 162, 173, 248, 258
conservation equation, see continuity equation
continuity equation, 10, 135, 280, 337

perturbed, 48
Copernican principle, 292
correlation function, 28, 31, 395

in redshift space, 401
cosmic distance, 18
Cosmic Lens All-Sky Survey (CLASS), 421
Cosmic Microwave Background (CMB), 2, 15, 79, 93,

152
acoustic peak, 99
anisotropies, 5
peak position, 95
power spectrum, 97, 330, 389
shift parameter, 98, 193, 198, 282
variance, 97

cosmic shear, 403
cosmic time, 7
cosmic transparency, 426
cosmological constant, 3, 11, 55, 56, 109, 125
cosmological constant boundary, 188
cosmological constant boundary crossing, 266
cosmological density, 13, 114, 154, 248, 252
Coulomb scattering, 67
counts in cells, 37
coupled dark energy, 189, 196, 215

higher-order perturbations, 345
parametrization, 196

coupled quintessence, 163, 201, 205, 222
coupling strength, 190, 197, 202, 205, 215, 249, 259,

306
covariant derivative, 10
cross-correlation spectrum, 387
crossover scale, 280
curvature of the Universe, 7, 25, 87, 89, 278
curvature perturbations, 98
cycloid equation, 288, 348

D-brane, 121, 123, 174, 277
anti, 120, 174
BPS, 174
non-BPS, 174

D-term, 154
dark energy, 1, 13, 18, 22

clustering, 350
effective mass, 308
N-body simulations, 354
papers, 427
perturbation, 75, 391

dark matter, 1, 17, 69
candidate, 17
fuzzy, 316
perturbation, 55

de Sitter
point, 236, 240, 251, 255, 262, 273
solution, 112, 158, 173, 281
vacuum, 3, 121

decaying mode, 53
deceleration parameter, 166
decoupling epoch, 2, 93
decoupling of the cosmological constant, 129
degravitation of the vacuum, 130
density contrast, 29, 46

critical value, 349
for a scalar field, 307

density parameter, 10
deuterium, 16, 151
deviation parameter, 238
dilaton

field, 121, 160
gravity, 5, 189, 258, 260

dilatonic ghost condensate model, 173, 179, 217
dipole moment, 66, 68, 95
Dirac’s delta function, 31, 280, 455
Dirac–Born–Infeld (DBI)

action, 174
field, 176

distortion tensor, 82
distribution function, 13, 63, 64, 351
Doppler effect, 12
Doppler shift, 80
double exponential potential, 149
drag epoch, 103
duality relation, see Etherington relation
Dvali–Gabadadze–Porrati (DGP) model, 5, 277

perturbations, 330, 333

early dark energy, 149
effective equation of state, 54, 138, 145, 191, 219, 255

for f (R) models, 238
in Gauss–Bonnet models, 271
in Palatini formalism, 262

effective gravitational constant, 247, 267, 326, 333
effective potential, 201, 207, 249, 274, 313
effective string action, 161, 173
EGRET experiment, 188
eigenvalues, 140, 141, 191, 219, 240, 255, 263, 274,

372
eigenvectors, 141
Einstein, 111, 427
Einstein equations, 8, 110, 132

averaging, 293
perturbed, 44
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Einstein frame, 173, 189, 212, 248, 249, 258, 326
Einstein tensor, 8

perturbed, 45
Einstein–de Sitter universe, 386

non-linear perturbations, 340
spherical collapse, 348

electromagnetic field, 203
electron, 2, 15, 64, 66, 93, 103
energy density, 9, 14, 136, 175
energy-momentum tensor, 4, 8, 134, 136, 175

perturbed, 47
entropy, 15, 26
equation of state, 5, 11, 23, 165

k-essence, 175
phantom, 266
quintessence, 138

equivalence principle, 60, 160, 211, 251, 267
ergodic system, 29
ESSENCE, 92
Etherington relation, 22, 414, 426
Euler equation, 49, 337, 345

non-linear, 342
European Extremely Large Telescope (EELT), 422
exponential potential, 139, 163, 217, 270
extended supergravity models, 158

f (G) gravity, 276
f (R) gravity, 4, 189, 234, 258
F-term, 156
Fermi–Dirac distribution, 13, 200
fermion, 14, 116, 153
fermion condensate model, 153
field potential, 117, 122, 135, 153, 174
fifth force, 205, 210
figure of merit, 373
fine structure constant, 203
fine tuning problem, 113, 114, 428
fingers-of-god, 59, 400
Fisher matrix, 356, 368, 396

addition of, 375
for Gaussian data, 379
for weak lensing, 408
maximization, marginalization, 371
of power spectrum, 377, 391, 395
transformation of variables, 370

five-dimensional
bulk, 277
Einstein equations, 278
Einstein tensor, 279
Planck mass, 278

fixed points, 139, 180, 183, 191, 218, 239, 255, 262,
271

instantaneous, 143
stability, 140

flat universe, 85, 281, 282
flux integers, 124
4-form field, 126
four-velocity, 9, 45, 79
Fourier space, 31, 49, 65, 325, 342, 406

discretization, 377
Fourier transformation, 31, 331, 341

free streaming, 96, 316
frequentist approach, 357
Friedmann–Lemaı̂tre–Robertson–Walker (FLRW)

spacetime, 7, 18
future singularities, 230

GAIA satellite, 425
galaxy

ages, 418
clustering, 106
density contrast, 60
distribution function, 406
merging, 61
number counts, 418
power spectrum, 107
velocity distribution, 400

galaxy clusters, 411
abundance, 414
density profile, 411
depletion parameter, 414
gas fraction, 414
hydrostatic equilibrium, 413
isothermal distribution, 413
mass-temperature relation (M-T), 412
sub-structure, 421

Gamma-ray burst (GRB), 415
gauge coupling, 160
gauge field, 203
gauge transformations, 41
gauge-invariant variables, 41, 300
Gauss’s theorem, 110, 249
Gauss–Bonnet dark energy, 269
Gauss–Bonnet (GB) term, 131, 269
Gaussian initial conditions, 47, 339
General Relativity, 3, 111, 235
generalized Chaplygin gas (GCG) model, 225
geodesic equation, 19, 64, 76, 289
ghost, 25, 162, 177, 186, 269, 276, 282
ghost condensate model, 173
global supersymmetric theory, 153
globular clusters, 85, 417
gluino condensation, 118
Gold data, 92, 275
gravitational constant, 6

bare, 234
variation, 195

gravitational instability, 53, 227
gravitational lensing

giant arcs, 421
mass estimations, 412
strong, 418
time delay, 418

gravitational potential, 69, 72
large-scale solution, 51
local value, 247
present value, 74
small-scale solution, 56

gravitational waves, 43
gravitino, 157
gravity mediation, 160
growing mode, 51, 53
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growth function, 47, 74, 387, 390, 394
higher-order, 339

growth index, 56
growth rate, 56, 303, 304, 395, 398

fit, 304
from clusters, 412, 414
in coupled models, 311
in modified gravity, 328

halo, 355, 419
clusters, 419
profiles, 419

helium, 16, 151
Helmholtz’s theorem, 42
hidden sector, 160
hierarchy problem, 113
High-redshift Supernova Search Team (HSST), 1, 87
higher-order moments, 31
hot Big Bang model, 7, 112
Hot Dark Matter (HDM), 17
Hubble constant, 12, 84, 101, 113, 158
Hubble Key Project, 13, 101
Hubble parameter, 9, 88, 416

for big-rip models, 25
in braneworld models, 280
in the redshift drift, 423
measures the age of the Universe, 84
parametrization, 198
radial, 286
reconstruction of, 163
transverse, 286

Hubble radius, 51, 68, 179, 281
present, 13

Hubble radius crossing, 71
Hubble Space Telescope (HST), 92
Hubble’s law, 12, 20, 112

inflation, 1, 11, 71, 125, 236
infra-red (IR) instability, 179
initial condition, 70

adiabatic, 80, 306
instant preheating, 151
instantaneous fixed point, 263
instantaneous minima, 265, 327
Integrated Sachs–Wolfe (ISW) effect, 74, 79, 80, 93,

384, 389
cross-correlation, 306
for f (R) gravity, 323
for early acceleration, 196

intra-cluster medium, 411
intrinsic temperature fluctuation, 80
inverse power-law potential, 144, 154, 168, 204, 213

Jacobian matrix, 191, 192, 219, 263, 274
to transform the Fisher matrix, 370

Jeans length, 52, 227
Jordan frame, 206, 212, 259, 326, 327

K-correction, 88
k-essence, 4, 172, 182, 228

attractor, 184

Kachru–Kallosh–Linde–Trivedi (KKLT) model, 121
Kähler modulus, 121
Kähler potential, 117, 155
Kaluza–Klein theories, 277
kinetic energy

as a fixed point, 140
for a chameleon field, 209
for phantom fields, 186
in k-essence models, 172
in spherical collapse, 349
in unified models, 229
of a scalar field, 4, 215

kinetic points, 221, 262
Klein–Gordon equation, 136

Lagrangian density, 109, 173, 190, 215, 228
!CDM model, 4, 74, 106, 109, 167, 200, 241
large extra dimensions, 277
Large Hadron Collider (LHC), 2
large-scale structure, 70, 106
last scattering surface, 2
Legendre polynomial, 66, 455
Lemaı̂tre’s model, 112
Lemaı̂tre–Tolman–Bondi (LTB) metric, 286
lensing potential, 81, 335, 409
Levi-Civita tensor, 43
LHC experiments, 18
likelihood function, 357, 369
likelihood method, 356, 359, 367
Limber equation, 405
linear expansion, 247, 251
local gravity constraints, 214, 236, 245, 252, 267, 276
local gravity experiments, 195, 205
long-range force, 4, 153, 189
longitudinal component, 42
longitudinal gauge, 41, 44
loop quantum cosmology, 233
low-energy effective string theory, 173
luminosity distance, 5, 20, 87, 163, 198
Lyman-α lines, 423

Mach’s principle, 257
Markov chain, 367
mass function, 352, 410

formula, 353
mass varying neutrino, 200
massive neutrino, 56, 194, 202, 398
massless

field, 203, 267
limit, 247, 325, 326, 333
neutrino, 67, 69
particles, 63

matter Lagrangian, 129, 205, 258
matter perturbations, 55

at second order, 338
growth rate, 395
in f (R) gravity, 317
in scalar-tensor models, 324
in the braneworld model, 330
in the Palatini formalism, 257

matter point, 142, 180, 240, 255, 266
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matter power spectrum, 70, 323, 394, 395
biased, 107
in f (R) gravity, 328
in the Chaplygin model, 227
peak wavelength, 75

matter-dominated epoch, 2, 71, 73, 192, 236
membrane, 126
metric, 7
metric formalism, 234, 245, 264
Minkowski background, 177, 206, 267
Minkowski bulk, 277
modified matter models, 134, 172
modulus field, 118, 119
moments

second-order, 39
third-order, 39

momentum vector, 76
monopole moment, 66, 94
multipole moments, 68, 97

N-body simulations, 61, 353, 396, 409
Navarro–Frenk–White profile, 421
negative instability, 179
neutralino, 18
neutrinos, 2, 15, 63, 69, 70
neutrons, 16, 151
Neveu–Schwarz (NS)-NS flux, 121
Newtonian gauge, 41, 42, 44
Newtonian gravity, 11, 336
Newtonian limit, 52
Newtonian regime, 57
no-go theorem, 120
no-scale models, 119, 158
non-Gaussianity, 345, 408
non-linear regime, 31, 49, 248, 251
non-relativistic matter, 13, 16, 49, 67, 135, 189
nonminimally coupled scalar field, 260
normal ordering, 129
number of e-foldings, 53, 138

Oklo natural fission reactor, 203
open universe, 86, 90
optical depth, 66, 96, 384

Palatini formalism, 235, 253
parametrization, 93, 164, 282, 370

logarithmic, 165
redshift, 165
scale factor, 165

particle physics, 3, 113, 144, 153
Peccei–Quinn (PQ) symmetry, 158
peculiar velocity, 12, 45, 56, 57

redshift distortion, 58
perfect fluid, 46, 135, 302, 337
perfect fluid model, 4, 225
perturbations, 41

degrees of freedom, 305
entropy, 305
equations in General Relativity, 50
general fluid, 302
in f (R) gravity, 317, 324

in DGP model, 330
large-scale limit, 300
linear, 296
metric, 297, 333
perfect fluid equations, 299
scalar field, 306
scalar-tensor gravity, 324
second-order, 336
small scales, 303
small-scale limit, 310
spherical, 338
stability, 318

perturbed Hamiltonian, 178
perturbed metric, 41, 42, 43, 63
phantom, 25, 105, 173, 178, 186
φMDE, 192, 221, 239, 262
photometric redshift, 395
photon propagation, 76, 335, 384
photon–baryon plasma, 70
photons, 2, 14, 16, 63, 76
physical distance, 12
pivot point, 371
Planck mass, 6
Planck scale, 113, 159
Planck’s constant, 6
Plato, ix
Poisson equation, 50, 310, 336, 386, 406

modified, 345
Poissonian, 33
polarization, 76
positron, 15
post-Newtonian parameter, 212, 247, 267
power spectrum, 31, 71, 330, 388, 394, 405

higher-order, 346
noise, 36, 404
non-linear, 354
normalization, 39

Press–Schechter theory, 349, 351, 421
pressure, 9, 14, 136, 175
principal component analysis (PCA), 380
probability distribution function (PDF), 356, 369
protons, 16, 64, 151
Pseudo-Nambu–Goldstone Boson (PNGB), 138, 158

quadrupole, 70, 72
quantum

chromodynamics (QCD), 18, 113, 153
corrections, 161, 232
cosmology, 125
field theory, 116, 129
fluctuations, 71, 178
operators, 116
tunneling effect, 126

quarks, 153
quasars, 203, 423
quintessence, 4, 134, 163

coupled, 306
freezing models, 137, 168
mass, 153
potential, 164
thawing models, 137, 169
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quintessential inflation, 151
quintom, 188

radiation point, 180, 243, 255
radiation-dominated epoch, 2, 55, 72, 192
radiation-matter equality, 23, 72, 73, 99
radiative corrections, 159
Ramond–Ramond (R-R) flux, 121
real-time cosmology, 422
reciprocity relation, see Etherington relation
recombination, 67, 93
reconstruction, 163
redshift, 12

distortion, 59, 61, 394, 398
drift, 292, 422
surveys, 398

reduced Planck mass, 6
Regge slope parameter, 161
reheating, 151
relativistic particle, 10, 13
Ricci scalar, 8, 110, 234

perturbed, 45
Ricci tensor, 8

for LTB metric, 287
perturbed, 45

rotational modes, 43
runaway dilaton scenario, 161

Sachs–Wolfe (SW) effect, 78, 79, 80
saddle point, 141, 192, 221, 240, 255, 274
Sandage effect, see redshift drift
scalar curvature, 8
scalar field, 4, 13, 135, 172, 189, 215, 257,

269
as dark matter, 309
Compton wavelength, 316
energy-momentum tensor, 307
oscillations, 316

scalar-field dominated solution, 140, 219, 262
scalar-tensor theories, 4, 189, 258

perturbations, 324
scalaron, 235
scale factor, 7, 12
scale-invariant spectrum, 71, 98
scaling attractor, 193, 195, 223
scaling Lagrangian, 217
scaling matter era, 181, 272, 274
scaling solution, 140, 149, 177, 215, 220, 262,

272
Schwinger pair creation, 126
shear-free gauge, 44
shot-noise, 394
single fluid, 50, 225
singular isothermal sphere (SIS), 419
singularity, 223, 253

type I, 230
type II, 230
type III, 231
type IV, 231

skewness, 343, 344, 346
SLACS, 421

Sloan Digital Sky Survey (SDSS), 5, 38, 102, 104,
388, 392

slow-roll parameters, 137
smoothing, 164, 344, 351
solar mass, 420
solar system constraints, 212, 213
sound horizon, 94, 98, 193
sound speed, 47, 52, 68, 69, 94, 178, 218, 227, 230

adiabatic, 47, 298
in spherical collapse, 351
non-adiabatic, 47
of a scalar field, 307, 314
of dark energy, 390
total, 298, 301

speed of light, 6
spherical collapse, 347, 351
spherical harmonics, 96
spherically symmetric body, 207, 246
stability conditions for k-essence, 177
stability of tensor perturbations, 276
stable node, 141
stable spiral, 141
standard candle, 87, 413

GRBs, 416
statefinder, 166
stationary solution, 312
statistical homogeneity, 33
string coupling, 161
string landscape, 4, 126, 128
string mass, 160
string theory, 116, 128, 157, 160, 277
strong anthropic principle, 124
strong CP problem, 158
strong gravitational background, 253
structure formation, 2, 17
sub-horizon

approximation, 75, 256
scales, 51, 54

sudden future singularity, 230
Sunyaev–Zel’dovich effect, 290, 294
super-horizon

approximation, 72
scales, 51, 69, 71, 299

supergravity, 116, 154
effective action, 118

superluminal propagation, 179, 185
supernova, 87

absolute magnitude, 88
apparent magnitude, 87
flux, 87
type Ia (SN Ia), 1, 87, 244
type Ib, 87
type II, 87

Supernova Cosmology Project (SCP), 1, 87
SuperNova Legacy Survey (SNLS), 92, 198
superpotential, 117, 154
supersymmetric particles, 18
supersymmetric theories, 18, 116
supersymmetry, 113, 116, 156
supersymmetry breaking, 155
Swiss-cheese model, 291
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tachyon field, 174, 175, 217
temperature perturbation, 65
tensor perturbation, 276
thick-shell, 211
thin-shell, 205
thin-shell parameter, 211, 251
Thomson cross section, 66
Thomson scattering, 2
three-cycles, 128
tight coupling, 103

limit, 68, 95
top-hat filtering, 36
total equation of state, see effective equation of state
total matter perturbation, 50, 60, 227
trace, 189, 235
traceless, 189
tracker solution, 145
tracking condition, 143
transfer function, 73, 74

Bardeen–Bond–Kaiser–Szalay (BBKS), 74
transverse component, 42
two-degree Field (2dF) Galaxy Redshift Survey, 38,

104, 228, 392

ultra-violet (UV) instability, 177, 220
unbroken supersymmetry, 157
unified models of dark energy and dark matter, 225,

228
unstable node, 141
unstable spiral, 141

vacuum energy, 3, 113, 117, 125
vacuum expectation value, 160
vacuum instability, 187
varying alpha, 203
velocity divergence, 46
velocity field, 56, 60, 62

virialization, 349
in clusters, 412
radius, 349

viscosity, 338
visibility function, 96
void model, 286

warp factor, 122, 174
warped compactification, 122
weak anthropic principle, 124
weak coupling limit, 162
weak energy condition, 164
weak lensing, 78, 81, 335, 403, 409

convergence, 82
convergence spectrum, 407
distortion tensor, 404
galaxy ellipticity, 403
power spectrum, 408
shear field, 82
transformation matrix, 81

Weakly Interacting Massive Particles (WIMPs), 18
Weinberg’s bound, 125
Weyl tensor, 280
white dwarf, 85
Wiener–Khinchin theorem, 32
Wilkinson Microwave Anisotropy Probe (WMAP), 2,

17, 71, 86, 93, 99, 384
window function, 34, 58, 345

top-hat function, 34

X-ray spectra, 412
XMM-Newton satellite, 412

Yang–Mills coupling, 174
Yukawa term, 314, 327

zero-point energy, 3, 113
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