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Preface

Research in cosmology has become extraordinarily lively in the past quarter
century. In the early 1980s the proposal of the theory of inflation offered a
solution to some outstanding cosmological puzzles and provided a
mechanism for the origin of large-scale structure, which could be tested by
observations of anisotropies in the cosmic microwave background.
November 1989 saw the launch of the Cosmic Background Explorer
Satellite. Measurements with its spectrophotometer soon established the
thermal nature of the cosmic microwave background and determined its
temperature to three decimal places, a precision unprecedented in cosmol-
ogy. A little later the long-sought microwave background anisotropies were
found in data taken by the satellite’s radiometer. Subsequent observa-
tions by ground-based and balloon-borne instruments and eventually by
the Wilkinson Microwave Anisotropy Probe showed that these anisotropies
are pretty much what would be expected on the basis of inflationary theory.
In the late 1990s the use of Type Ia supernovae as standard candles led to
the discovery that the expansion of the universe is accelerating, implying
that most of the energy of the universe is some sort of dark energy, with a
ratio of pressure to density less than —1/3. This was confirmed by precise
observations of the microwave background anisotropies, and by massive
surveys of galaxies, which together provided increasingly accurate values
for cosmological parameters.

Meanwhile, the classic methods of astronomy have provided steadily
improving independent constraints on the same cosmological parameters.
The spectroscopic discovery of thorium and then uranium in the atmo-
spheres of old stars, together with continued study of the turn-off from the
main sequence in globular clusters, has narrowed estimates of the age of the
universe. The measurement of the deuterium to hydrogen ratio in interstel-
lar absorption combined with calculations of cosmological nucleosynthesis
has given a good value for the cosmic density of ordinary baryonic mat-
ter, and shown that it is only about a fifth of the density of some sort of
mysterious non-baryonic cold dark matter. Observations with the Hubble
Space Telescope as well as ground-based telescopes have given increasingly
precise values for the Hubble constant. It is greatly reassuring that some of
the parameters measured by these other means have values consistent with
those found in studies of the cosmic microwave background and large scale
structure.

Progress continues. In the years to come, we can expect definite
information about whether the dark energy density is constant or evolv-
ing, and we hope for signs of gravitational radiation that would open the
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era of inflation to observation. We may discover the nature of dark mat-
ter, either by artificially producing dark matter particles at new large
accelerators, or by direct observation of natural dark matter particles imping-
ing on the earth. It remains to be seen if in our times fundamental physical
theory can provide a specific theory of inflation or explain dark matter or
dark energy.

This new excitement in cosmology came as if on cue for elementary
particle physicists. By the 1980s the Standard Model of elementary particles
and fields had become well established. Although significant theoretical
and experimental work continued, there was now little contact between
experiment and new theoretical ideas, and without this contact, particle
physics lost much of its liveliness. Cosmology now offered the excitement
that particle physicists had experienced in the 1960s and 1970s.

In 1999 I finished my three-volume book on the quantum theory of fields
(cited here as “QTF”), and with unaccustomed time on my hands, I set
myself the task of learning in detail the theory underlying the great progress
in cosmology made in the previous two decades. Although I had done some
research on cosmology in the past, getting up to date now turned out to take
a fair amount of work. Review articles on cosmology gave good summaries
of the data, but they often quoted formulas without giving the derivation,
and sometimes even without giving a reference to the original derivation.
Occasionally the formulas were wrong, and therefore extremely difficult
for me to rederive. Where I could find the original references, the articles
sometimes had gaps in their arguments, or relied on hidden assumptions, or
used unexplained notation. Often massive computer programs had taken
the place of analytic studies. In many cases I found that it was easiest to
work out the relevant theory for myself.

This book is the result. Its aim is to give self-contained explanations
of the ideas and formulas that are used and tested in modern cosmological
observations. The book divides into two parts, each of which in my exp-
erience teaching the subject provides enough material for a one-semester
graduate course. The first part, Chapters 1 through 4, deals chiefly with the
isotropic and homogeneous average universe, with only a brief introduc-
tion to the anisotropies in the microwave background in Section 2.6. These
chapters are more-or-less in reverse chronological order; Chapter 1 concen-
trates on the universe since the formation of galaxies, corresponding roughly
to redshifts z < 10; Chapter 2 deals with the microwave background, emit-
ted at a redshift z >~ 1,000; Chapter 3 describes the early universe, from
the beginning of the radiation-dominated expansion to a redshift z ~ 10*
when the density of radiation fell below that of matter; and Chapter 4 takes
up the period of inflation that is believed to have preceded the radiation-
dominated era. The second part, Chapters 5 through 10, concentrates on
the departures from the average universe. After some general formalism
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in Chapter 5 and its application to the evolution of inhomogeneities in
Chapter 6, I return in Chapter 7 to the microwave background anisotropies,
and take up the large scale structure of matter in Chapter 8. Gravitational
lensing is discussed late, in Chapter 9, because its most important cosmo-
logical application may be in the use of weak lensing to study large scale
structure. The treatment of inflation in Chapter 4 deals only with the aver-
age properties of the universe in the inflationary era; I return to inflation in
Chapter 10, which discusses the growth of inhomogeneities from quantum
fluctuations during inflation.

To the greatest extent possible, I have tried throughout this book to
present analytic calculations of cosmological phenomena, and not just report
results obtained elsewhere by numerical computation. The calculations that
are used in the literature to compare observation with theory necessarily
take many details into account, which either make an analytic treatment
impossible, or obscure the main physical features of the calculation. Where
this is the case, I have not hesitated to sacrifice some degree of accuracy
for greater transparency. This is especially the case in the hydrodynam-
ical treatment of cosmic fluctuations in Sections 6.2 through 6.5, and in
the treatment of large scale structure in Chapter 8. But in Section 6.1
and Appendix H I also give an account of the more accurate kinetic the-
ory on which the modern cosmological computer codes are based. Both
approaches are applied to the cosmic microwave background anisotropies in
Chapter 7.

So much has happened in cosmology since the 1960s that this book
necessarily bears little resemblance to my 1972 treatise, Gravitation and
Cosmology. On occasion I refer back to that book (cited here as “G&C”)
for material that does not seem worth repeating here. Classical general
relativity has not changed much since 1972 (apart from a great strengthen-
ing of its experimental verification) so it did not seem necessary to cover
gravitation as well as cosmology in the present book. However, as a conve-
nience to readers who want to refresh their knowledge of general relativity,
and to establish my notation, I provide a brief introduction to general rel-
ativity in Appendix B. Other appendices deal with technical material that is
needed here and there in the book. I have also supplied at the back of this
book a glossary of symbols that are used in more than one section and an
assortment of problems.

In order to keep the book to manageable proportions, I decided to
exclude material that was highly speculative. Thus this book does not go
into cosmological theory in higher dimensions, or anthropic reasoning, or
holographic cosmology, or conjectures about the details of inflation, or
many other new ideas. I may perhaps include some of them in a follow-
up volume. The present book is largely concerned with what has become
mainstream cosmology: a scenario according to which inflation driven by

vii
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one or more scalar fields is followed by a big bang dominated by radiation,
cold dark matter, baryonic matter, and vacuum energy.

I believe that the discussion of topics that are treated in this book is up
to date as of 200n, where n is an integer that varies from 1 to 7 through
different parts of the book. I have tried to give full references to the relevant
astrophysical literature up to these dates, but I have doubtless missed some
articles. The mere absence of a literature reference should not be interpreted
as a claim that the work presented is original, though perhaps some of it
is. Where I knew them, I included references to postings in the Cornell
archive, http://arxiv.org, as well as to the published literature. In
some cases I had to list only the Cornell archive number, where the article in
question had not yet appeared in print, or where it had never been submit-
ted to publication. I have quoted the latest measurements of cosmological
parameters known to me, in part because I want to give the reader a sense
of what is now observationally possible. But I have not tried to combine
measurements from observations of different types, because I did not think
that it would add any additional physical insight, and any such cosmological
concordance would very soon be out of date.

I owe a great debt to my colleagues at the University of Texas, includ-
ing Thomas Barnes, Fritz Benedict, Willy Fischler, Karl Gebhardt, Patrick
Greene, Richard Matzner, Paul Shapiro, Craig Wheeler, and especially
Duane Dicus, who did some of the numerical calculations and supplied
many corrections. I am grateful above all among these colleagues to Eiichiro
Komatsu, who read through a draft of the manuscript and was a never-
failing source of insight and information about cosmological research.
I received much help with figures and calculations from my research stu-
dent Raphael Flauger, and I was warned of numerous errors by Flauger and
other students: Yingyue Li Boretz, Kannokkuan Chaicherdsakul, Bo Li,
Ian Roederer, and Yuki Watanabe. Matthew Anderson helped with numeri-
cal calculations of cosmological nucleosynthesis. I have also benefited much
from correspondence on special topics with Ed Bertschinger, Dick Bond,
Latham Boyle, Robert Cahn, Alan Guth, Robert Kirshner, Andrei Linde,
Eric Linder, Viatcheslav Mukhanov, Saul Perlmutter, Jonathan Pritchard,
Adam Riess, Uros Seljak, Paul Steinhardt, Edwin Turner, and Matias
Zaldarriaga. Thanks are also due to Jan Duffy and Terry Riley for many
helps. Of course, I alone am responsible for any errors that may remain in the
book. I hope that readers will let me know of any mistakes they may notice;
I will post them on a web page, http://zippy.-ph.utexas.edu/
“weinberg/corrections.html.

Austin, Texas
June 2007
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Notation

Latin indices i, j, k, and so on generally run over the three spatial coordinate
labels, usually taken as 1, 2, 3.

Greek indices u, v, etc. generally run over the four spacetime coordinate
labels 1, 2, 3, 0, with x° the time coordinate.

Repeated indices are generally summed, unless otherwise indicated.

The flat spacetime metric 1,,, is diagonal, with elements n11 = n = 133 =
1, noo = —1.

Spatial three-vectors are indicated by letters in boldface.

A hat over any vector indicates the corresponding unit vector: Thus, ©

v/|v].

A dot over any quantity denotes the time-derivative of that quantity.

2 82 82
a2 T aed? T

V2 is the Laplacian,

Except on vectors and tensors, a subscript 0 denotes the present time.

On densities, pressures, and velocities, the subscripts B, D, y, and v refer
respectively to the baryonic plasma (nuclei plus electrons), cold dark matter,
photons, and neutrinos, while the subscripts M and R refer respectively to
non-relativistic matter (baryonic plasma plus cold dark matter) and radia-
tion (photons plus neutrinos).

The complex conjugate, transpose, and Hermitian adjoint of a matrix or
vector A are denoted A4*, AT, and AT = 4*T, respectively. +H.c. or +c.c.
at the end of an equation indicates the addition of the Hermitian adjoint or
complex conjugate of the foregoing terms.

Beginning in Chapter 5, a bar over any symbol denotes its unperturbed
value.

In referring to wave numbers, ¢ is used for co-moving wave numbers, with
an arbitrary normalization of the Robertson—Walker scale factor a(z), while
k is the present value g/ag of the corresponding physical wave number
g/a(t). (N.B. This differs from the common practice of using k for the

X
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co-moving wave number, with varying conventions for the normalization

of a(r).)

Except where otherwise indicated, we use units with % and the speed of light
taken to be unity. Throughout —e is the rationalized charge of the electron,
so that the fine structure constant is « = /4w ~ 1/137.

Numbers in parenthesis at the end of quoted numerical data give the
uncertainty in the last digits of the quoted figure.

For other symbols used in more than one section, see the Glossary of
Symbols on page 565.
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1

The Expansion of the Universe

The visible universe seems the same in all directions around us, at least if
we look out to distances larger than about 300 million light years.! The
isotropy is much more precise (to about one part in 107°) in the cosmic
microwave background, to be discussed in Chapters 2 and 7. As we will
see there, this radiation has been traveling to us for about 14 billion years,
supporting the conclusion that the universe at sufficiently large distances is
nearly the same in all directions.

It is difficult to imagine that we are in any special position in the universe,
so we are led to conclude that the universe should appear isotropic to
observers throughout the universe. But not to all observers. The universe
does not seem at all isotropic to observers in a spacecraft whizzing through
our galaxy at half the speed of light. Such observers will see starlight and
the cosmic microwave radiation background coming toward them from the
direction toward which they are moving with much higher intensity than
from behind. In formulating the assumption of isotropy, one should spec-
ify that the universe seems the same in all directions to a family of “typical”
freely falling observers: those that move with the average velocity of typical
galaxies in their respective neighborhoods. That is, conditions must be the
same at the same time (with a suitable definition of time) at any points that
can be carried into each other by a rotation about any typical galaxy. But any
point can be carried into any other by a sequence of such rotations about var-
ious typical galaxies, so the universe is then also homogeneous — observers
in all typical galaxies at the same time see conditions pretty much the same.?

The assumption that the universe is isotropic and homogeneous will
lead us in Section 1.1 to choose the spacetime coordinate system so that the
metric takes a simple form, first worked out by Friedmann? as a solution
of the Einstein field equations, and then derived on the basis of isotropy
and homogeneity alone by Robertson* and Walker.> Almost all of modern
cosmology is based on this Robertson—-Walker metric, at least as a first

IK.K.S. Wu, O. Lahav, and M. J. Rees, Nature 397, 225 (January 21, 1999). For a contrary view, see
P. H. Coleman, L. Pietronero, and R. H. Sanders, Astron. Astrophys. 200, L32 (1988): L. Pietronero,
M. Montuori, and F. Sylos-Labini, in Critical Dialogues in Cosmology, (World Scientific, Singapore,
1997): 24; F. Sylos-Labini, F. Montuori, and L. Pietronero, Phys. Rep. 293, 61 (1998).

2The Sloan Digital Sky Survey provides evidence that the distribution of galaxies is homogeneous
on scales larger than about 300 light years; see J. Yadav, S. Bharadwaj, B. Pandey, and T. R. Seshadri,
Mon. Not. Roy. Astron. Soc. 364, 601 (2005) [astro-ph/0504315].

3A. Friedmann, Z. Phys. 10, 377 (1922); ibid. 21, 326 (1924).

4H. P. Robertson, Astrophys. J. 82, 284 (1935); ibid., 83, 187, 257 (1936).

5A. G. Walker, Proc. Lond. Math. Soc. (2) 42, 90 (1936).
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1 The Expansion of the Universe

approximation. The observational implications of these assumptions are
discussed in Sections 1.2-1.4, without reference to any dynamical assump-
tions. The Einstein field equations are applied to the Robertson—Walker
metric in Section 1.5, and their consequences are then explored in
Sections 1.6-1.13.

1.1 Spacetime geometry

As preparation for working out the spacetime metric, we first consider the
geometry of a three-dimensional homogeneous and isotropic space. As
discussed in Appendix B, geometry is encoded in a metric g;j(x) (with i
and j running over the three coordinate directions), or equivalently in a /ine
element ds* = g;; dx' d/, with summation over repeated indices understood.
(We say that ds is the proper distance between x and X + dx, meaning that
it is the distance measured by a surveyor who uses a coordinate system that
is Cartesian in a small neighborhood of the point x.) One obvious homo-
geneous isotropic three-dimensional space with positive definite lengths is
flat space, with line element

ds®> = dx* . (1.1.1)

The coordinate transformations that leave this invariant are here simply
ordinary three-dimensional rotations and translations. Another fairly
obvious possibility is a spherical surface in four-dimensional Euclidean
space with some radius a, with line element

ds* = dx*>+d*>, Z+x>=d*. (1.1.2)

Here the transformations that leave the line element invariant are four-
dimensional rotations; the direction of x can be changed to any other
direction by a four-dimensional rotation that leaves z unchanged (that is, an
ordinary three-dimensional rotation), while x can be carried into any other
point by a four-dimensional rotation that does change z. It can be proved®
that the only other possibility (up to a coordinate transformation) is a
hyperspherical surface in four-dimensional pseudo-Euclidean space, with
line element

ds? = dx* — dz* , 2 -x2=d*, (1.1.3)

where a? is (so far) an arbitrary positive constant. The coordinate trans-
formations that leave this invariant are four-dimensional pseudo-rotations,
just like Lorentz transformations, but with z instead of time.

6See S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, New York, 1972) [quoted below
as G&C], Sec. 13.2.



1.1 Spacetime geometry

We can rescale coordinates
x =ax, 7 =az. (1.1.4)

Dropping primes, the line elements in the spherical and hyperspherical
cases are

dszzaz[dxzj:dzz], 2axP=1. (1.1.5)

The differential of the equation z> £ x? = 1 gives zdz = FX - dX so

2 , , (x- dx)2
ds* = a [dx S } (1.1.6)
We can extend this to the case of Euclidean space by writing it as
) > (x - dx)2
dS =da |:dX +Km 5 (117)

where

+1 spherical
K=1 -1 hyperspherical (1.1.8)
0 Euclidean

(The constant K is often written as k, but we will use upper case for this
constant throughout this book to avoid confusion with the symbols for wave
number or for a running spatial coordinate index.) Note that we must take
a* > 0 in order to have ds® positive at x = 0, and hence everywhere.

There is an obvious way to extend this to the geometry of spacetime: just
include a term (1.1.7) in the spacetime line element, with a now an arbitrary
function of time (known as the Robertson—Walker scale factor):

2
dt* = — g (X)dxtdx" = dr* — a*(1) |:afx2 + Kw} . (1.1.9)
1 — Kx2
Another theorem’ tells us that this is the unique metric (up to a coordinate
transformation) if the universe appears spherically symmetric and isotropic
to a set of freely falling observers, such as astronomers in typical galaxies.
The components of the metric in these coordinates are:

ixj

2

7G&C, Sec. 13.5.
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with i and j running over the values 1, 2, and 3, and with x* = ¢ the time
coordinate in our units, with the speed of light equal to unity. Instead of
the quasi-Cartesian coordinates x’, we can use spherical polar coordinates,
for which

dx> = dr* +r*dQ, dQ =do* +sin’0d¢* .

SO

dt’ = d* — (1) { + rde} . (1.1.11)

1 — Kr?
in which case the metric becomes diagonal, with

a*(1) 2002 2002 cin2
gr=T—>5, 8Zo=aOr , ges=a (Or-sin“0, gop=-—1.

1 — K2’
(1.1.12)

We will see in Section 1.5 that the dynamical equations of cosmology
depend on the overall normalization of the function a(¢) only through a
term K /a?(t), so for K = 0 this normalization has no significance; all that
matters are the ratios of the values of a(7) at different times.
The equation of motion of freely falling particles is given in Appendix B
by Eq. (B.12):
d?xH dx" dx*

s — =0 1.1.13
du? o du du ’ ( )

where I'ly, is the affine connection, given in Appendix B by Eq. (B.13),

P A =) (1.1.14)

and u is a suitable variable parameterizing positions along the spacetime
curve, proportional to t for massive particles. (A spacetime path x* = x* (u)
satisfying Eq. (1.1.13) is said to be a geodesic, meaning that the integral
[ dr is stationary under any infinitesimal variation of the path that leaves
the endpoints fixed.) Note in particular that the derivatives 9;g00 and go;
vanish, so F(i)o = 0. A particle at rest in these coordinates will therefore stay
atrest, so these are co-moving coordinates, which follow the motion of typical
observers. Because goo = —1, the proper time interval (—g,,dx*dx") 172 for
a co-moving clock is just dt, so ¢ is the time measured in the rest frame of a
co-moving clock.

The meaning of the Robertson—Walker scale factor a(¢) can be clarified
by calculating the proper distance at time 7 from the origin to a co-moving
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object at radial coordinate r:

sin"l'r K= +1

=a(t) x sinhf1 r K=-—1 (1.1.15)

d(r. 1) = a(r) /FL
’ B 0 \/l—KI"z r KIO

In this coordinate system a co-moving object has r time-independent, so
the proper distance from us to a co-moving object increases (or decreases)
with a(?). Since there is nothing special about our own position, the proper
distance between any two co-moving observers anywhere in the universe
must also be proportional to a(z). The rate of change of any such proper
distance d(z) is just

d=daja. (1.1.16)

We will see in the following section that in fact a(7) is increasing.
We also need the non-zero components of the affine connection, given
by Eq. (1.1.14) as:

1 ) X'/
Iy = __(gOiJ + 80j.i — gij,O) =aa (5;7' + K—)

2 1 — Kx?
= aag;; (1.1.17)
i _ 1 a
Ll = 58" (810, + 80 — g0:0) = =85+ (1.1.18)
1., [(38; 0g] 0gji ~i
i Lim jim m J Y
a7 358 ( o T ow o) T Lt (11.19)

Here g;; and f‘}l are the purely spatial metric and affine connection, and gV

is the reciprocal of the 3 x 3 matrix g;;, which in general is different from the
ij component of the reciprocal of the 4 x 4 matrix g,,. In quasi-Cartesian
coordinates,

xix/
1 —Kx2’
We can use these components of the affine connection to find the motion
of a particle that is not at rest in the co-moving coordinate system. First,

let’s calculate the rate of change of the momentum of a particle of non-zero
mass mg. Consider the quantity

dxt dx/
P =moy gy (1.1.21)

where dt? = di* — gi]-dxidxf . In a locally inertial Cartesian coordinate
system, for which g; = §;, we have dtv = di~/1 — v2 where v/ = dx'/dt,

g =0;+K M=Kz (1.1.20)
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so Eq. (1.1.21) is the formula given by special relativity for the magnitude
of the momentum. On the other hand, the quantity (1.1.21) is evidently
invariant under arbitrary changes in the spatial coordinates, so we can eval-
uate it just as well in co-moving Robertson—Walker coordinates. This can
be done directly, using Eq. (1.1.13), but to save work, suppose we adopt a
spatial coordinate system in which the particle position is near the origin
x' = 0, where g; = §; + O(x?), and we can therefore ignore the purely
spatial components F]lfk of the affine connection. General relativity gives

the equation of motion

d*x! _ i dx" dx 2 da dx' dt
dt2 " Mdt dv adtdvdt’
Multiplying with dt/dt gives
d (dx' _ 2da dx’
dt\dt)  adtdt’

whose solution 1s

dx’ 1
— X —— . 1.1.22
dt « a(1) ( )
Using this in Eq. (1.1.21) with a metric g;; = az(t)él-j, we see that
P(t) o« 1/a(?) . (1.1.23)

This holds for any non-zero mass, however small it may be compared to
the momentum. Hence, although for photons both my and dt vanish,
Eq. (1.1.23) is still valid.

Itisimportant to characterize the paths of photons and material particles
in interpreting astronomical observations (especially of gravitational lenses,
in Chapter 9). Photons and particles passing through the origin of our
spatial coordinate system obviously travel on straight lines in this coordinate
system, which are spatial geodesics, curves that satisfy the condition

d?xt L dy dx!
i L =0 1.1.24

ds? i ds ds ’ ( )
where ds is the three-dimensional proper length

ds? = gy dx dx/ . (1.1.25)

But the property of being a geodesic is invariant under coordinate transfor-
mations (since it states the vanishing of a vector), so the path of the photon
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or particle will also be a spatial geodesic in any spatial coordinate system,
including those in which the photon or particle’s path does not pass through
the origin. (This can be seen in detail as follows. Using Eqs. (1.1.17) and
(1.1.18), the equations of motion (1.1.13) of a photon or material particle are

d?xt cdx dx! 2adxt dt
0= 4+ — = 4277 = 1.1.26
a2 T an Y d ( )
d’t dx! dx/
0 15 X (1.1.27)

= S
Eq. (1.1.26) can be written

2 2.0 I Ayl d? 24 dt ds | dxi
0=(§) [dx L& dx}r[ Sy A AT ) g

ds> " ds ds d? " a dudu | ds

where s is so far arbitrary. If we take s to be the proper length (1.1.25) in
the spatial geometry, then as we have seen

du* o dt? o di* — a? ds*

Dividing by du?, differentiating with respect to u, and using Eq. (1.1.27)
shows that

d*s  2adt ds

A  a dudu
so that Eq. (1.1.28) gives Eq. (1.1.24).)

There are various smoothed-out vector and tensor fields, like the current
of galaxies and the energy-momentum tensor, whose mean values satisfy the
requirements of isotropy and homogeneity. Isotropy requires that the mean
value of any three-vector v/ must vanish, and homogeneity requires the
mean value of any three-scalar (that is, a quantity invariant under purely
spatial coordinate transformations) to be a function only of time, so the
current of galaxies, baryons, etc. has components

J=0, J'=n@, (1.1.29)

with n(¢) the number of galaxies, baryons, etc. per proper volume in a co-
moving frame of reference. If this is conserved, in the sense of Eq. (B.38),
then

aJH dn - dn dan
0=J*, =—+T* JV=—+Ttn=—+3—-
= g Tl 7R i TR
SO
constant
H= ———. 1.1.30
n(r) 20 ( )
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This shows the decrease of number densities due to the expansion of the
co-moving coordinate mesh for increasing a(z).

Likewise, isotropy requires the mean value of any three-tensor // atx = 0
to be proportional to 8; and hence to g, which equals a=28; at x = 0.
Homogeneity requires the proportionality coefficient to be some function
only of time. Since this is a proportionality between two three-tensors 7/ and
g% it must remain unaffected by an arbitrary transformation of space coor-
dinates, including those transformations that preserve the form of g7 while
taking the origin into any other point. Hence homogeneity and isotropy
require the components of the energy-momentum tensor everywhere to take
the form

T =p@), TV =0, TVi=3"x)a?@)p@t). (1.1.31)

(These are the conventional definitions of proper energy density p and pres-
sure p, as given by Eq. (B.43) in the case of a velocity four-vector with u’ = 0,
u® = 1.) The momentum conservation law 7%#., = 0 is automatically sat-
isfied for the Robertson—Walker metric and the energy-momentum tensor
(1.1.31), but the energy conservation law gives the useful information

0= 7%, = 887;;“ N ngTW . Fl’jvTO"
= %OOH“OTUM” 7% = i[i—p+ 3a<p+p>
so that
C;f+3“(p+p) ~0. (1.1.32)

This can easily be solved for an equation of state of the form
p=wp (1.1.33)
with w time-independent. In this case, Eq. (1.1.32) gives
poca 3", (1.1.34)
In particular, this applies in three frequently encountered extreme cases:
* Cold Matter (e.g. dust): p =0
poca? (1.1.35)

* Hot Matter (c.g. radiation): p = p/3
poxa? (1.1.36)
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* Vacuum energy: As we will see in Section 1.5, there is another kind of
energy-momentum tensor, for which 74V o gi¥, so that p = —p, in
which case the solution of Eq. (1.1.32)is that p is a constant, known (up
to conventional numerical factors) either as the cosmological constant
or the vacuum energy.

These results apply separately for coexisting cold matter, hot matter, and
a cosmological constant, provided that there is no interchange of energy
between the different components. They will be used together with the
Einstein field equations to work out the dynamics of the cosmic expansion
in Section 1.5.

So far, we have considered only local properties of the spacetime. Now
let us look at it in the large. For K = +1 space is finite, though like any
spherical surface it has no boundary. The coordinate system used to derive
Eq. (1.1.7) with K = +1 only covers half the space, with z > 0, in the same
way that a polar projection map of the earth can show only one hemisphere.
Taking account of the fact that z can have either sign, the circumference of
the space is 27ra, and its volume is 272a°.

The spaces with K = 0 or K = —1 are usually taken to be infinite, but
there are other possibilities. It is also possible to have finite spaces with
the same local geometry, constructed by imposing suitable conditions of
periodicity. For instance, in the case K = 0 we might identify the points
x and x + nL; + nyLy + n3L3, where ny, na, n3 run over all integers, and
Li, Ly, and L3 are fixed non-coplanar three-vectors that characterize the
space. This space is then finite, with volume @’L; - (Ly x L3). Looking out
far enough, we should see the same patterns of the distribution of matter
and radiation in opposite directions. There is no sign of this in the observed
distribution of galaxies or cosmic microwave background fluctuations, so
any periodicity lengths such as |L;| must be larger than about 100 light
years.®

Thereareaninfinitenumber of possible periodicity conditionsfor K = —1
as well as for K = 4+1 and K = 0.° We will not consider these possibilities
further here, because they seem ill-motivated. In imposing conditions of
periodicity we give up the rotational (though not translational) symmetry
that led to the Robertson—Walker metric in the first place, so there seems
little reason to impose these periodicity conditions while limiting the local
spacetime geometry to that described by the Robertson—Walker metric.

8N. I. Cornish et al., Phys. Rev. Lett. 92,201302 (2004); N. G. Phillips & A. Kogut, Astrophys. J.
545, 820 (2006) [astro-ph/0404400].

9For reviews of this subject, see G. E. R. Ellis, Gen. Rel. & Grav. 2, 7 (1971); M. Lachiéze-Rey
and J.-P. Luminet, Phys. Rept. 254, 135 (1995); M. J. Rebougas, in Proceedings of the Xth Brazilian
School of Cosmology and Gravitation, eds. M. Novello and S. E. Perez Bergliaffa (American Institute
of Physics Conference Proceedings, Vol. 782, New York, 2005): 188 [astro-ph/0504365].
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1.2 The cosmological redshift

The general arguments of the previous section gave no indication whether
the scale factor a(z) in the Robertson—Walker metric (1.1.9) is increasing,
decreasing, or constant. This information comes to us from the observa-
tion of a shift in the frequencies of spectral lines from distant galaxies as
compared with their values observed in terrestrial laboratories.

To calculate these frequency shifts, let us adopt a Robertson—Walker
coordinate system in which we are at the center of coordinates, and consider
a light ray coming to us along the radial direction. A ray of light obeys the
equation dr2 = 0, so for such a light ray Eq. (1.1.11) gives

dt = ta(?) (1.2.1)

dr
V11— Kr?
For a light ray coming toward the origin from a distant source, r decreases
as t increases, so we must choose the minus sign in Eq. (1.2.1). Hence if
light leaves a source at co-moving coordinate | at time 71, it arrives at the
origin r = 0 at a later time #¢, given by

o dy N dr
— = _. 1.2.2
/; a(t) -/(‘) v 1-— KVZ ( )

Taking the differential of this relation, and recalling that the radial coord-
inate | of co-moving sources is time-independent, we see that the interval
311 between departure of subsequent light signals is related to the interval
3ty between arrivals of these light signals by

8t Sto

= 1.2.3
a(ty)  a(to) ( )

If the “signals” are subsequent wave crests, the emitted frequency is v =
1/8¢1, and the observed frequency is vo = 1/81p, so

vo/v1 = a(ty)/a(ty) . (1.2.4)

If a(z) is increasing, then this is a redshift, a decrease in frequency by a factor
a(ty)/a(tp), equivalent to an increase in wavelength by a factor convention-
ally called 1 + z:

14z =ua(ty)/a(ty) . (1.2.5)

Alternatively, if a(?) is decreasing then we have a blueshift, a decrease in
wavelength given by the factor Eq. (1.2.5) with z negative. These results are
frequently interpreted in terms of the familiar Doppler effect; Eq. (1.1.15)

10
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shows that for an increasing or decreasing a(t), the proper distance to any co-
moving source of light like a typical galaxy increases or decreases with time,
so that such sources are receding from us or approaching us, which naturally
produces a redshift or blueshift. For this reason, galaxies with redshift (or
blueshift) z are often said to have a cosmological radial velocity cz. (The
meaning of relative velocity is clear only for z <« 1, so the existence of
distant sources with z > 1 does not imply any violation of special relativity.)
However, the interpretation of the cosmological redshift as a Doppler shift
can only take us so far. In particular, the increase of wavelength from
emission to absorption of light does not depend on the rate of change of
a(t) at the times of emission or absorption, but on the increase of a(¢) in the
whole period from emission to absorption.

We can also understand the frequency shift (1.2.4) by reference to the
quantum theory of light: The momentum of a photon of frequency v is
hv/c (where / is Planck’s constant), and we saw in the previous section that
this momentum varies as 1/a(¢).

For nearby sources, we may expand a(7) in a power series, SO

a(t) ~a(to)[1 + (t —to)Ho + .. .] (1.2.6)
where H is a coefficient known as the Hubble constant:
Hy = a(ty)/a(t) . (1.2.7)
Eq. (1.2.5) then gives the fractional increase in wavelength as
z=Hy (tg—t1))+.... (1.2.8)

Note that for close objects, t9 — 7 is the proper distance d (in units with
¢ = 1). We therefore expect a redshift (for Hy > 0) or blueshift (for Hy < 0)
that increases linearly with the proper distance d for galaxies close enough
to use the approximation (1.2.6):

c=Hyd+.... (1.2.9)

The redshift of light from other galaxies was first observed in the 1910s
by Vesto Melvin Slipher at the Lowell Observatory in Flagstaft, Arizona.
In 1922, he listed 41 spiral nebulae, of which 36 had positive z up to 0.006,
and only 5 had negative z, the most negative being the Andromeda nebula
M31, with z = —0.001. From 1918 to 1925 C. Wirtz and K. Lundmark?

V. M. Slipher, table prepared for A. S. Eddington, The Mathematical Theory of
Relativity, 2nd ed. (Cambridge University Press, London, 1924): 162.

2C. Wirtz, Astr. Nachr. 206, 109 (1918); ibid. 215, 349 (1921); ibid. 216, 451 (1922); ibid. 222, 21
(1924); Scientia 38, 303 (1925); K. Lundmark, Stock. Hand. 50, No. 8 (1920); Mon. Not. Roy. Astron.
Soc. 84,747 (1924); ibid. 85, 865 (1925).

11
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discovered a number of spiral nebulae with redshifts that seemed to increase
with distance. But until 1923 it was only possible to infer the relative dis-
tances of the spiral nebulae, using observations of their apparent luminosity
or angular diameter. With the absolute luminosity and physical dimensions
unknown, it was even possible that the spiral nebulae were outlying parts
of our own galaxy, as was in fact believed by many astronomers. Edwin
Hubble’s 1923 discovery of Cepheid variable stars in the Andromeda neb-
ula M31 (discussed in the next section) allowed him to estimate its distance
and size, and made it clear that the spiral nebulae are galaxies like our own,
rather than objects in our own galaxy.

No clear linear relation between redshift and distance could be seen in
the early data of Slipher, Wirtz, and Lundmark, because of a problem that
has continued to bedevil measurements of the Hubble constant down to
the present. Real galaxies generally do not move only with the general
expansion or contraction of the universe; they typically have additional
“peculiar” velocities of hundreds of kilometers per second, caused by grav-
itational fields of neighboring galaxies and intergalactic matter. To see a
linear relation between redshift and distance, it is necessary to study galax-
ies with |z| > 1073, whose cosmological velocities zc are thousands of
kilometers per second.

In 1929 Hubble? announced that he had found a “roughly linear” relation
between redshift and distance. But at that time redshifts and distances
had been measured only for galaxies out to the large cluster of galaxies in
the constellation Virgo, whose redshift indicates a radial velocity of about
1,000 km/sec, not much larger than typical peculiar velocities. His data
points were therefore spread out widely in a plot of redshift versus distance,
and did not really support a linear relation. But by the early 1930s he
had measured redshifts and distances out to the Coma cluster, with redshift
z >~ 0.02, corresponding to a recessional velocity of about 7,000 km/sec, and
a linear relation between redshift and distance was evident. The conclusion
was clear (at least, to some cosmologists): the universe really is expand-
ing. The correctness of this interpretation of the redshift is supported by
observations to be discussed in Section 1.7.

From Hubble’s time to the present galaxies have been discovered with
ever larger redshifts. Galaxies were found with redshifts of order unity,
for which expansions such as Eq. (1.2.9) are useless, and we need formulas
that take relativistic effects into account, as discussed in Sections 1.4 and
1.5. At the time of writing, the largest accurately measured redshift is for
a galaxy observed with the Subaru telescope.* The Lyman alpha line from

3E. P. Hubble, Proc. Nat. Acad. Sci. 15,168 (1929).
4M. Iye et al., Nature 443, 186 (2006) [astro-ph/0609393].

12
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this galaxy (emitted in the transition from the 2p to 1s levels of hydrogen),
which is normally at an ultraviolet wavelength of 1,215 A, is observed at the
infrared wavelength of 9,682 A, indicating a redshift 1 +z = 9682/1215, or
z = 6.96.

It may eventually become possible to measure the expansion rate H (1) =
a(t)/a(t) at times ¢ earlier than the present, by observing the change in very
accurately measured redshifts of individual galaxies over times as short as
a decade.” By differentiating Eq. (1.2.5) we see that the rate of change of
redshift with the time of observation is

dz _a(to) atp)a(n)dn
dto — a(ty) a’(ty) diy

dt
Hy—H(t)— |1 .
[ 0 (1)dto]( +2)
From the same argument that led to Eq. (1.2.3) we have dt1 /dtg = 1/(1+2z),

so if we measure dz/dty we can find the expansion rate at the time of light
emission from the formula

H(t1) = Ho(1+2z) — 3’—:0 . (1.2.10)

1.3 Distances at small redshift: The Hubble constant

We must now think about how astronomical distances are measured. In
this section we will be considering objects that are relatively close, say
with z not much greater than 0.1, so that effects of the spacetime curva-
ture and cosmic expansion on distance determinations can be neglected.
These measurements are of cosmological importance in themselves, as they
are used to learn the value of the Hubble constant Hy. Also, distance
measurements at larger redshift, which are used to find the shape of the
function a(?), rely on the observations of “standard candles,” objects of
known intrinsic luminosity, that must be identified and calibrated by stud-
ies at these relatively small redshifts. Distance determinations at larger
redshift will be discussed in Section 1.6, after we have had a chance to lay
a foundation in Sections 1.4 and 1.5 for an analysis of the effects of expan-
sion and spacetime geometry on measurements of distances of very distant
objects.

It is conventional these days to separate the objects used to measure dis-
tances in cosmology into primary and secondary distance indicators. The
absolute luminosities of the primary distance indicators in our local group

5A. Loeb, Astrophys. J. 499, L111 (1998) [astro-ph/9802122]; P-S. Corasaniti, D. Huterer, and
A. Melchiorri, Phys. Rev. D75, 062001 (2007) [astro-ph/0701433]. For an earlier suggestion along this
line, see A. Sandage, Astrophys. J. 139, 319 (1962).
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of galaxies are measured either directly, by kinematic methods that do not
depend on an a priori knowledge of absolute luminosities, or indirectly, by
observation of primary distance indicators in association with other primary
distance indicators whose distance is measured by kinematic methods. The
sample of these relatively close primary distance indicators is large enough
to make it possible to work out empirical rules that give their absolute
luminosities as functions of various observable properties. Unfortunately,
the primary distance indicators are not bright enough for them to be stud-
ied at distances at which z is greater than about 0.01, redshifts at which
cosmological velocities ¢z would be greater than typical random depar-
tures of galactic velocities from the cosmological expansion, a few hundred
kilometers per second. Thus they cannot be used directly to learn about
a(t). For this purpose it is necessary to use secondary distance indicators,
which are bright enough to be studied at these large distances, and whose
absolute luminosities are known through the association of the closer ones
with primary distance indicators.

A. Primary distance indicators!

Almost all distance measurements in astronomy are ultimately based on
measurements of the distance of objects within our own galaxy, using one
or the other of two classic kinematic methods.

1. Trigonometric parallax

The motion of the earth around the sun produces an annual motion of the
apparent position of any star around an ellipse, whose maximum angular
radius 7 is given in radians (for 7 < 1, which is the case for all stars) by

" d

where d is the star’s distance from the solar system, and dg is the mean dis-
tance of the earth from the sun,? defined as the astronomical unit,

7 (1.3.1)

TFor a survey, see M. Feast, in Nearby Large-Scale Structures and the Zone of Avoidance, eds.

A. P. Fairall and P. Woudt (ASP Conference Series, San Francisco, 2005) [astro-ph/0405440].
2The history of measurements of distances in the solar system goes back to Aristarchus of Samos
(circa 310 BC-230 BC). From the ratio of the breadth of the earth’s shadow during a lunar eclipse to the
angular diameter of the moon he estimated the ratio of the diameters of the moon and earth; from the
angular diameter of the moon he estimated the ratio of the diameter of the moon to its distance from
the earth; and from the angle between the lines of sight to the sun and moon when the moon is half full
he estimated the ratio of the distances to the sun and moon; and in this way he was able to measure the
distance to the sun in units of the diameter of the earth. Although the method of Aristarchus was correct,
his observations were poor, and his result for the distance to the sun was far too low. [For an account
of Greek astronomy before Aristarchus and a translation of his work, see T. L. Heath, Aristarchus of
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1 AU = 1.496 x 10® km. A parsec (pc) is defined as the distance at which
7 = 1”; there are 206,264.8 seconds of arc per radian so

1 pc = 206,264.8 AU = 3.0856 x 10'* km = 3.2616 light years.

The parallax in seconds of arc is the reciprocal of the distance in parsecs.

The first stars to have their distances found by measurement of their
trigonometric parallax were o Centauri, by Thomas Henderson in 1832,
and 61 Cygni, by Friedrich Wilhelm Bessel in 1838. These stars are at
distances 1.35 pc and 3.48 pc, respectively. The earth’s atmosphere makes
it very difficult to measure trigonometric parallaxes less than about 0.03”
from ground-based telescopes, so that for many years this method could
be used to find the distances of stars only out to about 30 pc, and at these
distances only for a few stars and with poor accuracy.

This situation has been improved by the launching of a European Space
Agency satellite known as Hipparcos, used to measure the apparent pos-
itions and luminosities of large numbers of stars in our galaxy.> For stars
of sufficient brightness, parallaxes could be measured with an accuracy
(standard deviation) in the range of 7 to 9 x10~* arc seconds. Of the
118,000 stars in the Hipparcos Catalog, it was possible in this way to find
distances with a claimed uncertainty of no more than 10% for about 20,000
stars, some at distances over 100 pc.

2. Proper motions

A light source at a distance d with velocity v perpendicular to the line
of sight will appear to move across the sky at a rate x in radians/time
given by

w=wy/d. (1.3.2)

This is known as its proper motion. Of course, astronomers generally have no
way of directly measuring the transverse velocity v , but they can measure
the component v, of velocity along the line of sight from the Doppler shift
of the source’s spectral lines. The problem is to infer v, from the measured
value of v,. This can be done in a variety of special cases:

* Moving clusters are clusters of stars that were formed together and
hence move on parallel tracks with equal speed. (These are open

Samos (Oxford University Press, Oxford, 1913).] The first reasonably accurate determination of the
distance of the earth to the sun was made by the measurement of a parallax. In 1672 Jean Richer and
Giovanni Domenico Cassini measured the distance from the earth to Mars, from which it was possible
to infer the distance from the earth to the sun, by observing the difference in the apparent direction to
Mars as seen from Paris and Cayenne, which are separated by a known distance of 6,000 miles. Today
distances within the solar system are measured very accurately by measurement of the timing of radar
echoes from planets and of radio signals from transponders carried by spacecraft.
3MLA.C. Perryman et al., Astron. Astrophys. 323, L49 (1997).
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clusters, in the sense that they are not held together by gravitational
attraction, in distinction to the much larger globular clusters whose
spherical shape indicates a gravitationally bound system.) The most
important such cluster is the Hyades (called by Tennyson’s Ulysses the
“rainy Hyades”), which contains over 100 stars. The velocities of these
stars along the line of sight are measured from their Doppler shifts,
and if we knew the distance to the cluster then the velocities of its
stars at right angles to the line of sight could be measured from their
proper motions. The distance to the cluster was determined long ago
to be about 40 pc by imposing the constraint that all these velocities
are parallel. Distances measured in this way are often expressed as
moving cluster parallaxes. Since the advent of the Hipparcos satellite,
the moving cluster method has been supplemented with a direct mea-
surement of the trigonometric parallax of some of these clusters,
including the Hyades.

» A second method is based on the statistical analysis of the Doppler
shifts and proper motions of stars in a sample whose relative
distances are all known, for instance because they all have the same
(unknown) absolute luminosity, or because they all at the same
(unknown) distance. The Doppler shifts give the velocities along
the line of sight, and the proper motions and the relative distances
give the velocities transverse to the line of sight, up to a single overall
factor related to the unknown absolute luminosity or distance. This
factor can be determined by requiring that the distribution of veloc-
ities transverse to the line of sight is the same as the distribution of
velocities along the line of sight. Distances measured in this way are
often called statistical parallaxes, or dynamical distances.

» The distance to the Cepheid variable star ¢ Geminorum has been
measured* by comparing the rate of change of its physical diame-
ter, as found from the Doppler effect, with the rate of change of its
angular diameter, measured using an optical interferometer. (About
Cepheids, more below.) The distance was found to be 336 &+ 44 pc,
much greater than could have been found from a trigonometric par-
allax. This method has subsequently been extended to eight other
Cepheids.’

* It is becoming possible to measure distances by measuring the
proper motion of the material produced by supernovae, assuming a

4B.F Lane, M. J. Kuchner, A. F. Boden, M. Creech-Eakman, and S. B. Kulkarni, Nature 407, 485
(September 28, 2000).
5P, Kervella et al., Astron. Astrophys. 423, 327 (2004) [astro-ph/0404179].
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more-or-less cylindrically symmetric explosion, so that the transverse
velocity v can be inferred from the radial velocity v, measured by
Doppler shifts. This method has been applied® to the ring around
the supernova SN1987A, observed in 1987 in the Large Magellanic
Cloud, with the result that its distance is 52 kpc (thousand parsecs).

The measurement of the time-varying Doppler shift and proper motion
of an object in orbit around a central mass can be used to find the dis-
tance to the object. For instance, if the line of sight happens to be in
the plane of the orbit, and if the orbit is circular, then the Doppler
shift is a maximum when the object is moving along the line of sight,
and hence gives the orbital velocity v, while the proper motion u is a
maximum when the object is moving with the same velocity at right
angles to the line of sight, and gives the distance as v/u. This method
can also be used for orbits that are inclined to the line of sight and not
circular, by studying the time-variation of the Doppler shift and proper
motion. The application of this method to the star S2, which orbits
the massive black hole in the galactic center, gives what is now the best
value for the distance of the solar system from the galactic center,’
as 8.0 = 0.4 kpc. This method also allows the measurement of some
distances outside our galaxy, by using the motion of masers — point
microwave sources — in the accretion disks of gas and dust in orbit
around black holes at the centers of galaxies. The orbital velocity can
be judged from the Doppler shifts of masers at the edge of the accretion
disk, which are moving directly toward us or away from us, and if this
is the same as the orbital velocities of masers moving transversely to
the line of sight, then the ratio of this orbital velocity to their observed
proper motion gives the distance to the galaxy. So far, this method
has been used to measure the distance to the galaxy NGC 4258,3 as
7.2 £ 0.5 Mpc (million parsecs), and to the galaxy M33,? as 0.730 +
0.168 Mpc.

These kinematic methods have limited utility outside the solar neighbor-

hood. We need a different method to measure larger distances.

3. Apparent luminosity
The most common method of determining distances in cosmology is based
on the measurement of the apparent luminosity of objects of known (or

ON. Panagia, Mem. Soc. Astron. Italiana 69, 225 (1998).

7F. Eisenhauer et al., Astrophys. J. Lett. 597, L121 (2003) [astro-ph/0306220].

8J. Herrnstein et al., Nature 400, 539 (3 August 1999).

9A. Brunthaler, M. . Reid, H. Falcke, L. J. Greenhill, and C. Henkel, Science 307, 1440 (2005)
[astro-ph/0503058].
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supposedly known) absolute luminosity. The absolute luminosity L is the
energy emitted per second, and the apparent luminosity £ is the energy
received per second per square centimeter of receiving area. If the energy
is emitted isotropically, then we can find the relation between the absolute
and apparent luminosity in Euclidean geometry by imagining the luminous
object to be surrounded with a sphere whose radius is equal to the distance
d between the object and the earth. The total energy per second passing
through the sphere is 4 d?¢, so

_ L
T d4md?

This relation is subject to corrections due to interstellar and/or intergalac-
tic absorption, as well as possible anisotropy of the source, which though
important in practice involve too many technicalities to go into here.

Astronomers unfortunately use a traditional notation for apparent and
absolute luminosity in terms of apparent and absolute magnitude.'® In
the second century A.D., the Alexandrian astronomer Claudius Ptolemy
published a list of 1,022 stars, labeled by categories of apparent brightness,
with bright stars classed as being of first magnitude, and stars just barely
visible being of sixth magnitude.!! This traditional brightness scale was
made quantitative in 1856 by Norman Pogson, who decreed that a difference
of five magnitudes should correspond to a ratio of a factor 100 in apparent
luminosities, so that £ oc 10~2"/>. With the advent of photocells at the
beginning of the twentieth century, it became possible to fix the constant
of proportionality: the apparent bolometric luminosity (that is, including
all wavelengths) is given in terms of the apparent bolometric magnitude
m by

¢ (1.3.3)

0=10"2"5%x252x 10 ergem 2! . (1.3.4)

For orientation, Sirius has a visual magnitude m;; = —1.44, the Andromeda
nebula M31 has my;; = 0.1, and the large galaxy M87 in the nearest large
cluster of galaxies has my;; = 8.9. The absolute magnitude in any wave-
length band is defined as the apparent magnitude an object would have at
a distance of 10 pc, so that the absolute bolometric luminosity is given in
terms of the absolute bolometric magnitude M by

L=10"2M/5x3.02 x 10¥ergs™! . (1.3.5)

10For the history of the apparent magnitude scale, see J. B. Hearnshaw, The Meas-
urement of Starlight:  Two centuries of astronomical photometry (Cambridge University Press,
Cambridge, 1996); K. Krisciunas, astro-ph/0106313.

U For the star catalog of Ptolemy, see M. R. Cohen and 1. E. Drabkin, A Source Book in Greek Science
(Harvard University Press, Cambridge, MA, 1948): p. 131.
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For comparison, in the visual wavelength band the absolute magnitude M;g
is +4.82 for the sun, +1.45 for Sirius, and —20.3 for our galaxy. Eq. (1.3.3)
may be written as a formula for the distance in terms of the distance-modulus
m— M:

d = 101F0=M/55¢ (1.3.6)

There are several different kinds of star that have been used in measure-
ments of distance through the observation of apparent luminosity:

* Main Sequence: Stars that are still burning hydrogen at their cores
obey a characteristic relation between absolute luminosity and color,
both depending on mass. This is known as the main sequence, discov-
ered in the decade before the First World War by Ejnar Hertzsprung
and Henry Norris Russell. The luminosity is greatest for blue-white
stars, and then steadily decreases for colors tending toward yellow and
red. The shape of the main sequence is found by observing the appar-
ent luminosities and colors of large numbers of stars in clusters, all of
which in each cluster may be assumed to be at the same distance from
us, but we need to know the distances to the clusters to calibrate abso-
lute luminosities on the main sequence. For many years the calibration
of the main sequence absolute luminosities was based on observation
of a hundred or so main sequence stars in the Hyades cluster, whose
distance was measured by the moving cluster method described above.
With the advent of the Hipparcos satellite, the calibration of the main
sequence has been greatly improved through the observation of col-
ors and apparent luminosities of nearly 100,000 main sequence stars
whose distance is known through measurement of their trigonomet-
ric parallax. Including in this sample are stars in open clusters such
as the Hyades, Praesepe, the Pleiades, and NGC 2516; these clusters
yield consistent main sequence absolute magnitudes if care is taken
to take proper account of the varying chemical compositions of the
stars in different clusters.!> With the main sequence calibrated in
this way, we can use Eq. (1.3.3) to measure the distance of any star
cluster or galaxy in which it is possible to observe stars exhibiting
the main sequence relation between apparent luminosity and color.
Distances measured in this way are sometimes known as photometric
parallaxes.

The analysis of the Hipparcos parallax measurements revealed a dis-
crepancy between the distances to the Pleiades star cluster measured by
observations of main sequence stars and by measurements of

128 M. Percival, M. Salaris, and D. Kilkenny, Astron. Astrophys. 400, 541 (2003) [astro-ph/0301219].
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trigonometric parallax.!®> The traditional method, using a main

sequence calibration based on the application of the moving cluster
method to the closer Hyades cluster, gave a distance to the Pleiades!*
of 132 + 4 pc. Then trigonometric parallaxes of a number of stars in
the Pleiades measured by the Hipparcos satellite gave a distance!> of
118 + 4 pc, in contradiction with the results of main sequence fitting.
More recently, these Hipparcos parallaxes have been contradicted by
more accurate measurements of the parallaxes of three stars in the
Pleiades with the Fine Guidance Sensor of the Hubble Space Tele-
scope, !¢ which gave a distance of 133.5 + 1.2 pc, in good agreement
with the main sequence results. At the time of writing, the balance
of astronomical opinion seems to be favoring the distances given by
main sequence photometry.!’

* Red Clump Stars: The color-magnitude diagram of clusters in metal-
rich!® parts of the galaxy reveals distinct clumps of red giant stars
in a small region of the diagram, with a spread of only about 0.2 in
visual magnitude. These are stars that have exhausted the hydrogen
at their cores, with helium taking the place of hydrogen as the fuel for
nuclear reactions at the stars’ cores. The absolute magnitude of the
red clump stars in the infrared band (wavelengths around 800 nm) has
been determined!® to be M; = —0.28 + 0.2 mag, using the distances
and apparent magnitudes measured with the Hipparcos satellite and in
an earlier survey.2? In this band there is little dependence of absolute
magnitude on color, but it has been argued that even the infrared
magnitude may depend significantly on metallicity.?!

* RR Lyrae Stars: These are variable stars that have been used as
distance indicators for many decades.?? They can be recognized by
their periods, typically 0.2 to 0.8 days. The use of the statistical par-
allax, trigonometric parallax and moving cluster methods (with data

13, Paczynski, Nature 227, 299 (22 January, 2004).

4G, Meynet, J.-C. Mermilliod, and A. Maeder, Astron. Astrophys. Suppl. Ser. 98, 477
(1993).

I55.c. Mermilliod, C. Turon, N. Robichon, F. Arenouo, and Y. Lebreton, in ESA SP-402 Hipparcos—
Venice ‘97, eds. M.A.C. Perryman and P. L. Bernacca (European Space Agency, Paris, 1997), 643; F. van
Leeuwen and C. S. Hansen Ruiz, ibid, 689; F. van Leeuwen, Astron. Astrophys. 341, L71 (1999).

16p_ R. Soderblom er al., Astron. J. 129, 1616 (2005) [astro-ph/0412093].

17A new reduction of the raw Hipparcos data is given by F. van Leeuwen and E. Fantino, Astron.
Astrophys. 439, 791 (2005) [astro-ph/0505432].

18 Astronomers use the word “metal” to refer to all elements heavier than helium.

19B. Paczynski and K. Z. Stanek, Astrophys. J. 494, 1219 (1998).

20A . Udalski et al., Acta. Astron. 42,253 (1992).

2, Girardi, M. A. T. Groenewegen, A. Weiss, and M. Salaris, astro-ph/9805127.

22For a review, see G. Bono, Lect. Notes Phys. 635, 85 (2003) [astro-ph/0305102].
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from both ground-based observatories and the Hipparcos satellite)
give respectively?> an absolute visual magnitude for RR Lyrae stars
in our galaxy’s halo of 0.77 £ 0.13, 0.71 £ 0.15, and 0.67 &+ 0.10, in
good agreement with an earlier result®* M,;; = 0.71 & 0.12 for halo
RR Lyrae stars and 0.79 4+ 0.30 for RR Lyrae stars in the thick disk
of the galaxy. RR Lyrae stars are mostly too far for a measurement
of their trigonometric parallax, but recently measurements> with the
Hubble Space Telescope have given a value of 3.82 x 10~3 arcsec for the
trigonometric parallax of the eponymous star RR Lyr itself, implying
an absolute visual magnitude of 0.6118:%(1) .

Eclipsing Binaries: In favorable cases it is possible to estimate the
intrinsic luminosity of a star that is periodically partially eclipsed by
a smaller companion, without the use of any intermediate distance
indicators. The velocity of the companion can be inferred from the
Doppler shift of its spectral lines (with the ellipticity of the orbit
inferred from the variation of the Doppler shift with time), and the
radius of the primary star can then be calculated from the duration
of the eclipse. The temperature of the primary can be found from
measurement of its spectrum, typically from its apparent luminosity
in various wavelength bands. Knowing the radius, and hence the area,
and the temperature of the primary, its absolute luminosity can then be
calculated from the Stefan—Boltzmann law for black body radiation.
This method has been applied to measure distances to two neighboring
dwarf galaxies, the Large Magellanic Cloud (LMC)?° and the Small
Magellanic Cloud (SMC),%” and to the Andromeda galaxy M31%8 and
its satellite M33.%

Cepheid variables: Because they are so bright, these are by far the
most important stars used to measure distances outside our galaxy.
Named after the first such star observed, § Cephei, they can be

23p, Popowski and A. Gould, Astrophys. J. 506, 259, 271 (1998); also astro-ph/9703140, astro-
ph/9802168; and in Post-Hipparcos Cosmic Candles, eds. A. Heck and F. Caputo (Kluwer Academic
Publisher, Dordrecht) [astro-ph/9808006]; A. Gould and P. Popowski, Astrophys. J. 568, 544 (1998)
[astro-ph/9805176]; and references cited therein.

N Layden, R. B. Hanson, S. L. Hawley, A. R. Klemola, and C. J. Hanley, 4stron. J 112, 2110

25G. F. Benedict et al., Astrophys. J. 123, 473 (2001) [astro-ph/0110271]
20E. F. Guinan et al., Astrophys. J. 509, L21 (1998); E. L. Fitzpatrick et al. Astrophys. J. 587, 685

27T, J. Harries, R. W. Hilditch, and I. D. Howarth, Mon. Not. Roy. Astron. Soc. 339, 157
(2003); R. W. Hilditch, I. D. Howarth, and T. J. Harries, Mon. Not. Roy. Astron. Soc. 357, 304

281, Ribas et al., Astrophys. J. 635, L37 (2005).
29A. Z. Bonanos et al., Astrophys. Space Sci. 304, 207 (2006) [astro-ph/0606279].
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recognized from the characteristic time dependence of their luminos-
ity, with periods ranging from 2 to 45 days. (Cepheids in other galaxies
have been observed with periods extending up to 100 days.) In 1912
Henrietta Swan Leavitt discovered that the Cepheid variables in the
Small Magellanic Cloud (SMC) have apparent luminosities given by
a smooth function of the period of the variation in luminosity, but
the distance to the SMC was not known. Having measured the dist-
ances and apparent luminosities of several Cepheids in open clusters,
and hence their absolute luminosities, it became possible to calibrate
the relation between period and luminosity. Cepheid variables thus
became a “standard candle” that could be used to measure the dis-
tance to any galaxy close enough for Cepheids to be seen. It was the
discovery of Cepheids in M31, together with Leavitt’s calibration of
the Cepheid period—luminosity relation, that allowed Edwin Hubble in
1923 to measure the distance of M31, and show that it was far outside
our own galaxy, and hence a galaxy in its own right.

Today the form of the Cepheid period—luminosity relation is
derived more from the Large Magellanic Cloud (LMC), where there
are many Cepheids, and the dependence of the absolute luminosity on
color is also taken into account. The calibration of Cepheid absolute
luminosities can therefore be expressed as (and often in fact amounts
to) a measurement of the distance to the LMC. Main sequence pho-
tometry and other methods gave what for some years was a generally
accepted LMC distance modulus of 18.5 mag, corresponding accord-
ing to Eq. (1.3.6) to a distance of 5.0 x 10* pc. The use of red clump
stars3? has given a distance modulus of 18.47, with a random error
+0.01, and a systematic error fozgg. A large catalog! of Cepheids in
the LMC has been interpreted by the members of the Hubble Space
Telescope Key Project’? to give the Cepheid visual and infrared abso-
lute magnitudes as functions of the period P in days:

My = —=2.760 log;o P — 1.458 , M = —-2.962 log|o P — 1.942 ,
(1.3.7)
under the assumption that the LMC distance modulus is 18.5.

This result was challenged in two distinct ways, which illustrate the
difficulty of this sort of distance measurement:

First, there have been discordant measurements of the distance to
the LMC. Under the assumption that red clump stars in the LMC

30M. Salaris, S. Percival, and L. Girardi, Mon. Not. Roy. Astron. Soc. 345, 1030 (2003) [astro-
ph/0307329].

31A. Udalski et al., Acta Astr. 49,201 (1999): Table 1.

32W. L. Freedman er al., Astrophys. J. 553,47 (2001).
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have the same infrared luminosity as those in the local galactic disk,
a distance modulus was found®3 that was 0.45 magnitudes smaller,
giving a distance to the LMC that is smaller by a factor 0.8. This
has in turn been challenged on the grounds that the stars in the LMC
have distinctly lower metallicity than in the local disk; two groups
taking this into account* have given LMC distance moduli of 18.36 =
0.17 mag and 18.28 4+ 0.18 mag, in fair agreement with the previously
accepted value. This also agrees with the measurement of the distance
to the LMC inferred® from observations of RR Lyrae stars, which
gives a distance modulus of 18.33 £+ 0.06 mag. This distance modulus
for the LMC is further confirmed by the measurement of the distance
of the eclipsing binary HV2274; taking account of its distance from
the center of the LMC gives*® a distance modulus for the LMC of
18.30 £ 0.07.

Second, there have been new calibrations of the Cepheid period—
luminosity relation, that do not rely on Cepheids in the LMC, which
together with observations of Cepheids in the LMC can be used to
give an independent estimate of the LMC distance.’” In recent years
the satellite Hipparcos® has measured trigonometric parallaxes for
223 Cepheid variables in our galaxy, of which almost 200 can be used
to calibrate the period—luminosity relation, without relying on main
sequence photometry, red clump stars, or RR Lyrae stars. The nearest
Cepheids are more than 100 pc away from us (the distance to Polaris
is about 130 pc), so the parallaxes are just a few milliarcseconds, and
individual measurements are not very accurate, but with about 200
Cepheids measured it has been possible to get pretty good accuracy.
One early result’® gave the relation between the absolute visual mag-
nitude My and the period P (in days) as

My = —281log;g P — 1.43£0.10 .

This was a decrease of about 0.2 magnitudes from previous results,
i.e., an increase of the intrinsic luminosity of Cepheids by a factor
1092%2/5 = 1.20leading to a 10% increase in all cosmic distances based

33K. Z. Stanek, D. Zaritsky, and J. Harris, Astrophys. J. 500, L141 (1998) [astro-ph/9803181].

34A. A. Cole, Astrophys. J. 500, L137 (1998) [astro-ph/9804110]; L. Girardi et al., op. cit..

35p, Popowski and A. Gould, op. cit..

30, F. Guinan et al., op. cit..

3TFor a review, see M. Feast, Odessa Astron. Publ. 14 [astro-ph/0110360].

38M. A. C. Perryman, Astron. Astrophys. 323, L49 (1997).

39M. W. Feast and R. M. Catchpole, Mon. Not. Roy. Astron. Soc. 286, L1 (1997); also see F. Pont,
in Harmonizing Cosmic Distances in a Post-Hipparcos Era, eds. D. Egret and A. Heck (ASP Conference
Series, San Francisco, 1998) [astro-ph/9812074]; H. Baumgardt, C. Dettbarn, B. Fuchs, J. Rockmann,
and R. Wielen, in Harmonizing Cosmic Distance Scales in a Post-Hipparcos Era, ibid [astro-ph/9812437].
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directly or indirectly on the Cepheid period—luminosity relation. With
this value of Cepheid absolute luminosity, the LMC distance mod-
ulus would be 18.66, or slightly less with corrections for the metal-
licity of the LMC (though with the absolute luminosity of Cepheids
calibrated by Hipparcos observations, the only relevance of the LMC
for the Cepheid period—luminosity relation is to determine its shape.)
This result for the Cepheid absolute luminosities has in turn been
contradicted.*

These uncertainties may now have been resolved by measurements
of the trigonometric parallax of Cepheids in our galaxy with the Fine
Guidance Sensor of the Hubble Space Telescope. First, the trig-
onometric parallax of § Cephei*! gave a distance of 273 + 11 pc,
corresponding to an LMC distance modulus of 18.50 £ 0.13. More
recently, trigonometric parallaxes have been measured for nine Galactic
Cepheids, giving an LMC distance modulus of 18.50 + 0.03, or with
metallicity corrections, 18.40 + 0.05.42

There has also been an independent calibration of the Cepheid
period—luminosity relation through observations** of Cepheids in the
galaxy NGC 4258, whose distance 7.2 + 0.5 Mpc has been measured
using the observations of proper motions of masers in this galaxy
mentioned above. This distance is in satisfactory agreement with the
distance 7.6 £+ 0.3 Mpc obtained from the Cepheids in NGC 4258
under the assumption that these Cepheids have the period—luminosity
relation (1.3.7) obtained under the assumption that the LMC distance
modulus is 18.5, which tends to confirm this period—luminosity rela-
tion. But there are differences in the metallicity of the Cepheids in
NGC 4258 and in the LMC, which makes this conclusion somewhat
controversial.** A 2006 calibration of the Cepheid period-luminosity
relation based on the study of 281 Cepheids in NGC 4258% (whose dis-
tance, as we have seen, is known from observations of maser Doppler
shifts and proper motions) gave an LMC distance modulus 18.41 +
0.10 (stat.) 20.13 (syst.). This study includes both a field that is metal
rich, like our Galaxy, and a field that is metal poor, like the LMC, so

405ee, e.g., B. F. Madore and W. L. Freedman, Astrophys. J. 492, 110 (1998) For a recent survey of
the theory underlying the Cepheid period—luminosity relation, see A. Gautschy, in Recent Results on
Hy—19th Texas Symposium on Relativistic Astrophysics [astro-ph/9901021].

41G. F. Benedict et al., Astrophys. J. 124, 1695 (2002).

42G. F. Benedict et al., Astron. J. 133, 1810 (2007), [astro-ph/0612465].

433 A. Newman e al., Astrophys. J. 553, 562 (2001) [astro-ph-0012377].

44 For instance, see B. Paczynski, Nature 401, 331 (1999); F. Caputo, M. Marconi, and I. Musella,
Astrophys. J. [astro-ph/0110526].

45L. M. Macri et al., Astrophys. J. 652, 1133 (2006) [astro-ph/0608211].
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it provides a calibration of the metallicity dependence of the Cepheid
period—luminosity relation.

In a 2003 survey*® the LMC distance modulus measured using a
variety of distance indicators other than Cepheid variables (including
RR Lyrae stars, red clump stars, etc.) was found to be 18.48 4 0.04,
in very good agreement with the earlier value 18.52 4 0.05 found by
observation of Cepheids, with the corrections adopted by the Hubble
Space Telescope group.

B. Secondary distance indicators

None of the above distance indicators are bright enough to be used to
measure distances at redshifts large enough so that peculiar velocities can
be neglected compared with the expansion velocity, say, z > 0.03. For this
we need what are called secondary distance indicators that are brighter than
Cepheids, such as whole galaxies, or supernovae, which can be as bright as
whole galaxies.

For many years Cepheids could be used as distance indicators only out
to a few million parsecs (Mpc), which limited their use to the Local Group
(which consists of our galaxy and the Andromeda nebula M31, and a dozen
or so smaller galaxies like M33 and the LMC and SMC) and some other
nearby groups (the M81, M 101, and Sculptor groups). This was not enough
to calibrate distances to an adequate population of galaxies or supernovae,
and so it was necessary to use a variety of intermediate distance indicators:
globular clusters, HII regions, brightest stars in galaxies, etc. Now the
Hubble Space Telescope allows us to observe Cepheids in a great many
galaxies at much greater distances, out to about 30 Mpc, and so the sec-
ondary distance indicators can now be calibrated directly, without the use
of intermediate distance indicators. Four chief secondary distance indica-
tors have been developed:

1. The Tully—Fisher relation

Although whole galaxies can be seen out to very large distances, it has
not been possible to identify any class of galaxies with the same absolute
luminosity. However, in 1977 Tully and Fisher*’ developed a method for
estimating the absolute luminosity of suitable spiral galaxies. The 21 cm
absorption line in these galaxies (arising in transitions of hydrogen atoms
from lower to the higher of their two hyperfine states) is widened by the

40M. Feast, Lect. Notes Phys. 635,45 (2003) [astro-ph/0301100].
47R. B. Tully and J. R. Fisher, Astron. Astrophys. 54, 661 (1977)
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Doppler effect, caused by the rotation of the galaxy. The line width W
gives an indication of the maximum speed of rotation of the galaxy, which
is correlated with the mass of the galaxy, which in turn is correlated with the
galaxy’s absolute luminosity.*® (It is also possible to apply the Tully—Fisher
relation using the width of other lines, such as a radio frequency transition
in the carbon monoxide molecule.*”)

In one application of this approach®® the shape of the function L; (W)
that gives the infrared band absolute luminosity as a function of 21 cm line
width (that is, the absolute luminosity up to a common constant factor) was
found from a sample of 555 spiral galaxies in 24 clusters, many with redshifts
less than 0.01. (The relative distances to these galaxies were found from the
ratios of their redshifts, using Eq. (1.2.9), so that the peculiar velocities of
these galaxies introduced considerable errors into the estimated ratios of
absolute luminosities of individual pairs of galaxies, but with 555 galaxies
in the sample it could be assumed that these errors would cancel in a least-
squares fit of the measured relative values of absolute luminosity to a smooth
curve.) Roughly speaking, L;(W) turned out to be proportional to W3.
The overall scale of the function L; (W) was then found by fitting it to the
absolute luminosities of 15 spiral galaxies whose distances were accurately
known from observations of Cepheid variables they contain. (These 15
galaxies extended out only to 25 Mpc, not far enough for them to be used
to measure the Hubble constant directly.) The Hubble constant could then
be found by using the function L;(W) calibrated in this way to find the
distances to galaxies in 14 clusters with redshifts ranging from 0.013 to
0.03, and comparing the results obtained with Eq. (1.2.8). (These redshifts
may not be large enough to ignore peculiar velocities altogether, but again,
this problem is mitigated by the use of a fairly large number of galaxies.)
The Hubble constant found in this way was 70 + 5 km s~! Mpc~!. More
recently, the Hubble Space Telescope Key Project to Measure the Hubble
Constant has used Cepheid variables to recalibrate the Tully—Fisher relation
(assuming an LMC distance of 50 kpc) and then found Hy by plotting
distances found from the Tully—Fisher relation against redshift for a sample
of 19 clusters with redshifts from 0.007 to 0.03,3! taken from the G97 survey
of Giovanelli ez al.> The result was Hy = 71 £ 3 + 7 km s~! Mpc~!, with
the first quoted uncertainty statistical and the second systematic.

48M. Aaronson, J. R. Mould, and J. Huchra, Astrophys. J. 229, 1 (1979).

49Y. Tutui et al., Publ. Astron. Soc. Japan 53,701 (2001) [astro-ph/0108462].

S0R . Giovanelli, in The Extragalactic Distance Scale - Proceedings of the Space Telescope Science
Institute Symposium held in Baltimore, M D, May, 1996 (Cambridge University Press, Cambridge, 1997):
113; R. Giovanelli et al., Astron. J. 113,22 (1997).

51, Sakai et al., Astrophys. J. 529, 698 (2000); W. L. Freedman et al., Astrophys. J. 553, 47 (2001);
and references cited therein.

52Giovanelli et al., op. cit.
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1.3 Distances at small redshift: The Hubble constant

2. Faber-Jackson relation

Just as the Tully—Fisher method is based on a correlation of orbital velocities
with absolute luminosities in spiral galaxies, the Faber—Jackson method is
based on a correlation of random velocities with absolute luminosities in
elliptical galaxies.>> An advantage of this method over the Tully—Fisher
method is that it has a firmer theoretical foundation, provided by the virial
theorem to be discussed in Section 1.9, which directly relates the mean
square random velocity to the galaxy mass.

3. Fundamental plane

The Faber—Jackson method was improved by the recognition that the cor-
relation between orbital velocity and absolute luminosity depends also on
the surface brightness of the cluster, and hence on its area.”* (The term
“fundamental plane” refers to the way that data on elliptical galaxies are
displayed graphically.) This method has been used™’ to estimate that Hy =
78 £+ 5 (stat.) £ 9 (syst.) km sec™! Mpc~!.

4. Type Ia supernovae

Supernovae of Type Ia are believed to occur when a white dwarf star in a
binary system accretes sufficient matter from its partner to push its mass
close to the Chandrasekhar limit, the maximum possible mass that can be
supported by electron degeneracy pressure.’® When this happens the white
dwarf becomes unstable, and the increase in temperature and density allows
the conversion of carbon and oxygen into °Ni, triggering a thermonuclear
explosion that can be seen at distances of several thousand megaparsecs.
The exploding star always has a mass close to the Chandrasekhar limit, so
there is little variation in the absolute luminosity of these explosions, mak-
ing them nearly ideal distance indicators.’” What variation there is seems

53S. M. Faber and R. E. Jackson, Astrophys. J. 204, 668 (1976).

54A. Dressler et al., Astrophys. J. 313, 42 (1987).

3D, D. Kelson et al., Astrophys. J. 529, 768 (2000) [astro-ph/9909222]; J. P. Blakeslee, J. R. Lucey,
J. L. Tonry, M. J. Hudson, V. K. Nararyan, and B. J. Barris, Mon. Not. Roy. Astron. Soc. 330, 443
(2002) [astro-ph/011183].

56W. A. Fowler and F. Hoyle, Astrophys. J. 132, 565 (1960). Calling a supernova Type I simply means
that hydrogen lines are not observed in its spectrum. In addition to Type la supernovae, there are other
Type I supernovae that occur in the collapse of the cores of stars much more massive than white dwarfs,
whose outer layer of hydrogen has been lost in stellar winds, as well as Type 11 supernovae, produced by
core collapse in massive stars that have not lost their outer layer of hydrogen. For a discussion of the
Chandrasekhar limit, see G&C, Section 11.3.

57The use of Type la supernovae as distance indicators was pioneered by A. Sandage and G. A.
Tammann, Astrophys. J. 256, 339 (1982), following an earlier observation that they had fairly uniform
luminosity by C. T. Kowal, Astron. J. 73, 1021 (1968). In 1982 it was necessary to use brightest
supergiant stars as intermediate distance indicators, to bridge the gap between the distances that could
then be measured using Cepheids and the distances at which the Type la supernova could be found.
For reviews of the use of type Ia supernovae as standard candles, see D. Branch, Ann. Rev. Astron. &
Astrophys. 36, 17 (1998); P. Hoflich, C. Gerardy, E. Linder, and H. Marion, in Stellar Candles, eds. W.
Gieren et al. (Lecture Notes in Physics) [astro-ph/0301334].
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1 The Expansion of the Universe

to be well correlated with the rise time and decline time of the supernova
light: the slower the decline, the higher the absolute luminosity.>8

This relation has been calibrated by measurements of Type Ia super-
novae in several galaxies of known distance. From 1937 to 1999 there were
ten supernovae in galaxies whose distance had been measured by observa-
tion of Cepheid variables they contain.”® Of these, six Type Ia supernovae
were used by the HST Key Hy Group® to calibrate the relation between
absolute luminosity and decline time. This relation was then used to calcu-
late distances to a sample of 29 Type Ia supernovae in galaxies with redshifts
extending from 0.01 to 0.1, observed at the Cerro Tololo Inter-American
Observatory.®! Plotting these distances against measured redshifts gave a
Hubble constant®? of 71 + 2(statistical) & 6(systematic) km s~! Mpc~!.
This agrees well with an older determination using Type Ia supernovae by
a Harvard group,®® which found Hy = 67 + 7 km s~! Mpc~!. Members
of this group have superceded this result,®* now giving a Hubble constant
Hy = 73 + 4(stat.) + 5(syst.) km s~! Mpc~!. On the other hand, a group
headed by Sandage using Type Ia supernovae and the Tully—Fisher relation
has consistently found lower values of Hy.%> The gap seems to be narrow-
ing; in 2006, this group quoted®® a value Hy = 62.3 4 1.3(stat.) & 5.0(syst.)
km s~! Mpc~!. (According to Sandage et al., the difference between these
results is due to a difference in the Cepheid period-luminosity relation used
to measure distances to the galaxies that host the supernovae that are used
to calibrate the relation between supernova absolute luminosity and decline
time. Sandage et al. use a metallicity-dependent period—luminosity rela-
tion. However Macri et al.*> subsequently reported no difference in the
period-luminosity relation for Cepheids in a metal-rich and a metal-poor
region of NGC 4258.)

It is an old hope that with a sufficient theoretical understanding of
supernova explosions, it might be possible to measure their distance

38M. Phillips, Astrophys. J. 413, L105 (1993); M. Hamuy et al., Astron. J. 109, 1 (1995); A. Reiss,
W. Press, and R. Kirshner, Astrophys. J. 438, L17 (1996); S. Jha, A. Riess, & R. P. Kirshner, Astrophys.
J. 659, 122 (20007). A dependence of absolute luminosity on color as well as decline time has been
considered by R. Tripp and D. Branch, Astrophys. J. [astro-ph/9904347].

For a list, see Tripp and Branch, op. cit..

0B, Gibson et al., Astrophys. J. 529, 723 (2000) [astro-ph/9908149].

SIM. Hamuy et al., Astron. J. 112, 2398 (1996).

621, Ferrarese ef al., in Proceedings of the Cosmic Flows Workshop, eds. S. Courteau et al. (ASP
Conference Series) [astro-ph/9909134]; W. L. Freedman et al., Astrophys. J. 553, 47 (2001).

63A. G. Riess, W. H. Press, And R. P. Kirshner, Astrophys. J. 438, L17 (1995)

04 A Riess et al., Astrophys. J. 627, 579 (2005) [astro-ph/0503159].

%5For a 1996 summary, see G. A. Tammann and M. Federspeil, in The Extragalactic Distance Scale,
eds. M. Livio, M. Donahue, and N. Panagia (Cambridge University Press, 1997): 137.

66 A Sandage et al., Astrophys. J. 653, 843 (2006) [astro-ph/0603647].
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1.3 Distances at small redshift: The Hubble constant

without use of primary distance indicators. A 2003 comparison®’ of observed
light curves (apparent magnitude as a function of time) and spectra with
theory for 26 Type Ia supernovae with redshifts extending up to 0.05, plus
one with redshift 0.38, gave Hy = 67 km sec™!Mpc~!, with a two standard
deviation uncertainty of 8 km sec™!Mpc~!. It is too soon for this method
to replace the older method based on the use of primary distance indicators
to calibrate the supernova absolute luminosities, but the agreement between
the values of Hy found in these two ways provides some reassurance that no
large error is being made with the older method.

It is instructive to consider a fifth secondary distance indicator that is
also used to measure the Hubble constant:

5. Surface brightness fluctuations

In 1988 Tonry and Schneider® suggested using the fluctuations in the
observed surface brightness of a galaxy from one part of the image to
another as a measure of the galaxy’s distance. Suppose that the stars in
a galaxy can be classified in luminosity classes, all the stars in a luminosity
class 7 having the same absolute luminosity L;. The rate of receiving energy
per unit area of telescope aperture in a small part of the galactic image (as
for instance, a single pixel in a charge-coupled device) is

N;iL;
e=>" Tn (1.3.8)

i

where N; the number of stars of class 7 in this part of the galaxy’s image,
and d is the distance of the galaxy. Usually only the brightest stars can
be resolved, so it is not possible to measure all the N; directly, but one
can measure the fluctuations in ¢ from one part of the image to another
due to the finite values of the N;. Suppose that the different N; fluctuate
independently from one small part of the galaxy’s image to another, and
obey the rules of Poisson statistics, so that

(v = Vi) () = (VD) = 85N (1.3.9)

with brackets denoting an average over small parts of the central portion of
the galaxy’s image. It follows then that

((€ = (£)?) L
@ = (1.3.10)

67p Hoflich, C. Gerardy, E. Linder, and H. Marion, op. cit.
8], Tonry and D. P. Schneider, Astron. J. 96, 807 (1988).
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1 The Expansion of the Universe
where L is a luminosity-weighted mean stellar luminosity

SN L?
Zi<Ni>Li

which is expected to vary much less from one galaxy to another than the
Iuminosities of the galaxies themselves. Eq. (1.3.10) can be used to mea-
sure distances once this relation is calibrated by measuring L. By studying
surface brightness fluctuations in a survey of galaxies whose distances were
found by observations of Cepheids they contain, Tonry et al.% found an
absolute magnitude M; that in the infrared band is equivalent to the abso-
lute luminosity L:

L

(1.3.11)

My = (—1.74 £0.07) + (4.5 £ 0.25) [my —m; — 1.15] (1.3.12)

where my — my is a parameter characterizing the color of the galaxy, equal
to the difference of its apparent magnitudes in the infrared and visual
bands, assumed here to lie between 1.0 and 1.5. Using Eq. (1.3.10) to find
distances of galaxies of higher redshift, they obtained a Hubble constant
814 6kms—! Mpc!.

There are other phenomena that are used to measure the Hubble
constant, including the comparison of apparent and absolute luminosity
of supernovae of other types, novae, globular clusters, and planetary neb-
ulae, the diameter—velocity dispersion relation for elliptical galaxies, grav-
itational lenses (discussed in Section 1.12), the Sunyaev—Zel'dovich effect
(discussed in Section 2.3), etc.”? The HST Key Hy Group have put together
their results of measurements of the Hubble constant using the Tully—Fisher
relation, Type la supernovae, and several of these other secondary distance
indicators, and conclude that’!

Hy=71+6kms! Mpc_1 .

As we will see in Section 7.2, the study of anisotropies in the cosmic
microwave background has given a value Hy = 7343 km s~! Mpc~!. This
does not depend on any of the tools discussed in this section, but it does
depend on some far-reaching cosmological assumptions: including flat spa-
tial geometry, time-independent vacuum energy, and cold dark matter. For
this reason, the increasingly precise measurement of Hy provided by the

] L. Tonry, J. P. Blakeslee, E. A. Ajhar, and A. Dressler, Astrophys. J. 473, 399 (1997). For a more
recent survey, see J. L. Tonry et al., Astrophys. J. 546, 681 (2001) [astro-ph/0011223].

OFor a survey of most of these methods, with references, see G. H. Jacoby, D. Branch, R. Ciardullo,
R. L. Davies, W. E. Harris, M. J. Pierce, C. J. Pritchet, J. L. Tonry, and D. L. Welch, Publ. Astron. Soc.
Pacific 104, 599 (1992).

TIL. Ferrarese et al., op. cit.; W. L. Freedman et al., Astrophys. J. 553, 47 (2001).
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1.4 Luminosity distances and angular diameter distances

cosmic microwave background will not supplant the older measurements
discussed in this section — rather, the agreement (or possible future disagree-
ment) between the values of Hy provided by these very different methods
will serve to validate (or possibly invalidate) the cosmological assumptions
made in the analysis of the cosmic microwave background.

To take account of the remaining uncertainty in the Hubble constant, it
is usual these days to take

Hy =100/ km s~ Mpc™!, (1.3.13)

with the dimensionless parameter /2 assumed to be in the neighborhood of
0.7. This corresponds to a Hubble time

1/Hy = 9.778 x 10° h~! years . (1.3.14)

1.4 Luminosity distances and angular diameter distances

We must now consider the measurement of distances at large redshifts, say
z > 0.1, where the effects of cosmological expansion on the determination
of distance can no longer be neglected. It is these measurements that can
tell us whether the expansion of the universe is accelerating or decelerating,
and how fast. Before we can interpret these measurements, we will need
to consider in this section how to define distance at large redshifts, and
we will have to apply Einstein’s field equations to the Robertson—Walker
metric in the following section. After that, we will return in Section 1.6 to
the measurements of distances for large redshift, and their interpretation.
In the previous section we derived the familiar relation ¢ = L /4w d? for
the apparent luminosity £ of a source of absolute luminosity L at a distance
d. At large distances this derivation needs modification for three reasons:

1. At the time 7( that the light reaches earth, the proper area of a sphere
drawn around the luminous object and passing through the earth is
given by the metric (1.1.10) as 4mf%a2(lo), where r; is the coordinate
distance of the earth as seen from the luminous object, which is just the
same as the coordinate distance of the luminous object as seen from
the earth. The fraction of the light received in a telescope of aperture
A on earth is therefore 4 /4nr%a2(to), and so the factor 1/d? in the

formula for ¢ must be replaced with 1/ r%az(to).

2. The rate of arrival of individual photons is lower than the rate at which
they are emitted by the redshift factor a(t1)/a(ty) = 1/(1 4 z).

3. The energy /vy of the individual photons received on earth is less than
the energy /vy with which they were emitted by the same redshift factor
1/(1 + 2).

31



1 The Expansion of the Universe

Putting this together gives the correct formula for apparent luminosity of a
source at radial coordinate r| with a redshift z of any size:

L
0= .
4rria(to)(1 + 2)2

(1.4.1)

It is convenient to introduce a “luminosity distance” dy,, which is defined so
that the relation between apparent and absolute luminosity and luminosity
distance is the same as Eq. (1.3.3):

L
= 5 (1.4.2)
drd;
Eq. (1.4.1) can then be expressed as
dr = a(to)ri(1 +z) . (1.4.3)

For objects with z « 1, we can usefully write the relation between
luminosity distance and redshift as a power series. The redshift 1 4+ z =
a(tp)/a(ty) is related to the “look-back time” 7y — 71 by

1
Z:Ho(to—z1)+§(q0+2)H02(t0—11)2+... (1.4.4)

where Hy is the Hubble constant (1.2.7) and ¢ is the deceleration
parameter

=1 d%a@
~ Hia(ty) dt?

40 (1.4.5)

=ty

This can be inverted, to give the look-back time as a power series in the
redshift

1
Ho(to—tl):z—§(q0+2)22—|—... . (1.4.6)

The coordinate distance | of the luminous object is given by Eq. (1.2.2) as

to—t1  Ho(to—t)?
a(to) 2a(to)

with the dots on the right-hand side denoting terms of tAird and higher order
in r1. Using Eq. (1.4.6), the solution is

Fo=r ., (1.4.7)

1
riatio) Ho=z—>(1+ qgo)z> + - . (1.4.8)
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1.4 Luminosity distances and angular diameter distances

This gives the luminosity distance (1.4.3) as a power series

B 1
dL=H01[z+§(1—q0)22+..-]. (1.4.9)

We can therefore measure ¢o as well as Hy by measuring the luminosity
distance as a function of redshift to terms of order z2. The same reasoning
has been used to extend the expression (1.4.9) to fourth order in z:!

1 1 K
R ) 2 . 3
dr(z)=H, |:Z + 5(1 —q0)z" — 3 (1 — 40 — 3qp +Jjo + Hga(%) o
1
+ﬁ<2 —2q0 — 15¢3 — 1543 + Sjo + 10qqjo

2K(1+3

+so+%)z4+---] ,
Hyay

where jy and s¢ are parameters known as the jerk and snap:

1 d*a(1)
S0 = 7 7
Hya(ty) dt

1 d3a(t)
- Hja(t) dr

Jo

b

t=ty 1=l

Years ago cosmology was called “a search for two numbers,” Hy and ¢.
The determination of Hj is still a major goal of astronomy, as discussed in
the previous section. On the other hand, there is less interest now in ¢q.
Instead of high-precision distance determinations at moderate redshifts, of
order 0.1 to 0.2, which would give an accurate value of ¢y, we now have
distance determinations of only moderate precision at high redshifts, of
order unity, which depend on the whole form of the function a(¢) over the
past few billion years. For redshifts of order unity, it is not very useful to
expand in powers of redshift. In order to interpret these measurements, we
will need a dynamical theory of the expansion, to be developed in the next
section. As we will see there, modern observations suggest strongly that
there are not two but at least three parameters that need to be measured to
calculate a(r).

Before turning to this dynamical theory, let’s pause a moment to clar-
ify the distinction between different measures of distance. So far, we have
encountered the proper distance (1.1.15) and the luminosity distance (1.4.3).
There is another sort of distance, which is what we measure when we
compare angular sizes with physical dimensions. Inspection of the metric

M. Visser, Class. Quant. Grav. 21, 2603 (2004) [gr-qc/0309109]. The term of third order in z was
previously calculated by T. Chiba and T. Nakamura, Prog. Theor. Phys. 100, 1077 (1998).
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1 The Expansion of the Universe

(1.1.12) shows that a source at co-moving radial coordinate r| that emits light
at time 71 and is observed at present to subtend a small angle 6 will extend
over a proper distance s (normal to the line of sight) equal to a(¢1)r16. The
angular diameter distance d 4 is defined so that 6 is given by the usual relation
of Euclidean geometry

0 =s/dy (1.4.10)
and we see that
dg=a(t)r . (1.4.11)

Comparison of this result with Eq. (1.4.3) shows that the ratio of the
luminosity and angular-diameter distances is simply a function of redshift:

dgjdp = (14+2)7%. (1.4.12)

Therefore if we have measured the luminosity distance at a given redshift
(and if we are convinced of the correctness of the Robertson—Walker met-
ric), then we learn nothing additional about a(z) if we also measure the
angular diameter distance at that redshift. Neither galaxies nor supernovas
have well-defined edges, so angular diameter distances are much less use-
ful in studying the cosmological expansion than are luminosity distances.
However, as we shall see, they play an important role in the theoretical anal-
ysis of both gravitational lenses in Chapter 9 and of the fluctuations in the
cosmic microwave radiation background in Chapters 2 and 7. We will see
in Section 8.1 that the observation of acoustic oscillations in the matter
density may allow a measurement of yet another distance, a structure
distance, equal to a(tg)r; = (1 4+ z)d4.

1.5 Dynamics of expansion

All our results up to now have been very general, not depending on
assumptions about the dynamics of the cosmological expansion. To go fur-
ther we will need now to apply the gravitational field equations of Einstein,
with various tentative assumptions about the cosmic energy density and
pressure.

The expansion of the universe is governed by the Einstein field equations
(B.71), which can be put in the convenient form

Ry =-81GSy, (1.5.1)
where R,,, is the Ricci tensor:
ory, ark
Ry = Mﬁ—igf+r%.$—rmm5, (1.5.2)
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1.5 Dynamics of expansion
and S, is given in terms of the energy-momentum tensor 77, by

S =T — tgunwT* . (1.5.3)

As we saw in Section 1.1, for the Robertson—Walker metric the components
of the affine connection with two or three time indices all vanish, so

ark. ark  aro
Rj = k.z_|: gy b

dx/ axk ot
+ |0k + g, + Thrk]

— kel +riry] (1.5.4)
aFl i
Ry = a1 0 4 FO/F (1.5.5)
We don’t need to calculate R;p = Ry;, because it is a three-vector, and
therefore must vanish due to the isotropy of the Robertson—Walker metric.
Using the formulas (1.1.17)—(1.1.19) for the non-vanishing components of
the affine connection gives

aFO 0 rk 552

¥TS gl]d (aa) , Tyl =gja, F FOI = 3gl]a

orly . d (a :

a[10 3dt ( ) R FO] 0= =3 ( ) R (1.5.6)

where dots denote time derivatives. Using this in Egs. (1.5.4) and (1.5.5),
we find that the non-vanishing components of the Ricci tensor are

Rj = Ry — 2i°g;; — aiigy; (1.5.7)
d /i N2 .

Ryp = 3% (f> +3 (9) =3, (1.5.8)
dt \a a a

where flij is the purely spatial Ricci tensor
. ark .
k I~k l
j= Wfl e — + T = ThTy (1.5.9)

According to Eq. (1.1.19), the spatial components F’ of the four-dimen-

sional affine connection are here the same as those of the affine connection
that would be calculated in three dimensions from the three-metric g;;:

I = Kx*g; . (1.5.10)
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To calculate Rij, we use a trick used earlier in calculating particle traj-

ectories: we calculate R[j where the calculation is simplest, at x = 0, and
express the result as a relation that is invariant under all transformations of
the spatial coordinates, so that the homogeneity of the three-dimensional
metric insures that this relation is valid everywhere. The spatial Ricci tensor
atx =01is

SNV Y K8; — 3K8 2KS (1.5.11)
g — X/ x! - g y— g o

At x = 0 the spatial metric g;; is just §;;, so this can be rewritten as
Rj=—2Kg; (1.5.12)

which, since it is an equality between two three-tensors, is then true in all
spatial coordinate systems, including systems in which the point x = 0 is
transformed into any other point. Hence Eq. (1.5.12) is true everywhere,
and together with Eq. (1.5.7) gives

Ry == [2K +24* + aii & (1.5.13)

We also need the values of S;; and Soo. For this, we use Eq. (1.1.31) in
the form

Tw=p. To=0, Tj=dpg. (1.5.14)

where p(#) and p(¢) are the proper energy density and pressure. Eq. (1.5.3)
gives then

1. L1, 1 -
Sy = Tij—zgijaz <Tkk + T00> = angg—zazgijﬁp—p) = E(P_P) azg,'j >
(1.5.15)

1 1 1
Soo=Too+ = (TF«+T%)=p+=Cp—p)==(p+3
00 00T 5 ( k 0) P 2( P — p) 2(/) p)

(1.5.16)
and S;jo = 0. The Einstein equations are therefore
2K 2.2 .
Y 4xGp—p), (1.5.17)
a? a*> a
3a
— =—47G3p+p) . (1.5.18)
a
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1.5 Dynamics of expansion

We can eliminate the second derivative terms by adding three times the
first equation to the second, and find

87G p a®

-2
K =
a —+ 3

(1.5.19)
This is the fundamental Friedmann equation' governing the expansion of
the universe.

The remaining information in Egs. (1.5.17) and (1.5.18) just reproduces
the conservation law (1.1.32):

3a

~Z o+ (1.5.20)

b=
(This should come as no surprise. Under all circumstances, the energy-
momentum conservation law may be derived as a consequence of the Ein-
stein field equations.) Given p as a function of p, we can solve Eq. (1.5.20)
to find p as a function of a, and then use this in Eq. (1.5.19) to find a as a
function of 7.

There is another way of deriving Eq. (1.5.19), at least for the case of non-
relativistic matter. Imagine a co-moving ball cut out from the expanding
universe, with some typical galaxy at its center, and suppose it then emptied
of the matter it contains. According to Birkhoff’s theorem,? in any system
that is spherically symmetric around some point, the metric in an empty ball
centered on this point must be that of flat space. This holds whatever is hap-
pening outside the empty ball, as long as it is spherically symmetric. Now
imagine putting the matter back in the ball, with a velocity proportional to
distance from the center of symmetry, taken as X = 0:

X =H®nX. (1.5.21)

(Here the components X’ of X are ordinary Cartesian coordinates, not the

co-moving coordinates x’ used in the Robertson-Walker metric. Note that

this is the one pattern of velocities consistent with the principle of homog-

eneity: The velocity of a co-moving particle at X; relative to a co-moving

particle at X is X —X; = H()(X1 — X3).) The solution of Eq. (1.5.21) is
a(t)

where a(?) is the solution of the equation

a(t)/at) = H() . (1.5.23)

A. Friedmann, Z. Phys. 16, 377 (1922); ibid 21, 326 (1924).
2G&C, Section 11.7.
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As long as the radius of the ball is chosen to be not too large, the expansion
velocity (1.5.21) of the matter we put into it will be non-relativistic, and
the gravitational field will be weak, so that we can follow its motion using
Newtonian mechanics. The kinetic energy of a co-moving particle of mass
m at X is

KE. = lpxz - meX?

2 2a?

(1.5.24)

The mass interior to the position of the particle is M (X) = 4mp|X|?/3, so
the potential energy of the particle is

GmMX)  4rGmp|X?

PE. =
X 3

(1.5.25)

The condition of energy conservation thus tells us that

X(1))? | &®  4nGpa?
E=K.E.+P.E.:M|:a nupa

2(t0) 5~ T:| = constant . (1.5.26)

This is the same as Eq. (1.5.19), providing we identify the particle energy as

_ Km[X@)l?

E—
2a%(t9)

(1.5.27)
Particles will be able to escape to infinity if and only if £ > 0, which requires
K =0or K = —1. For K = +1 they have less than escape velocity, so the
expansion eventually stops, and particles fall back toward each other.

Returning now to the relativistic formalism and an arbitrary dependence
of p on a, even without knowing this dependence we can use Eq. (1.5.19) to
draw important consequences about the general features of the expansion.
First, as long as p remains positive, it is only possible for the expansion of
the universe to stop if K = +1, the case of spherical geometry. Also, for
any value of the Hubble constant Hy = a(zo)/a(ty), we may define a critical
present density

3H?
Pocrit = —2 = 1.878 x 1072 1% g/em? | (1.5.28)
81 G

where /1 is the Hubble constant in units of 100 km s~! Mpc~!. According to
Eq. (1.5.19), whatever we assume about the constituents of the universe, the
curvature constant K will be 41 or 0 or —1 according to whether the present
density po is greater than, equal to, or less than pg cri¢. If the quantity 3p+p
is positive (as it is for any mixture of matter and radiation, in the absence
of a vacuum energy density) then Eq. (1.5.18) shows that d/a < 0, so the
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1.5 Dynamics of expansion

expansion must have started with ¢ = 0 at some moment in the past; the
present age of the universe 7y is /ess than the Hubble time

to < Hy'. (1.5.29)

Also, if K = +1 and the expansion stops, then with @/a < 0 the universe
will again contract to a singularity at which a = 0.

We can use Eq. (1.5.18) to give a general formula for the deceleration
parameter qo = —ai(to)a(to)/d>(to):

_ 4 G(po + 3po) _pPot 3po
3H, g 2/()O,crit

40 : (1.5.30)

with a subscript 0 denoting a present value. If the present density of the
universe were dominated by non-relativistic matter then pg < pg, and the

curvature constant K would be +1 or 0 or —1 according to whether ¢y > %

orqo = % orqop < % On the other hand, if the present density of the universe

were dominated by relativistic matter then pg = po/3, and the critical value
of the deceleration parameter at which K = 0 would be ¢y = 1. Finally, if
the present density of the universe were dominated by vacuum energy then
po = —po, and the value of the deceleration parameter at which K = 0
would be gg = —1.

There is a peculiar aspect to these results. The contribution of non-
relativistic and relativistic matter to the quantity pa? in Eq. (1.5.19) grows
asa ! and a2, respectively, as a — 0, so at sufficiently early times in the
expansion we may certainly neglect the constant K, and Eq. (1.5.19) gives

a? 8t Gp

— —

a? 3
That is, at these early times the density becomes essentially equal to
the critical density 3H2/87 G, where H = a/a is the value of the Hubble
“constant” at those times. On the other hand, we will see later that the total
energy density of the present universe is still a fair fraction of the critical
density. How is it that after billions of years, p is still not very different from
ocrit? This is sometimes called the flatness problem.

The simplest solution to the flatness problem is just that we are in a
spatially flat universe, in which K = 0 and p is always precisely equal to pgis .
A more popular solution is provided by the inflationary theories discussed
in Chapter 4. In these theories K may not vanish, and p may not start out
close to pgrit, but there is an early period of rapid growth in which p/ it
rapidly approaches unity. In inflationary theories it is expected though not
required that p should now be very close to p.it, in which case it is a good
approximation to take K = 0.

. (1.5.31)
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1 The Expansion of the Universe

For K = 0 we get very simple solutions to Eq. (1.5.19) in the three special
cases listed in Section 1.1:

Non-relativistic matter: Here p = po(a/ag)~3, and the solution of
Eq. (1.5.19) with K = 0 is

a(t) o 123 . (1.5.32)

This gives gy = —aii/d*> = 1/2, and a simple relation between the age of the
universe and the Hubble constant
2

th= —— =652x 10" yr. 1.5.33

= 3m, X yr ( )
Egs. (1.5.32) and (1.5.18) show that for K = 0, the energy density at time ¢
is p = 1/67 Gr>. This is known as the Einstein—de Sitter model. Tt was for
many years the most popular cosmological model, though as we shall see,
the age (1.5.33) is uncomfortably short compared with the ages of certain
stars.

Relativistic matter: Here p = po(a/ag)~*, and the solution of Eq. (1.5.19)
with K = 01is

a(t) x vt . (1.5.34)

This gives g9 = +1, while the age of the universe and the Hubble constant
are related by

1

=—. 1.5.35
H ( )

)

The energy density at time ¢ is p = 3/327 Gt2.

Vacuum energy: Lorentz invariance requires that in locally inertial
coordinate systems the energy-momentum tensor 7° I‘ﬁv of the vacuum must
be proportional to the Minkowski metric n*” (for which n = n; = 8, n® =
nio = 1% = noi = 0, n° = ney = —1), and so in general coordinate systems
T ﬁv must be proportional to g*¥. Comparing this with Eq. (B.43) shows that
the vacuum has py = —py, so that T," = —py g"”. In the absence of any
other form of energy this would satisfy the conservation law 0 = T ﬁv; W=
g*vopy /oxt, so that py would be a constant, independent of spacetime
position. Eq. (1.5.19) for K = 0 requires that pyr > 0, and has the solutions

a(t) « exp(Ht) (1.5.36)

where H is the Hubble constant, now really a constant, given by

H = ,/&T?W . (1.5.37)
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1.5 Dynamics of expansion

Here g9 = —1, and the age of the universe in this case is infinite. This
is known as the de Sitter model> Of course, there is some matter in the
universe, so even if the energy density of the universe is now dominated
by a constant vacuum energy, there was a time in the past when matter
and/or radiation were more important, and so the expansion has a finite
age, although greater than it would be without a vacuum energy.

More generally, for arbitrary K and a mixture of vacuum energy and
relativistic and non-relativistic matter, making up fractions Q, Q,, and
Qr of the critical energy density,* we have

o= 3N—Hg [9A+QM (‘;—0)3+QR (%)4] , (1.5.38)

where the present energy densities in the vacuum, non-relativistic matter,
and and relativistic matter (i.e., radiation) are, respectively,

3HZ QA 3HZ QU 3HZ QR

=0 - =92 = =———, (1.5.39
PYO=—o o PMO S G PRO= —¢ = ( )

and, according to Eq. (1.5.19),

K
ayH
Using this in Eq. (1.5.19) gives
d
dt= i
H()X\/QA + Qrx 2 4+ Qux3 + Qprx—4
—d.

o . (1.5.41)

" Ho(1+2)V/Qn + 2k (1 + 22 + Qu(1 + 23 + Qr(1 + 2)*

where x = a/ap = 1/(1 + z). Therefore, if we define the zero of time
as corresponding to an infinite redshift, then the time at which light was
emitted that reaches us with redshift z is given by

1 1/(142) d
{(z) = —/ al . (1542
Hy Jo XV QA + Qxx2 4+ Qux—3 + Qrx—?

3W. de Sitter, Proc. Roy. Acad. Sci. (Amsterdam), 19, 1217 (1917); ibid. 20, 229 (1917); ibid. 20,
1309 (1917); Mon. Not. Roy. Astron. Soc.,78,2 (1917).

4The use of the symbol Q4 instead of €2y, for the ratio of the vacuum energy density to the critical
energy density has become standard, because of a connection with the cosmological constant discussed
in a historical note below.
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1 The Expansion of the Universe

In particular, by setting z = 0, we find the present age of the universe:

1! d
fo = _f al C(15.43)
Hy Jo x\/QA+QKx_2+QMX_3+QRx_4

In order to calculate luminosity or angular diameter distances, we also
need to know the radial coordinate r(z) of a source that is observed now
with redshift z. According to Eqs. (1.2.2) and (1.5.41), this is

0 dt
= S _—
") [/z(z) a(t)]

_o| ! /1 dx
aoHo J1/(1+2) x2/Qp + Qrx 2 + Qux 3 + Qpx 4 |

where
sin y K =+1
NEREY K=0
sinh y K=-1.

This can be written more conveniently by using Eq. (1.5.40) to express agH
in terms of Qg. We then have a single formula

1
apr(z) = ———
Ho?

x sinh 91/2/1 dx
K 1/(14z) xz\/QA + Qrx 24+ Qux3 4+ Qrx—? ’
(1.5.44)

which can be used for any curvature. (Eq. (1.5.43) has a smooth limit for
Qg — 0, which gives the result for zero curvature. Also, for Qx < 0,
the argument of the hyperbolic sine is imaginary, and we can use sinh ix =
isin x.) Using Eq. (1.5.44) in Eq. (1.4.3) gives the luminosity distance of a
source observed with redshift z as
dL(2) = apr(@) (1 +2) = 1
HoS2y

. 1/2 dx
x sinh | / .
|: K 1/(1+2) Xz\/QA+QKX_2+QMX_3+QRx_4:|

(1.5.45)
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1.5 Dynamics of expansion

For K = 0 we have Qg = 0 and Eq. (1.5.45) becomes

l+z [! dx
dr(z) =apri(1 +2) = / .
Ho  Jija42) x2y/Qp + Qux—3 + Qrx—*

(1.5.46)

As we will see in Section 2.1, Qg is much less than Q,, and the integral
(1.5.46) converges at its lower bound for z — oo whether or not Qz vanishes,
so it is a good approximation to take Qg = 0 here.

It is of some interest to express the deceleration parameter ¢g in terms
of the @s. The p/p ratio w for vacuum, matter, and radiation is —1, 0, and
1/3, respectively, so Eq. (1.5.39) gives the present pressure as

—3H§ Q +1Q (1.5.47)
pO_SnG A 3 R) - D.

Eq. (1.5.30) then gives

_ 4xGGpo+po) 1

—(Qup —2Q 2QR) . 1.5.48
q0 3H§ 2( M ATt R) ( )

One of the reasons for our interest in the values of Qg, Qay, etc. is that
they tell us whether the present expansion of the universe will ever stop.
According to Eq. (1.5.38), the expansion can only stop if there is a real root
of the cubic equation

Qau’ + Qru+Qy =0, (1.5.49)

where u = a(t)/a(ty) is greater than one. (We are ignoring radiation here,
since it will become even less important as the universe expands.) This
expression has the value +1 for u = 1. If Q4 < 0 then the left-hand side
of Eq. (1.5.49) becomes negative for sufficiently large u, so it must take the
value zero at some intermediate value of u, and the expansion will stop
when this value of u is reached. Even for 2, > 0 it is still possible for the
expansion to stop, provided Qg = 1 — Qx — Q) is sufficiently negative
(which, among other things, requires that K = +1).

Historical Note 1: If we express the total energy momentum tensor 7, as

the sum of a possible vacuum term —pyg,, and a term T, z% arising from
matter (including radiation), then the Einstein equations take the form

1
R, — Egle’\A = —871GT,% +8nGprgu - (1.5.50)
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1 The Expansion of the Universe

Thus the effect of a vacuum energy is equivalent to modifying the Einstein
field equations to read

(1.5.51)

1
R, — Eg,“R — Aguy = —SJTGT% ,

where
A=8mGpyp. (1.5.52)

The quantity A is known as the cosmological constant. It was introduced
into the field equation by Einstein in 1917 in order to satisfy a condition
that at the time was generally regarded as essential, that the universe should
be static.’ According to Eqgs. (1.5.18) and (1.5.19), a static universe is only
possible if 3p + p = 0 and K = 87 Gpa?/3. If the contents of the universe
are limited to vacuum energy and non-relativistic matter, then p = par+py,
p = —py,and pyr > 0. It follows that py; = 2pp > 0, so K > 0, which by
convention means K = +1, so that a takes the value ag = 1//87Gpy =
1/+/A. This is known as the Einstein model.

Einstein did not realize it, but his cosmology was unstable: If « is a little
less than ag then pyy is a little larger than 2py, so Eq. (1.5.18) shows that
d/a < 0, and a thus begins to decrease. Likewise, if « is a little greater
than ag then it begins to increase. The models with K = +1 and A > 0
in which a starts at the Einstein radius a = ag with pys = 2pp and then
expands to infinity (or starts at « = 0 and approaches ag as t — oo with
just enough matter so that pys = 2py at the Einstein radius), are known as
Eddington—Lemaitre models.® There are also models with K = +1 and a
little more matter, that start at @ = 0, spend a long time near the Einstein
radius, and then expand again to infinity, approaching a de Sitter model.
These are known as Lemaitre models.”

Oddly, de Sitter also invented his cosmological model (with @ o exp(H?))
in order to satisfy a supposed need for a static universe. He originally
proposed a time-independent metric, given by

dr?

2 _ 2 p2y 742
dt —(I—V/R)dt —m

— 2 do? — r* sin’ 0 de?
(1.5.53)

SA. Einstein, Sitz. Preuss. Akad. Wiss. 142 (1917). For an English translation, see The Principle of
Relativity (Methuen, 1923; reprinted by Dover Publications, New York, 1952), p. 35.

6A.S. Eddington, Mon. Not. Roy. Astron. Soc. 90, 668 (1930); G. Lemaitre, Ann. Soc. Sci. Brux.
A47, 49 (1927); Mon. Not. Roy. Astron. Soc. 91, 483 (1931). The interpretation of the cosmolog-
ical constant in terms of vacuum energy was stated by Lemaitre in Proc. Nat. Acad. Sci. 20, 12L
(1934).

7G. Lemaitre, op. cit.
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1.6 Distances at large redshift. Accelerated expansion

or equivalently, setting r = Rsin ,
d7? = cos? x di* — R2<d)(2 + sin® xd6> + sin® x sin26 d¢2) . (1.5.54)

with R = {/3/A constant. De Sitter did not realize at first that this metric
has Féo = 0, so that his coordinate system was not co-moving.® Only later
was it noticed that, using co-moving spatial coordinates and cosmological
standard time, de Sitter’s model is equivalent to a Robertson—Walker metric
with K = 0 and a o exp(¢/R).

After the discovery of the expansion of the universe, cosmologists lost
interest in a static universe, and Einstein came to regret his introduction of
a cosmological constant, calling it his greatest mistake. But as we shall see
in the next section, there are theoretical reasons to expect a non-vanishing
vacuum energy, and there is observational evidence that in fact it does not
vanish. Einstein’s mistake was not that he introduced the cosmological
constant — it was that he thought it was a mistake.

Historical Note 2: There is a cosmological model due to Bondi and Gold®
and in a somewhat different version to Hoyle,!? known as the steady state
theory. In this model nothing physical changes with time, so the Hubble
constant really is constant, and hence a(f) o exp(H?), just as in the de Sitter
model. To keep the curvature constant, it is necessary to take K = 0. In
this model new matter must be continually created to keep p constant as the
universe expands. Since the discovery of the cosmic microwave background
(discussed in Chapter 2) the steady state theory in its original form has been
pretty well abandoned.

1.6 Distances at large redshift: Accelerated expansion

We now return to our account of the measurement of distances as a function
of redshift, considering now redshifts z > 0.1, which are large enough so
that we can ignore the peculiar motions of the light sources, and also large
enough so that we need to take into account the effects of cosmological
expansion on distance determination.

For many years, the chief “standard candles” used at large redshift were
the brightest galaxies in rich clusters. It is now well established that the

SA.S. Eddington, The Mathematical Theory of Relativity, 2nd ed. (Cambridge University Press,
Cambridge, 1924), Section 70. It is interesting that Eddington interpreted Slipher’s observation that
most spiral nebulae exhibit redshifts rather than blueshifts in terms of the de Sitter model, rather than
Friedmann’s models.

9H. Bondi and T. Gold, Mon. Not. Roy. Astron. Soc. 108, 252 (1948).

10g, Hoyle, Mon. Not. Roy. Astron. Soc. 108, 372 (1948), ibid. 109, 365 (1949).
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1 The Expansion of the Universe

absolute luminosity of these brightest galaxies evolves significantly over
cosmological time scales. There are also severe selection effects: there is a
tendency to pick out larger clusters with brightest galaxies of higher abs-
olute luminosity at large distances. The evolution of brightest galaxies is of
interest in itself, and continues to be the object of astronomical study,! but
the use of these galaxies as distance indicators has been pretty well aban-
doned. Similarly, although the Tully—Fisher relation discussed in Section 1.3
has been applied to galaxies with redshifts of order unity, at these redshifts
it is used to study galactic evolution, rather than to measure cosmological
parameters.2

Fortunately, the Type Ia supernovae discussed in Section 1.3 provide
an excellent replacement as standard candles.® They are very bright; the
peak blue absolute magnitude averages about —19.2, which compares well
with the absolute magnitude —20.3 estimated for our own galaxy. Also, as
described in Section 1.3, a Type Ia supernova typically occurs when a white
dwarf member of a binary pair has accreted just enough mass to push it
over the Chandrasekhar limit, so that the nature of the explosion does not
depend much on when in the history of the universe this happens, or on the
mass with which the white dwarf started or the nature of the companion
star. But it might depend somewhat on the metallicity (the proportion of
elements heavier than helium) of the white dwarf, which can depend on the
epoch of the explosion. The absolute luminosity of Type Ia supernovae is
observed to vary with environmental conditions, but fortunately in the use
of supernovae as distance indicators the bulk of this variation is correctable
empirically.

Observations of Type Ia supernovae have been compared with theoretical
predictions (equivalent to Eq. (1.5.45)) for luminosity distance as a function
of redshift at about the same time by two groups: The Supernova Cosmology
Project* and the High-z Supernova Search Team.?

ISee, e. g., D. Zaritsky et al., in Proceedings of the Sesto 2001 Conference on Tracing Cosmic Evolution
with Galaxy Clusters [astro-ph/0108152]; S. Brough et al., in Proceedings of the Sesto 2001 Conference
on Tracing Cosmic Evolution with Galaxy Clusters [astro-ph/0108186].

2N. P. Vogt et al., Astrophys. J. 465, 115 (1996). For a review and more recent references, see A.
Aragon-Salmanca, in Galaxy Evolution Across the Hubble Time — Proceedings of I. A. U. Symposium 235,
eds. F. Combes and J. Palous [astro-ph/0610587].

3For reviews, see S. Perlmutter and B. P. Schmidt, in Supernovae & Gamma Ray Bursts, ed. K. Weiler
(Springer, 2003) [astro-ph/0303428]; P. Ruiz-Lapuente, Astrophys. Space Sci. 290, 43 (2004) [astro-
ph/0304108]; A. V. Filippenko, in Measuring and Modeling of the Universe (Carnegie Observatories
Astrophysics Series, Vol 2., Cambridge University Press) [astro-ph/0307139]; Lect. Notes Phys. 645,
191 (2004) [astro-ph/0309739]; N. Panagia, Nuovo Cimento B 210, 667 (2005) [astro-ph/0502247].

4S. Perlmutter et al., Astrophys. J. 517, 565 (1999) [astro-ph/9812133]. Also see S. Perlmutter et al.,
Nature 391, 51 (1998) [astro-ph/9712212].

SA. G. Riess et al., Astron. J. 116, 1009 (1998) [astro-ph/9805201]. Also see B. Schmidt et al.,
Astrophys. J. 507, 46 (1998) [astro-ph/9805200].
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1.6 Distances at large redshift. Accelerated expansion

The Supernova Cosmology Project analyzed the relation between
apparent luminosity and redshift for 42 Type Ia supernovae, with redshifts
z ranging from 0.18 to 0.83, together with a set of closer supernovae from
another supernova survey, at redshifts below 0.1. Their original results are
shown in Figure 1.1.

With a confidence level of 99%, the data rule out the case 25 = 0 (or
Qa < 0). For a flat cosmology with Qg = Qr = 0, so that Q + Qu = 1,
the data indicate a value

Quy = 0.28f8:8§ (1o statistical)fgjgf1 (identified systematics)

(These results are independent of the Hubble constant or the absolute
calibration of the relation between supernova absolute luminosity and time
scale, though they do depend on the shape of this relation.) This gives the
age (1.5.43) as

-1 —1
fo = 134113 5 10° (70 kms_ Mpe ) yr .

Hy
Q@m,QA) =
26 T T T T mTTTT T T T T mTTT (0’ 1)
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Figure 1.1: Evidence for dark energy, found in 1998 by the Supernova Cosmology Project,
from S. Perlmutter et al., Astrophys. J 517, 565 (1999) [astro-ph/9812133]. Here the effective
blue apparent magnitude (corrected for variations in absolute magnitude, as indicated by
supernova light curves) are plotted versus redshift for 42 high redshift Type la supernovae
observed by the Supernova Cosmology Project, along with 18 lower redshift Type Ia super-
novae from the Calan—Tololo Supernovae Survey. Horizontal bars indicate the uncertainty
in cosmological redshift due to an assumed peculiar velocity uncertainty of 300 km sec™ L.
Dashed and solid curves give the theoretical effective apparent luminosities for cosmological
models with Qg = 0 or Q5 = 0, respectively, and various possible values of Q7.
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1 The Expansion of the Universe

For Q) = 0.28 and Q4 = 1 — Qjy, Eq. (1.5.48) gives a negative decelera-
tion parameter, go = —0.58, indicating that the expansion of the universe is
accelerating.

The High-z Supernova Search Team originally studied 16 Type Ia super-
novae of high redshift (with redshifts ranging from 0.16 to 0.97), including
2 from the Supernova Cosmology Project, together with 34 nearby super-
novae, and conclude that 2, > 0 at the 99.7% confidence level, with no
assumptions about spatial curvature. Their original results are shown in
Figure 1.2.

Their best fit for a flat cosmology is 27 = 0.28+0.10and Q5 = 1—Qyy,
giving an age of about (14.2+1.5) x 10° years, including uncertainties in the
Cepheid distance scale. Assuming only Q37 > 0, and with a conservative
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Figure 1.2: Evidence for dark energy, found in 1998 by the High-z Supernova Search Team,
from A. G. Riess et al., Astron. J. 116, 1009 (1998) [astro-ph/9805201]. In the upper panel
distance modulus is plotted against redshift for a sample of Type Ia supernovae. The curves
give the theoretical results for two cosmologies with Q24 = 0 and a good-fit flat cosmology
with Q7 = 0.24 and Q2 = 0.76. The bottom panel shows the difference between data and
a formerly popular Einstein—de Sitter model with 3, = 0.2 and 2, = 0, represented by
the horizontal dotted line.
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1.6 Distances at large redshift. Accelerated expansion

fitting method, with 99.5% confidence they conclude that ¢p < 0, again
strongly indicating an accelerated expansion. Including 8 new supernovae
in a sample of 230 supernovae of Type Ia gave® 1.4 Q@ —Qp = —0.3540.14,
providing further evidence that 2, > 0. The case for vacuum energy was
then strenghtened when the Supernova Cosmology Project,” including a
new set of supernova, found for a flat universe that Q, = 0.75f8:8$(stat.) +
0.032(syst.).

Both groups agree that their results are chiefly sensitive to a linear combi-
nation of Q and )y, given as 0.8Q23s — 0.6Q25 by the Supernova Cosmol-
ogy Project and 23y — Q24 or 1.4, — Q4 by the High-z Supernova Search
Team. The minus sign in these linear combinations, as in Eq. (1.5.48),
reflects the fact that matter and vacuum energy have opposite effects on
the cosmological acceleration: Matter causes it to slow down, while a pos-
itive vacuum energy causes it to accelerate. The negative values found for
these linear combinations shows the presence of a component of energy
something like vacuum energy, with p >~ —p. This is often called dark
energy.

Incidentally, these linear combinations of Q24 and €2 are quite different
from the expression 237/2 — 24, which according to Eq. (1.5.48) gives the
deceleration parameter go that was the target of much cosmological work
of the past. Thus the observations of Type Ia supernovae at cosmological
distances should not be regarded as simply measurements of ¢g.

The High-z Supernova Search Team subsequently began to use the same
survey observations to follow the time development of supernovae that were
used to find them.® They discovered 23 new high redshift supernovae of
Type Ia, including 15 with z > 0.7. Using these new supernovae along
with the 230 used earlier by Tonry ez al., and with the assumption that
Qu + Q24 = 1, they found the best-fit values 237 = 0.33 and Q2,5 = 0.67.

The crucial feature of the supernova data that indicates that Q, > Qjy
is that the apparent luminosity of Type Ia supernovae falls off more rapidly
with redshift than would be expected in an Einstein—de Sitter cosmology
with Q) = 1 and Q4 = 0. We can see the effect of vacuum energy
on apparent luminosity by comparing the luminosity distance calculated
in two extreme cases, both with no matter or radiation. For a vacuum-
dominated flat model with Q4 = 1 and Qg = Qur = Qg = 0, Eq. (1.5.46)
gives

zZ+z

dr(z) = (vacuum dominated) , (1.6.1)

0

6J L. Tonry et al., Astrophys. J. 594, 1 (2003) [astro-ph/0305008].
TR. Knop et al., Astrophys. J. 598, 102 (2003) [astro-ph/0309368].
8B. I. Barris et al., Astrophys. J. 502, 571 (2004) [astro-ph/0310843].
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while for an empty model with Qx = 1 and Qp = Qu = Qr = 0,
Eq, (1.5.46) gives

74222

dr(z) = Ho

(empty) , (1.6.2)
Evidently for all z, vacuum energy increases the luminosity distance. The
same increase is seen if we compare the more realistic case Q2 = 0.7, Qpr =
0.3, Qx = Qg = 0 with the corresponding case without vacuum energy
and Qg = 0.7, Q3 = 0.3, Qp = Qr = 0, as can be seen in Figure 1.3.
Both the Supernova Cosmology Project and the High-z Supernova Search
Team found that curve of measured luminosity distances vs. redshift of Type
Ia supernovae was closer to the upper than the lower curve in Figure 1.3.
Indeed, according to Eq. (1.4.9), the negative value of ¢¢ found by all groups
corresponds to the fact that the apparent luminosity of the type Ia super-
novae seen at moderate redshifts is /ess than in the empty model, for which
go = 0, in contrast with what had been expected, that the expansion is dom-
inated by matter, in which case we would have had ¢gg > 0, and the apparent
luminosities at moderate redshifts would have been larger than for gg = 0.
The connection between an accelerating expansion and a reduced
apparent luminosity can be understood on the basis of the naive Newtonian
cosmological model discussed in Section 1.5. In this model, the redshift we
observe from a distant galaxy depends on the speed the galaxy had when
the light we observe was emitted, but the apparent luminosity is inversely
proportional to the square of the distance of this galaxy now, because the
galaxy’s light is now spread over an area equal to 47 times this squared dis-
tance. If the galaxies we observe have been traveling at constant speed since
the beginning, as in the empty model, then the distance of any galaxy from

dp Hy
1.5
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1 -
0.75 -
0.5 =z
0.25

Z
0.2 0.4 0.6 0.8 1

Figure 1.3: Luminosity distance versus redshift for two cosmological models. The upper
solid curve is for the case Q5 = 0.7, Qp = 0.3, Qg = Qg = 0; the lower dashed curve
is for an empty model, with Qg = 1, Q5 = Q) = Qr = 0. The vertical axis gives the
luminosity distance times the Hubble constant.
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1.6 Distances at large redshift. Accelerated expansion

us now would be proportional to its speed when the light was emitted. In
the absence of a vacuum energy, we would expect the galaxies to be slowing
down under the influence of their mutual gravitational attraction, so that
the speed we observe would be greater than the speed they have had since
the light was emitted, and their distances now would therefore be smaller
than they would be if the speeds were constant. Thus in the absence of
vacuum energy we would expect an enhanced apparent luminosity of the
supernovae in these galaxies. In fact, it seems that the luminosity distances
of supernovae are larger than they would be if the speeds of their host
galaxies were constant, indicating that these galaxies have not been slowing
down, but speeding up. This is just the effect that would be expected from
a positive vacuum energy.

Of course, it is also possible that the reduction in apparent luminosity
is due to absorption or scattering of light by intervening material rather
than an accelerated expansion. It is possible to distinguish such effects
from a true increase in luminosity distance by the change in the apparent
color produced by such absorption or scattering, but this is a complicated
business.® This concern has been allayed by careful color measurements.!?
But it is still possible to invent intergalactic media (so-called gray dust) that
would reduce the apparent luminosity while leaving the color unchanged.

This concern has been largely put to rest, first by the study!! of the super-
novae SN1997ff found in the Hubble Deep Field!? in a galaxy with a redshift
z = 1.7+£0.1, the greatest yet found for any supernova, and then by the dis-
covery and analysis by a new team, the Higher-z Supernova Team,'? of 16
new Type la supernovae, of which six have z > 1.25. These redshifts are so
large that during a good part of the time that the light from these supernovae
has been on its way to us, the energy density of the universe would have been
dominated by matter rather than by a cosmological constant, and so the
expansion of the universe would have been decelerating rather than acceler-
ating as at present. Thus if the interpretation of the results of the two groups
at smaller redshifts in terms of €2,, and Q4 is correct, then the apparent
Iuminosity of these supernovae should be /arger than would be given by a
linear relation between luminosity distance and redshift, a result that could
not be produced by absorption or scattering of light. We see this in Figure
1.4, which shows the difference between the luminosity distance (in units
Ho_l) for the realistic case with Q, = 0.7, Qur = 0.3, Qx = Qg = 0 and for

9See e.g., A. Aguirre, Astrophys. J. 525, 583 (1999) [astro-ph/9904319].

10R. Knop et al., ref. 7; also see M. Sullivan et al., Mon. Not. Roy. Astron. Soc. 340, 1057 (2003)
[astro-ph/0211444].

1A, G. Riess et al., Astrophys. J. 560, 49 (2001) [astro-ph/0104455].

12R | L. Gilliland, P. E. Nugent, and M. M. Phillips, Astrophys. J. 521, 30 (1999).

I3A. G. Riess et al., Astrophys. J. 607, 665 (2004) [astro-ph/0402512].
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Figure 1.4: The luminosity distance times Hy for the realistic case Q2 = 0.7, Q7 = 0.3,
Qg = Qg = 0, minus its value for the empty case Qg = 1, Qp = Q) = Qr = 0, plotted
against redshift.

the empty model with Qg = 1, Qy = Qg = Qr = 0. We see that luminos-
ity distances for the realistic model are greater than for the empty model for
moderate redshift, but become less than for the empty model for z > 1.25.
This is just what is seen. The apparent luminosity of all supernovae is consis-
tent with the parameters Q2,7 ~ 0.3, Q4 ~ 0.7 found in the 1998 studies, but
not consistent with what would be expected for gray dustand 2, = 0. These
conclusions have subsequently been strengthened by the measurement of
luminosity distances of additional Type Ia supernovae with redshifts near
0.5.1% In 2006 Riess et al.'> announced the discovery with the Hubble Space
Telescope of 21 new Type Ia supernovae, which included 13 supernovae with
redshifts z > 1 measured spectroscopically (not just photometrically). Their
measured luminosity distances and redshifts, together with data on previ-
ously discovered Type Ia supernovae, gave further evidence of a transition
from a matter-dominated to a vacuum energy-dominated expansion, and
showed that the pressure/density ratio of the vacuum energy for z > 1 is
consistent with w = —1, and not rapidly evolving.

Another serious concern arises from the possibility that the absolute
luminosity of Type la supernovae may depend on when the supernovae
occur. Because Type Ia supernovae occur at a characteristic moment in the
history of a star, evolution effects on the luminosities of these supernovae
are not expected to be as important as for whole galaxies, which at great
distances are seen at an earlier stage in their history.!® Even so, the absolute
luminosity of a Type la supernova is affected by the chemical composition

14 A Clocchiatti et al., Astrophys. J. 642, 1 (2006) [astro-ph/0510155].

ISA. Riess et al., Astrophys. J. 659, 98 (2007) [astro-ph/0611572].

16p, Branch, S. Perlmutter, E. Baron, and P. Nugent, contribution to the Supernova Acceleration
Probe Yellow Book (Snowmass, 2001) [astro-ph/0109070].
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1.6 Distances at large redshift. Accelerated expansion

of the two progenitor stars of the supernova, which is in turn affected by the
evolution of the host galaxy.!” Such effects are mitigated by taking account
of the correlation of supernova absolute luminosity with decay time and
with intrinsic color, both of which presumably depend on the progenitor’s
chemical composition. Also, evidence for dark energy has been found in
studies of subsets of Type Ia supernovae found in very different environ-
ments with very different histories.!® The study of the seven supernovae
with z > 1.25 mentioned above rules out models with 2, = 0 and any sort
of dramatic monotonic evolution of supernovae absolute luminosities that
would mimic the effects of dark energy.

There are other effects that might possibly impact the observed relation
between supernova apparent luminosities and redshifts:

1. Theeffect of weak gravitationallensing on the implications of the super-
nova observations is expected to be small,!® except perhaps for small
area surveys.2’ (Gravitational lensing is discussed in Chapter 9.) It had
been thought that the apparent luminosity of the most distant observed
supernova, SN1997ff, may be enhanced by gravitational lensing,?! con-
ceivably reopening the possibility that the reduction of the apparent
luminosity of the nearer supernovae is due to gray dust. However, a
subsequent analysis by the same group?? reported that the magnifica-
tion of this supernova due to gravitational lensing is less than had been
thought, and that the effect of the corrections due to gravitational lens-
ing on current cosmological studies is small. Members of the High-z
Supernova project have reported that instead this effect is likely to imp-
rove agreement with the estimate that Qj; = 0.35and Q, = 0.65.23

2. It has been argued that inhomogeneities in the cosmic distribution of
matter could produce an accelerating expansion, without the need
for any sort of exotic vacuum energy.’* Given the high degree of

17p, Podsiadlowski e7 al., astro-ph/0608324. Evolution may also affect the extinction of light by dust
in the host galaxy; see T. Totani and C. Kobayashi, Astrophys. J. 526, 65 (1999).

18M., Sullivan et al., ref. 10.

19A. . Barber, Astron. Soc. Pacific Conf. Ser. 237, 363 (2001) [astro-ph/0109043].

20A. Cooray, D. Huterer, and D. E. Holz, Phys. Rev. Lett. 96, 021301 (2006).

21E. Mrtstell, C. unnarsson, and A. Goobar, Astrophys. J. 561, 106 (2001); C. Gunnarsson, in
Proceedings of a Conference on New Trends in Theoretical and Observational Cosmology — Tokyo, 2001
[astro-ph/0112340].

22], Jénsson et al., Astrophys. J. 639, 991 (2006) [astro-ph/0506765].

23N. Benitez et al., Astrophys. J. 577, L1 (2002) [astro-ph/0207097].

HE. W, Kolb, S. Matarrese, A. Notari, and A. Riotto, Astrophys. J. 626, 195 (2005) [hep-th/0503117];
E. W. Kolb, S. Matarrese, and A. Riotto, New J. Phys. 8, 322 (2006) [astro-ph/0506534]; E. Barausse, S.
Matarrese, and A. Riotto, Phys. Rev. D 71, 063537 (2005).
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1 The Expansion of the Universe

homogeneity of the universe when averaged over sufficiently large
scales, this seems unlikely.?

3. There is some evidence for two classes of type Ia supernovae,?® with
the minority associated perhaps with merging white dwarfs, or with
a variation in explosion physics. The effect on cosmological studies
remains to be evaluated.

4. Other uncertainties that can degrade the accuracy of measurements
of dark energy (without casting doubt on its existence) arise from the
circumstance that the shape of the curve of luminosity distance versus
redshift is found by numerous observatories, both ground-based and
space-based, and there are various flux calibration errors that can arise
between these different observatories.

5. The measurement of luminosity distance of any source of light at large
redshift has historically been plagued by the fact that measurements
are not “bolometric,” that is, equally sensitive to all wavelengths, but
are rather chiefly sensitive to wavelengths in a limited range. The
cosmological redshift changes the apparent colors of sources, and
thereby changes the sensitivity with which apparent luminosity is mea-
sured. To take this into account, the observed apparent magnitude is
corrected with a so-called K-correction.?’ The K-correction for super-
novae were worked out before the discovery of dark energy,?® and has
been refined subsequently.?? As the precision of supernovae observations
improves, further improvements may also be needed in the K-correction.

These observations of an accelerated expansion are consistent with the
existence of a constant vacuum energy, but do not prove that this energy
density really is constant. According to Eq. (1.5.18), the existence of an
accelerated expansion does however require that a large part of the energy
density of the universe is in a form that has p + 3p < 0, unlike ordinary
matter or radiation. This has come to be called dark energy.3°

25F E. Flanagan, Phys. Rev. D71,103521 (2005) [hep-th/0503202]; G. G. Geshnizjani, D. J. H. Chung,
and N. Afshordi, Phys. Rev. D 72,023517 (2005) [astro-ph/0503553]; C. M. Hirata and U. Seljak, Phys.
Rev. D 72, 083501 (2005) [astro-ph/0503582]; A. Ishibashi and R. M. Wald, Class. Quant. Grav. 23,
235 (2006) [gr-qc/0509108].

26D, Howell et al., Nature 443, 308 (2006); S. Jha, A. Riess, & R. P. Kirshner, Astrophys. J. 654, 122
(2007); R. Quimby, P. Hoflich, and J. C. Wheeler, 0705.4467.

2TFor a discussion of the K-correction applied to observations of whole galaxies, and original refer-
ences, see G&C, p. 443.

N Kim, A. Goobar, and S. Perlmutter, Proc. Astron. Soc. Pacific 108, 190 (1995) [astro-
ph/9505024].

29p, Nugent, A. Kim, and S. Perlmutter, Proc. Astron. Soc. Pacific 114, 803 (2002) [astro-ph/0205351].

30For a general review, see P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).
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To take into account the possibility that the dark energy density is not
constant, it has become conventional to analyze observations in terms of
its pressure/density ratio pp g./pp.E. = w. Except in the case of a con-
stant vacuum energy density, for which w = —1, there is no special reason
why w should be time-independent. (A different, more physical, possibil-
ity is explored at the end of Section 1.12.) Still, it is popular to explore
cosmological models with w constant but not necessarily equal to —1. As
long as the dark energy density and Qg are non-negative, the expansion of
the universe will continue, with @ always positive. As shown in Eq. (1.1.34),
the dark energy density in this case goes as a—>—3", so if w is negative (as
indicated by the supernova observations) the energy density of radiation and
matter must eventually become negligible compared with the dark energy
density. For w < —1/3, the effect of a possible curvature in the Friedmann
equation (1.5.19) also eventually becomes negligible. The solution of this
equation for w > —1 with & > 0 then becomes ¢ — 1| — CaB®t3W/2 ) with
C > 0, and ¢ an integration constant. This is a continued expansion, with a
decreasing expansion rate. But for w < —1, sometimes known as the case of
phantom energy, the solution with & > Oisinstead t{—t — CaG®T3/2 again
with C > 0. This solution has the remarkable feature that a(f) becomes
infinite at the time ¢;. In contrast with the case w > —1, for w < —1 all
structures — galaxy clusters, galaxy clusters, stars, atoms, atomic nuclei,
protons and neutrons — eventually would be ripped apart by the repulsive
forces associated with dark energy.?!

To further study the time dependence of the dark energy, a five year
supernova survey, the Supernova Legacy Survey,3? was begun in 2003 at the
Canada-France—Hawaii telescope on Mauna Kea. At the end of the first
year, 71 high redshift Type Ia supernovae had been discovered and studied,
with the result that 3, = 0.263 £0.042(stat) £0.032(sys). Combining this
supernova data with data from the Sloan Digital Sky Survey (discussed
in Chapter 8), and assuming that the dark energy has w = p/p time-
independent, it is found that if w is constant then w = —1.023 +0.09(stat) +
0.054(sys), consistent with the value w = —1 for a constant vacuum energy.
At the time of writing, results have just become available for 60 Type Ia
supernovae from another supernova survey, ESSENCE.3? (The acronym is
for Equation of State: Supernovae trace Cosmic Expansion). Combining
these with the results of the Supernova Legacy Survey, the ESSENCE group
found that if w is constant then w = —1.07 £ 0.09(stat, lo’) £ 0.13(syst),
and Q) = 0.267- 555 (stat, 10).

3IR. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)
[astro-ph/0302506].

32p, Astier, et al., Astron. Astrophys. 447, 31 (2006) [astro-ph/0510447].

3M. Wood-Vesey et al., astro-ph/0701041
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1 The Expansion of the Universe

The conclusion that dark energy makes up a large fraction of the energy
of the universe has been confirmed by observations of the cosmic microwave
background, as discussed in Section 7.2. This conclusion has also received
support from the use of a different sort of secondary distance indicator, the
emission of X-rays from hot gas in galaxy clusters. In Section 1.9 we will see
that the measurement of redshift, temperature, apparent X-ray luminosity
and angular diameter of a cluster allows a determination of the ratio of hot
gas (“baryons”) to all matter in the cluster, with this ratio proportional to
d/f/ 2, where d4 is the assumed angular-diameter distance of the cluster.
This can be turned around: under the assumption that the ratio of hot gas
to all matter is the same for all clusters in a sample, X-ray observations can
be used to find the dependence of the cluster angular diameter distances
on redshift.3* In this way, observations by the Chandra satellite of X-rays
from 26 galaxy clusters with redshifts in the range 0.07 < z < 0.9 have been
used to determine that in a cosmology with a constant vacuum energy and
cold dark matter, Q5 = 0.94’:8:%, within 68% confidence limits.?> Relax-
ing the assumption that the cosmological dark energy density is constant,
but assuming Qx = 0 and a constant w, and taking the baryon density
to have the value indicated by cosmological nucleosynthesis (discussed in
Section 3.2), this analysis of the Chandra data yields 1 — Q3 = 0.76 £ 0.04
and a dark energy pressure/density ratio w = —1 .20f8:§§.

It is possible that measurements of luminosity distance can be pushed
to much larger redshifts by the use of long gamma ray bursts as secondary
distance indicators. These bursts definitely do not have uniform absolute
luminosity, but there are indications that the absolute gamma ray luminosity
is correlated with the peak gamma ray energy and a characteristic time
scale.3®

The discovery of dark energy is of great importance, both in interpreting
other observations and as a challenge to fundamental theory. It is pro-
foundly puzzling why the dark energy density is so small. The contribution
of quantum fluctuations in known fields up to 300 GeV, roughly the highest
energy at which current theories have been verified, gives a vacuum energy

348, Sasaki, Publ. Astron. Soc. Japan 48, 119 (1996) [astro-ph/9611033]; U.-L. Pen, New Astron. 2,
309 (1997) [astro-ph/9610147].

355 w. Allen, R. W. Schmidt, H. Ebeling, A. C. Fabian, and L. van Speybroeck, Mon. Not. Roy.
Astron. Soc. 353,457 (2004) [astro-ph/0405340]. For earlier applications of this technique, see K. Rines
et al., Astrophys. J. 517, 70 (1999); S. Ettori and A. Fabian, Astron. Soc. Pac. Conf. Ser. 200, 369
(2000); S. W. Allen, R. W. Schmidt, and A. C. Fabian, Mon. Not. Roy. Astron. Soc. 334, L11 (2002);
S. Ettori, P, Tozzi, and P. Rosati, Astron. & Astrophys. 398, 879 (2003). The possibility of a variable
ratio of hot gas to all matter is explored by R. Sadat et al., Astron. & Astrophys. 437, 310 (2005); L. D.
Ferramacho and A. Blanchard, 4stron. & Astrophys. 463, 423 (2007) [astro-ph/0609822].

36¢, Firmani, V. Avila-Reese, G. Ghisellini, and G. Ghirlanda, Mon. Not. Roy. Astron. Soc. 372,
28 (2006) [astro-ph/0605430]; G. Ghirlanda, G. Ghisellini, and C. Firmani, New J. Phys. 8, 123 (2006)
[astro-ph/0610248].
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1.7 Cosmic expansion or tired light?

density of order (300 GeV),* or about 1027 g/cm?. This of course is vastly
larger than the observed dark energy density, 2y 0 crit > 10-2 g/ecm?, by
a factor of order 10°°. There are other unknown contributions to the vac-
uum energy that might cancel this contribution, coming from fluctuations
in fields at higher energies or from the field equations themselves, but this
cancelation would have to be precise to about 56 decimal places. There is
no known reason for this remarkable cancelation.?” The discovery of dark
energy now adds a second problem: why is the dark energy density compa-
rable to the matter energy density at this particular moment in the history
of the universe?

In thinking about these problems, it is crucial to know whether the vac-
uum energy is really time-independent, or varies with time, a question that
may be answered by future studies of distant Type Ia supernovae or other
measurements at large redshift. The possibility of a varying dark energy
(known as guintessence) will be considered further in Section 1.12.

1.7 Cosmic expansion or tired light?

In comparing observations of redshifts and luminosity distances with theory,
we rely on the general understanding of redshifts and luminosities outlined
in Sections 1.2 and 1.4. One thing that might invalidate this understanding
is absorption or scattering, which reduces the number of photons reach-
ing us from distant sources. This possibility is usually taken into account
by measuring the color of the source, which would be affected by absorp-
tion or scattering, though as mentioned in the previous section there is a
possibility of gray dust, which could not be detected in this way. Another
possible way that apparent luminosities could be reduced is through the
conversion of photons into particles called axions by intergalactic magnetic
fields. There is also a more radical possibility. Ever since the discovery of
the cosmological redshift, there has been a nagging doubt about its interpre-
tation as evidence of an expanding universe. Is it possible that the universe
is really static, and that photons simply suffer a loss of energy and hence
a decrease in frequency as they travel to us, the loss of energy and hence
the redshift naturally increasing with the distance that the photons have to
travel?

It is possible to rule out all these possibilities by comparing the
luminosity distance dy (z) with the angular diameter distance d4(z) of the
same distant source. None of the possibilities mentioned above can affect
the angular diameter distance, while the conventional interpretation of

37For a survey of efforts to answer this question, see S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
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redshifts and luminosities provides the model-independent result (1.4.12),
that dy (z)/d4(z) = (1 + z)%, so a verification of this ratio can confirm the
conventional understanding of dy (z).

We can check this formula for dy (z) /d 4(z) by a “surface brightness test”
suggested long ago by Tolman.! If a light source has an absolute luminos-
ity per proper area L, then the apparent luminosity of a patch of area 4
willbe £ = LA /4nd1%. This patch will subtend a solid angle 2 = 4 /dj.
The surface brightness B is defined as the apparent luminosity per solid
angle, so
¢ Ld}
Q  dndi
In the conventional big bang cosmology the ratio d4/dy is given by
Eq. (1.4.12), so

B

(1.7.1)

B=(1+2""* (%) . (1.7.2)

If we can find a class of light sources with a common value for the absolute
luminosity per proper area £, then their surface brightness should be found
to decrease with redshift precisely as (1 + z)~%.

For instance, one important difference between “tired light” theories
and the conventional big bang theory is that in the conventional theory all
rates at the source are decreased by a factor (1 4+ z)~!, while in tired light
theories there is no such slowing down. One rate that is slowed down at
large redshifts in the conventional theory is the rate at which photons are
emitted by the source. This is responsible for one of the two factors of
(1 +2)~! in formula (1.4.1) for apparent luminosity, the other factor being
due to the reduction of energy of individual photons. On the other hand, if
the rate of photon emission is not affected by the redshift, then in a static
Euclidean universe in which photons lose energy as they travel to us, the
apparent luminosity of a distant source L at a distance d will be given by
L/47(1 + z)d?, with only a single factor 1 + z in the denominator to take
account of the photon energy loss. That is, the luminosity distance will be
(1 + z)!/2d, while the angular diameter distance in a Euclidean universe is
just d, so here dr /d4 = (1 + z)!/2, and the surface brightness of distant
galaxies should decrease as (1 4 z)~!.

Lubin and Sandage? have used the Hubble Space Telescope to compare
the surface brightness of galaxies in three distant clusters with redshifts

IR. C. Tolman, Proc. Nat. Acad. Sci16, 5111 (1930); Relativity, Thermodynamics, and Cosmology
(Oxford Press, Oxford, 1934): 467.

2L. M. Lubin and A. Sandage, Astron. J. 122, 1084 (2001) [astro-ph/0106566]. Their earlier work is
described in A. Sandage and L. M. Lubin, Astron. J. 121, 2271 (2001); L. M. Lubin and A. Sandage,
ibid, 2289 (2001) and Astron. J. 122, 1071 (2001) [astro-ph/0106563.]
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0.76, 0.90, and 0.92 with the surface brightness measured in closer galax-
ies. They detect a decrease of B with increasing z that is consistent with
Eq. (1.7.2) with reasonable corrections for the effects of galaxy evolution,
and is quite inconsistent with the behavior B o (14z)~! expected in a static
universe with “tired light.”

In the standard big bang cosmology all rates observed from a distant
source are slowed by a factor 1/(1 + z), not just the rate at which photons
are emitted. This slowing has been confirmed? for the rate of decline of light
from some of the Type Ia supernovae used by the Supernova Cosmology
Project discussed in the previous section. The hypothesis that the absolute
luminosity is simply correlated with the intrinsic decline time is found to
work much better if the observed decline time is taken to be the intrinsic
decline time stretched out by a factor 1 + z. Nothing like this would be
expected in a static Euclidean universe with redshifts attributed to tired
light.

1.8 Ages

As we have seen, a knowledge of the Hubble constant and of the matter and
vacuum density parameters 237 and Q24 allows us to estimate the age of the
universe. In this section we will discuss independent estimates of the age of
the universe, based on calculations of the ages of some of the oldest things
it contains.

Since metals (elements heavier than helium) found in the outer parts
of stars arise chiefly from earlier generations of stars, the oldest stars are
generally those whose spectra show small abundances of metals. These are
the so-called Population II stars, found in the halo of our galaxy, and in
particular in globular clusters. There are two main ways of estimating ages
of old stars:

A. Heavy element abundances

If a nucleus decays with decay rate A, and has an initial abundance A;,j, then
the abundance A after a time 7 is A = Ajyit exp(—AT). Hence if we knew
Ajpit and could measure A4, we could determine 7 from 7' = A~ In(A4jpit /A).
Unfortunately neither condition is likely to be satisfied. On the other hand,
it is often possible to calculate the ratio of the initial abundances A4 j,j and
Az init of two nuclei, and to measure their relative present abundance A1/ A>.

3B. Leibundgut er al., Astrophys. J. 466, L21 (1996); G. Goldhaber et al. (Supernova Cosmology
Project), Astrophys. J. 558, 359 (2001) [astro-ph/0104382].
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This relative abundance is given by

A (Alinit>
—=|——)exp((A2—ADT),
Ar Ao init p( )

1 A Ay
T = [m <—1) ~In (ﬂﬂ (1.8.1)
A — A A> A init

If the initial abundances are similar and the observed abundances are very
different, then the estimated value of 7" will be insensitive to the precise
value of the initial abundance ratio.

The initial relative abundances of heavy, radioactive elements are est-
imated on the well-founded assumption that these elements are made in the
so-called r-process, the rapid addition of neutrons to lighter elements such
as iron in core-collapse supernova explosions, after which the neutron-rich
isotopes formed in this way undergo multiple beta decays, transforming
them to the most deeply bound nuclei with the same number of nucleons.
This method has been used to put a lower bound on the age of our galaxy
from the terrestrial abundance of 23U, which has a decay rate of 0.971 x
10=2/yr. To avoid uncertainties in the distribution of 23U in earth, its
abundance is measured relative to the isotope 233U, which has a slower decay
rate of 0.154 x 10~?/yr, but behaves the same chemically and is presumably
distributed in the same way. The initial abundance ratio of 233U to 238U is
estimated to be 1.65 & 0.15; it is larger than one because three additional
neutrons must be added to the progenitor of 233U to form the progenitor of
238U, On the other hand, the larger decay rate of 23U makes it (fortunately)
less abundant than 23¥U now. The present abundance ratio of uranium
isotopes on earth is 0.00723, so this uranium has been decaying for a time

In(1.65) — In(.00723)
0.971 x 10-9/yr — 0.154 x 10~9/yr

SO

= 6.6 Gyr [1 Gyr = 10° yr].

But the sun is a second (or perhaps third) generation (called “Population I”)
star, and presumably its uranium was being produced over along time interval
before the formation of the solar system. The uranium abundance ratio has
beensupplemented withmeasurements of otherabundanceratiosontheearth
and meteorites, such as 22 Th/?33 U and 187Re/'®” Osratios, and analyzed with
the length of the period of heavy element formation left as a free parameter.
This gives a more stringent (but less certain) lower bound of 9.6 Gyr! on the
age of the heavy elements in the neighborhood of the solar system.

IB.s. Meyer and D. N. Schramm, Astrophys. J. 311, 406 (1986).

60



1.8 Ages

A much more stringent lower bound on the age of the galaxy is given
by applying these methods to heavy elements in metal-poor stars beyond
the solar system. First thorium was observed spectroscopically in a very
metal-poor star (and hence presumably old) K giant star, CS 22892-052.2
The relative abundances in this star of the more stable elements produced in
the r-process, as measured from the intensity of absorption lines in the star’s
spectrum, matches those of the same elements in the solar system, except for
a much lower abundance of the heaviest detected element thorium, which
(for 232Th) has a half life 14 Gyr. Attributing the decrease in thorium to
its radioactive decay, the age of the thorium in this star is estimated as
14.1 + 3 Gyr. Other estimates of the ages of CS 22892-052 and other metal-
poor stars have been made using the measured abundance ratios of thorium
to europium and lanthanum.’

Uranium-238 decays more rapidly than 232Th, so we can get a more
sensitive estimate of the age of a star by using both its uranium and its
thorium abundances, providing of course that uranium as well as tho-
rium lines can be observed in the star’s spectrum. No uranium absorp-
tion lines were observed in the spectrum of CS 22892-052, but absorption
lines from singly ionized uranium were subsequently observed in two other
metal-poor star with an abundance of r-process elements, CS31082-001 and
BD+17°3248. The observed abundance ratio of uranium to thorium in
CS31082-001 is 10~9-74%015 while the initial abundance ratio has been var-
iously estimated as 1079255 or 10~%-10, Using these numbers in Eq. (1.8.1)
gives this star an age of 12.5 + 3 Gyr.* Subsequent observations indicated
ages of 14 +£2 Gyr,> 15.54+ 3.2 Gyr,® and 14.1 + 2.5 Gyr.” In a similar way,
the age of BD+17°3248 has been calculated as 13.8 & 4 Gyr.® (See Fig-
ure 1.5.) More recently, both uranium and thorium lines have been found
in the spectrum of the newly discovered metal-poor star HE 1523-0903;
the ratio of thorium and uranium abundance to the abundances of other
r-process elements, and to each other, was used to give an age of the star as
13.2 Gyr.?

2C. Sneden et al., Astrophys. J. 467, 819 (1996); Astrophys. J. 591, 936 (2003) [astro-ph/0303542]. A
review with references to earlier work on thorium abundances was given by C. Sneden and J. J. Cowan,
Astronomia y Astrofisica (Serie de Conferencia) 10, 221 (2001) [astro-ph/0008185].

31. 1 Ivans et al., Astrophys. J. 645, 613 (2006) [astro-ph/0604180], and earlier references cited
therein.

4R, Cayrel et al., Nature 409, 691 (2001).

V. Hill ez al., Astron. Astrophys. 387, 580 (2002).

SH. Schatz et al., Astrophys. J. 579, 626 (2002).

7S. Wanajo, Astrophys. J. 577, 853 (2002).

8.1, Cowan, et al., Astrophys. J. 572, 861 (2002) [astro-ph/0202429].

9A. Frebel er al., Astrophys. 660, L117 (2007). [astro-ph/0703414].

61



1 The Expansion of the Universe

log e

-0.50

-1.00 |

-1.50 @  Ground based data U 7

—— S8 r-process abundances
-2.00 HST data 4

250 1 1 1 1 1 1
30 40 50 60 70 80 90

Atomic number

Figure 1.5: Abundances of elements produced by the r-process in the star BD+17°3248,
obtained by ground-based and Hubble Space Telescope spectroscopic observations. For
comparison, the solid curve gives theoretical initial abundances, based on solar system data.
Note the low observed abundances of thorium and uranium, compared with the theoretical
initial abundances, which indicate an age for BD+17°3248 of 13.8 £4 Gyr. From J. J. Cowan
et al., Astrophys. J. 572, 861 (2002) [astro-ph/0202429].

B. Main sequence turn-off

The stars that satisfy the main sequence relation between absolute luminos-
ity and surface temperature are still burning hydrogen at their core. When
the hydrogen is exhausted at the core, hydrogen-burning continues in a shell
around a (temporarily) inert helium core. The star then moves off the
main sequence, toward higher luminosity and lower surface temperature.
The heavier a star is, the more luminous it is on the main sequence, and
the faster it evolves. Thus as time passes, the main sequence of a cluster
of stars of different masses but the same age shows a turn-oft that moves
to lower and lower luminosities. (See Figure 1.6). Roughly, the absolute
luminosity of stars at the turn-off point is inversely proportional to the age
of the cluster. In particular, observations of the main sequences of a number
of globular clusters gave ages variously calculated'® as 11.5+1.3 Gyr, 12+1
Gyr, 11.8+ 1.2 Gyr, 14.0+1.2 Gyr, 12+ 1 Gyr, and 12.2 £ 1.8 Gyr. A sum-
mary by Schramm'! found that most of the discrepancies disappear when

10For references, see B. Chaboyer, Phys. Rep. 307,23 (1998) [astro-ph/9808200].
1D, Schramm, in Critical Dialogues in Cosmology, N. Turok, ed. (World Scientific, Singapore,
1997): 81
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Figure 1.6: Color-magnitude diagram for the globular cluster M15. Visual apparent mag-
nitudes of M15 stars are plotted on the vertical axis. Since all stars in M15 are at about
the same distance from earth, the apparent visual magnitude differs from the absolute visual
magnitude by a constant term, with absolute luminosities increasing upwards. The difference
of apparent blue and visual magnitudes is plotted on the horizontal axis. This is a measure
of surface temperature, with temperature decreasing to the right. If M15 were young, the
main sequence would continue upwards and to the left; the position of the main sequence
turn-off (MSTO) and other features of the diagram indicate that the age of the cluster is
15 £+ 3 Gyr. Diagram from B. Chaboyer, Phys. Rep. 307, 23 (1998), based on data of P. R.
Durrell and W. E. Harris, Astron. J. 105, 1420 (1993) [astro-ph/9808200].

the various calculations are done with the same input values for parameters
like the initial abundance of helium, oxygen, and iron, and gave a consensus
value as 14 4 2(statistical) 4+ 2(systematic) Gyr. Note that all these ages
are sensitive to the distance scale; a fractional change §d/d in estimates of
distances would produce a fractional change §L./L = —28d/d in estimates
of absolute luminosities, and hence a fractional change 87/t ~ +238d/d
in estimates of ages. Using measurements of distances to nine globular
clusters with the Hipparcos satellite yields an estimated galactic age'? of
13.2 £ 2.0 Gyr.

12E Carretta, R. G. Gratton, G. Clementini, and F. F. Pecci, Astrophys. J. 533, 215 (2000) [astro-
ph/9902086].
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1 The Expansion of the Universe

These ages would pose a problem for what used to be the most popular
model, with Q3 = 1 and no vacuum energy. In this case, the age of the
universe is

2 70 k M
fo= —— =93 ( m/sec/ pc) Gyr,
Hy

3Hy
which is somewhat younger than the oldest objects in the galaxy, though not
by many standard deviations. Inclusion of a constant vacuum energy helps
to avoid this problem; as remarked in Section 1.5, with nothing else in the
universe we would have a(?) oc exp(Ht), and the age of the universe would be
infinite. As we saw in Section 1.6, the supernovae distance-redshift relation
indicates that the vacuum energy is now roughly twice the matter energy,
giving an age much longer than 2/3HJ:

70 k M
fo = 134713 ( m/;,lzc/ pC) Gyr ,

This removes the danger of a conflict, provided that the globular clusters in
our galaxy are not much younger than the universe itself. In fact, there is
now a truly impressive agreement between the age of the oldest stars and
star clusters on one hand and the cosmic age calculated using values of Hy,
Qu, and Q, found from the redshift—distance relation. As we will see in
Section 7.2, there is also an excellent agreement between these ages and the
age calculated using parameters measured in observations of anisotropies
in the cosmic microwave background.

So far in this section, we have considered only the present age of our
own galaxy. It is also possible to estimate the ages of other galaxies at
high redshift, at the time far in the past when the light we now observe
left these galaxies. Of course, it is not possible to distinguish individual
stars or globular clusters in these galaxies, but the spectrum of the galaxy
gives a good idea of the age. We need the whole spectrum to separate the
effects of metallicity, scattering, etc., but roughly speaking, the redder the
galaxy, the more of its bright bluer stars have left the main sequence, and
hence the older it is. In this way, it has been found!3 that the radio galaxies
53W091(z = 1.55) and 53W069(z = 1.43) have ages ~ 3.5 Gyr and 3 to
4 Gyr, respectively. This sets useful lower bounds on the vacuum energy. In
a model with non-relativistic matter and a constant vacuum energy, the age
of the universe at the time of emission of light that is seen at present with

137 s. Dunlop et al., Nature 381, 581 (1996); J. S. Dunlop, in The Most Distant Radio Galaxies -
KNAW Colloquium, Amsterdam, October 1997, eds. Best et al. [astro-ph/9801114].
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redshift z is given by Eq. (1.5.42) as

1 [T dx
t(z) = —f . (1.8.2)
Hy Jo x\/QA + Qrx 24+ Qux 3+ Qrx—?

Any galaxy observed with redshift z must have been younger than this at
the time that its light was emitted. For instance, for a flat universe with
Qg = Qg =0, so that Q) = 1 — Q4, the existence of a galaxy at z = 1.55
with age =~ 3.5 Gyr sets a lower bound!'* on €, of about 0.6 for Hy = 70
km s~! Mpc!.

Eventually the accuracy of these age determinations may become good
enough to allow us to measure at least the dependence of redshift on the
cosmic age. Of course, galaxies form at various times in the history of the
universe, so the age of any one galaxy does not allow us to infer the age of
the universe at the time light we now see left that galaxy. However, the
homogeneity of the universe implies that the distribution of cosmic times of
formation for any one variety of galaxy is the same anywhere in the universe.
From differences in the distributions of ages of a suitable species of galaxy
at different redshifts, we can then infer the difference of cosmic age ¢ at these
redshifts. The Robertson—Walker scale factor a(¢) is related to the redshift
z(t) observed now of objects that emitted light when the cosmic age was ¢
by 1 + z(#) = a(ty)/a(t), so z = —H (¢)(1 + z). To calculate Z, we note that
for K =0, H*(t) = 87 Gp(t)/3,and p = —3H (p + p),

(1) = —47rG<p(l) + p(z>) . (1.8.3)
Then for K =0
2 /(5 3p

Thus measurements of differences in ¢ for various differences in redshift may
allow a measurement of the ratio p/p at various times in the recent history
of the universe.!?

1.9 Masses

We saw in Section 1.6 that the observed dependence of luminosity distance
on redshift suggests that the fraction Q) of the critical density provided by

141, M. Krauss, Astrophys. J. 489, 486 (1997); 1. S. Alcaniz and J. A. S. Lima, Astrophys. J. 521, L87
(1999) [astro-ph/9902298].
ISR, Jiminez and A. Loeb, Astrophys. J. 573, 37 (2002) [astro-ph/0106145].
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1 The Expansion of the Universe

non-relativistic matter is roughly 30%. In this section we will consider other
independent ways that ,, is measured.

A. Virialized clusters of galaxies

The classic approach! to the measurement of €,/ is to use the virial theo-
rem to estimate the masses of various clusters of galaxies, calculate a mean
ratio of mass to absolute luminosity, and then use observations of the total
luminosity of the sky to estimate the total mass density, under the
assumption that the mass-to-light ratio of clusters of galaxies is typical
of the universe as a whole.

To derive the virial theorem, consider a non-relativistic gravitationally
bound system of point masses m, (either galaxies, or stars, or single parti-
cles) with positions relative to the center of mass (in an ordinary Cartesian
coordinate system) X,,. The equations of motion are

. oV
where the potential energy V is
1 Gm,my
V=—— —_ 1.9.2
2 2 X, - X (152
Multiplying Eq. (1.9.1) with X/ and summing over n and i gives
AV . 1d? 5
- Xn:X’éa_X,;' = ;mnxn Xo=355 Xn:mnxn —27, (1.9.3)

where T is the internal kinetic energy (not counting any motion of the center
of mass)

1 .
T=3 Xn:mnxg . (1.9.4)

Let us assume that the system has reached a state of equilibrium (“become
virialized”), so that although the individual masses are moving there is no
further statistical evolution, and in particular that

d2
0="3 > m X, (1.9.5)
n

3 Zwicky, Astrophys. J. 86, 217 (1937); J. H. Oort, in La Structure et I’Evolution de I'Universe
(Institut International de Physique Solvay, R. Stoops, Brussels, 1958): 163.
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(This is why it was important to specify that X,, is measured relative to the
center of mass; otherwise a motion of the whole cluster would give the sum
a term proportional to 72, invalidating Eq. (1.9.5).) But V is of order —1
in the coordinates, so the left-hand side of Eq. (1.9.3) is just V, giving the
virial theorem:

2T +V =0. (1.9.6)
We may express 7 and V as
1 ) 1 51
T=-M{v), V=—=-GM(-), (1.9.7)
2 2 r

where (v?) is the mean (mass weighted) square velocity relative to the center
of mass, (1/r) is the mean inverse separation, and M = ) my, is the total
mass. Eq. (1.9.6) thus gives the virial formula for M:

2 (v?)

M = G (1.9.8)

This derivation does not apply to irregular clusters of galaxies, like the
nearby one in Virgo. Clusters like this do not seem to have settled into a
configuration in which the condition (1.9.5) is satisfied, and therefore prob-
ably do not satisfy the virial theorem. On the other hand, the virial theorem
probably does apply at least approximately to other clusters of galaxies, like
the one in Coma, which appear more or less spherical. According to general
ideas of statistical equilibrium, we may expect the rms velocity dispersion
v (v?) of the dominant masses in such clusters to equal the velocity disp-
ersion of the visible galaxies in the cluster, which can be measured from the
spread of their Doppler shifts, and also to equal the velocity dispersion of
the ionized intergalactic gas in the cluster, which since the advent of X-ray
astronomy can be measured from the X-ray spectrum of the gas. The values
obtained in these ways for (v2) are independent of the distance scale. On the
other hand, values for (1/r) are obtained from angular separations: the true
transverse proper distance d is given in terms of the angular separation 6 by
d = 0d,4, where d4 is the angular diameter distance (1.4.11). For clusters
with z « 1, Egs. (1.4.9) and (1.4.11) give d4 >~ z/Hy, so d >~ 0z/Hy . Thus
the estimated values of (1/r) for galaxy clusters with z <« 1 scale as Hy,
and the values of M inferred from Eq. (1.9.8) scale as 1/Hy. The absolute
luminosity L of a cluster of galaxies with redshift z and apparent luminosity
¢ is given for z « 1 by Eqs. (1.4.2) and (1.4.9) as L = 4xz%¢/H?, so the
values of L scale as H|, 2 and the mass-to-light ratios obtained in this way
therefore scale as Ho’l/HO’2 = Hj.
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1 The Expansion of the Universe

Estimates of M /L for rich clusters have generally given results of order
200 to 300 & My/Lg, where h is the Hubble constant in units of 100 km
s~ Mpc~!, and My and L, are the mass and absolute luminosity of the
sun. For instance, a 1996 study? of 16 clusters of galaxies with redshifts
between 0.17 and 0.55 gave M /L = (295 + 53) h My /Lg. Some of the
same group’ have corrected this result for various biases, and now find
M/L = (213 + 59)h My/Lo. A more recent application* of the virial
theorem to 459 clusters has found a value M /L ~ 348 h M /Le.

All these values of M /L for clusters of galaxies are very much larger than
the mass-to-light ratios of the visible regions of individual galaxies.> The
mass-to-light ratios of individual elliptical galaxies can be measured using
the virial theorem, with v/ < v2 > taken as the velocity dispersion of stars
contained in the galaxy; this gives mass-to-light ratios generally in the range
of 10t020h Mo /Lo.% All of the visible light from clusters comes from their
galaxies, so we must conclude that most of the mass in clusters of galaxies
is in some non-luminous form, either in the outer non-luminous parts of
galaxies or in intergalactic space. It has been argued that this massis in large
dark halos surrounding galaxies, extending to 200 kpc for bright galaxies.’
The nature of this dark matter is an outstanding problem of cosmology, to
which we will frequently return.

Incidentally, the large value of M /L given by the virial theorem for
elliptical galaxies shows that most of the mass of these galaxies is not in
the form of stars as bright as the sun. It is harder to estimate M /L for
spiral galaxies, but since the work of Vera Rubin® it has been known that
most of their mass is also not in luminous stars.” If most of the mass of a
spiral galaxy were in the luminous central regions of the galaxy, then the
rotational speeds of stars outside this region would follow the Kepler law,
v o« r~1/2 Instead, it is observed that v outside the central region is roughly
constant, even beyond the visible disk of the galaxy, which is what would
be expected for a spherical halo with a mass density that decreases only as
1/r%, in which case most of the mass of the galaxy would be in the dark outer

2R. G. Carlberg et al., Astrophys. J. 462, 32 (1996).

3R.G. Carlberg, H. K. C. Yee, and E. Ellingson, Astrophys. J. 478, 462 (1997).

4y, Andernach, M. Plionis, O. Lopez-Cruz, E. Tago, and S. Basilakos, Astron. Soc. Pacific Conf-
Ser. 329, 289 (2005) [astro-ph/0407098].

5This conclusion was first reached in a study of the Coma cluster by F. Zwicky, Helv. Phys. Acta 6,
110 (1933).

ST.R. Lauer, Astrophys. J. 292, 104 (1985); J. Binney and S. Tremaine, Galactic Dynamics (Princeton
University Press, Princeton, 1987).

7N. A. Bahcall, L. M. Lubin, and V. Dorman, Astrophys. J. 447, L81 (1995).

8V. C. Rubin, W. K. Ford, and N. Thonnard, Astrophys. J. 225, L107; 238, 471 (1980).

9M. Persic and P. Salucci, Astrophys. J. Supp. 99, 501 (1995); M. Persic, P. Salucci, and F. Stel, Mon.
Not. Roy. Astron. Soc. 281, 27P (1996).
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parts of the halo. There is some evidence from the absence of gravitational
microlensing by the halo (discussed in Section 9.2) that this mass is not in
the form of dark stars either, but it is still possible that most of the matter in
galaxies is baryonic. We will not go into this in detail, because the formation
of galaxies involves cooling processes that requires baryonic matter of the
same sort as in stars, so that we would only expect the value of M /L for
galaxies to be similar to the value for the universe as a whole if the matter
of the universe were mostly baryonic.

In using the value of M /L derived from the virial theorem for clusters of
galaxies to find the mass density of the universe, we cannot just add up the
luminosity per volume of clusters, because most of the light of the universe
comes from “field” galaxies that are not in clusters. Instead, if we assume
that the field galaxies are accompanied by the same amount of dark matter
as the galaxies in clusters, as argued in ref. 7, then we can find Qs by
using the value of M /L for clusters together with an estimate of the total
luminosity density £ to estimate the total mass density as

oy = (M/L)L. . (1.9.9)

Since values of absolute luminosities inferred from apparent luminosities
and redshifts scale as H, 2, and distances inferred from redshifts scale as

Hy ! the total luminosity density of the universe calculated by adding up the
absolute luminosities of galaxies per volume scales as H|; 2/ (Hy 3 = H,.
For example, a 1999 estimate!? gave £ = 2 4+ 0.2 x 108 4 Lo Mpc—3. For

the purpose of calculating ), it is more convenient to write this as a ratio
of the critical mass density to the luminosity density:

pocrit/L = (1390 & 140) h M/ L, .

(Here we use Mo = 1.989 x 1033 g, 1 Mpc = 3.0857 x 102* cm, and
pocit = 1.878 x 1072 12 g/em3)) Taking M/L = (213 4+ 53)hM /L
gives then
Quy = ML =0.15£0.02+ .04,
pO,crit/ L

with the first uncertainty arising from £ and the second from M /L. It is
important to note that this is independent of the Hubble constant, as both
LM /L and py ¢rit scale as H&.

This estimate of 2, is somewhat lower than those derived from the
redshift-luminosity relation of supernovae and from the anisotropies in the

103, Folkes et al., Mon. Not. Roy. Astron. Soc. 308, 459 (1999); M. L. Blanton et al., Astron. J. 121,
2358 (2001).
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cosmic microwave background, to be discussed in Section 2.6 and Chapter 7.
But all these estimates agree that Q2,4 is distinctly less than unity.

B. X-ray luminosity of clusters of galaxies

Does the dark matter in clusters of galaxies consist of ordinary nuclei and
electrons? We can find the ratio of the fraction Qp of the critical density
provided by baryonic matter (nuclei and electrons) to the fraction €24 pro-
vided by all forms of non-relativistic matter by studying the X-rays from
clusters of galaxies, for it is only the collisions of ordinary baryonic parti-
cles that produces these X-rays. Because these collision processes involve
pairs of particles of baryonic matter, the absolute X-ray luminosity per unit
proper volume takes the form

Ly = A(TB)pg , (1.9.10)

where Tg and pp are the temperature and density of the baryonic matter, and
A(T) is a known function of temperature and fundamental constants. The
baryonic density satisfies the equation of hydrostatic equilibrium, which
(assuming spherical symmetry) follows from the balance of pressure and
gravitational forces acting on the baryons in a small area 4 and between
radii 7 and r + §r:

A8 G [
A(pB(r+8r) —pB(r)> - _Vpr;;(r)fo 412 par (r) dr

or, canceling factors of 4 and ér and using the ideal gas law pp = kg
Tppp/ms,

el = 4nr2pM(r) dr,
dr

mp 2 0

d (kB TB(V),OB(I’)) __Gpp(r) ("

where par(r) is the total mass density, ki is Boltzmann’s constant, mp is a
characteristic mass of the baryonic gas particles, and r is here the proper
distance to the center of the cluster. Multiplying by r?/pg(r) and differen-
tiating with respect to r yields

d [ 2 d (kg Tp(r)pp(r)

dr | pg(r) dr mp

)} = —4xGrlpy(r) . (1.9.11)

If we make the assumption that cold dark matter particles, or whatever
particles dominate the dark intergalactic matter, have an isotropic velocity
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distribution (which is not very well motivated), then the same derivation
applies to these particles, and their density pp = py — pp satisfies the
non-linear differential equation

d 2 od (kBTD(i’)/?D(V)
dr | pp(r) dr mp

)}:—%Gﬂmﬂn. (1.9.12)

where Tp(r) and mp are the temperature and mass of the dark matter parti-
cles. With perfect X-ray data and a knowledge of the distance of the source,
one could measure the X-ray luminosity density Ly (r) and (using the X-
ray spectrum) the baryon temperature 75(r) at each point in the cluster,
then use Eq. (1.9.10) to find the baryon density pog(r) at each point, and
then use Eq. (1.9.11) to find the total mass density at each point. We could
then calculate the fractional baryon density pp/par, and if we were interested
we could also use Eq. (1.9.12) to find the velocity dispersion kgTp(r)/mp
of the dark matter.

In practice, it is usually necessary to use some sort of cluster model. In
the simplest sort of model, one assumes an isothermal sphere: the tempera-
tures Tp and Tp are taken to be independent of position, at least near the
center of the cluster where most of the X-rays come from. It is also often
assumed that the same gravitational effects that causes the concentration of
the hot intergalactic gas in the cluster is also responsible for the concentra-
tion of the dark matter, so that the densities pp(r) and pas () are the same, up
to a constant factor, which represents the cosmic ratio Qp/ Qs of baryons
to all non-relativistic matter. (These gravitational effects are believed to
be a so-called “violent relaxation,”!! caused by close encounters of clumps
of matter whose gravitational attraction cannot be represented as an inter-
action with a smoothed average gravitational field. The condensation of
galaxies out of this mixture requires quite different cooling processes that
can affect only the baryonic gas, which is why galaxies have a lower pro-
portion of dark matter and a lower mass-to-light ratio.) Comparison of
Eqgs. (1.9.11) and (1.9.12) shows that pp(r) and pp(r) will be proportional
to each other, and hence also to ps (r) if the velocity dispersions of the dark
matter and hot baryonic gas are the same:

kgTy/my = kgTp/mp = o2 . (1.9.13)
Equations (1.9.11) and (1.9.12) both then tell us that

pm (r) = pam(0) F(r/ro) (1.9.14)

1D, Lynden-Bell, Mon. Not. Roy. Astron. Soc. 136, 101 (1967).
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where F(0) = 1; rq is a core radius, defined conventionally by

9g2
= [—; 1.9.15
47 G (0) (1.3.15)
and F(u) is a function satisfying the differential equation
d [ v* dF®u) 5
— =-—9uF(u. 1.9.16
du (F (u) du ) uk ) ( )

We must also impose the boundary condition that p, is analytic in the
coordinate X at X = 0, which for a function only of r means that it is
given near r = 0 by a power series in r2, so that F(u) is given near u = 0
by a power series in 2, F(u) = 1 + O(u?). Together with this boundary
condition, Eq. (1.9.16) defines a unique function'? that for small u has the
approximate behavior!?

Fu) ~ (1 +u?)"32. (1.9.17)

The solution to Eq. (1.9.16) is shown together with the approximation
(1.9.17) in Figure 1.7.

For large u, F(u) approaches the exact solution 2/9u2. Taken literally,
this would make the integral for the total mass diverge at large r, which

shows that the assumption of constant o> must break down at some large
14

radius. Often the function F'(u) is taken simply as
Fu) = (1+u?)¥2,

where 8 is an exponent of order unity.

F(u) F(u)
1 0.03
0.8 0.025
0.6 0.02
0.015
0.4 0.01

0.2 0.005

u y u
05 1 15 2 25 3 4 5 6 78 9 10

Figure 1.7: The solution to Eq. (1.9.16) (solid line) and the approximation (1.9.17) (dashed
line). For the lower values of u in the figure at the left, the two curves are indistinguishable.

12For a tabulation of values of F(u), seee. g. J. Binney and S. Tremaine, Galactic Dynamics (Princeton
University, Princeton, 1987): Table 4.1.

131. R. King, Astron. J. 67,471 (1962).

14A. Cavaliere and R. Fusco-Fermiano, Astron. Astrophys. 49, 137 (1976).
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Also, Eq. (1.9.11) has the solution

pB(r) = pp(0)F(r/ro) , (1.9.18)

with the same function F(u) and the same core radius ro. We can measure
the core radius from the X-ray image of the cluster, and measure o from
the X-ray spectrum, so that Eq. (1.9.15) can be used to find the central
density pa7(0) of all non-relativistic matter. The central density pp(0) of
the baryonic matter can then be found from the total X-ray luminosity,
which with these approximations (and using Eq. (1.9.10)) is

Ly = / dx Ly = 4x A(Tp) 13 pp(0)*T , (19.19)
where
o0
T = / WPF2(u) du . (1.9.20)
0

Even though the solution of Eq. (1.9.16) gives an infinite mass, it gives a
finite total X-ray luminosity, with Z = 0.1961. (The approximation (1.9.17)
would give Z = /16 = 0.1963.)

For a cluster at redshift z, the core radius rg inferred from observation of
the angular size of the cluster will be proportional to the angular diameter
distance d4(z), while the temperature and velocity dispersion found from
the X-ray spectrum will not depend on the assumed distance. Thus the
value of the central total matter density pas(0) given by Eq. (1.9.15) will be
proportional to 1 /dfl (z). On the other hand, the absolute X-ray luminos-
ity Ly inferred from the apparent X-ray luminosity will (like all absolute
luminosities) be proportional to the value assumed for dz (z), the square of
the luminosity distance, so with ry o d4, the central baryon density pp(0)
given by Eq. (1.9.19) will be proportional to [d% (2) /df1 (z)1'/2. The value of
the ratio of central densities inferred from observations of a given cluster at
redshift z will therefore have a dependence on the distance assumed for the
cluster given by

pB(0)
pm (0)

in which we have used the relation (1.4.12) between luminosity and angular
diameter distances.

For z « 1, we have dq(z) >~ dr(z) ~ z/Hy, and so according to
Eq. (1.9.21) the value of pp(0)/p0 (0) obtained from observations of clus-
ters of small redshift will be proportional to the assumed value of H|, 32,
It is believed that most of the baryonic mass in a cluster of galaxies is in the

o« dp(2)dy*(z) = A+ 2°d) (), (1.9.21)

73



1 The Expansion of the Universe

hot gas outside the galaxies, and if we suppose that this mass is the same
fraction of the total mass as in the universe as a whole,'> then we should get
the same value of pp(0)/0r(0), equal to Qp/ Qr, for all clusters, whatever
value we assume for Hy, but this value of Qp/ Qs will be proportional to
the assumed value of H|, 32 For example, Schindler!® quotes various stud-
ies that give pg(0)/par(0) as 0.14, 0.11, 0.12, and 0.12 for Hy = 65 km s!
Mpc!, so if we take the average 0.12 of these values as the cosmic value of
Qp/Qu for Hy = 65 km s~! Mpc~!, then for a general Hubble constant
we find

Qp/ QU >~ 0.06 =32 (1.9.22)

where / as usual is Hubble’s constant in units of 100 km s~! Mpc~!. We
can thus conclude pretty definitely that only a small fraction of the mass in
clusters of galaxies is in a baryonic form that can emit X-rays.

On the other hand, when we study clusters with a range of redshifts that
are not all small, we will not get a uniform value of pp(0)/par(0) unless
we use values of d4(z) with the correct dependence on z. As remarked in
Section 1.6, observations of clusters have been used in this way to learn
about the z-dependence of d4(2).

It should be mentioned that computer simulations that treat galaxy clus-
ters as assemblages of collisionless particles do not show evidence for a
central core,!” but instead indicate that the dark matter density at small
distances r from the center should diverge as r~! to r~3/2. On the other
hand, it has been shown'® that the density of a baryonic gas in hydrostatic
equilibrium in the gravitational field of such a distribution of dark mat-
ter does exhibit the core expected from Eq. (1.9.18). In any case, the dark
matter and baryonic gas densities do have the same distributions at
distances from the center that are larger than rg.

As we will see in Section 3.2, it is possible to infer a value for gh? from
the abundances of deuterium and other light isotopes, which together with
Eq. (1.9.22) can be used to derive a value for ©3,4!'/2. There are several
other methods for estimating 2,7 or 2 arh? that will be discussed elsewhere

I5This is argued by S. D. M. White, J. F. Navarro, A. E. Evrard, and C. S. Frenk, Nature 366, 429
(1993). Calculations supporting this assumption are described in Section 8.3.

165, Schindler, in Space Science Reviews 100, 299 (2002), ed. P. Jetzer, K. Pretzl, and R. von Steiger
(Kluwer) [astro-ph/0107028].

17J, F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 462, 563 (1996) [astro-ph/9508025];
490, 493 (1997) [astro-ph/9610188]; T. Fukushige and J. Makino, Astrophys. J. 477, L9 (1997) [astro-
ph/9610005]; B. Moore et al., Mon. Not. Roy. Astron. Soc. 499, L5 (1998).

18N, Makino, S. Sasaki, and Y. Suto, Astrophys. J. 497, 555 (1998). Also see Y. Suto, S. Sasaki, and
M. Makino, Astrophys. J. 509, 544 (1998); E. Komatsu and U. Seljak, Mon. Not. Roy. Astron. Soc.
327, 1353 (2001).
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1.10  Intergalactic absorption

in this book, using gravitational lenses (Section 9.3), the Sunyaev—Zel’dovich
effect (Section 2.5), and anisotropies in the cosmic microwave background
(Sections 2.6 and 7.2), the last of which also gives a value for Qzh%. In
addition to these, there are methods!® based on the evolution of clusters
of galaxies, cosmic flows, cluster correlations, etc., that depend on detailed
dynamical theories of structure formation.

1.10 Intergalactic absorption

Some of the cosmic gas of nuclei and electrons from which the first galaxies
and clusters of galaxies condensed must be still out there in intergalactic
space. Atoms or molecules in this gas could be observed through the res-
onant absorption of light or radio waves from more distant galaxies or
quasars, but it is believed that most of the gas was ionized by light from
a first generation of hot massive stars, now long gone, that are sometimes
called stars of Population III. It now appears that some quasars formed
before this ionization was complete, giving us the opportunity to observe
the intergalactic gas through resonant absorption of the light from these
very distant quasars.

Let us suppose that an atomic transition in a distant source produces a
ray of light of frequency vy that leaves the source at time 71 and arrives at
the Earth with frequency vy at time #y. At time ¢ along its journey the light
will have frequency redshifted to via(z1)/a(t), so if the intergalactic medium
absorbs light of frequency v at a rate (per proper time) A (v, #), and does not
emit light, then the intensity 7(¢) of the light ray will decrease according to
the equation

i) = —A(vla(tl)/a(t), z) 1) .

But if the intergalactic gas is at a non-zero temperature 7°(¢), then photons
will also be added to the light ray through the process of stimulated emission,
as a rate per photon given by the Einstein formula! exp (—hv/kgT) A(v, 1),
so the intensity of the light ray will satisfy

. hvia(ty)
1) = — [1 —exp <—Wﬂ A(vla(tl)/a(l), z) 1(0) (1.10.1)

The intensity observed at the earth will then be
1(tg) = exp(—1)I (1), (1.10.2)

9For surveys, see N. A. Bahcall, Astrophys. J. 535, 593 (2000) [astro-ph/0001076]; M. Turner, Astro-
phys. J. 576, L101 (2002) [astro-ph/0106035]; S. Schindler, op. cit.; K. A. Olive, lectures given at Theoret-
ical Advanced Study Institute on Elementary Particle Physics, Boulder, June 2002 [astro-ph/0301505].
LA. Einstein, Phys. Z. 18,121 (1917).
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1 The Expansion of the Universe

where t is the optical depth:

— 0 hv1a(11)
o= [ [1- o0 (~yrian) | Ao oar. 103

The absorption rate is given by
AW, )y =n(t)o (), (1.10.4)

where o (v) is the absorption cross section at frequency v, and n(z) is the
number density (per proper volume) of absorbing atoms. Often the absorp-
tion cross section is sharply peaked at some frequency vg, so the absorption
takes place only close to a time zg, given by

a(tg) = via(t1)/vr . (1.10.5)

Therefore the optical depth can be approximated as

7 ~ n(tg) [1 —exp ( - th/kBT(tR)>] / a(vla(tl)/a(t)) dr .

By changing the variable of integration from time to frequency, we can write
this as

T~ n(tg) [1 —exp ( - th/kBT(tR)>] [a(tr)/a(tR)] Tr » (1.10.6)

where
1
IRE—/G(U)dv, (1.10.7)
VR

the integral being taken over a small range of frequencies containing the
absorption line. The only thing in the formula for t that depends on a
cosmological model is the Hubble expansion rate a(zg)/a(tg) at the time of
absorption, given by Eq. (1.5.19) and (1.5.38) as

a(tgr)

o = Hov S + Qi (1 +2r)2 + Qur(1 4 2r)3 + Qr(1 + zp)*,
R

(1.10.8)

where zg = a(tg)/a(tgr) —1 = vr/vg — 1 is the redshift of the location of the
resonant absorption. For a source at redshift z, the absorption takes place
over a range of observed frequencies vg = v1/(1 4 z) given by the condition
that the time ¢z defined by Eq. (1.10.5) should be between #; and #y:

vr/(14+2) < vy < vg. (1.10.9)
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1.10  Intergalactic absorption

For example, in 1959 Field? suggested looking for the effects of abs-
orption of radio frequencies in the 21 cm transition in hydrogen atoms,
caused in transitions from the spin zero to spin one hyperfine states in the 1s
state of intergalactic hydrogen. Here vg = 1420 MHz, so the radio spectrum
of the galaxy Cygnus A at a redshift z = 0.056 should show an absorp-
tion trough (1.10.9) from 1342 MHz to 1420 MHz. Unfortunately, the
temperature of neutral hydrogen in intergalactic space is much larger than
hvr/kg = 0.068K, so the optical depth (1.10.6) is suppressed by a factor
=~ 0.068 K /T (tr). No sign of this absorption trough has been discovered.
It is hoped that in the future a new generation of low frequency radio tel-
escopes with good angular resolution may be able to use the emission and
absorption of 21 cm radiation at large redshifts to study both the growth
of structure and primordial density perturbations from which they grew.’
For instance, by 2010 the Low Frequency Array (LOFAR) should be able to
study 21 cm radiation from sources at redshift between 5 and 15 with good
sensitivity and high angular resolution.*

For the present, a much better probe of intergalactic hydrogen atoms is
provided by absorption of photons in the Lyman « transition from the ls
ground state to the 2p excited state, known as the Gunn—Peterson effect.’
This has a resonant frequency in the ultraviolet, vg = 2.47 x 10'° Hz,
corresponding to a wavelength 1,215 A, but for a source of redshift z > 1.5
the lower part or the absorption trough (1.10.9) will be observable on the
Earth’s surface at wavelengths greater than 3,000 A, in the visible or infrared
part of the spectrum. Here hvg/kp = 118,000 K, which is likely to be larger
than the temperature of the intergalactic medium, in which case the factor

1 —exp ( — th/kBT(tR)) in Eq. (1.10.6) can be set equal to unity. The

integral (1.10.7) here has the value 4.5 x 10~!8 cm?, so Eq. (1.10.6) gives the
optical depth just above the lower end of the absorption trough (1.10.9) as

l’l(fR) 2
TUQ:UR/(1+Z)+ == (24h < 10_11 cm—3> (QA + QK(I + Z)
3 \~"1/?
+u(1+2° + 1 +2)%) (1.10.10)

where again /4 is Hubble’s constant in units of 100 km s~! Mpc~!. For
instance, if a fraction f of the baryons of the universe at a time corresponding

2G. Field, Astrophys. J. 129, 525 (1959).

3A. Loeb and M. Zaldarriaga, Phys. Rev. Lett. 92,211301 (2004) [astro-ph/0312134]; S. Furlanetto,
S. P. Oh, and F. Briggs, Phys. Rep. 433, 181 (2006) [astro-ph/0608032].

4H. I. A. Réttgering et al., in Cosmology, Galaxy Formation, and Astroparticle Physics on the Pathway
to the SKA, eds. H.-R. Klockner et al. [astro-ph/0610596].

5J.E. Gunn and B. A. Peterson, Astrophys. J. 142, 1633 (1965). Also see L. S. Shklovsky, Astron. Zh.
41, 408 (1964); P. A. G. Scheuer, Nature 207, 963 (1965).
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to z = 5 were in the form of neutral intergalactic hydrogen atoms, and
Qph? = 0.02, then the number density of hydrogen atoms at z = 5 would
be 4.8f x 1073 ecm™3. Taking 7 = 0.65, Qx = 0.7, Qu = 0.3, and
Qx = Qr = 0, the optical depth (1.10.10) would be 3.8 x 10°. Thus
with these parameters intergalactic neutral hydrogen that makes up a frac-
tion of baryonic matter f > 2.6 x 10~® would completely block any light
with a frequency above the redshifted Lyman « line from sources beyond
z = 5. Evidently the Gunn—Peterson effect provides a very sensitive probe
of even a small proportion of neutral hydrogen atoms.

For many years the search for the Lyman « absorption trough was
unsuccessful. Quasar spectra show numerous Lyman « absorption lines,
forming what are sometimes called “Lyman « forests,” which are believed
to arise from clouds of neutral hydrogen atoms along the line of sight, but
for quasars out to z ~ 5 there was no sign of a general suppression of
frequencies above the redshifted Lyman « frequency,® that would be pro-
duced by even a small fraction f of the baryons in the universe in the form
of neutral intergalactic hydrogen atoms. Then in 2001 the spectrum of the
quasar SDSSp J103027.10+052455.0 with redshift z = 6.28 discovered by
the Sloan Digital Sky Survey was found to show clear signs of a complete
suppression of light in the wavelength range from just below the redshifted
Lyman « wavelength at 8,845 A down to 8,450 A, indicating a significant
fraction f* of baryons in the form of neutral intergalactic hydrogen atoms at
redshifts greater than 8,450/1,215 — 1 = 5.95.7 (See Figure 1.8.) Thus a
redshift of order 6 may mark the end of a “dark age,” in which the absorption
of light by neutral hydrogen atoms made the universe opaque to light with
frequencies above the redshifted Lyman « frequency. Further evidence for
this conclusion is supplied by the spectrum of intense gamma ray sources,
known as gamma ray bursters, at large redshifts.®

This does not mean that all or even most of the hydrogen in the universe
was in the form of neutral atoms at z > 6. As we have seen, even small con-
centrations of neutral hydrogen could have produced an absorption trough
in the spectrum of distant quasars. In fact, we shall see in Chapter 7 that
there is now some evidence from the study of the cosmic microwave back-
ground that hydrogen became mostly ionized at redshifts considerably larger
than z ~ 6, perhaps around z =~ 10.

6A. Songalia, E. Hu, L. Cowie, and R. McMahon, Astrophys. J. 525, L5 (1999).

TR. H. Becker et al., Astron. J. 122, 2850 (2001) [astro-ph/0108097]. See S. G. Djorgovski et al.,
Astrophys. J. 560, L5 (2001) [astro-ph/0108069], for a hint of absorption by neutral hydrogen at slightly
smaller redshifts. Also see X. Fan et al., Astrophys. J. 123, 1247 (2002) [astro-ph/0111184].

8T. Totani et al., Publ. Astron. Soc. Pacific 58, 485 (2006) [astro-ph/0512154].
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1.10  Intergalactic absorption

The clouds of neutral hydrogen at redshifts z < 6 which produce the
Lyman « forest can provide an independent means of measuring 2, and
Q. Theidea goes back to a 1979 paper of Alcock and Paczynski.” Suppose
we observe a luminous object at a redshift z that extends a proper distance
D, perpendicular to the line of sight and a proper distance D) along the
line of sight. According to the definition of the angular diameter distance,
the object will subtend an angle

A0 = D Jds(z) . (1.10.11)

Also, when we observe light from the whole object at the same time #g, the
difference in the time #; that the light was emitted from the far and near
points of the object will be Aty = D). The redshiftis a(#p)/a(t1) — 1, so the
absolute value of the difference of redshift from the far and near points of
the object will be

= 2 4yan = (L + HHEDy (1.10.12)

a*(ty)

where H(z) = a(t1)/a(ty) is the Hubble constant at the time of emission.
Taking the ratio, we have

A
A—Z — (1+2)H(2) dA(z)(D”/DL) (1.10.13)

It is then only necessary to use Eq. (1.5.19) to write H(z) as

8 G K
H() = /(”T) (om0 + 2+ oy + pro(1 +2)*) = S (1 +2)?
%

= Hov/Qu (14 2)3 4+ Qa + Qr(1 +2)* + Qx(1 +2)2, (1.10.14)

and use Egs. (1.4.12) and (1.5.45) to write d4(z) as

1
172

dy(z) = ——————»
(14 2)HyQy,

x sinh 91/2/ dx
K 1/(1+2) XZ\/QA + QKX_z + QMX_3 + QRX_4
(1.10.15)

9C. Alcock and B. Paczynski, Nature 281, 358 (1979).
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The Hubble constant Hy cancels in the product, and we find a result that
depends only on z, D /D, and the Qs:

A _
A_Z — (D”/DL)QKUZ VO +2)3+Qp + Qr( +2)4 + Qx(1 + 2)2

x sinh QI/Z/ dx
K 1/(14z) xz\/QA + Qrx2 4+ Qux3 + Qpx—t
(1.10.16)

For instance, if the object is known to be a sphere, such as a spherical cluster
of galaxies, then D| /D =1, and we can use a measurement of Az and A6
to set a model-independent constraint on the Qs, with no need to worry
about effects of evolution or intergalactic absorption.

Unfortunately, it is not so easy to find spherical objects at large redshift.
But there are various objects whose distribution functions are spherically
symmetric. For instance, the distribution of field galaxies is presumably
spherically symmetric about any point in space, and it has been proposed
that the application of the Alcock—Paczynski method to galaxies might
allow a determination of the cosmological constant.!® This method has
been applied!! instead to the distribution of quasars measured in the 2dF
QSO Redshift Survey.!? Assuming K = 0, this analysis gives Q5 =
0.719%,..

Recently the Alcock—Paczynski idea has been applied to the distribution
function of Lyman « clouds.!? Asalready mentioned, these are intergalactic
clouds containing neutral hydrogen atoms, which absorb light from more
distant quasars along the line of sight in 1s — 2p transitions, showing up as
dark lines in the spectrum of the quasar at wavelengths 1215 (1 +z) A for
clouds at redshift z. Suppose we measure the number density N(z,7) of
Lyman « clouds at various redshifts z in various directions 7. Assuming a
spherically symmetric distribution of Lyman « clouds, the mean value of the
product of the number densities of these clouds at two nearby points with
redshifts z and z + Az (with Az « 1) and directions # and 7+ A7 separated
by a small angle A# will be a function only of z and the proper distance
between the points, and will be analytic in the components of the vector

10w, E. Ballinger, J. A. Peacock, and A. F. Heavens, Mon. Not. Roy. Astron. Soc. 281, 877 (1996).

1P J. Outram et al., Mon. Not. Roy. Astron. Soc. 348, 745 (2004) [astro-ph/0310873].

125 M. Croom et al., Mon. Not. Roy. Astron. Soc. 349, 1397 (2004); available at www_2dF
quasar.org.

131, Hui, A. Stebbins, and S. Burles, Astrophys. J. 511, L5 (1999); P. McDonald and J. Miralda-
Escudeé, Astrophys. J. 518,24 (1999); W-C. Lin and M. L. Norman, talk at the Theoretical Astrophysics
in Southern California meeting, Santa Barbara, October 2002 [astro-ph/0211177]; P. McDonald, Astro-
phys. J. 585, 34 (2003).
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Figure 1.8: Observed intensity versus wavelength for four high-redshift quasars, from
R. H. Becker et al., Astron. J 122, 2850 (2001) [astro-ph/0108097]. Vertical dashed lines
indicate the redshifted wavelengths for various spectral lines. In the direction of the quasar
with z = 6.28 the intensity drops to zero within experimental accuracy just to the left of the
Lyman « line at 8845 A, a feature not seen for the quasar with z = 5.99, indicating the onset
of patches of nearly complete ionization at a redshift between 5.99 and 6.28.
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separating these components, so for small separations it can be written

2 2
l+D”

A A AN\ L 2, A _
(N(z,n) N(z+ Az,n+ An)) ~ (N“(z,n)) |:1 —Lz(z)

} , (1.10.17)

where D and D) are given by Eqgs. (1.10.11) and (1.10.12), and L is some
correlation length. This can be written in terms of the observed Az and
AB, as

X o . { AZ2 AQZ}
(N(z,n) Nz + Az, i+ An)) =~ (N“(z,n)) | 1 ,

L2 LX)
(1.10.18)

where L, and Ly are correlation lengths for redshift and angle

L(z)

Ly(z) = ok

L-z)=LE)(+2HE) .  (1.10.19)

By measuring this product for various redshifts and directions, we can infer
a value for the ratio of correlation lengths, which is independent of L:

L:(2)

= QP VQu(l +2)% + Qa + Qr(1+ 2% + Qx (1 +2)
0

1
. 1/2/ dx
x sinh | .
{ B Sy x2/Qa + Qe+ Qur + QRX_4j|
(1.10.20)

This method has been applied!* to five pairs of close quasars, with red-
shifts in the range from 2.5 to 3.5 and separations ranging from 33 to
180 arcseconds. Use of this limited sample sets only weak constraints on
the Qs, but it rules out 2, = 0 at the level of 2 standard deviations.

1.11 Number counts

A uniform distribution of sources with a smooth distribution of absolute
luminosity leads in ordinary Euclidean space to a unique distribution in
apparent luminosity. If there are N(L)dL sources per unit volume with
absolute luminosity between L and L + dL, then the number n(> ¢) of

144, Lidz, L. Hui, A. P. S. Crotts, and M. Zaldarriaga, astro-ph/0309204 (unpublished).
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sources observed with apparent luminosity greater than ¢ is given by

VLAt
/ drr? dr

n(>¢) =/OON(L)dL
0

1 o
= L3> N(L)dL 1.11.1
34w £3/2 /(; ( )
Thus whatever the distribution in absolute luminosity, we expect that
n(> ) o £=3/2,
This analysis needs several changes in a cosmological setting:

0

1. Instead of the volume element 2 sin6 dr d6 d¢, the proper volume
element here is (Detg®)!/2dr do d¢, where gl?) = azgij is the

three-dimensional metric, with non-vanishing components gﬁf) =
/(1 - Kr?), gi) = a*r?, g(% = a2 sin’ 6, so

a0 sin0drdode

dv (1.11.2
V1 — Kr? )
2. The apparent luminosity is related to the absolute luminosity by
L
b= —07—, (1.11.3)
drd; (2)

where dy (z) is the luminosity distance (1.4.3).

3. Except in the steady state cosmology, the number density of sources
changes with time, even if only through the cosmic expansion.

4. We can often measure the redshift z as well as the apparent lumino-
sity.

Eq. (1.11.2) gives the number of sources with redshift between z and
z + dz and apparent luminosity between £ and £ + d¢ as

a () r*dr

n(z,€)dzdet = 4n N (¢, L)dL =

(1.11.4)

1 - Kr

where N (¢, L) dL is the number of sources per proper volume at time ¢
with absolute luminosity between L and L + dL; ¢ and z are related by
1 4+ z = a(ty)/a(t), and ¢ and r are related by Eq. (1.2.2):

to / r /
/ d_’:f . (1.11.5)
¢ a(t) 0 v1—Kr?
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We use (1.11.5) to express the differential dr in terms of dz, and then express
dt in terms of dz:

dr _ dt _ dz
NI a(ty  H(z)ap’
where H(z) = a(t)/a(t) and ay = a(tp). As a reminder, for a universe

containing radiation, matter, and a constant vacuum energy, Eq. (1.5.41)
gives

H(z) = HovQa + Q& (1 + 2 + Qu(1 +2)3 + Qr(1 + 2)* .
Canceling dz in Eq. (1.11.4), we then have

4 N <t(z), L) r2(2)ad dL

n(z, ) dt = 1123 HE )

We next use Eq. (1.11.3) to write (with z now held fixed):
dL = 4rwd?(z) de
so that canceling d¢ gives

1672 N (l(z), 47 d? (z)(i) d4(2)
H(z) (1 +2)° ’

n(z, ) = (1.11.6)
in which we have used Eq. (1.4.3) to express aor in terms of df.

In particular, for a sample of sources that are not evolving at a time
t(z), the time dependence of the number density A is just proportional to
a3 o (14 2)3%

/\/(z(z),L) — (423N . (1.11.7)
If all members of this sample are bright enough to be visible at a redshift

z, then the total number of sources observed with redshifts between z and
z + dz will be n(z) dz, where

Y _ 47 Ny dz(z)
where dy (z) is given by Eq. (1.5.45), and
N()E/ No(L) dL . (1.11.9)
0
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In principle, even without knowing Ny or Hp, if n(z) were accurately
measured we could compare the observed shape of this function with
Eq. (1.11.8) to find the Qs.

There are several obvious dangers in using Eq. (1.11.8) in this way. For
one thing, it is necessary to avoid missing sources that have high redshift and
hence low apparent luminosity. Also, evolution in the number of sources
can introduce an additional dependence on the light emission time ¢, and
hence on z. In 1986 Loh and Spillar! carried out a survey of galaxy numbers
as a function of redshift. The redshifts were measured photometrically (i. e.,
from their luminosities at various colors rather than by the shift of specific
spectral lines), which generally gives less reliable results. Comparing their
results with Eq. (1.11.8) in the case Qg = Qg = 0 (so that QA + Qar = 1),
they found that Q,/Qy = 0.1;8:‘2‘. By now it has been realized that the
evolution of sources cannot be neglected at redshifts large enough for n(z)
to be sensitive to cosmological parameters, and this result for €2/ 237 has
been abandoned.?

Useful results can be obtained when evolution is taken into account.
One group’® used number counts of very faint galaxies* as a function of
apparent luminosity to estimate the free parameters in a model of galac-
tic luminosity evolution (assuming the number of galaxies per coordinate
volume to be constant), and then used this model together with a redshift
survey5 extending to z >~ 0.47 to conclude that €2, is small and that Q24 isin
the range of 0.5 to 1. More recently, several surveys® of numbers of galaxies
at different redshifts that yield important results about galactic evolution,
and with the use of dynamical models they can yield information about €24
and Q4.7 But it appears that number counts of galaxies will be more useful
in learning about galactic evolution than in making precise determinations
of cosmological parameters. In a dramatic application of this approach,’ a

I D. Loh, Phys. Rev. Lett. 57, 2865 (1986); E. D. Loh and E. J. Spillar, Astrophys. J. 284, 439
(1986).

2For a discussion of future prospects for measuring 2 in redshift surveys, see W. E. Ballinger, J. A.
Peacock, and A. F. Heavens, Mon. Not. Roy. Astron. Soc. 282, 877 (1996).

3M. Fukugita, F. Takahara, K. Yamashita, and Y. Yoshii, Astrophys. J. 361, L1 (1990).

4], A. Tyson, Astron. J. 96, 1 (1988).

5T. J. Broadhurst, R. S. Ellis, and T. Shanks, Mon. Not. Roy. Astron. Soc. 235, 827 (1988).
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Loveday, B. A. Peterson, G. Efstathiou, and S. J. Maddox, Astrophys. J. 390, 338 (1992); L. da Costa,
in Proceedings of the Conference on Evolution of Large Scale Structure, Garching, August 1998 [astro-
ph/9812258]; S. Borgani, P. Rosati, P. Tozzi, and C. Norman, Astrophys. J. 517, 40 (1999) [astro-
ph/9901017]; S. J. Oliver, in Highlights of the ISO Mission: Special Scientific Session of the IAU General
Assembly. eds. D. Lemke et al. (Kluwer) [astro-ph/9901272]; M. Colless, in Publ. Astron. Soc.
Australia [astro-ph/9911326]; S. Rawlings, astro-ph/0008067.
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8R. J. Bouwens and G. D. Illingworth, Nature 443, 189 (2006).
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search at the Lick Observatory for galaxies with redshifts in the range z =~
7 to 8 found at most just one galaxy, while it is estimated that if Eq. (1.11.7)
were valid then, on the basis of the number of galaxies observed (with the
same conservative selection criteria) at redshifts z ~ 6, ten galaxies should
have been found with z &~ 7 to 8. The implication is that there must have
been a spurt in the formation of luminous galaxies at a redshift in the range
6 to 7. This fits in well with the conclusion discussed in Section 1.10, that
the ionization of intergalactic hydrogen became essentially complete at a
redshift of order 6, presumably due to ultraviolet radiation from massive
stars formed around that time.

Historically the first important application of number counts was in radio
source surveys, where redshifts are not generally available. These surveys
take place at a fixed receiving frequency v, corresponding to a variable
emitted frequency v(14-z), so the source counts are affected by the frequency
dependence of the distribution of intrinsic source powers.

If a source with a redshift z emits a power? P(v)dv between frequencies
v and v + dv, then the power received at the origin per unit antenna area
between frequencies v and v + dv is

P(v(l n z)> dv(l +2)

S(w)dv = 1.11.10
™ 4rd3 () ( )

Many radio sources have a “straight” spectrum, i.e.
Pv) xv™® (1.11.11)

with the spectral index « typically about 0.7 to 0.8. This allows a great
simplification in Eq. (1.11.10):
PWw)dv

= : 1.11.12
Sodv 4 d3 (z)(1 + z)e! ( )

From now on we will take the observed frequency v as fixed, and write
S(v) = S and P(v) = P. Canceling dv, Eq. (1.11.12) then reads

S = P .
4 d?(z) (1 + 2)«~!

(1.11.13)

9In G&C, P was defined as the power emitted per solid angle, while here it is the power emitted in
all directions.
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If at time ¢ there are N(P, t) dP sources per proper volume with power
between P and P + dP, then the number of sources observed with power
per antenna area greater than S is

[ee) 2.3
n(> S):/ dP/N(P,t)M, (1.11.14)
0 1 — Kr?

with the upper limit on the integral over r set by the condition that

agr2 1+t < ymr R
Of course, r, z, and ¢ are related by the familiar formulas
r dr o dr
This becomes much simpler if we assume that the time-dependence of
the source number density can be parameterized as

(1.11.15)

14+z=ua(tg)/a(t). (1.11.16)

8
N(P,1) = N(P) (a(t)) . (1.11.17)

ao
For instance, if sources do not evolve and are neither created nor destroyed,

then 8 = —3, while in the steady-state model 8 = 0. Eq. (1.11.14) now
reads

drr(1 4+ )P 3 ar
V1 — Kr? ’

with the same P/S-dependent upper limit (1.11.15) on r.
The coordinate r is given in terms of z by the power series (1.4.8)

(1.11.18)

n>S) =a /OO N(P)dP
0

agHyr =z — 1(14+qo)z* +... . (1.11.19)
We can then convert the integral over r to one over z, with
ayHodr =dz[1 — (1 4+¢go)z+...], (1.11.20)
and the upper limit on z is given by
2l 4z@—qgo)+...]1< P—Hg ,
47 S
or, in other words,
z < P—Hg l—l(a—qo) P—Hg—i-... . (1.11.21)
47 S 2 47 S
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Then Eq. (1.11.18) becomes

n(> S)=%/:ON(P)dP
0

3/2 1/2
1 (pH2\” 3 ) PH}? /+
X| = | —= — =(x — —_—
3\ars 24T\ 4x s

1 (PH2\ ‘i

or, collecting terms,

n(> S) = P32N(P)dP

1
3V4r S3/2f0

172
3 PH}
><|:1—Z<5+ﬁ+2a) <m> +} (1.11.22)

We see that n(> S) has a term with the familiar S—3/2 dependence,
plus a correction proportional to S~2 with a coefficient proportional to
54 B + 2«. It is noteworthy that this coefficient is independent of ¢y or
K. For the standard cosmology with no evolution of sources § = —3, and
we have mentioned that « ~ 0.75, so 5 + 8 + 2« = 3.5. Although the
precise value is uncertain, this coefficient is definitely positive, which means
that for faint sources n(> S) should fall off more slowly than S—3/2. This
is definitely not what is observed.'? It has been known for many years that
for S > 5 x 1072Wm~2/Hz, the source count function N(> S) falls off
more rapidly than S—3/2. The conclusion is inevitable that the number of
radio sources per co-moving volume is decreasing, with 8 < —6.5. Radio
source counts are useful in studying this evolution, but not for measuring
cosmological parameters.

On the other hand, for the steady state cosmology (discussed in
Section 1.5) we have 8 = 0, so the coefficient 5 + 8 + 2o ~ 6.5, and
the predicted number count N(> S) decreases even more slowly with S,
making the disagreement with experiment even worse than for the standard
cosmology with no evolution of sources. Here it is not possible to save
the situation by appealing to evolution, because the essence of the steady
state model is that on the average there is no evolution. This observation

10For a list of major radio source surveys, and references to the original literature, see G&C, Sec. 14.8.
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discredited the steady state model even before the discovery of the cosmic
microwave radiation background.

1.12 Quintessence

So far, we have taken into account only non-relativistic matter, radiation,
and a constant vacuum energy in calculating the rate of expansion of the
universe. It appears that the vacuum energy is not only much smaller than
would be expected from order-of-magnitude estimates based on the quan-
tum theory of fields, but is only a few times greater than the present matter
density. This has led to a widespread speculation that the vacuum energy
is not in fact constant; it may now be small because the universe is old. A
time-varying vacuum energy is sometimes called quintessence.!

The natural way to introduce a varying vacuum energy is to assume the
existence of one or more scalar fields, on which the vacuum energy depends,
and whose cosmic expectation values change with time. Scalar fields of this
sort play a crucial part in the modern theory of weak and electromagnetic
interactions, and are also introduced in theories of inflation, as discussed in
Chapters 4 and 10.

For simplicity, let us consider a single real scalar field ¢(x, ). We will
be concerned here with fields that are vary little on elementary particle
spacetime scales, so the action of these field is taken to have a minimum
number of spacetime derivatives:

1 dop 0
b= [aympeg [l it vz

ax* 9xk

with an unspecified potential function V' (p). We are interested here in the
case of a Robertson—Walker metric, and a scalar field that depends only on
time, not position. In this case the formulas (B.66) and (B.67) for the scalar
field energy density and pressure become

L,

Pp = 5(/)2 + V() (1.12.2)
1,

Do = §¢2 —V(p) . (1.12.3)

It follows immediately that (1 + w)p, > 0, where w = py/py, s0 as long as
Py = 0 this model has w > —1, and the phantom energy disaster discussed
in Section 1.6 does not occur.

I For reviews with references to the original literature, see B. Ratra and P. J. E. Peebles, Rev. Mod.
Phys. 75, 559 (2003); E. V. Linder, 0704.2064.
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1 The Expansion of the Universe
The equation (1.1.32) of energy conservation here reads
¢+3Ho+V'(p)=0, (1.12.4)

(where as usual H(¢) = a(t)/a(r)), which is the same as the field equation
derived from the action (1.12.1). This is the equation of a particle of unit
mass with one-dimensional coordinate ¢, moving in a potential V' (¢) with
a frictional force —3H¢. The field will run toward lower values of V(¢p),
finally coming to rest if it can reach any field value where V' (¢) is at least a
local minimum. Unfortunately, we do not know any reason why the value
of V() where it is stationary should be small.

Nevertheless, there are potentials that have some attractive properties
once we adjust an additive constant in the potential to make them vanish
at their stationary point. The original and simplest example is provided by
a potential?®

Vip) = M*p™ (1.12.5)

where « is positive but otherwise arbitrary, and M is a constant with the
units of mass (taking i = ¢ = 1), which gives V' (¢) the dimensions of
an energy density. There is no special reason to believe that the potential
has this form, and in particular there is no known reason for excluding
an additive constant (including effects of quantum fluctuations in all other
fields), which would give the potential a non-zero value at its stationary
point, at ¢ = oo. Nevertheless, it may be illuminating to work out the
consequences of this one specific model of quintessence.

For any potential it is necessary to assume that at sufficiently early times
P, was much less than the energy density pg of radiation because, as we
will see in Section 3.2, any appreciable increase in the energy density at the
time of cosmological nucleosynthesis would lead to a helium abundance
exceeding what is observed. At these early times the energy density of
radiation (including particles like neutrinos with masses less than kg T) is
also greater than that of non-relativistic matter, so Eq. (1.5.34) gives a(r) «
1172 and therefore H = 1/2¢. The field equation (1.12.4) with potential
(1.12.5) then reads

3
b+50 - aM*epel =0, (1.12.6)

2P, J. E. Pecbles and B. Ratra, Astrophys. J. 325, 117 (1988); B. Ratra and P. J. E. Peebles, Phys. Rev.
D 37, 3406 (1988); C. Wetterich, Nucl. Phys. B302, 668 (1988). Quintessence models with this potential
were intensively studied by I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. Lett. 82,896 (1999); P. J.
Steinhardt, L. Wang, and 1. Zlatev, Phys. Rev. D 59, 123504 (1999).
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This has a solution

1.12.7
6+« ( )

1
(a(2 n a)2M4+°‘12) Tia

Y= .
Both ¢? and V () then go as t—2%/C+® and therefore at very early times Py
must have been less than pg, which goes as r~2. This solution is not unique,
but it is an attractor, in the sense that any other solution that comes close to
it will approach it as ¢ increases. (To see this, note that a small perturbation
3¢ of the solution (1.12.7) will satisfy

. 3 o . 3 . 6+a)(l+aw
0=258p+—6 l+a)M* % 250 = G+ —8p+— " — —~
<p+2t pta(l+a) @ ® <p+2Z o+ 2t apr

This has two independent solutions of the form

1 1 6+a)+a)
b [y = —— 4 B —
S (AT 2 +a)?

The square root is imaginary for &« > 0, so both solutions for §¢ decay as
t~1/4 for increasing ¢, while ¢ itself is increasing.) For this reason, the
particular solution of Eq. (1.12.6) that goes as Eq. (1.12.7) for t — 0
is known as the tracker solution. There is no particular physical reason
to require that the initial conditions for the scalar field are such that the
scalar field has approached the tracker solution by the present moment
(the set of such initial conditions is called the “basin of attraction”), but
since this requirement would make the present evolution of the scalar field
insensitive to the initial conditions, it has the practical advantage of pro-
viding a model of quintessence with just two free parameters: M
and «.

Nothing much changes when the radiation energy density drops below
the energy density of non-relativistic matter. The tracker solution for the
scalar field continues to grow as 122+ (though with a different constant
factor), so ¢2 and V (¢) continue to fall as r=2%/C+®_ But pjs and pg are
decreasing faster, like =2 and ¢~8/3, respectively, so eventually pjs and pr
will fall below p,,. Itisinteresting that the value of ¢ where p, becomes equal
to pys is independent of the unknown constant M. When the expansion is
dominated by matter pyy is given by Eq. (1.5.31) as 1/6x G2, while (1.1.2),
(1.12.5) and (1.12.7) give p, ~ M>@+0)/2Ha)=22/C2+a) 5o the time 7, at
which p, = pys 1s of order

te ~ M~@HO2G-Cra/4 (1.12.8)
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| The Expansion of the Universe
Using this in Eq. (1.12.7) then gives
p(te) ~ G2 (1.12.9)
Once pyy falls well below p,, the equation of motion of ¢(#) becomes
G+ 24nGp, ¢ —aM* el =0, (1.12.10)

with p, given by Eq. (1.12.2). The tracker solution in this era has a
complicated time dependence, but it becomes simple again at sufficiently
late times, times that may be later than the present. We can guess that the
damping term proportional to ¢ in this equation will eventually slow the
growth of ¢, so that ¢ will become less than ¥ (¢), and also guess that
the inertial term proportional to ¢ will become negligible compared to the
damping and potential terms. (Similar “slow roll” conditions will play an
important role in the theory of inflation, described in Chapters 4 and 10.)
Equation (1.12.10) then becomes

\/2471GM4+“¢—0‘ ¢ =aM*epmel

and so
. aMZ—i—ot/Z(p—oz/Z—l

= 1.12.11
¢ NerETe (1.12.11)

The solution is

1/2+a/2)
M <M) . (1.12.12)

V24r G

(In general this involves a redefinition of the zero of time, to avoid a
possible integration constant that might be added to z.) We can now
check the approximations used in deriving Eq. (1.12.11), of which this is the
solution. From Eq. (1.12.12) we see that ¢ o t~Z+®)/@+e/2) while V (p)
1~%/(2+e/2) g0 the kinetic energy term in Eq. (1.12.2) does become small
compared with the potential term at late times. Also, § oc 1~ G+e)/2+e/2)
while V'(¢) o t~1+0/C+2/2) 5o the inertial term in Eq. (1.12.10) does
become small compared with the potential term at late times. Eq. (1.12.12)1s
therefore a valid asymptotic solution of Eq. (1.12.10) for t — oo. Numerical
calculations show that it is not only a solution for ¢ — o0; itis the asymptotic
form approached for # — oo by the tracker solution.

With p, t~%/(+/2) dominating the expansion rate at late times, we
have a/a o« t=%/2C+2/2) 5o

Ina o ?/CFe/? (1.12.13)
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This is a similar but less rapid growth of a than would be produced by
a cosmological constant, for which Ina o ¢. The difference between the
deceleration parameter ¢o and the value —1 for an expansion dominated
by a cosmological constant vanishes as r~+t®)/2+e/2) Note that the radi-
ation and matter densities decrease as 1/a* and 1/a> respectively, and the
curvature decreases as 1/a2, all of which have a much faster rate of decrease
with time than the power-law decrease of p,, so the expansion rate is indeed
dominated by p,, at late times, justifying the derivation of Eq. (1.12.10).

We have found that, at least for a range of initial conditions, the potential
(1.12.5)leads to an expansion that is dominated by radiation and then matter
at early times, but becomes dominated by the scalar field energy at late times.
But to get agreement with observation it is necessary arbitrarily to exclude
a large constant term that might be added to (1.12.5), and also to adjust
the value of M to make the critical time (1.12.8) at which the values of
pp and pys cross be close to the present moment 79 ~ 1/Hy. Specifically,
Eq. (1.12.8) shows that we need the constant factor in V' (¢) to take the
value

MY~ GTITe g (1.12.14)

There is no known reason why this should be the case.

Several groups of observers are now planning programs to discover
whether the vacuum energy density is constant, as in the case of a cos-
mological constant, or changing with time. In such programs, one would
compare the observed luminosity distance (or angular diameter distance)
with a formula obtained by replacing the term 2, in the argument of the
square root in Eq. (1.5.45) with a time-varying dark energy term. These
observations will not actually measure the value wg of w at the present time,
much less the present time derivatives Wy, Wy, etc., because for that pur-
pose it would be necessary to have extremely precise measurements of the
luminosity distance or angular-diameter distance for small redshifts. Ins-
tead, measurements will be made with only moderate precision, but over a
fairly large range of redshifts. To compare such measurements with theory,
one needs a model of the time-variation of the dark energy. One model is
simply to assume that w is constant, or perhaps varying linearly with time
or redshift, but there is no physical model that entails such behavior.? It
seems preferable to compare observation with the model of a scalar field
rolling down a potential, which (whatever reservations may have about its
naturalness) at least provides a physically possible model of varying dark

30ther assumptions about the form of w as a function of redshift that can mimic scalar field models
have been considered by J. Weller and A. Albrecht, Phys. Rev. D 65, 103512 (2002); E. V. Linder, Phys.
Rev. Lett. 90, 091301 (2003) [astro-ph/0208512].
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energy.* Because these observations are difficult, it pays to adopt scalar field
models with just two parameters, which can if we like be expressed in terms
of Qx = 1 — Qs (assuming flatness and neglecting the radiation energy
density) and wy.

One possibility is to suppose that over the latest e-folding of cosmic
expansion the scalar field ¢ has taken values for which V' (¢) is only slowly
varying. If V() were constant, we would have a constant vacuum energy,
with w = —1, and the only parameter to measure would be Q. For a
two-parameter fit, we can take V' (¢) to vary linearly with ¢:

Vip) = V0+<§0—<Po> V. (1.12.15)

This is valid if the fractional change in V’(¢) in a time interval of order
1/Hy is small; that is, if | V/o| < Ho| V.

The field equation (1.12.4) for ¢(¢) can be put in a convenient dimension-
less form by replacing the dependent variable ¢ and independent variable ¢
with dimensionless variables x and w, defined by

8T GV (p)
x = Hov/Qut, w=—-. 1.12.16
oV S2m 3 2 ( )

Because V is linear in ¢, we have

_ 3QuHie  3Q)H} do

Y= 8wGy] T 8xGV] dx

Then Eq. (1.12.4) becomes

d*w dw
— +3H—+A1=0, 1.12.17
dx? + de + ( )

where A is the dimensionless parameter

8 GV}?
3HIQ3,
and H is a function of w and dw/dx:
H " A+ 4o+ (d‘”)z (1.12.19)
= —— = z o+——) . 2.
HyoJvQum 21 \ dx

4This approach is followed by D. Huterer and H. V. Peiris, Phys. Rev. D 75, 083502 (2007) [astro-
ph/0610427]; R. Crittenden, E. Majerotto, and F. Piazza, astro-ph/0702003.
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We will also need the differential equation for the redshift:

% =—-H(l+z2). (1.12.20)
dx

In general, even if we wrote all derivatives with respect to x in terms of
derivatives with respect to z, to solve these equations we would need initial
conditions for w and dw/dz at some initial z, which with A would give a three-
parameter set of solutions. However, assuming that for large redshift the
energy density is dominated by matter rather than vacuum energy (which as
we shall see is the case), the derivative dw/dx sufficiently late in the matter-
dominated era becomes quite insensitive to initial conditions.” For z > 1,
Eq. (1.12.19) gives

H— (142)%?, (1.12.21)
and (1.12.17) and (1.12.20) then have the solution
3x\ 23 dw AX
1 — — = ——. 1.12.22
Tz ( 2 ) I T3 ( )

(An integration constant in the solution for z has been absorbed into the
definition of x, setting the zero of time. An integration constant in the
solution for dw/dx has been dropped, because it gives a term in dw/dx that
dies away with increasing time as x~2 o #~2.) The free parameters in our
solution are then A, together with the value of w at some arbitrary initial
value x; of x, taken sufficiently small so that at x| the energy density is
dominated by matter rather than vacuum energy. (Note that the constant
Vy appears nowhere in these equations; it contributes a term to w(x1), but
there is no need to isolate this term.) One must adopt various trial values
of A and w(x1); use Eq. (1.12.22) to calculate 1 + z and dw/dx at x = x1;
with these initial conditions, integrate the differential equations (1.12.17)
and (1.12.20) numerically from x1 to a value xo where z = 0; and then if we
like calculate the values of Q) = 1 — Q7 and the present value wq of the

ratio p,/p, for this particular solution,® using
Qa 1 [(do\* (dw/dx)i_,, — 24 (x0)
Qum 20 \dx /) _y, (dw/dx)y—y, + 2o (x))

(1.12.23)

SR. Cahn, private communication. Cahn has also shown that the approximation of neglecting the
second derivative term in the field equation does not work well in this context.

6As already mentioned, with models of this sort one can only have wy > —1. To compare the case
wo < —1 with observation, it is necessary to adopt a model with the opposite sign for the derivative
term in the action (1.12.1). The analysis given here can then be applied, with only obvious sign changes
here and there.
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The ratio of the dark energy at a given time to its value at the
present is

pr(t) _ (do)/dx)’ + 2o (x)
prt0)  (dw/dx)i_, + 2 Ao (x0)

£ (1.12.24)

For instance, if we take Qp =1 — Q37 = 0.76 and wg = —0.777, the ratio
& of the dark energy density to its value at present rises to 1.273 at z = 1
and to 1.340 at infinite redshift.” The leveling off of £(z) for large z occurs
because the growth of the matter density for increasing redshift makes the
expansion rate grow, so that the friction term 3H¢ in Eq. (1.12.4) freezes
the value of the scalar field at early times.

It should not be thought that the leveling off of the dark energy for large
z for the potential (1.12.15) means that in analyzing dark energy obser-
vations with this potential one must give up the idea motivating theories
of quintessence, that the vacuum energy is now small because the uni-
verse is old. In fact, for the potential V' (p) x ¢~%, for typical initial
conditions the quintessence energy drops at first precipitously, and then
levels oftf while the scalar field rolls slowly down the potential until the
field approaches the tracker solution, with the tracker solution not reached
by the present time if o is small.® The condition |Vy@ol < HolVy| for
treating this potential as linear over a time of order 1/Hj is satisfied if
a(l + o¢)(,00_2 <« 87 G, which in light of Eq. (1.12.9) is likely to be satisfied if
a < 1.

Another possible two-parameter model is provided by the same poten-
tial, V' (¢) o ¢~%, but now under the assumption that the tracker solution
is reached by some early time (say, for z < 10) in the matter-dominated era.
With this assumption the observable history of dark energy is insensitive
to initial conditions, so the model has just two parameters: M and «. The
equations of this model can be put in dimensionless form by writing the
coupling constant of this potential in terms of a dimensionless parameter
B as

MY = B Qy HE 8nG) 172/ (1.12.25)

and replacing the dependent variable ¢ and independent variable ¢ with
dimensionless variables x and f, defined by

t=x/Hov/2u o(f) = f(x)//37G . (1.12.26)

TNumerical results for various values of redshift are given in Table 1.1. These results for the linear
potential were calculated by R. Cahn, private communication.
8Steinhardt, Wang, and Zlatev, ref. 2.
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The field equation (1.12.4) (with no slow roll approximation) in the era
dominated by matter and vacuum energy then takes the form

2
Z—J;erl— B! = (1.12.27)

where

H=H/J/QHy = \/— (%) + gf—“ +(1+2)3 (1.12.28)

in which we also need p
7z
— =—-H(l+2). (1.12.29)
dx
Because the large z solution (1.12.7) is an attractor, the initial conditions
introduce no new free parameters; in terms of these dimensionless variables,

the initial conditions are that, for x — 0,

5 5 1/(@+2) 23
i |:aﬁ2(((xa++2é)l)x } Citzo (%) . (1.1230)

We need to integrate the equations (1.12.27) and (1.12.29) from some small
x (say, x = 0.01) to a value xo at which z = 0, with the initial conditions
(1.12.30), and then evaluate Q3; = 1 — Q4 from the condition that H(xq) =
1/4/S2p. We can also evaluate the present value wy of w = p,/p, from the
formula

_ [P x0)f (x0)*/2B — 1
S (x0)f (xo)*/28 + 17

and then replace the parameters « and B with Qj, and wy. For instance,
if we arbitrarily take o = 1, then to get the realistic value Q2,7 = 0.24 we
must take 8 = 9.93, in which case wg = —0.777. Of course, we can get any
other values of wg greater than —1 by choosing different values of « and
re-adjusting B to give the same value of @,/ (though for small «, the
range of initial conditions that allow the tracker solution to be reached
well before the present is relatively small.) For instance, for « = 1/2 we
must take 8 = 7.82 to have Q)s = 0.24, and in this case we calculate that

(1.12.31)

wo = —0.87. (For the case w < —1, see footnote 6.) The ratios of dark
energy to its value at present calculated in this way for Q;; = 0.24 and
wo = —0.777 are shown in Table 1.1, along with the values calculated with

the same choice of Q4 and wg for both the case of constant w and for
the linear potential (1.12.15). The tracker and linear models evidently rep-
resent opposite extreme assumptions about the time-dependence of dark
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Table 1.1: Ratio of dark energy to its present value, for the tracker solution with the potential
(1.12.5), and for the linear potential (1.12.15), calculated for Q3 = 1 — Q5 = 0.24 and

wo = —0.777, compared with the results for a constant w = —0.777.
z tracker linear constant w
0 1 1 1
0.1 1.067 1.062 1.066
0.5 1.347 1.200 1.312
1 1.712 1.273 1.590
2 2.469 1.318 2.086
3 3.224 1.331 2.528
> 1 > 1 1.340 > 1

energy, but both are better motivated physically than the assumption of a
constant w.

1.13 Horizons

Modern cosmological theories can exhibit horizons of two different types,
which limit the distances at which past events can be observed or at which it
will ever be possible to observe future events. These are called by Rindler!
particle horizons and event horizons, respectively.

According to Eq. (1.2.2), if the big bang started at a time ¢t = 0, then
the greatest value rmpax(?) of the Robertson—Walker radial coordinate from
which an observer at time ¢ will be able to receive signals traveling at the
speed of light is given by the condition

t ! TFmax (7)
[ e,
o a(t) 0 V1 — Kr?

Thus there is a particle horizon unless the integral [ dt/a(t) does not con-
verge at ¢+ = 0. It does converge in conventional cosmological theories;
whatever the contribution of matter or vacuum energy at the present, it is
likely that the energy density will be dominated by radiation at early times,
in which case a(f) « t'/2, and the integral converges. The proper distance

'W. Rindler, Mon. Not. Roy. Astron. Soc. 116, 663 (1956).
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of the horizon is given by Eq. (1.1.15) and (1.13.1) as

TFmax (%)
dmaxt - t . 1.13.2
(0 “()/o T ()/ w152

For instance, during the radiation-dominated era a(¢) o /2, s0 diax (f) =
2t = 1/H. Well into the matter-dominated era most of the integral over
time in Eq. (1.13.1) comes from a time when a o 72/3, so that diax (f) =~
3t = 2/H. Atpresent most of the integral over ' comes from a period when
the expansion is dominated by matter and the vacuum energy, and perhaps
curvature as well. According to Eq. (1.5.41), the particle horizon distance
at present is

1 ! d
donax (£0) = —/ al L (1.13.3)
Hy Jo xz\/QA + Qrx2 4+ Qpx—3

We will see in Chapter 4 that there may have been a time before the radiation-
dominated era in which there was nothing in the universe but vacuum energy,
in which case the particle horizon distance would actually be infinite. But as
far as telescopic observations are concerned, Eq. (1.13.3) gives the proper
distance beyond which we cannot now see.

Just as there are past events that we cannot now see, there may be events
that we never will see. Again returning to Eq. (1.2.2), if the universe re-coll-
apses at a time 7, then the greatest value rypax of ¥ from which an observer
will be able to receive signals traveling at the speed of light emitted at any
time later than ¢ is given by the condition

T / rMAXx ()
[ e,
. oa)  Jo V1=Kr2

Even if the future is infinite, if the integral [ dr/a(r) converges at t = oo
there will be an event horizon given by

00 ’ rMax (9
f A _ / . (1.13.5)
¢ a(t) 0 V1 = Kr?

Since co-moving sources are labeled with a fixed value of r, the condition
r < rmax limits the events occurring at time t that we can ever observe. In
the case where the universe does not recollapse, the proper distance to the
event horizon is given by

d o _dr T a6
MAX(l)—a(Z)/O ﬁ—a(l)/t M- (1.13.6)
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1 The Expansion of the Universe

In the absence of a cosmological constant, a(r) grows like 123, and the
integral diverges, so that there is no event horizon. But with a cosmological
constant a(¢) will eventually grow as exp(H¢) with H = HOQ}\/2 constant,
and there really is an event horizon, which approaches the value dyiax (00) =
1/H. As time passes all sources of light outside our gravitationally bound
Local Group will move beyond this distance, and become unobservable. The
same is true for the quintessence theory described in the previous section.
In that case a(¢) eventually grows as exp(constant x 2/2+2/2)) so for any
a > 0 the integral (1.13.6) again converges.

If a source is at a radial coordinate r in a Robertson—Walker coordinate
system based on us, then we are at a radial coordinate r in a Robertson—
Walker coordinate system based on the source. Hence Eq. (1.13.4) or
(1.13.5) also gives the greatest radial coordinate to which, starting at time
t, we will ever be able to travel.
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The Cosmic Microwave Radiation Background

Before the mid-1960s by far the greatest part of our information about the
structure and evolution of the universe came from observations of the red-
shifts and distances of distant galaxies, discussed in the previous chapter. In
1965 a nearly isotropic background of microwave radiation was discovered,
which has provided a wealth of new cosmological data. After reviewing
the expectations and discovery of this radiation, this chapter will explore
some of its implications. We will only be able to give a first look at the
anisotropies in this radiation in this chapter. In Chapter 7 we will return to
this very important topic, applying the analysis of the evolution of cosm-
ological perturbations presented in Chapters 5 and 6, and in Chapter 10 we
will consider the origin of these perturbations in the very early universe.

2.1 Expectations and discovery of the
microwave background

The work done by pressure in an expanding fluid uses heat energy drawn
from the fluid. The universe is expanding, so we expect that in the past
matter was hotter as well as denser than at present. If we look far enough
backward in time we come to an era when it was too hot for electrons to be
bound into atoms. At sufficiently early times the rapid collisions of photons
with free electrons would have kept radiation in thermal equilibrium with
the hot dense matter. The number density of photons in equilibrium with
matter at temperature 7 at photon frequency between v and v + dv is given
by the black-body spectrum:

8rvdy

exp (hv/kgT) — 1" @.1.1)

nr(w)dv =

where / is the original Planck’s constant (which first made its appearance in
a formula equivalent to this one), and kp is Boltzmann’s constant. (Recall
that we are using units with ¢ = 1.)

As time passed, the matter became cooler and less dense, and eventually
the radiation began a free expansion, but its spectrum has kept the same form.
We can see this most easily under an extreme assumption, that there was
a time 77 when radiation suddenly went from being in thermal equilibrium
with matter to a free expansion. (The subscript L stands for “last scat-
tering.”) Under this assumption, a photon that has frequency v at some
later time # when photons are traveling freely would have had frequency
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2 The Cosmic Microwave Radiation Background

va(t)/a(ty) at the time the radiation went out of equilibrium with matter,
and so the number density at time ¢ of photons with frequency between v
and v + dv would be

3
n(v, 1) dv = (a(tL)/a(t)> nyy,L)<va(t)/a(tL)>¢i(va(t)/a(tL)), 2.1.2)

3
with the factor (a(tL) /a(t)) arising from the dilution of photons due to

the cosmic expansion. Using Eq. (2.1.1) in (2.1.2), we see that the redshift
factors a(t)/a(tr) all cancel except in the exponential, so that the number
density at time ¢ is given by

8 v2 dv

n(, Hdv = oxp U /kaT (D) — 1 =nrp(w)dv, (2.1.3)

where

T(t) = T(tr)a(tr)/a(t) . (2.1.4)

Thus the photon density has been given by the black-body form even after
the photons went out of equilibrium with matter, but with a redshifted
temperature (2.1.4).

This conclusion is obviously unchanged if the transition from
opacity to transparency occupied a finite time interval, as long as the
interactions of photons with matter during this interval are limited to
elastic scattering processes in which photon frequencies are not changed.
This is a very good approximation. We will see in Section 2.3 that the
last interaction of photons with matter (until near the present) took place
at a time when the cosmic temperature 7" was of order 3,000 K, when by
far the most important interaction was the elastic scattering of photons
with electrons, in which the fractional shift of photon frequency was of
order kgT /mqc* ~ 3 x 10~7. In the following section we shall show that,
because of the large photon entropy, even the small shift of photon fre-
quency in elastic scattering and the relatively infrequent inelastic interac-
tions of photons with hydrogen atoms had almost no effect on the photon
spectrum.

It was George Gamow and his collaborators who first recognized in the
late 1940s that the universe should now be filled with black-body radiation.!
The first plausible estimate of the present temperature of this radiation was

1G. Gamow, Phys. Rev. 70, 572 (1946); R. A. Alpher, H. A. Bethe, and G. Gamow, Phys. Rev. 73,
803 (1948); G. Gamow, Phys. Rev. 74, 505 (1948); R. A. Alpher and R. C. Herman, Nature 162, 774
(1948); R. A. Alpher, R. C. Herman, and G. Gamow, Phys. Rev. 74, 1198 (1948); ibid 75, 332A (1949);
ibid 75, 701 (1949); G. Gamow, Rev. Mod. Phys. 21, 367 (1949); R. A. Alpher, Phys. Rev. 74, 1577
(1948); R. A. Alpher and R. C. Herman, Phys. Rev. 75, 1089 (1949).
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2.1 Expectations and discovery of the microwave background

made in 1950 by Ralph Alpher and Robert Herman.> On the basis of
considerations of cosmological nucleosynthesis, to be discussed in Sec-
tion 3.2, they found a present temperature of 5 K. This work was largely
forgotten in subsequent decades, until in 1965 a group at Princeton started
to search for a cosmic radiation background left over from the early uni-
verse. They had only a rough idea of the temperature to be expected, based
on a nucleosynthesis calculation of P. J. E. Peebles, which suggested a value
of 10 K.? Before they could complete their experiment the radiation was
discovered in a study of noise backgrounds in a radio telescope by Arno
Penzias and Robert Wilson,* who published their work along with a com-
panion article’ by the Princeton group explaining its possible cosmological
significance.®

Originally Penzias and Wilson could only report that the antenna
temperature at a wavelength 7.5 cm was 3.54+1.0 K, meaning that the int-
ensity of the radiation at this one wavelength agreed with Eq. (2.1.1) for
this temperature. This of course did not show that they were observing
black-body radiation. Then Roll and Wilkinson’ measured the radiation
intensity at a wavelength of 3.2 cm, finding an antenna temperature of
3.0 £ 0.5 K, in agreement with what would be expected for black-body
radiation at the temperature measured by Penzias and Wilson. In the fol-
lowing few years a large number of measurements were made by other
radio astronomers at other wavelengths. These measurements also gave
antenna temperatures at the wavelengths being studied around 3 K, with
uncertainties that gradually improved to of order 0.2 K. But this also did
not establish the black-body nature of the radiation, because these mea-
surements were all at wavelengths greater than about 0.3 cm, where the
black-body energy distribution Avny(v) with 7'~ 3 K has its maximum.
For these long wavelengths the argument of the exponential is small, and
Eq. (2.1.1) gives

hvnp(v) >~ 87v2 kT , (2.1.5)

This is the Rayleigh—Jeans formula of classical statistical mechanics, but
it describes the long-wavelength distribution of radiant energy under vari-

2R. A. Alpher and R. C. Herman, Rev. Mod. Phys. 22,153 (1950)

3This work was never published. According to A. Guth, The Inflationary Universe (Perseus Books,
Reading, MA, 1997), Peebles’ paper was rejected by The Physical Review, apparently because of the
issue of the credit to be given to earlier work by R. Alpher, G. Gamow, and R. Herman. This earlier
work and the subsequent work of Peebles and others is briefly described here in Section 3.2.

4A. A. Penzias and R. W. Wilson, Astrophys. J. 142, 419 (1965).

SR.H. Dicke, P. J. E. Peebles, P. G. Roll, and D. T. Wilkinson, Astrophys. J. 142, 414 (1965).

For a more detailed history of these developments, see A. Guth, op. cit., and S. Weinberg, The First
Three Minutes (Basic Books, New York, 1977; second edition 1993).

7P. G. Roll and D. T. Wilkinson, Phys. Rev. Lett. 16, 405 (1966).
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ous circumstances more general than black-body radiation. For instance,
black-body radiation diluted by an expansion that preserves the energy of
individual photons also has hvn(v) « v2 for low frequencies.® To con-
firm that the cosmic microwave background radiation is really described
by the black-body formula, it was necessary to see at least the beginning
of the exponential fall-off of n7(v) for wavelengths shorter than
about 0.3 cm.

This was difficult because the earth’s atmosphere becomes increasingly
opaque at wavelengths shorter than about 0.3 cm. However, there had been
a measurement of the radiation temperature at a wavelength 0.264 cm in
1941, long before the discovery by Penzias and Wilson. In between the
star ¢ Oph and the earth there is a cloud of cold molecular gas, whose
absorption of light produces dark lines in the spectrum of the star. In
1941 W. S. Adams,’ following a suggestion of Andrew McKellar, found
two dark lines in the spectrum of ¢ Oph that could be identified as due
to absorption of light by cyanogen (CN) in the molecular cloud. The first
line, observed at a wavelength of 3,874.62 A, could be attributed to absorp-
tion of light from the CN ground state, with rotational angular momentum
J = 0, leading to the component of the first vibrationally excited state
with J = 1. But the second line, at 3,874.00 A, represented absorption from
the J = 1 rotationally excited vibrational ground state, leading to the J = 2
component of the first vibrationally excited state.'? From this, McKellar
concluded!! that a fraction of the CN molecules in the cloud were in the
first excited rotational component of the vibrational ground state, which
is above the true J = 0 ground state by an energy sc/(0.264 cm). and
from this fraction he estimated an equivalent molecular temperature of 2.3
K. Of course, he did not know that the CN molecules were being excited
by radiation, much less by black-body radiation. After the discovery by
Penzias and Wilson several astrophysicists!? independently noted that the
old Adams-McKellar result could be explained by radiation with a

8The sunlight falling on the earth’s surface provides a pretty good example of dilute black-body
radiation; it is described by the Planck formula (2.1.1), with T =~ 6,000 K the temperature of the sun’s
surface, but with the right-hand side of Eq. (2.1.1) multiplied by a factor (Rp /r)2, where Rg is the
radius of the sun and r is the distance from the sun to the earth.

9W. S. Adams, Astrophys. J. 93, 11 (1941)

10Today the wavelengths of these two lines are more accurately known to be 3,874.608 and 3,873.998
A. There is another line at 3875.763 A, produced by transitions from the J = 1 rotationally excited
vibrational ground state to the J/ = 0 component of the first vibrationally excited state.

A, McKellar, Publs. Dominion Astrophys. Observatory (Victoria, B.C.) 7,251 (1941).

12G, Field, G. H. Herbig, and J. L. Hitchcock, Astron. J. 71, 161 (1966); G. Field and J. L. Hitchcock,
Phys. Rev. Lett. 16. 817 (1966); Astrophys. J. 146, 1 (1966); N. J. Woolf, quoted by P. Thaddeus
and J. F. Clauser, Phys. Rev. Lett. 16, 819 (1966); 1. S. Shklovsky, Astronomicheskii Tsircular No.
364 (1966).
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2.1 Expectations and discovery of the microwave background

black-body temperature at wavelength 0.264 cm in the neighborhood of
3 K. Theoretical analysis showed that nothing else could explain the exci-
tation of this rotational state.!3 This interpretation was then borne out by
continuing observations on this and other absorption lines in CN as well as
CH and CH™ in the spectrum of ¢ Oph and other stars.'*

The black-body spectrum of the cosmic microwave radiation background
began to be established by balloon-borne and rocket-borne observations
above the earth’s atmosphere at wavelengths below 0.3 cm. For some years
there were indications of an excess over the black-body formula at these
short wavelengths. It was clearly necessary to do these observations from
space, but this is difficult; to measure the absolute value of the microwave
radiation intensity it is necessary to compare the radiation received from
space with that emitted by a “cold load” of liquid helium, which rapidly
evaporates. Finally, the Planck spectrum of the microwave background was
settled in the 1990s by observations with the FIRAS radiometer carried by
the Cosmic Background Explorer Satellite (COBE), launched in November
1989.15 When a slide showing the agreement of the observed spectrum with
the Planck black-body spectrum was shown by J. C. Mather at a meeting of
the American Astronomical Society in January 1990, it received a standing
ovation. It was found that the background radiation has a nearly exact
black-body spectrum in the wavelength range from 0.5 cm to 0.05 cm.!®
The comparison of observation with the black-body spectrum is shown in
Figure 2.1. After six years of further analysis, the temperature was given
as 2.725 + 0.002 K (95% confidence).!” Other observations at wavelengths
between 3 cm and 75 cm and at 0.03 cm are all consistent with a Planck
distribution at this temperature.!8

The energy density in this radiation is given by

o0
/ hvn(v)dv=a3T4 (2.1.6)
0
where ag is the radiation energy constant; in c.g.s. units,
873k
ap = 2B _ 7.56577(5) x 10~'5 erg em =3 deg 2.1.7)
15h3¢3

I3Field et al., ref. 12; Thaddeus and Clauser, ref. 12.

14For a summary of this early work with references to the original literature, see G&C, Table 15.1.

153 C. Mather et al., Astrophys. J. 354, 237 (1990).

163 C. Mather et al., Astrophys. J. 420, 439 (1994).

17). C. Mather, D. J. Fixsen, R. A. Shafer, C. Mosier, and D. T. Wilkinson, Astrophys. J. 512, 511
(1999). A 1999 review by G. F. Smoot, in Proc. 3K Cosmology Conf., eds. A. Melchiorri et al. [astro-
ph/9902027], gave a temperature 2.7377 £ 0.0038 K (95% confidence), but the result of Mather et al.
seems to be the one usually quoted.

18 For a review, see G. Sironi et al., in Proc. Third Sakharov Conf. — Moscow 2002 [astro-ph/0301354].
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Figure 2.1: Comparison of the intensity of radiation observed with the FIRAS radiometer
carried by COBE with a black-body spectrum with temperature 2.728 K, from D. J. Fixsen
et al., Astrophys. J. 473, 576 (1996) [astro-ph/9605054]. The vertical axis gives the
intensity in kiloJansky per steradian (one Jansky equals 10~23 erg cm~2 s—! Hz~1);
the horizontal axis gives the reciprocal wavelength in em~!.  The lo experimental
uncertainty in intensity is indicated by the tiny vertical bars; the uncertainty in wavelength is

negligible.

Using T = 2.725 K, this gives an equivalent mass density (reverting to
c=1)

pyo = agTyy =4.64 x 107 gem™ .
Taking the ratio of this with the critical density (1.5.28) gives

Q, = 2% — 247 % 107582 (2.1.8)

POcrit

We will see in Section 3.1 that the photons are accompanied with neutrinos
and antineutrinos of three different types, giving a total energy density in
radiation (that is, in massless or nearly massless particles):

7\ [ 4\*’
oro=|1+3 (g) (ﬁ> pyo=780x10"Hgem™3,  (2.1.9)

or in other words, using Eq. (1.5.28),

PRO
L0, crit

Qr = =4.15x 107°h72. (2.1.10)

106



2.1 Expectations and discovery of the microwave background

We see that pgg is much less than the critical mass density needed to give
K = 0, and much less even than the mass density of ordinary matter seen in
stars. It is for this reason that we have generally neglected Q2 in calculating
luminosity distances as a function of redshift.

On the other hand, even at present the number density of photons is
relatively very large. Eq. (2.1.1) gives

/oo 8 v2 dvy 30¢(3) agT?
n = =
vo o exp(w/kpT)—1 x4 kg
T3
- 0.3702‘”; —2028[T(deg K)PPem™3,  (2.1.11)

where ¢(3) = 1.202057... For T = 2.725 K this gives a present number
density

ny, o =410 photons/cm? . (2.1.12)

This is much larger than the present number density np( of nucleons, given
by

3QpH}

= 1.123 x 107> Q5 4* nucleons/cm? . (2.1.13)
81 Gmy

npo =

Both n, and np vary with time as a=—3(1), so the ratio n, /np has been the
same at least during the whole period that photons have been traveling freely.

% %k %

There is an effect of the cosmic microwave background that has long been
expected but has been difficult to observe. A cosmic ray proton of moderate
energy striking a photon in the cosmic microwave background can only
scatter the photon, a process whose rate is proportional to the square of the
fine structure constant @ ~ 1/137. However, if the proton has sufficiently
high energy then it is also possible for the photon to be converted into a
7 meson in the reactions y +p — 7% + por y +p — 7T + n, processes
whose rate is proportional to o, not 2. Assuming that high energy cosmic
rays come to us from outside our galaxy, we therefore expect a dip in the
spectrum of cosmic ray protons at an energy where the cross section for these
processes becomes appreciable.!® Although some pions can be produced at
lower energy, the effective threshold is at a value of the total energy W of the

19K Greisen, Phys. Rev. Lett. 16, 748 (1966); G. T. Zatsepin and V. A. Kuzmin, Pis'ma Sh. Exsp.
Teor. Fiz. 4,114 (1966) [transl. Sov. Phys. JETP Lett. 4, 78 (1966)]; F. W. Stecker, Phys. Rev. Lett. 21,
1016 (1968).
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initial proton and photon in the center-of-mass system equal to ma = 1232
MeV, the mass of the pion—nucleon resonance with spin-parity 3/2% and
isospin 3/2. The center of mass energy is

2 2\ 1/2
W= ((q+,/p2+m12,> - ‘q+p‘ )
N
~ (2qp<1 —cos@)—i—mp) : (2.1.14)

where q and p are the initial photon and proton momenta (with p > m,, > ¢q)
and 0 is the angle between them. The threshold condition that W > ma
thus requires that

qgp(1 — cos ) > my —m, . (2.1.15)
The typical energy of photons in black-body radiation at temperature 7,0 =
2.725K 18 pyo/n,0 = 6 X 10~* eV, while the largest value for 1 — cos6 is 2,
so the effective threshold is roughly at a proton energy

2 2
miy —m
Pihreshold & ———~ ~ 102 eV . (2.1.16)
2;0)/0/”;/0

This effect is not easy to see. The flux of cosmic ray protons with energies
between E and E + dE goes roughly as E~3 dE, so there are few protons at
these very high energies, roughly one per square kilometer per year above
10" eV and 0.01 per square kilometer per year above 10?0 eV. At these
rates, direct observation is clearly impossible, and the cosmic rays have had
to be studied indirectly by observation at ground level of the large showers
of photons and charged particles that they produce. Also, there is a smooth
distribution of photon energies and directions, so one is not looking for a
sharp cut-off at 102° ¢V, but rather for a dip below the E~3 curve at around
this energy.2? No such effect was observed by the Akeno Giant Air Shower
Array,?! but a subsequent analysis of this and other observations showed
the effect.22 More recently signs of a drop appeared in the High Resolution
Fly’s Eye experiment.2® In 2006 this group announced the observation of
a “sharp suppression” of the primary cosmic ray spectrum at an energy of
6 x 10! GeV, just about where expected.?*

20For instance, see I. F. M. Albuquerque and G. F. Smoot, Astroparticle Phys. 25, 375 (2006)
[astro-ph/0504088].

2IM. Takeda ez al. Phys. Rev. Lett. 81, 1163 (1998).

223, N. Bahcall and E. Waxman, Phys. Lett. B556, 1 (2003) [hep-ph/0206217].

23R, U. Abbasi et al., Phys. Rev. Lett. 92, 151101 (2004) [astro-ph/0208243]; Phys. Lett. B619, 271
(2005) [astro-ph/0501317].

24G. B. Thompson, for HiRes Collaboration, in Proc. Quarks ‘06 Conf. [astro-ph/0609403]; R. U.
Abbeasi et al., astro-ph/0703099.
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2.2 The equilibrium era

As already remarked in the previous section, if we look back in time suffici-
ently far, we surely must come to an era when the temperature and den-
sity were sufficiently high so that radiation and matter were in thermal
equilibrium. We will now consider this era, jumping over the intermediate
time when radiation was going out of equilibrium with matter, which will
be the subject of the next section.

As we saw in the previous section, in a free expansion of photons, the
frequency distribution preserves the Planck black-body form (2.1.1), but
with a temperature that falls as 1/a(¢). On the other hand, in a free expan-
sion of non-relativistic particles such as electrons or nuclei, the momentum
distribution preserves the Maxwell-Boltzmann form, n(p)dp
exp(—p?/2mkpT), but since (as shown in Eq. (1.1.23)) the momentum of
any particle decreases as the universe expands with p o« 1/a, the temper-
ature of the Maxwell-Boltzmann distribution decreases as 1/a%(f). So if
radiation is in equilibrium with matter, who wins? Does the temperature
decrease as 1/a(t), or 1/a*(t), or something more complicated?

The issue is settled democratically, on the basis of one particle, one vote.
Since there are so many more photons than electrons or nucleons, the pho-
tons win, and the temperature decreases almost exactly as 1/a(z).

We can see this in more detail by applying the second law of therm-
odynamics. In equilibrium both the entropy and the baryon number (that
is, at temperatures < 10'3 K, the number of protons and neutrons) in any
co-moving volume were constant, and so their ratio, the entropy per baryon,
was also constant. It is convenient to write the entropy per baryon as ko,
with kz the Boltzmann constant and o dimensionless. The second law of
thermodynamics tells us that this satisfies

d(lq;a) _ d(e/ng) +pd(1/np) 2.2.1)

T )
where np is the baryon number density (so that 1/np is the volume per
baryon), € is the thermal energy density and p is the pressure. For simplicity,
let us consider an ideal gas of photons and non-relativistic particles (mostly
protons, helium nuclei, and electrons), with a fixed number (of order unity)
N of the non-relativistic particles per baryon. Then

3 1
e =agT* + EnB/\/'kBT, p= ga,3T4+nB/\/kBT, (2.2.2)
with ap the radiation energy constant (2.1.7). The solution of Eq. (2.2.1) is
here
4apT? T3/
= 1 223
o Inpks +Nn<nBC > ( )
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where C is an arbitrary constant of integration. It is the quantity o that
remains constant in thermal equilibrium.

We saw in the previous section that the first term in Eq. (2.2.3) is larger
than 108 at present. (Compare Eqs. (2.1.12) and (2.1.13).) Let us tentatively
assume that this quantity was also much larger than unity when photons
were in equilibrium with matter. Since o was constant in this era, this
means that the ratio 73 /ng would also have been very close to constant
during the era of equilibrium, unless the quantity 7°/2/ng changed by an
enormous amount. For instance, if at some time in the equilibrium era the
first term in Eq. (2.2.3) were of order 108, then in order for the first term in
Eq. (2.2.3) to have changed by even 0.01%, to keep o constant the value of
T3/2 /ng would have had to change by a factor !9/~ We are not going
to be considering such enormous density or temperature ratios here, so we
can conclude that 73 /np was essentially constant in thermal equilibrium.
We saw in the previous section that this ratio was also constant when the
photons were traveling freely, and also when photons were interacting only
by purely elastic Thomson scattering, so it has been close to constant from
the beginning of the era considered here to the present. If we define the
constant C in Eq. (2.2.3) to equal the value of 7°/2/np at some typical time
during the era of equilibrium, then the entropy per baryon throughout this
era can be taken as

_4agT?  3.60m,0

o = =
3ngkp 1RO

= 1.31 x 108h72Q5" . (2.2.4)

The conservation of baryon number tells us that » pa’ is constant, so the
constancy of (2.2.3) has the consequence that T" oc 1/a. (Note incidentally
that if the first term in Eq. (2.2.3) were of order 10~8 instead of greater than
108, then it would be the logarithm in the second term that would have to
remain constant during thermal equilibrium, in which case 7" n%,/ 3 a2,
as expected if non-relativistic particles dominate the thermal evolution.)
We can now see why the black-body spectrum with 77 o« 1/a is
preserved as photons go out of equilibrium with matter, even when we take
into account small inelastic effects, like the loss of energy to electron recoil
in photon—electron scattering. Photons effectively stop gaining or losing
energy to matter when I', < H, where H = a/a and T',, is the rate at which
an individual photon loses or gains an energy kg7 through scattering on
electrons (to be calculated later). But the rate I', at which an individual elec-
tron would gain or lose an energy kg T by scattering on photons is greater
than I'), by a factor n,, /n, > 108, so at the time that I',, drops below H we
still have I, > H. Thus instead of the electron kinetic energies decreasing
like 1/4?, as they would in a free expansion, they continue to remain in
thermal equilibrium with the photons. While in equilibrium with matter

110



2.2 The equilibrium era

the photon temperature goes as 1/a, and we saw in the previous section that
when they stop interacting with matter the temperature continues to drop
like 1/a, so through this whole period the electron temperature also drops as
1/a, and the last few exchanges of energy that photons have with electrons
do not affect the photon energy distribution.

According to results quoted in the previous section, the present ratio of
the equivalent photon and neutrino mass density and the total matter mass
density py0 = Qs P0crit 18

Q
PRO _ 2R 415 x 10759, 72 . (2.2.5)

om0 Qm

As we have seen, the photon and neutrino energy density varied as 7% oc a=*

even before the photons began their free expansion, while the density of
pressureless matter varied as a=3,50 pr /ou varied as 1/a o« T. Therefore
the energy density of photons and neutrinos was equal to that of matter
when the temperature was

TyOQM
QR

Tgo = =6.56 x 10°K x Quh*, (2.2.6)
Q

and pr was greater than pjs at earlier times. For uh? ~ 0.15, T EQ 18
about 10* K.

Although collisions cannot change the distribution of photon energies
as long as the photon number is much greater than the number of charged
particles, at sufficiently high temperatures collisions can drastically change
the energy of an individual photon. It is of some interest to work out when
photons stopped exchanging energies of order kg T with electrons. The rate
at which any individual photon is scattered by electrons is A, = o7nec,
where n, is the number density of electrons, and o7 = 0.66525 x 1024
cm? is the cross section for Thomson scattering, the elastic scattering of
photons by non-relativistic electrons. As we will see in Section 3.2, about
76% of the matter of the universe in this era was ionized hydrogen, with the
rest helium, completely ionized at temperatures above 20,000 K, so with
one electron per nucleon for hydrogen and half an electron per nucleon for
helium, the net number of electrons per nucleon is 0.76 + (1/2)0.24 = (.88,
and the number density of electrons at temperature 7T is n, >~ 0.88np =
0.88np0(T/Ty0)*, with a subscript zero as usual indicating the present
moment. Using Eq. (2.1.13), the rate at which a photon is scattered by
electrons is

T 3 T 3
Ay =0.88ngo(=—) o7c=1.97x 1071 571 x Qph? (—) .27
Tyo Tyo
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2 The Cosmic Microwave Radiation Background

But this is not the rate that governs the effectiveness of the energy exchange
between matter and radiation. A photon with energy much less than m,c2
that strikes a non-relativistic electron will transfer a momentum to the elec-
tron of the order of its own momentum, typically about k37 (in units with
¢ = 1), and so it will gain or lose an energy of order (kzT)*/m,.. (This
agrees with Eq. (C.20) for o ~ kT <« m,.) Hence the rate for energy
transfer of order kT between a given photon and the electrons equals the
rate of collisions times the fraction of the energy kg T that is transferred per
collision:

ksT T \*
r, ~ ( 5 )Ay ~ 9.0 x 1072 s~ Qpn? (T—yo) . (2.2.8)

We have to compare this with the cosmic expansion rate. Let’s tentatively
assume that at the time that concerns us here the density of the universe was
dominated by photons and neutrinos, not matter, in which case the cosmic
expansion rate was

T 2
= Ho\/QrT*/ T}y =2.1 x 107257 (T—0> . (2.2.9)
Y

Therefore I',, was greater than H until the temperature dropped to a value
of order

H =

ISIIIRSE

~12
Theere = 1.5 x 104K (Qth) . (2.2.10)

For Qph? ~ 0.02, this is about 10° K. (Comparison with Eq. (2.2.6) shows
that for plausible values of Q2 wh? and Qph?, as for instance Q7% ~ 0.15
and Qph* ~ 0.02, we have Treere > Tkq, so the temperature (2.2.10) was
reached while the expansion rate was still dominated by radiation, as we
have been assuming.)

After the temperature dropped below about 10° K photons no longer
exchanged appreciable energy with electrons, but at this temperature the
rate (2.2.7) of elastic scattering was still roughly 10° times greater than H.
If Eq. (2.2.7) remained valid then A, would remain larger than A until the
temperature dropped to much lower temperature. For 3K « T « 10*K
the universe was matter-dominated, with

T \3/2
H=H /QuT3/T} =33 x10""% s/ Quh? (T_> .
y 0

This became equal to the rate given by Eq. (2.2.7) at a temperature T >~
18 K (213 /(ph?)?/3, or about 130 K for Q4% = 0.15 and Qph? =
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2.3 Recombination and last scattering

0.02, and until then each photon would be scattered many times by electrons
in each doubling of a(#). This is not what actually happens, because when
the temperature became low enough for electrons and nuclei to hold together
as neutral atoms, the elastic scattering rate A, dropped sharply below the
value (2.2.7). As we shall see in the next section, this was at a temperature
of about 3,000 K, which marked the end of the era of rapid scattering of
photons by electrons.

2.3 Recombination and last scattering

We saw in the previous section that photons stopped exchanging energy
effectively with electrons when the temperature of the expanding universe
dropped to about 105 K. After that, photons continued to be scattered
by free electrons, but without appreciable gain or loss of energy. This
terminated when the free electrons became bound into hydrogen and helium
atoms, ending the scattering of photons. This is called recombination.' Let’s
consider when this happened.

We start our calculation at a time early enough so that protons, elec-
trons, and hydrogen and helium atoms were in thermal equilibrium at the
temperature of the radiation. In a gas in equilibrium at temperature 7, the
number density of any non-relativistic non-degenerate particle of type i is
given by the Maxwell-Boltzmann formula:

) /kBT] . (23.0)

where m; is the particle mass, g; is the number of its spin states, and w; is a
characteristic of the gas known as the chemical potential of particles of type i.
(The generalization of Eq. (2.3.1) to include the effects of relativity and/or
degeneracy is given in the following chapter.) The property of the chemical
potentials that make this a useful formula is that they are conserved in any
reaction that is occurring rapidly in the gas. In our case, the particles are
protons, electrons, and hydrogen atoms in any bound state, for which we
take i as p, e, s, 2s, 2p, etc. (As already mentioned, about 24% of the mass
of the early universe was in the form of helium nuclei, but helium atoms are
more tightly bound than hydrogen atoms, so that at the time that concerns us
now, say for T’ < 4,400 K, almost all the helium was locked up in the form of
neutral atoms, and therefore played no role here.) The electron and proton

2
ni = g (Znh)_se“f/kBT/d3q exp |:— (mi + 265%
1

IThe “re” in “recombination” may be misleading; before this time electrons and protons had never
been combined into atoms. This has become the standard term throughout astrophysics for the capture
of electrons into atoms.
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2 The Cosmic Microwave Radiation Background

have spin one-half, so g, = g. = 2, while the 1s ground state of the hydrogen
atom has two hyperfine states with spins 0 and 1, so g1y = 143 = 4. Atfirst
the recombination and ionization reactions p 4+ ¢ = Hjy occurred rapidly
by cascades of radiative transitions through excited states, so the chemical
potentials satisfied

Mp + Me = WUis - (2.3.2)
(Photons can be freely created and destroyed in reactions like e + p =
e + p + y, so their chemical potential vanishes.) The integrals are

2 kgT\>/?
2xiy [ &P )= (=
(2 h) / P exp( 2kaT) <2nh2 ,

so the conservation law (2.3.2) gives

ns <mekBT
npne 27 h?

-3/2
) eXp(Bl/kBT) , (2.3.3)

where By = my, +m, —mpy = 13.6 eV is the binding energy of the 1s ground
state of hydrogen. (Here we ignore the difference between the hydrogen
mass and the proton mass, except in the exponential.) Also, the charge
neutrality of cosmic matter requires that

Ne =1y (2.3.4)

Further, in equilibrium the number density of hydrogen atoms in any one
excited state is less than the number density in the ground states by a factor
of order exp(—AE /kgT), where AFE is the excitation energy, which is nec-
essarily not less than the difference 10.6 eV in the binding energies of the
n = 1 and n = 2 states of hydrogen. (Excited states had the same chemical
potential as the ground state, since in equilibrium the atom could go rapidly
from one to the other by emitting or absorbing photons.) For temperatures
below 4,200 K this exponential factor is less than 6 x 1013, so that to a
good approximation we can neglect the presence of excited hydrogen atoms
as long as thermal equilibrium persisted. As we will see in Section 3.2, the
matter at the time of recombination was about 76% by weight neutral or
ionized hydrogen, so we can take

ny +nyy; =0.76np, (2.3.5)

where np is the number density of baryons (i.e. at the temperatures of int-
erest here, of neutrons and protons.) The fractional hydrogen ionization
X = ny/(ny + nyy) therefore satisfies the Saha equation:

XA +8X)=1 (2.3.6)
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2.3 Recombination and last scattering

where
(np + nignis mekpT -3z
S = —— = 0.76 ng 5 exp(B1/kpT) . (2.3.7)
n; 2 h

One might think that the fractional ionization in equilibrium would
become small when the temperature drops below the value By /kp = 157,894
K, but even in equilibrium the recombination is considerably delayed,
because of the small value of the coefficient of the exponential in Eq. (2.3.7).
With np = nBo(T/TJ,o)3 and np given by Eq. (2.1.13), we have

S = 1.747 x 10722 T 132 Qpi? | (2.3.8)

where / is here again the Hubble constant in units of 100 km s~! Mpc~!,
and T is the temperature in degrees Kelvin. This function of tempera-
ture is extremely rapidly varying where it is of order unity, so the Saha
equation gives a quite sharp temperature of recombination, as shown in
Table 2.1. We see from Table 2.1 that the equilibrium value of the ion-
ization dropped from over 97% for T = 4,200 K to less than 1% for
T = 3,000 K.

This gives the correct order of magnitude of the temperature of the
steep decline in fractional ionization, but it is not correct in detail, because

Table 2.1: Equilibrium hydrogen ionization X for various values of the temperature 7" and
Q th.

T (K) Qph?* =0.01 Qph* =0.02 Qph? =0.03
4,500 0.999 0.998 0.997
4,200 0.990 0.981 0.971
4,000 0.945 0.900 0.863
3,800 0.747 0.634 0.565
3,600 0.383 0.290 0.244
3,400 0.131 0.094 0.078
3,200 0.0337 0.0240 0.0196
3,000 0.00693 0.00491 0.00401
2,800 0.00112 0.00079 0.00065
2.725 2.8 x 10712571 2.0 x 10712371 1.6 x 10712571
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2 The Cosmic Microwave Radiation Background

equilibrium was not actually maintained for low ionization levels. The pho-
ton that is emitted when a free electron is captured by a proton into the
ground state has more than enough energy to ionize another hydrogen atom,
so this process produces no net decrease in ionization. Similarly, the photon
emitted when an electron in a high orbit of the hydrogen atom with principal
quantum number n > 3 falls into the ground state has more than enough
energy to lift an electron in the ground state of some other hydrogen atom
to the n = 2 excited state, so this process also produces no net increase in
the number of electrons in the ground state. The ground state of hydro-
gen is typically reached by formation of excited states H* in the reaction
e+p — H*+y, followed by a cascade of radiative decays down to then = 2
excited state. The final transition from the 2p excited state to the 1s ground
state by emission of a single Lyman « photon is impeded by the same effect
that impedes the transition of free electrons or electrons in higher excited
states to the ground state: the Lyman « photon does not simply merge into
the thermal radiation background; it has a large resonant cross section for
exciting another hydrogen atom from the ground state to the first excited
state, from which it is most often reionized (as shown by the small equil-
ibrium numbers of hydrogen atoms in excited states). But in cosmology this
process is not entirely ineffective, because the Lyman o photon emitted by
one atom will have just barely enough energy to excite another hydrogen
atom in its ground state to the 2p state, so if it does not interact very soon
with another atom then the cosmological redshift will take its energy out-
side the resonant line, after which it no longer has enough energy to excite
a hydrogen atom in its ground state. Even so, the formation of the ground
state by radiative decay from the 2p state is so inefficient that we also have
to consider slower pathways to the ground state, such as the formation of
the 2s excited state, which can only decay into the ground state by emitting
two photons, neither of which has enough energy to re-excite a hydrogen
atom in its ground state. When the ionization became small the rate of these
reactions could no longer compete with the cosmic expansion rate, and the
ionization no longer fell as fast as it would in thermal equilibrium.?

2The classic paper on this subject is by P. J. E. Peebles, Astrophys. J. 153, 1 (1968). Also see Ya. B.
Zel’dovich, V. G. Kurt, and R. A. Sunyaev, Soviet Physics JETP 28, 146 (1969). At the time of writing the
most thorough analysis known to me is that of S. Seager, D. D. Sasselov, and D. Scott , Astrophys. J. 523,
L1 (1999); Astrophys. J. Suppl. Ser. 128, 407 (2000) [astro-ph/9909275]. Corrections of the order of a
percent of the calculated value due to additional transitions and stimulated emission were subsequently
found by V. K. Dubrovich and S. I. Grachev, Astron. Lett. 31, 359 (2005) [astro-ph/051672]; J. Chluba
and R. A. Sunyaev, Astron. Astrophys. 446, 39 (2006) [astro-ph/0508144]; W. Y. Wong and D. Scott,
Mon. Not. Roy. Astron. Soc. 375, 1441 (2007) [astro-ph/0610691]. The possible use of observations
of the cosmic microwave background to resolve these uncertainties is discussed by A. Lewis, J. Weller,
and R. Battye, Mon. Not. Roy. Astron. Soc. 373, 561 (2006) [astro-ph/0606552]. For the sake of
simplicity here I will make the same approximations as Peebles, but will use the “escape probability”
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2.3 Recombination and last scattering

This is a complicated business, but it is not hard to see the main outlines
of the recombination process. We make the following approximations:

1. Collisions between hydrogen atoms and radiative transitions between the
states of these atoms are sufficiently rapid so that all states of the atoms are in
equilibrium with each other at the temperature T of the radiation, except for
the 1s ground state, which as already mentioned is reached only through slow
or inefficient processes. This has the consequence that the number density
of states n £ of hydrogen having principal quantum number n (with n > 1)
and orbital angular momentum ¢ can be expressed in terms of the number
density of any one state, say the 2s state:

Mt = Q€+ D mysexp (B = B) /ksT ) , (2.3.9)

where B, is the binding energy* of the state with principal quantum
number 7.

2. The net rate of change in the population of hydrogen atoms in their 1s state
is given by the rate of radiative decay from the 2s and 2p states, minus the
rate of excitation of these states from the 1s state. In accordance with the dis-
cussion above, all other processes leading to the ground state are assumed to
be canceled by the reionization or re-excitation of other atoms by the emitted
photon. Because recombination occurs in collisions of electrons and pro-
tons, it decreases the number n,a> of free electrons in a co-moving volume a
at a rate oc(T)n,,n@a3 that is proportional both to n, = n, and nea’, with the
coefficient «(7") depending only on temperature, not on 7, or a. (We do not
include recombination directly to the ground state here, since it is canceled
by the ionization of other atoms by the emitted photon, so «() is what in
astrophysics is called the “case B recombination coefficient.”) Also, leaving
aside ionization from the ground state which just cancels recombination to
the ground state, the ionization from excited states of hydrogen increases
n.a® at a rate given by a sum of terms proportional to the n,0a’> withn > 1,
with coefficients depending only on temperature. Eq. (2.3.9) gives all the
nuye with n > 1 as proportional to nys, with coefficients that also depend
only on temperature, so ionization increases the number of electrons in a
co-moving volume & at a rate that can be written as (T )nysa’, with (T

method discussed by Seager ef al., which seems to me more direct and easier to justify.

3This formula does not apply to hydrogen atoms in very high excited states, which have such large
radii and small binding energies that they cannot be treated as free particles. See, e.g., D. Mihalas,
Stellar Atmospheres, 2nd edition (Freeman, San Francisco, 1978).

4We are here neglecting the fine structure, hyperfine structure, and Lamb energy shifts, which
give the binding energies a very small dependence on ¢ and on the total (including spin) angular
momentum j.
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2 The Cosmic Microwave Radiation Background

a function only of temperature, not of @ or n, or any of the n,,. Putting
these rates together, we have

d
—(nea3> = —anga3 + 8 nzsa3 .
dt

Dividing by the constant na> (where n = np+npg =ny+y ,, e = 0.76np),
this gives

d oy et
dt \'n n n

Further, this must vanish under conditions of equilibrium, where (since the
transitions e + p = 2s occur rapidly) instead of Eq. (2.3.3) we would have

(2.3.10)

nys (mngT

-3/
Py ) exp(B2/kpT) ,

w2
ne

so the coefficients in Eq. (2.3.10) are related by

2 kpT\>"?
Bla=|lc = <m€ > ) exp(—B2/kgT) .  (2.3.11)
nas I 2rh
equilibrium
In order for Eq. (2.3.10) to be useful, we need to relate nys to the total
number density n of protons and hydrogen atoms.

3. The total number of excited hydrogen atoms in a co-moving volume 1/n
changes so much more slowly than individual radiative processes that the net
increase in this number due to recombination and reionization of hydrogen is
balanced by the net decrease in this number by transitions to and from the 1s
state. That is,

an? — By = (Tas + 3PIpp)nas — Enyg (2.3.12)

where I'y¢ and I'p, are the rates for the radiative decay processes 2s —
ls +y +y and 2p — s+ y, respectively;> P is the probability that the
Lyman « photon emitted in the decay 2p — 1s + y will escape to infinity
without exciting some other hydrogen atom in the 1s state back to the 2p
state (to be calculated below); and £ is the rate at which hydrogen atoms
in the 1s state are excited to the 2s or 2p state, not including those that are
excited to the 2p state by Lyman « photons from the decays 2p — 1s + y,
which we take into account with the factor P. (The factor 3 in Eq. (2.3.12)

SWe neglect the process 2p — 1s + y + y, which is much slower than 2s — 1s +y + y.
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2.3 Recombination and last scattering

enters because Eq. (2.3.9) gives np, = 3ny,.) From this, we obtain the needed
formula for ny;:

B an?+Eni
 Ta+3PTy + B

Mo (2.3.13)

We will be concerned here with temperatures 7 <« (By—B3)/kg = 21,900K,
so according to Eq. (2.3.9) all n,; with n > 2 are much less than nyy,
and hence to a very good approximation the total number of hydrogen
atoms is

ng = Ny + nog + nyp = nig + 4nog . (2.3.14)
We can therefore eliminate 7, in favor of ny in Eq. (2.3.13), so

2
an, +Eny

= 2.3.15
Tas +3PTo, + B +4E ( )

nas

Further, in equilibrium the number of hydrogen atoms in the 1s state would
be constant, so the coefficients on the right-hand side of Eq. (2.3.12) (which
gives the net rate of increase of the number density of hydrogen atoms in
the ground state) must have the ratio

& (nzs)
- (= =exp( — (B — By)/kgT ). (2.3.16)
[y +3PTy, N1s / equilibrium ( )

Using Egs. (2.3.15) and (2.3.16) in Eq. (2.3.10) now gives the rate
equation in a more useful form

i <E) _ a5+ 3PTy,
dt \ n (T2 + 3PT2) [1+4exp(—(B1 —Bz)/kBT>] + B

2
an;

x (- [1 +dexp ( — (B - Bz)/kBT)]

+exp ( — (B — Bz)/kBT>'BnTH> .

At the temperatures of interest the factor 1 4+ 4 exp(—(B1 — By)/kgT) can
be replaced with unity. Using Eq. (2.3.11) and the definition of fractional
lonization X' = n./n = ny/n =1 — ny /n, we have at last

dx ( I + 3P,

= ~x’+sta-x 2.3.17
dr F25+3PF2[,+,B>0”1< +sha-n) . A
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where S(T) is the function (2.3.7) appearing in the Saha equation. Note
that if the temperature were constant then this would be satisfied by any
solution of the Saha equation (2.3.6). In fact, X is always larger than the
value given by the Saha equation, so Eq. (2.3.17) gives a monotonically
decreasing fractional ionization. The first factor in Eq. (2.3.17) represents
the suppression of recombination that occurs when the transitions of the
2s and 2p states to the ground state are slower than the reionization of the
atom.

It remains to calculate the photon survival probability P. This is given
in general by

+o00 o]
P(t) = / do P(w) exp [— / df’ my (1) ca(wa(l)/a(l/)>i| . (2.3.18)
—00 t

where P(w) dw is the probability that a photon emitted in the transition
2p — s has energy between fiw and /i(w + dw), normalized so that [ P(w)
dw = 1, and o (w) is the cross section for the excitation 1s — 2p by a photon
of energy /iw. The factor a(t)/a(t’) arises from the cosmological redshift of
the photon. The cross section is given by the Breit-Wigner formula®

3 27T2F2
o(w) = (5) ( 2 ”) Pw) , (2.3.19)

where k, is the mean wave number (B; — Bj)/kc of the Lyman « photon
emitted in the transition 2p — ls. The probability density here is
I 1

P) = 37 T (2.3.20)

where w, is the circular frequency ck, corresponding to the wave number
ky.

Now, if a photon is captured at all then it is captured in a time much
less than the characteristic expansion time of the universe, so we can set the
density n15(?') in Eq. (2.3.18) equal to n14(¢). The cross section o (w) varies
very rapidly with w, so we cannot neglect the time-dependence of a(¢), but
we can take the expansion rate to be constant in the integral over ¢/, so that
a(t)/a(t)y =1— H()(t' —t), where H (1) = a(t)/a(t). It is convenient then

6See, e.g., S. Weinberg, The Quantum Theory of Fields, (Cambridge University Press, Cambridge,
UK, 1995, 1996, 2000) [referred to henceforth as QTF]: Vol. 1, Eq. (3.8.16). The factor 3/2 arises from
the number 2¢ + 1 = 3 of 2p angular momentum states, and the number 2 of photon helicity states. If
the spin of the electron and proton are taken into account then the numerator is 12 and the denominator
is 8, but the ratio is the same.
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2.3 Recombination and last scattering

to change the variable of integration in the exponential in Eq. (2.3.18) from
'tow = (1 — H(t)({ — t))w, so that Eq. (2.3.18) reads

wHMNOK [

—00

+00 2 15}
P(1) =/ dw P(w) exp [—M/ do' P(a/)i| , (23.21)

The function P (w) is negligible except for w very near wy, SO we can replace
o with wy 1n the factor 1/w in the argument of the exponential (but not in
the upper limit of the integral over «’, which rises steeply from zero to one
for w in the neighborhood of wy.) The integral over w is now trivial, and
gives

B 372, nig(0) ¢
Pt)=F (a)aH—(t)kg, , (2.3.22)
where
Fx)y=(1—-e)/x. (2.3.23)

The Lyman « transition rate’ is Iy = 4.699 x 103 571, so that the argument
of the function F(x) in Eq. (2.3.22) is very large. For instance, if we take
Quh* = 0.15 and Qph® = 0.01, then for 7 < 6,000 K the argument x is
greater than 10. Hence for the temperatures of interest here we can drop
the exponential in Eq. (2.3.23), and find

wy H K2 8t H

P = = , 2.3.24
3712F2p nis € 3kgl“2p nis ( )

where A, = 1215.682 x 1078 cm is the wavelength of Lyman « photons, and
the argument 7 is now understood. We see that the quantity 3PI"y, in the
rate equation (2.3.17) is independent of I"p,:

8t H

)\.2 nls

3PTy, = (2.3.25)

With this result for P, equation (2.3.17) is the same as the rate equation
found in a different way by Peebles.? In this equation we may use the appr-
oximation that at the temperatures of interest, which are much less than
(B1 — By)/kp = 118,420 K, even though n;,/ny; is less than it would be in
thermal equilibrium it is still much larger than unity, so that we can replace
nis with ny = (1 — X)n. We also replace time with temperature as the
independent variable, using

dt 1

— = 2.3.26
dT HT ( )

TW. L. Wiese, M. W. Smith, and R. M. Glennon, Aromic Transition Probabilities, Vol. 1, National
Standard Reference Data Series NBS 4 (1966).
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The rate equation (2.3.17) then becomes

ax _ an () P
dT  HT T + 87 H/A3n(1 — X)

)_1 [XZ—(I—X)/S] . (2.3.27)

Now we must put in some numbers. In calculating the expansion rate we
need to include both the energy density of non-relativistic matter and that of
neutrinos and photons, but at temperatures where neutrinos are important
their mass is negligible, and for temperatures 7 > 30 K we may neglect
vacuum energy, so

3 4172
HHQ<T>+Q<T)
=Ho | Qu | = R|7—
Tyo Tyo

=7.204 x 1070 732 /Quh? +1.523 x 10-5T s~ , (2.3.28)

where again in all numerical expressions 7' is the temperature in degrees
Kelvin. The number density of ionized and un-ionized hydrogen is

n=0.76 x

3H2Q T\’
0 B<—) =4218 x 1077 Qh? T>ecm ™3 . (2.3.29)
0

8w Gmy, \ T,

The two-photon decay rate of the 2s state is®
I, = 8.22458 57! . (2.3.30)

The coefficient of the proton number density in the electron recombination
rate used by Peebles is’

a=284x10"1NT"12¢m3s 1,

The factor 7-1/2 here is what would be expected from a factor velocity !
that generally appears in the cross sections for exothermic reactions like e +
p — H+y.1% Actually « represents a chain of reactions more complicated
than just the radiative capture of an electron, including the cascade of radia-
tive decays down to the 2s and 2p states, and so it has a more complicated
temperature dependence. A variety of detailed numerical calculations of the
effective rate of recombination to the 2s and 2p states can be fit

8S. P Goldman, Phys. Rev. A40, 1185 (1989). Peebles used an earlier value, 8.227 s*l, given by
L. Spitzer and J. L. Greenstein, Astrophys. J. 114, 407 (1951).

9W. J. Boardman, Astrophys. J. Suppl. 9, 185 (1964).

103¢e, e.g., QTF, Vol. 1, p. 157.
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2.3 Recombination and last scattering
with the simple formula:!!

~1.4377 x 10710 7706166 ¢y 3 g1

1 + 5.085 x 10—3 770-5300 (2.3.31)

The value of 8 is given in terms of « by Eq. (2.3.11):

JerT 3/2
B= (Wl; :2 ) exp(—Ba/kgT) o =2.4147 x 101 cm™3 73/2 739474/ T
T
(2.3.32)

Finally, the function S[T7] is given by Eq. (2.3.8).

The values of X[77] calculated'? from the differential equation (2.3.27)
with the inputs (2.3.28)—(2.3.32) (and Eq. (2.3.8) for S[T]) are given in
Table 2.2 for Qh* = 0.15 and a range of values of Qph*. The initial
condition here is taken to be that X[77] is given by the solution of the
Saha equation (2.3.6) for thermal equilibrium at the highest temperature
considered, which we take to be 7' = 4,226 K (i.e. z = 1, 550), high enough
so that thermal equilibrium should be a good approximation (because the
equilibrium value of X is very close to one, while the true value must be
between one and the equilibrium value), but low enough so that hardly any
of the helium is still ionized. (Almost all helium was doubly ionized until
the temperature dropped below 20,000 K, and there was still appreciable
singly ionized helium until the temperature dropped below about 4,400 K.)
The actual value of X[4226] is slightly higher than the equilibrium value,
but to three significant figures there would be no effect on the results at
lower temperatures if we increased the assumed value of X [4226] by a small
amount, as say from 0.984 to 0.99 for Qph* = 0.02.

Comparison of Tables 2.1 and 2.2 shows that for the small values of
Qph? considered here, the Saha equation stopped giving a good approxi-
mation to the fractional ionization as soon as the equilibrium ionization
dropped appreciably below unity. In particular, although in equilibrium
the fractional ionization would have dropped to vanishingly small values
for temperatures below 2,000 K, the ionization calculated from Eq. (2.3.27)
leveled off at low temperatures to a small but non-zero asymptotic value,

Ip, Péquignot, P. Petijean, and C. Boisson, Astron. Astrophys. 251, 680 (1991). This includes an
over-all “fudge factor” of 1.14 recommended by S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J.
523, L1(1999). Eq. (2.3.31) agrees well with subsequent calculations of D. G. Hummer, Mon. Not. Roy.
Astron. Soc. 268, 109 (1994).

12 thank D. Dicus for the calculation of these numerical results. The calculation is stopped at z = 10,
because at later times hydrogen is reionized by the first generation of stars, and also the rate of expansion
is affected by the vacuum energy.
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2 The Cosmic Microwave Radiation Background

Table 2.2: Hydrogen ionization X calculated from Eq. (2.3.27) and time ¢ for the temp-
erature to drop to T from 109°K calculated from Eq. (2.3.26). The fourth through sixth
columns give results for various values of gh?, with Q7h% = 0.15. The last column gives
results for parameters Qph? = 0.02238, Q,h%* = 0.13229 used in Section 7.2 to compare
the analytic calculation of microwave background anisotropies with a numerical calculation.

z  T(K) 1(yrs) Xogir=001  Xap=002 Xozr=003  Xsec72
1550 4226 202,600 0.992 0.984 0.977 0.982
1500 4090 213,200 0.976 0.958 0.943 0.954
1450 3954 225,900 0.935 0.902 0.878 0.895
1400 3818 239,800 0.861 0.815 0.780 0.805
1350 3681 255,200 0.759 0.703 0.659 0.690
1300 3545 272,000 0.645 0.580 0.529 0.564
1250 3409 290,600 0.526 0.456 0.402 0.437
1200 3273 311,300 0.409 0.339 0.289 0.321
1150 3136 334,600 0.299 0.236 0.194 0.220
1100 3000 360,400 0.205 0.154 0.122 0.142
1050 2864 389,600 0.129 0.0928 0.0721 0.0846
1000 2728 422,600 0.0752 0.0520 0.0396 0.0470
950 2591 460,500 0.0405 0.0270 0.0203 0.0243
900 2455 503,600 0.0210 0.0136 0.0101 0.0121
800 2183 611,400 0.00662 0.00387 0.00276 0.00339
700 1910 761,300 0.00319 0.00174 0.00120 0.00150
600 1638 977,700 0.00203 0.00107 0.000731 0.00920
500 1365 1.312 x 10° 0.00147 0.000762 0.000517  0.000653
400 1093  1.872 x 10° 0.00114 0.000585 0.000395  0.000499
250 684  3.922 x 10°  0.000829 0.000423 0.000285  0.000361
100 275 1.604 x 107 0.000632 0.000321 0.000216  0.000273
50 139  4.535x 107 0.000579 0.000294 0.000197  0.000250

10 30.0  4.568 x 108 0.000537 0.000272 0.000183  0.000231
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2.3 Recombination and last scattering
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Figure 2.2: The fractional ionization given by the rate equation (2.3.17) as a function of
temperature in degrees Kelvin, for ,4% = 0.132, Qgh? = 0.0224.

due to the increasing rarity of encounters of the few remaining free pro-
tons and electrons. This residual ionization played an important role in the
formation of the first stars.

The fractional ionization given by Eq. (2.3.17) for a currently favored set
of cosmological parameters is also shown in Figure 2.2. On the scale of this
figure, the results are indistinguishable from those given by the more elab-
orate calculations of Seager, Sasselov, and Scott,? except for temperatures
above T' > 4, 300 K, where the contribution of electrons from the ionization
of helium (ignored in Eq. (2.3.17)) was still significant.

The most important application of these results for the fractional ion-
ization is the calculation of the opacity O(T), the probability that a photon
present at a time #(7') when the temperature is 7 will undergo at least one
more scattering before the present, given by

i1
O(T)=1—exp |:—/ ' cor ne(t) dti| . (2.3.33)
«(T)

This rises from near zero at low temperature, where the integral in the expo-
nent is small, to near one at high temperature, where the integral becomes
large.
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2 The Cosmic Microwave Radiation Background

It is convenient to convert the integral over time to an integral over
temperature, again using Eq. (2.3.26):

T
O(T)=1—exp |:—caq—/ ne(T") dT//H(T’)T/:| ) (2.3.34)
2.725

We use Eq. (2.3.28) for H and take n, = Xn with n given by Eq. (2.3.29), so

T
O(T)=1—exp [—CGT/ ne(T") dT//H(T/)T/}
2

725

[ /T 0.01168 Qph2 T'V/2 X (T") dT’
=1—-exp|—
2

. (2.3.35)
725 N/ Quh? 4+ 1.523 x 1057/ }

In studies of anisotropies in the cosmic microwave background we are par-
ticularly interested in when the photons observed today were last scattered.
The probability that the last scattering of a photon was before the temper-
ature dropped to T is 1 — O(T), and the probability that the last scattering
was after the temperature dropped further to T — dT is O(T — dT), so the
probability that the last scattering of a photon was at a temperature between
Tand T —dT is

1—(1—0(T) —O(T —dT) = O (T)dT . (2.3.36)

The opacity function O(T') increases monotonically with temperature from
O=0atT =TytoO — 1 for T — oo,so O'(T) is a positive normalized
probability distribution, with unit integral. Values!? of O'(T') for Qah?* =
0.15 and a range of values of Qph? are given in Table 2.3. The distribution
O'(T) is peaked at a temperature 77, with a standard deviation o, given in
the two bottom rows of Table 2.3.

% %k %k

It may be useful to note an approximation'? for the fractional ionization,
even though it was not used in the calculations of Tables 2.2 or 2.3. In equi-
librium the fractional ionization depends only on the temperature and /2.
But as soon as the Saha equation stopped giving a good approximation to
the fractional ionization, the ionization then depended not only on Qgh?,
but also on Qj7h%. The approximation derived below shows that at suf-
ficiently low temperatures the fractional ionization depends on Qgh? and
Qarh? chiefly through a multiplicative factor (23/4%)!/2/Qph?, while the
opacity O'(T) is nearly independent of these parameters.

I3B. J. T. Jones and R. F. Wyse, Astron. Astrophys. 149, 144 (1985).
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2.3 Recombination and last scattering

Table 2.3: The normalized probability distribution O’(T) of the temperature of last
scattering, as a function of the temperature 7' (in degrees Kelvin), calculated from
Eq. (2.3.35). The second through fourth columns give results for various values of h?,
with Qy/h% = 0.15. The last column gives results for parameters Qph? = 0.02238,
Q Ml12 = 0.13229 used in Section 7.2 to compare the analytic calculation of microwave
background anisotropies with a numerical calculation. The bottom two rows give the
parameters for a fit of @'(T) to the Gaussian exp[—(T — T7)?/202]/o /27, found by
setting T equal to temperature at which ' is a maximum, and 1/¢+/27 equal to the value
of O’ at that maximum.

’ ’ ’ ’
T(K) OQB/’!Z = 0.01 OQBhZ =0.02 OQB/’IZ = 0.03 OS@C~7-2

4000 6.80x 1077  539x 10710  1.08x10712 575x 1071
3500 226x 1074 4.12x 1073 1.15x 107> 253 x 1073

3400 0.000451 0.000152 0.000069 0.000112
3300 0.000759 0.000412 0.000262 0.000345
3200 0.00109 0.000826 0.000664 0.000759
3100 0.00132 0.00127 0.00118 0.00124
3000 0.00139 0.00155 0.00157 0.00156
2900 0.00127 0.00154 0.00164 0.00158
2800 0.00102 0.00130 0.00142 0.00135
2700 0.000746 0.000965 0.00107 0.00101
2600 0.000502 0.000650 0.000721 0.000680
2500 0.000320 0.000411 0.000455 0.000429

2000  4.66 x 1073 5.16 x 1073 539 x 1075 525 x 1073
1000 9.50x 107® 976 x 10° 987 x 107®  9.84 x 107°

Tp(K) 3017 2954 2930 2941
o (K) 287 253 241 248

To derive this approximation, note first that as soon as the fractional
ionization dropped well below its equilibrium value, the term (1 — X)/S in
the square brackets in Eq. (2.3.27) (which would equal X? in equilibrium)
became much less than the term X2. Comparison of Tables 2.1 and 2.2
shows that for a plausible range of cosmological parameters, this is the case
for T < 3,400 K. At such temperatures we can also neglect the radiation
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2 The Cosmic Microwave Radiation Background

energy density compared with the mass density, so that the expansion rate
(2.3.28) becomes simply 7.2 x 10712 \/Qa/h2 s~1. Also, for temperatures in
the range from 3, 400 K down to 2000 K the effective 2p decay rate 3PI"p, was
less than the 25 decay rate, while for 7' < 2, 000 K the reionization rate 8 was
less than either 3PT"y, or I'y,, so for all temperatures below 7' < 3,400 K,
Eq. (2.3.27) took the form

dX

o =f(T)X?, (2.3.37)
where
=" (147 Tk (T) (2.3.38)
“HT\ " Ty) T @28 ~
with g(T) a function of temperature alone
84.2 T—O.l 166
T) = . (2.3.39
8) = 15085 x 1037053 + 4.22 x 10° 750 way7 - (233
The solution is
| Qph? 3400 -1
X(T) ~ | X(3400)~ —_— T dT’ . 2.3.40
(T) ~ | x(3400) +<9Mh2>1/2/T o(T (2.3.40)

Comparison of this formula with the results shown in Table 2.2 for Q; =
0.15and 25 = 0.02 shows that the error introduced by these approximations
rises to about 25% as the temperature drops from 3,400 K to ~ 2,500 K,
and then drops to less than 10% for 7" < 1,400 K. For temperatures less
than about 2, 600 K the fractional ionization is so much less than at 3,400 K
that we can neglect the term X (3400)~! in the denominator of Eq. (2.3.36)
without introducing any appreciable additional error, giving

-1

~ (QMhZ)l/Z 3400 , .
X = =g /T g(THhdr' | . (2.3.41)

so that X (T') is proportional at sufficiently low temperature to (2h2)!/2/
Qph?, as was to be shown. Inspection of Table 2.2 confirms that for
T < 1,700 K and with Q4% = 0.15 fixed, the fractional ionization is
indeed inversely proportional to 2h? with fair accuracy, but this is not a
good approximation in the neighborhood of 3,000 K.

It is striking that the values of ©’(T") depend only weakly on Qgh? for
T < 3,200 K. The reason, as noted by Jones and Wyse,'? is that at temper-
atures low enough to neglect the radiation energy density, Eq. (2.3.35) gives

128



2.4 The dipole anisotropy

In O(T) as proportional to Qph?/+/Qrh? times an integral of TV/2X (T),
while the approximate formula (2.3.41) gives X (7)) proportional at low
temperature to /Qrh%/ 2ph?, so at sufficiently low temperature O(T") and
hence O'(T) are independent of © gh? and also of Q 4%, Table 2.3 shows
that for plausible values of cosmological parameters, the temperature 77
of last scattering is always close to 3,000 K, with a spread (in the sense of
standard deviation) of about 10%.

2.4 The dipole anisotropy

In the previous sections of this chapter we have treated the cosmic microwave
background as perfectly isotropic and homogeneous. This is certainly a
good approximation. Indeed, in the discovery of the cosmic microwave
background in 1965, the one thing that enabled Penzias and Wilson to dis-
tinguish the background radiation from radiation emitted by earth’s atmos-
phere was that the microwave background did not seem to vary with direction
in the sky.

Of course, the cosmic microwave background does have small varia-
tions in direction that are too small to have been detected by Penzias and
Wilson. The departures from perfect isotropy provides some of the most
important information we have about the evolution of the universe. This
section deals with the simplest and earliest detected departure from isotropy
of the observed cosmic microwave background, arising from the earth’s
motion. The following two sections deal with anisotropies due to scat-
tering of photons by intergalactic electrons in clusters of galaxies, and with
the primary anisotropies left over from the early universe.

To the extent that the cosmic microwave background is itself perfectly
homogeneous and isotropic, it provides a frame of reference for the whole
universe, with respect to which we can measure the peculiar velocities of
individual galaxies. To analyze the measurement of our own galaxy through
the cosmic microwave background, it is useful to consider the density N, (p)
of photons in phase space, defined by specifying that there are N, (p) dp
photons of each polarization (right or left circularly polarized) per unit
spatial volume in a momentum-space volume d>p centered at p. Since |p| =
hv/c and the momentum-space volume between frequencies v and dv is
4r B3v2dv/c3, Eq. (2.1.1) gives

Lng(clpl/h) 1 1

Ny ) = 24xh3v2/e3 ~ M exp (ple/kT) —1°

(2.4.1)

(The factor 1/2 takes account of the fact that n7 includes both possible pho-
ton polarization states.) Thisis of course the density that would be measured
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2 The Cosmic Microwave Radiation Background

by an observer at rest in the radiation background. The phase space volume
is Lorentz invariant, and the number of photons is also Lorentz invariant,
so N, is a scalar, in the sense that a Lorentz transformation to a coordinate
system moving with respect to the radiation background that takes p to p’
also takes Ny to N,,, where

N,(®) =N, (). (2.4.2)

If the earth is moving in the three-direction with a velocity (in units of ¢) of 8,
and we take p to be the photon momentum in the frame at rest in the cosmic
microwave background and p’ to be the photon momentum measured on
the earth, then

D1 1 0 0 O p:]
lelen e 2 [n] e
Ip| 00 By vy 'l
where as usual y = (1 — 82)~1/2. In particular
pl =y (1+Bcoso) Iy (2.4.4)
where 0 is the angle between p’ and the three-axis. Thus
N, (p) = 1 ! (2.4.5)

3 exp (Ip'le/kT) =17

where the temperature is a function of the angle between the direction of
the photon and the earth’s velocity

- T (2.4.6)

y<1 + B Cos@) '

Since the galaxy can be expected to be moving at a velocity of several hun-
dred kilometers per second, comparable to the peculiar velocities observed
for other galaxies relative to the mean Hubble flow, and the solar sys-
tem is moving with a similar velocity within the galaxy, we expect S8 to
be roughly of order 1073, in which case y is essentially unity. The appar-
ent temperature is greatest if we observe photons coming from the direc-
tion toward which the earth is moving, for which cos = —1, where it is
greater than the intrinsic temperature by a fractional amount Beapqn. It is
least if we observe photons moving in the same direction as the earth, for
which cos & = +1, and the temperature is decreased by the same fractional
amount.
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2.4 The dipole anisotropy

This effect was first observed in 1969 with a ground-based radiometer,
but at the time it was only possible to measure the component of the earth’s
velocity in the earth’s equatorial plane, found to be 350 km/sec in a direction
corresponding to right ascension 11 h 20 m.! The full velocity vector of the
earth was measured in 1977 by a Berkeley group,? using measurements from
a U2 aircraft flying above most of the earth’s atmosphere. Our knowledge
of this effect has been greatly improved by measurements from the COBE
satellite. The Far Infrared Absolute Spectrophotometer group® found a
maximum temperature increase A7 of 3.372 £ 0.014 mK (95% confidence
level) in a direction with galactic coordinates* ¢ = 264°.14 + 0°.30, b =
48°.26 4 0°.30; the Differential Microwave Interferometer group® found
AT = 3.3534+0.024 mK (95% confidence level) in a direction with galactic
coordinates £ = 264°.26£0°.33, b = 48°.224+0°.13, corresponding to right
ascension 11112Mm 2 4+ 0™ 8, declination —7°.06 =+ 0°.16.

More recently, the WMAP satellite experiment® (discussed in detail in
Chapter 7) has given a maximum temperature increase of 3.346£0.017 mK
inadirection £ = 263°.854+0°.1, b = 48°.25+0°.04. These resultsindicate a
motion of the solar system with a velocity (0.00335)¢/(2.725) = 370 km/sec,
not quite in the direction of the Virgo cluster, which has £ ~ 284 and b ~ 74.
For comparison, the rotation of the galaxy gives the earth a velocity relative
to the center of the galaxy of about 215 km/sec, more or less in the opposite
direction. Taking this into account gives a net velocity of the local group
of galaxies’ relative to the microwave background of 627 & 22 km/sec in a
direction (£ = 276° £ 3°, b = 30° & 3°) between the Hydra and Centaurus
clusters of galaxies.

Expanding Eq. (2.4.6) in powers of 8, the temperature shift can be
expressed as a sum of Legendre polynomials

: B 26°
AT=T -T=T |:—? — BP1(cosb) + TPQ(COSQ) +. :| . (2.4.7)

Because 8 = 370 km/sec/c = 0.0013 is small, the temperature shift is
primarily a dipole, but Eq. (2.4.7) also exhibits a “kinematic quadrupole”

IE. K. Conklin, Nature 222, 971 (1969).

2G.F. Smoot, M. V. Gorenstein, and R. A. Muller, Phys. Rev. Lett. 39, 898 (1977).

3D. J. Fixsen ef al., Astrophys. J. 473, 576 (1996).

4The galactic coordinate b is the angle between the line of sight and the plane of our galaxy, so that
the north galactic pole is at b = 90°; the galactic coordinate £ is the azimuthal angle around the axis of
rotation of our galaxy, with the center of the galaxy at £ = 0°.

5C. L. Bennett et al., Astrophys. J. 464, L1 (1996).

6C. L. Bennett e al., Astrophys. J. Suppl. 148, 1 (2003).

7G. F. Smoot, C. L. Bennett, A. Kogut, J. Aymon, C. Backus et al., Astrophys. J. 371, L1 (1991);
A. Kogut, C. Lineweaver, G. F. Smoot, C. L. Bennett, A. Banday e? al., Astrophys. J. 419, 1 (1993).
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term that is not much smaller than the intrinsic quadrupole term in the
temperature, to be discussed in Section 2.6.

2.5 The Sunyaev-Zel’dovich effect

There is another contribution to the anisotropy of the cosmic microwave
radiation background, due to the scattering of this radiation by electrons in
intergalactic space within clusters of galaxies along the line of sight. This
is known as the Sunyaev—Zel'dovich effect.! Eq. (C.26) (the Kompaneets
equation) of Appendix C shows that scattering of the cosmic microwave
background by a non-relativistic? electron gas changes the observed photon
occupation number N (w) (defined so that 47 w? N (w) dw is the number of
photons of each of the two polarization states with energy between 7w and
fi(w 4+ dw)) at photon energy Aw < m.c? at a rate (here in cgs units)

IN (w)
w

. 9
Nw) = 27

[kBTea)4 + kot N(w) (1 +N(a))):| ,

M, ¢ w? dw
where o7 is the Thomson scattering cross section, 7, is the electron number
density, and T, is the electron temperature. This formula can be used dir-
ectly in calculating the rate of change of the occupation number N (w) of a
homogeneous isotropic photon gas through interactions with a Maxwell-
Boltzmann distribution of electrons at temperature 7,. In the applic-
ation that concerns us now, we are interested instead in the change of the
appearance to us of the cosmic microwave background due to scattering by
a cloud of electrons along the line of sight. In this context, we rewrite the
Kompaneets equation as

n.({)or 0

Me €2 w? dw

X [kBTe(E)w

9
—N(w,£) =
Y, (w,0)

+ VOO 4 o Nw, 0 (1+ N ")>] ’
dw

(2.5.1)

where £ is the proper distance coordinate along the line of sight through the
cloud.

The ionized plasma in clusters of galaxies is typically at temperatures
greater than 10° degrees, so that k3T, is very much greater than the typical

1va. B. Zel'dovich and R. A. Sunyaev, Astrophys. Space Sci. 4, 301 (1969); R. A. Sunyaev and
Ya. B. Zel'dovich, Comments Astrophys. and Space Physics 2, 66 (1970); 4, 173 (1972).

2The ionized gas in galaxy clusters is hot, so that relativistic corrections, though small, are not
negligible; see Y. Rephaeli, Astrophys. J. 445, 33 (1995); A. Challinor and A. Lasenby, Astrophys. J.
499, 1 (1998); N. Itoh, U. Kohyama, and S. Nozawa, Astrophys. J. 502, 7 (1998).
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2.5 The Sunyaev—Zel'dovich effect

value of the photon energy /w, which for the cosmic microwave background
is 10~* eV to 10~3 eV. In this case Eq. (2.5.1) simplifies to

ne(ﬁ)GTkBTe(ﬁ)i[w4 3N(w,€)}

e (2.5.2)

0
—N(w, ) =
o0l Me C* dw

ow
This is now a linear differential equation, so it can be solved exac‘[ly,3 but in
the usual case this is unnecessary, because the cloud of electrons is optically
thin. Eq. (2.5.2) then tells us that the change in the occupation number due
to passage of the radiation through the cloud is simply

0 oN
AN(w) = L L[4 N @] (2.5.3)
w? dw ow
where y is the dimensionless parameter
y= % / A0 n.(OkpTo(0) | (2.5.4)
M ¢

the integral being taken along the line of sight through the cloud. For
black-body radiation at temperature 7, we have

1

N(w) = . (2.5.5)
exp <ha)/kBTy) -1
Using this in Eq. (2.5.3) gives
_ 2
AN =y ( X+l /f) coth(x/2) ) , (2.5.6)
sinh”(x/2)

where x = hw/kpT,. We see that in general the scattering changes the
shape of the photon energy distribution, not just the effective tempera-
ture. The characteristic dependence on w of Eq. (2.5.6) makes it possible
in principle for radio astronomers to distinguish between anisotropies due
to the Sunyaev—Zel’dovich effect and the primary anisotropies discussed in
Section 2.6 and Chapter 7.

But in the Rayleigh—Jeans part of the spectrum, where x < 1, Eq. (2.5.6)
gives AN — —2y/x, while Eq. (2.5.5) gives N — 1/x, so the shape of
the spectrum is preserved, with a fractional change in photon temperature
equal to

AT, AN
T, N

2y, (2.5.7)

3Ya. B. Zel’dovich and I. D. Novikov, Relativistic A strophysics, Volume 2: The Structure and Evolution
of the Universe, transl. L. Fishbone (University of Chicago Press, Chicago, 1983): Eq. (8.7.3).
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It may seem surprising that scattering of photons by a cloud of electrons
with much higher temperature would /ower the photon temperature, but
this is only in the Rayleigh—Jeans part of the spectrum. Far beyond the
peak in the black-body spectrum, where x > 1, Egs. (2.5.5) and (2.5.6) give
AN/N the positive value yx2; the cooling observed in the Rayleigh—Jeans
region is due to the transfer of photons from low to high energy. Indeed,
Eq. (2.5.3) shows that [ AN (w)w*dw vanishes, so scattering by the electron
cloud preserves the total number of photons we receive.

Eq. (2.5.7) gives the fractional change in photon temperature observed at
low frequency due to scattering in a cloud of electrons, typically associated
with a cluster of galaxies. If the cluster is at a redshift z, then both 7}, and
AT, arereduced by a factor (1 +2)~!, but the ratio is independent of z, and
independent also of the Hubble constant and other cosmological param-
eters, except in so far as these quantities are needed in estimating n, and
proper lengths. The electron temperature 7, can be measured from obser-
vations of the luminosity of the cluster as a function of photon wavelength,
with a result that is independent of the cluster redshift or Hy, but the proper
length along the line of sight has to be inferred from the angular size of the
cluster and the angular diameter distance d 4, which is inversely proportional
to Hy, so the electron density calculated from measurements of the Sunyaev—
Zel’'dovich parameter y is proportional to the value assumed for Hy.

Measurements of the Sunyaev—Zel’dovich effect can usefully be com-
bined with measurements of the X-ray luminosity of the cluster of galaxies.*
The cross section’ do for the bremsstrahlung of photons of energy between
fiw and A(w + dw) (with iw comparable to but not very close to m,v%/2) in
collisions between non-relativistic electrons of velocity v (with 1/137 «
v <« 1) and atomic nuclei of small velocity is proportional to v~ 2dw/w;
the density of protons equals the density of electrons; and v is typically of
order (kgT /m.)'/?; so the rate at which an antenna of radius R receives
bremsstrahlung photons of wavelength A in this energy range and in the res-
olution solid angle (A/R)? from an optically thin plasma cloud with electron
temperature 7, and number density 7, is

[R?/d31[d3 (\/R)?] /de (vdo)n? o« A2 (d—w)/ de T, 1202 .
w
(2.5.8)

Hence the value of n, inferred from measurements of the X-ray lumi-
nosity and the angular size of the cluster is proportional to the assumed

value of H(}/ . The requirement that the value of n, inferred from the

4] Silk and S. D. M. White, Astrophys. J. 226, 1103 (1978); A. Cavaliere, L. Danese, and G. De Zotti,
Astron. Astrophys. 75,322 (1979). For a review, see M. Birkinshaw, Phys. Rep. 310, 97 (1999).

5See, e.g, V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd
edition, transl. by J. B. Sykes and J. S. Bell (Pergamon, Oxford, 1982).
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2.6 Primary fluctuations in the microwave background: A first look

X-ray luminosity should agree with the value obtained from the Sunyaev—
Zel'dovich effect thus allows an estimate of Hy. For example, study of two
galaxy clusters with z ~ 0.55 (with d4 calculated assuming Q) = 0.3
and Q4 = 0.7) has given a Hubble constant of 6352 + 21 km/sec/Mpc,
with the first uncertainty statistical and the second systematic, both with
68% confidence.® Any such measurement depends so much on assumptions
about the shape of the galaxy cluster and about the clumpiness of the elec-
tron distribution, that it seems likely that measurements of the Sunyaev—
Zel'dovich effect and X-ray luminosities will be more useful in providing
information about galaxy clusters than in fixing the Hubble constant. In
one respect, the Sunyaev—Zel’dovich effect is a nuisance — it will interfere
with future measurements of the correlation between the primary temper-
ature fluctuations at very small angular separation.’” But if combined with
a model of structure formation, such as discussed in Chapter 8, observa-
tions of the Sunyaev—Zel’dovich effect in small angle correlations of the
microwave background temperature fluctuations can provide useful cosmo-
logical information.® Observations of such small-angle correlations® have
been interpreted as due to the Sunyaev—Zel'dovich effect.!?

2.6 Primary fluctuations in the microwave
background: A first look

In the two previous sections we have considered anisotropies in the cos-
mic microwave background that arise from effects in the recent universe:
the motion of the earth relative to the cosmic microwave background, and the
scattering of light by intergalactic electrons in clusters of galaxies along the
line of sight. Now we turn to general anisotropies, including the highly
revealing primary anisotropies that have their origin in the early universe.!
It is convenient to expand the difference AT (71) between the microwave
radiation temperature observed in a direction given by the unit vector 72 and
the present mean value 7} of the temperature in spherical harmonics Y} (77):

AT =T@) —To= Y amY{"(), To= % / d*h T@®), (2.6.1)

Im

OFE. D. Reese et al., Astrophys. J. 533, 38 (2000).

7Y. Rephaeli, Astrophys. J. 245, 351 (1981); S. Cole and N. Kaiser, Mon. Not. Roy. Astron. Soc.
233, 637 (1988).

8E. Komatsu and T. Kitayam, Astrophys. J. 526, L1 (1999).

9B. S. Mason e al., Astrophys. J. 591, 540 (2003).

10E. Komatsu and U. Seljak, Mon. Not. Roy. Astron. Soc. 336, 1256 (2002); J. R. Bond et al.,
Astrophys. J. 626, 12 (2005).

IP. J. E. Pecbles and J. T. Yu, Astrophys. J. 162, 815 (1970); R. A. Sunyaev and Ya. B. Zel'dovich,
Astrophys. Space Sci. 7,20 (1970); Ya. B. Zel’dovich, Mon. Not. Roy. Astron. Soc. 160, 1 (1972).

135



2 The Cosmic Microwave Radiation Background

the sum over £ running over all positive-definite integers, and the sum over
m running over integers from —£ to £. Since AT (7) is real, the coefficients
agn must satisfy the reality condition

ay,, =ag—m . (2.6.2)

(We are defining the spherical harmonics so that Y} (n)* = Y, " (71).) As we
saw in Section 2.4, the earth’s motion contributes to AT (71) an anisotropy
that to a good approximation is proportional to P(cos8) Y10(9, ¢) (with
the z-axis taken in the direction of the earth’s motion), so the main ay,,
produced by this effect is that with £ = 1 and m = 0.

The coefficients ay;, reflect not only what was happening at the time of
last scattering, but also the particular position of the earth in the universe.
No cosmological theory can tell us this. The quantities of greatest cosmolog-
ical interest are averages, which may be regarded either as averages over the
possible positions from which the radiation could be observed, or averages
over the historical accidents that produced a particular pattern of fluctu-
ations. The ergodic theorem described in Appendix D shows that, under
reasonable assumptions, these two kinds of average are the same. These aver-
ages will be denoted (- - - ). Asdiscussed in Chapter 10, for anisotropies that
arise from quantum fluctuations during inflation, it is these averages over
historical accidents that are related to quantum mechanical expectation val-
ues. We will return shortly to the question of how to use observations from
one position in a universe produced by one specific sequence of accidents to
learn about these averages, but first we must introduce some notation.

We assume that the universe is rotationally invariant on the average, so all
averages (AT (n))AT (ny) AT (n3) - - -) are rotationally invariant functions
of the directions 711, 7y, etc. In particular, (AT (7)) is independent of 7,
Since AT () is defined as the departure of the temperature from its angular
average, its angular average | AT ()d*n /4 vanishes. Averaging over the
position of the observer, we have [(A T(7))d*n = 0, so since (AT (7)) is
independent of 7, it too vanishes.

The simplest non-trivial quantity characterizing the anisotropies in the
microwave background is the average of a product of two ATs. Rotational
invariance requires that the product of two as takes the form

(aﬁmaé’m’> = 866/8111 —m’ CZ D (263)

for in this case the average of the product of two ATSs is rotationally
invariant:

20 +1
(ATMAT @) =Y CY! @Y, "@) =) Co ( 4: ) Py(i- i),
tm £

(2.6.4)
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2.6 Primary fluctuations in the microwave background: A first look

where Py is the usual Legendre polynomial. Given the left-hand side, we
can find C; by inverting the Legendre transformation
1 2 g2~ ~/ ~ A/
Cp = = fd d°n Pe(n-n)(AT)AT@)) . (2.6.5)
Instead of Eq. (2.6.3), we could equivalently define the multipole coefficients
Cy by
(aﬁmaz‘/nﬂ = 800/ 8mm Ce

which shows that the C, are real and positive. For perturbations AT that
are Gaussian in the sense described in Appendix E, a knowledge of the C,
tells us all we need to know about averages of all products of AT's.

Of course, we cannot average over positions from which to view the
microwave background. What is actually observed is a quantity averaged
over m but not position:

o> = m Zaem ap_m = —/d2 d*i Pe(i- WYAT(R)AT @) .

(2.6.6)
The fractional difference between the cosmologically interesting Cy and the
observed Cfbs is known as the cosmic variance. Fortunately, for Gaussian

perturbations, the mean square cosmic variance decreases with £. The mean
square fractional difference is

2
Cg—Cgbs 1
B _—1—2—1——§a Qg —m gy Ag—my) -
C, (2E l)sz mm/( Lm @l —m dgm Uy m)

(2.6.7)

If AT is governed by a Gaussian distribution, then so are its multipole
coefficients ay,, (but not quantities quadratic in the ag,;, such as Cp.) It
follows then that?

(aé mae—mden dg —m’) = (aemag—m) <a€ m de —m’)
+{aemagn) (aﬁ —mdy —m’)

+(aﬁm ay —m’) (g —magm) . (2.6.8)

2Non-Gaussian terms in the probability distribution of anisotropies would show up as non-vanishing
averages of products of odd numbers of the ay ,,,, as well as corrections to formulas like Eq. (2.6.8) for
the averages of products of even numbers of the a;,,. Such non-Gaussian terms are produced both in
the early universe and at relatively late times. For a review, see N. Bartolo, E. Komatsu, S. Matarrese,
and A. Riotto, Phys. Rep. 402, 103 (2004). Non-Gaussian terms produced by quantum fluctuations
during inflation were calculated in the tree graph approximation by J. Maldacena, J. High Energy Phys.
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2 The Cosmic Microwave Radiation Background

Using Eq. (2.6.3), we find that the first term on the right-hand side of
Eq. (2.6.8) contributes (2¢ + I)ZCE2 to the sum in Eq. (2.6.7), while the
second and third terms each contribute (2¢ + 1)C f to the sum, so that

2
Cy — CP 2

= . 2.6.9
Cy 20 +1 ( )

This sets a limit on the accuracy with which we can measure Cy for small
values of £. On the other hand, the same analysis shows that for £ # ¢/,

obs obs

=0, 2.6.10
c, ) ( )

so the fluctuations of le’bs away from the smoothly varying quantity Cy,
are uncorrelated for different values of ¢. This means that when Cz’bs is
measured for all £ in some range Af in which Cy actually varies little, the
uncertainty due to cosmic variance in the value of C; obtained in this range
is reduced by a factor 1/+/A¢. Even so, measurements of Cy for £ < 5
probably tell us little about cosmology. Also, measurements for £ > 2, 000
are corrupted by foreground effects, such as the Sunyaev—Zel’dovich effect
discussed in the previous section. Fortunately there is lots of structure in
Cy at values of £ between 5 and 2,000 that provides invaluable cosmological
information.

The primary anisotropies in the cosmic microwave background arise
from several sources:

1. Intrinsic temperature fluctuations in the electron—nucleon—photon
plasma at the time of last scattering,® at a redshift of about
1,090.

05 (2003) 013. The effect of loop graphs is considered by S. Weinberg, Phys. Rev. D 72, 043514
(2005) [hep-ph/0506236]; Phys. Rev. D. 74, 023508 (2006) [hep-ph/0605244]; K. Chaicherdsakul, Phys.
Rev. D75, 063522 (2007) [hep-th/0611352]. For late-time contributions, see M. Liguori, F. K. Hansen,
E. Komatsu, S. Matarrese, and A. Riotto, Phys. Rev. D 73, 043505 (2006) [astro-ph/0509098]. The
weakness of microwave background anisotropies indicates that any non-Gaussian terms are likely to be
quite small. So far, there is no observational evidence of such terms.

3Strictly speaking, in the approximation of a sudden drop in opacity at a fixed temperature 77 ~
3,000 K, it is not the intrinsic fluctuation in temperature we observe, but the consequent fluctuation in
the redshift z; of last scattering. Since the unperturbed temperature 7°(¢) goes as 1/a(?), the value a; of
a(t) at which the total temperature T(1)+8T (¢) reaches a fixed value T7 is shifted by an amount day such
that —(7T'p /ay)8ayp +8T(¢t;) = 0. The observed temperature (leaving aside other effects) is Ty a(t1)/ag,
so to first order this is shifted by a fractional amount 77 8ay /agTo = 8T (tr)ar /agTy = 8T (t1)/ T,
just as if it were the intrinsic temperature fluctuation that we observe.
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2.6 Primary fluctuations in the microwave background: A first look

2. The Doppler effect due to velocity fluctuations in the plasma at last
scattering.

3. The gravitational redshift or blueshift due to fluctuations in the
gravitational potential at last scattering. This is known as the Sachs—
Wolfe effect.*

4. Gravitational redshifts or blueshifts due to time-dependent fluctuations
in the gravitational potential between the time of last scattering and
the present. (It is necessary that the fluctuations be time-dependent;
a photon falling into a time-independent potential well will lose the
energy it gains when it climbs out of it.) This is known, somewhat
confusingly, as the integrated Sachs—Wolfe effect.*

A proper treatment of these effects requires the use of general relativity. This
will be the subject of Chapters 5-7. On the other hand, from the time the
temperature dropped below 10* K until vacuum energy became important at
aredshift of order unity, the gravitational field of the universe was dominated
to a fair approximation by cold dark matter, which can be treated by the
methods of Newtonian physics. Therefore in this introductory section we
will concentrate on the Sachs—Wolfe and integrated Sachs—Wolfe effect,
which turn out to dominate the multipole coefficients C; for relatively small
£, less than about 40. We will make only a few tentative remarks in this
section about the contribution of intrinsic temperature fluctuations and of
the Doppler effect.

In considering the Sachs—Wolfe and integrated Sachs—Wolfe effects, we
return to the Newtonian approach to cosmology outlined in Egs. (1.5.21)—
(1.5.27). The treatment of perturbations to a homogeneous isotropic
cosmology in this approach is presented in Appendix F. For the moment,
we need only one result of this analysis, that the perturbation to the
gravitational potential, when expressed as a function of the co-moving
coordinate X, is a time-independent function 8¢ (x). This perturbation has
two effects. First, there is the usual gravitational redshift: A photon emitted
at a point x at the time of last scattering will have its frequency and hence its
energy shifted by a fractional amount §¢ (x), so the temperature seen when
we look in a direction 72 will be shifted from the average over the whole sky
by an amount

(AT(ﬁ)

T )1 — 8¢ (ry) . 2.6.11)

4R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967).
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2 The Cosmic Microwave Radiation Background

Here ry, is the radial coordinate of the surface of last scattering, given by
Eq. (1.5.44) as

rp=——>— sinh Q‘/Zf dx
p—vl K 9
/% Hoa(10) V(4z0) V/Qaxt + QX2 + Qux + Qr
(2.6.12)

where Qg = 1 —Qx — Q7 — Qg; zr >~ 1090 is the redshift of last scattering;
and 7 is the present. The perturbation to the gravitational potential also has
the effect of changing the rate at which the universe expands by a fractional
amount §¢ (x), and since the temperature in a matter-dominated universe
is falling like a—! o =2/3, this shifts the value of the redshift at which the
universe reaches the temperature >~ 3,000 K of last scattering in direction
n by a fractional amount

( 8z ) _ (861([)) B (il)
1+2) 7 3000 K a(t) / r=3000 K a/ r-3000 K

2
Sp(riiyty = §3¢(rLﬁ) -

With all other effects neglected, the temperature observed in direction 7
would be 3,000 K divided by 1 + z, so this fractional shift in 1 + z changes
the observed temperature by a fractional amount

AT®N 2 .
( 7 )2_—§5¢(m). (2.6.13)

The sum of the fractional shifts (2.6.11) and (2.6.13) gives the Sachs—Wolfe
effect:

AT () IR
( Ty )sw_§8¢(an) (2.6.14)

The factor 1/3 will be obtained in Chapter 7 as a result of a better-grounded
relativistic treatment.
It is convenient to write ¢ (x) as a Fourier transform

8 (X) = / d3q e VXS . (2.6.15)
We make use of the well-known Legendre expansion of the exponential

e =20+ Di*Pe(§ - 1) je(qr) . (2.6.16)
0

where j, is the spherical Bessel function, defined in terms of the usual
Bessel function J,(2) by ji(z) = (7/22)1/2Je412(2). Eq. (2.6.14) then
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gives

AT (#) I ¢ P -
( T )SW = §Z(zer 1) /d q 8¢qje (qrL) Pe(g-7)  (2.6.17)
=0

Now we must consider how to calculate the average of a product of two
of these fractional temperature shifts in two different directions. Although
3¢ (x) depends on position, the probability distribution of §¢(x) as seen
by observers in different parts of the universe is invariant under spatial
rotations and translations. This implies among other things that

(80q 80q) = Pyp(q) 8°(q + 1) . (2.6.18)

where Py (g) is a function only of the magnitude of q. (The delta function is
needed so that (8¢ ()¢ (y)) should be only a function of x — y.) Because
8¢ (x) isreal, its Fourier transform satisfies the reality condition §¢y = 5¢—,
which together with Eq. (2.6.18) tells us that P4 (g) is real and positive.

Now, using Egs. (2.6.17) and (2.6.18), together with the reflection prop-
erty Pe(—z) = (—=1)¢Py(z) and the orthogonality property of Legendre
polynomials

A A 4 AR
/quPz (-q) Py (7 -q) = <2£+ l)awpg (-7), (26,19

(AT() AT(#@))sw

1) Py(i1- ”)/ q* dg Py(@)jz(qre)
V4

(2.6.20)
or, comparing with Eq. (2.6.4),
167{2T§ * 5
Csw=—5" " FaPiian  @62)

To the extent that the gravitational potential is produced by pressureless
cold dark matter, the differential equation for §¢ does not involve gradients,
and so the differential equation for its Fourier transform does not involve
the wave vector q. (See Egs. (F.12) and (F.18).) The dependence of d¢q
on q then can arise only from the initial conditions for these differential
equations.® It is therefore natural to try the hypothesis that the function

5This is not true even for the Sachs-Wolfe effect if q is so large that ¢/a became greater than H
before the density of the universe became dominated by cold matter. As we will see in Chapter 7, this
qualification affects Cy gw only for ¢ > 100.
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Py (q) has a simple form, such as a power of ¢. This power is conventionally
written as n — 4:

Py(q) = Nyq"™* (2.6.22)

where N 4% is a positive constant. Then we can use a standard formula:

24T G -m T (e+ 151

o
-2 n—2
Ji(s)s" “ds = , (2.6.23)
/0 F2(4%”>1“(€+2—”%1)
and find that for £ < 100, Eq. (2.6.21) gives
16732403 —myr) "N3Tg T (ﬁ + %)
Cesw — (2.6.24)

9r2(4%") r(z+2—%)'

In particular, even before the discovery of primary fluctuations in the cos-
mic microwave background there was a general expectation about the values
of nand N, based not on the microwave background, but on the large scale
structure of matter observed relatively close to the present. The perturba-
tion 8p in the total mass density is related to the Sachs—Wolfe effect through
the Poisson equation, which gives

a2V = 4n Gsp (2.6.25)

with the factor a—2(¢) inserted because it is X = a(#)x that measures proper
distances. (See Eq. (F.12).) Expressing the Fourier transform of §p in terms
of the Fourier transform of §¢, we find the correlation function of the density
fluctuations to be

(8p(x, 1)8p (X', 1)) = (4 Ga(t)a(?')) > / dq ¢* Py(q) 1)
(2.6.26)

The use of this formula to measure Py is discussed in Chapter 8. For
the present, it is enough to note that observations of the density correla-
tion function long ago led to the expectation that Py takes the so-called
Harrison—Zel’dovich form® with n = 1, and that Ny ~ 107>, As we will see
in Chapter 10, inflationary theories generally predict that # is close but not

OE. R. Harrison, Phys. Rev. D1,2726 (1970); Ya. B. Zel'dovich, Mon. Not. Roy. Astron. Soc. 160,
1P (1972).
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precisely equal to unity. For n = 1, we obtain a result that is scale-invariant,
in the sense of being independent of 7 :

277272
8 Nd)T0

C = et0
ESW T 90+ 1)

(2.6.27)
This is why experimental data on the cosmic microwave background
anisotropies is usually presented as a plot of £(£ + 1) Cy versus £.

What about the other contributions to Cy;? Pressure gradients are
important in the dynamics of the photon—nucleon—electron plasma, so in
estimating the contributions of the Doppler effect and intrinsic temperature
fluctuations we must deal with differential equations in which the wave num-
ber ¢ enters in an important way. Whatever sort of perturbation we are
considering, we can always write it as a Fourier integral like Eq. (2.6.15)
and use Eq. (2.6.16) to express ¢4"L as a series of Legendre polynomials
Py(q - n) with coefficients proportional to je(grr). The integral over ¢ is
then dominated by values of ¢ of order £/ry in the case £ > 1. (This is the
most interesting case because Eq. (2.6.9) shows that it is only for £ >> 1 that
cosmic variance can be neglected in measurements of C,.) This is because
for £ > 1, the spherical Bessel function jy(z) is peaked at z >~ £. Specifically,
forv=4¢41/2 — ooand z — oo with v/z fixed at a value other than unity,
we have

0 z<V
Je(2) = 271222 — 2y~ V3¢os (\/22 —v? —varccos(v/z) — %) z> .
(2.6.28)

Hence C; for large ¢ chiefly reflects the behavior of the Fourier components
of perturbations for ¢ ~ £/r;. To put this another way, the physical wave
number at time 77 isk;, = q/a(zy) (because it is a(¢7)x that measures proper
distances at this time) so Cy for large ¢ reflects the behavior of the perturba-
tions for k; ~ £/d 4, where d 4 is the angular diameter distance of the surface
of last scattering

1
dgy=rpa(ty) = 2
Qg Ho(l +zp)
1 d
x sinh Q%z s ,
ﬁ \/QAX4 + Qrx2+ Qux + Qr
(2.6.29)

with 1 4+ zp = a(t)/a(ty).
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For physical wave numbers ¢/a that are much less than the expansion
rate H the differential equation governing any one perturbation is essentially
independent of the wave number ¢, so that the whole dependence of the
perturbation on ¢ comes from the initial conditions. (Ratios of different
perturbations, such as 8¢, and §p,, may of course depend on g.) Such
perturbations are said to be “outside the horizon” because the wavelength
2ma/q is much larger than the horizon distance (strictly speaking, the “par-
ticle horizon” distance), which we saw in Section 1.13 is roughly of order
1/H. During the radiation- or matter-dominated eras ¢/a decreased like
t=1/2 or t=2/3, while H decreased faster, like 1/, so perturbations that were
outside the horizon at early times subsequently came within the horizon,
those with high wave number entering the horizon earlier than those with
lower wave numbers.

We need to be a little more precise about the horizon distance. At the time
of last scattering the universe was largely matter dominated, so as shown in
Section 1.13 the horizon distance at that time was approximately 2/H (z1).
But this is the maximum proper distance that /ight could have traveled since
the beginning of the present phase of the expansion of the universe. As
we will see in Chapters 5 and 6, the dominant perturbations to the plasma
of nucleons, electrons, and photons that are relevant to the anisotropies in
the cosmic microwave background are sound waves, so we need to take into
account the smaller speed of sound. During the era before recombination,
when radiation and matter were in thermal equilibrium, the speed of sound
was vy = (8p/8p)'/?, where 8p and 8p are infinitesimal variations in the
pressure and density in an adiabatic fluctuation. In such a perturbation, the
entropy per baryon remains unperturbed:

1
0:8ao<5<i>+p8<—) s
nB ng

where € is the thermal energy density, #p is the baryon number density, and
p is the pressure. As we saw in Section 2.2, there are so many more photons
than baryons that both € and p are dominated by radiation:

1
e =agT*, p=§aBT4,

and therefore for adiabatic perturbations

38T _ énpg . 8pB

== , (2.6.30)
T np PB
where pp is the baryonic mass density. This gives a sound speed
1/2
4agT38T)/3 1
vy = = —, (2.6.31)
8pp + 4agT38T V3T +R)
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where R = 3,oB/4aBT4. Since pg x a3 and T o a1, we have R  a, and
hence dt = dR/HR, or in more detail,

B dR B RdR
RHov/Qu(Ro/R)3 + Qr(Ro/R)*  Ho/QmR)*/Req + R

where Rgg = QrRo/Qym = 3QrQp/4Q2M 2, 1s the value of R at matter—
radiation equality. The acoustic horizon distance is then

4 L dt R L dt
HzaL/o WBATR L/o RATLR

_ 2 In \/1+RL+\/REQ+RL
B HoBRQu(1 4 z1)3/2 1+ /REqQ

where Ry, = 3Qp/4Q2, (14 z1) is the value of R at last scattering. Gradients
become important when ky = 1/dg, and since in C; the integral over wave
number is dominated by k; ~ £/d4, gradients become important when ¢
reaches the value £, where £y = d4/dy. Both d4 and dy are proportional
to 1/Hy, so Hy cancels in the ratio.

For a crude estimate of £ 7, we note that d 4 is proportional to (1+z )L
while dy is proportional to (142z7) /2, so £y is of the order of (1+z7)!/? =
33. To get a closer estimate, we will take cosmological parameters to
have sample values suggested by supernova observations and cosmologi-
cal nucleosynthesis (discussed in Section 3.2): Q3 = 0.26, Q5 = 0.74,
Qp = 0.043. This gives Ry, = 0.62, Rgq = 0.21, d4 = 3.38 H(;l(l +z7)7 !
and dyg = 1.16H(;1(1 +z7)73/2, and hence £y = 2.9/1 + z = 96.

We can now estimate the relative magnitude of the contributions to C,
other than the Sachs—Wolfe effect:

dt

) . (2.6.32)

* Doppler effect: Like any vector field, the plasma velocity can be
decomposed into a term given by the gradient of a scalar, plus a
“vector” term whose divergence vanishes. Appendix F shows that
the vector term decays as 1/a, so the dominant perturbations are
compressional modes, for which the velocity is the gradient of a scalar.
We can therefore expect that in the integral over wave numbers ¢ for
AT /Ty, the contribution of the Doppler effect will be suppressed for
small wave numbers by a factor of order ky dy. We will see in Chapter
7 that, because it is proportional to the vector ky,, the Doppler effect
contribution does not interfere with the contribution of the Sachs—
Wolfe effect, so for a multipole order ¢ <« £, the contribution of the
Doppler effect will be less than that of the Sachs—Wolfe effect by a
factor of order [(¢/d4)dy1? = €2/¢3,.
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* Intrinsic temperature fluctuations: As we have seen in Eq. (2.6.30) the
intrinsic fractional temperature fluctuation at the time of last scattering
will be just one-third the intrinsic fractional perturbation in the plasma
density. As discussed in Chapters 5 and 6, the particular perturbations
that are believed to dominate outside the horizon are adiabatic in the
further sense that the fractional perturbation in the plasma density is
equal to the fractional perturbation 8p/p in the total matter density.
But the perturbation to the total matter density is related to the per-
turbation to the gravitational potential by Poisson’s equation (2.6.25),
which if evaluated at the time of last scattering gives for the Fourier
transform:

e kg

T Sy =——L5
47 Ga®(11) %q Ar G Pa >

dpq(tL) =

where, as before, k = g/a(tr). Also, the mean total mass density p(zr,)
at last scattering is related to the horizon size dp by

3H (1) 1
87G  2nGdy’

p(tr) =~

so the order of magnitude of the intrinsic fractional temperature pertu-
rbation is related to the perturbation to the gravitational potential by

8T(tr) _ ép(tr)
T(IL) 3p(tL)

~ k3 dy s, . (2.6.33)

Thus we expect that in the integral over wave numbers ¢ for AT /Ty, the
contribution of intrinsic temperature fluctuations will be suppressed
for small wave numbers by a factor kid}l. The interference of this
contribution with the Sachs—Wolfe term then makes a contribution to
Cy for £ < horizon that, like the contribution of the Doppler effect,
is smaller than the Sachs—Wolfe contribution by a factor of order
[(¢/d)du)? ~ ¢2 /£}21 orizon- (It should be noted that the distinction
between the Sachs—Wolfe effect and the effect of intrinsic temperature
fluctuations depends on how the time coordinate is defined. The non-
relativistic estimates made here correspond to what in the relativis-
tic treatment of Chapters 5-7 would be the use of what are called
Newtonian gauge coordinates.)

* Integrated Sachs—Wolfe effect: As already mentioned, to the extent
that §¢ is truly time independent, there is no integrated Sachs—Wolfe
effect. The blueshift caused by a photon fallinginto a time-independent
gravitational potential well along the line of sight would be canceled by
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2.6 Primary fluctuations in the microwave background: A first look

the redshift caused when the photon climbs out of the well.” In fact, the
perturbation to the gravitational field is not strictly time-independent,
both because radiation continues to make a non-negligible contribu-
tion to the gravitational field for some time after last scattering, and
also because at late times vacuum energy requires modifications to
the Newtonian treatment presented in Appendix F. The late-time inte-
grated Sachs—Wolfe effect chiefly affects C;, for £ less than about 10.

It is reasonable then to assume that for 10 < ¢ < 50, the dominant
contribution to Cy is from the Sachs—Wolfe effect.

Apart from observation of the £ = 1 anisotropy due to the earth’s motion
through the microwave background, the first detection of an anisotropy in
the cosmic microwave radiation background was achieved by the COBE
satellite in 19928 This experiment scanned the sky with two microwave
antennae separated by 60°, at frequencies 31.5, 53, and 90 GHz near the
minimum of emission from our galaxy and the maximum of the Planck
distribution for 2.7 K. The 1992 data showed an rms fluctuation in the
temperature with angle of 30+5 K, with an angular distribution consistent
with n = 1. After four years, values of C; had been measured® with the
same instruments at values of ¢ ranging from £ = 2 to £ = 40. For £ > 4
the results were fit to the £-dependence given by Eq. (2.6.24), with the result
thatn = 1.13f8:2, which is consistent with the value n = 1 for what is called
a Harrison—Zel’dovich spectrum. This result is often written as

24707
TS+ 1)
with Q known as the quadrupole moment. Fitting the values of C; for

10 < £ < 40, the 1996 COBE results gave Q = 18 £+ 1.4 wK. Comparing
Eq. (2.6.34) with (2.6.27), we see that

y (2.6.34)

[27 0 »
Ny =, —= =(8.7+0.7 107°. 2.6.35
P 57 T, ( ) X ( )

Surprisingly, the multipole coefficients for £ = 2 and £ = 3 were found to
be much less than would be expected by extrapolation of Eq. (2.6.34) from

TThereis also an anisotropy produced by time-dependent fluctuations in the gravitational potential of
cosmological inhomogeneities (such as concentrations of cold dark matter), known as the Rees—Sciama
effect; M. J. Rees and D. W. Sciama, Nature 217, 511 (1968). This is expected to be quite small; see U.
Seljak, Astrophys. J. 460, 549 (1996). For possible larger effects due to local structures, see A. Raki¢,
Syksy Résénen, and D. J. Schwarz, Mon. Not. Roy. Astron. Soc. 363, L27 (2006) [astro-ph/0601445].

8G. F. Smoot e7 al., Astrophys. J. 396, L1 (1992)

9C. L. Bennett ez al., Astrophys. J. 464, L1 (1996) [astro-ph/9601067]; A. Kogut et al., ibid, L5 (1996)
[astro-ph/9601066]; K. M. Gorski et al., ibid, L11 (1996) [astro-ph/9601063]; G. Hinshaw et al., ibid,
L17 (1996) [astro-ph/9601088]: E. L. Wright et al., ibid, 121 (1996) [astro-ph/9601059].
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2 The Cosmic Microwave Radiation Background

the fit for £ > 4,10 as shown by the apparent absence of two-point correla-
tions for angles greater than about 60°. The discrepancy with theory is even
worse when the integrated Sachs—Wolfe effect is taken into account. This
result has since been confirmed by observations with the WMAP satellite, !
to be discussed in Chapter 7. It is quite possible that this discrepancy is
due to a combination of foreground contamination and cosmic variance, 2
which according to Eq. (2.6.9) is 63% for £ = 2.

We will have to wait to discuss calculations of C; for large £, above the
range of validity of Eq. (2.6.34), until Chapter 7, after we have developed
the general relativistic theory of cosmological fluctuations in Chapters 5
and 6. In Chapter 7 we will also come back to the observations over the
past decade that have refined the COBE measurements and extended them
to higher £.

10G. Hinshaw et al., Astrophys. J. 464, L25 (1996) [astro-ph/9601061].

1D, N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).

12G. Efstathiou, Mon. Not. Roy. Astron. Soc. 346, L26 (2003) [astro-ph/0306431]; A. Slosar, U.
Seljak, and A. Makarov, Phys. Rev. D 69, 123003 (2004) [astro-ph/0403073]; A. Slosar and U. Seljak,
Phys. Rev. D70,083002 (2004); G. Hinshaw et al., Astrophys. J. Suppl. Ser. 170, 288 (2007).
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3
The Early Universe

We have been exploring the period in the history of the universe when the
radiation temperature dropped from a little over 10* K down to its present
value of 2.725 K. We now want to look back to the era when the temperature
was greater than about 10* K, well before the energy density in radiation fell
below that of baryons and cold dark matter. We will carry the story back
to when the temperature was above 10'° K, when electron—positron pairs
were abundant and neutrinos were in equilibrium with these pairs, and even
farther back, as far as our current knowledge of the laws of physics will
take us.

3.1 Thermal history

We first want to work out the history of the falling temperature of the
early universe. In this section we will look back only to a time when the
temperature was between 10* K and 10'! K, which is low enough so that
muon-antimuon and hadron—antihadron pairs were no longer being pro-
duced in appreciable numbers.

There are two circumstances that greatly simplify this task. The first is
that the collision rate of photons with electrons and other charged particles
during this era was so much greater than the expansion rate of the universe
that the photons and charged particles can be assumed to have been in ther-
mal equilibrium, with a common falling temperature. At sufficiently early
times even the neutrinos and perhaps the cold dark matter particles were
also in thermal equilibrium with the photons and charged particles; later,
when no longer colliding rapidly with other particles, they can be treated
separately as free particles. The other circumstance is that the number den-
sity of baryons (or more strictly, the number density of baryons minus the
number density of antibaryons) is so much less than the number density of
photons that we can ignore the chemical potential associated with baryon
number. Baryons will be put back into the picture in the following section.
Also, because the electron/photon number ratio is so small now, it is rea-
sonable to assume that the universe has always had a very small net lepton
number density (the number density of leptons of all sorts minus that of
antileptons) per photon. This means that even at temperatures of order
101 K, when electron—positron pairs were abundant and the energy density
and pressure were not simply proportional to 7* and the entropy density
was not simply proportional to 77, the entropy density, energy density, and
pressure were functions s(7T), p(T), and p(T) of the temperature alone.
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3 The Early Universe

(The possibility of a non-negligible net lepton number is discussed at the
end of this section.)

Before studying the history of the universe during this era we will have to
take a brieflook at the thermodynamics and statistical mechanics of this sort
of matter, in thermal equilibrium with negligible chemical potentials. The
condition of thermal equilibrium tells us that the entropy in a co-moving
volume is fixed

s(T)a’> = constant . (3.1.1)

The second law of thermodynamics says that any adiabatic change in a
system of volume V' produces a change in the entropy given by

dip(D) V) +p(M)dV

d(s(T)V) = -

(3.1.2)
Equating the coefficients of dJ gives our formula for the entropy
density

p(T) +p(T)
— -
Also, equating the coefficients of V' dT and using Eq. (3.1.3) give the law
of conservation of energy:

s(T) = (3.1.3)

dp(T)

dT
(For instance, for radiation we have p(T) = p(T)/3, so Eq. (3.1.4) gives
the Stefan—Boltzmann law p = agT* with ag a constant that cannot be
determined from thermodynamics alone; Eq. (3.1.3) then gives the entropy
density for radiation as s(7)) = 4ag T3 /3. This is why in we said in Section
2.2 that the constant o kg = 4agT>/3ng may be interpreted as the radiation
entropy per baryon.)

With equal numbers of particles and antiparticles, the number den-
sity n(p)dp of a species of fermions (such as electrons) or bosons (like
photons) of mass m and momentum between p and p + dp is given by
the Fermi-Dirac or Bose-Einstein distributions (with zero chemical
potential)

T = o(T) + p(T) . (3.1.4)

4y gp? 1
,T) = , 3.1.5
" ) (2mh)? (exp(w/p2 +m?/kgT) £ 1) ( )

where g is the number of spin states of the particle and antiparticle, and the
sign is + for fermions and — for bosons. For instance, for photons g = 2
(and of course m = 0), because photons have two polarization states and
they are their own antiparticles, while for electrons and positrons g = 4,
because they have two spin states and electrons and positrons are distinct
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3.1 Thermal history

particle species. The energy density and pressure of a particle of mass m are
given by the integrals!

,o(T)=/ n(p, T)dp/p* + m?, (3.1.6)
0

p2

WP 4+m?

The entropy density of this particle is then given by Eq. (3.1.3) as

p(T) =/0 n(p, T)dp (3.1.7)

1 [ P’
— 2 2
s(T) = T/o n(p, T)dp [\/p +m +3 p2+m2} _ (3.1.8)

In particular, for massless particles Eq. (3.1.6) gives

(T) = /0047rp3dp( 1 )
PREV=E | 2y \exp(p/ksT) + 1

_{ gagT*/2  bosons

TgagT*/16 fermions (3.1.9)
and of course p(T) = p(T)/3 and s(T) = 4p(T)/3T. In other words, each
species and spin of massless fermions makes a contribution to the energy
density, pressure, and entropy density that is just the same as for each polar-
ization state of photons, except for an additional factor 7/8.

During a period of thermal equilibrium, the variation with time of the
temperature is governed by the equation (3.1.1) of entropy conservation and
the Einstein field equation, with curvature neglected,

%)
a 8t Gp(T)
e 3.1.10
" 3 ( )
Combining these gives
s (T)dT
t=— tant . 3.1.11
fs(T) 247 Gp(T) +constan ( )

(The minus sign is inserted in taking the square root of 72, to take account
of the fact that the temperature decreases as time passes.) In particu-
lar, during any epoch in which the dominant constituent of the universe
is a highly relativistic ideal gas, the entropy and energy densities are

IEq. (3.1.6) follows directly from the definition of n(p, T), and Eq. (3.1.7) can then be derived from
Eq. (3.1.4). Or both Egs. (3.1.6) and (3.1.7) can be obtained from Egs. (B.41) and (B.43).
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3 The Early Universe

given by
2NagT?
s(T) = N% (3.1.12)
T4
,0(T)=Na§ , (3.1.13)

where N is the number of particle types, counting particles and antiparticles
and each spin state separately, and with an extra factor of 7/8 for fermions.
Then Eq. (3.1.11) becomes

3 1
t=|——— = tant . 3.1.14
\ 167 GNap T? +constan ( )

With this background, let us now start our history at a time when the
temperature was around 101! K, which is in the range my,, > kgT > m, .
Even though it was too cold at this time for reactions like v, +e — 1 + v,
or v; +e — T + v, the u and 7 neutrinos and antineutrinos were kept
in thermal equilibrium by neutral current reactions, like neutrino-electron
scattering or e™ + e~ = v+ 1. Hence the constituents of the universe at this
time were photons with two spin states, plus three species of neutrinos and
three of antineutrinos, each with one spin state, plus electrons and positrons,
each with two spin states, all in equilibrium and all highly relativistic, giving

43

7
N=2+6+4=. (3.1.15)

so that Eq. (3.1.14) gives, in cgs units:

t = 32 ! + constant = 0.994 sec T B + constant
-\ 1727 Gag T? - 1010K '

(3.1.16)
For instance, with muons ignored and the mass of the electron neglected, it
took 0.0098 sec for the temperature to drop from a value 1012 K to 10! K,
and another 0.98 sec for the temperature to drop to 10'? K.

At a temperature of about 10!° K neutrinos were just going out of
equilibrium and beginning a free expansion. The weak interaction cross
section for neutrino-electron scattering is roughly owx ~ (AGyk knT)?,
where Gyi ~ 1.16 x 1075GeV 2 is the weak interaction coupling constant,
and the factor 42 is included to convert a quantity with the units (energy) >
to a quantity with the units (length)? of a cross section. (Recall that we are
using units with ¢ = 1.) The number density of electrons at temperatures
above 10'° K is roughly given by n, ~ (kzT/h)3, so the collision rate of a
neutrino with electrons or positrons at such temperatures is

Ty = neowx ~ Goy (kgT)°/h .
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3.1 Thermal history

This may be compared with the expansion rate, which during the radiation-
dominated era is of the order

H =~ \|GkpT)*/1,

with the factor A~ included to convert a quantity with the units (energy)*
to a quantity with the units mass/length3 of a mass density. The ratio of
the collision rate to the expansion rate is thus

Iy 2 12 3 T\
i ~ Gy (h/G) /' “(kpT)” ~ (m)
Hence neutrinos were scattered rapidly enough to remain in thermal
equilibrium at temperatures above 10'0 K. This is just a little greater than
me/kp, so for lower temperatures electrons and positrons rapidly disapp-
eared from equilibrium, the collision rate dropped rapidly below G&/k
(kgT)>/h, and hence the ratio I',/H dropped rapidly below unity. The
neutrinos then began a free expansion, in which (as we saw in Section 2.1)
the number density distribution 7, continued to keep the form (3.1.5), with
a temperature 7, « 1/a.

At lower temperatures we must take into consideration the finite mass of
the electron, so the temperature 7" of the electrons, positrons, and photons
(which were still in equilibrium with each other) no longer fell as 1/a. On
the other hand, the freely expanding massless neutrinos preserved a Fermi—
Dirac momentum distribution,? with a temperature that continued to drop
as 1/a. We must therefore now distinguish between the photon temperature
T, and the neutrino temperature 7.

The entropy density of the photons, electrons, and positrons is

4agT?® 4 [®4mp dp P>
(1) = =3 +7/0 W(W’”’”?*z—,m)
1
X
exp (W/kgT) +1
_4CIBT3
3

S(me/kpT) , (3.1.17)

2This is not exact; even at temperatures under 1010 K, the neutrino distribution was slightly affected
by weak interaction processes, such as e~ + et — v 4+ 7. See A. D. Dolgov, S. H. Hansen, and
D. V. Semikoz, Nucl. Phys. B 503, 426 (1997); 543, 269 (1999); G. Mangano, G. Miele, S. Pastor, and
M. Peioso, Phys. Lett. B534, 8 (2002). For a review, see A. D. Dolgov, Phys. Rep. 370,333 (2002). The
weak interactions provide some thermal contact between the neutrinos and the plasma, which is being
heated by electron—positron annihilation, so the effect is to slightly increase the neutrino energy density,
by an amount usually represented as an increase in the effective number of neutrino species, from 3 to
3.04. This effect is neglected in what follows.
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3 The Early Universe

where, recalling that ag = nzkg / 154 ,

45 [ y? 1
S =1+— | P2 +x2+ .
274 Jo 3V2+x2 ) expy/yr+x2+1
(3.1.18)

The entropy conservation law (3.1.1) gives a> T3S(m,/kgT) constant, and
since T, o 1/a, this means that 7, is proportional to TS 13(m, /kpT). The
temperatures were equal for kgT >> m,, and

S(0) =1+2% —11/4, (3.1.19)

SO
1/3
T, = (4/11) P SV3(my ks T) | (3.1.20)

The ratio T'/T), rose from very close to unity for 7 > 10!! K to 1.008 at
T = 100 K and to 1.346 at T = 10° K. To find the asymptotic value
of T/T, without a computer calculation, we note that S(co) = 1, so for
kT < me, Eq. (3.1.20) gives

1/3
T/T, — (11/4) — 1.401 . (3.1.21)

In particular, at the present time, when 77 = 2.725K, the neutrino
temperature is 1.945 K. Unfortunately there does not seem to be any way
of detecting such a neutrino background.

With three flavors of neutrinos and antineutrinos, the total energy
density during this period is

T4 0 4 2 /12 2
p(T)=6.Z."B v +aBT4—|—4/ P df P
8§ 2 0 @)’ exp (M/kgT) +1
= agT*E(me/kpT) , (3.1.22)
where
21 (4\*? 30 [~ /)2 +x2d
() =1+ = (—) 84/3(x)+—4/ YN HXAY 303
8 \11 7 Jo expyy?+x2+1
We insert Egs. (3.1.17) and (3.1.22) in Eq. (3.1.11), and find
. f <(me/kBT)S/(me/kBT) _ 3) ar
S(me/kpT) T/247 GagT*E (m, /kgT)
8/
= zef (3 — x—(x)) E712(x) xdx , (3.1.24)
S(x)
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3.1 Thermal history

where x = m,/kpT, and in cgs units
12
te = (247 G ®agm? ks = 4.3694 sec . (3.1.25)
el "B

The values of T/T, and of the time required for the temperature to fall
to T (calculated from Eq. (3.1.11)) are given for various values of 7' in
Table 3.1.

After the era of electron—positron annihilation, the energy density of
the universe was dominated for a long while by photons, neutrinos, and
antineutrinos, all of them highly relativistic, so during this period we have
s(T) &< T3, and

7 7
o(T) = aBT4+§.3-aBT;‘ =agT* (1 +3 3. (4/11)4/3> =3.363aT"/2.

(3.1.26)

Table 3.1: Ratio of electron-photon temperature 7" to neutrino temperature 7), and the time
t required for the temperature to drop from 1011 K to 7T, for various values of 7.

T (K) T/T, t(sec)
10! 1.000 0
6 x 1010 1.000 0.0177
3 x 1010 1.001 0.101
2 x 1010 1.002 0.239
1010 1.008 0.998
6 x 10° 1.022 2.86
3% 10° 1.080 12.66
2 % 10° 1.159 33.1
10° 1.345 168
3 x 108 1.401 1980
108 1.401 1.78 x 10*
107 1.401 1.78 x 10°
106 1.401 1.78 x 108
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3 The Early Universe

That is, during this period the effective number of particle species is N =
3.363. Using Eq. (3.1.14) then gives, in cgs units:

y 32 | constant = 1.78 T _2+ tant
= E— constant = 1. SE€C —_— constant .

3.363-16 - 7agG T2 1010K
(3.1.27)

For instance, the time required for the universe to cool from a temperature
of 10° K (where electrons and positrons have mostly annihilated) to a tem-
perature of 108 K is 1.76 x 10* sec, or 4.9 hours.

According to Eq. (3.1.27), the time required for the temperature to drop
to 10° K from much higher values is 1.78 x 108 sec, or 5.64 years. At
lower temperatures we must take into account the energy density of non-
relativistic matter, and Eq. (3.1.27) no longer applies. We saw in Section 2.3
that for Q4% = 0.15, it took an additional 360,000 years for the universe
to cool to the temperature 3,000 K of last scattering.

* 3k %k

So far in this section we have been assuming that neutrinos are massless,
and that the net neutrino number of each of the three types (that is, the
number of neutrinos minus the number of antineutrinos) is much less than
the number of photons. In the general case of an ideal gas of particles of
mass m, the number n(p) dp of particles of momentum between p and p + dp
is given by the Fermi-Dirac and Bose—Einstein distributions

47t gp? dp 1
Qrh)3 \exp[(v/p? +m? — ) /kgT] + 1

where u is the chemical potential for the particle in question, a quantity
that is conserved in any reaction occurring rapidly in thermal equilibrium,
and again g is the number of spin states of the particle and antiparticle, and
the sign is + for fermions and — for bosons. This reduces to Eq. (3.1.5)
in the case of zero chemical potential, and it yields the number density
(2.3.1) for non-relativistic particles with p <« m and kgT <« m. During the
whole of the era of interest here, electrons and positrons rapidly annihilated
into photons, so their chemical potentials were equal and opposite, and
since we are assuming charge neutrality and neglecting the tiny number
of baryons per photon, we can conclude that the chemical potentials of the
electrons and photons were much less than k7. At temperatures at which
neutrinos and antineutrinos were in thermal equilibrium with electrons,
positrons, and photons, reactions like et + e~ = v; + 1; were occurring
rapidly (where i = e, u, 7 label the three types of neutrino), so the chemical

np, T,n)dp = ) , (3.1.28)
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3.1 Thermal history

potential u; of each type of neutrino was equal and opposite to the chemical
potential of the corresponding antineutrino. But if we do not assume zero
net neutrino (or lepton) number, then there is no a priori reason why the w;
had to be less than kT

If neutrino masses are less than about 1 eV, then they may be neglected at
the temperatures of interest in this section. The observations of oscillations
between different flavors of neutrinos from the sun, nuclear reactors, and
cosmic rays shows? that the two differences in the squares of the masses of
the three types of neutrinos of definite mass (which are mixtures of neutrinos
of electron, muon, and tau flavor) are 8.OJ_F8:‘31 x 1075 eV?2 and between 1.9

and 3.0 times 1073 eV2. Thus the neutrino masses are all much less than 1
eV, unless they are highly degenerate, which there is no reason to expect. If
degenerate, then from the absence of anomalies in the low-energy beta decay
of tritium, their common mass must be less than 2 eV.> Whether degenerate
or not, it is clear from this that all three neutrino types (if there are only
three) have masses very much less than 1 MeV, and were therefore highly
relativistic at the time that they went of thermal equilibrium with electrons
and positrons, at a temperature of about 10!° K. Once out of equilibrium,
their momentum simply decayed as 1/a (as shown in Section 1.1), so if their
chemical potential was negligible their momentum distribution remained
the same as that of photons, with a temperature less by a factor (4/11)!/3.
Thus once kg T dropped below the smallest neutrino mass, their energy den-
sity became just n, ), m, = (3/11)n,, 3, m,. (For kgT much larger than
the mass, the integral for the number density of each spin state of fermions
is 3/4 the corresponding integral for bosons, and after neutrinos decouple
T, 3‘ = @4/1H)T ;.) With a non-zero chemical potential the energy density
is larger. The agreement between theory (with massless neutrinos) and
observation for the cosmic microwave background anisotropies discussed
in Sections 2.6 and 7.2 and for the large scale structure discussed in Chapter
8 shows that the sum of the three neutrino masses is less than 0.68 eV (95%
confidence level),* so if they are degenerate the common mass is less than
0.23 eV. This result has been contradicted by the observation of neutrinoless
double beta decay in a Heidelberg—Moscow experiment,> which suggests a
value greater than 1.2 eV for the sum of neutrino masses.® There has not
yet been an opportunity to confirm the double beta decay results, and for
the present it seems reasonable to continue to neglect neutrino masses.

3W.-M. Yao et al. (Particle Data Group), J. Phys. G. 33,1 (2006).

4D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007) [astro-ph/0603449].

SH. V. Klapdor-Kleingroth, I. V. Krivosheina, A. Dietz and O. Chkvorets, Phys. Lett. B 586, 198
(2004).

6A. De La Macorra, A. Melchiorri, P. Serra, and R. Bean, Astropart. Phys. 27, 406 (2007) [astro-
ph/0608351].
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3 The Early Universe

With neutrino masses neglected, the energy density, pressure, and net
lepton number density of neutrinos and antineutrinos of type i is

pi = 3p;

4 / Y ( 1 . 1 )
=@y ) T P \explo — p)/ksT1+ 1 explp + ) /ksT] + 1
(kpT)*

= 4w o P JksT) , (3.1.29)

4 / d
n —m— ——
1 (27Th)3 pap

1 1
* (eXp[(P u/ksT1+ 1 expl(p + 1) /knT] + 1>

_, (kgT)?
=4 o h)3/\/l(u,/ sT), (3.1.30)

where
P(x) = /oo [(ey_x + 1)_1 + (VT + 1)_1] vidy, (3.1.31)
0
M(x) = /oo [(ey—x+ )7 = (@ + 1)‘1] Vdy.  (3.1.32)
0

As we have seen, at temperatures above 10!° K the energy density of
the photons and electron—positron pairs is 11 ag7*/4, and the pressure is
one-third as great, so the total energy density and pressure are given by

llalg 47Tk
4 Qn h)3

> P(ui/ksT) | . (3.1.33)

i=e,u,t

The equation (1.5.20) of energy conservation tells us that under these
circumstances pa® is constant, while the conservation of each type of neu-
trino number also tells us that n;a> is constant. Since p and n; depend in
different ways on the chemical potentials, this requires that as the universe
expands in this era the u;/kgT remain constant, and also 7" o< 1/a, just as
in the case of zero chemical potential.

As the temperature dropped below 10'© K the temperature of the
photons and electron—positron pairs no longer varied as 1/a, but as we have
seen the neutrinos and antineutrinos entered on a free expansion. With
each neutrino’s momentum p varying as 1/a, the form of the Fermi—Dirac
distributions for each type of massless neutrino was preserved, with a tem-
perature 7, o« 1/a and wu;/kgT constant, just as before decoupling. We
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3.2 Cosmological nucleosynthesis

conclude that to a good approximation 7, &« 1/a and each u; « 1/a
throughout the whole era of interest here.

The only effect that a non-zero neutrino chemical potential would have
on the calculations of this section is that it would increase the total energy
density and hence shorten the time scale. For any non-zero u the function
P(u/kgT)isgreater than P(0) = 7n*/60,s0if u; # Othen p; > Tn2(kgT)*/
120(h)® = (7/8)apT*. In particular, if |u;| > kT then P(u;/kpT) ~
(wi/kpT)*/4, so pi ~ m(u)*/Qrh)3 > agT?, and these neutrinos (or
antineutrinos, if exp(—u;/kgT) islarge) dominated the energy density of the
universe, at least until the cross-over of non-relativistic matter and radiation.
Inspection of Eq. (3.1.28) shows that for a chemical potential © > kT,
the fermion distribution function n(p, T, )dp is equal to 4w gp*dp/ (2 h)>
for particle energies less than p, and then falls off rapidly for higher ener-
gies, indicating that all fermion energy levels up to energy u are filled, while
higher energy levels are empty. This is the case of complete neutrino degen-
eracy.” Experiments on the beta decay of tritium, "H — 3He + ¢~ + 7,
show that |u.| is less than a few eV, because otherwise for ., > 0 there
would be a rise in the electron spectrum beyond the expected endpoint
m(®*H) — m(®He), due to absorption of degenerate cosmic neutrinos in the
reaction v, +>H — 3He+ e, while for i, < 0 the Pauli exclusion principle
would produce a dip in the electron spectrum within a few eV of its expected
endpoint, where antineutrino energies are less than a few eV, putting them
within the degenerate antineutrino sea. (The absence of a dip within a few
eV of the expected electron spectrum endpoint also sets a limit of a few eV
on the electron neutrino mass.) This yields an upper bound on the time-
independent quantity |u|/kpT of order 10* which is very much weaker
than the upper bound that will be provided in the following section by con-
siderations of cosmological nucleosynthesis.

3.2 Cosmological nucleosynthesis

We have worked out the thermal history of the universe from temperatures
above 10!° K down to the crossover temperature ~ 10* K, ignoring the
presence of a small number of nucleons (and a small excess of electrons
over poslitrons). Now let us consider what happens to the nucleons during
this era.

TThe possibility of cosmic neutrino degeneracy was raised by S. Weinberg, Phys. Rev. 128, 1457
(1962).

11 outlined the history of these calculations in The First Three Minutes (Basic Books, 1977, 1988).
Briefly, the first calculations of cosmological nucleosynthesis were undertaken by Ralph Alpher, George
Gamow, and Robert Herman in the late 1940s; see G&C, Chapter 15, footnotes 51 and 52. In this
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3 The Early Universe

The weak interactions allow neutron—proton conversion through six
processes:

n+v=p+e , n+e+\—_\p—|—ﬁ’ n=p+e +v. (321)

(Here v is v,; the other neutrino flavors do not contribute to these reactions.)
In this range of temperatures kT < my, so the nucleons can be treated as
essentially at rest. The initial and final lepton energies are therefore simply
related, by

E.—E, =0 forn+v=p+e ,
E,—~E,=Q forn+et =p+7v (3.2.2)
E,4+E. =0 forn=p+e +Vv,
where
0 =my, —m, =1293 MeV . (3.2.3)

The total rates at which an individual neutron is converted to a proton or a
proton to a neutron take the form

12
m2 (0 + q)q*dq

- (Q +e‘1)2 (1 + e‘]/kBTv)(l 4 e—(Q+q)/kBT> ’
(3.2.4)

k(n—)p):A/

work it was assumed that nucleons start as pure neutrons, which then convert to protons by the process
of neutron beta decay. It was then pointed out that the conversion of neutrons into protons and vice
versa occurs primarily through two-particle collisions, and that the rapid rate of these processes at very
early times has the consequence that nucleons start as 50% neutrons and 50% protons, by C. Hayashi,
Prog. Theor. Phys. (Japan) S, 224 (1950). Following this, a modern calculation of the evolution of the
neutron/proton ratio was presented by R. A. Alpher, J. W. Follin, Jr., and R. C. Herman, Phys. Rev. 92,
1347 (1953), but the results were not applied to the problem of cosmological nucleosynthesis. Several
authors noted that the abundance of helium in the universe is too large to be accounted for by stellar
nucleosynthesis; see G. Burbidge, Pub. Astron. Soc. Pacific 70, 83 (1958); F. Hoyle and R. J. Tayler,
Nature 203, 1108 (1964). The modern theory of cosmological nucleosynthesis is due to P. J. E. Peebles,
Astron. J. 146, 542 (1966). (Related calculations done by Ya. B. Zel'dovich, Adv. Astron. Astrophys.
3, 241 (1965) were not known in the West until much later.) Nucleosynthesis calculations were then
extended to more nuclides and reactions by R. V. Wagoner, W. A. Fowler, and F. Hoyle, Astrophys. J.
148, 3 (1967), and many small corrections were included by D. A. Dicus, E. W. Kolb, A. M. Gleeson,
E. C. G. Sudarshan, V. L. Teplitz, and M. S. Turner, Phys. Rev. D 26,2694 (1982). Modern reviews are
given by G. Steigman, in Measuring and Modeling the Universe — Carnegie Observatories Astrophysics
Series, Volume 2, ed. W. Freedman (Cambridge University Press, Cambridge, UK) [astro-ph/0307244];
in The Local Group as an Astrophysical Laboratory — Proceedings of the May 2003 STScl Symposium
[astro-ph/0308511]; in Chemical Abundances and Mixing in Stars in the Milky Way and its Satellites —
Proceedings of the ESO/Arcetrei Workshop, eds. L. Pasquini and S. Randich (Springer—Verlag) [astro-
ph/0501591]; and Int. J. Mod. Phys. E15, 1 (2006) [astro-ph/0511534]. For discussions emphasizing
analytic calculations, see G&C, Section 15.7, and V. Mukhanov, Int. J Theor. Phys. 43, 669 (2004)
[astro-ph/0303073].
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3.2 Cosmological nucleosynthesis

2 1/2 2.2
= f (1= @ 0
©Q+9 <1 4 efq/kBTu) (1 n e(Q+q)/kst>

(3.2.5)
where?
L vak<l + 3gf4) cos? 6 (326
B 273k ’ o
and the integrals over ¢ run from —oo to +oo, leaving out a gap from
qg=—0 — me to g = —Q0 + m,, where the square root would be imaginary.

These rates include the effect of the Pauli Principle in the presence of partly
filled lepton seas. For instance, the cross section for the process n + e™ —
p+vis2n 2k’ AE? /v,, the number density of positrons of each helicity with

momentum between p, and p, + dp, is 4npgdpe(2nh)_3[exp(Ee /kgT) +

~1
1] , and the fraction of unfilled antineutrino levels with energy E, is

1 — [exp(Ey /kgT,) + 117" = [exp(—E, /kgT,) + 117!

so the total rate per neutron of the process n + et — p + v is
o0
Mot et pam) = A [ Epldp.lexp(Ee ki) + 117
0

x [exp(—Ey/kgTy) + 117!

Changing the variable of integrationto ¢ = —E, = —Q— E,, we see that this
partial rate is just the part of the integral (3.2.4) that runs from ¢ = —o0 to
q = —Q—m,. Likewise, the part of the integral that runs from g = —Q+m,
to ¢ = 0 is supplied by the neutron-decay process n — p + e~ + v, with
g = —E,, and the part of the integral that runs from ¢ = 0 to ¢ = +©
arises from the processn+v — p+e~, with ¢ = E,,. Similar remarks apply
to the integral (3.2.5).

With the rates (3.2.4)—(3.2.5) known in principle, we can calculate the
change in the ratio X, of neutrons to all nucleons from the differential
equation

7 —A(n—=>pX,+rp—>nl-X,) . (3.2.7)
2Here Gyk = 1.16637(1) x 1073GeV~2 is the weak coupling constant, measured from the rate of

the decay process ut — et + v + Vs g4 = 1.257 is the axial vector coupling of beta decay, measured
from the rate of neutron decay; and 6 is the Cabibbo angle, with cos ¢ = 0.9745(6), measured from
the rate of O!4 beta decay and other 07 — 07 transitions.
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3 The Early Universe

As a check, note that for a time-independent temperature 7 equal to T,
the two rates (3.2.4) and (3.2.5) would have the ratio

" —exp (- Q/ksT) for T=T,. (3.2.8)

It follows then that in this case, Eq. (3.2.7) would have the time-independent
solution expected in thermal equilibrium
X, X
X, 1-2X,

— exp ( - Q/kBT) . (3.2.9)

It is the inequality of 7" and 7, as well as the time-dependence of these
temperatures that drives X,/ X, away from its equilibrium value (3.2.9).

For kgT > Q we can evaluate the integrals (3.2.4)—(3.2.5) by setting
T, =T and Q = m, = 0, so in this case

+00 (]4 dq
M= p =i =4 /—oo <1 + e‘I/kBT> <1 + e—‘]/kBT>
T 4 5 (TN
= En A(kpT)” = 0.400 sec (1010K> . (3.2.10)

For comparison, the time ¢ for the temperature to drop to 7 from much

-2
higher values is given by Eq. (3.1.16) as 0.99 sec <T/1010K) . Also,
H ~ 1/2t. The ratio A/H is therefore

T \3
AH >~ 0.8 x <1010K) . (3.2.11)
This ratio is larger than 1 for 7 > 1.1 x 10!9 K. It is true that temperatures
near this lower bound are not much larger than Q/k, and T, at this epoch
is not precisely equal to 7', so the rates A(n — p) and A(p — n) are not
precisely equal, and neither is given precisely by Eq. (3.2.10). Nevertheless
Eq. (3.2.10) gives the order of magnitude of these rates in this temperature
range, so we can still rely on the conclusion that A(n — p)/H and A(p —
n)/H arelarge down to these temperatures. This means that the initial value
of X, at temperatures larger than about 3 x 10! K is given by the condition
that the right-hand side of Eq. (3.2.7) should vanish:

A(p — n)

X, — .
A(p — n)+Ar(n— p)

(3.2.12)

If X}, were larger or smaller than this, then the right-hand side of Eq. (3.2.7)
would be large and respectively negative or positive, so X, would be rapidly
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3.2 Cosmological nucleosynthesis

driven to the value (3.2.12). For T > 10!° K the neutrino temperature
was within 1% of the photon-electron-positron temperature, so at these
temperatures the rates have the ratio (3.2.8). Thus at the temperatures
T > 3 x 101 K at which the neutron fraction is given by the equilibrium
formula (3.2.12), this formula gives simply

1
X, = .
1 4+ exp(Q/kpT)

It is crucially important that this ratio is fixed at high temperatures by the
condition of zero lepton chemical potential, so that we do not need to make
any a priori assumptions about the initial neutron/proton ratio. The results
of a numerical integration of Eq. (3.2.7) with initial condition provided by
Eq. (3.2.13) are presented in Table 3.2.3

We have seen that for kgT > m, theratiosA(p — n)/H and A(n — p)/H
varied roughly as 77, so there was a rather sharp end to the equilibrium era,
in which A > H, at a temperature between 3 x 109 K and 1010 K. A little
later, at a temperature between 10!° K and 3 x 10? K the two-body and three-
body neutron—proton conversion reaction rates became negligible, due in
part to the disappearance of electron—positron pairs. Neutron—proton con-
version continued mostly through the process of neutron decay, with a mean
lifetime 1, of 885.740.9 sec, so the neutron fraction became proportional to
exp(—t/t,). This is confirmed by fitting the numerical results presented in
Table 3.2 with an exponential that decays with the observed rate of neutron
decay, which gives

(3.2.13)

—t

The conversion of neutrons into protons was eventually stopped by the
formation of complex nuclei, in which neutrons are stable. As a guide to
this process, note that in thermal (and chemical) equilibrium the number
density of a nuclear species i is given by formulas like Egs. (2.3.1):

2emikg T\
S (””;—2’3) exp(—mi/ksT) (3.2.15)

where m; is the mass of nucleus 7 and g; is the number of its spin states. If
these nuclei can be built up rapidly out of Z; protons and 4; — Z; neutrons,

3These results are somewhat different from those given in Table 15.5 of G&C, because in 1972
only two types of neutrinos were known, and we are now assuming three types of massless neutrinos,
which increases the expansion rate at a given temperature. We are also using the modern value 1.257
for the axial vector coupling constant of beta decay in Eq. (3.2.6), instead of the value 1.18 used in
G&C.
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3 The Early Universe

Table 3.2: Neutron fraction X), as a function of temperature or time (with neglect of the
formation of complex nuclei).

T (K) t(sec) Xy

1012 0.0001 0.4962

3 x 101 0.0011 0.4875

10! 0.0099 0.4626

3 % 1010 0.1106 0.3798

1010 1.008 0.2386

3% 10° 12.67 0.1654

1.3 x 10° 91.09 0.1458

1.2 x 10° 110.2 0.1425

1.1 x 10° 135.1 0.1385

10° 168.1 0.1333

9 x 108 212.7 0.1268

8 x 108 274.3 0.1182

7 x 103 362.6 0.1070

6 x 108 496.3 0.0919

3 x 108 1980 0.0172
108 17780 3.07 x 10710

then the chemical potential of nuclei of type i is
wi =Zipp + (Ai — Zj)py . (3.2.16)

We can eliminate the unknown nucleon chemical potentials by forming the
quantities

. . 3(1—-4;)/2
n; g a1 (2ﬂmzkaT> oBilksT | (3.2.17)

iz o T

where B; is the binding energy, defined by
m; = Z,-mp + (A; — Zi)m,, — B; . (3.2.18)
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3.2 Cosmological nucleosynthesis

(In deriving Eq. (3.2.17), we neglect the binding energy and the neutron—
proton mass difference outside the exponential.) Eq. (3.2.17) can be
expressed in terms of the dimensionless ratios

Xi=ni/ny, X,=my/nn, Xy=ny/ny, (3.2.19)
where ny is here the number density of a/l nucleons. In these terms,
gi ) 7. 32 4. )
X; = 5’)(1,21)(,;41 Zi g2 A= BilksT (3.2.20)
where € is the dimensionless quantity

nNhS(anNkBT)_S/Z

-3 —-3/2
—296x 10112 T\ (3.2.21)
- 10104, 1010K B s

€ =

N —

in which we have used ny = 3Q BH(% (ap/a)? /87 Gmy for the number density
of nucleons, bound or free. During the period of interest (after electron—
positron annihilation) the temperature 7" goes as 1/a, so Eq. (3.2.21) may
be written

3/2
e =146 % 10712 (L +/Qh2 (3.2.22)
= 1. 100K BN~ . L.

The coefficient € is very small for temperatures in the range of interest, so in
equilibrium a nuclear species i is nearly absent until the temperature drops
to the value

 k(4; — 1D|Ine|

For Qph? ~ 0.02 this temperature is 0.75x 10° K for deuterium, 1.4x10° K
for H3, 1.3x10° K for He?, and 3.1 x 10° K for He*, with only a very weak
dependence on Qph’. The binding energy per nucleon for heavier nuclei is
similar to that of He?, so they have similar values of 7.

If thermal and chemical equilibrium were really maintained during the
time that the temperature drops from around 10'° K to below 10° K, then
during this time He* and heavier nuclei would appear first, followed by
He? and H3 (which would later beta decay to He?), followed finally by
H2. But this is not what happens. The density at this time is too low for
any but two-body reactions to compete with the expansion rate, so nuclei
are built up by a chain of two-body processes: first p + n — d + y,
then d +d — H>+pandd +d — He’ + n, and next d + H® —
He* + n and d + He> — He* + p, as well as slower processes involving
photons.

(3.2.23)

i
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3 The Early Universe

There is no trouble with the first step. The rate of deuterium production
per free neutron is

-3
Ag = 4.55 x 1072%m? /sec x n, = 511 sec”! _4 X, Qph®
10—%ag

3
=2.52 x 10%sec™! ( ) X, Qph® . (3.2.24)

T
1010K
Multiplying by the time (3.1.27), this gives

Agt ~ 4.5 x 10* ( ) X, Qph?*, (3.2.25)

1010K
which remains substantially greater than unity until well after the temperature
drops below 10? K. Therefore the deuterium abundance during the period
of interest is given to a good approximation by its equilibrium value, which
according to Eq. (3.2.20) is
By
Xy = 32X, X€ exp (—) . (3.2.26)
kT

The trouble is that, because of the small binding energy of the deuteron,
the temperature T; ~ 0.7 x 10° K is quite small, so deuterons remained
rare until long after He* would have been abundant in thermal equilibrium.
With deuterons rare, the two-deuteron processes d + d — H? + p and
d +d — He> + n had small rates per deuteron, blocking further nucleosyn-
thesis. (The rarity of deuterons had no effect on the rate per deuteron of
radiative processes like p + d — He® + y and n + d — H3 + y, and these
reactions are included in modern nucleosynthesis calculations, but they have
intrinsically small cross sections.) When finally the temperature dropped
below T,; the neutrons that were still extant were very rapidly assembled
into the most deeply bound of the light elements, He*. Further cosmo-
logical nucleosynthesis was blocked by the non-existence of stable nuclear
species with atomic weight 5 or 8. (In stars this blockage is overcome” by the
brief formation of the unstable Be® nucleus in collisions of two He* nuclei,
followed by resonant capture of another He* nucleus to form an excited state
of C!'2, but the time available in the early universe was too short for this to
have been effective then.) Thus, to a good approximation, the fraction by
weight Y of He* formed in the early universe is just equal to twice’ the
fraction X,, of all nucleons that are neutrons (because in He* each neutron

4E. E. Salpeter, Astrophys. J. 115, 326 (1952).
5In a little more detail, with nyye helium nuclei and nyy hydrogen nuclei per unit proper volume, the
helium mass per unit proper volume in atomic mass units is 4np, while the total mass per unit proper
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3.2 Cosmological nucleosynthesis

is accompanied with a bound proton) at the time that deuterium becomes
abundant enough to allow the build-up of heavier nuclei.

This actually occurs at a temperature somewhat above 7,;. The first steps
in building up heavier elements from deuterium are the reactions d + d —
H3 4+ pand d + d — He® 4+ n. These are exothermic processes, so for
initial velocity v — 0 these have cross sections proportional to 1/v. At the
temperatures of interest here, we have

(a(d+d - H? +p)v) ~ 1.8 x 1077 cm?/sec ,

(a(d—l—d — He? +n>v) ~1.6x 107" cm3/sec,

so the total rate of these processes per deuteron is®

A= [(a(d+d — H? +p)v) + (a<d+d — He’ —I—n)v)] Xgnn

~19x 1O7<T/1010K>3(S23h2> Xysec! .

This may be compared with the expansion rate, which after electron—positron
annihilation is given by Eq. (3.1.27) as H = 1/2¢ = 0.28(T/10'°K)? sec™!,
so for T in the neighborhood of 10° K, we have A = H at Xy ~ 1.2 x
10_7/52th, which is 0.6 x 1075 for Qgh® = 0.02. This value is reached in
thermal equilibrium at a temperature ~ 10° K, with only a weak dependence
on Qph?, so nucleosynthesis began at around 10° K, not at 0.75 x 10° K.
According to table 3.2, this happened when ¢ = 168 seconds, so according
to Eq. (3.2.14), the abundance by weight of helium formed at this time was
about

Y, >~2x0.1609 x exp(—168/885) ~ 0.27 .

(The conventional subscript p stands for “primordial.”) The larger the
nucleon density, the higher the temperature at which nucleosynthesis began,
and so the less time there was for neutron decay before nucleosynthesis,
leading to a higher final He* abundance. The results of modern calculations
are usually given for different values of n, the ratio of nucleons to photons,
which according to Egs. (2.1.12) and (2.1.13) is related to Qgh® by

Qph? =3.657 x 107,

volume is 4nye + ny, so the fractional abundance by weight of helium is Y = 4np/(4nye + ny). But
the numbers of protons and neutrons per unit proper volume are n, = 2nge + ny and ny = 2nye, S0
the fraction of nucleons that are neutrons is X, = 2nye/(4nye + nyy). Hence Y = 2.X,.

oy, Mukhanov, ref. 1.
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so for instance Qph* = 0.02 corresponds to n = 5.5 x 10710, (The
nucleon density at a given temperature can be expressed in terms of n
without knowing the present microwave background temperature, which
made 1 a more convenient parameter than Qh? before the 1990s, when the
present microwave background temperature was not yet accurately known.)
Detailed calculations’ give Y, = 0.232 for n = 2 x 107! and ¥, = 0.240
for n =4 x 10710,

The primordial helium/hydrogen ratio is inferred from spectroscopic
study of HII regions (regions of ionized hydrogen) containing low
abundances of “metals” (elements other than hydrogen or helium), espe-
cially in blue compact galaxies which have not yet formed many stars. Obser-
vations in the 1990s were divided between those giving lower values® Y, =
0.234+0.002+0.005, and higher values’ Y, = 0.243£0.003. Even with this
division among the observers, the helium abundance clearly called for a hot
universe, with 7 in the range of 10710 to 5x 10719, More recent observations
of HII regions, combined with new atomic data used to interpret the spec-
troscopic observations, have led to a more precise determination:!? Y, =
0.2477 4 0.0029, corresponding to n = (5.813 & 1.81) x 10~°. The uncer-
tainty in the value of 5 given by observations of helium abundance is still
quite large, because Y, is only weakly dependent on the baryon/photon
ratio.

Helium abundance is more useful as a test of the expansion rate than
of the value of . Forinstance, if there were four flavors of massless neutrinos
that went out of equilibrium at temperatures between 10'! K and 10!° K,
then at temperatures below 3 x 10° K, the effective number of particle species
would have been 2 + (7/8) - 8 - (4/11)*3 = 3.817 instead of 3.363, so the
time required to drop from 3 x 10° K to any lower temperature would have
been shortened by a factor 4/3.363/3.817 = 0.94. Shortening the time to
reach a given temperature increases the neutron fraction at that temperature,
and hence increases the abundance of helium produced at the temperature
T ~ 10°K of nucleosynthesis. It is actually the shortening of the time
scale at temperatures between 3 x 10'° K and 3 x 10° K, when electron—
positron pairs were disappearing, that would have the largest effect on the
helium abundance. Detailed calculations show!! that for each additional

"R.E. Lopez and M. S. Turner, Phys. Rev. D59, 103502 (1999) [astro-ph/9807279].

8K. A. Olive and G. Steigman, Astrophys. J. Suppl. 97, 49 (1995); K. A. Olive, E. Skillman, and
G. Steigman, Astrophys. J. 483, 788 (1997).

9Y. 1. Izotov, T. X. Thuan, and V. A. Lipovetsky, Astrophys. J. 435, 647 (1994); Astrophys. J. Suppl.
108, 1 (1997); Y. 1. 1zotov and T. X. Thuan, Astrophys. J. 497, 227 (1998); 500, 188 (1998).

104, Peimbert, M. Peimbert, and V. Luridiana, Astrophys. J. 565, 668 (2002); V. Luridiana,
A. Peimbert, M. Peimbert, and M. Cervifio, Astrophys. J 592, 846 (2003); M. Peimbert,
V. Luridiana, and A. Peimbert, Astrophys. J. 667, (2007) [astro-ph/0701580].

IR E. Lopez and M. S. Turner, ref. 7.
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neutrino species this effect increases ¥ by an amount 0.01276 for = 10719,
and by 0.01369 for n = 5 x 10719, The agreement between theory and
observation for the helium abundance gave an upper bound of four light
neutrino flavors before this was accurately measured to be just three flavors in
measurements of the Z? decay width, part of which is due to the unobserved
processes Z0 — v+. (Strictly speaking, the Z° width measures the number
of neutrinos with masses less than mz/2 = 45.6 GeV, while the helium
abundance measures the number of neutrinos with masses less than about
1 MeV.) Although the number of light neutrino flavors is now definitely
known on the basis of Z° decay to be no greater than three, there may be
other light particles left over from the very early universe that contribute to
the expansion rate, and for these the helium abundance continues to provide
useful upper bounds.

The nuclear reactions that built up helium from free neutrons at 7' ~
10° K were not perfectly efficient, but left over a small residue,!? like an
unburned ash, of the light elements H2, H3, He?, Li’, and Be’. The nuclei
of H3 decayed later by 8T decay to He>, and the nuclei of Be’ decayed
later by electron capture to Li’, leaving us with H2, He?, and Li’, as well as
protons and He*. The calculated abundances are shown in Figure 3.1.

The higher the baryon density, the more complete will be the
incorporation of neutrons into He*, and hence the smaller the resulting
abundance of deuterium. We saw earlier that nucleosynthesis began when
Xy >~12x 10_7/QBh2, or X; ~ 0.6 x 1073 for Qph* = 0.02. The deu-
terium fraction continued to rise for a while, as the temperature dropped
and the exponential in Eq. (3.2.26) increased, but X, then decreased again
as the incorporation of free neutrons into deuterium reduced the factor X,
in Eq. (3.2.26), and deuterium was converted to H?> and He?, and thence to
He*. The final results, shown in Figure 3.1, are not very different from the
deuterium fraction X; ~ 1.2 x 10~7/Qph?* that we found at T = 10° K,
and in particular exhibit a strong decline with increasing values of Qpgh?.

The measurement of the deuterium abundance is complicated by the fact
that deuterium has a small binding energy, and can readily be destroyed in
stars. Any measurement of the deuterium abundance therefore gives a lower
bound on the primordial deuterium abundance, and hence an upper bound
on the baryon density.

In the past, the deuterium/hydrogen ratio was measured in various ways:

1. Interstellar medium. Spectroscopic studies of the interstellar medium
gave a deuterium/hydrogen ratio'3 of (1.60 + 0.0970-9%) x 102

12The calculated abundances cited below are given by S. Burles, K. M. Nollett, and M. S. Turner,
Astrophys. J. 552, L1 (2001).
By, Linsky et al., Astrophys. J. 402, 694 (1993); 451, 335 (1995).
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107
108
10°F ,
: (Li/H)p
10’105-
E . PR | L L L L L L PR |
1 10
Mo

Figure 3.1: Calculated primordial abundances of deuterium, He3, and Li’ relative to hydro-
gen, and the fraction Yp of the primordial mass of the universe in He*, as functions of
no = 10105, where 5 is the ratio of nucleons to photons in the present universe. The
widths of the bands indicate the effect of uncertainties in nuclear reaction rates. From
G. Steigman, Int. J Mod. Phys. E15, 1 (2006) [astro-ph/0511534].

2. Solar wind. Deuterium was converted to He? in the sun before it went
onto the main sequence, so measurements of He’ in the solar wind and
meteorites is believed to give the total pre-solar value of He3 and deu-
terium. Subtracting the abundance of He? obtained in other ways gave!* a
deuterium/hydrogen ratio of (2.6 & 0.6 £ 1.4) x 107>,

3. Jovian atmosphere. Spectroscopic studies of the Jovian atmosphere gave!
a deuterium/hydrogen ratio of (5+2) x 107.

5

More recently, it has been possible to measure the deuterium/hydrogen
ratio in very early intergalactic matter, by observing deuterium as well
as hydrogen absorption lines in the spectra of quasistellar objects, due to

14K . A. Olive, lectures given at the Advanced School on Cosmology and Particle Physics, Peniscola,
Spain, June 1998, and Theoretical and Observational Cosmology Summer School, Cargese, France,
August 1998 [astro-ph/9901231], and references therein.

I5H. B. Niemann et al. Science 272, 846 (1996).
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3.2 Cosmological nucleosynthesis

Table 3.3: Five quasi-stellar objects in whose spectra deuterium and hydrogen absorption
lines are observed, together with the redshift of the intergalactic cloud responsible for the
absorption, and the ratio of the numbers of deuterium and hydrogen atoms in the clouds
inferred from the relative strength of the absorption lines, from ref. 17. (Observational
uncertainties represent one standard deviation.)

QSO z D/H

PKS 1937-1009 3.572 325403 x107°
Q1009+299 2.504 3.9870:99 % 107
HS 0105+1619 2.536 2.54£023 x 1073
Q1243+3047 2.525675 2427032 x 1073
Q2206-199 2.0762 1.65+£0.35 x 1073

absorption in intervening intergalactic clouds of large redshift.'® In 2003 the
results of several years of observations of deuterium and hydrogen absorp-
tion lines in the spectra of four quasi-stellar objects were put together with
results for one more QSO,!” with the results shown in Table 3.3. The best

value of the deuterium/hydrogen number ratio was found to be 2.78J_r8:‘31‘81 X

107>, from which is inferred a baryon/photon ratio n = 5.9 £ 0.5 x 10719,
corresponding to

Qph? = 0.0214 + 0.0020 .

Even for Hy as small as 50 km/sec/Mpc, it was clear that Qg is much less
than the fraction that all non-relativistic matter contributes to the critical
density, which we have seen had been given as Q3; >~ 0.2 by studies of
galaxy clusters and as @3, ~ 0.3 by the redshift-distance relation of type
Ia supernovae. It is this discrepancy that provided the original evidence for
non-baryonic dark matter in the universe.

The discrepancy has become sharper through measurements of
anisotropies in the cosmic microwave background. As we will see in Sec-
tion 7.2, from these measurements it is possible to infer that Qph®? =
0.0223100007 and Qrh? = 0.12770:007, indicating a total mass density that
is from 5 to 6 times larger than the density of ordinary baryonic matter. The
nature of the missing matter is discussed in Section 3.4.

16For a summary of early results, see K. A. Olive, ref. 13; S. Sarker, talk at the Second International
Workshop on Dark Matter in Astro- and Particle Physics, Heidelberg, July 1998 [astro-ph/9903183].

17D, Kirkman, D. Tytler, N. Suzuki, J. M. O’Meara, and D. Lubin, Astrophys. J. Suppl. 149, 1 (2003)
[astro-ph/0302006], and references cited therein.
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3 The Early Universe

The primordial abundance of He?, like that of deuterium, is a
monotonically decreasing function of the baryon/photon ratio. On the
basis of a long term study of galactic HII regions and planetary nebula,
a 2002 study'® concluded that the He?/H ratio in interstellar space is less
than 1.1 £ 0.2 x 107>, which is consistent with the value 1.04 & 0.06 x
1073 calculated for Qph? = 0.0214. But, unlike deuterium, He3 is both
produced and destroyed in stars, so it is not clear whether the observed
interstellar abundance really represents the primordial abundance of He?.
Indeed, it had been thought that low-mass stars would inject a good deal
of He? into the interstellar medium, in which case the apparent agree-
ment between the amount observed in the interstellar medium and the
amount expected from cosmological nucleosynthesis would actually repre-
sent a discrepancy.!” This apparent discrepancy may have been removed
by detailed calculations?® of the movement of He? into the interior of
these low-mass stars, which indicate that these stars do not in fact emit
much He?.

Some Li® is produced cosmologically, but in such small quantities (an
abundance of about 1013 to 10~! that of hydrogen) that it has generally
not been considered useful as a test of cosmological theories.2! Much more
attention has been given to Li’. Its abundance has a more complicated
dependence on the baryon/photon ratio, because Li’ was formed in two
different ways: directly, by the reactions H> + He* — Li’ + y, and indi-
rectly by He’ + He* — Be’ +y, followed much later by e~ +Be’ — v+Li.
As we go to higher baryon densities, the amount of Li’ produced directly
increases at first, but then begins to decrease as Li’ is destroyed in the
reaction p + Li’ — He* + He®*. Eventually the indirect reaction takes over,
and the Li’ abundance rises again. The minimum Li’/hydrogen ratio is
calculated to be about 2 x 10719, and is reached at a baryon/photon ratio
of about 3 x 10710, corresponding to Qph?* = 0.01. The observed Li’/H
ratio was reported?? in 2000 to be 2.07“:8:(1)2 x 10710 close to this mini-
mum. A subsequent study?? of 63 dwarf stars in the galactic halo gave a
Li’/H ratio of (2.37 £ 0.05) x 10~10. Either result is less than the value
3 x 10710 predicted for Q gh? = 0.0214, but it is plausible that although

18T, M. Bania, R. T. Rood, and D. S. Balser, Nature 415, 54 (2002).

I9N. Hata er al., Phys. Rev. Lett. 75, 3977 (1995); K. A. Olive et al., Astrophys. J. 444, 680
(1995).

20pp Eggleston, D. S. P. Dearborn, and J. C. Lattanzio, Science 314, 1580 (2006).

21 For a review, see E. Vangioni-Flam, M. Cassé, R. Cayrel J. Audouze, M. Spite, and F. Spite, New
Astron. 4,245 (1999).

22T K. Suzuki, Y. Yoshii, and T. C. Beers, Astrophys. J. 540, 99 (2000) [astro-ph/0003164]. For earlier
observations, see M. Spite and F. Spite, Nature 297, 483 (1982); S. G. Ryan, J. E. Norris, and T. C. Beers,
Astrophys. J. 523, 654 (1999).

233, Melendez and 1. Ramirez, Astrophys. J. 615, L33 (2004).
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3.3 Baryonsynthesis and leptonsynthesis

Li’ is produced in stars and in the interaction of cosmic rays with matter,
the Li’ abundance has been depleted by convection in stellar atmospheres.
Observation of Li’ abundances in stars of varying temperature in the glob-
ular cluster NGC 6397 gave results in agreement with a theory of convective
depletion of Li’, with an assumed initial Li’/H ratio equal to the expected
value 3 x 10710 (calculated taking Q gh? to have the value estimated from
deuterium abundance and microwave background anisotropies).?* With
the one possible exception of Li’, there is now complete agreement between
observations of light element abundances and calculations of cosmologi-
cal nucleosynthesis, adopting the value Qph?* provided by observations of
anisotropies in the cosmic microwave background.

Although the baryon mass density inferred from cosmological
nucleosynthesis and the cosmic microwave background is considerably less
than the total mass density, it is also considerably greater than the density of
baryonic matter observed in stars and luminous interstellar matter.>> Some
of this dark baryonic matter is in intergalactic space, but a fair fraction is
believed to be present in galaxies, in the form of brown dwarf stars and
clouds of hydrogen molecules.?® But this is more a problem for the astro-
physics of galaxies than for cosmology.

3.3 Baryonsynthesis and leptonsynthesis

We saw in the previous section that the ratio 1 of nucleons to photons at
the time of nucleosynthesis had the tiny value ~ 5 x 10710, At earlier
times, when the temperature was above 10'3 K, nucleons would not yet
have formed from their three constituent quarks, and there would have
been roughly as many quark—antiquark pairs in thermal equilibrium as
photons. But the conservation of baryon number (one-third the number
of quarks minus the number of antiquarks) during the annihilation process
tells us that before annihilation there must have been a slight excess, roughly
of order n per photon, of quarks over antiquarks, so that some quarks
would survive to form nucleons when all the antiquarks had annihilated
with quarks. There was also a slight excess of electrons over positrons, to
maintain the charge neutrality of the universe. It is conceivable that there
i1s a compensating excess of antineutrinos over neutrinos, so that the total
lepton number density (the number density of electrons, muons, tauons, and
neutrinos, minus the number density of their antiparticles) vanishes, but it
seems more natural to assume that before lepton—antilepton annihilation

24 A J. Korn et al., Nature 442, 657 (2006) [astro-ph/0608201].
23M. Fukugita, C. J. Hogan, and P. J. E. Pecbles, Astrophys. J. 503, 518 (1998).
26Gee e.g. M. Roncadelli, Recent Research Devel. Astron. & Astrophys. 1,407 (2003).
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3 The Early Universe

there was also a slight imbalance of leptons and antileptons, comparable to
the excess of quarks over antiquarks.

These tiny imbalances in the numbers of quarks and antiquarks and
of leptons and antileptons might be explained if the baryon and lepton
number densities were generated by physical processes in a universe that at
some early time had equal number of particles and antiparticles of all sorts.
We could then hope to calculate n from first principles, and understand why
itis so small. In 1967 Sakharov! outlined three conditions that must be met
for this to be possible:

1. Obviously, in order for an excess of baryons over antibaryons or an
inequality of leptons and antileptons to arise in a universe that begins
with equal numbers of particles and antiparticles of each type, some phys-
ical processes must violate the conservation of baryon number or lepton
number.

2. A universe with equal numbers of particles and antiparticles of each
type (and each momentum and helicity) is invariant under the symmetry
operators C (the exchange of particles with antiparticles) and CP (the
exchange of particles with antiparticles, combined with a change of sign
of all three-dimensional coordinate vectors), while a state with an excess
of baryons over antibaryons or an imbalance of leptons and antileptons
is clearly not invariant under either C or CP. Hence to produce such an
state, some physical process must violate invariance under both C and CP.
It is true that, whether or not C and/or CP are conserved, any relativistic
quantum field theory will respect a symmetry? under CPT, the simultaneous
exchange of particle with antiparticles, combined with a change of sign of
all three-dimensional coordinate vectors, combined with a change in the
direction of time’s flow, but this does not prevent the production of baryon
or lepton number, because the time-reversal symmetry T is violated by the
expansion of the universe.

3. A little less obviously, in order to produce an excess of baryons over
antibaryons or an imbalance of leptons and antileptons out of a state
with equal numbers of particles and antiparticles, the universe must at
some time depart from a state of thermal (including chemical) equilibrium.
This is because in a state of thermal equilibrium, if baryon and/or lepton
conservation are not respected, and all conserved quantities like electric
charge vanish, then since chemical potentials must be conserved in all reac-
tions, all chemical potentials must vanish. The CPT symmetry implies
that even if C and CP are not conserved, the masses of particles and their

IA. D. Sakharov, JETP Lett. 5,24 (1967).
2See QTF, Vol. 1, Sec. 5.8.
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3.3 Baryonsynthesis and leptonsynthesis

antiparticles are precisely equal, so with vanishing chemical potentials par-
ticles and antiparticles will have identical distribution functions, such as
(3.1.28) with u = 0 for ideal gases. Thus, whatever the rates for various
processes, no net baryon or lepton number will be produced.? An exception
to this reasoning is presented at the end of this section.

All three conditions are now known to be satisfied:

(1) There is no direct experimental evidence for the nonconservation of
baryon number, but a very weak baryon number nonconservation is expected
according to modern views of the standard model of elementary parti-
cles. According to these views, the standard model is not a fundamental
theory, which might be expected to be contain only interactions whose
coupling parameters are either dimensionless or proportional to positive
powers of mass, so that all infinities that arise in the standard model can
be absorbed into a renormalization of these coupling parameters. Rather,
we now think that the standard model is only an effective field theory,
valid at energies much less than some fundamental mass scale M, which
might be the Planck mass Mp = G~1/2 = 1.22 x 10! GeV, or perhaps
the energy scale &~ 10!3 to 10'® GeV at which the three independent (suit-
ably normalized) gauge coupling parameters of the standard model become
equal. We would expect such an effective field theory to contain every pos-
sible interaction allowed by the gauge symmetries of the strong, weak, and
electromagnetic interactions, but all but a finite number of these coupling
parameters will have the dimensions of negative powers of mass. These
“non-renormalizable” couplings are thus suppressed at energy £ < M by
powers of E/M. Now, the gauge symmetries of the standard model do
not allow any unsuppressed interactions among quarks and leptons that
violate baryon or lepton number, so this picture makes it plausible that
baryon and lepton number would be automatically conserved to a good
approximation for energies £ < M, even if baryon and lepton conserva-
tion are not respected by whatever fundamental theory describes physics
at energies of order M. In other words, baryon and lepton number con-
servation may be mere “accidental” symmetries. In this case, there is no
reason to exclude any suppressed interactions that violate conservation of
baryon and lepton number. The least suppressed interactions of this sort
are an interaction involving two lepton doublets and two scalar doublets,
which is suppressed by a factor M ~! and violates lepton but not baryon con-
servation, and an interaction suppressed by a factor M2 involving three
quark fields and one lepton field, which violates both lepton and baryon

3For a more detailed argument and references to earlier discussions, see S. Weinberg, Phys. Rev.
Lett. 42, 850 (1978).
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3 The Early Universe

conservation.* (Also, as we shall see below, there is a quantum-mechanical
violation of baryon-number and lepton-number conservation in the stan-
dard electroweak theory.) There is experimental evidence for the first but not
the second interaction. With a coupling parameter of order 1/(10'® GeV),
when the neutral scalar fields are replaced by their vacuum expectation val-
ues, this interaction provides a neutrino mass of order 10~2 eV, in good
agreement with the results of neutrino oscillation experiments. (The exis-
tence of non-zero neutrino masses means that helicity +1/2 neutrinos, which
are conventionally assigned lepton number +1, can be changed to helicity
—1/2 neutrinos with lepton number —1 by a Lorentz transformation.) The
second interaction would lead to decay processes like p — 70 + T, with
decay rates of order mg /M*h. Such events have not been seen, but could
easily have escaped detection.

(2) The violation of invariance under C was discovered in 1957, while the
violation of invariance under CP was discovered in 1964.

(3) The expansion of the universe tends to pull states out of thermal equilib-
rium, either because the cooling temperature makes reaction rates decrease
below the expansion rate, or because as it cools the universe goes through
first-order phase transitions, similar to the condensation of water vapor
or the freezing of liquid water. Although this in itself does not violate
the conservation of baryon or lepton number, it opens the door for phys-
ical processes that do violate these conservation laws, as well as C and
CP conservation, to create an imbalance between baryons and antibaryons
and/or between leptons and antileptons.

All this just goes to show that it is possible for physical processes to
produce a non-zero cosmological baryon and lepton number. It remains
to find a specific theory in which the observed ratio of baryons to photons
could be produced.® There are several theories of this type:

1. Delayed decay of heavy particles’

Suppose there is a species of heavy “X” particle, which decays into a pair
of different channels, with baryon numbers B; and B; and lepton numbers
L1 and Lj, and branching ratios r and 1 — r. (For instance, in some grand

4For a review, with references to the original literature, see QTF, Vol. II, Section 21.5.

3See QTE, Vol. I, Section 3.3.

6For the earliest attempts in this direction, see M. Yoshimura, Phys. Rev. Lett. 41, 281 (1978); 42,
746(E) (1979); S. Dimopoulos and L. Susskind, Phys. Rev. D 18, 4500 (1979); Phys. Lett. 81B, 416
(1979); A. Yu. Ignatiev, N. V. Krosnikov, V. A. Kuzmin, and A. N. Tavkhelidze, Phys. Lett. 76B, 436
(1978); B. Toussaint, S. B. Treiman, F. Wilczek, and A. Zee, Phys. Rev. D 19, 1036 (1978); J. Ellis, M. K.
Gaillard, and D. V. Nanopoulos, Phys. Lett. 80B, 360 (1979); 82B, 464(E) (1979).

7s. Weinberg, Phys. Rev. Lett. 42, 850 (1978).
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3.3 Baryonsynthesis and leptonsynthesis

unified theories there are “leptoquarks” with mass of order 10'> GeV, that
decay into either two quarks, with baryon number 2/3 and lepton number
zero, or into a lepton and antiquark, with baryon number —1/3 and lepton
number +1.) The antiparticle will then decay into channels with baryon
numbers —B; and —B; and lepton numbers —L; and —L;, with branch-
ing ratios 7 and 1 — 7. (Invariance under CPT tells us that any particle
has the same total decay rate as its antiparticle, but as long as C and CP
conservation are violated, it is possible for particles and antiparticles to have
different branching ratios for their different decay channels.) The average
total baryon number produced in the decay of one X particle and the decay
of one of the corresponding antiparticles is then

AB=rBi+(1—-r)By—rBi—(1—-r)By =@ —7r(B1—By), (3.3.1)

and likewise for lepton number.

Similarly, there may be some heavy “N” particle that is its own
antiparticle, and that decays with branching ratio r into one channel with
baryon number B; and lepton number L, and with branching ratio 1 — r
into the antichannel with baryon number — B and lepton number —L;. On
the average, each decay produces a baryon number

AB=rBi—(1-r)B;, (3.3.2)

and likewise for lepton number. If C and CP conservation are violated,
then it is possible to have r # 1 — r, so that a net baryon number and lepton
number may be produced. For instance, in some grand unified theories
there are neutral fermions that decay both into scalar particles and leptons
and into their antiparticles, producing a net lepton number if the branching
ratios for these channels are unequal.

Such processes do not produce any net baryon or lepton number in
equilibrium, because the inverse to the decay processes will destroy pre-
cisely as much baryon and lepton number as the decay processes create.
The conditions for thermal equilibrium will be violated if H falls below
the X -particle decay rate, but as long as kg7 remained above all particle
masses, whatever the rates of various processes, the expansion preserved
the equilibrium form for all particle distributions, with a redshifted temper-
ature T o 1/a. Specifically, if kg T was still above all particle masses when
H = a/a fell below the decay rate I'y, the inverse decay process would
re-create as many X particles as had decayed. On the other hand, if at
the time that H ~ Ty, kgT was less than the mass my of the X particles,
then the Boltzmann factor e X/¥8T would have blocked the inverse decay,
and the X particles and antiparticles would have disappeared, yielding a net
baryon number (r —7) (B — By) for each original heavy particle-antiparticle
pair.
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3 The Early Universe

The condition for this to work is then that kg T < my at the temperature
when H = I'y. We can estimate that (here taking 7 = ¢ = 1)

4

H = /8”(;“52 W/2) _ 1.66(ksT)> N2 fmp (3.3.3)
where mp = G712 = 1.22 x 10" GeV, and N is the total number of
helicity states of all elementary particles and antiparticles, with an extra
factor 7/8 for fermions. (We assume here that the main contribution to
the energy density of the universe at these temperatures comes from the
large number A of highly relativistic particle types, rather than from the
X particles themselves.) The decay rate of the X particle will be my times
some dimensionless parameter «y, which characterizes the strength of the
interactions responsible for the decay and the number of decay channels.
Hence decays start to be significant at a temperature 7y, given by

ksTx = \Jaxmymp /N2 (3.3.4)
For this to be less than my, we must have
my > N"Vaxymp . (3.3.5)

This is a fairly severe lower bound on my. For instance, if the X particles
decay through ordinary electroweak interactions, then ay ~ 1072, so if
N 2 100 we must have my greater than about 10!® GeV. From the point of
view of theories that unify the strong and electroweak interactions, this is
not an unreasonable value for the mass.

Assuming that this condition is satisfied, we can easily use Eq. (3.3.1) to
make an estimate of . At temperatures far above the heavy particle mass
the number density of pairs of X particles and antiparticles is of the same
order as the number density of photons. The entropy density (using energy
units for temperature, with k3 = 1) at this time is of the order of \ times the
number density of photons, so the ratio of the number densities of X and X
pairs to the entropy density is of the order of 1 /A . With Eq. (3.3.4) satisfied,
after the disappearance of these pairs the ratio of the baryon number to the
entropy densities will be of order (r — 7)(B; — B»)/N. The entropy density
varies as a3, and provided that baryon number is subsequently conserved so
does the baryon number density, and so the baryon number to entropy ratio
will remain unchanged. The present entropy density is of the order of the
photon number density, and at present the only baryons are nucleons, with
no antinucleons, so we expect a nucleon to photon ratio

n~ (r—7) (Bl — B)/N . (3.3.6)
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Typically By — By is of order unity (in the leptoquark example mentioned
above, it is equal to unity) but r — 7 is generally very small, both because CP
conservation is weakly violated, and because the CPT theorem tells us that
r = ¥ in the lowest order of perturbation theory. The precise value of r — 7
is very model-dependent, but values of 1 of the desired order, 5 x 10710,
appear quite natural.® This idea runs into difficulty in inflationary theories,
which as we will see in Chapter 10 generally require that the temperature was
never high enough to produce particles with masses satisfying Eq. (3.3.5).

2. Nonperturbative electroweak baryon and lepton

number nonconservation

In the standard model of weak, electromagnetic, and strong interactions
baryon and lepton number are automatically conserved to all orders of per-
turbation theory, but not when certain non-perturbative effects are taken
into account.” This produces reactions that violate baryon and lepton
number conservation, but such reactions are suppressed at low tempera-
tures by a factor exp(—872/g?) ~ 107192 where g is the SU(2) electroweak
coupling constant. This tiny exponential is actually a barrier penetration
factor, which accompanies the quantum mechanical tunneling transition
through the barrier between topologically different configurations of the
gauge fields. At high temperatures, above about 300 GeV, thermal fluc-
tuations allow passage over this barrier, and the exponential suppression
disappears.!? Nevertheless, by themselves these reactions do not produce
an appreciable net baryon or lepton number, both because they take place
at a time of nearly perfect thermal equilibrium,!! and because they are
suppressed by small parameters associated with the need to violate CP con-
servation as well as the conservation of baryon and lepton number.!2

3. Leptogenesis'>
Although the non-perturbative effects of electroweak interactions described

in the previous paragraph do not by themselves provide a way of accounting

8p. V. Nanopoulos and S. Weinberg, Piys. Rev. D 20, 2484 (1979).
9G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976). Also see QTF, Vol. 11, Section 23.5.

10y A, Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. 155B, 36 (1985). The transition
between field configurations is dominated by intermediate field configurations known as sphalerons; see
N. S. Manton, Phys. Rev. D 28, 2019 (1983); F. R. Klinkhammer and N. S. Manton, Phys. Rev. D 30,
2212 (1984); R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 10, 4138 (1974).

The absence of a first-order phase transition in the electroweak theory is shown by K. Kajantie, M.
Laine, K. Rummukainen, and M. Shaposhnikov, Nucl. Phys. B 466, 189 (1996); K. Rummukainen,
M. Tsypin, K. Kajantie, and M. Shaposhnikov, Nucl. Phys. B 532 (1998); F. Csikor, Z. Fodor, and
J. Heitger, Phys. Rev. Lett. 82,21 (1999); and earlier references cited therein.

I2M. E. Shaposhnikov, JETP Lett. 44, 465 (1986); Nucl. Phys. B 287,757 (1987).

B3, Fukugita and T. Yanagida, Phys. Lett. B 174,45 (1986). For a review, see W. Buchmiiller, R. D.
Peccei, and T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55, 311 (2005) [hep-ph/0502169].
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for the observed baryon/photon ratio, they can convert a cosmological lep-
ton number density into a baryon number density, or vice versa. The only
truly conserved quantum numbers in the SU(3) x SU(2) x U(1) standard
model are those associated with gauge symmetries — the electroweak isospin
generator T3, the electroweak hypercharge Y (defined so that the electric
charge in units of e is 73 — Y'), and a pair of generators of the SU (3) gauge
group of quantum chromodynamics — together with B— L, the total baryon
number minus the total lepton number, which is conserved because of a can-
celation between Feynman diagrams containing loops of quarks or leptons.
This creates a further problem for the proposal that the observed baryon
number density of the universe is created in the decay of a leptoquark into
both two quarks and into a lepton and antiquark. Although these channels
have different values for B and L, they both have the same value (equal to
2/3) for B — L. Hence if the universe starts with equal numbers of particles
and antiparticles of all types, then even if leptoquark decay produces equal
non-zero baryon and lepton number densities, all truly conserved quanti-
ties will remain zero, so when thermal equilibrium is established at lower
temperatures it will be with zero values for all chemical potentials. (This
is demonstrated below.) Such a state has equal numbers of particles and
antiparticles, and hence zero densities of B and L as well as B — L.

On the other hand, if some heavy particle (such as the N particle
mentioned above) in the early universe decays in such a way as to pro-
duce a non-zero density of B — L this will persist through the period of
thermal equilibrium, though the relative densities of B and L may change.
In general, whatever mixture of baryon and lepton number is produced
when the heavy particle decay, and even if only lepton number is produced, we
would expect the densities of baryon and lepton number to be comparable
in a subsequent period of thermal equilibrium.

This can be made quantitative.'* Suppose in thermal equilibrium there
are a set of conserved quantum numbers Q,, such as 73, Y, and B — L.
Suppose also that there are several species i of particles in equilibrium,
such as quarks, leptons, etc., each carrying a value ¢,; for the quantum
number Q,. The chemical potentials u; for these particles must be conserved
for all reactions in thermal equilibrium, which requires that they be linear
combinations of the conserved quantum numbers:

Mi = quﬂa s (337)
a

with coefficients u, that can be regarded as chemical potentials for the
different conserved quantities. The densities of the different particle species

143 A. Harvey and M. S. Turner, Phys. Rev. D 42, 3344 (1990).
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can then be expressed as functions of the i, and the temperature, and these
relations can be used to calculate the densities », of the different conserved
quantum numbers as functions of the u, and the temperature. But there are
just as many n, as there are 14, so these relations can be inverted to give the
g in terms of the n, and the temperature, from which we can calculate the
density of anything else as functions of the n, and the temperature, including
the density of a nonconserved quantity like baryon or lepton number that
is not among the Q,.

In the case that interests us here, at temperatures above about 1016 K, all
particles of the Standard Model are highly relativistic, so that their masses
can be neglected. The number density of particle species i is then

- 8i d’p
YT Q@rh)3 ) ew—md/ksT x|
kgT\> [ 24
=47'[g,-( 5 )/ > (3.3.8)
0

27 h eX—Mi/kBT F 1 ’

where g; is the number of helicity (and other sources of multiplicity) states
for each species, and the F sign is — for bosons and + for fermions. The
antiparticle density 7; will be given by the same formula, but with w; replaced
with —u;, so the difference is

_ 2 kT 3 sinh i /OO 2 ¥ dx
ni—n =8ngi | — .
L L ksT ) Jo e ¥ 2e* cosh(ui/ksT) + 1
(3.3.9)

In the situation that concerns us here, the imbalance between particles and
antiparticles of all sorts is small, so |u;| < 1 for all particle species. In this
case,

T 3 . oo 2 x
ks ) Hi f et dx (3.3.10)
0

2nh ) kgT (eXF 1?2
The integral over x has the value 72/3 for bosons and 72/6 for fermions,
so we can write this as

ni—ﬁi=8ﬂgi(

ni —n; =f(T) g ui , (3.3.11)
where 43 (k 5
_ 4n3 (kgT)

(1 = TR (3.3.12)

and g; is the number of spin states, but with an extra factor of 2 for bosons.
Using Eq. (3.3.7), Eq. (3.3.11) becomes

n —n; =f(T) g’iZCIaiMa , (3.3.13)
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In particular, the density of the conserved quantum number Q,, is
na = qai(mi =) = (1Y May s (3.3.14)
i b

where M is the matrix

b= Y &idai i - (3.3.15)
i

This matrix is positive-definite (in the sense that, for any set of real numbers
&4, we have ), M p&.6, > 0, unless all &, vanish), and therefore it has
an inverse M~ -1 We can thus invert the relation (3.3.14), and find u, =
> M&)lnb/f(T). Using this in Eq. (3.3.13) gives

n; — iy = Zglqm ~ny (3.3.16)

for any particle species i. Note in particular that if the densities 7 of all
the conserved quantum numbers vanish, then there is an equal number of
particles and antiparticles of every kind, as mentioned above.
In order to deal with the case where some conserved quantities such as
B — L have non-zero densities, we need to calculate the matrix M,;,. The
particles of the Standard Model are listed in Table 3.4. For N, generations
of quarks and leptons and N, scalar doublets, the independent elements of
the matrix M, are
MB—LB—LZB%, Mp_ LY——STN, Myy= 10Ng+Nd-
(3.3.17)
We don’t need any of the matrix elements involving T3, because the sum of
the T3 values vanishes for all the particles with any given values of B — L
and Y, so that Mp_; 7, = My r, = 0. That is, the matrix M, is block-
diagonal, with a 2 x 2 block having ¢ and b running over B — L and Y.
This has the consequence that without bothering to calculate Mr, 15, we
can calculate that
10N, N, 8N, 13N,
MBlLB—L=#+3d’ MBiLY=3_Dg= Myly = —=%

(3.3.18)
where D is the determinant
2
22Ng 13NNy

D= : 3.3.19
7 T ( )

(Similarly, because the sum of the color quantum numbers vanishes for all
the particles with any given values of B — L and Y, we do not need to take
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3.3 Baryonsynthesis and leptonsynthesis

Table 3.4: Particles of the Standard Model, together with the number g of their helicity
and color states (with an extra factor 2 for bosons), and the values of their baryon number,
lepton number, and gauge quantum numbers. Only one “generation” of quarks and leptons
and only one doublet of scalar fields are shown. The subscripts L and R denote the helicity
states of quarks u# and d and leptons v and e. Antiparticles are not shown separately, and
the photon and Z? are not shown because they are their own antiparticles, and so do not
contribute to the densities of any quantum numbers. Color quantum numbers are not shown,
for reasons given in the text.

Particle g B L T3 Y
ur, 3 1/3 0 172 —1/6
dr 3 1/3 0 —1/2 —1/6
UR 3 1/3 0 0 -2/3
dr 3 1/3 0 0 1/3
VL 1 0 1 172 1/2
er 1 0 1 —1/2 1/2
eRr 1 0 1 0 1
w+ 4 0 0 1 0
75 2 0 0 172 —1/2
@? 2 0 0 -112 —12

gluons 4 0 0 0 0

the color quantum numbers into account here.) Thus if B — L is the only
conserved quantum number with a non-vanishing number density, then
Egs. (3.3.16) and (3.3.18) tell us that the baryon number density in thermal
equilibrium is

ng =Y Bi(n— )= Zg’iBi((B LMyl g+ Y"M;IB*LVB_L
; i

4 2

= gMB—LB—L_gMYB—L Ngnp_r

=(—-——= " 2 _ 3.3.20
(22Ng+13Nd) "B-L (3:3:20)

For instance, in the minimal experimentally allowed case, with Ny = 3 and
Ny = 1, this gives np = (28/79)np_r. In any case, np turns out to be of
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the same order of magnitude as ng_y, as anticipated above. The reason for
the smallness of np/n, in this scenario would be traced to the smallness of
CP violation in the out-of-equilibrium heavy particle decay that produces
a non-vanishing density of B — L.

4. Affleck—Dine mechanism!>

It is possible for baryon number nonconservation to occur in the
nonequilibrium dynamics of a scalar field that carries a non-zero baryon
number. Both baryon-number conservation and CP-invariance need to
be violated in the Lagrangian of the scalar field. Such theories find their
motivation in supersymmetry, which lies outside the scope of this book.

5. Equilibrium baryon synthesis
The violation of CPT by the expansion of the universe means that the part
of the Hamiltonian that is odd in C and CP can have a non-zero expectation
value AE; in the state of a single baryon of type i, and of course opposite
expectation value —AE; in the state of the corresponding antibaryon. Then
even the universe starts in a state of zero baryon number, if it enters a state of
thermalequilibriumin which baryon-number nonconserving processes occur
rapidly, although there will be no chemical potential associated with baryon
number, the difference in energy of baryons and antibaryons will lead to a
net baryon number. When baryon-number nonconserving processes become
ineffective the resulting baryon number density will survive, simply decreas-
ingasa—3. Aslongas baryon-conserving collisions remain sufficiently rapid,
the one-particle distribution will have the form appropriate for thermal equi-
librium, but now with a non-vanishing baryonic chemical potential.

As a general class of theories of this sort, suppose that in the expanding
universe, there is a term in the Lagrangian density of the form

AL(x) = —/—Detg V, (x) J5(x) , (3.3.21)

where ¥V, (x) is a classical vector field and J g (x) is the current associated
with baryon number (for which Jg(x) is the baryon density, which is odd
under C and CP). Two proposals of this sort have been made: the vector
field could be ¥, = M~'9,¢, where ¢ is some scalar field'® and M is
some large mass; or the vector field could be V,, = M *ZBMR, where R is
the curvature scalar'’ and again M is some large mass. In any case, the
isotropy and homogeneity of the Robertson—Walker metric requires that

151, Affleck and M. Dine, Nucl. Phys. B 249, 361 (1985); M. Dine, L. Randall, and S. Thomas, Phys.
Rev. Lett. 75, 398 (1995); Nucl. Phys. B 458,291 (1996).

16A. G. Cohen and D. B. Kaplan, Phys. Lett. B199, 251 (1987). The production of baryon number
is suppressed when the scalar field oscillates rapidly; see A. Dolgov, K. Freese, R. Rangarajan, and
M. Srednicki, Phys. Rev. D 56, 6155 (1997) [hep-ph/9610405].

17y, Davoudiasl, R. Kitano, G. D. Kribs, H. Murayama, and P. J. Steinhardt, Phys. Rev. Lett. 93,
201301 (2004).

184



3.4 Cold dark matter

V; vanishes, while V) is a function only of time. This interaction then shifts
the energy of the state of a single particle of type i with baryon number b; by
an amount AE; = Vy(¢) b;. In thermal (including chemical) equilibrium,
the baryon number density will be

_ depdp [ PrAmI+bi Vo)) kT (1) B
np(t) = Xi:b,g, B’ [e T 1} . (3.3.22)
where the sum over i runs over all particle (and antiparticle) types; g; and
b; are the number of spin states and the baryon number of a particle of
type i; and the upper and lower signs again apply to bosons and fermions,
respectively. If baryon non-conserving collisions shut off suddenly at time
t1, then subsequently the baryon number density will be

-1
a(t) / 4 p? dp SN PPV ks T (1)
1) = it 1 .
I’lB( ) (a(t) ) 2 i&i (2 h)S +

(3.3.23)

For Vy = 0 the cancelation between baryons and antibaryons of course
makes this vanish. Since the baryon/entropy ratio is known to be small, we
expect Vo(z1) to be small; to first order in V(¢1), the baryon number density
for t > 11 will be

3
nB(z)=<a(tl)> Vo(t1) b%gi

a(t) ) kgT(t1)

4np? d, 2 -

np f PmiksT() | PP mi KT Ly | (33 94)
2mh)

A similar mechanism could also be responsible for lepton synthesis.

The crucial confirmation of any theory of baryon synthesis would be a
successful prediction of the present baryon/photon ratio. So far, none of
the proposals discussed here are anywhere near this goal.

3.4 Cold dark matter

We saw in Section 3.2 that considerations of cosmological nucleosynthesis
lead to the conclusion that most of the mass in the universe is #ot in the form
of ordinary baryonic matter, i.e. atomic nuclei and electrons. We will see in
Chapter 7 that this conclusion is powerfully reinforced by observations of
anisotropies in the cosmic microwave background. So we face the question,
if the particles that make up most of the mass of the universe are not baryons,
then what are they?
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3 The Early Universe

We know that this matter is dark, in the sense that it does not interact
significantly with radiation, both because we don’t see it, and also because it
has not lost its kinetic energy sufficiently to relax into the disks of galaxies,
as has baryonic matter. This means in particular that these particles must
be electrically neutral.! Detailed studies of the dynamics of galaxy clusters
indicate that the dark matter particles must also be cold, in the sense that
their velocities are highly non-relativistic.>

The study of a double galaxy cluster 1E0657-558 (the “bullet cluster,”
with z = 0.296) has provided vivid direct evidence of the existence of dark
matter, which does not have non-gravitational interactions with itself or with
ordinary baryonic matter.’ The galaxies in this cluster are mostly grouped
into two distinct subclusters, while hot gas (observed through its emission of
X-rays) is concentrated between these subclusters. The interpretation is that
two clusters of galaxies have collided; the galaxies which have little chance
of close encounters have mostly continued on their original paths, while
the two clouds of hot gas that previously accompanied them have collided
and remained closer to the center of the double cluster. The total matter
density in 1E0657-558 is mapped out through its effect in gravitationally
deflecting light from more distant galaxies along the same line of sight.
(Gravitational lensing is discussed in Chapter 9.) In this way, it is found that
most of the matter in IE0657-558 is not associated with the hot gas, but like
the galaxies forms two subclusters that have evidently passed through each
other without appreciable interaction. The ratio of the mass in hot gas to
the mass in all matter is estimated to be about 1/6, in line with the value of
Qp/ Q2 previously inferred from measurements of deuterium abundance
and luminosity distance as a function of redshift, or from anisotropies in
the cosmic microwave background.

Elementary particle theory offers several candidates for the particles
making up the cold dark matter.

A. Weakly interacting massive particles (WIMPs)

Massive particles may survive to the present if they carry some sort of
conserved additive or multiplicative quantum number. If there is a non-zero

I Thereare particularly strong limitations on the number density of any sort of charged stable particles
that might be left over from the big bang, which are set by mass spectroscopy, the analysis of the charged
particles contained in samples of matter according to their ratio of mass to charge. The number of
electrically charged exotic particles with masses in the range of 6 GeV to 330 GeV has been found to be
less than 102! of the number of nucleons, by P. E. Smith and J. R. J. Bennett, Nucl. Phys. B 149, 525
(1979).

2p. J. E. Peebles, Astrophys. J. 263, L1 (1983); G. R. Blumenthal, S. M. Faber, J. R. Primack, and
M. J. Rees, Nature 311, 517 (1984).

3D. Clowe et al., Astrophys. J. 648, L109 (2006) [astro-ph/0608407].
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3.4 Cold dark matter

chemical potential associated with this quantum number, then of course
some particles (or antiparticles) must be left over after all the antipar-
ticles (or particles) have annihilated. But even if there are no non-zero
chemical potentials for these particles, so that the initial number densi-
ties of particles and antiparticles are equal, if they can only annihilate
with their antiparticles then once their number density becomes sufficiently
low the collision rate eventually becomes too small to reduce the density
further.* We will call these particles L-particles (for “left-over”), to distin-
guish them from the other particles into which they may annihilate, which
we will assume are all approximately in thermal and chemical equilibrium
during the period of annihilation. The annihilation rate per particle of
the L particles and antiparticles is n{ov), where n is their number den-
sity, and (ov) is the average value of the product of annihilation cross
section and relative velocity. The rate of decrease in the number of L
particles in a co-moving volume «> is then na® x n{owv). There is also
an n-independent rate of creation of these particle-antiparticle pairs from
the thermal background. Since this must balance the annihilation rate
when everything is in equilibrium, in general the creation rate per volume
a® must equal ngqa3 (ov), where neq 1s the number density of L particles

and of antiparticles in equilibrium. The number na® of L particles and of
antiparticles in a co-moving volume a3 is therefore governed by a Boltzmann
equation

3
d(g’ ) _ —(n2 _ ngq)a3<ou> . (3.4.1)
For very high temperatures with kgT > my the equilibrium density 7eq
varies as 77, and T varies as 1/a, so Eq. (3.4.1) has a solution n = Neq.-
Eventually, with the decrease in temperature below the L-particle mass,
the equilibrium density drops so low that the creation term in Eq. (3.4.1)
becomes negligible, and we have

3
d(Zf ) = —n*a’(ov) . (3.4.2)

The solution of Eq. (3.4.2) is

1
n(t)a ()

(ov)dt
a’(1)

b

= constant + /

4B. W. Lee and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977); D. D. Dicus, E. W. Kolb, and V.
L. Teplitz, Phys. Rev. Lett. 39, 168 (1977); E. W. Kolb and K. A. Olive, Phys. Rev. D 33, 1202
(1986).
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or, in other words,

n(t)a’ (1)
L+ n(t) @) [} ov) a3y di'

n(t)a’(t) =

where 71 is any convenient time chosen late enough so that the creation term
in Eq. (3.4.1) may be neglected for ¢’ > 1.

The important point here is that the integral in the denominator con-
verges for 1 — oo. The denominator a3(¢) increases like 13/2 when the
energy density is dominated by relativistic particles, and even faster later,
when it is dominated by non-relativistic particles and/or vacuum energy.
Also, if annihilation is possible from states of zero orbital angular momen-
tum then ov approaches a constant for low energies, so its thermal average
(ov) approaches a constant for low temperatures, and hence for late times.
The contribution of states of higher orbital angular momentum decreases
with decreasing temperature, so if s wave annihilation is forbidden by selec-
tion rules the integral converges even faster. Because the integral converges,
the particle number in a co-moving volume @ approaches a finite limit:

n(t))a’(t)
L+ n(t) @3 (1) [ (ow) a3 (@) dr'

n(tya*(t) — (3.4.3)

Let us assume that the annihilation of L particles and antiparticles took
place during a time when the density of the universe was dominated by
relativistic particles, so that a o< 1/T, and the time is given by Eq. (3.1.14):

3 T
di=—2|—> 2
16nGNag T3 °

or, using the formula ag = nzk;‘s/IS withi=c=1,

45 ) dx
Y e 3.4.4
di 47r3GNmL x3 ( )

where x = kgT /my. Eq. (3.4.1) therefore takes the form

du(x)
= B[uz(x) — ugq(x)] (3.4.5)
where u(x) is the dimensionless quantity of interest
u=n/kgT)’, (3.4.6)

Ueq(kpT /my) is its equilibrium value, and B is the dimensionless parameter

[ 45
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3.4 Cold dark matter

We see that the left-over value of n/(kgT)? depends only on B, and on the
spin of the L particles, which we need to know to give a formula for ueq (x):

2sp + 1 /Oo 4ry?* dy
0 expyx2+yr+1

where y = p/kgT, and as usual the sign is +1 for fermions and —1 for
bosons.

For instance, for kgT <« my the heavy particles are non-relativistic, and
the mean value of the low-energy annihilation cross section times velocity
is a constant,

(3.4.8)

(ov) = G2 m3 F /2, (3.4.9)

where Gy = 1.1664 x 1075 GeV 2 is the weak coupling constant, and F is
a fudge factor to take account of the number of annihilation channels and
the details of the interaction responsible for the annihilation. This gives

3
B =159 x 10° <mL [GeV]) FNVZ (3.4.10)

The solution of Eq. (3.4.5) for various values of B and s;, = 1/2 is shown in
Figure 3.2. We see that u(x) drops steeply from a constant B-independent
value for x > 1 to a constant B-dependent value for x < 0.01.

For my, in the GeV range B is quite large, and for such values of B (and
sz = 1/2) the asymptotic value of u is well approximated by*

u(0) ~ 6.1 B799 (3.4.11)

B=10°

| B=10'0
| B=10"!

+ + + + + X
1073 1072 107! 1 10

Figure 3.2: The function u(x) = n/(kp T vsx = kgT/mp, for a dark matter particle of
spin 1/2 and mass my,, with various values of the parameter B defined by Eq. (3.4.7).
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(A value u(0) o« B~! is what we would expect if the second term in the
denominator in Eq. (3.4.3) were much greater than unity.) The present
mass density of these heavy particles and antiparticles is then (recalling that
electroln/gpositron annihilation increases the photon temperature by a factor
(11/4)7/°)

pL = 2mpu(0)(4/11)(kpTy0)?
- (2.15 x 10—28g/cm3> (mL(GeV))A'SS (f/x//T/)fo'% . (3.4.12)

or in other words
—1.85 —0.95
Qp =87GpL/3HE = 11.5h> <mL(GeV)> (]—“/«//Tf) . (3.4.13)

Note that Qy is a decreasing function of my, because heavy L particles
annihilate more effectively than light ones. If we assume that the left-over
heavy particles make up most of the cosmic mass density, then Qs ~ Qp,
and so

mp (F/VN) ~3.7(Quh?*) 4 GeV . (3.4.14)

which is 10 GeV for Q4> = 0.15. Otherwise this provides a lower bound
on the mass of these particles.

Incidentally, similar arguments apply to the annihilation of nucleons and
antinucleons, if the universe has zero net baryon number. The difference
here of course is that instead of (o v) being of order G%m]%, it is roughly of
order m; 2. We can thus estimate the density of left-over baryon—antibaryon
pairs by taking m; = my, N ~ 10, and replacing F in Eq. (3.4.13) with
angz/G%m%\, = 2.7 x 102, so that Eq. (3.4.13) would give a baryon—
antibaryon density parameter Qp th ~ 6 x 107!, This is much less than
the present observed density parameter of baryons, ruling out the possibility
that the baryons around us are just those that missed being annihilated in an
initially baryon—antibaryon symmetric universe, and then somehow became
segregated from the antibaryons.

Returning to the cold dark matter, originally it was thought that the
L particles might be heavy neutrinos. They could not be any of the three
known neutrino types, which as discussed at the end of Section 3.1 have
masses at most of the order of 1 eV, but there could be a fourth generation
of very heavy leptons that have negligible mixing with the known leptons.
The mass of a new heavy neutrino would have to be greater than mz /2 = 45
GeV, to block the decay of the Z° into a heavy neutrino and antineutrino,
which if it occurred would destroy the present excellent agreement between
theory and experiment for the total decay rate of the Z° particle. If the
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3.4 Cold dark matter

L particles were heavy neutrinos, then the fudge factor F in Eq. (3.4.9)
would be of the order of the number of types of particles into which the L
particles might annihilate. If we assume very roughly that 7 ~ A ~ 100,
then Eq. (3.4.13) gives 274 < 1073, So it does not seem that the cold dark
matter could consist of a new heavy neutrino.

The most plausible candidate for the L particle is one of the new particles
required by supersymmetry.> In many supersymmetric theories there is a
multiplicatively conserved quantum number R, which takes the value +1
for all the known particles of the Standard Model, and —1 for their super-
symmetric partners. (Multiplicative conservation means that the product
of the Rs for all the particles in the final state of any reaction is the same
as for the initial state.) Among other things, this conservation law tells us
that the lightest particle with R = —1 (which is often called the LSP, for
“lightest supersymmetric particle”) is stable, although two of these particles
could annihilate into ordinary particles with R = +1. To judge which is
the lightest particle with R = —1, it is necessary to distinguish between two
possible pictures of supersymmetry breaking.® In both pictures supersym-
metry is spontancously broken by non-perturbative effects in some hidden
sector of particles with a large typical mass Mg, which interact through
some strong force that is not felt by the known particles of the Standard
Model or their superpartners. The supersymmetry breaking in the hidden
sector also gives the gravitino (the superpartner of the graviton with spin
3/2) amass mg ~ «/5M§

In one picture of supersymmetry breaking, the breakdown of super-
symmetry is communicated to the particles of the Standard Model and
their superpartners by the electroweak and ordinary strong forces of the
Standard Model. In this case Mg would have to be of the order of 100
GeV to 100 TeV, and the gravitino mass would be at most of order 1 eV.
The lightest particle with R = —1 would be the gravitino, which would
be too light to furnish the cold dark matter. Even if gravitinos were once
in equilibrium with other particles, and did not annihilate or decay, by
the same arguments as in Section 3.1 their number density now would
be less than the number density of photons by a factor of order 2/N,
where N is the effective number of relativistic particle states at the time
that gravitinos went out of thermal equilibrium. Photons with typical
energy kT, o have an energy density parameter given by Eq. (2.1.8) as
thz = 2.47 x 1072, so in order for gravitinos to furnish cold dark matter
with Q3/h% ~ 0.15, the mass of the gravitino would have to be of order

5This and other possibilities are discussed in a comprehensive review by G. Bertone, D. Hooper, and
J. Silk, Phys. Rep. 405, 279 (2005) [hep-ph/0404175].
6See QTF, Vol. III, Sec. 28.3.
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0.15N kgT, 0/2th2, which for A ~ 100 is roughly 70 eV.” Thus in this
picture of supersymmetry breaking, gravitinos are not likely to be the cold
dark matter, though this is not absolutely ruled out. The next-to-lightest
particles with R = —1 would all presumably decay over billions of years into
gravitinos and ordinary particles, so they could not furnish the cold dark
matter either. (The rate of decay into relativistic gravitinos with helicity
+3/2 would be suppressed by a factor G, but particles with R = —1 could
decay into gravitinos with helicity +1/2 with the decay rate suppressed only
by a factor My Zand by some powers of the gauge couplings of the Standard
Model.)

In the other picture, supersymmetry breaking is mediated by the gravi-
tational field and its superpartners, and because these interactions are very
weak Mg must be correspondingly large, of order 10'! to 103 GeV. The
gravitino mass would be of the same order of magnitude as the masses of
the superpartners of the known particles of the Standard Model, so it might
or might not be the lightest particle with R = —1.

If the lightest particle with R = —1 is not a gravitino, then it could be
either a sneutrino, the spin 0 superpartner of the neutrino, or a neutralino,
the spin 1/2 superpartner of some mixture of the neutral gauge and scalar
bosons of the Standard Model.® Whichever of these is the lightest, the decay
process will involve the exchange of a particle with R = —1, having a mass
M that is expected to be of the order of a TeV or so. Hence its annihilation
amplitude (aside from factors of 2 and 7) will be of order g2/ M?2, where g
is a typical electroweak coupling. This is smaller than the weak coupling
constant Gy by a factor of order m2W /M?, so the fudge factor F in the
annihilation rate constant (3.4.9) will be of order m‘tVJ\/ W/ M* =~ 107Ny,
where N4 is the number of annihilation channels. Taking N,/ VN ~ 1,
Eq. (3.4.14) tells us that to furnish cold dark matter with €23/4% ~ 0.15, the
lightest particle with R = —1 (if not the gravitino) would have to have a
mass of order 1 TeV. This is similar to estimates of the masses of the super-
partners of the particles of the Standard Model in typical supersymmetric
models, a circumstance that greatly encourages the hope that the particles
of dark matter will be found to be created in experiments at high energy
accelerators.

Cosmological considerations rule out the possibility that the lightest
particle with R = —1 in this picture of supersymmetry breaking is the grav-
itino. Unlike the superpartners of the particles of the Standard Model, the

TH. Pagels and J. R. Primack, Phys. Rev. Lett. 48, 223 (1982) first remarked that in order for the
gravitino not to give Q37 > 1, its mass would have to be less than about 1 keV.
8S. Weinberg, Phys. Rev. Lett. 50, 387 (1983).
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gravitino has a two-body annihilation amplitude proportional to two fac-
tors’ of the gravitational coupling constant v/G, so the annihilation rate is
proportional to G2, and is therefore much too small for annihilation to play
any significant role in reducing the number density of gravitinos. If, because
of particle annihilations after gravitino decoupling, the number density of
gravitinos were now, say, 1% of the number density of photons, then, as
we have seen, in order for their mass density now not to exceed cosmolog-
ical bounds their mass would have to be less than roughly 100 eV. This is
quite inconsistent with the gravitino masses expected in theories of gravity
mediated supersymmetry breaking. But if the gravitinos are not the lightest
particles with R = —1 then they can decay, reducing their present mass den-
sity to acceptable values even if their masses are quite high.!® The coupling
of the gravitino to other fields is proportional to /G, so on dimensional
grounds the decay rate I'y of a gravitino at rest is roughly of the order of Gmg’,.
This is to be compared with the rate of expansion of the universe, which at
temperature T is of order / G(kgT)*. (We are here ignoring factors of order
10-100, including those involving non-gravitational coupling constants and
the number of particle species.) When the cosmic temperature drops to the
value kT =~ mg at which gravitinos become non-relativistic, the ratio of
their decay rate to the expansion rate is of order ﬁmg = Mg /Mplanck << 1,
so gravitino decay becomes significant only after this time, when the graviti-
nos are highly non-relativistic. As we have seen, their number density will
be of order (kgT)3, so their energy density will then be of order mg(kp T)3,
which is greater than the energy density of order (kz7)* of the photons
and other relativistic particles in thermal equilibrium at temperature 7,
and therefore makes the dominant contribution to the cosmic gravitational
field that governs the rate of expansion of the universe. The expansion rate

under these conditions is therefore of order ,/Gm,(kpT)3, and gravitino

decay becomes significant when this equals the gravitino decay rate of order
Gmg, and therefore at a temperature

ksTy ~ G'Pml3 .

After they decay, their energy must go into the energy of photons and
other relativistic particles, so the temperature 7, g/ after decay is related to
the temperature 7, calculated above by the energy conservation condition

9This does not include a factor of v/G in the gravitino mass, because this factor is multiplied by the
scale of supersymmetry breaking, which for gravitationally mediated supersymmetry breaking is very
large, giving a gravitino mass that is comparable to the mass of other supersymmetric particles.
103, Weinberg, Phys. Rev. Lett. 48,223 (1982).
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meT3 ~ T'*, and hence
g8 g’
' (G1/4,,3)2
kT e G ny' .

In particular, since kT, << mg, we have T, >> T,. If T, were less than
the temperature 7, ~ 0.1 MeV at which cosmological nucleosynthesis can
occur, then gravitinos would still be abundant before nucleosynthesis, giving
a higher energy density and hence a faster expansion, so that there would be
less time for free neutrons to decay before being incorporated into complex
nuclei, and hence more helium would be produced when nucleosynthesis
occurs. Also, the ratio of the photon and baryon densities would have
been subsequently increased by gravitino decay, so this ratio at the time of
nucleosynthesis would have been considerably less than is usually estimated
from the present cosmic microwave background temperature, and so nuclear
reactions would have incorporated neutrons more completely into helium,
and less deuterium would be left today. The present agreement between
theory and observation for the cosmic helium and deuterium abundances
would thus be destroyed. This problem is avoided if 7, > 0.1 MeV, but it
can also be avoided under the much weaker condition that 77 > 0.4 MeV,
because then after the gravitinos decay the temperature would have been
high enough to break up the excess helium and give cosmological nucle-
osynthesis a fresh start as the universe recools. This condition requires that
mg > 10 TeV. This limit on m, corresponds to a supersymmetry breaking
scale Mg > 10! GeV for mg ~ /GM}.

It may be possible to detect cosmic WIMPs through observation of the
recoil of atomic nuclei from which they scatter elastically,!! as for instance
the scattering of heavy neutrinos through the neutral current weak inter-
action.!? This is being pursued by a number of collaborations: DAMA,!3
CRESST,'* EDELWEISS,!> UK Dark Matter,'® CDMS,!” and WARP.!¥
Assuming that WIMPs are more or less at rest in the halo of our galaxy, the
motion of the solar system through the halo produces a WIMP “wind” with

UFor reviews of current experiments, see Y. Ramachers, Nucl. Phys. B. Proc. Suppl. [astro-ph/
0211500]; G. Chardin, in Cryogenic Particle Detection, ed. C. Ens (Springer, Heidelberg, 2005) [astro-
ph/0411503]; R. J. Gaitskell, Ann. Rev. Nucl. Part. Sci. 54,315 (2004); J. Ellis, K. Olive, Y. Santoso, and
V. C. Spanos, Phys. Rev. D 71,095007 (2005) [hep-ph/0502001]; K. Freese, Nucl. Instrum. Meth. AS59,
337 (2006) [astro-ph/0508279]; L. Baudis, Int. J. Mod. Phys. A21, 1925 (2006) [astro-ph/0511805].

IZA. Drukier and L. Stodolsky, Phys. Rev. D 30, 2295 (1985); M. Goodman and E. Witten, Phys.
Rev. D 31,3059 (1985).

I3R. Bernabei et al.,Phys. Lett. B480, 23 (2000).

4G, Angloher et al., Astropart. Phys. 23, 325 (2005) [astro-ph/0408006].

15y Sanglard et al., Phys. Rev. D 71, 122002 (2005) [astro-ph/0503265].

16G. J. Alner er al., Astropart. Phys. 23, 444 (2005).

17D, S. Akerib et al., Phys. Rev. Lett. 93, 211301 (2004) [astro-ph/0405033], and astro-ph/0507190.

18p Benetti et al., astro-ph/0701286.
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a speed v,, of about 220 km/s. A nucleus of mass Amy when struck with a
WIMP of mass m,, >> Amy traveling at this velocity will recoil with a typical
velocity of order v,,, and hence a kinetic energy of order Amyv2/2 ~ 100 4
eV. These recoils can be detected by observing the ionization of atoms struck
by the recoiling nucleus, or by detecting light emitted by these atoms, or by
detecting vibrations in the crystal lattice of the detector. The mass density
pp in the halo of our galaxy near earth is estimated from observations of
stellar motions to be about 0.3 GeV/em?, giving a number density for WIMP
mass m,, of p,/m,,, from which the elastic scattering rate can be calculated
for any assumed values of the WIMP mass and the scattering cross section.
Failing to observe nuclear recoil events then excludes some region of the
m,,—cross-section plane.

The greatest problem in these experiments is distinguishing true WIMP
events from background, caused by natural radioactivity and cosmic rays.
The best hope for distinguishing events from background is to exploit the
motion of the earth around the sun.!” This orbital motion adds about
15 km/s to the speed of the WIMP wind in summer, and subtracts an
equal amount in winter (though this depends on the halo model), so one
may expect a 7% seasonal modulation of true WIMP events. The DAMA
collaboration reported just such a modulation, but almost all of the region
in the m,,—cross-section plane that would account for this observation was
subsequently apparently excluded (using a different detection scheme) by
the CDMS collaboration. So far, experiments set an upper bound on the
effective cross section of about 10742 to 10~*3 cm? for m,, > 50 GeV, and
much larger for m,, < 50 GeV, the precise bound depending on assumptions
about the distribution of WIMPs in the galactic halo.?° (For comparison,
the effective cross section for the low energy scattering of the neutralinos
of supersymmetric theories on nucleons is expected to be less than about
10~4! cm?))

There is also a possibility of an indirect detection of WIMPs, through
observation of gamma rays or other particles produced when pairs of WIMPs
annihilate in regions of high WIMP concentration.?! Gamma rays do not
penetrate the earth’s atmosphere, so they have to be detected either through
the observation of showers of charged particles produced in the atmosphere,
as for instance by the Cerenkov radiation associated with these particles,
or by gamma ray telescopes carried by balloons or by satellites in orbit
above the earth’s atmosphere. If WIMP-WIMP annihilation produces

19A. K. Drukier, K. Freese, and D. N. Spergel, Phys. Rev. D 33,3495 (1986); K. Freese, J. A. Frieman,
and A. Gould, Phys. Rev. D 37, 3388 (1988).

20A. Bottino, F. Donato, N. Fornengo, and S. Scopel, Phys. Rev. D 72, 083521 (2005) [hep-ph/
0508270].

2l For a review, see P. Gondolo, hep-ph/0501134.
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just a pair of gamma rays, then each will carry a unique energy equal
to the WIMP mass, giving a very clear WIMP signal. So far, there has
been no sign of such a monochromatic gamma ray. Of course the annihi-
lation may produce other particles along with gamma rays, or particles
whose decay then produces gamma rays, but in either case this would
yield a continuum of gamma ray energies, which would be much harder
to identify as coming from WIMP annihilation. The Cangaroo-11?2 and
HESS?? atmospheric Cerenkov detector collaborations have both reported
continuum sources of gamma rays coming from near the center of our
galaxy, but with very different spectra, which can be interpreted as com-
ing from annihilation of WIMPs with a mass of about 1 TeV or 19 TeV,
respectively.

For decades there has been evidence of monochromatic gamma rays
coming from the galactic center, but at the energy of 511 keV expected from
electron—positron annihilation, rather than WIMP-WIMP annihilation. In
1970 a balloon-borne pair of gamma ray detectors found evidence of a
gamma ray line around 500 keV coming more-or-less from the direction of
the galactic center.2* The evidence for this has since become much stronger
through observations made by the INTEGRAL (International Gamma-
Ray Astrophysics Laboratory) satellite,>> which found a gamma ray line
coming from the galactic center with an energy within about 3 keV of 511
keV. It is possible that this is due to the decay of a relatively light WIMP into
electron—positron pairs, with the positrons then losing energy by ionization,
after which they annihilate with ambient electrons.2

There is also a report of an excess of positrons in cosmic rays found
by the HEAT balloon experiment,?’ which might or might not come from
WIMP annihilation. Very recently it has been suggested that an excess of
microwave emission from the direction of the center of our galaxy observed
by the WMAP satellite may come from synchrotron emission by relativistic
electrons and positrons produced in WIMP annihilation.?8

It is too early to reach any definite conclusions from any of these exper-
iments about WIMPs as candidates for the particles of dark matter.

22K . Tsuchiya et al., Astrophys. J. 606, L115 (2004) [astro-ph/0403592].

23D, Horns, Phys. Lett. B 607,225 (2005). But see F. Aharonian,Phys. Rev. Lett. 97, 221102 (2006)

24W. N. Johnson, III, F. R. Harnden, Jr., and R. C. Haymes, Astrophys. J. 172, L1 (1972.)

25P, Jean et al., Astron. Astrophys. 407, 55 (2003) [astro-ph/0309484]; J. Knddlseder et al., Astron.
Astrophys. 411, 457 (2003) [astro-ph/0309442]; E. Churazov et al., Mon. Not. Roy. Astron. Soc.
357, 1377 (2005) [astro-ph/0411351]; J. Knodlseder et al., Astron. Astrophys. 441, 513 (2005) [astro-
ph/0506026]; G. Weidenspointer et al., Astron. Astrophys. 450, 1013 (2006) [astro-ph/0601673].

26C. Boehm, D. Hooper, J. Silk, M. Casse, and J. Paul, Phys. Rev. Lett. 92, 1301 (2004) [astro-ph/
0309686].

27S. W. Barwick e al., Phys. Rev. Lett. 75, 390 (1995); Astrophys. J. 482, L191 (1997).

28D, Hooper, D. P. Finkbeiner, and G. Dobler, 0705.3655.
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3.4 Cold dark matter

B. Axions and axinos

29 are light neutral spinless particles that are made necessary> by

131

Axions
the spontaneous breakdown of a symmetry that first appeared in a mode
that was proposed to explain why non-perturbative effects of the strong
interactions do not violate CP invariance. For our present purposes, all
we need to know is that the dominant part of the effective action (with
A = ¢ = 1) that describes the axion field ¢ takes the form (B.44) with
potential V(p) = m§¢2/2:

1 1
I[p] = /d4x\/—Detg <—§g““8M<p o — Emﬁgoz) . (3.4.15)

The axion mass m, is a complicated function of temperature, but for tem-
peratures well below 10! K it takes a well-known constant value, related to
the energy scale M at which the Peccei-Quinn symmetry is broken by

Fromy, Jmgmy N 13 MeV
M mg+m, M[GeV]’

(3.4.16)

mgo =

(Here F;, = 184 MeV is the pion decay amplitude, and m,; and m, are
the down and up quark masses appearing in the Lagrangian of quantum
chromodynamics, for which m;/m, >~ 1.85.) In the original Peccei-Quinn
model,3! M was of the order of the electroweak symmetry breaking scale,
M ~ 100 GeV, but it was soon realized that this is experimentally ruled
out. Axion fields interact with ordinary matter through factors 9,¢/M,
so with M > 100 GeV axions interact so weakly that they emerge without
attenuation from reactor cores or stellar interiors. The production rate of
axions is proportional to 1/M?2, so the failure to observe effects of axion
emission from stars or nuclear reactors sets a lower bound on M, and hence
an upper bound on m,. In particular, limits on the rate of cooling of red
giant stars by axion emission give’> M > 107 GeV, while observations of
the supernova SN1987A indicate? that M > 10!° GeV. A generalization of
the Peccei-Quinn model was then proposed,?* in which M is an arbitrary

25ee QTE, Vol II, Sec. 23.6. For a review, see P. Sikivie, in Axions — Lecture Notes on Physics, ed.
M. Kuster (Springer-Verlag, to be published) [astro-ph/0610440].

30g, Weinberg, Phys. Rev. Lett. 40,223 (1978); F. Wilczek, Phys. Rev. Lett. 40,279 (1978).

3IR. D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D 16, 1791 (1977).

32p A Dicus, E. W. Kolb, V. I. Teplitz, and R. V. Wagoner, Phys. Rev. D 18, 1829 (1978); Phys. Rev.
D 22, 839 (1980).

33For reviews, see M. S. Turner, Phys. Rep.. 197, 67 (1990); G.G. Raffelt, Phys. Rep. 198. 1 (1990);
P. Sikivie, ref. 26.

343 E. Kim, Phys. Rev. Lett. 43, 103 (1979); M. Dine, W. Fischler, and M. Srednicki, Phys. Lett.
104B, 199 (1981); M. B. Wise, H. Georgi, and S. L. Glashow, Phys. Rev. Lett. 47,402 (1981).
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parameter. As we shall see, cosmological considerations provide an upper
bound?’ on M, which together with the above lower bounds leaves a narrow
window of allowed values.

The cosmological axion field is supposed to be spatially homogeneous.
In a Robertson—Walker metric, the energy density and pressure are given
by Eq. (B.66) and (B.67) as

36

Lo, 155 L, 15,
Pu = 5(,0 + Ematp s, Pa= E(p - Emago , (3.4.17)
so the equation (1.1.32) of energy conservation (or the Euler-Lagrange

equation derived directly from the action (3.4.15)) gives the field equation
G+ 3H()¢ +m>(Hg =0, (3.4.18)

At early times H (¢) > m,(t), so we can ignore m,(t), and Eq. (3.4.17) has
solutions ¢ = constant, and ¢  1/a°. Rejecting the singular solution,
we see that at early times () is frozen at a value ¢g, which (absent fine
tuning) would be expected to be of order M. Later, when H (¢) dropped
below my,(t), ¢(t) began a rapid oscillation, so that in this case Eq. (3.4.18)
can be solved using the WKB approximation, which gives

3/2 ¢
() — @1 (M) cos (f mg (1) dt+oz) , (3.4.19)
a(r) 0

where ?1 is the time at which H (¢1) = my0, ¢1 is a constant of order g ~ M,
and « is a phase that cannot be determined without a more detailed study,
but which fortunately we do not need to know. (For instance, if m,(¢) has
the constant value m,o and the universe is radiation-dominated in the era
of interest, then ¢ = 2327121 (5/4)py = 1.446¢), and o = —37/8.)
Since a(t) for m, > H was varying much more slowly than the phase of the
cosine, the energy density at late times is given by Eq. (3.4.17) as

1 5 5 (a(t) 3
1 — —m — . 3.4.20

In order to project this forward to the present, we note that if the universe
was radiation-dominated at time 71, with A} the effective number of types
of particles with masses much less than kg7 (¢1) (counting each spin state

35]. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. 120B, 127 (1983); L. F. Abbott and P. Sikivie,
Phys. Lett. 120B, 127 (1983); M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983). For reviews, see
J. E. Kim, Phys. Rep. 150, 1 (1987); M. S. Turner, Phys. Rep. 197, 68 (1990).

36Components with non-zero wave number are doubtless present, but their energy density decays
more rapidly than the energy density of the spatially homogeneous coherent field (7).
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3.4 Cold dark matter

of particles and antiparticles separately, and including an extra factor 7/8
for fermions), then the photon temperature at present is

Tyo = NP T(t)ate) fat)

the factor VNV, 11/ 3 being inserted to take account of the heating of photons
by the annihilation of particles and antiparticles between times #; and ¢.
The temperature 7'(¢;) may be determined by noting that the expansion
rate at time f1 1S

8t GNyagT*/2 473G N,
maEH(ll):\/ 136 / =\/ 15 LkpT)? .

Using these results in Eq. (3.4.20) then gives the present axion energy density

1 a3g\
_ T
pa(zo)zim;/zf\/l s (T) (kgTy0)® . (3.4.21)

We expect ¢ to be of the same order of magnitude as the symmetry breaking
scale M, so using Eq. (3.4.16) and ignoring all factors of order unity,

_ FImlG¥*(kpT,0)?

Pa A 7 (3.4.22)
my

Equivalently, the axion density provides a fraction €2, of the critical density
given by
-32

Qi ~ <ma/10_5eV) . (3.4.23)
Because the axion field is spatially homogeneous, for m, > H its energy
takes the form of massive particles that are essentially at rest. If axions
furnish the whole of the cold dark matter, then m, ~ 10~ eV, corresponding
to M =~ 10'2 GeV. Otherwise, these numbers provide a lower bound on 1,
and an upper bound on M.

Axions are much too weakly interacting to be detected in the sort of
nuclear recoils looked for in searches for WIMPs. One possibility is to
observe the conversion of cosmic axions into photons in intense magnetic
fields.>” This approach has already been used to put a limit on the param-
eters of axions that would be produced by the sun.® The axion field ¢(x)
would be expected to have an interaction with the electromagnetic field of

37p, Sikivie, Phys. Rev. Lett. 51, 1415 (1983); Phys. Rev. D 32,2988 (1985).
38K . Zioutas et al. (CERN Axion Solar Telescope collaboration), Phys. Rev. Lett. 94, 121301 (2005)
[hep-ex/0411033].
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the form g, ¢ E - B, with g,, of order «/27 M, so that photons in the
sun could convert into axions in the presence of the strong electric fields
around atomic nuclei, and these solar axions would then convert back into
photons in intense laboratory magnetic fields. No such photons were seen,
indicating that for axions with mass less than 0.02 eV, |g,;, | < 1.16 x 1010
GeV~!, a much more restrictive limit than provided by earlier experiments
of this sort.? In a different sort of search,*” the Axion Dark Matter Exper-
iment, a microwave cavity was used to search for axions in our galactic
halo, and put upper limits on the axion density in the narrow mass range
(1.98 to 2.17)x107% eV. None of these experiments are in conflict with
axion models of dark matter, but a plausible improvement in the sensi-
tivity of this sort of experiment may rule out these models, or perhaps find
axions.

In supersymmetric theories, the axion would be partnered with a spin
one-half particle, the axino, which would probably be the lightest particle
with R = —1, and hence stable. Axinos could be produced non-thermally,*!
through the decay of other particles with R = —1, or thermally.*? It appears
that the axino provides another plausible candidate for the particle of cold
dark matter.

3This and earlier experiments are reviewed by G. G. Raffelt, contribution to XI International
Workshop on Neutrino Telescopes, hep-ph/0504152.

40L. D. Duffy et al., Phys. Rev. D 74, 012006 (2006) [astro-ph/0603108], and earlier references cited
therein.

41L. Covi, J. E. Kim, and L. Roszkowski, Phys. Rev. Letr. 82, 4180 (1999).

42L. Covi, H. B. Kim, J. E. Kim, and L. Roszkowski, J. High Energy Phys. 0105, 033 (2001) [hep-
ph/0101009]; A. Brandenburg and F. D. Steffen, J Cosm. & Astropart. Phys. 0408. 008 (2004)
[hep-ph/0405158].
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Inflation

We can have some confidence in the story of the evolution of the universe
from the time of electron—positron annihilation to the present, as told in the
previous three chapters. About earlier times, so far we can only speculate. In
the past quarter century these speculations have centered on the idea that
before the period of radiation domination, during which the Robertson—
Walker scale factor a(f) was growing as +/7, there was an earlier period
of inflation, when the energy density of the universe was dominated by a
slowly varying vacuum energy, and a(¢) grew more-or-less exponentially.
The possibility of an early exponential expansion had been noticed by sev-
eral authors,! but at first it attracted little attention. It was Alan Guth? who
incited interest in the possibility of inflation by noting what it was good for.

Guth noticed that, in a model of grand unification he was considering
(with Henry Tye), scalar fields could get caught in a local minimum of the
potential, which in his work corresponded to a state with an unbroken grand
unified symmetry. The energy of empty space would then have remained
constant for a while as the universe expanded, which would produce a
constant rate of expansion, meaning that a(z) would have grown exponent-
ially. Eventually this inflation would be stopped by quantum-mechanical
barrier penetration, after which the scalar field would start rolling down the
potential toward a global minimum, corresponding to the present universe.
In itself this would have been a result of no great immediate importance.
But then it occurred to Guth that the existence of an era of inflation would
solve one of the outstanding problems of cosmology, mentioned here in
Section 1.5. It is known as the “flatness problem:” Why was the curvature
of space was so small in the early universe? Guth soon also discovered that
inflation would solve other cosmological puzzles, some of which he had not
even realized were puzzles. These problems along with the flatness problem
will be discussed in Section 4.1.

As Guth and others soon realized, his version of inflation had a fatal
problem, to be described in Section 4.2. Guth’s “old inflation” was soon
replaced with a “new inflation” model, due to Andrei Linde? and Andreas
Albrecht and Paul Steinhardt.* The essential element introduced by

TALA. Starobinsky, JETP Lett. 30, 682 (1979); Phys. Lett. B 91,99 (1980); D. Kazanas, Astrophys.
J. 241, L59 (1980); K. Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981).

2A. Guth, Phys. Rev. D 23, 347 (1981). Guth tells the story of this work in The Inflationary Universe:
The Quest for a New Theory of Cosmic Origins (Helix Books/Addison Wesley, 1997).

3A.D. Linde, Phys. Lett. B 108,389 (1982); 114, 431 (1982); Phys. Rev. Lett. 48,335 (1982).

4A. Albrecht and P. Steinhardt, Phys. Rev. Lett. 48,1220 (1982).
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theories of new inflation was a nearly exponential expansion during the
slow roll of one or more scalar fields down a potential hill, which is the
main subject of Section 4.2. This provided a basis for “chaoticinflation” and
“eternal inflation” and other variants, some of which are briefly described
in Section 4.3.

So far, the details of inflation are unknown, and the whole idea of infla-
tion remains a speculation, though one that is increasingly plausible. Aside
from the classic problems that inflation solved at the beginning, it has had
one significant experimental success: a prediction of some of the proper-
ties of the fluctuations in the cosmic microwave background and large scale
structure. We will come to this in Chapter 10, after we take up the evolution
of fluctuations in the early universe in Chapters 5 and 6 and the observation
of these fluctuations in Chapters 7 and 8 and Section 9.5.

4.1 Three puzzles

In this section we will outline three classic cosmological problems, and work
out the extent of the inflation required to solve each of them. For this
purpose we will here simply assume that the universe went through an early
period of exponential expansion, without worrying yet about how this came
about.

A. Flatness

As we saw in Section 1.6 and 1.8, the observed Type la supernova redshift—
distance relation and measurements of the ages of the oldest stars are
consistent with a vanishing spatial curvature parameter Q, though a non-
vanishing curvature can be accommodated by changing 2,,. Including
data from the cosmic microwave background temperature fluctuations, dis-
cussed in Section 7.2, favors Qg = 0. Although there is still room for a small
non-zero Qg, it seems quite safe to conclude from these observations that
|2k | < 1. But Qg is just the present value of the dimensionless time depen-
dent curvature parameter —K /a>? H* = —K /&?, with K constant. From the
time the temperature dropped to about 10* K until near the present, a(¢) has
been increasing as 2/3, so |K|/a® has also been increasing as /3 o« T~1.
Thus, if |Qg| < 1, then at 10* K the curvature parameter |K|/a* could not
have been greater than about 10~%. Earlier, a(¢) was increasing as ¢'/2, so
|K|/a* was increasing as ¢ o« T~2. In order for |K|/a* at 10* K to be no
greater than about 10~%, it is necessary that | K |/a* was at most about 1016
at the temperature 7 ~ 10!° K of electron-positron annihilation (roughly,
the beginning of the period of neutron—proton conversion that results in
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the observed helium abundance), and even smaller at earlier times.” This
is not a paradox—there is no reason why the curvature should not have
been very small—but it is the sort of thing physicists would like to explain
if we can.

What Guth realized was that during inflation @/a would have been
roughly constant, so |K|/a>H? would have been decreasing more or less
like 2. So to understand why space was so flat at the beginning of
the present big bang it is not necessary to make any arbitrary assump-
tions; if the radiation-dominated big bang was preceded by a sufficient
period of inflation, it would necessarily have started with negligible
curvature.

To put this quantitatively, suppose the universe began with a period of
inflation during which a(¢) increased by some large factor ¢V, followed by
a period of radiation dominance lasting until the time of radiation—matter
equality, followed in turn by a period of matter dominance and then a period
dominated by vacuum energy. If |K|/a> H* had a value of order unity at the
beginning of inflation, then at the time #; of the end of inflation |K|/a*H?
would have had a value | K|/ a%H 12 of order ¢=2V (where a; and Hj are the
Robertson—Walker scale factor and expansion rate at this time), and today
we will have

K| o (@Hr’
Qkl= 55 =N (—=) , 4.1.1)
agH; aoHo

Thus the flatness problem is avoided if the expansion during inflation has
the lower bound

H
NS U 4.12)
apHy

To evaluate this we will make the somewhat risky assumption that not
much happens to the cosmic scale factor and expansion rate from the end
of inflation to the beginning of the radiation-dominated era, so that

a1H1:a1H1 , (4.1.3)

the subscript 1 denoting the beginning of the radiation-dominated era.
We can express the expansion ag/a; of the universe since the start of the
radiation-dominated era in terms of ratios of expansion rates by noting that
over the whole of the radiation and matter-dominated era, the expansion

SR. H. Dicke and P. J. E. Peebles, in General Relativity — An Einstein Centenary Survey, eds. S.
Hawking and W. Israel (Cambridge University Press, 1979).

203



4 Inflation

rate was

H, 3 4
=1 J(amayy (et
J2 a a
where agg = aoQ2r/Qm and Hgg = «/2S2;\4H0(ao/0tEQ)3/2 are the scale
factor and expansion rate at matter-radiation equality. Setting ¢ = a1 <
agqQ gives

H, 2
Hy = 2R (@) . (4.1.4)
V2 \ a1

Using this relation to eliminate @1, we can put the bound (4.1.2) in the more
useful form

N Qmaeq 1A Hi _ s [H_ (o P 1/4 _ [o1]'/4
ap Ho R H() R:OO,crit 0.037 heV ’
(4.1.5)

where p; is the energy density at the beginning of the radiation-dominated
era, and pg ¢rit = [3.00 x 10-3 eV]*4? is the critical density (1.5.28).

To go further, we need some idea of the energy density at the end of
inflation. The success of the theory of cosmological nucleosynthesis shows
that p; cannot be less than the energy density at the time of the beginning
of neutron—proton conversion, roughly [1 MeV]*, in which case Eq. (4.1.5)
with 4 = 0.7 requires that the universe expanded during inflation by at least
afactor4 x 107, or 17 e-foldings. At the other extreme, we would not expect
p1 to be greater than the Planck energy density G2 = [1.22 x 10! GeV]?,
in which case Eq. (4.1.5) with 2 = 0.7 would require that the expansion
during inflation was at least by a factor 5 x 10%°, or 68 e-foldings. We
will see some evidence in Section 10.3 that p; is of order [2 x 1016 GeV]?,
in which case ¢V for & = 0.7 would have to be at least 8 x 10%°, so that
N > 62.

This is the least convincing of the arguments for inflation, because the
small value of |K|/é? in the past could be explained by the assumption (one
that was often made before anyone heard of inflation) that space is precisely
flat, so that K = 0 now and always. On the other hand, as we will discuss in
Section 4.3, inflation opens up the interesting possibility that the universe
in the large is not at all homogeneous and isotropic, and that its apparent
flatness of the cosmic metric is just the result of inflation.

It would be quite a coincidence if inflation lasted for precisely the right
number of e-foldings so that |K|/a* would have decreased during infla-
tion from an initial value of order unity just enough so that its subse-
quent increase during the radiation and matter-dominated eras would have
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brought it back to a value of order unity now. It seems more likely that
the present value |Q2x| would be either much larger or much smaller than
unity, and since observations tell us that it is not much larger than unity,
inflationary theories suggest that |Qx| <« 1. (But this sort of reasoning
would also suggest that the vacuum energy is much less than the present
matter density, which we now know is not the case.)

B. Horizons

From the beginning the observed high degree of isotropy of the cosmic
microwave radiation background posed a problem. Recall that the hori-
zon size in a matter- or radiation-dominated universe is of order ¢, which,
because () has increased as 2/3 since the time of last scattering, was of
orderdy ~ HO_1 (14z7)73/2 at the time of last scattering. (See Eq. (2.6.32).)
Also, according to Eq. (2.6.29), the angular diameter distance d 4 to the sur-
face of last scattering is of order H '(1 4 z1)™1, so the horizon at the time
of last scattering now subtends an angle of order dy/d4 ~ (1 + zp)" 12
radians, which for z; ~ 1100 is about 1.6°. Therefore in a matter- or
radiation-dominated universe no physical influence could have smoothed
out initial inhomogeneities and brought points at a redshift z; that are sep-
arated by more than a few degrees to the same temperature, in contradic-
tion with the nearly perfect isotropy of the microwave background at large
angular scales observed ever since the background radiation was discovered.
Inflation provides an explanation: during the inflationary era the part of
the universe that we can observe would have occupied a tiny space, and
there would have been plenty of time for everything in this space to be
homogenized.

To work out what this means for the expansion during inflation, first
recall that as discussed in Section 1.13, the proper horizon size at the time
tr of last scattering is

Lt

with 7, (possibly equal to —o0) the beginning of the era of inflation. We
have seen that the contribution to the integral from the radiation and matter-
dominated eras is much too small to account for the isotropy of the
microwave radiation background, so we will assume that the integral is
dominated by an era of inflation. For definiteness, we assume that during
inflation a(7) increased exponentially at a rate Hy, so that

dp(tr) = a(ty) (4.1.6)

a(t) = ate) exp (Hy(t = 1)) = arexp (= Hi(t = 1) ,
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4 Inflation

where #; is again the time of the end of inflation, and a; = a(¢z;). With
N = Hj(t; — t,) the number of e-foldings of expansion during inflation,
Eq. (4.1.6) gives

a(tr)
du (1) = N —1]. 4.1.7
(1) v [ ] 4.1.7)
In order to have any hope of solving the horizon problem, we must have
¢V > 1, so we can drop the term —1 in square brackets in Eq. (4.1.7).

To account for the observed high degree of isotropy of the cosmic
microwave background at large angular scales we need dy(11) > d4(t1),

where d 4(z1) is the angular—diameter distance of the surface of last scatter-
ing. According to Eq. (2.6.29),

d(iy) ~ ‘ggig . 4.1.8)

The condition dy (1) > d4(z) for the isotropy of the cosmic microwave
background is then

N 5 Ut
aoHy

(4.1.9)

This is the same as the condition (4.1.2) for the solution of the flatness
problem. If we again make the assumption that not much happens between
the end of inflation and the beginning of the radiation-dominated era, and
use Eq. (4.1.3), then to solve the horizon problem we again need N > 17 if
o1 =~ [1 MeV]*, N > 62if p; ~ [2 x 10'® GeV]*, and N > 68if p; ~ G2.
We will see in Chapter 10 that whether 17 or 62 or 68 e-foldings are needed to
solve the horizon problem, it is only that number of e-foldings before the end
of inflation that can be explored through observations of nonuniformities
in the present universe.

It should be noted that the time 77, of last scattering does not enter in the
bound (4.1.9) on N, so this is also the condition that the whole sky at any
redshift z < zgg was within the horizon at the time that light observed now
with that redshift left its source. Indeed, Eq. (4.1.9) is also the condition
that the horizon size at the present should be greater than the size of the
observable universe, which is roughly 1/Hp.

C. Monopoles
In grand unified theories local symmetry under some simple symmetry

group is spontaneously broken at an energy M ~ 101 GeV to the gauge
symmetry of the Standard Model under the group SU(3) x SU(2) x U(1).
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4.1 Three puzzles

In all such cases, the scalar fields that break the symmetry can be left in
twisted configurations that carry non-zero magnetic charge and that cannot
be smoothed out through any continuous processes.® This poses a prob-
lem for some cosmological models.” The scalar fields before this phase
transition would have necessarily been uncorrelated at distances larger than
the horizon distance, the farthest distance that light could have traveled
since the initial singularity. At an early time ¢ in the standard big bang
theory the horizon distance was of order ¢ ~ (G(kgT)*)~1/2 (where G ~
(10" GeV)~2 is Newton’s constant), so the number density of monopoles
produced at the time that the temperature drops to M /ki would have been
of order 1=3 ~ (GM*)3/2, which is smaller than the photon density ~ M? at
T ~ M /kp by a factor of order (GM?)3/2. For M ~ 10'® GeV this factor is
of order 10~%. If monopoles did not find each other to annihilate, then this
ratio would remain roughly constant to the present, but with at least 10°
microwave background photons per nucleon today, this would give at least
one monopole per nucleon, in gross disagreement with what is observed.
This potential paradox was one of the factors leading to interest in
inflationary cosmological models. In such models, a period of exponential
expansion that occurred before the monopoles were produced would have
greatly extended the horizon, and an exponential expansion that occurred
after the production of monopoles (but before photons were created in a
period of reheating) would have greatly reduced the monopole to photon
ratio. To be specific, the search for monopoles in iron ore, seawater, etc.
shows that there are fewer than 10~° per gram, or about 1073 monopoles
per nucleon, and hence fewer than about 10~3° monopoles per photon.?
(With this abundance, even if the monopole mass were as large as 10!° GeV,
they would make a negligible contribution to the cosmic mass density.) In
order for inflation to have reduced the monopole/photon ratio by a fac-
tor 10739, it must have increased the horizon size (at some time before the
reheating that creates photons) by a factor 10!°. That is, the horizon size
¢V /H; after inflation must be greater than the previous estimate (GM*)~1/2
by at least a factor 1010 For H; ~ (GM*)!/? this requires the number N of
e-foldings to be greater than In 10'° = 23. Of course, another possible solu-
tion of the monopole problem is that inflation ends at a temperature below
the grand unification scale M, so that there never was a time when the grand
unification group was unbroken. An even simpler possibility, which does
not rely on inflation, is that there may be no simple gauge group that is

%For a discussion, see QTF, Vol. II, Sec. 23.3.

7Ya. B. Zeldovich and M. Yu. Khlopov, Phys. Lett. B'79, 239 (1978); J. Preskill, Phys. Rev. Lett.
43, 1365 (1979). For a review, see J. Preskill, Annual Rev. Nucl. Part. Science 34, 461 (1984).

8For a review, see Particle Data Group, Phys Lett. B 582, 1001 (2004).

207



4 Inflation

spontaneously broken to the gauge group SU(3) x SU(2) x U(1) of the
Standard Model.

The most serious of the above three problems is the horizon problem. As
we have seen, there are possible solutions of the flatness and monopole
problems that do not rely on inflation. Also, any number of e-foldings
of inflation that solves the horizon problem automatically solves not only
the flatness problem, but also the monopole problem. If the radiation-
dominated era begins with an energy density p; > [10'° GeV]* then for
inflation to solve the flatness and horizon problems we need at least 59
e-foldings of inflation, which is more than enough to avoid the monopole
problem, while if p; < [10'> GeV]* GeV then in the usual picture of grand
unification there would be no monopoles at all.

4.2 Slow-roll inflation

In Guth’s original work, inflation was conceived to be due to a delayed
first-order phase transition, in which a scalar field was initially trapped in
a local minimum of some potential, and then leaked through the poten-
tial barrier and rolled toward a true minimum of the potential. It was
soon realized! that this idea does not work, because of what has come
to be called the graceful exit problem. The transition from the super-
cooled initial “false vacuum” phase to the lower energy “true vacuum”
phase could not have occurred everywhere simultaneously, but here and
there in small bubbles of true vacuum, which rapidly expanded into the
background of false vacuum, in which the scalar field would have been
still trapped in its local minimum,” like water droplets forming in super-
cooled water vapor. The trouble is that the latent heat released in the phase
transition would have wound up in the bubble walls, leaving the interi-
ors of the bubbles essentially empty, so that the only places where there
would be energy that could grow into the present contents of the universe
would be highly inhomogeneous and anisotropic. At first Guth thought
the bubbles in inflationary cosmologies would have merged, leading to our
present more-or-less homogeneous universe, but this could not have hap-
pened; because the background false-vacuum space continued to inflate,
the bubble walls would have moved too fast away from each other ever to
have coalesced.

Is. w. Hawking, I. G. Moss, and J. M. Stewart, Phys. Rev. D 26,2681 (1982); A. H. Guth and E. J.
Weinberg, Nucl. Phys. B 212, 321 (1983).

2For a description of this process and references to the original literature on bubble formation in
quantum field theory, see QTF II, Section 23.8.
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4.2 Slow-roll inflation

Guth’s version of inflation was soon supplanted by a version due to Linde
and to Albrecht and Steinhardt, known as ‘new inflation.”> Originally new
inflation was formulated in a particular model of the breakdown of a grand
unified symmetry, using a symmetry-breaking mechanism introduced by
Coleman and E. Weinberg.* With this mechanism the zero-temperature
potential for a scalar field ¢ is artificially adjusted to have zero second
derivative at ¢ = 0. One-loop radiative corrections then give a poten-
tial equal to a known positive factor times ¢* In(¢/M), where M is a free
constant; changing the value of M amounts to changing the ¢* coupling
constant. This potential has an unstable stationary point at ¢ = 0 and a
minumum at g9 = Me~ /4. At finite temperature 7 there is also a quadratic
term in the potential, proportional to 7%¢?, which makes the stationary
point at ¢ = 0 into a local minimum. Again the phase transition occurs by
forming bubbles, but for low temperature the potential barrier is very small,
and so the scalar field in the interior of the bubble starts with ¢ nearly zero.
The field then rolls slowly down the potential, in the manner discussed
in Section 1.12, while the universe (including the bubble) undergoes an
exponential expansion. Eventually the field energy is converted into
ordinary particles, filling the bubble. Our observable universe is supposed to
occupy a small part of one such bubble.

The consequences of the new inflationary theories turned out to depend
on the slow roll of the scalar field after bubble formation, rather than the
process of bubble formation itself. Indeed, the important aspects of inf-
lation do not really require any assumptions about grand unification or the
Coleman—E. Weinberg mechanism. All we need to assume is that there is a
scalar field ¢, known as the inflaton, which at some early time takes a value at
which the potential V' (¢) is large but quite flat. The scalar field “rolls” very
slowly at first down this potential, so that the Hubble constant decreases only
slowly, and the universe experiences a more-or-less exponential inflation
before the field changes very much.

To put this quantitatively, recall that the energy density (B.66) and
pressure (B.67) of a spatially homogeneous scalar field ¢(7) with potential
V (¢) in a Robertson—Walker spacetime take the form (with i =c = 1)

1., 1.,
p=39 + Vip), =39 - Vip),

so the energy conservation equation p = —3H (p + p) takes the form:

¢+3Ho+V'(p)=0, 4.2.1)

3A. D. Linde, Phys. Lett. B 108, 389 (1982); 114, 431 (1982); Phys. Rev. Letr. 48, 335 (1982);
A. Albrecht and P. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
4S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973).
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where H = da/a is the time dependent expansion rate, which during the
period of scalar field energy dominance is given by

B SJTGp_ 871G 1,2
H =,/ 3 _\/ 3 <2(p —I—V(go)). (4.2.2)

From Egs. (4.2.1) and (4.2.2) we can derive an extremely useful formula
for H. By taking the time derivative of the square of Eq. (4.2.2) and then
using Eq. (4.2.1), we have

. 871G
QHE = ”T (64 + V'(9)¢) = -8 GH " ,
and therefore
H=—47G¢* . (4.2.3)

Now, in order to have a nearly exponential expansion, the fractional
change |H/H|(1/H) in H during an expansion time 1/H must be much
less than unity. That is, we must have

|H| < H*. (4.2.4)
With Eqgs. (4.2.3) and (4.2.2), this requires that
0? < V(). (4.2.5)

This has the consequence that p >~ —p, and also

H~ ,/w . (4.2.6)

Usually it is also assumed that the fractional change |¢/¢|(1/H) in ¢
during an expansion time 1/H is much less than unity. That is,

19| < H|g| . 4.2.7)

This has the consequence that we may drop the inertial term ¢ in Eq. (4.2.1),
which then becomes

Vie) . V(o)
3H 247GV (p)

The fractional change of the expansion rate A in an expansion time 1/H
will then be

|H| 1/ Vi | 1 (V@)
B 8nG‘V3/2(<p) _lénG<V<w)) ’ (4.29)
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4.2 Slow-roll inflation

so the exponential expansion of the universe will last for many e-foldings if

' V@ « V167G . (4.2.10)
Vp)

According to Eq. (4.2.8), the condition on the potential for the inequality
(4.2.5) to be satisfied is that

‘—V @ « V3axG, @4.2.11)
V(p)

which is guaranteed by the inequality (4.2.10). Also, Eq. (4.2.8) gives

_ V'@ VeH V'@V V¢
3H 3H? 9H? BrGV?

The inequality (4.2.10) ensures that the absolute value of the last term on
the right-hand side is much less than |V/(¢)][, so the condition for || to be
much less than |V (g)| is that | V()| < 9H?, or, in other words,

‘ V' ()
Vip)

Egs. (4.2.10) and (4.2.13) are the two “flatness” conditions needed to insure
the slow roll of both ¢ and ¢. It is possible in principle that the second flat-
ness condition (4.2.13) may not be satisfied for a potential that does satisfy
the first flatness condition (4.2.10), but this is unusual, and in particular is
not possible for the simple potentials discussed below.

Under these conditions the expansion is generally not strictly exponen-
tial, but it can easily be exponentially large. Suppose that during some time
interval the field ¢(¢) shifts from an initial value ¢; to a final value ¢;, with
0 < V(p) < V(gy), with both inequalities (4.2.10) and (4.2.13) assumed
valid over this range of ¢. The Robertson—Walker scale factor will increase
during this period by a factor

1
a(t?) — exp [/ 2 Hdt] ~ exp |:f<p2 H—d(pi|
a(tl) 1 1 @

2 871GV((p)) ]
~ _ T ) do 42.14
eXp[ ~/¢1 ( V() v ( )

In this range the potential is positive and decreases as ¢(z) runs from ¢ to
¢, so the argument of the exponential in Eq. (4.2.14) is positive. Condition
(4.2.10) tells us that this argument is much greater than /47 G|¢; — ¢2], so
this flatness condition guarantees that we get a large number of e-foldings

(4.2.12)

< 247G . (4.2.13)
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in any time interval in which ¢ changes by an amount at least as large as
1//47G = 3.4 x 1018 GeV.

It is important to note that such large values of the scalar field do not
necessarily rule out the classical treatment of gravitation on which we have
been relying. The condition that allows us to neglect quantum gravitational
effects is that the energy density should be much less than the Planck energy
density:

1V (p)| < 4nG)~2. (4.2.15)

This condition can be satisfied, even if ¢ is comparable to the Planck mass
~ G~!/2, by supposing that ¥ (¢) is proportional to a sufficiently small
coupling constant. Neither the flatness conditions (4.2.10), (4.2.13) nor the
growth (4.2.14) of a(t) for a given change in ¢(¢) depend on the value of
such a coupling constant.

Depending on the potential shape, the flatness conditions (4.2.10) and
(4.2.13) may provide either conditions on the initial value of the scalar field
or on the parameters of the potential itself. As an example of the first sort,
consider the power-law potential

Vip) = go” , (4.2.16)

with g and « arbitrary real parameters, except that we assume that g > 0 and
take || larger but not orders of magnitude larger than unity. The flatness
conditions (4.2.10) and (4.2.13) are then both satisfied for |¢| > 1/+/47 G,
irrespective of the value of the coupling constant g. The number of e-
foldings of expansion for a scalar field that starts at a value ¢ and ends at
a much smaller value is given by Eq. (4.2.14) as 8= G(pl2 /a, so for instance
for @ = 4 we get the 62 e-foldings needed to avoid the horizon problem
for inflation ending at a temperature 2 x 101% GeV/kg if |¢1| > /31/7G.
On the other hand, for this potential the condition (4.2.15) for the neglect
of quantum gravitational effects does put an upper bound on |g|. For
instance, in the case @ = 4, the potential (4.2.16) will satisfy condition
(4.2.15) if g <« (V4 Glp|)~* so, with || just large enough to get 62 e-
foldings of exponential expansion, to avoid quantum gravity corrections we
need g < 2 x 107>, The need for a very small coupling can be avoided in
theories with more than one scalar field, such as “hybrid inflation” theories,’
in which the effective self-coupling of one scalar field is very small because
the other scalar field has a very small mass and hence a small expectation
value.

5A.D. Linde, Phys. Lett. B 259,38 (1991); Phys. Rev. D 49, 748 (1994) [astro-ph/9307002].
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4.2 Slow-roll inflation

There is a well-known example of a rather different sort for which
Egs. (4.2.1) and (4.2.2) can be solved exactly, the exponential potential:®

V(p) = gexp(—rg) , (4.2.17)

with g and A arbitrary constants. It is easy to verify that Egs. (4.2.1) and
(4.2.2) are satisfied by’

o) = In (%gfﬂ) , (42.18)
and
acx iV,  H=1/et, (4.2.19)
where € is the positive dimensionless quantity
32
=G (4.2.20)

The flatness conditions (4.2.10) and (4.2.13) here respectively read € < 1
and € « 3/2, so both are satisfied if and only if

e<1, 4.2.21)

with no constraint on the values of either g or ¢. This exact solution is useful
as a check of approximate calculations for more general potentials. For
instance, Eq. (4.2.18) may be compared with the solution of the approximate
equation (4.2.8), which for the exponential potential is

1 2.2
o) = In (8”(;#) , 4.2.22)

The difference between this and the exact solution (4.2.18) is evidently neg-
ligible for ¢ « 1. Likewise, the increase in the Robertson—Walker scale
factor during a time interval from ¢| to ¢, in which the field drops from ¢
to ¢ is

1/e
aty) _ <t_z) _ o0rph/2 (4.2.23)
a(ty) 14

6L. F. Abbott and M. B. Wise, Nucl. Phys. B 244, 541 (1984); F. Lucchin and S. Matarrese,
Phys. Rev. D 32,1316 (1985); Phys. Lett. B 164, 282 (1985); D. H. Lyth and E. D. Stewart, Phys. Lett.
B 274, 168 (1992).

TThis is an exact solution for all values of 7, but it is not the most general solution. Since Egs. (4.2.1)
is a second-order differential equation, it has a two-parameter set of solutions. The particular solution
(4.2.18) is an attractor, which the general solutions approach for large 7.
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which is exactly the same as the “slow-roll” result (4.2.14) for the exponential
potential.

It is assumed in these theories that when V' (¢) dropped sufficiently far,
the inequalities (4.2.10) and (4.2.13) were in general no longer be satisfied,
and ¢ began a damped oscillation around the minimum of V' (¢), which is
at the present value ¢g. Eventually ¢ would have approached close enough
to ¢p so that we can approximate the potential as a quadratic,

1
Vip) = §m2 (¢ —90)* . (4.2.24)

(In order to account for the small present value of the vacuum energy, it
is necessary to assume that, for reasons that remain entirely mysterious,
the minimum value of the potential is very close to zero.) This is just like
the field theory of spinless particles with mass m and negligible velocity.
In order to have ended inflation, there must also be some coupling of the
inflaton scalar field to other fields, including the fields of ordinary matter
and radiation, so that the energy density of the inflaton field decreased as

3
Po(1) = py(tr) (‘j(’:;) e~ HU=t (4.2.25)
where T is the rate of decay of the ¢ quanta into other particles, and ¢; is
taken at the beginning of the inflaton oscillation and decay. This is known
as the period of reheating.® It is this period in which the entropy observed
in the present universe is supposed to be generated.’

The energy density pys of the particles into which ¢ decayed satisfies a
conservation equation like Eq. (1.1.32), but corrected to take account of the
flow of energy from the inflaton:

oM +3H (ppr +py) =Tpy (4.2.26)

For definiteness, we will assume that the decay products of the inflaton are
highly relativistic, so that pys = par/3. Then the solution of Eq. (4.2.26) is

_ penT ) [

£y e "= gy 4227
v a(t) e ( )

M (D)

194

In contemporary models of inflation this is the source of all the matter
and radiation in the present universe. (In using this relation it is important

8The term reheating is a historical relic of early theories of inflation in which it was assumed that the
zero-temperature slow roll of the inflaton field followed an earlier period of high temperature.

9A. D. Dolgov and A. D. Linde, Phys. Lett. 116B, 329 (1982); L. F. Abbott, E. Farhi, and M. B.
Wise, Phys. Lett. 117B, 29 (1982).
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4.2 Slow-roll inflation

to keep in mind the possibility of parameteric amplification of the density
Py (tr). Thatis, scalar field expectation values can increase the effective mass
of the inflaton field ¢, and thereby increase its energy density.'?)

The matter energy density (4.2.27) starts equal to zero at ¢t = ¢;, then
rises at first, and finally falls as the density is attenuated by the expansion of
the universe. Itis of some interest to find the value of py/(¢) at its maximum,
because this tells us the maximum temperature ever reached, which controls
the kinds of relics—cold dark matter, baryons, monopoles, axions—Ieft over
from the early universe. This maximum density can be easily calculated in
two extreme cases, for I' > H(t;) and I’ < H (7).

ForT" > H(tr), we can express Eq. (4.2.27) as a power series in H(¢7)/ T
by repeated integration by parts

B atp\* (,  H@p)

We see that in this case pjs jumped up almost immediately to the value
Py (tr), and then decreased with the usual a~* factor, so in this case all the
energy of the inflaton field at the end of inflation went into ordinary matter
and radiation. This was the assumption made in deriving lower bounds on
the number of e-foldings of inflation in the previous section.

For I' « H(t7), the maximum value of pjs(r) was reached at a time
when the exponential ¢~ 7'~ in Eq. (4.2.27) had not yet begun to decay.
(This will be checked below.) Setting this factor equal to unity, we have

3 t
o (1) ~ w / a(t)dt’ (4.2.29)
a (t) tr

At this time the energy density of the universe was still dominated by the
inflaton, so a(7) = a(ty)(t/t1)*3, and Eq. (4.2.29) becomes

3 8/3 53
P () = 2T 11 py (1) (I—I) <(i) _ 1) . (4.2.30)
t ir

This reached a maximum at ¢+ = (8/3)3/°¢;, which incidentally confirms
that, under the assumption that ' <« H(¢;) = 2/3¢;, the argument of the
exponential in Eq. (4.2.27) at this maximum was still negligible. At this
maximum, the matter density is

prmax = 3/8)%°T 11 py(17) = 0.139 (F/H(tz)) peltr) . (4.2.31)

101, Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994); Phys. Rev. D
56, 3258 (1997).
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In this case the maximum energy density at the beginning of the radiation-
dominated era would have been much less than the energy density in the
inflaton field at the end of inflation.

4.3 Chaotic inflation, eternal inflation

It was soon realized that some “new inflation” models actually entail an
endless production of inflating bubbles.! This has come to be called “eternal
inflation.”? To take one example, if the inflaton scalar field at a given point in
space once had a value of unstable equilibrium (like at the top of a potential
hill) then the probability that the inflaton field was still at this value after
a time ¢ decreased as exp(—yt). However, the volume in which the scalar
field had this value was meanwhile increasing as exp(+3H?t), so as long as
3H > y the volume of space that still undergoes inflation eternally increases
exponentially.

We have been assuming that the scalar field is initially independent
of position, aside from small perturbations, about which more in
Chapter 10. Soon after the introduction of new inflation, the possibilities
of inflationary theory were greatly expanded and improved when Linde?
proposed the theory of “chaotic inflation,” in which initially one or more
scalar fields varied in a random way with position. Here and there one
would have found patches of space in which an inflaton field took a nearly
uniform value at which the potential satisfied the slow-roll conditions
(4.2.10) and (4.2.13), as for instance a value substantially greater than
the Planck mass for a power-law potential. Inflation will then have
occured in such a patch, provided the patch was initially sufficiently
large.

It is necessary to require that the uniform patch be sufficiently large,
because the scalar field Lagrangian density given by Eq. (B.63) contains
a term involving spatial derivatives, which for a non-uniform scalar field
contributes a term —a~2V?2¢ on the left-hand side of Eq. (4.2.1). In order
for this term not to interfere with the slow-roll analysis of the previous
section, we need the scale L of proper distances over which ¢ takes a roughly
constant initial value to be greater than |¢/ V' (¢)|'/2. For instance, for the

IP. I Steinhardt, in The Very Early Universe — Proceedings of the Nuffield Workshop, 1982, eds.
G. W. Gibbon S. W. Hawking, and S. T. C. Siklos (Cambridge University Press, 1983): 251; A. Vilenkin,
Phys. Rev. D 27,2848 (1983).

2For reviews of this and other variants of inflation, see A. Guth, talk given at the Pritzker Symposium
on the Status of Inflationary Cosmology, January 1999, astro-ph/0002188; A. Linde, J. Phys. Conf. Ser.
24, 151 (2005) [hep-th/0503195].

3A.D. Linde, Phys. Lett. 129B, 177 (1983).
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potential V' (¢) = g¢*, this condition gives

1 1 1/2
b2 el ~ <g<4nG>2¢4> (”Gw) VAarG (4.3.1)

The classical field theory condition (4.2.15) makes the first factor much
larger than unity, while the slow-roll condition (4.2.10) makes the second
factor also much larger than unity, so the patch size must be very much
greater than the third factor, which is essentially the Planck length. Such
relatively large uniform patches may be quite rare, but that is no argument
against this hypothesis, because life can only arise in big bangs that stem
from such patches.

A sufficiently large patch will inflate to an enormous size, which to
observers deep inside seems highly homogeneous and isotropic. In this
way, chaotic inflation solves a puzzle that had not generally been realized to
be a puzzle, even when the first inflation theories were being developed. It
explains not just why the Robertson—Walker metric in which we find our-
selves was remarkably flat in the past; it also explains why we find ourselves
in a Robertson—Walker metric at all. Unfortunately, it is hard to see how
we will ever observe any part of the universe beyond our inflated patch.
The validity of the idea of chaotic inflation will probably have to come from
progress in fundamental physics, which may verify the existence of a suitable
inflaton field, rather than from astronomical observation.

Even when the scalar field in a patch of the space was large enough to
start a slow roll inflation, quantum fluctuations in smaller regions within
that patch would subsequently have driven the inflaton field to even higher
values, so that these regions will begin an earlier stage of inflation.* In this
way, chaotic inflation turns out also to be eternal.

4A.D. Linde, Mod. Phys. Lett. Al, 81 (1986); Phys. Lett. B 175, 395 (1986); A. S. Goncharev,
A. D. Linde, and V. F. Mukhanov, Int. J Mod. Phys. A2, 561 (1987); A. D. Linde, D. A. Linde, and
A. Mezhlumian, Phys. Rev. D 49, 1783 (1994) [gr-qc/9306035].
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5

General Theory of Small Fluctuations

In most of the work described in the previous chapters, the universe has been
treated as isotropic and homogeneous, with a gravitational field described
by the Robertson—Walker metric. This is of course just an approximation,
which ignores many of the most interesting things in the universe: galaxy
clusters, galaxies, stars, us. We now turn to an analysis of these departures
from homogeneity and isotropy.

In this chapter we will lay a foundation for this analysis, by deriv-
ing the general relativistic equations that govern small fluctuations, and
drawing general conclusions about their implications. Chapter 6 will apply
this formalism to the evolution of structure, from the radiation-dominated
era to near the present. In Chapters 7 and 8 we apply the results obtained
in Chapter 6 to the observed fluctuations in the cosmic microwave back-
ground and to the growth of structure. Chapter 9 deals with gravitational
lensing, which may in the long run provide the best tool for analyzing the
large scale structure of dark matter. These chapters are kept at a general
level, independent of detailed assumptions about an inflationary era before
the radiation-dominated era. Chapter 10 will then explore the implications
of inflationary theories for the calculations of Chapters 6 through 9. Some
readers may prefer to skip on immediately to Chapter 6, using the present
chapter as a source of useful formulas, while others will do better to read
these chapters in order.

5.1 Field equations

As an essential feature of the analysis presented here, we assume that during
most of the history of the universe all departures from homogeneity and
isotropy have been small, so that they can be treated as first-order pertur-
bations.! Because the observable universe is nearly homogeneous, and its
spatial curvature either vanishes or is negligible until very near the present,
we will take the unperturbed metric to have the Robertson—-Walker form
(1.1.11), with curvature constant K = 0. (Effects of a possible finite curva-
ture at times close to the present will be included in Chapters 7 through 9

I The study of first-order cosmological fluctuations was initiated by E. Lifshitz, J Phys. US.S.R.
10, 116 (1946). Classical second-order corrections were worked out by K. Tomita, Prog. Theor. Phys.
37, 831 (1967); 45, 1747 (1970); 47, 416 (1971). For recent work, see K. Tomita, Phys. Rev. D 71,
3504 (2005); N. Bartolo, S. Matarrese, and A. Riotto, J. Cosm. & Astropart. Phys. 0606, 024 (2006)
[astro-ph/0604416].
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5 General Theory of Small Fluctuations

where they are relevant.) The total perturbed metric is then
Zuv = &uv + My (5.1.1)
where g,,, is the unperturbed K = 0 Robertson—Walker metric
go=—1, 8o=28:=0, &j=da 1), (5.1.2)

and Ay, = h,, is a small perturbation. (Here and from now on, a bar
over any quantity denotes its unperturbed value.) The perturbation to the

inverse of a general matrix M is M ! = — M~ (M)YM ™!, so the inverse
metric is perturbed by
WY =gtV — g = —ghPg" h,q (5.1.3)

with components
Wo=—a*h;, h=a2hg, h°=—hy. (5.1.4)

Note the — sign in the last expression in Eq. (5.1.3); in our notation, the
perturbation §gY to g"" is not given by simply using the unperturbed metric
to raise the indices on §gy,, .

The metric perturbation produces a perturbation to the affine connection

I )
STl = 58" [~ 2p U5 + Doy + duhps = dhi] . (5.1.9)

For K = 0, the only non-vanishing components of the unperturbed affine
connection are given by Egs. (1.1.17)—(1.1.19) as

_. _. a _
i i . 0 __ 9.
jo—|0j—_a5lf’ [y = aadjj .

Thus Eq. (5.1.5) gives the components of the perturbed affine connection
as

i =53 (=2ad hio 8jxc + dchij + dhi — dihjx ) (5.1.6)
ol 2k,

8Tjo = 55 \ = hir + hij + 3hio — Biljo (5.1.7)
o_ 1/, .

8Fij = 3 <2aa dij hoo — ajhi() — 31'//1]'0 + //l,]) (5.1.8)
l —_ —— . —_— .

o0 =55 <2h10 3zhoo) (5.1.9)
0 1

8T = —hio — 5 dihoo (5.1.10)
0 1

800 = —5hoo (5.1.11)
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5.1 Field equations

In particular, we will need

1 1
Ao P
BFAM == E)u |:2_azhll 2/1()()i| .
To write the Einstein equations, we need the perturbation to the Ricci tensor
A
AL
R ax*

+8r), Ty, +6ry, T, —8r), Ty —ory, T, (5.1.12)

SRy =

with components
1 D |
SR = —Eajakhoo — (Za + aa) Sjkh()o — Eaa Sk hoo

(Vzh]k 8'8jhik — aiakhij + 8jakhii>

2 22
1. a2 P
) ik + 5~ 2 (h ]khu> 2 (—Zhjk + (Sjkhii) + Esl'kaihio
1 . . a
+5 (8o + dhjo ) + == (350 + dhyo) (5.1.13)
2 2a

1 /5 a 24
dRo; = dRj0 = —8 h()() + — 2 (V hjo — 3j8ihi0) —\3 + 7 hj()

+%% [ : (@i akhkj)] : (5.1.14)
8Roo = %V hoo + ;—ahoo 12 dihio
+ﬁ [ii,-i - 261—6'1}.11'1' +2 (Z—i - g) h,-,} . (5.1.15)
In general, we can put the Einstein field equations (B.71) in the form
Ry = -81GSy, (5.1.16)
where
S =Ty — %g,w g7 Tyy . (5.1.17)

(A cosmological constant can be accommodated by including a term in 7,
proportional to g,,, with a constant coefficient.) The perturbation to the
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5 General Theory of Small Fluctuations

energy-momentum tensor and metric produces a perturbation to the source
tensor Sy,

1 1 -
8Suy = 8Ty — =& Ty — Ethﬁ : (5.1.18)

2
We are not assuming that the contents of the universe form a perfect fluid,
but the rotational and translational invariance of the unperturbed energy-
momentum tensor 7T"" require that it takes the perfect fluid form
(B.42):

Tyw =p8guv + (ﬁ + ﬁ)ﬁuﬁv ) (5.1.19)

where po(¢), p(t), and u* are the unperturbed energy density, pressure, and
velocity four-vector, respectively, with #° = 1 and &/ = 0. Also, we use
the unperturbed Einstein equations (1.5.17) and (1.5.18) to write ¢ and p in
terms of the Robertson—Walker scale factor and its derivatives

3 [a? 1 (20 &
r=— (=), p=——-" [+ ). 5.1.20
p 87 G (a2> P 871G<a+a2> ( )

It follows in particular that the unperturbed energy-momentum tensor has
the trace

Thus Eq. (5.1.18) gives

2 . %)

a 3 a a
8Siu = 8Ty — —838T" + —— | =+ = | I; 5.1.21
ik = = Ok A+87‘[G<a+a2> ik 5 ( )
3 (a & —
8S]0_8T]0+8 G +—2 hjo , (5.1.22)
8So0 = 8T, +15TA + . a+a2 h (5.1.23)

00 = 00 5 A 871G a2 00 - 1.

The Einstein equations (5.1.16) thus take the form

2
a 1
—8nG (fSTjk — ?éﬂﬁ T)‘)\> = —zajakhoo — (2&2 + a&i) fsjkhOO

1 1
— Eaa ik hoo + — 2 (Vzh,k 0;0hjx — 0;0khjj + ajakhi[>
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5.1 Field equations

;2

1. a a> 3i ?
2h]k + — % (h ]khu) (a_2 + ;) hjye + (;) Sjchii
1
+4 5ka,h,0 ¥ (ajhko + akh,o) 5o (o + dihjo) . (5.1.24)

1/, a2
-8 GéTj) = —ajhoo + o) (V hjo — 3j3,‘hi0> + (; + ;) hjo

101
+ 357 [ (a I — akhkj>] : (5.1.25)
| R 1, 3a; ;
887G |8Tgo + =867, )| = =—=Vhy + —h()() 3ihi0
2 2a? e

1 . 2. .2 . .0 .
+ 32 |:h[i - _ahii +2 (a_2 - ‘_’) hii] +3 (a—z + Z) hoo. (5.1.26)
a a a a a a

The components of the energy momentum tensor are subject to the
conservation condition that 7#,.,, = 0, which to first order in perturba-
tions gives

9udTH, + T 8T, — T 8T, + 8T/, Th, = 8T, T, =0, (5.1.27)

in which the perturbations to the energy-momentum tensor §7*, with
mixed indices can be calculated from

§TH, = g [8Tow — haue T, . (5.1.28)

Setting v equal to a spatial coordinate index j gives the equation of
momentum conservation

2
38T +0; 5T’,+—5T° —aas T o— (p+p)( 9; hgo——h]()) =0, (5.1.29)

while setting v equal to the time coordinate index 0 gives the equation of
energy conservation

808T00+8[8Ti0+3—a8T00—E(STii— (@) <—2—ah,~i+izﬁ> =0. (5.1.30)
a a 2a? a

As remarked in Appendix B, these conservation equations are not
independent conditions, but may be derived from the Einstein field equa-
tions. However, it is often convenient to use either or both in place of one or
two of the field equations. Also, in the frequently encountered case where
the constituents of the universe are non-interacting fluids (such as one fluid
consisting of cold dark matter and another consisting of ordinary matter
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5 General Theory of Small Fluctuations

and radiation) these conservation equations are satisfied separately by each
fluid, information that could not be derived from the field equations.

The results obtained so far are repulsively complicated. Fortunately, the
spatial isotropy and homogeneity of the unperturbed metric and energy-
momentum tensor allow us to simplify these results by decomposing the per-
turbations into scalars, divergenceless vectors, and divergenceless traceless
symmetric tensors, which are not coupled to each other by the field equa-
tions or conservation equations. The perturbation to the metric can always
be put in the form?

hoo = —E , (5.1.31)
oF
o — a [_, 4 G[] , (5.1.32)
ax!
?B G  9C
_ 2 B ! J .
h,-j_a |:A8U+W+W+W+DU:| ) (5.1.33)

where the perturbations 4, B, C;, D;j = Dj;, E, F, and G; are functions of
x and ¢, satisfying the conditions
0C; 3G, dD;j
— =—=0, =0, D;=0. (5.1.34)
ax! ax! ax!
To carry out a similar decomposition of the energy-momentum tensor,
we first note that for a perfect fluid we would have

Ty = pguv + (p + puyuy (5.1.35)
with
g uyu, = -1, (5.1.36)
Recalling that #; = 0 and #29 = —1, we find that the normalization condition
Eq. (5.1.36) gives
su = Sug = hoo/2 , (5.1.37)

while du; is an independent dynamical variable. (Note that Su* = §(g""u,)
is not given by g"*'8u,.) Then the first-order perturbation to the energy-
momentum tensor for a perfect fluid is

8Ty = phy + a*8;8p,  8Tio = phio — (p + P)Sui,  8Too = —p hoo + p.
(5.1.38)

2To see this, we define F, A, and B, as the solutions of V2F =q! dihjo, V244 V4B = a*28,-3jhjk,
and 34 4+ V2B = a_zhii, then define C; as the solution of v?2 Ci= a—2aj/;,k — 0;[4 + V2B], and then
use Eqgs. (5.1.32) and (5.1.33) to define G; and Dy
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5.1 Field equations

More generally, we can always put the perturbed energy-momentum tensor
in a form like that of the perturbed metric. In general, we define dp just
as for a perfect fluid, as the difference between § Tog and —phgg, but Sp is
not necessarily given by varying the temperature and chemical potentials
in the formula for p that applies in thermal equilibrium. Also, in general
we define the velocity perturbation Su; times p + p as for a perfect fluid,
as the difference between —8§Tj9 and ph;p, and we decompose du; into the
gradient of a scalar velocity potential Su and a divergenceless vector SuiV.
Finally, we define a?8p as the coefficient of §; in the difference between
8T and pé;;, again without assuming that §p is given by varying the tem-
perature and chemical potentials in the formula for p that applies in ther-
mal equilibrium. The other terms in 8T}, denoted 3;3;75, 857er + o},
and Jrl.jT , represent dissipative corrections to the inertia tensor. That is, we
write

8Ty = phi +a’ [517819 + S + o) + ) + ni,.T] , (5.1.39)

5Tio = phio — (5 + ) <8i8u + Sul-V) , (5.1.40)
8Too = —p hoo + 6p, (5.1.41)
V T

where ;" T and Sul.V satisfy conditions analogous to the conditions
(5.1.34) satisfied by C;, Djj, and G;:

8571~V=8,-8u~V=0, 8,-71T=O, l

To repeat, these formulas can be taken as a definition of the quantities 8p,
3p, and Su; = 3;8u + Su)’, as well as of the anisotropic inertia terms 7%,
7", and =T, which characterize departures from the perfect fluid form of
the energy-momentum tensor. The perturbed mixed components (5.1.28)
of the energy-momentum tensor, which are needed in the conservation laws,
now take the form

8T = 8yop + diym® + o) + o) + 7],

8Ty = a=(p + p)(ad;F + aG; — d;5u — su!’) , (5.1.43)
ST = (p+p)@du+suly, 8T% =—bp,

8T, =38p — 8p + VxS .

With these decompositions, and again using Egs. (5.1.20), the Einstein
field equations (5.1.24)—(5.1.26) and conservation equations (5.1.29) and
(5.1.30) fall into three classes of coupled equations:
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5 General Theory of Small Fluctuations

Scalar (compressional) modes

These are the most complicated, involving the eight scalars E, F, A, B, §p,
8p, w3, and Su. The part of Eq. (5.1.24) proportional to Sk gives

—47 Gd? [8,0 —8p — Vzns] = %adii + (2[12 +aa)E + %VZA - %az/f
—3aad — %aézsz +aViF .  (5.1.44)
The part of Eq. (5.1.24) of the form 0;9;S (where S is any scalar) gives
ajak[16nGa2nS +E+A—d*B—3aaB + 2ak + 4c'zF] —0. (5.1.45)
The part of Eq. (5.1.25) of the form 9;S (where S is again any scalar)

gives

8nGa(p+p)ojdu=—adE+ adiA . (5.1.46)
Eq. (5.1.26) gives

1 3a. 1_,. ;
—4n G ((Sp + 36p + Van> SRR v ey SN v23 Bt Vg o
242 2a a a?
3. 3a. 3a 1 . .
b 2A+ 24 Yy v EL AV,
2 a a 2 a

(5.1.47)

The part of the momentum conservation condition (5.1.29) that is a
derivative 9; is

_ 3a _ |
0 [8p -+ V275 + Wl + p)oul + = (5 +P)du+ 55 + HE] = 0.
(5.1.48)
and the energy-conservation condition (5.1.30) is
. da o) [ 2=, - a_g
8p + ;(5,0 +ép)+ Vo |—a (p+pF+a " (p+pdu+ P
1
13 +13)80[3A+V23] =0, (5.1.49)
In Egs. (5.1.48) and (5.1.49), 8p, 8p, and 7 are elements of the perturbation
to the total energy-momentum tensor, but the same equations apply to each

constituent of the universe that does not exchange energy and momentum
with other constituents.
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5.1 Field equations

Vector (vortical) modes

These involve the four divergenceless vectors G;, C;, (Sul.V, and JTI-V. The part
of Eq. (5.1.24) of the form 9, V; (where V; is any vector satisfying 9; V; = 0)
gives

o167 Ga*n)” — & - 3aaC; + a6y + 2G| =0, (5.1.50)

while the part of Eq. (5.1.25) of the form V; (where V' is again any vector
satisfying 9;V; = 0) gives

a

2v2Cj . (5.1.51)

1
87 G(p + p)asu] = 5VZG,- —
The part of the momentum conservation equation (5.1.29) that takes the
form of a divergenceless vector is

o 3
Vi) +00l(p + p)duj 1 + P +p)su) =0, (5.1.52)

In particular, for a perfect fluid niV =0, and Eq. (5.1.52) tells us that (p +
p)éujV decays as 1 /a>. In this case, both Egs. (5.1.50) and (5.1.51) imply that

the quantity G; — aCj (which we will see in Section 5.3 is the only physically
relevant combination of metric components for vector perturbations) decays
as 1/a2. Because they decay, vector modes have not played a large role in
cosmology.

Tensor (radiative) modes

These involve only the two traceless divergenceless symmetric tensors D
and rrl.jT . There is only one field equation here: the part of Eq. (5.1.24)
of the form of a divergenceless traceless tensor is the wave equation for
gravitational radiation

—16w Ga’n] = V>Dyj — a* Dy — 3aaDy; . (5.1.53)

The above equations for scalar, vector, and tensor perturbations do not
form a complete set. This is in part because we still have the freedom to
make changes in the coordinate system, of the same order as the physical
perturbations. In Section 5.3 we will see how to remove this freedom by a
choice of “gauge.”

But even after the gauge has been fixed, the equations for the scalar
modes will still not form a complete set, unless the pressure p and anisotropic
inertia 75 can be expressed as functions of the energy density p. This is the
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5 General Theory of Small Fluctuations

case, for instance, for a constituent of the universe such as cold dark matter,
whose particles have negligible velocities, and do not interact with other
constituents. For such constituents, we can simply set p and 7% equal to
zero. Things are only a little more complicated for constituents of the uni-
verse whose particles’ velocities cannot be neglected, but which experience
collisions that are sufficiently rapid to maintain local thermal equilibrium.
In such cases, 7° can be neglected, and if the particles are highly relativistic
p is simply p/3. Even where the particles are only moderately relativistic,
the pressure in thermal equilibrium can usually be expressed as a function
of p and one or more number densities # that satisfy the condition that the
current nu* is conserved

(nut),, =0. (5.1.54)

This condition tells us that the unperturbed number density satisfies # o
a—3, while the perturbation satisfies

i (8—'1) + Lo+ l(3A’ n VZB) erpo0. (5155
ar \ n a? 2 a

With p given as a function of p and n, after gauge fixing the field equations
and conservation equations (5.1.48), (5.1.49), and (5.1.55) form a complete
set of equations for the scalar modes.

Similarly, even after gauge fixing, the equations for vector and tensor
modes do not form a complete set unless we have formulas for niV and zrl-jT ,
respectively. This is no problem for perfect fluids, for which 7/ = nl-jT =0.

In the general case local thermal equilibrium is not maintained, and we
must calculate 8p, 8p, 75, nl-V and n[jT by following changes in the distribu-
tion of individual particle positions and momenta, which are governed by
Boltzmann equations. The Boltzmann equations for photons and neutrinos
are derived in Appendix H, and used in Chapters 6 and 7.

5.2 Fourier decomposition and stochastic initial
conditions

In order to simplify our work we want to make full use of the symmetries
of the problem. We have already used the rotational symmetry of the field
and conservation equations in sorting out perturbations into scalar, vector,
and tensor modes, and we will apply rotational symmetry again later in this
section. The equations also have a symmetry under translations in space,
which can best be exploited by working with the Fourier components of
the perturbations. As long as we treat perturbations as infinitesimal, there
is no coupling between the Fourier components of different wave number.
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5.2 Fourier decomposition and stochastic initial conditions

Further, only the initial conditions but not the equations themselves depend
on the direction of the co-moving wave number q.

Let us first see how this works out for the scalar modes. Because the
unperturbed metric, energy density, etc. are independent of position, the
general solution for the corresponding perturbed quantities may be written
as a superposition of plane wave solutions, whose spatial variation is given
by factors exp(iq - x), where q is a real wave vector, over which we must
integrate. The coefficient of exp(iq - x) in each of the scalar perturbations
A(x, 1), B(x, 1), etc. is a solution of coupled ordinary differential equations
with time as the independent variable, obtained by replacing /9’ with ig;
everywhere in the equations presented in Section 5.1. The differential equa-
tions obtained in this way depend on ¢ = |q|, but not on the direction of q, so
the solutions can be written as superpositions of independent g-dependent
normal modes, each characterized by a set of perturbations A, (), Buy(?),
etc., with an overall normalization factor «,(q) carrying a discrete index n
that labels the various independent solutions. These normalization factors
depend on the initial conditions, which of course are not rotationally invari-
ant — if they were then there would be no galaxies or stars — so the «;(q)
depend on the direction of q, but the solutions A4,,,(7), By, (?) can be chosen
to depend only on ¢ = |q|. That is, we write

Ax, =Y / d*q (q) Apg (1)€Y,
B(x,1) = Z / d®q ay(q) By ()™, (5.2.1)

and likewise (with the same a,(q)) for E and F as well as for 8p, 8p, Su, =5
and any other rotational scalars.

Now, as discussed in Section 2.6, we expect the scalar variables A(x, 7),
B(x, 1), etc. to be stochastic variables, characterized by averages of their
products. The solutions {4,(?), By, (1), ...} are ordinary fixed functions,
not stochastic variables, so the stochastic nature of the scalar variables arises
from the stochastic character of the initial conditions, embodied in the fac-
tors a,(q). Under the assumption that the scalar variables are governed
by Gaussian distributions, of the sort discussed in Appendix E, all aver-
ages of scalar quantities can be expressed in terms of bilinear averages
(Ax, 1) A(y, 1)), (A(x,t) B(y, 1)), etc. Let us consider the average of the
product of any two real scalar quantities X (x, #) and Y (y, ). It turns out
to be very convenient to use Eq. (5.2.1) for X and its complex conjugate for
Y, so that

XD Yy, 0) =) / dq f B g Xug (1) Yy (D @@ty (q)) /4% 7Y,

nm
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5 General Theory of Small Fluctuations

We assume that although the initial conditions are not translationally
invariant, they are governed by a translationally invariant probability dis-
tribution function, so that (X (x,7) Y(y, ?)) should be a function only of
x —y. This immediately tells us that (o, (q)«;;,(q')) must be proportional to
a delta function, 83(q — q'). Furthermore, although the initial conditions
are not rotationally invariant, we also assume that they are governed by
a rotationally invariant probability distribution, so that the function of q
multiplying this delta function can only depend on the magnitude ¢ = |q]|
of the wave vector, not on its direction. That is, we can write

(an(@a (@) = Pum(@)8(q — q)) (5.2.2)

and so
XEDYy.0) =) / d3q Xug(1) Y, (0) Pun(q) explig - (x —y) .

(5.2.3)

The task of the theory of cosmological perturbations is twofold: to find
the solutions A4, (7), By, (1), etc. of the differential equations under suitable
assumptions about the constituents of the universe, and to calculate the
spectral functions Py, (¢) in a theory of the origin of fluctuations in the
very early universe.

Inspection of Eq. (5.2.2) shows immediately that P, (¢) is a Hermitian
matrix

P:m((I) = Pmn(q) , (524)
and it is positive, in the sense that

> Pun(@éns > 0 (5.2.5)

nm

for any set of complex numbers &, (or functions of ¢) that are not all zero.
In general, for an arbitrary choice of independent solutions, there is no
reason why P, (¢) should also be diagonal, so in general there will be inter-
ference between the different modes. However, it is sometimes convenient
to choose the solutions so that Py, (¢) is simply equal to &,,,. To see that
this can always be done, we recall a theorem of matrix algebra, which says
that, because it is positive and Hermitian, P, (¢) can be put in the form

an((]) = Zznr(Q)Z:ﬁnr(q) D (526)

for some square matrix Z,,(¢), with r running over as many values as
n. (That is, in matrix notation, P = ZZT.) We can then redefine the
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5.2 Fourier decomposition and stochastic initial conditions
independent solutions, defining

Arg() =) Zur (@ Ang(t) , Brg() =) Zur(q)Bug (1) , ete,,

with a corresponding redefinition of the normalization factors

an(q) =Y Zur(q) @r(q)

chosen so that
AX, 1) = Zfd3q&r(Q)2rq(t)eiqlx )
p

and likewise (with the same @, (q)) for B, E, and F, as well as for ép, ép, Su,
etc. The advantage of this is that now the relevant bilinear averages are

(@ (Qar(q)) = 8,:8°(q—q) . (5.2.7)

This s the result that was to be proved. With the solutions Zl,ﬁq (1), etc. chosen
so that the &,(q) satisfy Eq. (5.2.7), the different modes are uncorrelated.
That is, any binary average is a sum over the individual modes. For instance,

<A@J»ﬂmn>=§:/d%e”“ﬂwi¢nﬁ. (5.2.8)

In this way, the problem of calculating the spectral function P, (¢) is traded
for the problem of finding the correct linear combination of solutions for
which Eq. (5.2.7) applies.

Incidentally, there is no problem in calculating the averages (o,a,) if
we know the averages (a,«;,), because the «, satisfy a reality condition.
To derive this condition, note that the differential equations for A4,,(7),
By, (1), etc. are real, so the set of complex conjugates Azq(t), B,’jq(t), etc.
of solution 7 is also a solution, and can therefore be expressed as a set of
linear combinations ), Cum(q) Amg(1), D, cnm(q) Bmg(1), etc. (Of course,
in the case of a real solution, ¢y, (¢) = 8u,.) The functions A(X, 1), B(X, 1)
are real, so by taking the complex conjugate of Egs. (5.2.1) and replacing
the integration variable q with —q we see that

> k@ cum(@) = em(—q) - (5.2.9)

In particular, it follows that

(n@am(@)) =Y Pu(@cim(@8 @+ q) -
/
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5 General Theory of Small Fluctuations

Now let us consider the tensor modes. These are completely charact-
erized by the traceless divergenceless symmetric tensor Dj;(x, 7). (The stress
tensor nl.]T (x, ?) is not an independent dynamical quantity but, as we will
see in Section 6.6, it is given by a linear functional of D;;—specifically, the

solution of a linear integral equation with D[j as the inhomogeneous term.)
If we write Dj; as a Fourier integral

Dj(x, 1) = / d*q & Dy(q, 1), (5.2.10)

then the Fourier transform D must satisfy the conditions
Dif = Djl’ , Dii =0 R qiDl']' =0. (5.2.11)

For a given wave vector q, there are just two independent matrices satisfying
these conditions. For instance, for q in the three-direction, Eq. (5.2.11)
requires that

Di=-Dn, Dun=Du, D3n=D3=0, (5.2.12)

so all D;; can be expressed in terms of the two independent components Dy
and Dy,. (These components are frequently denoted 4™ = Dy and 1> =
D12.) It is convenient to classify the possible D;; by their transformation
properties under a rotation by an angle 6 around the three-axis.! Tt is easily
seen that under such a rotation,

D1 — 00520D11 + cosf sinf Dy + sinf cosd Dyy + sin20D22
= c0s260 D11 +sin20 Dy

Dy — 08260 Djy — cosf sinODy; + sin 6 cosb Dyy — sinzeDzl
= —sin20Djy +cos20 Dy, ,

or more succinctly
Dy F iDyy — 2 [Dl e mlz] . (5.2.13)

For this reason, the linear combinations Dy F iDj3 are said to have helicity
+2. (A wave of helicity A consists of quanta with angular momentum in
the direction of motion equal to #i.) We will write D;;(q, ) as a sum over
helicities:

Dij(@.0) = Y €@ 2 D@, 1), (5.2.14)
A=%£2

1See, for instance, G&C, Sec. 10.2.
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5.2 Fourier decomposition and stochastic initial conditions

where for q in the three-direction

1
e11(2,£2) = —en (2, £2) = Fie(2, £2) = Fiey (2, £2) = 7
€3 = e3; = 0, (5215)

while for ¢ in any other direction e;;(¢, +2) is defined by applying on each
of the indices 7 and j a standard rotation, that takes the three-direction into
the direction of g.

For q in the three-direction, the combination Dy1(q, t) F iD12(q, 1) is
proportional to D(q, 2, 1), so according to the transformation rule (5.2.13),
a rotation by an angle 6 around the direction of q changes D(q, +2,¢) by a
factor exp(£2i6). There is nothing special about the three-direction, and
the same is true for q in any direction.

The quantities D(q,A,¢) in Eq. (5.2.14) satisfy the A-independent

second-order field equation (5.1.53), with the Laplacian V? replaced with

—q2 = —qzi

612

B(@, 2 1) +32D(@, 1, 1) + D@ 1,10 = 167G (@, 0 0) . (52.16)
a a
where w7 (q, A, £) is the Fourier transform of the tensor part of the anisotropic

inertia tensor:

=3 f B ey @ . (5.2.17)
A==2

As already mentioned, 7 7 (q, 1, ¢) is a helicity-independent linear functional
of T)(q, A, t). Therefore, just as in the absence of anisotropic inertia, there
are two independent solutions (distinguished by a label V) that, aside from
normalization factors g8, are independent of A and of the direction of q.
Thus we can write

D(Q, 1, 0) = Y Bn (@, WDy (1) , (5.2.18)
N
and
(@0 =Y By (. My, (1), (5.2.19)
N

the sum over N running over the labels of the two independent solutions
Dny(2) of the field equation

. 2
Drg() + 3ZDNq(t) n %DM(:) — 167G nf,().  (5.2.20)
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5 General Theory of Small Fluctuations

Putting together Eqgs. (5.2.10), (5.2.14), and (5.2.18), we have

Dix.0)=Y / dq @ ¢, 2) By (Q, M) Dig(1) . (5.2.21)
N, A

The normalization factors B (q, A) like the o, (q) are stochastic variables.
The translational invariance of the probability distribution governing these
factors tells us that (8y(q, 1) By, (q', A)) is proportional to 8 3(q—q'). Under
a rotation by an angle # around the direction of q, the product Bx(q, %)

By (q, A’)ischanged by a factor exp (i@ =X )) , so the rotational invariance

of the probability distribution requires further that (8y(q, 1) B3, (q',1"))
is also proportional to §,,/. For the most part, we will also assume that
the probability distribution is invariant under the space-inversion opera-
tor P. This operator reverses the direction of momentum but not of angular
momentum, so it changes the sign of the helicity, and therefore with this
assumption, aside from the factor 8;,;/, the mean value (By(q, 1) Bx.(q', 1))
is independent of helicity.> We have then

(BN (Q, 1) B3 (@, 1)) = PE (@) 830 82 (@ — q) (5.2.22)

Rotational and translational invariance also tell us that there is no correlation
between the normalization factors for scalar and tensor modes:

(BN (@, M) i (q)) =0. (5.2.23)

Just as in the case of scalar modes, it is always possible to choose the two
tensor modes so that P]%,r;‘f (g) isjust 8y, but we need to know the probabil-
ity distribution governing initial conditions in order to decide which linear
combination of modes have this property.

The average of a product of two tensor perturbations is given by
Egs. (5.2.21) and (5.2.22) as

(Dy(x, ) Dy (y, D) = ) / d*q Py (q) €YY
NN’

%11kt (@) DNg (1 Djyry (1), (5.2.24)

2The same conclusion follows if we assume that the probability distribution is invariant under CP,
where C is the charge conjugation operator. Neither P nor CP is an exact symmetry of nature, but
CP-invariance is a better approximation than P-invariance. The product CPT (where T is the reversal
of the direction of time) is an exact symmetry in any quantum field theory, but T-invariance is broken
by the expansion of the universe.
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5.3 Choosing a gauge
where?
Mijke(@) =Y e(@. 1) €5y (@ 1)
A

= Sixbje + Siedjx — Sijdre + Sijqiqe + Skeqiq;
=i qiqe — 8ieQiqr — Sk qiGe — 8j¢qiGx + §iqiqkqe- (5.2.25)
Formulas like Egs. (5.2.24) and (5.2.3) will be applied to the cosmic
microwave background in Section 7.4.
We will see in Section 5.4 that the anisotropic inertia 7y, becomes neg-
ligible during the era when the physical wave number ¢/a is much less than
the expansion rate @/a. In this case, one tensor mode becomes dominant. In

the absence of anisotropic inertia, the gravitational wave equation (5.2.20)
in the limit ¢/a < H becomes

DNq(Z) + 3;DNq(t) =0.

This has two obvious solutions:
o0 dt/
a’(t)

Diy(t) =1, D) :/
t

(The integral in the second solution converges, because a(f) o t!/2 in the
radiation-dominated era, and grows even faster in the matter-dominated
and vacuum-dominated eras.) Since D»,(f) — 0 at late times, for generic
initial conditions the gravitational waves will eventually be dominated by the
first solution. Thus in this case, to evaluate bilinear averages like (5.2.24),
we only need to know Pﬁav (q). Alternatively, we could take Dj4(#) to be a

constant Dy (the o superscript denoting “outside the horizon”), chosen so

that Plgfav (¢) = 1. In Section 5.4 we will see that similar remarks usually
apply to the scalar modes.

5.3 Choosing a gauge

The equations derived in Section 5.1 have two unsatisfactory features. First,
even with the simplifications introduced by decomposing the equations into

3To obtain the final formula for I1;; k¢(g), one can use the conditions that I 4¢(§) is a tensor
function of g, symmetric in i and j and in k and ¢, that I1;; 3, (§) = I}, ij(@), and that §;T1;; () = 0,
to show that ITj; 4, (¢) is proportional to the quantity on the right-hand side of Eq. (5.2.25). The constant
of proportionality can then be found by using Eq. (5.2.15), letting ¢ be in the three-direction and setting
i,j, k,and ¢ all equal to 1.
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5 General Theory of Small Fluctuations

scalar, vector, and tensor modes, the equations for the scalar modes are
still fearsomely complicated. Second, among the solutions of these equa-
tions are unphysical scalar and vector modes, corresponding to a mere
coordinate transformation of the unperturbed Robertson—Walker metric
and energy-momentum tensor. We can eliminate the second problem and
ameliorate the first by fixing the coordinate system, adopting suitable con-
ditions on the full perturbed metric and/or energy-momentum tensor. We
will deal here with the coordinate-dependent perturbations A(X, t), B(x, ),
etc., but all of the results of this section could be applied just as well to the
Fourier components 4,4 (1), B,y (1), etc., by simply replacing each Laplacian
with —g2.
Consider a spacetime coordinate transformation

Xt = X=Xt 4 e (x) (5.3.1)

with €#(x) small in the same sense that /,,, ép, and other perturbations
are small. Under this transformation, the metric tensor will be trans-
formed to

ax* 9x*

a‘x_/ﬂm . (5.3.2)

2 (x) = 2 (%)
Instead of working with such transformations, which affect the coordi-
nates and unperturbed fields as well as the perturbations to the fields, it
is more convenient to work with so-called gauge transformations, which
affect only the field perturbations. For this purpose, after making the coor-
dinate transformation (5.3.1), we relabel coordinates by dropping the prime
on the coordinate argument, and we attribute the whole change in g, (x)
to a change in the perturbation /,,(x). The field equations should thus
be invariant under the gauge transformation /., (x) — . (x) + Ay, (x),
where

Ahyy(x) = g;w(x) —gux), (5.3.3)

with the unperturbed Robertson—Walker metric g,,,, (x) left unchanged, and
corresponding gauge transformations of other perturbations. To first order
in €(x) and A, (x), Eq. (5.3.3) is

9guv
Ahyy(x) = g;w(x’) - ggTix)Ek(X) — guv(X)
o deM(x) deM(x) g (x)
= —gu(X) Py — & (X) aei g © (x),

(5.3.4)

236



5.3 Choosing a gauge

or in more detail

0€; J€; .
Ahjj = —a—x} — a—le + 2aasjjeo, (5.3.5)
de;  deg a
Mg = = = g T2 530
d€g
Aoy = 229, (5.3.7)

with all quantities evaluated at the same spacetime coordinate point, and
indices now raised and lowered with the Robertson—Walker metric, so that
0 = —€ and ¢; = a?¢’. The field equations will be invariant only if
the same gauge transformation is applied to all tensors, and in particular
to the energy-momentum tensor, so that we must transform 677, (x) —
8T, (x) + AST,(x), where AST),, is given by a formula' analogous to

Eq. (5.3.4):

aek(x) aek(x) AT 0 (x)
ATy = =Ty (x) — T (x) €W, (533
or in more detail
_ — 361 ae] 8 2-
AéTyy=—p (@+8x)+a—(a p)a,]eo, (5.3.9)
0€; Jde a
A8T = pa—’ o T2 (5.3.10)
A5T0022/3§+560- (5.3.11)

Note that we use § to signify a perturbation, while A here denotes the change
in a perturbation associated with a gauge transformation.

In order to write these gauge transformations in terms of the scalar,
vector, and tensor components introduced in Section 5.1, it is necessary to
decompose the spatial part of €* into the gradient of a spatial scalar plus a
divergenceless vector:

=05+, vl =0. (5.3.12)

Then the transformations (5.3.5)—(5.3.7) and (5.3.9)—(5.3.11) give the gauge
transformations of the metric perturbation components defined by

I The right-hand sides of Egs. (5.3.4) and (5.3.8) are known as the Lie derivatives of the metric and
energy-momentum tensor, respectively. For a discussion of Lie derivatives, see G&C, Secs. 10.9 and
12.3.
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5 General Theory of Small Fluctuations

Egs. (5.1.31)(5.1.33):

2¢ 2
AA = —aeo , AB= ——ZeS ,
a a
1
ACi=—-—e/, AD;j=0, AE=2, (5.3.13)
a
1 26 1 26
AF = - (—60 — &S+ —a€S> , AGi=- (—éiV + —ael-V) ,
a a a a

and of the perturbations (5.1.39)—(5.1.41) to the pressure, energy density,
and velocity potential

Adp =ﬁeo , ASp=pey, Adu=—¢p. (5.3.14)
The other ingredients of the energy-momentum tensor are gauge invariant:
An® = A} = An] = Asu] =0. (5.3.15)

Note in particular that the conditions 75 = niV = ni].T = 0 for a perfect

fluid and the condition (Sul-V = 0 for potential (i.e., irrotational) flow are
gauge invariant.

For the field equations to be gauge-invariant, similar transformations
must of course be made on any other ingredients in these equations. For
instance, any four-scalar s(x) for which s'(x") = s(x) under arbitrary four-
dimensional coordinate transformations would undergo the change
Ads(x) = §'(x) — s(x) = s/(x) — §'(x'), which to first order in pertur-
bations is

as(7)

Py eH(x) = 5(Dep . (5.3.16)

Ads(x) = s(x) — s(x') = —

This applies for instance to the number density # or a scalar field ¢. Fora per-
fect fluid both p and p are defined as scalars, and the gauge transformations
in Eq. (5.3.14) of §p and §p are other special cases of Eq. (5.3.16). Like-
wise, for a perfect fluid the gauge transformation in Eq. (5.3.14) of §u can
be derived from the vector transformation law of u,. Because the gauge
transformation properties of 8p, ép, Su, etc. do not depend on the conser-
vation laws, Eqgs. (5.3.14) and (5.3.15) apply to each individual constituent
of the universe in any case in which the energy-momentum tensor is a sum
of terms for different constituents of the universe, even if these individual
terms are not separately conserved.

We can eliminate the gauge degrees of freedom either by working only
with gauge-invariant quantities,> or by choosing a gauge. The tensor

23, M. Bardeen, Phys. Rev. D 22, 1882 (1980).
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5.3 Choosing a gauge

quantities nl-jT and D;; appearing in Eq. (5.1.53) are already gauge invariant,
and no gauge-fixing is necessary or possible. For the vector quantities rriV,
Sul.V, C; and G;, we can write Egs. (5.1.50)—(5.1.52) in terms of the gauge-
invariant quantities niV, (Sul.V and G; = G; — aC;, or we can fix a gauge for
these quantities by choosing el.V so that either C; or G; vanishes. (Note that
G; is the vector field that we showed in Section 5.1 to decay as 1/a4? in the
absence of anisotropic inertia.) For the scalar perturbations it is somewhat
more convenient to fix a gauge. There are several frequently considered
possibilities.

A. Newtonian gauge

Here we choose €5 so that B = 0, and then choose € so that F = 0. Both
choices are unique, so that after choosing Newtonian gauge, there is no
remaining freedom to make gauge transformations. It is conventional to
write E and 4 in this gauge as

E=20, = -2V, (5.3.17)

so that (now considering only scalar perturbations) the perturbed metric
has components

goo=—1-20, gu=0, gj=a’;[1-2¥]. (53.18)
The gravitational field equations (5.1.44)—(5.1.47) then take the form

—47 Gd® [8,0 —6p — Vzns] =aad + (45'12 + 2ai)® — V2V + 2

+6aaW (5.3.19)
—87 Ga?d;0;75 = 9;9;[® — V], (5.3.20)
4 Ga(p+ p)oidu = —ad;® — ad; ¥ , (5.3.21)

1 3 .
47 G (ap 435+ V2n5> - +zvzq> + ;aob
. 6d. 6
130+ 2y 4 Y (5.3.22)
a a

and the equations (5.1.48) and (5.1.49) of momentum and energy conser-
vation become (aside from modes of zero wave number)

N
5p + V23S + 80[(5 + p)sul + ;“(5 FPou+ (PP =0,  (53.23)

3d f :
56+ = (5p +3p) + V. [a—zus +P)su + gns} “3(5+ )WY = 0. (53.24)
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5 General Theory of Small Fluctuations

In particular, Eq. (5.3.20) shows that ® and ¥ are not physically independent
fields; they differ only by a term arising from the anisotropic part of the stress
tensor, and in particular they are equal for a perfect fluid, for which 75 = 0.
The perturbation to the number density of a species of particle whose total
number is conserved will satisfy relation (5.1.55), which in Newtonian gauge
reads

2 (8—”> + sy _3i =0, (5.3.25)
at \ n a?

Given an equation of state for p as a function of p (or, if p depends also on
other quantities like n, then given also field equations for those quantities)
and given also a formula for 7 as a linear combination of the other pertur-
bations (such as for instance the formula 75 = 0 for a perfect fluid) we can
regard Eqgs. (5.3.21), (5.3.23), and (5.3.24) (and, where needed, Eq. (5.3.25))
as equations of motion for W, u, and §p, respectively, with ® given in terms
of ¥ by Eq. (5.3.20). The remaining equations provide a constraint on the
solution of this coupled system of equations. By subtracting 3/a? times
Eq. (5.3.19) from Eq. (5.3.22) and then using Egs. (5.3.20) and (5.3.21) to
eliminate 75 and ®, we find that?

@38p — 3H (5 + p)du — (ﬁ) V2y =0, (5.3.26)

Thisis a constraint rather than an equation of motion, because the equations
of motion (5.3.21), (5.3.23), and (5.3.24) imply that the left-hand side of
Eq. (5.3.26) is time-independent, so that Eq. (5.3.26) only has to be imposed
as an initial condition.

B. Synchronous gauge
Here we choose ¢ so that E = 0, and then choose €5 so that again F = 0.

Considering only scalar perturbations, the complete perturbed metric is
then

32B

2
go=-1, gi=0, gj=a |:(1+A)5ij+m

:| . (5.3.27)
In this gauge, the Einstein field equations (5.1.44)—(5.1.47) take the form
2 2_S 1y, 1,5 T
—4n Ga [S,O—Sp—V T ] = EV A—Ea A—3aaA—§aaV B, (5.3.28)
—167Ga*nS = A — a*B — 3aaB , (5.3.29)
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5.3 Choosing a gauge

87Ga(p+p)du=ad, (5.3.30)
2 s 3. 3a 1 _,, oy
—471G(8,0+38p+V ) SA+ A+ VB v B, (5331)

and the equations (5.1.48) and (5.1.49) of momentum and energy
conservation read

N
5p + V215 + 80[(5 + p)dul + ;“(;3 FPdu=0, (5332
., 3a LY [ P a_g
6p+;(5p+8p)+v a (,0+p)5u+;n
| 2
1 +p)ao[3A +V B] —0. (5.3.33)

Note that in this gauge the equation of momentum conservation, which
furnishes the equation of motion (the Navier-Stokes equation) for an
imperfect fluid, does not depend at all on the perturbed metric, while the
equation of energy conservation may be written as

N .
56+ = (5p +3p) + V. [a‘z(,é + P)ou + gns]
+ AP =0 (5.3.34)

where

9 (h
V= —[3A + V2B] = ( ”2) . (5.3.35)

2a
We need 4 and B separately to calculate the motion of individual parti-
cles, but the effect of gravitation on a perfect or imperfect fluid is entirely
governed by the quantity . Inspection of the field equation (5.3.31) shows

that it provides a differential equation for just this combination of scalar
fields:

47 G <5p 135+ VZJTS> - %(azw) (5.3.36)

Also, in synchronous gauge the equation (5.1.55) for particle conservation
takes the form
0

5
= < ") +a2V2u+ 9 =0 (5.3.37)

Given an equation of state for p as a function of p (and perhaps n) and
a formula expressing 7 as a linear combination of the other scalar per-
turbations we can use Eqgs. (5.3.32), (5.3.34), (5.3.36) (and perhaps
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5 General Theory of Small Fluctuations

Eq. (5.3.37)) to find solutions for the three independent perturbations Su,
3p, and v, respectively. The left-over equations (5.3.28)—(5.3.30) are not
needed, for a reason given in Section 5.1: the full set of equations (5.3.28)—
(5.3.33) are not independent, because the equations of energy and momen-
tum conservation can be derived from the Einstein field equations.

If we need to know 4 and B separately we can find them from v and §p.
By adding 3 times Eq. (5.3.28), plus 1/2 the Laplacian of Eq. (5.3.29), plus
a?* times Eq. (5.3.31), we obtain the simple relation

V24 = —87Ga’Sp + 2Ha* Y , (5.3.38)

where as usual H = a/a. After A4 is found in this way, we can find B from
A and by solving Eq. (5.3.35).

Synchronous gauge was widely used in early calculations of the evolution
of perturbations in cosmology, starting with the ground-breaking work
of Lifshitz in 1946.3 In the 1980s synchronous gauge became unpopular,
because of a feature emphasized by Bardeen:? even after we impose the
conditions £ = F = 0, we are left with a residual gauge invariance. We can
see from Eq. (5.3.13) that £ and F are not affected by a gauge transforma-
tion with

X, 1) = —T(X), €5(x,1) =a2(t)t(x)/a_2(t) dr, (5.3.39)

where 7(X) is an arbitrary function of x, but not of #. But under this trans-
formation 4 and B do change

)
A=-"2C A= —Zr/a_z(t) dr . (5.3.40)
a

In particular, the combination (5.3.35) undergoes the change

AY = —3ri (f) —a V3. (5.3.41)

a

Also, the changes in the perturbations to the energy density, pressure, and
velocity potential are given by Eqs. (5.3.14) and (5.3.39) as

ASp=—pt, ASp=—pr, ASu=rt, (5.3.42)

while 75 is invariant. The same transformation rules apply for any one
of the individual constituents of the universe. Any scalar perturbation &s
such as the number density perturbation dn or a scalar field perturbation

3E. Lifshitz, J. Phys. USSR 10, 116 (1946). Also see G&C, Sec. 15.10.
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5.3 Choosing a gauge
3¢ undergoes a change like that of the pressure and density perturbations:
ASs = —5T . (5.3.43)

The reader can check that all of the equations (5.3.28)—(5.3.34) and (5.3.37)
are invariant under these residual gauge transformations. This being the
case, for any solution v, 8p, 8p, du, én, etc. of these equations there will
be another solution ¥ + Ay, p + Adp, Sp + Adp, du + Adu, n + Adn,
etc., and since the field equations are linear, this means that Ay, Adp, Adp,
Adu, Aén, etc., 1s also a solution. (For this solution there is no scalar
anisotropic inertia, because 7% is gauge invariant.) This is a nuisance,
because in finding solutions of the field equations we keep having to check
that our solution represents a physical disturbance, not a mere change of
gauge.

However, this is not a problem if we can remove the residual gauge sym-
metry in any natural way. This s the case if the universe contains a fluid (such
as cold dark matter) whose individual particles are moving at speeds much
less than that of light. In this case, the space-space components T° g of the
energy-momentum tensor for that fluid are negligible, so we can take pp = 0,
pp x a3, and 8pp = ng = 0 in the equation (5.3.32) of momentum con-
servation for this fluid, which tells us then that Sup is time-independent.
According to Eq. (5.3.42) (which applies separately to each constituent
of the universe) a time-independent velocity potential dup can always be
removed in synchronous gauge by a residual gauge transformation, with t =
—dup. There is then no longer any ambiguity in the choice of gauge. These
features make synchronous gauge particularly convenient in dealing with
the later stages of cosmological evolution, when cold dark matter plays a
prominent role.

C. Newtonian/synchronous conversion

We will find it convenient to do calculations using Newtonian gauge in some
eras, and synchronous gauge in others. To connect results for different eras,
we need to be able to convert them from one gauge to another.*

Suppose first that we begin in Newtonian gauge, and make an
infinitesimal coordinate transformation x* — x* + €*, with ¢; = 9;€’
so as not to induce vector perturbations. According to Egs. (5.3.13) and
(5.3.17), in order to give E the synchronous gauge value £ = 0, we need

& =—o (5.3.44)

4See, for instance, C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995).
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5 General Theory of Small Fluctuations

Then according to Eq. (5.3.13), to keep F = 0 we need

S
4 (i) S (5.3.45)
a

at \ a2

The 4 and B components of the spatial metric in synchronous gauge are
given by Eqgs. (5.3.13) and (5.3.17):

2
A=-2V+2He, B=-S¢", (5.3.46)
a
where H = a/a. In particular, the field ¢ is
. 0 Vzeo
V=30 4+ 3E<H eo> o (5.3.47)

Also, Eq. (5.3.14) allows us to calculate the synchronous gauge pressure
perturbation §p°, energy density perturbation §p°, and velocity potential
du’ from the corresponding quantities ép, §p, and Su in Newtonian gauge:

Sp'=8p+eop, 8p°=68p+eop, Su'=08u—e. (53.48)

Given ® we can calculate ¢y from Eq. (5.3.44), and then given ¥ we can
obtain ¢ from Eq. (5.3.47) and the synchronous gauge pressure, energy
density, and velocity potential perturbations from Eq. (5.3.48). The quan-
tity € is determined by Eq. (5.3.44) only up to a time-independent function
of position, so the values of the synchronous gauge quantities 4, B, ¥,
P, p, and Su are only determined up to a residual gauge transformation
(5.3.40)—(5.3.42).

Next suppose that we begin in synchronous gauge, with metric fields 4
and B, and want to convert to Newtonian gauge. According to Eq. (5.3.13),
to make g;; proportional to §;; we need to take

S =da’B)2. (5.3.49)
Then to keep gio = 0, Eq. (5.3.13) tells us that we must take
€ =—a’B/2 . (5.3.50)

Using Eq. (5.3.13) again together with the definitions (5.3.18), we have
then

, 19/ ,.

®=ép= —Ea(a B), (5.3.51)
1 2 1 aa.

We - (A1) =—ca+Xp 5.3.52
2( * a60> 2413 (53.52)
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5.4  Conservation outside the horizon

In contrast to the previous case, Egs. (5.3.51) and (5.3.52) give ® and W
uniquely. Not only that — it is easy to see that the results for ® and ¥ are
unaffected if the 4 and B with which we start are subjected to the residual
gauge transformation (5.3.40).

D. Other gauges

In choosing a gauge, it is not necessary to impose conditions only on the
scalar fields appearing in the metric tensor.> Instead, some of the gauge
conditions can impose constraints on the scalars appearing in the energy-
momentum tensor. For instance, in co-moving gauge we choose €g so that
du = 0 (which for scalar perturbations makes the velocity perturbation
su' vanish). Where the only “matter” is a single scalar field, as in popu-
lar theories of inflation, this means that the time coordinate is defined so
that at any given time the scalar field equals its unperturbed value, with
all perturbations relegated to components of the metric.® In the constant
density gauge we choose €y so that 5o = 0. In either case, after fixing
€0 we can make F vanish with a suitable choice of €5, so that the scalar
perturbations still have g;o = 0. Note that although this procedure fixes
€0, it only fixes €5 up to terms of the form a?(¢)t(x), so these gauges
share the drawback of synchronous gauge, of leaving a residual gauge
symmetry.

5.4 Conservation outside the horizon

The perturbations that concern us are believed to have originated in quan-
tum fluctuations during an era of inflation in the very early universe, dis-
cussed in Chapter 10. That early time and the much later time when
these perturbations are observed are separated by a time interval in which
the equations governing perturbations are not well known. For instance,
at the end of the era of inflation there was a time of so-called reheat-
ing, during which the energy of the vacuum was transferred to ordinary
matter and radiation, but we have no idea what particles were first cre-
ated during reheating or how the energy transfer took place. Later, there
was presumably a time when some particles effectively stopped interacting
with the rest of matter and radiation, and became what is now observed
as cold dark matter, but we can only guess when this was and how it
happened.

SA great variety of different gauges are described by H. Kodama and M. Sasaki, Prog. Theor. Phys.
Suppl. 78, 1 (1984).

SFor instance, this gauge was used in calculations of non-Gaussian corrections to cosmological
correlations by J. Maldacena, J. High Energy Phys. 0305, 013 (2003) [astro-ph/0210603].
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5 General Theory of Small Fluctuations

The only reason that we are able to use inflationary theories to make any
predictions at all about observable perturbations despite these uncertainties
is that the wavelengths of the perturbations that concern us were outside the
horizon during a period that extends from well before the end of inflation
until relatively near the present (and hence includes the times of reheating
and cold dark matter decoupling), in the sense that the physical wave number
g/a during this period was much less than the expansion rate H = a/a.
During inflation ¢/a decreases with time more-or-less exponentially while
H is roughly constant, so all perturbations originally had ¢/a > H but
except for very short wavelengths eventually have ¢/a <« H. Then during
the radiation and matter-dominated eras « increases like 7!/ or #2/3 while
H falls like 1/¢, so except for the longest wavelengths the perturbations
that had ¢/a < H at the end of inflation eventually again have g/a > H.
During the intervening period when perturbations were outside the horizon,
the scalar and tensor fluctuations were subject to certain conservation laws,
that allow us to connect the distant past to the relatively recent past.

As we shall see below, for scalar modes it is the quantity defined in
Newtonian gauge by!

Ry = -V, + Héu, (5.4.1)

that in certain circumstances is conserved outside the horizon. (Recall
that Su is the velocity potential for the total energy-momentum tensor.)
Equivalently, there is another quantity?

dpq
) (642
that according to the constraint (5.3.26) is related to R, by
2
q-Yy
=Ry— ———— . 5.4.3
b =" 127 G(p + p)a? (54.3)

The difference is of relative order (¢/aH)?, so for q/a <« H the quantity g
is conserved outside the horizon if R is.

The importance of R, in the work of ref. 1 is that (as will be shown
below)itis conserved outside the horizon in inflation driven by a single scalar

IThe constancy of R was noted in various special cases by J. M. Bardeen, Phys. Rev. D 22, 1882
(1980); D. H. Lyth, Phys. Rev. D31, 1792 (1985). For reviews, see J. Bardeen, in Cosmology and Particle
Physics, eds. Li-zhi Fang and A. Zee (Gordon & Breach, New York, 1988); A. R. Liddle and D. H.
Lyth, Cosmological Inflation and Large Scale Structure (Cambridge University Press, Cambridge, UK,
2000).

2J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D 28, 679 (1983). This quantity was
re-introduced by D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, Phys. Rev. D 62, 043527 (2000).
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5.4  Conservation outside the horizon

field. But this is not enough for our purposes. After inflation, the universe
becomes filled with a number of types of matter and radiation, and R is
not necessarily conserved outside the horizon under these circumstances.
What we need is a theorem that says that, whatever the constituents of the
universe, there is always a solution of the field equations for which R, and ¢,
are conserved outside the horizon. Such a solution is called “adiabatic,” for
reasons explained later. If cosmological fluctuations are described by such
a solution during inflation, then they will continue to be described by such
a solution and R, and ¢, will remain constant as long as the perturbation
is outside the horizon, because this is a solution under all circumstances.

This result (and a corresponding result for tensor modes) is contained
in the following theorem:® Whatever the contents of the universe, there are
two independent adiabatic physical scalar solutions of the Newtonian gauge
field equations for which the quantity R, is time-independent in the limit
g/a < H, and there is one tensor mode for which the tensor amplitude D,
is time-independent in the limit g/a <« H. In this limit one of the scalar
modes has R, # 0; the scalar metric components are

t
D, (1) = U, (1) = Ry [—1 +HO 0 dﬂ} : (5.4.4)
a(t) Jr

the perturbation to any four-scalar s(x) (such as the energy density, pressure,
inflaton field, etc.) is given by

: t
SSq(t)=—R§(St ;t) /T alt)dr' : (5.4.5)

and the perturbation to the velocity potential is

R t
auq(t)zw") L a(tydr' . (5.4.6)

where 7 is an arbitrary initial time, the same in all integrals. The other
scalar mode has R, = 0, and

C H (1) Cy5(1)
at) a(t)

where C, is time-independent. For g/a <« H, the anisotropic inertia

components 715 , niZ, and nl./.T g vanish in both adiabatic scalar modes and in

the conserved tensor mode, even when some mean free times are comparable

Qy(1) = Wy(1) =

8s4(1) = —

, (Suq(t):%, (5.4.7)

3S. Weinberg, Phys. Rev. D 67, 123504 (2003) [astro-ph/0302326]. Also see the appendix of S.
Weinberg, Phys. Rev. D 69, 023503 (2004) [astro-ph/0306304].

247



5 General Theory of Small Fluctuations

with the Hubble time. These are physical solutions for scalar as well as ten-
sor modes, because the choice of Newtonian gauge leaves no remaining
gauge freedom.

The proof of the theorem is based on the observation that in the special
case of a spatially homogeneous universe, the coordinate space Newtonian
gauge field equations and dynamical equations for matter and radiation (as
well as the condition of spatial homogeneity) are invariant under coordi-
nate transformations that are not symmetries of the unperturbed metric.*
In Newtonian gauge, general first-order spatially homogeneous scalar and
tensor perturbations to the metric take the form

hoo = =20(1), hio =0, hy=—28;a*O)¥(t) + a>()Dy(t),

with D;; subject to the condition that D; = 0. Spatial homogeneity also
requires that all pressures, densities, velocity potentials, etc. are functions
only of time. The Newtonian gauge field equations for these spatially
homogeneous perturbations are necessarily invariant under those gauge
transformations of the form (5.3.4)—(5.3.7), (5.3.14)—(5.3.16) that preserve
the conditions for Newtonian gauge and spatial homogeneity. Eq. (5.3.7)
shows that in order for /g9 to remain spatially homogeneous, €g must be of
the form

eo(X, 1) =€)+ x(x),
so that

AD =¢

Eq. (5.3.6) then shows that in order for the /;y to remain equal to zero, ¢;
must have the form

9 x (x) dt

G0 =@ (0fi0 — =5 | s

Eq. (5.3.5) then shows that

ofi af; ) 3%y dt
= g2 ! J . _ it
Ahyj = —a <8xj + 8xf) +28yaa[e + X] 28xi x| a?’

In order not to introduce any x-dependence in /;;, we must take x constant,
in which case by shifting it into € it can be taken to be zero, and we must
also take f; to have the form f;(x) = wijx/ , With w;; a constant matrix. (An
x-independent term in f; would have no effect on the metric or anything

4In this respect, the theorem proved here is similar to the Goldstone theorem of quantum field theory;
see J. Goldstone, Nuovo Cimento 9, 154 (1961); J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev.
127, 965 (1962). The modes for which R4 or Dy are constant outside the horizon take the place here of
the Goldstone bosons that become free particles for long wavelength.
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5.4  Conservation outside the horizon
else, and so can be ignored here.) Then
Ahjj = —az[a),j + wji] + 28;;aae .

We compare this with Eq. (5.1.33) (with the Newtonian gauge conditions
B = C; =0and 4 = —2W¥), which gives

Ahjj = —2a*8; AW + a* ADj;

Matching the terms in Ahj; that are either proportional to §; or traceless
gives
1
AV = ga)il‘ — He .

ADj = —wj — wji + §Szjwkk .

(Note that an antisymmetric term in w; would have no effect, because
the unperturbed metric is invariant under three-dimensional rotations.)
The corresponding gauge transformations of the quantities appearing in the
energy-momentum tensor and of general scalars are given by Egs. (5.3.14)-
(5.3.16). Since {h,, Ty} and {hy,+ Ay, T+ AT} are both solutions
of the field equations and conservation equations, their difference must also
be such a solution. We conclude that there is always a spatially homoge-
neous solution of the Newtonian gauge field and conservation equations,
with scalar perturbations

v =He— a)i,-/3 , b =—¢€ (548)

Sp=—pe. Sp=—pe. du=e. x5=0 (549
and more generally for any four-scalar s
8s = —se . (5.4.10)

(The reader can check that when we drop all spatial gradients, then the
perturbations (5.4.8)—(5.4.10) satisfy the Newtonian gauge field equations
(5.3.19)—(5.3.22), the conservation laws (5.3.23)—(5.3.24) and (5.3.25), and
the constraint (5.3.26).) There is also a spatially homogeneous solution with
a tensor perturbation

1

D,’j X wjj — g‘sijwkk s T[l;" =0. (5-4-11)

(Thisis obviously a solution of Eq. (5.1.53), but it includes the not so obvious
information that the equations that determine nl-jT necessarily give JTUT =0

for Dj;; constant, even if some particle collision rates become comparable
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5 General Theory of Small Fluctuations

with H.) Equivalently, Egs. (5.4.8)—(5.4.11) are solutions for the Fourier
transforms of the perturbations with zero wave number.

So far, € is an arbitrary function of time, and w;; is an unrelated arbi-
trary constant 4 x 4 matrix. But these are just gauge modes for zero wave
number. On the other hand, if they can be extended to non-zero wave
number they become physical modes, since the choice of Newtonian gauge
leaves no residual gauge symmetries except for zero wave number. For
the tensor modes there is no problem; in this case there are no field equa-
tions that disappear for zero wave number, so the solution with D;; time-
independent automatically has an extension to a physical mode for non-zero
wave number. But matters are more complicated for the scalar modes.

For the scalar modes the field equation (5.3.20) disappears in the limit
of zero wave number, so to get a physical mode we must impose on the
perturbations the condition

d=w. (5.4.12)

(The condition §u = ¢ that is required for Eq. (5.3.21) to be satisfied for
q # 0 1is already satisfied, according to Eq. (5.4.9).) Inserting Eq. (5.4.8) in
(5.4.12) gives a differential equation for e:

¢ = —He + /3 (5.4.13)

Also, Eq. (5.4.8) for ¥ and Eq. (5.4.9) for du give the quantity R defined by
Eq. (5.4.1) the time-independent value

R =wri/3 . (5.4.14)
There is a general solution of Eq. (5.4.13) for €(¢) with R # 0:

t
€(t) = E/ a(t)dt . (5.4.15)
a(t) Jr

with 7 arbitrary. Using Eq. (5.4.15) in Eq. (5.4.8) gives the explicit solution
(5.4.4) for large wavelengths

H(@) (!
\I!:d):R[—l—l— (?) a(t/)dt/] . (5.4.16)
a(t) Jr
Eq. (5.4.9) gives
) ) R (!
P _su=——Z | ayar, (5.4.17)
p P a) Jr
and more generally for any four-scalar Eq. (5.4.10) gives
k) t
0 _ R [ autyar (5.4.18)
5 a(t) Jr
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5.4  Conservation outside the horizon

Because forany 7, Eq. (5.4.15) is a solution of Eq. (5.4.13) with the same
value of R, the difference of two of these solutions with different values of
T is also a solution, but with R = 0. For this solution

C
)= — 5.4.19
€(?) 20’ ( )
with C another constant, and
H
v=op=HO (5.4.20)
a(r)
o D 5 a(r)

and likewise for individual constituents of the universe. (Since a(¢) increases
and H(t) decreases with time, this is a decaying mode, which is usually
assumed to play no significant role at late times.) Note in particular that
these scalar modes have equal values for 8p, / oo for allindividual constituents
a of the universe, whether or not energy is separately conserved for these
constituents. For this reason, such perturbations are called adiabatic.”
For the same reason, any other solutions are called entropic. (Sometimes
such other solutions are called zero-curvature modes, but this is misleading,
because setting & = ¥ = 0 does not usually give a solution at all.)

We have shown that for sufficiently small wave number (in practice, this
means g/a < H) there are always two adiabatic physical solutions for scalar
perturbations that take the form (5.4.16)—(5.4.18) and (5.4.20)—(5.4.21), with
R and C arbitrary constants, and a physical solution for tensor perturbations
that takes the form (5.4.11) with w;; an arbitrary constant matrix. Since the
equations we have solved are homogeneous, it follows that there are also
solutions of the same form for which R, C, and w;; are arbitrary time-
independent functions of ¢. This concludes the proof.

5For instance, if several constituents (such as an electron—positron plasma, and photons) each have
a density and pressure that depends (even when perturbed) only on the temperature, then épo (T) =
0k (T)S8T and dpy(T)/dt = p(’x(T)T, $0 8pg/pe = 8T /T, and likewise for pressure and any other
scalars.

6The existence of solutions with 8sq /5 equal for all four-scalars s such as energy densities, pressures,
etc. (but not the detailed solutions (5.4.4)—(5.4.7)) seems to have been generally accepted for a long time.
An intuitive “separate universe” argument for the existence of solutions for which 8pyq/ pa are equal
for all constituents « of the universe has been given by D. H. Lyth and D. Wands, Phys. Rev. D 68,
103516 (2003); also see D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, Phys. Rev. D 62, 043627
(2000); A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge
University Press, 2000). This reasoning has been extended beyond perturbation theory by D. H. Lyth,
K. A. Malik, and M. Sasaki, J. Cosm. & Astropart. Phys. 0505, 004 (2005) [astro-ph/0411220]. But this
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5 General Theory of Small Fluctuations

This theorem shows that if the perturbations produced during inflation
are actually in the modes found above at the end of inflation, then they stay
in these modes as long as the perturbations remain outside the horizon, and
in particular R, and D, remain constant, since these modes are solutions
of the equations whatever the constituents of the universe may become. In
particular, the wavelengths that will interest us are far outside the horizon
during the era of reheating that is supposed to follow inflation, so if the
scalar perturbations are adiabatic at the end of inflation, then reheating
cannot generate entropic perturbations.’

The question that is left unanswered by this theorem is whether the scalar
perturbations produced during inflation are actually in these modes at the
end of inflation. This is often a matter of counting. We know that there
are always two independent adiabatic solutions of the differential equations
governing the scalar fluctuations, so if these equations have no more than two
independent solutions, then any perturbations must be adiabatic. As we will
see in Chapter 10, this counting shows that all solutions are adiabatic for
inflation with a single inflaton field.

But it must not be thought that if observation of the cosmic microwave
background reveals purely adiabatic perturbations at the time of last
scattering, then the perturbations must have been adiabatic at the end of
inflation. In a state of complete local thermal equilibrium in which all
conserved quantum numbers vanish (such as is usually assumed to have
existed at some early time in theories of cosmological baryonsynthesis or
leptonsynthesis, like those discussed in Section 3.3) there are only two scalar
degrees of freedom, the temperature and the gravitational potential ® = W,
They are governed by coupled first-order ordinary differential equations, so
there are just two independent solutions, which must be adiabatic since there
are always at least two adiabatic solutions. Thus whatever happens during
inflation, if the universe subsequently spends sufficient time in a state of local
thermal equilibrium with no non-zero conserved quantities, then the per-
turbations become adiabatic, and they remain adiabatic subsequently, even
when the conditions of local thermal equilibrium are no longer satisfied.®

The use of conservation laws to connect different cosmological eras is
not limited to Newtonian gauge. Indeed, both ¢, and R, can be put in

sort of argument only shows that there is a solution satisfying this condition for zero wave number. As
we have seen, there are indeed many such solutions for zero wave number, most of which have no physical
significance because they cannot be extended to finite wave number. The proof presented here shows
that the requirement that the solution can be extended to finite wave number yields just two solutions,
described by Egs. (5.4.4)-(5.4.7). It is this requirement that makes it necessary for the infinitesimal
redefinition of the time coordinate, used in the “separate universe” argument to generate the solutions
for zero wave number, to be accompanied with an infinitesimal rescaling of the space coordinate.

7S. Weinberg, Phys. Rev. D 70, 043541 (2004) (astro-ph/0401313).

8S. Weinberg, Phys. Rev. D 70, 083522 (2004) (astro-ph/0405397).
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5.4  Conservation outside the horizon

a gauge invariant form. It is only necessary to remark that according to
Egs. (5.3.13) and (5.3.14), the quantities 4/2 — H8p/p and A/2 + H3u are
gauge invariant, and that they reduce in Newtonian gauge to the quantities
(5.4.2) and (5.4.1), respectively, so in any gauge

Cg=Aq/2 — Hépy/p, Ryq=Ag/2+ Hbuy, (5.4.22)

provided of course that 4, 8p, and du are all calculated in the same gauge.
For instance, in synchronous gauge Eq. (5.3.38) gives

q*Ay = 87 Ga’dp, — 2Ha Y, (5.4.23)

so in this gauge ¢, and R, can be expressed in terms of the convenient
gravitational variable v, by

ngq = —aszq + 471Ga25,0q — quépq/,S,
¢*Ry = —a*Hyry + 4 Ga*dpy + q* Hiuy (5.4.24)

of course with the understanding that §p, and du, are here calculated in syn-
chronous gauge. This result can also be derived directly from the Newtonian
gauge formulas (5.4.1) and (5.4.2) by using the rules for transforming from
Newtonian to synchronous gauge given in the previous section.

There is a convenient general formula for the rate of change of ¢, and R,
that holds for g/a < H whether or not the cosmological fluctuations are
in an adiabatic mode. To derive this formula, we use the Newtonian gauge
energy-conservation law (5.3.24), which for ¢/a <« H gives

8¢ +3HSpy + 8py) = 3(p +p)V, , (5.4.25)
and the corresponding unperturbed conservation law
p=-3H(p+p) . (5.4.26)
It is then a matter of simple algebra to calculate that for ¢/a < H

: pPSpg — Pépg
g 3G 1 ) (5.4.27)
For g/a « H, the same formula then also gives Rq. It should be noted
that according to Eq. (5.3.14) the quantity on the right-hand side is gauge-
invariant, so we can check whether or not ¢, and R, are time-independent
by evaluating pép, — pdp, in any gauge.

In particular, if for arbitrary perturbations p+§p is a function F(p + 8p)
of the perturbed energy density alone, then p = F'(5)p and 8p, = F'(5)8py,
so the terms in the numerator of the right-hand side of Eq. (5.4.27) cancel,
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5 General Theory of Small Fluctuations

and so ¢, and R, are conserved outside the horizon, even if the fluctuations
are not in an adiabatic mode.® This is the case for instance if all abundant
particles are highly relativistic, in which case the total perturbed pressure is
1/3 the total perturbed energy density, or if they are highly non-relativistic,
in which case the total perturbed pressure is negligible. On the other hand,
the theorem proved earlier in this section tells us that ¢, and R, are conserved
outside the horizon in the adiabatic modes, even in cases (such as inflation
with a single scalar field) for which the perturbed pressure is not given as a
function only of the perturbed energy density.

The proof of Eq. (5.4.27) depended only on the energy conservation
equations (5.4.25) and (5.4.26), not on the gravitational field equations.
Therefore, if there is a constituent « of the universe that is energetically
isolated, in the sense of not exchanging energy with the rest of the matter
and radiation of the universe, then for ¢/a <« H the quantity

Cag = _‘Ijq + apaq/?’(/;a + Do) » (5.4.28)

calculated using the energy density p, and pressure p, of the isolated con-
stituent, satisfies the gauge-invariant relation!?

foy = 5a3paq _ﬁaapaq
“ 3(fu + Pa)?

In particular, ¢y, (and hence also Ryy) is conserved outside the horizon if
the perturbed pressure of the isolated constituent is a function only of its
perturbed energy density.!! (As we will see in Section 6.1, this is actually a
good approximation for each of the individual constituents of the universe
at times after the temperature dropped below about 10!° K, when neutrinos
and antineutrinos no longer had significant interactions with matter and
radiation.) In this case, Eq. (5.4.28) can be regarded as a convenient for-
mula for the fractional density fluctuation outside the horizon in Newtonian
gauge

(5.4.29)

8Paq
3(pa + Pa)

with ¢y, time-independent.

= gaq + "pq 5 (5.4.30)

91If the total pressureis a function only of the total energy density, then the three first-order differential

equations (5.3.21), (5.3.23) and (5.3.24) form a closed set of equations for ¥ = &, §u, and §p, so with
the constraint (5.3.26) there must be just two independent solutions for these quantities, which therefore
must take the adiabatic form (5.4.4) and (5.4.6), or (5.4.7). But the complete solution is not necessarily
adiabatic, because other four-scalars (such as the energy densities or pressures of individual components
of the universe) may not be given by Eq. (5.4.9).

10g, Bashinsky and U. Seljak, Phys. Rev. D 69, 083002 (2004) [astro-ph/0310198].

D Wands et al., ref. 2.
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5.4  Conservation outside the horizon

There is a corresponding result in synchronous gauge: For long wave-
lengths the energy conservation equation (5.3.34) for an energetically isolated
component of the universe takes the form

85y + 3H (903, + 093 ) + (Pa+Pa) ¥y =0, (5431

the superscript s denoting synchronous gauge. If also p,, is either negligible
or a function only of p,, then this can be written as

d [ dp,
- (%) = —Wq s
dt \ py + Pa
so that
Spgtq /
—— =— | Yydt +cqq - (5.4.32)
Po + Pa ! “
The integration constants ¢y depend on what we take as the lower limit on
the integral of v, but their differences have an absolute significance, and
are simply related to the differences of the ¢y,. The gauge transformation
equation (5.3.14) and the equation p, = —3H (o4 + py) for separate energy
conservation shows that for any two components of the universe whose
energy is separately conserved, we have

_S,O‘f(q_ B _8,0%,1_ _ _6paq_ B _Spﬂq_ (5.4.33)
Comparing Egs. (5.4.30) and (5.4.33), we see that
aq = pg =3 (S — 0 ) - (5.4.34)

In the special case in which the perturbations are adiabatic, according to
Eq. (5.4.9) the quantities 8paq/(Pa + Po) = —3Hpag/ pe are all equal, and
hence the ¢, are all equal, and in fact equal to ¢,. According to Eq. (5.4.34),
the ¢y will then also be all equal. The cosmic microwave background can
be used to measure the differences of the ¢, or cqy before perturbations
re-enter the horizon, and hence to decide whether the cosmological fluc-
tuations are truly adiabatic. So far, as we will see in Section 7.2, it seems
they are.
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6

Evolution of Cosmological Fluctuations

We will now apply the formalism developed in the previous chapter to work
out the evolution of cosmological fluctuations, from a temperature ~10° K
when electron positron annihilation is substantially complete and neutrinos
have decoupled from matter and radiation, down to the relatively recent
time when the matter fluctuations become too large to be treated as first-
order perturbations. Our results will be applied to analyze the observed
fluctuations in the cosmic microwave background in the next chapter, and
large scale structure in Chapter 8.

For reasons discussed in Section 5.4, the connection between the evo-
lution of fluctuations in this era and what happened at earlier times will
appear in a few parameters including R, (or &), which are conserved dur-
ing the many e-foldings of expansion when the perturbations to the various
constituents of the universe were still outside the horizon — that is, when
the physical wave number ¢/a was much less than the expansion rate a/a.
The values of these parameters when outside the horizon thus characterize
the strength of the various perturbations. In Chapter 10 we will see what
can be understood about these parameters from a study of the much earlier
era of inflation, and in this way work out what large scale structure and
fluctuations in the cosmic microwave background can tell us about the era
of inflation.

Section 6.1 presents the equations governing scalar perturbations. These
equations take a simple hydrodynamic form for cold dark matter and the
baryonic plasma, but for calculations of high accuracy it is necessary to
use the Boltzmann equations of kinetic theory to follow the detailed dis-
tribution of photons and neutrinos in phase space.! These equations are
too complicated for an analytic treatment; that is a task for comprehensive
computer programs such as CMBfast> and CAMB.? Unfortunately such
computer programs do not lend themselves to an exposition aimed at an

IP. J. E. Peebles and J. T. Yu, Astrophys. J. 162, 815 (1970); R. A. Sunyaev and Ya. B. Zel'dovich,
Astrophys. Space Sci. 1,3 (1970).

2The original code for the Boltzmann equations for photons and neutrinos and the other dynamical
and gravitational equations on which CMBfast is based was written by C.-P. Ma and E. Bertschinger,
Astrophys. J. 455, 7 (1995) [astro-ph/9506072]. An important element discussed below was added
by U. Seljak and M. A. Zaldarriaga, Astrophys. J. 469, 437 (1996).[astro-ph/9603033]. Also see
M. Zaldarriaga, U. Seljak, and E. Bertschinger, Astrophys. J. 494, 491 (1998); M. Zaldarriaga and
U. Seljak, Astrophys. J. 129, 431 (2000). The program is available on the website www .cmbfast.org.

3This program is based on CMBfast. It was written by A. Lewis and A. Challinor, and is available
at camb. info/.
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6 Evolution of Cosmological Fluctuations

understanding of the physical phenomena involved. Therefore in subse-
quent sections we will present hydrodynamic calculations that are simple
enough to be done analytically, aside from a few numerical integrations,
and yet realistic enough so that the results are a good approximation to the
more accurate results of computer programs.

The general equations and initial conditions for our analytic treatment
of scalar modes are given in Section 6.2. Our analytic treatment of scalar
modes then divides into the study of two wavelength regimes: wavelengths
long enough to have come within the horizon during the matter-dominated
era, to be considered in Section 6.3, and wavelengths short enough to have
come within the horizon during the radiation-dominated era, considered in
Section 6.4. Section 6.5 will show how to interpolate between the solutions
found for these long and short wavelengths. Section 6.6 treats the evolution
of tensor perturbations.

In Chapter 7 the results of this chapter for both scalar and tensor modes
are applied to the anisotropies and polarization of the cosmic microwave
background. Chapter 8 takes the treatment of matter perturbations beyond
the time of last scattering, with results applied to observations of the cosmic
distribution of matter.

6.1 Scalar perturbations — kinetic theory

It seems highly likely that from the beginning of the period of interest here,
from just after e — ¢~ annihilation at a temperature 7 ~ 10° K, down
to the time of last scattering when 7' =~ 3,000 K, the universe consisted of
just four components: photons, cold dark matter, neutrinos, and a bary-
onic plasma consisting of free electrons, ions, and neutral atoms. In this
section we will consider the perturbations in scalar modes to each of these
four constituents in turn, adopting for this purpose the synchronous gauge
described in Section 5.3. Each perturbed quantity X (x, ¢) (such as 8p, dp,
A, B, etc.) is written as a Fourier integral and a sum over modes, as in
Eq. (5.2.1):

Y0 = Y [ g anta X0 €. (6.1.1)

where o, (q) is the stochastic parameter for the n-th mode. In particular, the
metric perturbation in synchronous gauge is given by dgoo = 0, dgio = 0,
and

3%, = 0 Y [ 4@ [y 08 - 098] 4. 612
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6.1 Scalar perturbations — kinetic theory

(Note that ¢ is the co-moving wave number, related to the physical wave
number k by k = g/a. It is common to define a so that a = 1 at the
present time, so that the co-moving wave number equals the present value
of the physical wave number, in which case the co-moving wave number is
often denoted k. We will instead leave the normalization of a arbitrary, and
reserve the symbol k for the physical wave number ¢/a.) In this section we
will consider any one mode, dropping the label #; the equations we find will
have a number of solutions, which define the various modes.

Cold dark matter

The individual cold dark matter particles are assumed to move too slowly
for them to produce an appreciable pressure or anisotropic inertia, and, as
shown in Section 5.3, the absence of pressure or anisotropic inertia allows
us to adopt a particular synchronous gauge in which the cold dark mat-
ter fluid velocity ui) vanishes. That is, the coordinate mesh is tied to the
dark matter particles in such a way that they remain at rest despite fluc-
tuations in the gravitational field in which they move. Cold dark matter
is therefore characterized solely by a total density pop(¢) + Spp(X, 1), with
the unperturbed density pp(¢) simply decreasing as a—>(¢), and the Fourier
transform of the perturbation Spp(x, ) governed by the equation (5.3.34)
of energy conservation with zero pressure and velocity

(Recall that ¥, = (34, — ¢°B,)/2.)

Baryonic plasma

The Coulomb interactions of electrons and atomic nuclei are sufficiently
strong so that they act together as a single perfect fluid. In the era of
interest both electrons and nuclei are highly non-relativistic, so the baryonic
plasma has negligible pressure and anisotropic inertia, and therefore the
unperturbed density pp(7) goes as a=3(¢), and the Fourier transform of
the density perturbation §pp(x, ¢) is governed by the energy-conservation
equation (5.3.34), but now with a non-zero velocity potential Sup(X, 7):

8p8q + 3H8psy — (q*/a®) pBdupy = —ppYy - (6.1.4)

On the other hand, Thomson scattering allows the baryonic plasma to
exchange momentum with photons, so it is the combination of photons
and plasma that satisfies the equation (5.3.32) of momentum conservation,
which here reads

_ 4 _
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6 Evolution of Cosmological Fluctuations

where §p,, and éu,, are the pressure perturbation and velocity potential of
the photons. We can regard this as the equation of motion of the baryonic
plasma, with the photonic quantities nfq, Dyq- Sty 4 calculated as described
in the next subsection.

Photons

Well before the time of recombination the density of free electrons was high
enough so that photons could be described hydrodynamically: Thomson
scattering gave the photons a total momentum locked to that of the bary-
onic plasma, so that du, ;, = dup,, and a momentum distribution that was
isotropic in the co-moving frame, so that ép, ; = §p, 4/3 and 715 ¢ = 0. But
for a highly accurate treatment of photons around the time of recombination
it is necessary to treat them kinetically, studying the distribution of photons
in momentum space, and taking account of photon polarization. As dis-
cussed in Appendix H, this distribution is an Hermitian number density
matrix n’(x, p, t), defined so that the number of photons in a space volume
[1; dx' with momenta in a momentum-space volume []; dp;, weighted with
the probability of their having polarization ', is e;efn” (x, p, #) [, dx*dpy,
and p;n’ = 0. (The polarization vectors satisfy the normalization condi-
tion gije"e/* = 1 and the transversality condition p;e’ = 0, and ¢; = gy.e*.
For further discussion of polarization, see Appendix G.) For small perturb-
ations, this distribution is conveniently written in the form

ik il
n’ (X, p, 1) = %ﬁy (a(z)po(x, 2 t)) [gij x.0) - & X D . t)pkpl}

[PO(x,p,D]?
+8n¥ (x,p, 1) , (6.1.6)

PP, p, 1) = /g¥(x, Opip; . (6.1.7)

Here 11, (p) is the equilibrium phase space number density

where

0 = s [on (prksanT@) 1] @18)

with T'(¢) the unperturbed temperature of the baryonic plasma, and 8xn”7 is a
small intrinsic perturbation. The first term in Eq. (6.1.6) is just the distribu-
tion matrix for unpolarized photons in thermal equilibrium at temperature
T(¢), written in a general spatial coordinate system, so 8z includes the dyna-
mical rather than the purely geometric effect of metric perturbations on the
photon distribution. (Note that the factor a(¢) in the argument of 7, in
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6.1 Scalar perturbations — kinetic theory

Eq. (6.1.6) is canceled by the factor a(7) multiplying T(t) in Eq. (6.1.8); this
factor is introduced because in the era of interest 7(r) o< a~!(¢), so that as
we have defined it, 71, is a time-independent function of its argument.)

Since the sum over polarizations of e;e; is g, the phase space den-

sity of photons is gijn"j . Hence the total energy-momentum tensor of the
photons is

3
1 DMy
T, = d n? . 6.1.9
vV~ /Detg [El ”"}g”” 20 (19

The first term in Eq. (6.1.6) contains first-order perturbations arising from

the metric perturbations in p' = g¥p; and p° = —py = ,/g¥pip;, in the
metric determinant Detg, and in the factor g; in gijn"j . It is straight-
forward though tedious to show directly that all these contributions to
8T}, cancel, but this can be seen more easily by noting that Eq. (6.1.9)
shows that the contribution of the first term in Eq. (6.1.6) to ST)’; (X, 1),
8TYj(x,1), 8Tjo(x,1), and 8TDo(x,t) are local functions of the
three-metric g;; (X, #) that transform under general spatial coordinate trans-
formations as a mixed three-tensor, a covariant three-vector, a contravariant
three-vector, and a three-scalar, respectively. But there are no non-trivial
local functions of the three-metric that transform in this way under spatial
coordinate transformations! This leaves only the contribution from the trace
of (Sn;{. That is, the total first-order perturbations to the mixed components
of the energy-momentum tensor are

3
i 1 2 kk Pipj
STy (0= 7y / (E1 dpk) (1) SnfF (x, p, 1) T (6.1.10)
1 3
8Ty(x.1) = a3_(t)/ (L[l dpk) @ (1) 8nk (x,p, 1) pj (6.1.11)

1 3
STo(x, 1) = 0 f (1‘[ dpk) a* (1) $n5 (X, p, 1) /Prpkc - (6.1.12)
k=1

Evidently, all we need to calculate these perturbations is the integral of
(Sn’;k (x, p, t) over photon energy, weighted with a single factor of energy. We

therefore introduce a dimensionless intensity matrix Jj(X,p,1),
defined by

(XD .
a*(t) py (1) Jyj(x, p, 1) = a* (D) fo snij(x,pp, ) 4xp>dp,  (6.1.13)
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6 Evolution of Cosmological Fluctuations

where p, (1) = a4 f 471p3f1y (p) dp is the unperturbed photon energy
density. The components (6.1.10)—(6.1.12) then become

. A

5T}, 0) = 5, () | TETc(xpu0) iy (6.1.14)
0 _ d’p X

8T, ;(x, 1) = a(t)py (1) yp ik (X, D, 1) pj (6.1.15)
0 _ d’p X

8T, o(x,1) = —py (1) Efkk(xyp, 7. (6.1.16)

As shown in Eq. (H.37) of Appendix H, the perturbation 8x¥ is governed
by the Boltzmann equation

dsn¥(x,p,0) | pr d8nY(x,p,0) | 2a(1)

sn¥ t
a1 a() oxk an O R

1 _, .0 B
B 4a2(z)an (p)PkPlE(a (1)3gri (X, l)) (511 —p,p]>

’ 3oc(t
= —wc() on’ (x,p, 1) + Cg‘() / d*py
/4

X [5nlj(xapﬁ1’ [) _ﬁlﬁk ankj(x5pﬁla t) _ﬁ]ﬁk anlk(xapﬁla Z)

+ pipipipr 81 (x, pp1, l)}

w,

— Sspubuncit, () (85 — Piby) (6.1.17)

where now p = \/pipi, p = p/p; w(t) is the collision rate of a photon with
electrons in the baryonic plasma; and Sup is the peculiar velocity of the
baryonic plasma. We can derive a Boltzmann equation for the dimensionless
intensity matrix by multiplying Eq. (6.1.17) with 47 p? and integrating over
P = \/PiDi, using

o0 o)
47r/ P, (p)dp = —1671/ PP iy, (p)dp = —4a*(t)p, (D) .
0 0
Writing the intensity matrix and plasma velocity as Fourier transforms

Jij(X,ﬁ, t) = /d3q Jl](qaﬁa Z) eiq-X 5 (SMBk(X, Z) = / d3q SuBi(q’ Z) eiq-X
(6.1.18)
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6.1 Scalar perturbations — kinetic theory

we find

Ti(q. p. 1
o T laqti@rD

+a@ [0 = @ 9B, (3 - i)

. 3w (t R
= —w(1) Jij(q,p, ) + 8;( ) /d2p1

x [J@. 51,0 = pibi @ 51,0 = hibi Jie(@. 1. 1)

+ Dipibip1 ki (q, p1, t)]
2w.(1)
a(t)

in which we have used Egs. (5.3.27) and (6.1.2) for the metric perturbation.

The intensity matrix and plasma velocity are proportional to the stochas-
tic parameter « (q) for whatever mode is under consideration, which contains
all information about initial conditions. Apart from this factor, there are no
preferred directions in the problem, so the coefficient of «(q) in the intensity
matrix can be decomposed into a sum of terms proportional to the two sym-

[50' - ﬁiﬁj] Prdupi(q, 1) , (6.1.19)

metric three-dimensional tensors 8;; — p;p; and (E]i —(q- f))f)i> (Qj —(q- f))ﬁj)
that vanish when contracted with p; or p;, with coefficients that depend on

the directions ¢ and p only through the scalar product g - p. This decompos-
ition is conventionally written as

A 1 S A A S A A A A
Jij(q,p, 1) = a(q) E(A(T)(q,q P, t) — AED (4,7 - p, t)) (8;7 _pipj>

(- @ -pbs) (35— @ i)
L= (92

+A5) (.- p.1) . (6.120)

(The subscripts T and P stand for “temperature” and “polarization.” Note
that the trace J;;, which is all that appears in the energy-momentum tensor,
is proportional solely to A(f?), but we need to keep track of AEDS) because it
is linked to A(TS) through the dynamical equations.) Similarly, the integral
over p appearing on the right-hand side of Eq. (6.1.19) may be expressed in
terms of a pair of “source functions” ®(q, t) and I1(q, t) as

d*p ) 1.
/4—:Jy(q,p, ) =alq) [ngcb(q, 1+ quqjl'l(q, t)} , (6.1.21)
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6 Evolution of Cosmological Fluctuations

and as usual we write
dupi(q,t) = ia(q)q;0up4(1) . (6.1.22)

Inserting Eqgs. (6.1.20)—(6.1.22) in Eq.(6.1.19) yields the coupled Boltzmann
equati )
quations for A" and A

qu

AP, u,t)+z< 0

) AP (g, 1, 1) = —0 (A (g, 1, 1)
3 2

AP (g 0+ ( ) AP (g, 1, 1) = —0c ()AL (g, 1, 1)

()
—24,4(t) + 2¢* 1 By (1)

3 s .
+ 3w (1) (g, 1) + ch(l)(l — u)I(g, 1) + diguw(1)Sup 4(1),
(6.1.24)

with ® and IT defined by Eq. (6.1.21).
The usual approach* to the solution of these Boltzmann equations is

through an expansion of A(TS) and A;S) in partial wave amplitudes:
A=Y et )P AD Gy (6129
£=0
AP (@ =Y e+ D P ARG . (6120
=0

To derive the Boltzmann equations for the partial wave amplitudes, we use
the recursion and normalization relations for Legendre polynomials

+1 2
e+ puPe(p) = (L+1) Py (W) +E€Po—1(1), / Pl () dp = Wl
1 +1

4M. L. Wilson and J. Silk, Astrophys. J. 243, 14 (1981); J. R. Bond and G. Efstathiou, Astrophys. J.
285, 1.45 (1984); R. Crittenden, J. R. Bond, R. L. Davis, G. Efstathiou, and P. Steinhardt, Phys. Rev.
Lert. 71, 324 (1993); C. -P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995).
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6.1 Scalar perturbations — kinetic theory

Multiplying Egs. (6.1.23) and (6.1.24) by P¢(1) and integrating over u then
gives

A (S) q S) (S)
Aret et [(6 +DApG — EAP,Z—I]
) 1 8e2
= _a)CAP,Z + Ea)cl'[ 8@0 + ? . (6127)
A (S) q (S) (S)
Arye+ a2t D [(z + DA~ EAT,e—l]
. . ) 26
= 24,800 +24°B, (%0 - 1—22>

1 1
— W AY) + o (3c1> + 5H) B0 + 15w 802

4
— Sdocdupy (6.1.28)

We can express the source functions in terms of A(TS; and A;S,)Z by inserting

Eq.(6.1.20) in Eq. (6.1.21), and using the integral formula, that for any
function £(g - p),

E/dzpf(Q'P)Pipj = Ad; + Bgiq; ,
where

1! 1!
A= Z/ dufu) (1 —p?) = Ef dp f(w) <P0(M) - Pz(M))
—1 —1

1! 1!
5=, [ i f o) G = 1) = 3 / i f o) P2
(The general form of the integrals is dictated by rotational invariance, while
the formulas for the coefficients are found by contracting the integral with
8; and with ¢;q;, and then solving the resulting pair of linear equations for

A and B.) Using this, we can easily evaluate the two terms in the integral
(6.1.21) (here dropping the arguments ¢ and ¢):

1 20 (NS n S5 A o s
Q/dp (AP@-» - 2@ ) 65 — by

= / " du (A(S)(u)—A(S)(M)> [(11) (1P w)) Sy— P (u)a-c}»]
» T P 6 T VEE
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6 Evolution of Cosmological Fluctuations
(@ — @ i) (2 - @ i)
1-@- p?

_/+ld A9 [ (L P2 Prw) ) 5+ (L Po— 2 Prw) ) a4
= g w AR (1 (E o(m gz,bb)l] (Z 1]V 52#)‘]1%

1 . .
g / *pa G - p)

In this way, and using the partial wave expansions (6.1.25) and (6.1.26), we
find

1
_ () _ A _ A _ A(S)
®= [ZAT’O — ALy — AR - AP’z] : (6.1.29)
() L AGS) 4 A)
M=AP)+APY+ AP (6.1.30)

In the same way, using Eq. (6.1.20) in Egs. (6.1.14)—(6.1.16) gives
1
8T, j(x,1) = py () / d*q " a(q) / 1 du A (g, 1, 1)
1 1 R
x| = (Potw) = Pa(w)) 8y + 3 P2 1wty | -
. 0 1
8TY;(x. 1) = a(t) py (1) f d*q e’q"‘a(q>% f dn AP (i OP1()
1_ . !
STDo(x, 1) = —zpy(t)/d%] ' a(q) / 1 dp A (q, 11, 1) Po(w)
in which we have used the formula
1 s on aa i [
E/d pf(q-p)pi= E/Iduf(u)Pl(u) :

Comparing this with the first three of Egs. (5.1.43), and again using the
partial wave expansions (6.1.25) and (6.1.26), we find

5py g = %V(A(Tsj) +a%), (6.1.31)
7y, = by AT (6.1.32)
Spyq = Py ATY . (6.1.33)
qduy 4 = —2&;‘} . (6.1.34)

As a check of Egs. (6.1.31)—(6.1.33), note that when used in the last of
Egs. (5.1.43) these results give §7 ; » = 0, a necessary consequence of the
masslessness of the photon for any distribution of photon momenta.
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6.1 Scalar perturbations — kinetic theory

Egs. (6.1.31)(6.1.34) show that to work out the cosmological evolu-
tion of the gravitational field and its effect on other perturbations in scalar
modes, all we need to know about photons is A(T)@ for ¢ < 2. But of course
the evolution of these three amplitudes is coupled by the Boltzmann equa-
tions (6.1.27)—(6.1.30) to both A(TSE and A(S) for all higher £. In computer
programs like CMBfast and CAMB, the partlal wave expansion is cut off
at a sufficiently high value of £; in the latest version of CMBfast, the max-
imum value of ¢ is taken as £pax = 12, in which case the computer has
to solve 2(€max + 1) = 26 coupled ordinary differential equations for each
value of ¢, not counting the other equations that describe the evolution
of the baryonic plasma, cold dark matter, neutrinos, and the gravitational
field.

As we will see in the next chapter, the interpretation of observations of
the cosmic microwave radiation background requires calculation of A(S)

and A},z for ¢ ranging to values well over 1,000. Originally this was done

by a direct use of the coupled Boltzmann equations (6.1.27) and (6.1.28),*
but this required hours or even days of computer time for each theoretical
model. A great improvement was introduced with the suggestion to use
instead a formal solution of the Boltzmann equation (6.1.19), in the form
of a “line-of-sight” integral,’ which in matrix notation takes the form

t t dt// t
Jij(q,p, 1) = a(q) f drf' exp (—iq f)/ — —f dt” a)c(t”))
f ¢ oat’) 1%

x [— (85 = bty ) (44) = G- @2By(1))

3a)c(t) ~ A /

+ ———0; — pip))®(q,1)
3w (t ,

+ w4( )H(q,t)<qz —pi(q- p))( —Diq- P))
20)00)

a(t) [81] ﬁiﬁj]ﬁkauk(q, Z/):|

t t
+ Jij(Q. p, 11) exp (—iq -13/ dr’ ch')) . (6135
n

a(t/) 5]
where ¢] is any arbitrary initial time. If we choose #; to be sufficiently

early, before recombination, so that w.(1) > H (1), and take ¢ at any time

Su Seljak and M. A. Zaldarriaga, Astrophys. J. 469, 437 (1996). [astro-ph/9603033].
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6 Evolution of Cosmological Fluctuations

after recombination, the final term in Eq. (6.1.35) may be neglected, and
we have

t t /" t
Jij(q,p, 1) =a(q)/ dt’ exp (—iq-ﬁ/ dt// —/ dr” a)c(t”))
1 ¢ oat”) v

y [_ (85 = biy) (440) = G- @B, (1))

3w (1) .
‘2 (8 — pipp)®(g, 1)
3w€(t/) / A A A A A A A A
+ 4 H(q,t)<ql—pl(q-p) (q]—p](q-p)
2w.(1) A
+ 20, ~ piisua. ) | (6.1.36)

In terms of the temperature and polarization amplitudes defined by the
decomposition (6.1.20), the line-of-sight solution reads

t t dt// t
S S .
A(T)((],M, 1) = A} )((],M, t)+2/r dr’ exp [—ZCIM/; M—/; we(1") dl”i|
1

ingwe(t')

y / T / 3 / / 2 /
x [—Aqa 2 By () +Jwe (1) @ (g, 1)+ o St )],

(6.1.37)

(S) 3 2 t t dt// t
Ap (g 1) = (1= p?) f dt' exp [—iqu/ G —/ we(1") dt”]
1 ¢ ¢

x w(1) (g, 1), (6.1.38)

where du, is the scalar velocity potential, defined by duy (q, 1) = igruy ().
Once ® and IT have been calculated from Egs. (6.1.29) and (6.1.30),
Egs. (6.1.37) and (6.1.38) can be used to calculate A(TS)K and Agz for
arbitrarily high values of ¢. (It is also possible to use Eq. (6.1.36) as a
substitute for the partial wave expansion in calculating the source terms &
and I1. Integrating Eq. (6.1.36) over p yields integral equations:® expres-
sions for ® (g, ¢) and I1(g, ¢) as integrals from ¢#1 to ¢ in which the integrand
is a linear function of ®(¢.t") and I1(q, ¢') for ' < ¢. This approach will be
applied to tensor modes in Section 6.6.)

63, Weinberg, Phys. Rev. D 74, 063517 (2006) [astro-ph/0607076]; D. Baskaran, L. P. Grishchuk,
and A. G. Polnarev, Phys. Rev. D 74, 063517 [gr-qc/0605100].
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6.1 Scalar perturbations — kinetic theory

Neutrinos

The number density n,(x,p, ) of each species of massless neutrinos (or
antineutrinos) in phase space can be conveniently expressed in terms of an
intrinsic perturbation én, (x, p, ¢) by a formula like Eq. (6.1.6):

1y (X, P, ) = Ty (a(t)po(x, P, z)) S (x,p, 1) (6.1.39)

where 7, is the equilibrium phase space density of each neutrino species

[exp (p/klga(l)T(l)) + 1]_1 . (6.1.40)

o
nv(P) = (27_[)3

As shown in Appendix H, the perturbation én,(x, p, #) satisfies the same

Boltzmann equation as the photon phase space density a(?) n)lik x,p,1),
except that for 7 « 10'9K, the terms proportional to the collision frequency
are absent:

_ a 8”1) (Xa pa t) ﬁk 8 8”1) (Xa P: [)

B at a(t)  axk

R
—Epnv(P)PkPIEGZ (t)5gk1(X,t)> (6.1.41)

The contribution of each species of neutrino to the perturbations to the
energy-momentum tensor is given by formulas (6.1.10)—(6.1.12), except that
sm, (X, p, t) appears instead of a2 (¢) 8n§§k (x,p, t). Once again, all we need for
this purpose is a dimensionless direction-dependent intensity, defined by a
formula like Eq. (6.1.13):

o0
AT (%P, 1) = N, / S1y(x, p, 1) 4 pddp | (6.1.42)
0

where N, is the number of species of neutrino, counting antineutrinos
separately, and p, = N,a~* [4np’n,(p) dp. Then the total neutrino and
antineutrino contribution to the energy-momentum tensor is

§Ty(x, 1) = pv(t)f_J(X P Dibj (6.1.43)
TO,%, 1) = a(t) (1) / DD rix oty (6.1.44)
STO0(x.1) = — (1) / Dy (6.1.45)
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6 Evolution of Cosmological Fluctuations

just as in Eqs. (6.1.14)—(6.1.16). Rotational and translational invariance
allow us to express J (X, p, ) as a Fourier integral of the form

TPy 1) = / 0@ AS) (.3 1) N dg (6.1.46)

To derive a Boltzmann equation for A,(,S), we multiply Eq. (6.1.41) with
47 |p)? and integrate over |p|, and find

ad AI(JS)(qau’ﬂ D, qh (s . 2 2;
ot + la(t) AY(g, 1) = =2A44(1) +2q7 " By(t) . (6.1.47)

In computer programs like CMBfast, the Boltzmann equation for neu-
trinos as well as for photons is solved by a partial wave expansion. One
writes

o
A (g0 = i QU+ DPw) A (g, 1) . (6.1.48)
£=0

Inserting this in Eq. (6.1.46) and then in Egs. (6.1.43)—(6.1.45) and then
comparing the results with the first three of Eqgs. (5.1.43) gives the perturbed
pressure, scalar anisotropic inertia, perturbed energy density, and velocity
potential of the neutrinos

5py () = 2 3( )<A(S) @0+ 8@.0), (6.1.49)
G5, (1) = p() A (q. 1) (6.1.50)
8pv () = pu() ALY (q. 1) | (6.1.51)
q8uy ¢(1) = —iA(S) (q.1) . (6.1.52)

To derive the Boltzmann equations for the partial wave amplitudes, we
multiply Eq. (6.1.47) with P,(u) and integrate over pu:

M@0+ e Dalaen —eal) @]
= —24,(t)8¢0 + ¢*B, (1) (@ - 4;3—?) : (6.1.53)

In the current version of CM Bfast, this equation is cut off at a maximum
value of £ equal to 25. Instead of relying on a truncated partial wave expan-
sion, it is possible to write a solution (here not merely a formal solution) of
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6.1 Scalar perturbations — kinetic theory

Eq. (6.1.47) as another line-of-sight integral:

NS@uoz—{pr—Mgfiﬂ—(Aaﬁ—Mwaﬁ
v > " py a([//) q q

t d[/
+A® (g, 1, t1) exp | —igu — . (6.1.54)
131 a(l)

where ¢ is any arbitrary initial time. If 71 is taken at some time after the
neutrinos went out of thermal equilibrium with the baryonic plasma, but
early enough so that gravitational field perturbations have not yet had a

chance to distort the neutrino distribution, then A,()S ) (g, i, t1) arises only
from the temperature perturbation at time ¢1:

8T4(t1) .Mq5uq(l1)]
— +1 s
T(t1) a(ty)

(6.1.55)

A?k%uﬁo=4[

in which the second term in square brackets arises from the Doppler effect
due to the streaming of the electron—positron—photon plasma.

The integrals over direction in Egs. (6.1.43)—(6.1.45) can be done ana-
lytically; for this purpose we need the formulas

/ —Pzpjpkple i (3z;5k1 + 8ixdjr + 515k,)12(v)/ v

— (840x D1 + 8ix 001 + 8Ok d; + 8jx0i0y + 80k 0; + SxrDi0;) Jj3(v) /v

+ 0,00 07 ja(v) , (6.1.56)
i TPV = —i (850k + 8 + Sk )2 (v)
4o plpjpke = —1\ 0jjVk T 0k Vi kiVj )j2(v) /v
+ i0;0; 0 j3(v) (6.1.57)
d*p i
4—13:13/ PV =871 (v) v — 0iv; ja(v) (6.1.58)
d*p .
——pie PV = —it; j1(v) (6.1.59)
4
d’p s
/ EL p=ipv — jo(v) (6.1.60)

4

where v = |v|, and jy(v) is the usual spherical Bessel function. Again

comparing the results with the first three of Egs. (5.1.43), we obtain explicit
formulas for the perturbed pressure, scalar anisotropic inertia, perturbed
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6 Evolution of Cosmological Fluctuations

energy density, and velocity potential of the neutrinos:’

t
o) = =20 [t
I

. , t dt// 2 . , t dt//
X [Aq(t)Kl (q/l/ a(t”))_q B,(1) K> (q/t/ M)} (6.1.61)
t
PrS,(1) = ~27,(0) / it
3]

. . todt” v tody’
x [Aq(t )2 (q/ﬂ a(l,,)> —q " By(t) K3 (q/ﬂ m)] (6.1.62)

3a(r) (!
b1, (1) = a()f dr
2/,

. . rody 5 , o4y
om0 25) oo ) s

t
So,40) = ~25.(0) [ at
131

“ tod” e tode’
X [Aq(t )Jo (q/t a(l,,)> —q°By(1) Ks <q/t m)] (6.1.64)

where
Ki(v) = ji(w)/v, (6.1.65)
K> (v) = jr(0) /v — j3(v) /v, (6.1.66)
K3(v) = =22 () /v + 5j3(v) /v — ja() , (6.1.67)
K4(v) =3pa(v) /v — j3(v) , (6.1.68)
K5(v) = ji()/v — o (v) . (6.1.69)

Using these formulas, one no longer needs the truncated partial wave
expansion for neutrinos.
Gravitation

It only remains to give the equations of motion for the scalar gravitational
field components 4 and B. (Note that 4 and B themselves are nowhere

TThese formulas are given also for massive neutrinos by S. Weinberg, ref. 6.
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6.1 Scalar perturbations — kinetic theory

needed.) It is convenient to take one of these as Eq. (5.3.31), written as

d

3 [a2 z//q] — 471 Gd®

X <5qu + 8qu + 810)/([ + 5,01)11 + 35pyq + 38[71)(1 - qzﬂfq - q2n§q)

(6.1.70)
where
Y, = %(321[, ~*B,). (6.1.71)
The other can be taken from Eq. (5.3.30)
A= 871G[%1,5y6uyq + gﬁv&tvq + padup, | (6.1.72)

(Recall that we have adopted the particular synchronous gauge in which
Supy = 0.) After solving the first-order differential equation (6.1.70) for ¥,
and using Eq. (6.1.72) to find Aq, the other component is trivially given by
the definition Eq. (6.1.71) as

B, =34, -2y, (6.1.73)

With this, as long as we truncate the partial wave expansions used for
photons and neutrinos, we have a closed system of ordinary differential
equations for all the perturbations, which can be straightforwardly solved
by computer for any given initial conditions.

To find initial conditions, we note that at a sufficiently early time 1, well
before the era of recombination, (say, for 7'(¢) > 10° K), the collision rate of
photons with the baryonic plasma is so great that photons are in thermal and
kinetic equilibrium with the plasma. Under these conditions, the photon
distribution 8n¥ arises only from a perturbation to the temperature in the
first term of Eq. (H.31), including the Doppler shift due to the photon
streaming velocity, which in equilibrium is the same as the baryonic plasma
velocity dup:

; 1 _ a7 ST (x,t1)  Prdupk(X,11)
8n§(x,p,t1)=—§a z(tl)[Bg—pipj]n;(p)p[ Peots :

T(11) a(ty)
(6.1.74)

(The factor 1/a(t;) in the Doppler term in Eq. (6.1.74) was explained in
connection with Eq. (H.13).) Note that for w, very large, the coefficients of
w. on the right-hand side of equation (6.1.17) must cancel, which gives an
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6 Evolution of Cosmological Fluctuations

initial condition consistent with Eq. (6.1.74). Multiplying with 47p3 and
integrating over p, we find a corresponding condition on J;;:

(6.1.75)

D 1 [8T (X, t1)  préug(x,tr)

T(t) a(ty)

Note that J;;(x, p, t1) receives contributions only from scalar and vector
perturbations, not from tensor perturbations.

Similar remarks apply to neutrinos, except that we must go back to
an earlier time, when the temperature was a little below 10!° K, so that
neutrinos were already traveling freely, but not enough time had elapsed for
the gravitational field perturbation to have altered the equilibrium form of
the neutrino phase space distribution.

This still leaves us with the necessity of stipulating initial values for 4,
By, 8pg, dBg, dupy, and §T,. For this, we must go back to a time early
enough so that the wave numbers of interest were outside the horizon, in
the sense that g/a < H. In the following section the needed initial values
will be worked out for the dominant adiabatic mode, with a normalization
expressed in terms of the quantity R, given in synchronous gauge outside
the horizon by Eq. (5.4.24).

6.2 Scalar perturbations — the hydrodynamic limit

The system of equations described in the previous section is much too
complicated to allow an analytic solution. Fortunately, until near the
time of recombination the rate of collisions of photons with free elec-
trons was so great that photons were in local thermal equilibrium with
the baryonic plasma, and so photons at these times can be treated hydro-
dynamically, like the plasma and cold dark matter. This approach loses its
validity around the time of recombination, but a fair degree of accuracy
will be preserved in Section 6.4 by taking into account the damping caused
by the growing mean free times in this era. After the time of recom-
bination photons traveled more or less freely, and their path can be fol-
lowed by solving their equation of motion. Neutrinos are more of a
problem, but at very early times perturbations were outside the horizon,
so at these times g%, and gdu, ; were negligible and Eqs. (6.1.49)—(6.1.51)
show that 8p,, = 3dpy 4, just as if the neutrinos were in local thermal
equilibrium, while at late times the universe became matter dominated
and neutrinos made only a small contribution to the cosmic gravitational
field.
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6.2 Scalar perturbations — the hydrodynamic limit

With these justifications, in order to allow an analytic treatment, in this
and the next three sections we will adopt a hydrodynamic approach.! To
be specific, for the most part we will neglect anisotropic inertia, take du, 4
equal to dupg, and take p, 4 = py4/3 and p, 4 = py4/3. This necessarily
entails the loss of some accuracy, but our aim in this chapter (and in the
next two chapters) is not to calculate the course of cosmic evolution and
its observational consequences with the high level of accuracy that would
optimize the extraction of cosmological parameters from the latest data
on the cosmic microwave background and large scale structure. Rather,
we wish here to elucidate the physics of cosmic evolution, and clarify the
dependence of observables on cosmological assumptions. Fortunately, the
results we obtain from this analytic treatment will turn out in Chapter 7 to
yield predictions for anisotropies in the cosmic microwave background that
are quite similar to those obtained by comprehensive computer programs,
using the full Boltzmann equations described in the previous section. We
are thereby reassured that the hydrodynamic approach captures the essence
of what is going on in the early universe.

Under the above assumptions, the Fourier transforms with co-moving
wave number ¢ of the synchronous gauge perturbations are governed by the
gravitational field equation (5.3.36):

d
= (@) = —4wGa* (8004 + 8pmy + 280y +28p0g) » (62.1)
the equations (5.3.34) of energy conservation for each of the four fluids
8pyq + AHBpy, — (447 /30%) py Sy g = —(4/3)py 0y, (6.2.2)
8ppg + 3HSppy = —pp¥y , (6.2.3)
8/éBq + 3H8/)Bq - (qz/az)/sBauyq = —pBYy , (6.2.4)

8ug + 4H3pug — (A% /3a®) pvdutng = —(4/3pyiry . (6.2.5)

and the equations (5.3.32) of momentum conservation for the photon—
baryon plasma and the neutrinos:

d (/4 4
(G o)) 4381 (57, + 7)o ) =—1/395m, . 6260

d /. )
E(pvﬁuvq> + 3H pubuung = —(1/4)8pyq - (6.2.7)

10ther analytic or semi-analytic treatments of the evolution of fluctuations have been given by W. Hu
and N. Sugiyama, Astrophys. J. 444, 489 (1995); 471, 542 (1996); V. Mukhanov, Int. J. Theor. Phys.
43, 623 (2004) [astro-ph/0303072]. The treatment given here is in my opinion more transparent though
somewhat less accurate than that of Hu and Sugiyama, and (because we allow ourselves the use of a
computer to do numerical integrals) it is more accurate than that of Mukhanov.
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6 Evolution of Cosmological Fluctuations

It is very convenient to rewrite these equations in terms of the dimen-
sionless fractional perturbations?

8Paq
4 Pa + Pa
where « runs over y, D, B, and v. Taking into account that a4;3y, app,

a*pp, and a*p, are all time-independent, Egs. (6.2.1)—(6.2.7) now read

d _ B 8 _ 8 _
E(azW(]) = 47 Ga’ <pD6D‘1 + PBSBg + ng‘SVq + gpv‘qu) , (6.2.9)
8yq — (q*/a*)uyg = =y , (6.2.10)
8pg=—Vq . (6.2.11)
8Bg — (q°/a*)uyg = =y , (6.2.12)
SWI - (qz/az)(suvq =—Yy, (6.2.13)
d ((1+ R)duy, 1
— |\ ) =—% 6.2.14
dt ( P 3074 ( )
d (Suyg 1
- =—-9 6.2.15
dl ( a ) 3a vq > ( )

where R = 3pg/4p,. Egs. (6.2.1)-(6.2.7) or (6.2.9)—(6.2.15) form a closed
system of seven first-order differential equations for v, the four density
perturbations, and the plasma and neutrino velocity potentials, so there
must be seven independent solutions.

Before trying to find solutions valid up to the time of recombination, we
must first consider the initial conditions to be imposed. These initial con-
ditions will distinguish the different independent solutions. At sufficiently
early times the universe was in a radiation-dominated era, when pys < PR,
where

oM = pPp + 0B PR = Py + Pv , (6.2.16)

so that to a good approximation a o «/7 and 87 Gpr/3 = 1/4¢%, while
R « 1. (This fixes our definition of the zero of time.) If we take a o /7
and R <« 1, Egs. (6.2.9)—(6.2.15) become

d _ _ 8 _ 8 _
E(l]ﬂq) = —41 Gt (,OD(SDq + pBdBy + gpycsyq + 5,01,31,(1) ,  (6.2.17)

8yq = 8By = —Wg + (¢*/aP)Suyq , (6.2.18)

2Note that this differs from a commonly used convention, according to which 8aq would be defined
as 8paq/ Pa-

276



6.2 Scalar perturbations — the hydrodynamic limit

$pg =~y , (6.2.19)

Suvg = —Vq + (q*/a*)Suyg , (6.2.20)
d (Su 1

dr (_qu) = _3_ﬁ8yq ) (6.2.21)
d (du, 1

E ( ﬂq> = _3_«/;5‘“] . (6.2.22)

At very early times the perturbation was outside the horizon, in this sense
that ¢/aH < 1, but we have not yet dropped the terms in Egs. (6.2.18) and
(6.2.20) proportional to ¢2, because in some modes there are cancelations
in the calculation of the conserved quantity R, outside the horizon that
require us to take such terms into account. Also, we have not dropped
the terms on the right-hand side of Eq. (6.2.17) proportional to pp or pp,
because even though we are now assuming that pp and pp are much less
than p, and p,, we want to leave open the possibility of modes in which the
fractional fluctuations in the dark matter and/or baryon density are much
larger than the fractional fluctuations in the photon and neutrino densities.

Mode 1

This is the dominant adiabatic mode — adiabatic, in the sense that all the
Saq become equal at very early times. (As discussed in Section 5.4, only these
modes are present in inflationary theories with a single scalar field, or if the
universe was ever earlier in a state of complete local thermal equilibrium
with no non-zero conserved quantities.) Inspection of Egs. (6.2.17)—(6.2.22)
shows that, if we make the ansatz,

8,0 =08y =0pg=0vg =08g, Oty =iy =du,, (6.2.23)

and if we now drop the baryon and dark matter-dominated terms in
Eq. (6.2.17), and consider times early enough so that we can drop the ¢*/a>
terms in Egs. (6.2.18) and (6.2.20), then Eqgs. (6.2.18)—(6.2.22) and (6.2.17)
become

5, =~y (6.2.24)
% (‘%) _ _3%/;54 , (6.2.25)

and
%(%) _ _%3(1 , (6.2.26)
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Combining Egs. (6.2.24) and (6.2.26) gives a second-order differential equa-

tion for 8,:
d ([ d 1
—(t—=6,) —-6,=0.
dt ( dt q) t !

This has two solutions, with §;, oc ¢ and 8, oc 1/¢, and for each solution
Eqgs. (6.2.24) and (6.2.25) give solutions for ¥, and du,. The growing solu-
tion has 8, o< 7 and duy o 12, and gives our first adiabatic mode:

q2t2Ro
Byq =88y =8vy =8pg = — 1, (6.2.27)
14> R
4= 1. (6.2.28)
2t3q27€2
(Suyq = 5u,,q = —97 , (6229)

We have normalized this mode so that the quantity given by Eq. (5.4.24) as
PRy = —a*Hyry + 47 Ga*dp, + q* Héu,, (6.2.30)

takes the time-independent value quZ for ¢/a « H (the superscript o
standing for “outside the horizon”).

Mode 2

The solution of Egs. (6.2.24)—(6.2.26) which goes as 6, o< 1/t for t — 0 gives
us our second adiabatic solution:

2 24
dyg =0Bg =08vg =0pg = €4/t , VYyg=¢€4/t", 8u},q=8uvq=T.

(6.2.31)

with €, an arbitrary time-independent function of ¢g. The calculation of
R for this solution has the problem that the first two terms in Eq. (6.2.30)
for quq cancel to zeroth order in ¢?/a>H?, leaving us with an unknown
residue in qZRq of order ¢%/a*H?, and hence an unknown term in Ry
of zeroth order in ¢%/a*H?. Fortunately, in this mode we can find a sol-
ution to Eqgs. (6.2.17)—(6.2.22) that is valid to all orders in ¢/aH, as long as
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6.2 Scalar perturbations — the hydrodynamic limit

oM K PR:
€ q q
Syg =88y =8ug =€/t Spg=L| 1= s In (%) . (6.2.32)
€ 24° 12
Vg=3 [1 +32 } : (6.2.33)
2
T % . (6.2.34)

Using this in Eq. (6.2.30) shows that this mode has R, = 0 to all orders in
q/aH aslong as pyr < pR.

The other five modes are non-adiabatic, in the sense that some of the d44
are unequal even for ¢g/a <« H. One particularly simple mode can serve as
an illustration:

Mode 3
€4PB €40D
dpg = _q—_ , Opg=——"—"", 6.2.35
1 PB+ PD 1 PoB+ 0D ( )
Yy=0, 08,0=5843=0, duy,y=>3uyy=0, (6.2.36)

again with ¢, time-independent but otherwise arbitrary. This just amounts
to a perturbation in the time-independent ratio of the densities of baryons
and dark matter, and is an exact solution for all times. It is an isocurvature
mode, in both the sense that R, = 0, and also that v, = 0.

% %k %k

As already indicated, these results apply only at times early enough so
that pyr < pr (and, for mode 1, g/a < H). As an aid to extending these
early-time solutions to later times, note that for all times before recombin-
ation, the difference of Egs. (6.2.10) and (6.2.12) gives

i<53q s, q> _0. (6.2.37)

dt
We see that any solution that satisfies the adiabatic condition, that g, = 8,4
at early times, when the perturbation is far outside the horizon, will continue
thereafter to have
8By = 8yq - (6.2.38)
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6 Evolution of Cosmological Fluctuations

Egs. (6.2.9)—(6.2.15) are then reduced to

d _ _ 8. 8 _
E((ﬂw(]) = —47TGa2 |:pD5Dq —+ (pB —+ gpy> (Syq + g,ovévq] , (6239)
8yq — (P /a*)Suyy = —Vry (6.2.40)
8pg = —Vy . (6.2.41)
8ug — (q*/aP)uvg = —rg (6.2.42)
d ((1+ R)Suy, 1
—(——— ) =——5 6.2.43
dt ( a 3a Yq » ( )
d (duyg 1
— =——3 6.2.44
dt ( a > 3a 1’ ( )

where again R = 3pp/4pr. These equations apply to modes 1 and 2 at all
times before recombination. We will be chiefly interested in mode 1, since
the perturbations of mode 2 decay by a factor 1/¢ relative to those of mode
1 during the part of the radiation dominated era when the perturbation is
still outside the horizon.

It is not possible to find an analytic solution of even the reduced set
of equations (6.2.39)—(6.2.44) that would be valid for all times and wave
numbers. They can be treated analytically, however, in two wavelength
regimes: long wavelengths, for which ¢ < ¢gq, and short wavelengths, for
which ¢ > ¢ggq, where ggg is the wave number for which ¢/a = H at
matter-radiation equality. Recall that, once inflation is over, ¢/a decreases
more slowly than H, so that for long wavelengths, the wave number is so
small that p3; becomes equal to pr when ¢/a is still much less than H,
while for short wavelengths, the wave number is so large that ¢/a becomes
equal to H when pyy is still much less than pr. For long wavelengths we
will be able to find analytic solutions of Eqs. (6.2.39)—(6.2.44) in both the
early era, when the perturbation is outside the horizon, and in the later
era, when the expansion is dominated by non-relativistic matter, and patch
them together in the era of overlap, when the perturbation is still outside the
horizon and the universe is already matter dominated. Conversely, for short
wavelengths we will be able to find analytic solutions of these equations in
the early era when the universe is radiation dominated and in the later era
when the perturbation is deep inside the horizon, and patch them together
in the era of overlap, when the universe is still radiation dominated and the
perturbation is already deep inside the horizon. The two cases of long and
short wavelength are considered in Sections 6.3 and 6.4, respectively.

To calculate the critical wave number ggq for which g/a = H at
matter-radiation equality, we recall that the redshift of matter-radiation
equality is given by Eq. (2.2.5) as 1 +zpq = Qur/ Qr = Quh?/4.15x 1075,
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6.2 Scalar perturbations — the hydrodynamic limit

Eq. (2.2.9) gives the Hubble rate during the radiation dominated era as
H =21x10"2 (1 +z)25~!, but at radiation—matter equality the contri-
bution of matter to the total energy density makes H larger by a factor /2,
so for fluctuations that just enter the horizon at matter-radiation equal-
ity the physical wave number and Hubble rate at that time are given by
Eq. (2.2.9) as

qEQ/aEQ=HEQ=v2x2.1x1072° (14zpq)%s~ '=1.72x 107N (Qph?)*s7L .

This corresponds to a critical physical wavelength at present given by

2 2w (1 + zgQ)
Ao = =

= = =85 (Quh®) ™! Mpc . (6.2.45)
qEQ/a0 4EQ/AEQ

For comparison, the size of the local supercluster, estimated from the
distance between our galaxy and the Virgo cluster, is about 15 Mpc.
Perturbations that are now observed to extend over distances that are larger
or smaller than Agq came within the horizon before or after matter—radiation
equality, respectively. Using the present mass density o0 given by
Eq. (1.5.28) and (1.5.39), the average mass now contained within a sphere
of diameter A is

%pMokg — 0.9 x 1017 (Quh?) 2 My, . (6.2.46)

This may be compared with the mass of a large galaxy, about 10'2M.
Thus any perturbation that is relevant to the formation of galaxies or even
clusters of galaxies would have been well within the horizon at the time of
radiation-matter equality.

We can also identify a corresponding critical multipole order ¢gq of
anisotropies in the cosmic microwave background. As remarked in Sec-
tion 2.6, the integral over wave numbers for the multipole coefficient C; is
dominated by co-moving wave numbers of order £/ry , where ry is the radial
coordinate of the surface of last scattering, and hence the integral for Cy is
dominated by wave numbers of order ggq that just come into the horizon at
matter—radiation equality if £ is of order £gq = ggqrr. This can be written

qeQ\ (“EQ\ { @0 Hgqo(l +z1)
= (5230 (3= 2
Q agQ aop ar, (I +zgQ)
where ay is the Robertson—Walker scale factor at last scattering. We recall

that Heq = +2Qu (1 + zEqQ)¥/?Hy, and apry = dg4, the angular diameter
distance of the surface of last scattering. Also, 1 4+ zgq = Qu/Qr. Hence

lgQ = Quv2/QrHyds(1 +2z1) . (6.2.47)
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6 Evolution of Cosmological Fluctuations

For instance, if we take sample parameters Q3; = 0.26 and Q2 = 0.74, then
as noted in Section 2.6 d4 = 3.38H0_1(1 +z7)~ ). Taking Qg = 8.01 x 1073
(corresponding to 7y = 2.725K and Hy = 72 km sec™'Mpc~!), Eq. (6.2.47)
gives a critical multipole order £gq = 140. Multipole coefficients for larger
values of ¢ arise only from perturbations that entered the horizon during
the radiation dominated era.

In what follows, for both scalar and tensor modes,we will find it conve-
nient to introduce a dimensionless rescaled wave number,

V24 _ (q/a)vVQrR _ q/a
qEq HoQy 0.052Qyh2 Mpe™!

« (6.2.48)

In the cases of long and short wavelength, we have x < 1 and « > 1,
respectively.

The calculations of the next three sections are necessarily complicated
and perhaps tedious. As a guide, it may help to say that the results at which
we are aiming are Egs. (6.5.15) and (6.5.16) for the perturbations to the dark
matter density and gravitational field in the whole of the matter-dominated
era, and Eqgs. (6.5.17) and (6.5.18) for the perturbations to the photon and
baryonic plasma density and velocity potential in the matter-dominated era,
up to the time of the decoupling of matter and radiation.

6.3 Scalar perturbations — long wavelengths

We first consider perturbations with wavelengths that are long enough so
that they are still outside the horizon at the time of radiation—matter equality.
As discussed at the end of the previous section, such perturbations are
responsible for multipole moments of the cosmic microwave background
anisotropies with £ < 140. Because gor/aH pys is constant during the
radiation dominated era, when ¢ o« /7 and H o« a2, and we are here
assuming it is much less than one when pas = PR, it follows that for these
wavelengths we have )
q oM
aH < OR
throughout the radiation-dominated era. (Recall that pyy = pp + pp and
PR = Py + pv.) On the other hand, during the matter-dominated era when
a « */3 and H « a=3/2, it is ¢*pr/a* H*p)s that remains constant, and
since this quantity is assumed to be much less than one when p; = pg, for
these wavelengths we have

(6.3.1)

2 -
q oM
— L — 6.3.2
a’H? < PR ( )
throughout the matter-dominated era.
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6.3 Scalar perturbations — long wavelengths

We cannot give a single analytic formula for these perturbations during
the whole era from just after electron—positron annihilation until near the
present, but fortunately we can find analytic solutions in two eras: first,
the era when the perturbations are outside the horizon, and, second, the
era when the energy density of the universe is dominated by non-relativistic
matter. (The anisotropic inertia due to neutrinos can be neglected in both
eras, because it is negligible outside the horizon, and irrelevant when the
energy density of neutrinos is much less than that of matter.) For the long
wavelengths considered in this section, that are still outside the horizon at
the time that the matter density becomes equal to that of radiation, these
eras overlap. This allows us to take the initial condition in the second era
from the results for the first era in the period in which they overlap.

A. Outside the horizon

The perturbations of greatest interest, corresponding to adiabatic modes,
are governed by Eqgs. (6.2.39)—(6.2.44), with the fractional perturbations ¢
defined by Eq. (6.2.8), and with §3;, = §,4. For g/a <« H, this gives

d ) 8. 8 _
E(Clz{//q> = 471 Gd® [pDSDq + (pB + gpy)éyq + gpvévq], (6.3.3)
8yq = 8vg=8pg =~y , (6.3.4)
d ((1+ R)du 1
= (%) =38 (6.3.5)
d (éu 1
- ( a”") = —gavq . (6.3.6)

These can be solved analytically, at least for some of the modes described
in the previous section. Most importantly, for the adiabatic solutions with
all 644 equal outside the horizon, Egs. (6.3.3) and (6.3.4) become

dis 2| - 8 _
E(a z/fq) — —47Ga [pM n ng] 5 (6.3.7)
8y =—Yq (6.3.8)
where
8q = 8yq = 8vqg =8Bg = pq » (6.3.9)

and we recall that p)s = pp + pp and pr = p, + p,. Inserting Eq. (6.3.8)
in (6.3.7) then gives a second-order differential equation for §,:

d( ,d . 8.
= —51=4 — S 3.1
d[( z q) 7 Ga [pM+3pR} .. (63.10)
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6 Evolution of Cosmological Fluctuations

To solve Eq. (6.3.10), it is very convenient to replace the dependent variable ¢
with y = a/agg = pm/pr, where agq is the Robertson—Walker scale factor
at matter—radiation equality. Then py = pgQ/ y3 and pr = PEQ/ y*, where
PEQ 1s the common density of matter and radiation when they are equal.
Using the Friedmann formula for the expansion rate, we have then

d Hgo.+/1 d
4 _"Eyityd. (6.3.11)
a2 y dy
and Eq. (6.3.10) becomes
d d 3 8
1 1 —38 - =18,=0 6.3.12
WG (W) =5 (v+5) (0312

This has two independent solutions,

5@ =y 21648y =27 +yY,  §0 =2 /THy.

We are looking for a solution that, as found for Mode 1 in the previous
section, vanishes like ¢ y2 for t — 0, so we must take our solution to be
proportional to 8 — 165, which for y — 0 approaches 5y?/8. Adjusting
the normalization of this solution to match Eq. (6.2.27), we have then

4q R
8, = 5H2—(16+8y—2y2+y3— 16\/1+y>, (6.3.13)
aEQy
Sttyy = — 2y W 5o, (6.3.14)
3Hgq(l1 + R) V1i+y a
V2y (v oady
Sty = — 5,(0') , (6.3.15)
e 3Hgq Jo 1+ !
\/_ 2Ro
.= 24 (2\/1 n (32+ 8y —y ) — 64— 48y) . (6.3.16)
SHEQaEQy

With this normalization factor, R, takes the time-independent value R
outside the horizon.

B. The matter-dominated era
We can also solve Egs. (6.2.39)—(6.2.44) analytically in the matter-dominated

era, when pjr > pr, whether or not the perturbation is outside the horizon.
For simplicity, we will also assume that pp <« pp. (Their ratio is actually
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6.3 Scalar perturbations — long wavelengths

about 0.2.) However, since p, is also much less than pp in the matter-
dominated era, we will not assume that pp is negligible compared with p, in
this era. Recall that in the matter-dominated era! ¢ o */3 and 87 G5y /3 =
H? = 4/9¢*. 1If we keep only the term in Eq. (6.2.39) proportional to pp,
but now make no assumption about the relative magnitude of ¢/a and H,
then Egs. (6.2.39)—(6.2.44) become

d 2
E(z“/wq) = -3, . (6.3.17)
Syq = (@ )a))suyg = =y (6.3.18)
Bug — (7 /aP)dung = =g (6.3.19)
$pg = —Vy » (6.3.20)
d 1
= (20 + Rysuy, ) = T (6.3.21)
d 1
i (778) = =370,y (63.22)

where once again R = 3pp/4pRr x a.

There are two solutions to Egs. (6.3.17) and (6.3.20), one with v/, 13
and §p,; 12/3, the other with Yy =2 and 8pg t~1. To evaluate the
coefficients of these solutions in mode 1, we must compare these results with
those given by Egs. (6.3.13) and (6.3.16) in the era where both sets of results
apply, the era (which exists because of our assumption of long wavelength)
when both g/a <« H and pr < pum, 1. €.,y > 1. Egs. (6.3.13) and (6.3.16)
give in mode 1

A4°VRy IR,

Spg = = , 6.3.23

YT SH G, 1042 (6.3.23)
—2V24°R} 3¢* (R

v, = L=t (6.3.24)
SHEQaEQy / Sa

(The final expression in Egs. (6.3.23)—(6.3.24) is derived using the result
that for pg < pp, the Hubble rate is H = 2/3t = HEQ/ﬁyz’/z, and
eliminating Hgq.) For a oc £*/3, these match the solution with 8pg X 23
and ¥, =173 while it is easy to see that Mode 2 gives the other solution
in the matter-dominated era, the one with ¥, =2 and § Dg X =1 We
conclude that if Mode 1 is dominant outside the horizon, then the dark

I The zero of time is chosen in this subsection so that in the matter-dominated era a o 2/3. In other
words, ¢ could here be defined as 2/3H.
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6 Evolution of Cosmological Fluctuations

matter density perturbation and gravitational field perturbation are given
in the matter-dominated era by Eqgs. (6.3.23) and (6.3.24).

Thisisa good place to pause, and make contact with the more elementary
treatment of Section 2.6. Under the assumption that the fluctuation in
the Newtonian gravitational potential ¢ (x,?) at around the time of last
scattering is dominated by fluctuations in the dark matter density, its Fourier
transform is given by using Poisson’s equation, with the Laplacian replaced
with —g?/a*:

56(a. 1) = —47 G(a(1/4*)90p(@, 1) = =47 G(a2(0/4%) (D304 (1) -

Using the Mode 1 solution Eq. (6.3.23) and the Friedmann equation H> =
(2/31)* = 87 Gpp/3, we see that 8¢ (q, ) takes the time-independent value

3
Sp(@) =~z @Ry .

Then (3¢ (q)8¢(q')) = Py (¢)83(q + q'), with the correlation function Py
introduced in Section 2.6 equal to

9 02
Po(a) = 35 IRGI2.

The behavior Py(q) = Nd%q_3 that was found in Section 2.6 to yield a
temperature multipole coefficient Cy = 87 N, qz) /9£(£ 4 1) thus corresponds
to the assumption that |R§1’|2 = N?¢3, with N¢2) =9 N?/25.

Even if we assume that the gravitational field is dominated by cold dark
matter, we must still consider the perturbations to the photon density and
the photon-baryon velocity as preparation for calculating the contribu-
tion of intrinsic temperature fluctuations and Doppler effect to the cosmic
microwave background anisotropies in the next chapter. Equations (6.3.18)
and (6.3.21) are a pair of coupled inhomogeneous first-order differential
equations for the two unknowns 8,4 and éu, 4, with a forcing term propor-
tional to v,. Surprisingly, with v, given by Eq. (6.3.24), there is a simple
exact solution of these equations:

3¢%t*(1 + 3R)R? 38¢*R
T o Oy = - T (6325)
5a%(12q%/a*> 4+ 2R) ve 5a2(t2q%/a® + 2R)

(We will not be concerned with the remaining equations, (6.3.19) and (6.3.22),
which are needed only to calculate the neutrino perturbations.)
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6.3 Scalar perturbations — long wavelengths

To the particular solution (6.3.25), we must add a suitable solution of
the homogeneous version of Egs. (6.3.18) and (6.3.21),

d g/ _ 1 _
8(2) =(q /az)éu)(,zq) , 7 (t 231 4 R)SuJ(,zq)) —3 2/38)(,2(]) ,
(6.3.26)

or, eliminating the velocity potential,

d 2
di < 2R+ R 5524)) T =0, (6.3.27)

with coefficients chosen so that 8,(,](1) + 8(2) matches the solution found earlier
outside the horizon, when ¢%1%/a* <« 1.

Using the fact that in the matter dominated era R o a o t2/3, we can find
a general solution of Eq. (6.3.27) as a linear combination of the functions

1 1 1 1 1
F(>—-J/1—16y, - +-J/1—167, ~, —R) ,

4 4 4 4 2
3 1 3 1 3
VRF<Z—Z\/1—16T],Z+Z\/1—16T],5,—R),

where F is the Gauss hypergeometric function (also known as 5 F}), and n
is the quantity

3¢%1

1= 4R

which is time-independent during the matter-dominated era. Unfortu-
nately, this does not provide much insight into the behavior of the solutions.
Instead, at this point we will make the further assumption that the wave-
length is only moderately long, in the sense that n >> 1. That is, although ¢
is small enough so that ¢/aH <« 1 at matter—radiation equality, we assume
that it is sufficiently large so that throughout the matter-dominated era we
have

R &L Pq*)d® < pu/pr - (6.3.28)

Each term in this inequality is proportional to r>/3 during the matter-
dominated era, so if Eq. (6.3.28) holds at any time during this era, then
it holds throughout it. This assumption will allow us to find solutions
of Eq. (6.3.27) in terms of elementary functions. In the opposite case of
extremely long wavelengths, for which 12¢%/a* <« R throughout the matter-
dominated era, we can solve the general solution of Egs. (6.3.18) and (6.3.21)
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6 Evolution of Cosmological Fluctuations

as a power series in the quantity r2¢%/a*R. We are more interested here in
the case of moderately long wavelengths, because as we will see in Section
6.5, it is this case that can be connected to the case of short wavelengths by
a smooth extrapolation.

For perturbations satisfying the inequality (6.3.28), when the perturba-
tion is outside the horizon and for some time after it re-enters the horizon,
we will have R <« 1. During the period when R « 1, the homogeneous
equations (6.3.26) have the exact solution:

5(2> = ¢, cos(v/3qt/a) + d,sin(v/3qt/a) , (6.3.29)

sul) = cqsm(\/_qt/a)—l—d cos(\/_ql/a)] (6.3.30)

va \/§ 4 [
with ¢, and d; constant. To this, we must add the inhomogeneous solution
(6.3.25), in the limit R <« ¢*¢%/a*:

3(1+3R)R? 3tR}
s = SRRy R (6.3.31)

vqg 5 > vq 5
We can evaluate the constants ¢, and d; by requiring that for gr/a < 1
(which according to Eq. (6.3.28) also implies that R « 1), the total photon
density perturbation 8%, + 8% must approach 8p, — 9¢*tRY/10a*. This
gives

3Ry
Cg=—"%5 > d; =0, (6.3.32)
so that, as longas R <« 1,
3R()
8% = —?q cos(v/3gt/a) , (6.3.33)

Eventually R becomes non-negligible, but under the assumption (6.3.28),
by then ¢gt/a will be much larger than one, and we can solve the homoge-
neous equations (6.3.26) using the WKB approximation. Inspection of
Eq. (6.3.27) suggests that for gz/a > 1 the density fluctuation will oscillate
rapidly, with phase

: J3
(pE/o - —;éﬁze) af_Z (f+d—) (6.3.34)

Using ¢ as the independent variable instead of ¢, and recalling that during
the matter-dominated era a o 2/, Eq. (6.3.27) becomes

d*s,, N 1 (dIn(1+R)\ déy,
dep? 2 do do

288



6.4 Scalar perturbations — short wavelengths

We try for a solution of the form Ae*® with A varying slowly with ¢,
so that we can neglect the second derivative of A in the first term on the
left and neglect the first derivative of A in the second term on the left,
which is already small because of the factor dIn(1 + R)/d¢. This gives
dA/de ~ —(A/4)d In(1 + R)/dp, and hence the general WKB solutions of
Eq. (6.3.27) are

80 o (1 + R) ™ exp(Lip) .

Clearly, the linear combination of these solutions that merge smoothly with
the results for R < 1 is obtained by replacing the argument of the cosine
in Eq. (6.3.33) with ¢, and multiplying with (1 + R)~!/4. Adding the inho-
mogeneous term (6.3.25), the total photon and baryon fractional density
perturbations for moderately long wavelengths in the matter-dominated
era are

o

3R
8yg = 85y = —5* [1+3R— 1+ R ecosg] (6.3.35)

We can then use Eqs. (6.3.18) and (6.3.24) to calculate the velocity potential
Uyg = —— =1+ sing | .
vq 5 «/gqt(l +R)3/4 %

(Here we neglect a term in square brackets of order Ra?/1>q>.) As a check,
note that early in the matter-dominated era, when ¢¢/a < 1, we have
R <« 1,50 ¢ — /3qt/a — 0, and hence Eq. (6.3.35) gives 8yqg = 8By —
9q2z27€2 /104?, in agreement with Eq. (6.3.23) and the condition that for
adiabatic modes all 8, are equal outside the horizon. This condition is sat-
isfied by Eq. (6.3.35) even if the inequality (6.3.28) is not satisfied, as long
asboth R <« 1 and gt/a < 1.

The results (6.3.35) and (6.3.36) for 6,, = ép,; and du, 4 in the case of
moderately long wavelengths all apply only up to the time of last scatter-
ing. On the other hand, to the extent that the energy density after last
scattering is dominated by dark matter, §p, and v, are unaffected by the
decoupling of radiation from the baryonic plasma, and continue to be given
by Eq. (6.3.23) and (6.3.24) until either vacuum energy and possibly spatial
curvature become significant or the perturbations become too strong to be
treated as first-order perturbations.

(6.3.36)

6.4 Scalar perturbations — short wavelengths

We next consider adiabatic perturbations with wavelengths that are short
enough so that they are already well within the horizon at the time of
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6 Evolution of Cosmological Fluctuations

radiation—matter equality. As discussed at the end of Section 6.2, such per-
turbations are responsible for multipole moments of the cosmic microwave
background anisotropies with ¢ > 140, and also for the onset of gravita-
tional condensations that lead to the formation of structures on the scale
of galaxies or clusters of galaxies. Following the same reasoning as at the
beginning of the previous section, for these wavelengths in the radiation-
dominated era

q oM
B 6.4.1
> = (6.4.1)
and in the matter-dominated era
2 _
q oM
—_— 6.4.2
a’H? > PR ( )

where as before pyr = pp + pp and pr = py, + py.

As shown in Section 6.2, because we are considering adiabatic pertur-
bations, the fractional perturbations 8y = 8paq/(Pa + Po) are subject to
the condition 6g; = d,4. Consequently the perturbations are governed by
Egs. (6.2.39)—(6.2.44). Again, we cannot give a single analytic solution of
these equations during the whole era from just after electron—positron anni-
hilation until near the present, but fortunately we can find analytic solutions
in two overlapping eras: first, the era when the energy density of the uni-
verse is dominated by radiation (photons and neutrinos), and second, the
era when perturbations are well within the horizon.

A. The radiation-dominated era

We can solve Egs. (6.2.39)—(6.2.44) analytically in the radiation-dominated
era, when pr > pyr. We will assume tentatively that at this time the photon
and neutrino density fluctuations on the right-hand side of the gravitational
field equation (6.2.39) dominate over the dark matter density fluctuations,

an assumption we will check later in this section. In this era a o !/2, so
Eqgs. (6.2.39)—(6.2.44) take the form
d 327Gt _
E(z /) =- . (yByq + Prdg) - (6.4.3)
8yq — (§*)aP)Suyy = Yy, (6.4.4)
Spg=—Vy, (6.4.5)
d 1 1
a (.12 _ 112
= ("5, 3780 (6.4.6)
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6.4 Scalar perturbations — short wavelengths

qu - (qz/az)auvq =—VYy, (6.4.7)
d

1
= (" 5u.,) = —317 %80 (6.4.8)

We are interested in adiabatic solutions for which all 6,4 and uy4 become
equal at early times, so since the differential equations here are the same for
photons and neutrinos, these adiabatic solutions have

(Syq = (Sl)q 5 Suyq - Buvq .
For these modes, Eq. (6.4.3) now simplifies to

d 32w GpRrt 1
ai(10) = =5 e = =0

Also, assuming that the cosmological perturbations are in the growing
adiabatic mode, Mode 1, they satisfy the initial conditions (6.2.27)—(6.2.30):
Forg/aH « 1

22710 22710
q° 'R q° 'R
8, =8By = vy — 7" ., Spy— " 1. (6.4.9)
210 3 210
tg°R 2°¢°R
Yy — — s d . Suyg = Suyg — o el , (6.4.10)

where RZ is the value of R, outside the horizon. The reader can check that

the solution of Eqs. (6.4.3)—(6.4.8) satisfying these initial conditions is!

2 2 2
8yq=33q=8vq=372;(6sin®— <1—@)cos®—@>,

(6.4.11)
3R /2 2 2
wq:—tq(gsm@%—ﬁcos@—@—l) , (6.4.12)
® /2 2 2 1
60q=—6R3/(; (ﬁSIMJFFCOS’?_p_p) vdy, (6.4.13)

(6.4.14)

sin® 1—cos®
3uyq=5uvq=4z7z2<2® S >

By replacing ¢ with © as the dependent variable, Egs. (6.4.3), (6.4.4), and (6.4.6) are put in the form
of a parameter-free third-order system of differential equations for 8,4 = 8y = dug, Sutyq/t = Suvg/t
and 14. After finding the solution that matches the initial conditions (6.4.9), (6.4.10), we can solve
Eq. (6.4.5) for § p, by an integration. Aside from normalization, this solution for the various fluctuations
is equivalent to that given for the Newtonian potential in a different gauge in Eq. (48) of S. Bashinsky
& E. Bertschinger Phys. Rev. D 65, 123008 (2002).
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6 Evolution of Cosmological Fluctuations

where ot
q

=, 6.4.15

V3a ( )

Note that the fractional perturbations 8, are all of the same order of mag-
nitude for moderate values of ®. This justifies the neglect of the matter
terms in Eq. (6.2.39) when pg is much greater than pp and ¢/aH is not
very much larger than unity. The condition for continuing to neglect the
matter terms in Eq. (6.2.39) for perturbations deep inside the horizon, when
® becomes large, will be discussed below.

B. Deep inside the horizon

We can also find a solution of Egs. (6.2.39)-(6.2.44) when the wavelength
is well within the horizon, in the sense that ¢/a > H, whether or not pp
is negligible compared with pr. For ¢g/a > H we can distinguish two
different kinds of solutions: “slow modes,” for which time derivatives yield
factors of order H, and “fast modes,” for which time derivatives acting
on the perturbations yield factors of order of ¢/a, as well as other terms
with factors of H instead. Egs. (6.2.39)—(6.2.44) are a sixth-order system
of differential equations, so they have six independent solutions. We are
going to identify four independent fast solutions and two independent slow
solutions, so we can be sure that there are no solutions other than what we
have called fast and slow modes.

1. Fast modes

Up to now we have ignored the neutrino anisotropic inertia, but for the
rapidly oscillating fast modes we must take into account its effect of the
long neutrino mean free path in damping the neutrino density and velocity
perturbations. In considering the fast modes deep inside the horizon, we
shall simply assume that this damping allows us to ignore é,,, in Eq. (6.2.39).
Turning to the other perturbations in a fast mode with fractional rates of
change of order ¢/a, Eq. (6.2.41) shows that 6 p, is of order ¥, /(¢q/a), so the
dark-matter term on the right-hand side of Eq. (6.2.39) is
of order
47 Ga’ ppyry/(g/a) < 3Ha*ry/2(q/a) ,

while the left-hand side of Eq. (6.2.39) is of order (q/a)azwq, and the dark
matter term is therefore less than the left-hand side of Eq. (6.2.39) by a
factor less than of order < H?/(g/a)?, which deep in the horizon is much
less than unity. Dropping the dark matter term in Eq. (6.2.39), we see that
8,4 must be at least of order (¢/a)y,/H 2. Eq. (6.2.43) then shows that
Suy 4 1s of order 8, 4/(¢q/a), and hence at least of order v,/ H 2. Both terms
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6.4 Scalar perturbations — short wavelengths

on the left-hand side of Egs. (6.2.42) are then larger than v, by factors
of order ¢%/a*H?* > 1, so we can drop ¥4 on the right-hand side. (That
is, because the wavelength is short, pressure gradients exert a much larger
force on the baryon—photon plasma than gravitation.) Hence if we neglect
all terms in Egs. (6.2.40), (6.2.43), (6.2.39), and (6.2.41) that are suppressed
by factors H?/(¢q/a)? (but not terms arising from derivatives of « that are
only suppressed by factors H/(¢g/a)), these equations become

8yq = (¢*/a*)Suy, (6.4.16)
d ((14 R)Suy, 1
Bl e 1 L 6.4.17
dt ( a 3a 71 ( )
d 167 Ga? _
E(ﬁwq) = - (R+ 8y (6.4.18)
$pg = —Vy » (6.4.19)

where, as before, R = 3pp/4p,. Equations (6.4.16) and (6.4.17) have two
independent solutions for 8, ;, and du,, 4. Given these solutions, and looking
only for fast modes, Eq. (6.4.18) then has a unique solution for v, and
Eq. (6.4.19) then has a unique solution for §p,. (Possible constant terms
that might be included in the solutions for a? ¥4 or 8py would contribute to
the slow modes, not the fast modes.) Together with the two strongly damped
solutions of Egs. (6.2.42) and (6.2.44) for the neutrino perturbations, there
are four independent fast modes, as promised.

By eliminating §u,,, from Eqs. (6.4.16) and (6.4.17), we obtain a second-
order differential equation for §,,, alone

q2

d d
7 (a(l + R)ESM> + 55),(1 =0. (6.4.20)
If « and R were constant, this would be just the wave equation for a sound
wave, with physical wave number ¢/a and velocity? vy = 1//3(1 + R).
With a and R varying at a relatively slow fractional rate H, Eq. (6.4.20) can
be solved for ¢/a >> H by the WKB approximation. For this purpose, we
introduce a new independent variable, the phase ¢ = ¢ fot dt/a/3(1 + R),
and rewrite Eq. (6.4.20) as

d*8,, N 1dIn(1+ R)dés,,
dp? 2 do do

2Note that the condition of constant entropy gives dpg/pp = dpy /(py +Dy) = 3/4dpy /py, sO
U% =dp/dp =dpy/3(dpy +dpp) =1/3(1 4+ R).
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6 Evolution of Cosmological Fluctuations

Writing §, , = Aexp(+ip), and neglecting d?> A/dg? in the first term on the
left and neglecting d.A/d ¢ in the second term (which is already small because
of the factor d In(1 + R) /dy), we find d A/dp = —(A/4)d In(1 + R)/dyp, so
the WKB solutions are?

! dt
+ —1/4 .
8,y = 1+ R exp |::|:zq/0 T ATTR ST R)] (6.4.21)

There is a further complication that must be taken into account for fast
modes, though it is not important for slow modes. The amplitude of a
sound wave whose physical wave number k is larger than the inverse mean
path of the particles in a relativistic medium is damped by viscosity and heat
conduction, at a rate given in general by*

k2 +4 N <8,0)_1
“2p+p) TTX\GT

o (3) oo ()5 ) e

where 1, x, and ¢ are the coefficients of shear viscosity, heat conduction, and
bulk viscosity, respectively, defined in Appendix B; v is the sound speed;
n is any number density on which the fluid properties may depend; and
subscripts indicate the quantities held constant in taking partial derivatives.
For the baryon—photon fluid, for which 7 is the baryon number density, we
have p = pp + py, p = py/3, with pp o n and p, T4. Also, as we
have seen vsz = 1/4/3(1 + R). Hence, (setting k = ¢g/a) the damping rate
becomes

3¢? 4 x TR?
I = — 4+ -n+-2— Y. 6.4.23
/0)/(1 + R) [§ 1 ] ( )

The viscosity and heat conduction coefficients for photons interacting with
a non-relativistic plasma with mean free time ¢, = 1/07n, are

16

4 _
i “pyty, =0 (6.4.24)

t, , T =
;Oyy X 3

n=

3P, J. E. Pecbles and J. T. Yu, Astrophys. J. 162, 815 (1970). R. A. Sunyaev and Ya. B. Zel'dovich,
Astrophys. & Space Sci. 7,3 (1970).
4S. Weinberg, Astrophys. J. 168, 175 (1971).
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6.4 Scalar perturbations — short wavelengths

so in this case the damping rate is’

q> t, 16 R?

r—_ 4% Jo, K 6.4.25
620+R |15 1+R (6.4.25)

The effect is to replace Eq. (6.4.21) for the fast mode amplitudes with

t dl t
85 = (1+ R ex [:I:' / ——/ th] : 6.4.26
vq = ( ) PI% | Rar ( )
This damping of the fast modes is known as Silk damping.® With this result,
Suffq for these fast modes can be obtained from Eq. (6.4.16), wqi can be

obtained from Eq. (6.4.18), and then SjDEq can be obtained from Eq. (6.4.19).

2. Slow modes

For solutions whose fractional rate of change is of order H = O(1/t), we
can run through the same sort of counting of powers of ¢/aH as for fast
modes, but with very different results. From Egs. (6.2.41), (6.2.43), and
(6.2.44), we see that dp, is of order ,/H while 6,4 and §,, are of order
Héuy,y and Hdu,,, respectively. The terms 6, and 6,4 on the left-hand
side of Eqgs. (6.2.40) and (6.2.42) are then of order H?8u,, and H>8u,,,
and hence are less than the terms (¢> /a2)6uyq and (¢%/ az)éuvq by factors of
order H?a?/¢?%, and may be dropped, giving instead

(q%/a*)8uyq = (q° [a™)Suvg = Vg , (6.4.27)

so Egs. (6.2.43) and (6.2.44) show that 8,, and 8, are of order (a>H /q*)¥,.
The ratios of the photon and neutrino terms on the right-hand side of
Eq. (6.2.39) to the dark matter term are then of order

photons & neutrinos _0 (,53 + 8,5R/3) a*H?

dark matter oD q? ’

5This damping rate was first calculated by N. Kaiser, Mon. Not. Roy. Astron. Soc. 202, 1169
(1983), and is derived here in Appendix H. The formulas for the shear viscosity and heat conduction
coefficients are obtained by comparing formulas (6.4.23) and (6.4.25) for the acoustic damping rate,
taking into account that the bulk viscosity vanishes because energy and momentum are transported by
relativistic particles; see ref. 4. The damping rate calculated by ref.4 had given the correct values for x
and ¢, but it gave a value for n that was 3/4 the correct value of Kaiser, quoted here in Eq. (6.4.24). This
was because its results were based on calculations of L. H. Thomas, Quart. J. Math. (Oxford) 1, 239
(1930), that had assumed isotropic scattering and ignored photon polarization. (The same value for n
had been given earlier by C. Misner, Astrophys. J. 151,431 (1968).) Kaiser’s results are calculated using
the correct differential cross section for Thomson scattering and take photon polarization into account,
and therefore supersede the value for  quoted in ref. 4 and Chapter 15 of G&C.

67, Silk, Nature 215, 1155 (1972).
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6 Evolution of Cosmological Fluctuations

where as before pr = p,, + p,. The term in the numerator proportional to
pop contributes much less than unity to this ratio, because pg/pp ~ 1/5
and we are now assuming that aH/q <« 1. According to Eq. (6.4.2),
the contribution of the term proportional to pg is much less than unity
throughout the matter-dominated era. It actually begins to be much
less than unity during the radiation-dominated era, when the ratio of radia-
tion density to dark matter density falls below the critical value (or/0D)crit»

given by
} NV 23
(@5) ::<_) (JLQE) . (6.4.28)
IOD crit 8 aH pD

According to Egs. (6.4.1), the right-hand side is constant and much greater
than unity throughout the radiation-dominated era for the wavelengths con-
sidered in this section, so pr/pp will fall below this critical value well before
radiation—matter equality. (That is, strong pressure forces keep perturb-
ations to the baryon—photon plasma density small enough so that their
effect on the gravitational field is negligible once p, /pp falls below the
critical value (6.4.28), even though the unperturbed radiation density is
at first still larger than the dark matter density.) From then on the photon
and neutrino terms may be neglected in Eq. (6.2.39) for the slow modes,
yielding

d - 2

E@w&:-%Gma%% (6.4.29)
The remaining equations, (6.2.41), (6.2.43) and (6.2.44) are unchanged:

$pg = —Vy » (6.4.30)

d ((14+R)duy, 1
—|—)=—=96 6.4.31
dt ( a 3a 71 ( )

d (Suyg 1

hl =——3 6.4.32
dt ( a > 3a 17 ( )

Using Eq. (6.4.30) in Eq. (6.4.29) yields a second-order differential equ-
ation for 8p,:’

d ( 2d8pg 2 -
E (a 7) =4nGa ,OD(SDq . (6433)

TEq. (6.4.33) was first derived by P. Mészaros, Astron. Astrophys. 37,225 (1974), who simply ignored
fluctuations in the radiation energy density. The argument given here for the neglect of perturbations in
the radiation density in Eq. (6.4.33) was given by S. Weinberg, Astrophys. J. 581, 810 (2002). It applies
only to the slow mode part of the solution; in the fast mode it is the perturbations in the dark matter
density that become negligible for small wavelength. This paper also gives comments on other attempts
to justify the neglect of perturbations in the radiation density in Eq. (6.4.33).
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6.4 Scalar perturbations — short wavelengths

It is convenient once again to convert the independent variable from ¢ to
Yy = a/agq = pm /PR, using the Friedmann equation

2 8nG _ 87 Gpg

y_2 = —— (oM + pR) = Belhglg (J/_3

y 3 3
with pgq the values of p)s and pr when they are equal. Then (6.4.33)
becomes what is sometimes known as the Mészdaros equation:

dZSD 3y\ dép
1 — 1+ —= ———1— Sp=0, 6.4.35
y(+y>dy2+<+2)dy (1-8) 8p (6.4.35)

where 8 = pp/pm = Q2p/ Q. The independent solutions of Eq. (6.4.35)
for B = 0 were given by Mészaros,” and by Groth and Peebles®

5 _1+2 aDq_(1+2) (\/_VH 1 3/1+y.
(6.4.36)

Subsequently Hu and Sugiyama® gave two independent solutions for
general :

+ y_4) : (6.4.34)

1 1 1
8pg o (1 +y)"**F (0&,0& + =, 204 + = )

2’ 2'1 +y
where F is the Gauss hypergeometric function and
1+ 1+248
= ——"—,
4

In order to obtain our final results in an analytic form, we will continue
to drop corrections proportional to 8 = pp/pym ~ 1/6, while keeping
those proportional to R = 3pp/4p,, so we shall use the slow solutions
(6.4.36) for 8 = 0. (Corrections for the finite value of 8 are discussed in
the following section.) From these two solutions, we can find unique corre-
sponding slow solutions for ¥, du, 4, du,4, 8,4 and 8,4 by successive use of
Eqgs. (6.4.30),(6.4.27), (6.4.31) and (6.4.32). (The neutrino perturbations are
of no known observational interest.) We have thus found two slow modes,
giving six in all.

C. Matching

Fortunately, for small wavelength there is an overlap in the two eras in which
we have found solutions for §p, etc., satisfying both conditions ¢/a > a/a

8E. J. Groth and P. J. E. Peebles, Astron. Astrophys. 41, 143 (1975).
9W. Hu and N. Sugiyama, Astrophys. J. 471, 542 (1996).
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6 Evolution of Cosmological Fluctuations

and pyr < pr. In this period the solution (6.4.11)-(6.4.14) found for the
radiation-dominated era can be decomposed into a fast and a slow mode.
Since the variable ® defined by Eq. (6.4.15) is here much larger than unity,
we have

2 2
5}f/aqst = sg;t = 555(‘1“ = 3R, (6 sin® — (1 - —) cos @) ,

®2
— —3Rjcos® (6.4.37)
, 3RS /2 2 6Ry .
W;dSt =— 4 (6 sin® + — o2 <0 ®> — t_@q sin @ , (6.4.38)

o

® 2 2 12R
5fast —6R? / (Fsml?—i- ’E cosﬁ)ﬁdﬁe ®2qcos®, (6.4.39)

in© e) 21RY
Su )f/aqst ]f)e;st — 4ZR2 (Sln + &) — 4 sin ® s (6440)

20 02 ®
and
5510w _ Sslow _ 8310w _ 6R0 (6 4 41)
= =0, = @2 5 4.
3RS [ 2 3RG
slow _ q __ 4
v - (@2 4 1) - =1, (6.4.42)

©r /2 2 2 1
slo _
Spo —6732/0 (19— sin ¥ + 7 Cost — 54 p) B do

1 1
4 —

+6R) { ot thn (@/@)1)}
1

— 6732 (—5 +y+1n @) , (6.4.43)

0
8uslow _ auslow _ _4ZR‘1 (6 4 44)
va T Tve T g2 0 o

where again © = 2¢¢/+/3a, ©1 is any constant in the range 1 « 0 < ©,
and y = 0.5772... is the Euler constant.!?

10T evaluate the asymptotic limit of the integral in Eq. (6.4.43), we can rewrite this integral as the
sum of three terms, each of which converges at ¢ = 0:

01 /2 2 2 1 o1 /1 2 2
—smz?+—cosz9 — - — | %dy = —51n19+—cosﬂ—— ds
0 \»3 kY 94 92 0o \v2 93
+/01 sin ¢ 1 do +/®1 1 . dv
0 2 1+9) 9 0 1+9 v
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6.4 Scalar perturbations — short wavelengths

Matching the solutions in the radiation-dominated era and deep within
the horizon is straightforward for the fast modes. In the radiation-dominated
era, when R <« 1, damping is negligible (because the mean free time is very
short), and a o 4/, the argument of the cosine in Eq. (6.4.37) may be
expressed as the integral

/ ! dt 2qt

q — =0

0 a/3T+BR  a/3

Hence the linear combination of the two fast solutions (6.4.26) that fits
smoothly with the result (6.4.37) is:

sfast _ __ R e JoTdt ¢ </[ q—dt) (6.4.45)
ve (1+ R4 0 a/3T+R/) '

By a successive use of Egs. (6.4.16), (6.4.18), and (6.4.19) (and ignoring
the time dependence of all factors except the rapidly oscillating sines and
cosines), we then also find that for ¢/a > H:

a«/gR" t t
sufst — 4 o= JoTdt gip (/ q—d[> . (6.4.46)
vq q(1 + R)3/4 0 av/3(1+ R)

as ) o0~ ho ' t th
1[,{5 t:16«/?71pr(2+R)(1+R)1/4(a/q)Rqe fordtsln (/(; T‘/ﬂ;;

{ dt
Sfast — 487G 24+ R)Y(1+R 3/4 ZRO _f()t Cdt (/ q—> .
Bt = 487Gy 4 R R e/ R i cos (| (6.4.48)

We will use Egs. (6.4.45)-(6.4.48) in dealing with baryon acoustic oscilla-
tions in Section 8.1.

The reader can easily check that in the overlap era, when the
universe is radiation dominated, the perturbation is deep inside the hori-
zon, and damping is negligible, Eqgs. (6.4.45) and (6.4.46) give the same
results for B)f/a;t and Su]f/a;‘t as Egs. (6.4.37) and (6.4.40). On the other hand,

Egs. (6.4.47) and (6.4.48) give results for wqfa“ and (Sg‘;t that differ from

For large ®1, these three integrals approach the values —1/2, 1 — y, and — In ®1, respectively, giving a

total of 1/2 — y — In ®, which when combined with the term on the second line of Eq. (6.4.43) yields
the quoted result.
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6 Evolution of Cosmological Fluctuations

Eqgs. (6.4.38) and (6.4.39) by a factor p,/pgr. This is because in deriv-
ing Egs. (6.4.38) and (6.4.39) we treated the neutrinos as a perfect fluid
throughout the radiation-dominated era, although this is valid only out-
side the horizon when anisotropic inertia is negligible, while in deriving
Eqgs. (6.4.47) and (6.4.48) we assumed that deep inside the horizon neutrino
density fluctuations are so damped by anisotropic inertia that they can be
neglected as a source of gravitational field perturbations. This discrepancy
is a small price to pay for the simplicity gained by these approximations,
especially since it will turn out that the slow contributions to ¥, and §p, are
much larger than the fast contributions.

Next let us consider the slow modes. Here there is a complication in
matching solutions in the radiation-dominated era and deep inside the hori-
zon. In deriving Eqs. (6.4.41)—(6.4.43) we have assumed that in the radiation
dominated era we can neglect perturbations in the baryon and dark matter
densities as a source of the gravitational field perturbations, but in explor-
ing the solutions deep inside the horizon we found that this assumption is
violated for the slow modes once the radiation/dark matter density ratio
drops below the limit (6.4.28), even if this ratio is still much larger than
unity. Indeed, we can see from Egs. (6.4.41) and (6.4.43) that for large
0, S%Cq’w /S}S}gw — —©21n 0, so the assumption under which Eqgs. (6.4.41)—

(6.4.44) were derived breaks down once ®21n ® becomes comparable to
PR/ Pp, which is close to when p,, /pp falls below the critical value (6.4.28).
Therefore we have to interpolate between the results (6.4.41)—(6.4.44), which
are valid early in the radiation-dominated era, when ¢2¢2/a*> < pr/pp, and
the results later in the radiation-dominated era and in the matter-dominated
era, when the Mészaros equation (6.4.35) applies.

This is easiest for the dark matter density perturbation, because its time-
dependence turns out to have the same form deep in the horizon in the
radiation-dominated era both before and after pr/op falls below the criti-
cal value (6.4.28). Before this time in the radiation-dominated era 8%‘;‘” is
given by Eq. (6.4.43). After this time, the gravitational field perturbation
becomes dominated by dark matter, and the dark matter density perturba-
tion becomes a linear combination of the solutions (6.4.36) of the Mészaros
equation, which in the radiation-dominated era when y <« 1 become

5331 —~1, 55)2; — —In(y/4) —3. (6.4.49)

The linear combination of these two solutions that fits smoothly with
Eq. (6.4.43) is then

7 4q/2 | 2
aslow — 6R0 — 4y +In| ——= 5( ) _ 8( ) 5 6.4.50
Dq q y Y Hroarg | |24 7P ( )
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6.4 Scalar perturbations — short wavelengths

where Hgq and agq are the expansion rate and Robertson—Walker scale
factor at matter-radiation equality. (Here we use t = 1/2H = 2/ ﬁHEQ.)
The slow part of the gravitational field, radiation velocity potential, and

radiation density perturbations are given by a successive use of Egs. (6.4.30),
(6.4.27), and (6.4.31) as

1llglow — _S%ZW (6.4.51)
Suslow — —(612/ 2)8510‘” (6.4.52)
yq — q Dq N . .
3a d d
BN = 2 (a(l + R)E(SSDI‘;W) : (6.4.53)

In particular, in the matter-dominated era we have y > 1, 883 — 3y/2, and

85 — 4/15y%2, 50 Eqgs. (6.4.50)(6.4.53) become

s 9Zi‘ia [_% ty+hn (%)] , (6.4.54)
e S (] e
CSM]S/IEW - _5;12;;32 [_% +y+1In (%)} , (6.4.56)
slow % H fy+n (%)] | (64.57)

We have here again introduced a dimensionless rescaled wave number

a2 _ (q/a)VQr _ 19.3(q/ap)Mpe”']

* agQHEqQ  HoQu Quh? ’

(6.4.58)

in which we have used the relations Hgg = \/E(Ho«/82114)(ao/aEQ)3/2
and ag/agq = Qum/Qr. In terms of the wave number ¢gq introduced
in Section 6.2, for which the perturbation just comes into the horizon at
matter-radiation equality, we have k = «/Eq/qEQ, so the assumption of
short wavelength made in this section essentially amounts to the condition
that « > 1.
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6 Evolution of Cosmological Fluctuations

The full solution up to the time of recombination is given by adding the
contributions of the fast mode and slow mode:

5 97%201 [ 7 i (4/( )]
— —— 4y +In|l—
P agQ 2 Y \/§

+487Gp, 2+ R(1+ RV (a/g)’R,,
x e Jo Tt oog (/tq—dt> (6.4.59)
0 a30+R)) "’ o

- — ——=+y+In{—
1 agqQt 2 Y V3

+16v/37Gp, 2+ R)(1 + B4 (a/g)RY

t ! dt
—frdt ( q_) 6.4.60
X e sin , 4.
0 a/3(1+R) ( )
5 6R2a3[ 7 | (4K >]
Uyg —> — —+y+In|{—
vd aEqu2 2 v «/5

L R ra sin( __adi )
g(1+ R)3/4 0 a/30T+R)) "’

(6.4.61)
6Rya>(1+3R) [ 7 4k
83q=5yq W —§+V+hl ﬁ

RS C g
i — 1T ) | (6.4.62
(+R)7A° COS( 0 a 3(1—|—R)) - (0402)

with I" and « given by Egs. (6.4.25) and (6.4.58).

Each of the different perturbations (6.4.59)—(6.4.62) is dominated by
either its fast or slow term. First, let us consider 6p, and v/,. Comparison
of Egs. (6.4.48) and (6.4.47) with Egs. (6.4.54) and (6.4.55) shows that the
ratios of the fast and slow contributions to ép, and ¥, are of order

fast — fast —
op _ @H’ (LR)Z Vg al (p_R)Z (6.4.63)
s \ou)  wg™ T a
We are assuming in this section that the wavelengths are short enough so
that perturbations enter the horizon during the radiation-dominated era,
so these ratios are much less than one at matter-radiation equality. Subse-
quently the ratio of fast to slow contributions to 8 p, decreases as 1/ a3, while

for 1, the ratio of fast to slow contributions decreases as 1/ a>/?. Hence it is
a good approximation to take §p; = S%ZW and ¥4 = 1[/510“’ throughout the
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6.5 Scalar perturbations — interpolation & transfer functions

matter-dominated era. Nevertheless, because the fast terms in Egs. (6.4.59)
and (6.4.60) have an oscillatory dependence on ¢, we will need to take them
into account when we consider baryon acoustic oscillations in Section 8.1.

We also need §,, and du,, in calculations of the cosmic microwave
background anisotropies. Comparison of Egs. (6.4.45) and (6.4.46) with
Eqgs. (6.4.57) and (6.4.56) shows that the ratios of the fast and slow contri-
butions to 8, 4, and u, , are (apart from the damping of the fast terms) of order

fast - fast _
Sy ~ & PR _Suyaqs ~ 1 PR (6.4.64)
sstow  a?H? py Suslow aH puy o

These ratios are much larger than unity at horizon entry, and remain so until
matter—radiation equality. After that the ratio of fast to slow contributions
to 8,4 remains of the same order of magnitude, while for éu, 4 the ratio of
fast to slow terms decreases like 1/,/a. Hence, once the wavelength enters
the horizon, the slow contribution to §,, is nominally smaller than the fast
term, while the slow contribution to éu,, remains nominally smaller than
the fast term until late in the matter-dominated era. Nevertheless, we will
keep the slow as well as fast terms here, because they are not affected by the
damping that suppresses the fast terms. Also, even though it is relatively
small, the slow term in §g, will be found in Section 7.2 to produce a char-
acteristic effect in the plot of the cosmic microwave background multipole
coefficients C; vs. £ that would not be present with the fast term alone.

6.5 Scalar perturbations — interpolation & transfer functions

In the previous two sections we found analytic results for wavelengths that
are long enough to enter the horizon well after matter—radiation equality,
or short enough to enter the horizon well before matter—radiation equality.
Unfortunately, this leaves out wavelengths that enter the horizon around
the time of matter—radiation equality. It is wavelengths of this magnitude
that make the dominant contributions to the first acoustic peak at around
¢ = 200 in the multipole coefficients of the cosmic microwave background
anisotropies. In this section we will consider how to construct formulas
for the fluctuations that interpolate between the results of Sections 6.3 and
6.4, concentrating on results in the matter-dominated era, which are of the
greatest observational interest.

We can get a good clue to this interpolation by first considering the limit
of negligible baryon mass density and negligible damping, for which the
form of the solution in the matter-dominated era can be found exactly, with
no limitations on wavelength. In this limit, and leaving aside the neutrinos,
the equations for the perturbations in the matter-dominated era are given for
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6 Evolution of Cosmological Fluctuations

all wavelengths by Eqgs. (6.3.17), (6.3.18), (6.3.20) and (6.3.21), with R = 0:

d 2
dt( Yay,) = —5t7%p, . (6.5.1)
— (§*/a)ou,q = =y (6.5.2)
Spg = —g . (6.5.3)
d g _ 1
= (m2Psuy) = —317%,,., (6.5.4)

with a o 12/3. These have four independent exact solutions, three of which
are quite simple:

Solution 1:

3¢%12 g2t
Dg — 2—612 5 ll’q = _? s
Syg=1, Suyg = —t1.
Solution 2:
(SDq = Wq =0 5

) cos( /t dr ) ) sm( /t dr )
= — — ), u — .
s )0 Va "= g\ V3a

Solution 3:
5Dq = Wq =0,

) —sin< /li) du cos< /ti>
vqg — q 0 \/§a ) yq — \/_q q A \/ga .

The fourth solution is more complicated; it decays, with §p, o 1/t and
Yy o 1/ 2. As we will see, the initial conditions are satisfied by a linear
combination of the first three solutions, so the fourth solution will not con-
cern us here.

Without any loss of generality, we can write the linear combination of
solutions 1, 2, and 3 that fits the solution at earlier time in a form that
simplifies this fit, as!

9¢**RIT (i)
8pg = BRI (6.5.5)
3¢*RYT ()
=——31 - 6.5.6
‘pq 5(12 ( )

IFrom now on, we define the zero of time so that @ o¢ #1/2 in the radiation-dominated era. This

is different from the definition of the zero of time in Solutions 1 and 2, where time is defined so that
a « 1?3 in the matter-dominated era. However, the difference this makes in the integral fé‘ dt/a is just
a constant, which can be absorbed into A(x).

304



6.5 Scalar perturbations — interpolation & transfer functions
37?,0
8,q = by = |:T(K) S(ic) cos< / — 4 A(K))] (6.5.7)

SzR"
Sty q = Suyg = 5 [ T(K)+5(K) s1n< / — + A(K)>j|
(6.5.8)

where S(k), 7(x), and A(x) are time-independent dimensionless func-
tions of the dimensionless rescaled wave number introduced in Sections 6.2
and 6.4:

¢v2  _ (q/a)v/Qr _ 19.3(q/a0)Mpc']
aEQHEQ HoQ Qurh? ’

(6.5.9)

K

in which agq and Hgg are respectively the Robertson-Walker scale fac-
tor and expansion rate at matter-radiation equality. These are known as
transfer functions. (These functions can only depend on k because they
must be independent of the normalization of the spatial coordinates and are
dimensionless.) The division we made in the previous two sections between
long and short wavelengths can be expressed in terms of the parameter «.
In the matter-dominated era we have t = 2/3H = (¢/3Hgq)(a /aEQ)3/ 2 and
PR/PM = agQ/a, so

2q? 4/c
@ oy 9
Hence 1>¢?/a” is much less or much greater than /,7/pr, according as the
parameter « is much less or much greater than one.

We choose to write the linear combination of solutions 1, 2, and 3 in
the form (6.5.5)—(6.5.8) because it leads to simple values for the coefficients
S), T (x), and A(k) for k < 1. For pp = 0, the results (6.3.23), (6.3.24),
(6.3.35), (6.3.36) obtained earlier for moderately long wavelengths satisfying
2q%/a® < pyr/pr, or in other words in the limit k¥ < 1, are consistent with
Eqs. (6.5.5)—(6.5.8), and tell us that in this limit?

a

Tk)—>1, Sk)—1, Ak)— 2/V3. (6.5.10)

(The case of extremely long wavelengths does not arise here, because it

requires that >¢%/a*> <« R, and for the present we are taking R = 0.)
Similarly, for pp = 0 and I' = 0, the results (6.4.59)—(6.4.62) obtained

earlier for short wavelengths satisfying t2¢2/a® > par/pr, or in other words

2The limit 2k //3 for A(k) is the difference for y = pypr/pr > 1 between the phase +/3¢qt/a =
2k /7/+/3 in Eq. (6.3.34) (for R < 1), and the phase ¢ [ dt/~/3a = 2¢[,/T+y — 11/¥/3 in Eqgs. (6.5.7)
and (6.5.8).
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6 Evolution of Cosmological Fluctuations

in the limit ¥ >> 1, are consistent with Egs. (6.5.5)-(6.5.8), and tell us that
in this limit?

45 7 4
T(k) — ﬁ[—§+y+ln<7§)] , Stk)—>5, Ak)—>0.
(6.5.11)

As we shall see in Chapter 8, the decrease of 7 («) for large « is very impor-
tant in determining the intensity of fluctuations in the dark matter density
at various wavelengths. (We can understand this decrease qualitatively by
following the history of the dark matter density fluctuations. According to
Eq. (6.2.27), for all wavelengths 6 p, grows like # at early times, when the uni-
verse is radiation dominated and the wavelength is outside the horizon. For
k < 1 this growth continues until the universe becomes matter dominated,
after which Eqs. (6.3.13) and (6.3.23) tell us that p, grows like 123 both
before and after the wavelength enters the horizon. In contrast, for « > 1
the growth of ép, like 7 continues only until the wavelength enters the hori-
zon, which in this case is during the radiation-dominated era, after which
according to Eq. (6.4.50) § p, grows only logarithmically with time until the
universe becomes matter dominated, after which according to Eq. (6.4.54)
it grows as #2/3, just as in the case k < 1. The end of the period of growth
proportional to ¢ is at the time when g/a ~ 1/t, which since a o /7 is
at t o« 1/¢2, so the growth until matter—radiation equality is proportional
to In g/¢?, accounting for the asymptotic behavior of 7 («). That is, the
smallness of 7 () for k > 1 reflects not a decay of §py, but rather the
failure of 6 p, to grow appreciably during the interval from horizon-entry to
matter-radiation equality.)

For values of « of order unity, we have to find some way of interpolating
between these two limiting cases. This can be done almost “by hand”; it
turns out that almost any smooth interpolation between the limits ¥k < 1
and « > 1 gives reasonable results for the cosmic microwave background
anisotropies. For better precision, we need to solve the full coupled equa-
tions (6.2.9)—(6.2.15) (still with pp = 0) numerically for general wavelengths
and general values of y = pys/pRr, imposing the initial conditions found in
Section 6.1 for y « 1, and then comparing this solution for y > 1 with
Eqgs. (6.5.5)—(6.5.8). These equations can be put in a dimensionless form by
using y as the independent variable, and writing

8Dq=K2R2dO/)/4, 8yq:8vq :KzRgr(y)/‘l',

Vg = (CHEQ/4V2RY (1), Suyy = Suyg = (>~2/4 HeQ)RIg() -

3This result for T(k) was given by S. Weinberg, Astrophys. J. 581, 810 (2002) [astro-ph/0207375].
The fact that the Mészaros equation (6.4.35) implies a fall-off of the transfer function for large wave
number k like In k/k2 had been pointed out by W. Hu and N. Sugiyama, Astrophys. J. 444, 489 (1995).
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6.5 Scalar perturbations — interpolation & transfer functions

Egs. (6.2.9)—(6.2.15) then become

S 2f(y)) o))

V1it+y d(y) v/,

K
V1 +yd—yr(y) - ;g(y) =—yf),

d (g(y) 1
V1 — | ==)=-= .
T < y ) 37
In this notation, the initial conditions (6.2.27)—(6.2.29) read

dy) — r(y) = »*,
y4

When evaluated for y > 1, the numerical solutions of these equations®

match Eqgs. (6.5.5)—(6.5.8), with transfer functions given in Table 6.1. Inspec-
tion of this table shows that these numerical results agree with the analytic
results (6.5.10) and (6.5.11) in the limits ¥k < 1 and « > 1, respectively,
although « must be quite large before the asymptotic results (6.5.11) are
reached.

As we will see in the following two chapters, the microwave background
anisotropies and the correlation function of large scale structure are given
by integrals involving one or more of these transfer functions, so it will be
useful to give approximate analytic formulas for these functions. Dicus®
has found “fitting formulas,” which to a good approximation agree with the
asymptotic formulas (6.5.10) and (6.5.11) for k <« 1 and ¥ > 1, and (except
for A(x) at large «) generally match the numerical results of Table 6.1 at
intermediate values of « to better than 2%:

T In[1+4 (0.124 k)21 [ 1+ (1.257 k)2 + (0.4452 1)* + (0.2197 k)®
K) >
(0.124 k)2 1+ (1.606 k)2 + (0.8568 k)% + (0.3927 )6 ’
(6.5.12)
2
Sty = 1+ (1.2096)% 4 (0.5116k)* + 51/2(0.1657 x)° 6.5.13)
T 14 (0.9459 k)2 + (0.4249 k)4 + (0.1657 k)® ’ "

41 thank D. Dicus for this numerical calculation.
5D. Dicus, private communication.
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6 Evolution of Cosmological Fluctuations

Table 6.1: The Scalar Transfer Functions

k | S T A K S T A

0.1 | 1.0167 0.9948 0.1207 10 | 3.9895 0.1608 0.3270
0.2 | 1.0551 0.9780 0.2240 11 | 4.0546 0.1440 0.3147
0.3 | 1.1147 0.9569 0.3156 12 | 41172 0.1298 0.2962
0.4 | 1.1891 0.9339 0.3852 13 | 4.1841 0.1178 0.2850
0.5 ] 1.2680 0.9101 0.4423 14 | 42175 0.1075 0.2747
0.6 | 1.3529 0.8860 0.4800 15 | 42676 0.0985 0.2604
0.7 | 1.4388 0.8620 0.5148 16 | 4.3135 0.0907 0.2541
0.8 | 1.5195 0.8384 0.5336 17 | 43336 0.0838 0.2438
0.9 | 1.6081 0.8154 0.5531 18 | 4.3796 0.0777 0.2339
1. | 1.6801 0.7930 0.5637 19 | 44043 0.0723 0.2296
1.2 | 1.8330 0.7502 0.5784 20 | 4.4233 0.0675 0.2195
1.4 | 1.9777 0.7104 0.5854 25 | 4.5271 0.0496 0.1920
1.6 | 2.1126 0.6734 0.5842 30 | 4.6051 0.0383 0.1713
1.8 | 2.2354 0.6391 0.5782 35 | 4.6650 0.0305 0.1542
2. | 2.3451 0.6074 0.5700 40 | 4.7087 0.0249 0.1396
2.5 | 2.5895 0.5378 0.5537 45 | 4.7389 0.0209 0.1276
3. | 2.7839 0.4798 0.5334 50 | 4.7605 0.0177 0.1182
3.512.9473 0.4311 0.5094 55 | 4.7794 0.0153 0.1111
4. |3.0970 0.3898 0.4854 60 | 4.7992 0.0134 0.1053
4.5 | 3.2346 0.3545 0.4659 65 | 4.8192 0.0118 0.0997
5. 13.3506 0.3241 0.4509 70 | 4.8365 0.0105 0.0940
5.5 ] 3.4114 0.2976 0.4367 75 | 4.8487 0.0094 0.0885
6. | 3.5181 0.2726 0.4203 80 | 4.8563 0.0084 0.0838
6.5 | 3.5953 0.2531 0.4029 85 | 4.8622 0.0077 0.0803
7. | 3.6754 0.2361 0.3884 90 | 4.8695 0.0070 0.0776
7.5 | 3.7473 0.2200 0.3782 95 | 4.8792 0.0064 0.0751
8. | 3.8015 0.2056 0.3695 100 | 4.8895 0.0059 0.0722
8.5 ]3.8432 0.1927 0.3590

9. |3.8865 0.1810 0.3465

9.513.9380 0.1704 0.3350

1/4

1+ (1.1804)2 + (1.540 k)% + (0.9230 k)0 + (0.4197 )8
(6.5.14)

[ (0.1585 k)2 + (0.9702 k)* + (0.2460 )®
Ak) =~

These transfer functions are shown in Figure 6.1. A fitting formula for
T (k) that includes the effects of neutrino anisotropic inertia and fits the
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6.5 Scalar perturbations — interpolation & transfer functions

Transfer function

4 F

: : : : — Kk
2 4 6 8 10

Figure 6.1: The transfer functions 7 («) (solid curve), S(k) (long dashes), and A(x) (short
dashes), as functions of the rescaled wave number «.

CAMB numerical results is given by Eisenstein and Hu.® Because of the
neglect of neutrino anisotropic inertia, the results for 7 («) of Eq. (6.5.12)
and Table 6.1 are about 4% too low.

Now we have to consider how to take damping and the non-zero ratio of
baryon to photon density into account. Egs. (6.3.23), (6.3.24) and (6.4.59),
(6.4.60) show that in the limits of either short or long wavelength, the leading
terms in 6p, and v, are unaffected by either damping or baryons, so in
leading order we can simply use Egs. (6.5.5) and (6.5.6):

9¢**RYT ()
3¢2tROT (k)
g = —+ (6.5.16)

Damping affects the short-wavelength results (6.4.61) and (6.4.62) for du,,,

and 8,4, by multiplying the sines and cosines with a factor exp(— fot 'dt).
This factor is absent in the long-wavelength results (6.3.36) and (6.3.35)
for these perturbations, but this factor is essentially unity anyway for long
wavelengths, because I' o ¢2. Hence for all wavelengths we can take damp-
ing into account by simply multiplying the sines and cosines in Eqs. (6.5.7)
and (6.5.8) by exp(— fot ['dt). Finally, in both the short-wavelength results
(6.4.62) and (6.4.61) and the long-wavelength results (6.3.35) and (6.3.36),

OD. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998).
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6 Evolution of Cosmological Fluctuations

the effect of the non-zero baryon density is to multiply the non-oscillatory
term in 6,4, with 1 4 3R, multiply the cosine in §,, with (1 4 R)~1/4, and
multiply the sine in 8u,, with (1 + R)™¥4, so it is highly plausible that a
finite ratio of baryon density to photon density can be taken into account at
all wavelengths by making the same alterations in Egs. (6.5.7) and (6.5.8):

o

3R
byq =05y = —* [T()(1+3R)

t
_ —1/4 — [irdt q dt >]
1+ R e Jo S(K)COS(/O PN ) 3(1+R)+A(K) ,
(6.5.17)

o

3 q
Su},q = (SB(] = T [—ZT(K)

a _ft Tdt . /t q d[ >:|
e s ([t o))
(6.5.18)

To repeat, these results agree with the results of Section 6.4 for short wave-
length, they agree with the results of Section 6.3 for long wavelength (for
which I' is negligible), and they agree with the results found in this section
for all wavelengths when damping and the baryon density are neglected.

We must say a little more about the function 7 («), which is commonly
known as the transfer function. It is conventional to write this transfer
function as a function of a variable Q:

q 1 Mpc
=— X —— ,
ap Qurh?

which according to Eq. (6.5.9) is the same as x/19.3. In these terms,
Egs. (6.5.10) and (6.5.11) for 7 (x) now read

(6.5.19)

T () 1 €—0 (6.5.20)
K) = 1 In2.40 Q) 5.
@070)2 Q — o0

A numerical solution of the equations for growth of dark matter density
fluctuations has been fit for large Q with the formula’

In(1 +2.340)
2.340

x[1+3.89Q+(16.1Q)2+(5.46Q)3+(6.71Q)4]_1/4. (6.5.21)

TBKS (k) =~

73. M. Bardeen, J. R. Bond, N. Kaiser, & A. S. Szalay, Astrophys. J. 304, 15 (1986).
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6.5 Scalar perturbations — interpolation & transfer functions

This goes to In(2.340Q)/(3.96 Q)? for large O, in excellent agreement with
the analytic result (6.5.20). However, it should be noted that although the
BBKS transfer function (6.5.21) is correctly normalized at Q = 0, it does
not give a good account of the behavior of the transfer function for Q « 1.
The power series expansion of Eq. (6.5.21) contains odd as well as even
terms in Q, which is not consistent with the requirement that it must be an
analytic function of the three-vector q. The Dicus fitting formula (6.5.12)
was constructed to be analytic in the three-vector q at q = 0, and in fact fits
the numerical results of Table 6.1 better than the BBKS transfer function
(6.5.21). In our analysis of cosmic microwave background anisotropies, we
will use the fitting formula (6.5.12) instead of Eq. (6.5.21).

All this has been for B = pp/py <K 1, though we have now taken
into account a non-negligible ratio R = 3pp/4p,. The corrections to the
transfer function for finite values of g are roughly 10%; they have been
calculated analytically® for ¥ > 1 to lowest order in 8, and numerically’
for general « and for selected values of 8 to all orders in 8. In using the
transfer function in calculations of large scale structure, it is common to
use a simple modification of the fitting formula. Peacock and Dodds!®
proposed in effect that the same fitting formula could be used for finite
baryon density, but with k = (k+/Qr/HoQ) exp(Qp). This worked well
for the limited range of cosmological parameters studied, but it is physically
impossible for the transfer function to have this sort of dependence on Q5.
There is no way that the physical processes during the radiation-dominated
era that are responsible for the transfer function to know anything about
the time at which we happen to measure cosmological parameters like pjy.
Aside from «, the transfer function can only depend on quantities such
as B = pp/pm = p/uy, which is constant, or Qarh?, which (for a
known present radiation temperature) tells us the matter density at any
given temperature. Indeed, Sugiyama!l pointed out that the correction
factor exp(2p) actually works well only for values of €j, close to unity.
As an alternative that would apply for smaller values of 2,7, he proposed
a correction factor exp(2p + g/ Qr), which is physically impossible for
the same reason as exp(£2p). Another difficulty with all these suggestions is
that the baryon correction must disappear for small wave number, because
in this case pressure forces are negligible, and baryons behave just like cold
dark matter. A baryon correction that satisfies all these physical criteria has
been proposed by Eisenstein and Hu:® The transfer function is evaluated

8S. Weinberg, ref. 2.

9J. A. Holtzman, Astrophys. J. Suppl. 71,1 (1989).

10y, A. Peacock and S.J. Dodds, Mon. Not. Roy. Astron. Soc. 267, 1020 (1994).
1IN, Sugiyama, Astrophys. J. 100, 281 (1995).
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6 Evolution of Cosmological Fluctuations

with « taken as

k/SQr -« -
£ (HOQM> [O‘ 1T (0.43ks)4} : (6:522)

where
a=1-—0.328 In431 k%) B+ 0.38 In(22.3 Quh?) B2,

and s is the acoustic horizon at the time # = ¢ of last scattering, projected
(as is k) to the present:

!
= a(to)f b vyt =1+ zp)dy ,
o a()

with dy given by Eq. (2.6.32).

6.6 Tensor perturbations

We next turn to the tensor modes. These are considerably simpler to study
than the scalar modes, so what took five sections to analyze for the scalar
modes will be treated here in just one section. As in the case of scalar
modes, we begin by setting down the full set of equations used in computer
programs like CMBfast, and then move on to approximations.

A. Cold dark matter and baryonic plasma

As already mentioned, the particles of both the cold dark matter and bary-
onic plasma move too slowly to contribute any anisotropic inertia. In ten-
sor modes there are no perturbations to densities or streaming velocities, so
there are no perturbations to either the cold dark matter or baryonic plasma
that need to be followed here.

B. Gravitation

According to Section 5.1, in tensor modes the gravitational perturbation
takes the form:
8gij(x, 1) = a*(t) Dyj(x, 1) , (6.6.1)

with Dj;(x, t) satisfying the wave equation (5.1.53):
Dy +3HDj —a*V*Dy = 161G | (6.6.2)
and the trace and transversality conditions

Di=0, 9Dj=0. (6.6.3)
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6.6 Tensor perturbations

We will see that the anisotropic inertia tensor nl-jT is a linear functional of

Dij, so Eq. (6.6.2) has two independent solutions. During the period when
T

the perturbation is outside the horizon, the anisotropic inertia tensor 7 ;

and the a_ZVZDij term are negligible, and Eq. (6.6.2) becomes
Dj+3HD; =0.

Hence outside the horizon one of the solutions is constant, while the other
decays as [ a~3dt, which in the radiation dominated era goes as t~!/2. For
all interesting wave numbers the perturbation remains outside the horizon
during many e-foldings of cosmic expansion, so the decaying mode becomes
negligible, and we can consider only the other mode. The metric perturba-
tion and anisotropic inertia can therefore be put in the form

Dy(x,0)= ) f d>q eB(q, 2) €@, 2) Dy (1) , (6.6.4)
A=%£2

o= Y [dqevpan @l o. (6.6.5)
A==£2

where S(q, 1) is a stochastic parameter for the single non-decaying mode
with wave number q and helicity A; e;;(¢, A) is the corresponding polarization
tensor, defined in Section 5.2, with e;; = g;e;; = 0; and D,(?) is the solution
of the wave equation

Dy +3HD, +a *¢*Dy = 16w Gn, . (6.6.6)

We will return later to the solution of this equation.

C. Photons

The Boltzmann equation for the photon density matrix perturbation
snY (x, t) in the tensor mode is given by Eq. (H.35) as

dom)(x.p.1) | P d8ny(x.p.1) _ 2a(r)
at a(t) axk a(r)

pit,, (P)Prp1 Dri(x, 1) (51]' - f?ff’j)

sn (x,p, 1)

 442(p)
. 30, )
= oo xpn + 222 [ &y

8
x |81 %, pb1, 1) = pibi 81 (x,pipr. 1) — by mik (%, pp1, 0

+ pipiprbi 81 (x. pp1, Z)} : (6.6.7)
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6 Evolution of Cosmological Fluctuations

in which we have used Eq. (6.6.1) for the metric perturbation. As in the case

of scalar modes, instead of (Sn;{ (x, p, 1), we will concentrate on the fractional
intensity matrix defined by the analog of Eq. (6.1.13):

o0
a0 5y (0 Ty(x.p. 1) = a2 (0) fo sl (%, pp, D 4npddp . (6.6.8)
We seek a solution in the form
Jxpn = 3 [ dqerpan @b (6.6.9)
A=12

The Boltzmann equation (6.6.7) then takes the form

0Jij(q,p,t,A)  q-p R
: Jii NN
97 +la(l‘) ii(q,p )

+ prdi exi (G, }) Dy (D) <5ij - f?iﬁj)

~ 3we(1)
X I:t7lj(qa t, )\') _ﬁiﬁk jk](qa t, )") _ﬁjﬁk t7ik(q: ta )")
+ PibiPkP1 Tk (Q, 1, K)] , (6.6.10)
where
d’p .
Tig.1,0) = / Lriapnn. 6.6.11)

Furthermore, because J;;(q,p, t, 1) for a given helicity A must be a linear
combination of the polarization tensor components ey;(g, ) with the same
A, while g ex;(q,2) and e, (g, 1) both vanish, the only possible form of
Jii(q, t, 1) allowed by rotational invariance is just e;;(g, A) times some func-
tion of ¢ = |q| and ¢. This relation is conventionally written

2
Jij(q, t, 1) = —gezjj(@,k) V(g,1) . (6.6.12)

Rotational invariance allows the intensity matrix perturbation to be written
in the form

, N
Jij(q, p, 1, A) = 3 (317 - Pin) DPrDi eki(q, A)
+(e5@: %) = Pibrer @:2) = Bibrew(@: 1)+ hibiprbr ew(@. 1) )

x AR (q.p - 4.1) (6.6.13)
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6.6 Tensor perturbations

(Here the superscript 7" stands for “tensor,” while the subscript 7" stands for
“temperature.” The coefficients are chosen so that J;; is proportional to A,
and the polarization is proportional to Ap.) A third term proportional to
(qi—Dpi(P-)(q;—p;(D-q)PkDirex would be allowed by symmetry principles,
but is not generated in the Boltzmann equation by Thomson scattering.
Using Eq. (6.6.13) in Eq. (6.6.10) yields separate Boltzmann equations for
A(T) and A(T)‘

T P -

%A(T%,u, 0 +ia” (0 qu AT (g 0)
= —2D4(0) = 0e(t) AT (g s ) + 0 (D W(g.1) . (6.6.14)

D AP o)+ ia gn AP g0
= —wc(t) AV (g, 1, 1) — 0 (1) W (g, 1) . (6.6.15)
The functions A(TT) and A}T) may be expanded in Legendre polynomials

o
A qp-a.0=) i@+ D PG p) AT )(q.)  (6.6.16)
£=0

o
A . p .0 =) i QU+ D PG p)AY (g 1) . (6.6.17)

£=0

Using the familiar recursion relation
£+1 12
P =—P — P,
z P(2) T e+1(2) + TR 1(2),

we find that the Boltzmann equations (6.6.14) and (6.6.15) now read

AT q (T) (1)
Arg+ m(“ + DAL — Mr,e_l)
= (= 2Dy + 0 %) 800 — weA]) (6.6.18)
AT q (T) (T)
AP,€ + Cl(2£ + 1) <(£ + I)AP,Z-H - EAP,E—I)
=~V S0 — wAYy) . (6.6.19)

To calculate the source term W(q, ) in terms of partial waves, one first
integrates Eq. (6.6.13) over p, using the formulas

. s ae A N | NN N
fdzpf(p-q)pipkejk(q) = Eeij(q)/dzpf(p-q)(l - (p'q)z)

28 pon AvA A A A N [P 25 pon A %
fdpf(p-q)pipjpkpzekz(q) = Zeg(q)fdpf(p-q) (1 -@-9 ) )
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6 Evolution of Cosmological Fluctuations

where f is any function of p - ¢ and e;; is any symmetric traceless matrix
function of ¢ with g;e;; = 0 and e;; = 0. The integral gives

3 (dh] 1 L )2 -
ven=-3 [ [‘ s(1-0-2°) 2@ 2.0
1 2
+ (@-@>2+ S(1-0-9?) ) A @4, z)} .
(6.6.20)

Inserting the partial wave expansions (6.6.16) and (6.6.17) then gives:!

1 3
V(g.0) = —AT)@q.0+ 5 A”)(q, 0+ 25 NN —Am(q, )

10 0
(D(ﬂ—iAm() (6.6.21)

Egs. (6.6.18) and (6.6.19) thus form a closed system of coupled
differential equations for the partial wave amplitudes produced by a given
gravitational field perturbation D, (). Of course, their solution requires a
truncation of the partial wave expansion at some maximum £.

The solution is of interest in itself, because we can measure anisotropies in
the cosmic microwave background. It will be applied to these anisotropies
in Chapter 7. It is also needed in calculations of the tensor anisotropic
inertia. In tensor modes, the only non-vanishing contribution of photons
to the energy-momentum tensor is to the space-space component (6.1.10)

STL;(x, 1) = a (1) / d*p & (81 (x, p, 1) ppip;
_ . d’p . . n
= py(t)Zfd3q B4, 2) e"*"/ EJkk(q,p, 1, M)pipj
A
= py (1) Z/d3q B, %) €% er (g, 1)
A
d*D Ty, n o nnn
X f EAT (q.D - 4, DDpiPiPKPI
= py (1) Z / d*q B(q. 1) €V e;(q, 1)

1 dP (T) L a2\2
x4/4 MP@pan(1-G-27) . 6622

IR, Crittenden, J. R. Bond, R. L. Davis, G. Efstathiou, and P. J. Steinhardt, Phys. Rev. Lett. 71,324
(1993) [astro-ph/9303014].
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6.6 Tensor perturbations

For tensor modes there is no pressure perturbation, so according to
Eq. (5.1.43), this is the same as the anisotropic inertia tensor nyT l-j(x, 1).
Comparing Eq. (6.6.22) with Eq. (6.6.5) thus gives

6,(t) [ d’p o N2
) (1) = py()/—pA(TT)(q,p-q,t) (1—(19-(1)2)

2
= 25,0 5ATN@ 0 + 5

INHODR
(6.6.23)

<T)
— AL (gt
> (q )+35

Experience shows that to accurately calculate the partial wave amplitudes
upto ¢ = 4, which appearin Egs. (6.6.21) and (6.6.23), one needs to solve the
Boltzmann equations for the partial wave amplitudes up to larger values of ¢,
up to £ = 10. Once ¥ is calculated in this way, we can calculate J;;(q, p, ¢, 1)
for very much higher values of ¢ by using the “line of sight” solution of
Eq. (6.6.10):

t t dt// t
Jij(q,p, 1, 1) =/ d’ exp (—iq fa/ = dt’ wc(t”))
fn ¢ oa”) v

x [ — b (85— iby ) ex1(@: 1) Dy (1) = et (g, 1)

(€@ %) = pibrers(@. 2) — bybrei @, %) + pibbrbren @, m)]
(6.6.24)
where ¢ is any time that is early enough before recombination so that
wc(t1) > H(t1), which allows us to drop a term proportional to

Jij(q,p,t1,1). In terms of the temperature and polarization amplitudes
defined by the decomposition (6.6.13), the line-of-sight integrals read

t ) t dl/,
A(TT) (q’ I’Lv t) = _A;T)(Q» M’ t) - 2‘/” dz/ eXp [—lqﬂ\/;/ Cl(t//)
t
_ f 0ot dz”} x Dy(7') , (6.6.25)
t/
(T) : ’ . Ldt” ! N g
Ap (g, pu, 1) = — ; dt” exp | —igu L aw ) wc(1") dt
x w (1YW (g, 1) . (6.6.26)

This line of sight integral also provides an alternative to the use of the
truncated partial wave expansion.” We can derive an integral equation for

2g, Weinberg, Phys. Rev. D 74, 063517 (2006) [astro-ph/0607076]; D. Baskaran, L. P. Grishchuk,
and A. G. Polnarev, Phys. Rev. D 74, 083008 (2006) [gr-qc/0605100].
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W (q, t) by simply analytically integrating Eq. (6.6.24) over p. Equating the
coefficients of e;; on both sides gives the integral equation

3 t t
W(g, 1) = 5/ dt’ exp [—/ we (") dt”]
t t
. , t dt// , t dt// ,
X [—ZDq(l YK (qfﬂ a(t,,)) + w()F (q/ﬂ a(t,,)> ‘If(q,t)] ,

(6.6.27)

where K (v) and F(v) are the functions
K@) =p)/0%, F@)=jo®) —2j1(w)/v+2w)/v* .  (6.6.28)

Eq. (6.6.27) can be solved efficiently either by iteration, or by numeri-
cal recipes appropriate for integral equations of the Volterra type. Once
W(g, t) is calculated in this way, the complete photon intensity matrix can be
obtained by a numerical integration in Eq. (6.6.24).

Neutrinos

The Boltzmann equation for the perturbation én,(x,p, ) to the neutrino
phase space density is given by Eq. (H.14) as

adny(X,p,1)  pi 3dmy(x,p,t)  pi'(p) . . .
B0 _ B Dy(x, 1) , 6.6.29
ot a( o 5 P D) (6:6:29)

in which we have used Eq. (6.6.1) for the metric perturbation. As in the
case of scalar modes, instead of én,, we find it more convenient to deal
with a dimensionless intensity perturbation J, defined by the analog of
Eq. (6.1.42):

o0
(05T (x.p.1) = N, / S (x.p. 1) dp’ dp . (6.6.30)
0
where N, is the number of species of neutrino, counting antineutrinos sep-

arately, and p, = N, a? f 47rp3ﬁv(p). This satisfies a Boltzmann equa-

tion
0J (x,p, 1) pi 0J(x,p, 1) .
— = ~2ip Dyt 6.6.31
o0 am o iy Dij(x. 1) 6.631)

with Dj; given by Eq. (6.6.4). We will be able to find a solution in the
form

Jx.p.ty =Y f d>q e B(q, 1) €@, MPip; A (q.p - .1) . (6.6.32)
A=12
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6.6 Tensor perturbations

Then Eq. (6.6.29) becomes an equation for Al(,T):
AD(q, u, 1) i (Z) A<T> (g, 11, 1) = —2Dy(2) (6.6.33)
This can be solved by a partial wave expansion
A (g0 =Y it @e+ DAY (g, (6.6.34)

14

with Ai? (g, 1) satisfying

A (1) 4q (1) (T) :
A + m((z + DAY = eal) ) =-2D,0 60 (6633)
This of course needs to be truncated at some more-or-less arbitrary maxi-
mum value of £. But instead we can find a direct solution of Eq. (6.6.33),
as a line of sight integral

t

1

t dt//
dr' exp (—iqu/ (Z”)) D (1) . (6.6.36)
We take 71 soon enough after the decoupling of neutrinos at 7 ~ 101K
so that at this time the distribution of neutrinos is still essentially that of
local thermal equilibrium. In this case the perturbation to this distribution
arises only from the perturbations § 7, and du, to the neutrino temperature
and streaming velocity, which do not have tensor components, so we do not
need to include an initial value term AST) (g, i, t1) on the right-hand side of
Eq. (6.6.36).

It will be a long while before anyone measures the angular distribution
of cosmic neutrinos, so the only use to be made of calculations of dn, is
in calculating components of the energy momentum tensor. In the tensor

mode, the only non-vanishing component is8T';, given by the same formula
( T)

v]’

(6.6.22) as for photons, except that A( appears instead of Ay,

5T’](x 1 =a* / d*p sny(x,p, 1) ppip;
— 3 iq-x dzﬁ ~ A A
= pu(?) ; d’q B(q, 1) e rmAC N AN )
= pv(?) Zfd3f] B, 1) €4 er (g, 1)
A
d*p A
x / EAST’(q,p-q, OpibiDiPk
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6 Evolution of Cosmological Fluctuations

=50 Y [ &g pan) vey@. 0
A

1 [ d%* 2
- 4 (T) I\./\ . I\./\z
[ alapan(i-6-7) . ©63)

This s the neutrino contribution to the anisotropic inertia tensor nl.jT .Comp-
aring this with Eq. (6.6.5) then gives

7 Pu(D) d_zﬁ Ty, ~ = A a0)2
wlo =0 [P aDGh- a0 (1-6-07) . ©6639)

As for photons, this can be evaluated using the partial wave expansion:

o 2 1
7l (1) = 2pv(z)[EAfQ 0.0+ 3785 @0+ =80 @ z)] . (6.6.39)

But for neutrinos it is easier to use the explicit solution (6.6.36). Using
Eqgs. (6.6.36) and (6.1.55) in the third expression of Eq. (6.6.35) and com-
paring with Eq. (6.6.5) gives’

_ t t d[// .
anq(z) = —4py(l)/ dt'K (q/ _//) Dq(t/) , (6.6.40)
I3t t a(l)
where
sinv 3 cosv 3sinv
K@ =p)/vt=-=— -1 — (6.6.41)

We will use this below in calculating the decay of gravitational waves that
exit from the horizon in the radiation-dominated era.

We have found a complete set of differential equations for the tensor per-
turbations. Now we shall turn to the calculation of D,(#), which provides
the essential input in the calculation of tensor anisotropies in the cosmic
microwave background. We begin by neglecting the tensor anisotropic
inertia JTUT , returning to a consideration of its effects at the end of this
section. The anisotropic inertia is negligible during most of the history of
the universe, when the cosmic energy density is dominated by one or more
perfect fluids, and it is never very large. With this approximation, the field
equation (6.6.6) governing the Fourier components of the tensor component
Dj; of the metric perturbation is simply
2

Dy (1) + 3‘;’11,(1) + %Dq(t) =0. (6.6.42)

3s. Weinberg, Phys. Rev. D 69, 023503 (2004) [astro-ph/0306304].
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6.6 Tensor perturbations

As already mentioned earlier in this section, at very early times when ¢/a <
a/a one solution is constant while the other decays, so as long as this era
lasts sufficiently long we can neglect the decaying solution, and take our
initial condition that Dy (7) goes to a constant Dy at early times.

To treat the evolution of D, (?) at later times, it is convenient once again
to change the independent variable from ¢ to y = a/agq = pm/pr, where
agq 1s the value of the Robertson-Walker scale factor at matter—radiation
equality. Assuming that the energy density of the universe is governed by
radiation and non-relativistic matter,* we can put Equation (6.3.11) in the
form

Hgqdt  ydy
V2 NIES

where Hgq is the expansion rate at matter-radiation equality. Then
Eq. (6.6.42) becomes

2D 2(1 + 1\ dD
2q+< ( )7)+ ) q
dy

where « is the dimensionless rescaled wave number (6.5.9):

V2g  (q/a0)v/Qr _ 19.3(q/a0)[Mpc]
apQHeq ~ HoQm Qurh? '

(6.6.43)

d
I+

2
s + k2D, =0 (6.6.44)

2

K

(6.6.45)

We also have the initial condition, that D, — Dy for y < 1. As in the case
of scalar modes, we can find analytic solutions in two extreme cases, for
k < landx > 1.

Consider first the case ¥ >> 1. In this limit we already have ¢/a > a/a
at matter-radiation equality, so horizon entry occurs early in the radiation-
dominated era. Hence for x >> 1 there are two overlapping eras; an era
when the universe is radiation dominated extending to early times when the
perturbation is outside the horizon, and an era when the perturbation is
well inside the horizon extending to the present, in both of which we will be
able to find analytic solutions. Because these eras overlap, we will be able
to match the analytic solutions in the era of overlap, and in this way relate
the gravitational wave amplitude at late times to the initial condition when
the perturbation is outside the horizon.

First, in the era when the universe is radiation dominated y <« 1, and

Eq. (6.6.44) becomes
d*D, (2\ dD,
- — D,=0. 6.6.46

dy? +(y> @y T (6:6.40)

4The evolution of the tensor amplitude under more general assumptions is considered by L. A. Boyle
and P. J. Steinhardt, astro-ph/0512014.
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6 Evolution of Cosmological Fluctuations

The solution which approaches a constant Dy for y — 0is

p, = Snty) Y. (6.6.47)
Ky

Next, consider the case of perturbations deep inside the horizon, that
is, for which ¢/a > H. In this case we can find solutions using the WKB
approximation for a completely arbitrary dependence of a(#) on time, so
that our results will apply even in the presence of vacuum energy, whether
or not it is constant. For this purpose, we must put Eq. (6.6.42) into
a standard form with no first derivative term® by introducing a new

independent variable,
X = /a_3(t) dt,

so that Eq. (6.6.42) becomes

d*D,
dx?

We write D, = A exp(+ig [ a* dx), and keep only terms in Eq. (6.6.48) of
order ¢? and ¢. This gives dA/dx = —(A/2a*)da*/dx, so A « 1/a, and the
WKB solutions for D, are a~!exp(+iq [ a*>dx) = a~'exp(xiq [a~! dt).
The factor 1/a gives a gravitational wave energy density that decreases
as a—*, a factor of a~! representing the redshift of individual gravitons,
and a factor ¢~ arising from the dilution of gravitons as the universe
expands.

To find the correct linear combination of the two WKB solutions, we have
to match them to the solution (6.6.47) in the radiation-dominated era, by
considering these solutions in the intermediate range where both g/a > H
and y <« 1. In the radiation-dominated era vacuum energy is presumably
negligible, so here g/aH = « aEQHEQ/«/zaH = «y, and for « > 1 there
does exist a range of y for which «y > 1 even though y « 1. In this range
of y, we have

+¢*a*D, =0. (6.6.48)

dt da yda

- = — =k =Ky,
T %=1 Hz a y

5The standard way of eliminating the first derivative term in Eq. (6.6.42) is to change the dep-
endent instead of the independent variable. For instance, see V. S. Mukhanov, H. A. Feldman, and
R. H. Brandenberger, Phys. Rep. 215, 203 (1992); K. Ng and A. Speliotopoulos, Phys. Rev. D 52,
2112 (1995); and more recently, J. R. Pritchard and M. Kamionkowski, Ann. Phys. 318, 2 (2005).
The results obtained in this section are much simpler than with this standard method, because by
changing the independent rather than the dependent variable we encounter no turning point in the
WKB solution.

0See G&C, Sec. 15.10.
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6.6 Tensor perturbations

so (recalling that y o @) the linear combination of a~! exp(+ig i a=1dr)
and a~! exp(—ig f a~! dr) that matches Eq. (6.6.47) where both are valid is

I todr 0
Dy, = —sin| ¢ D7 . (6.6.49)
Ky 0o a@)) 1
To repeat, this is the solution deep in the horizon, whatever the contents of
the universe. For times near the present, this is

JQrH}
D, = — sin (n + k(1 — 1)) Dy , (6.6.50)

where k = ¢/ag, and n = kag foto dt/a(t).

It is possible that cosmological gravitational waves might be detected
directly.” Tensor modes detectable in this way would certainly have « > 1,
the case we have been considering, so that they would enter the horizon
much earlier than the time of recombination, and hence could provide an
opportunity for a direct observation of the universe at very early times, and
even for the exploration of physics at higher energies than can be reached by
conventional particle accelerators. The existing ground-based Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) operates at about 100
Hz; perturbations with this frequency re-entered the horizon when the cos-
mic temperature was about 108 GeV, but LIGO does not have the sensitiv-
ity required to detect cosmological gravitational waves. But cosmological
gravitational waves might be detected by space-borne laser interferometers.
For instance, two detectors of cosmological gravitational waves have been
under consideration: the Big Bang Observer in the U.S., and the Deci-
hertz Laser Interferometer Gravitational Wave Observatory in Japan. Both
operate at frequencies around 0.01 to 0.1 Hz, and according to Eq. (6.6.43),
a gravitational wave with a frequency of ¢c/2way = 10~% Hz would have
k = 1.3x1013/Q3h? > 1. The wavelengths to which such detectors would
be sensitive would short enough to have come into the horizon when the
cosmic temperature was 10% to 103 GeV. In this case, the changes in the
time dependence of a(r) associated with changes in the equation of state of
matter at various annihilation thresholds produce distinctive features in the
spectrum of the tensor modes.? For reasonable assumptions about the pri-

TFor recent studies, see N. Seto, S. Kawamura, and T. Nakamura, Phys. Rev. Lett. 87, 221103
(2001) [astro-ph/0108011]; A. Buonanno, gr-qc/0303085; A. Cooray, astro-ph/0503118; T. L. Smith,
M. Kamionkowski, and A. Cooray, Phys. Rev. D 73, 023504 (2006) [astro-ph/0506422]; G. Efstathiou
and S. Chongchitnan, Prog. Theor. Phys. Suppl. 163, 204 (2006) [astro-ph/0603118]; B. Friedman, A.
Cooray, and A. Melchiorri, Phys. Rev. D 74, 123509 (2006) [astro-ph/0610220]. Also see NASA web
page universe.nasa.gov/program/bbo._html.

8Y. Watanabe and E. Komatsu, Phys. Rev. D73, 123515 (2006) [astro-ph/0604176].
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6 Evolution of Cosmological Fluctuations

mordial tensor spectrum, it seems likely® that a tensor perturbation strong
enough to be detected directly at short wavelengths would be detected also
indirectly at longer wavelengths through its effect on the polarization of the
cosmic microwave background, to be discussed in Section 7.4.

In calculating the effect of cosmological gravitational waves on the cos-
mic microwave background, we need also to consider values of x of order
unity or less. Let us therefore turn to the other case that can be treated ana-
lytically, the case k < 1. Here we still have ¢/a < a/a at matter—radiation
equality, so the perturbation remains outside the horizon and D, (¢) remains
equal to the constant value DY until well into the matter-dominated era,
when y > 1. In the limit y > 1, and whatever the value of «, Eq. (6.6.42)

becomes 5
d“Dy, 5dDy, )
- — D,=0. 6.6.51
dy? 3 dy TPy ( )
This has two independent solutions, which can be written as functions

of k. /y:

¥

gy _ ~os(2605) sin (25)

PG K2y + 239312
- 211 (2 /7) B sin <2Kﬁ) . cos <2Kﬁ) 66.52)
NG - K2y 2u3p32 -

In the matter-dominated era, ¢/aH = kapQHpqQ/v2aH = k./7, s0 we
must impose the condition that the solution should approach the constant
value Dg for k./y < 1. In order to satisfy this condition, we must exclude
the second solution, which becomes singular for «,/y — 0. In this limit
the first solution approaches the constant 4/3, so the correct solution when
Kk < 1is

3Dy [ —cos (ZK ﬁ) sin (ZK ﬁ)

4 K2y - 2ic3y3/2

D, — (6.6.53)

(Note that although Eq. (6.6.51) applies only for y > 1, Eq. (6.6.53) is
valid for ¥ <1 and any y, because it correctly gives Dy(#) = Dy as long as
Kk /y < 1, which for k¥ < 1 applies until y > 1.)

The interpolation between the cases ¥ > 1 and ¥ < 1 is simplest in
the matter-dominated era, when y >> 1. This is only a fair approximation
at the time of the decoupling of matter and radiation, when y =& 3, but it

9Smith, Kamionkowski, and Cooray, ref. 7.
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6.6 Tensor perturbations

becomes a good approximation thereafter. In this case the tensor modes are
governed by Eq. (6.6.51), and the general solution is a linear combination
of the two solutions (6.6.52), which for any « can conveniently be written

3DIUK) [ —cos <2Kﬁ + E(K)) sin (ZKﬁ + E(/c))
T 442 % + 2k y3/2 ’
(6.6.54)

where f and E are real dimensionless functions of x. From Eq. (6.6.53) we
see that for k < 1,

Uk) > 1, B/ =0, (6.6.55)

which is why we chose to write the physical solution in the form (6.6.54).
Also, for y > 1 Eq. (6.6.49) becomes

sin <2K(\/m — 1))
= D

g pa g , (6.6.56)
and therefore for « > 1,
4
U(k) — ?K , &G(k)— % — 2k . (6.6.57)

The values of U (k) and E(x) for general x must be found by a computer
calculation of the solution of Eq. (6.6.44). The results'® are presented in
Table 6.2. It can be seen that the analytic asymptotic limits (6.6.55) and
(6.6.57) agree quite well with the computer calculation fork <« 1andk > 1,
respectively.

Now let us consider the effect of anisotropic inertia.!! The anisotropic
inertia tensor is the sum of the contributions from photons and neutri-
nos, but photons are have a short mean free time before the era of
recombination, and make only a small contribution to the total energy den-
sity afterwards, so their contribution to the anisotropic inertia is small.
This leaves neutrinos (including antineutrinos), which have been travel-
ling essentially without collisions'? since the temperature dropped below

10p, Dicus, private communication.

1S, Weinberg, ref. 3. For results of an earlier computer calculation, see J. R. Bond, in Cosmology and
Large Scale Structure, Les Houches Session LX, eds. R. Schaeffer, J. Silk, and J. Zinn-Justin (Elsevier,
Amsterdam, 1996).

12For very short wavelengths that entered the horizon before the time of electron—positron annihila-
tion, it is necessary to take into account collisions of neutrinos with each other and with electrons and
positrons. This is considered by M. Lattanzi and G. Montani, Mod. Phys. Lett. A 20, 2607 (2005)
[astro-ph/0508364].
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6 Evolution of Cosmological Fluctuations

Table 6.2: The Tensor Transfer Functions

K U &) K U )

0.001 | 1.0000 —2.991 x 101! 1.8 12990 —2.418
0.002 | 1.0000 —9.557 x 10~10 20 3250 —2.781
0.003 | 1.0000 —7.239 x 10~ 2.5 |3.906 —3.706
0.004 | 1.0000 —9.236 x 1078 3.0 | 4565 —4.646
0.005 | 1.0001 —9.236 x 1078 3.5 15222 5597
0.006 | 1.0001 —2.286 x 10~7 40 | 588  —6.555
0.007 | 1.0002 —4.908 x 10~7 45 16551 7518

50 | 7.216  —8.484
55 | 7.878  —9.453
6.0 | 8.541 —10.425
6.5 |9.208 —11.398
70 | 9875 —12.372
7.5 | 10.538 —13.347

0.008 | 1.0002 —9.498 x 10~
0.009 | 1.0003 —1.697 x 10~
0.01 | 1.0004 —2.847 x 10~
0.02 | 1.0016 —7.848 x 107>
0.03 | 1.0037 —4.655x 10~*

0.05 | 1.0095 —2.809 x 10 55 | 11869 —15 302
0.06 1.0128 —4.397 x 103 9.0 12.538 —16.279
0.07 | 1.0165 —6.023 x 1073 10.0 | 13.863 —18.237
0.08 | 1.0210 —7.929 x 1073 11.0 | 15202 —20.196
0.09 | 1.0260 —1.044 x 102 12.0 | 16.526 —22.157
0.1 1.0310 —1.352 x 1072 13.0 | 17.867 —24.119
0.2 1.0960 —5.802 x 102 14.0 | 19.190 —26.081
0.3 1.1800 —0.1293 15.0 | 20.532 —28.044
0.4 1.2766 —0.2223 16.0 | 21.854 —30.001
0.5 1.3816 —0.3327 17.0 | 23.197 —-31.973
0.6 1.4926 —0.4568 18.0 | 24.52  —33.94
0.7 1.6079 —0.5919 19.0 | 25.86  —35.90
0.8 1.7265 —0.7357 20.0 | 27.18  —37.87
0.9 1.848  —0.8866 21.0 | 28.53  —39.83
1.0 1.970 —1.043 22.0 | 29.85 —41.80
1.1 2.095 —1.205 23.0 | 31.19  —43.77
1.2 2220  —1.370 24.0 | 32.51 —45.73
14 2474  —1.171 25.0 | 33.86 —47.70

1.6 2.731  =2.061

about 10'° K, and which make up a good fraction of the energy density of
the universe until cold dark matter becomes important, at a temperature
about 10* K. The tensor part of the anisotropic inertia tensor is given by
Eq. (6.6.40 ), so the gravitational wave equation (6.6.6) now becomes an
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6.6 Tensor perturbations

integro-differential equation!?

i

) i 7 s [ t
Dy(1) + 357)(1(1) + ;Dq(t) = _64”GPV(I)A K (q/t/ a(t'’”)

) D (t Ydt',
(6.6.58)

with K (v) given by Eq. (6.6.41). Note that despite the presence of anisotropic
inertia, for ¢/a <« H this has a solution with D, (7) time-independent, in
accordance with the general theorem of Section 5.4.

This wave equation becomes particularly simple for wavelengths short
enough to enter the horizon during the radiation-dominated era (though
well after et—e~ annihilation), that is, for x > 1. We will define the zero
of time so that in this era a o« +/7. It is convenient now to write Dy as a

function of the variable
tdr 2qt
= = _ =1 6.6.59
! q/() al) ()’ (6.6.59)

instead of 7. Using the Friedmann equation 87 Gp/3 = H? = 1/4¢%, the
gravitational wave equation (6.6.58) in the radiation-dominated era becomes

& 2d g dD /
Dy (1) + = =Dy () + Dy ) = — f/K( (”)

(6. 6.60)
where

pv _ 3-(7/8)- (4/1)*
Pv+py 1+3-(7/8) - (4/11)4/3

1, = = 0.4052 . (6.6.61)

Late in the radiation-dominated era, the factor 1/4?> makes the right-hand
side negligible, so D, (u) approaches a solution of the homogeneous equa-
tion. In general, one might expect a linear combination of sinu/u and
cosu/u, but in fact no cosu/u term appears in the solution.'* A numerical
solution of Eq. (6.6.60) shows that if Dy (u) takes the value Dy for u <1
then for u > 1 (but still in the radiation-dominated era)

D) > Do sin() (6.6.62)
u

13The lower bound on this integral should in principle be taken as the time of neutrino decoupling,
at a temperature of about 1010 K, butitisa good approximation to take it at a time ¢ = 0, defined by
writing the scale factor during the radiation-dominated era as a o< 11/2

14D Dicus and W. Repko, Phys. Rev. 72, 088302(2005) [astro-ph/0509096] have shown analytically
that no cos u/u term appears in this solution, and have given an analytic solution as a rapidly convergent
sum of spherical Bessel functions. The absence of a cos u/u term was shown very generally on causality
grounds by S. Bashinsky, astro-ph/0505502.
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6 Evolution of Cosmological Fluctuations

where @« = 0.8026. This then serves instead of Eq. (6.6.47) as an initial
condition for the subsequent evolution of the gravitational wave amplitude,
so that later, during the matter-dominated era, the effect of damping on the
amplitude (neglecting §) is simply to multiply the result given in Eq. (6.6.54)
by a factor .1

The damping of gravitational waves of longer wavelength is considerably
more complicated. Because of a shift in the phase of the oscillation, the effect
of anisotropic inertia on the amplitude of gravitational waves at the time
of decoupling is a sensitive function of wave number, and for some wave
numbers can even be an enhancement instead of a damping, but typically
the amplitude is damped for « = O(1) by roughly 5%.

Because the damping effect is small anyway for k < 1, it will be an
adequate approximation for all wavelengths to take the gravitational wave
amplitude in the matter dominated era to be given by multiplying the result
(6.6.54) with a factor a(x):

3DJUK)a (k) [ —COS <2Kﬁ + E(K)) sin (2Kﬁ + E(/c))
T 42 y + 2ucy3/2 ’
(6.6.63)

with « (k) some function of « that rises smoothly from «(x) = 0.8026 for
k> 1toalk) ~ 1for k « 1. For instance, we can take a(xk) ~ (1 +
.8026x) /(1 + «). All observable effects of cosmological gravitational waves
will be reduced by this factor a(x).

I5The effect of possible neutrino masses and/or chemical potentials is considered by K. Ichiki,
M. Yamaguchi, and J. Yokayama, Pub. Astron. Soc. Pacific 119, 30 (2007) [hep-ph/0611121].
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7

Anisotropies in the Microwave Sky

We will now return to the theory of anisotropies in the cosmic microwave
background, introduced in Section 2.6. In Section 7.1 we derive gen-
eral formulas for the observed temperature fluctuation. Then in Sections
7.2 and 7.3 we combine these results with the analysis of cosmic evolu-
tion in Chapter 6 and introduce a series of approximations that simplify
the evaluation of the multipole coefficients for scalar and tensor modes,
respectively. Section 7.4 deals with the polarization of the microwave
background.

7.1 General formulas for the temperature fluctuation

In this section we will derive general formulas for the contribution of scalar
and tensor modes to the observed temperature fluctuation. We begin by car-
rying the solution of the Boltzmann equations in synchronous gauge given
in Section 6.1 forward to the present. When implemented with computer
programs such as CMBfast or CAMB, the approach provides numerical
results of great accuracy, but neither the derivation of the formulas for tem-
perature fluctuations nor the computer programs are physically very trans-
parent. We will then show how these results can be simplified by making the
approximation of a sharp transition from thermal equilibrium to complete
transparency at a moment #7, of last scattering. Thisignores the scattering of
photons by matter that becomes reionized at a redshift of order 10. For tem-
perature correlations, the corrections due to reionization are very simple for
multipole orders ¢ greater than about 20, and will be included in Section 7.2.
In Section 7.2 we will also partly make up for the approximation of a sharp
drop from opacity to transparency by including effects of viscous damping
during this transition, and by including effects of averaging over ¢7. (At the
end of this section we will show how the same simplified results can also be
obtained in a more general gauge by following photon trajectories from 7
to the present, with no need to use the Boltzmann equation.) The results of
the sudden-decoupling approximation obtained here will be used together
with other approximations in Section 7.2 to derive analytic expressions for
the temperature multipole coefficients, that require computer calculations
only to carry out a single numerical integration.

Because the proper energy density of black body radiation is proportional
to the fourth power of the temperature, the fractional perturbation in
temperature of radiation coming from a direction 7 is one-fourth the
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7 Anisotropies in the Microwave Sky

fractional perturbation in the proper energy density of photons travelling
in direction p = — at our position x = 0 and time ¢ = #y. Eqgs. (6.1.13) or
(6.6.8) thus give

AT@m) 1 n
T() = ZJii(X = Oa —n, tO) ’ (711)

where Jj;(X, p, t) is the fractional density matrix, defined by Egs. (6.1.13)
for scalar modes and (6.6.8) for tensor modes. Using the decompositions
(6.1.18), (6.1.20) for scalar modes or (6.6.9), (6.6.13) for tensor modes, the
scalar and tensor contributions to the temperature fluctuation are

ATH\S 1 o
( Ty ) =Z/d3qa(q)A(7§)(q,—q-n,to), (7.1.2)
and
ATH\TD 1 A .
( Ty ) =1 > /d3q5((1,)»)7%111€k1(q,?»)A(TT)((],—q~n,lo),

A==12
(7.1.3)

where «(q) and B(q,A) are the stochastic parameters for whatever
modes are assumed to dominate the scalar and tensor perturbations, respec-
tively; ex;(g, A) is the polarization tensor defined in Section 6.6 for a grav-
itational wave with wave number q and helicity A; and A(TS) (g, ,t) and

A(TT) (g, u, t) are amplitudes appearing in the decompositions (6.1.20) and
(6.6.13) of the scalar and tensor contributions to the fractional density
matrix Jj;.

In order to display the angular dependence of the temperature shift,
we use the line-of-sight integrals (6.1.37) and (6.1.38) for scalar modes
and (6.6.25) and (6.6.26) for tensor modes, which give, for the scalar
modes

ATH\Y 1
(577) =3/ e

to to dt/ to
x/ dt exp [iq-ﬁf - —f dr’ a)c(t’)]
f ¢ a(t) t

X [ — 2Aq(t) +2(q - ﬁ)qu(z) 4 3w ()P (g, 1)

—4i(q - 1) wc (1) Supy(1) /a(t)

3 . a
+Z<1 @G- n)z) we(1) TI(g, z)] , (7.1.4)
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and for the tensor modes

AT\ 1 P o
< (”)> = Z /d3q B(q, 1) Ay ey (q, A)

T
0 py—

1o to dt/ to
xf dt exp [iq-ﬁf - —f dl’a)c(t’)i|
f ¢ a(t) t

x[ — 2D, (1) + w (1) ¥(g, z)} . (7.1.5)

As a reminder: ¢#1 is any time sufficiently early before recombination so that
any photon present then would have been scattered many times before the
present; w.(?) is the photon collision rate at time #; 4,(¢) and By(¢) are
the scalar fields in the perturbation to the metric in synchronous gauge,
defined in Section 5.2; ®(q, ¢) and T1(q, t) are the scalar source functions,
defined by Eq. (6.1.21); dup,(¢) is the scalar velocity potential of the bary-
onic plasma; D,(¢) is the gravitational wave amplitude, defined in Section
5.2; and W(q, t) is the tensor source function, defined by Egs. (6.6.11) and
(6.6.12).

Eq. (7.1.4) does not give the expression for the scalar temperature fluc-
tuation in its most convenient form. When we pass to the limit of a sharp
moment of last scattering, its terms will not correspond to the decompo-
sition of the fluctuation into Sachs—Wolfe, Doppler, intrinsic, and inte-
grated Sachs—Wolfe terms, discussed in Section 2.6. The individual terms
in Eq. (7.1.4) are not even invariant under the limited class of gauge trans-
formations (5.3.39)—(5.3.42) that preserve the conditions for synchronous
gauge. We will therefore rewrite Eq. (7.1.4) by using the identity

11 /
exp (iq . ﬁ/l‘ ' ai?)) (q-7)?By(t) =

1 /
—exp <iq-fz / " >i<a2(t)Bq(t) +a(t)c'z(t)B(t))
t

a(t) ) dt
d . [0 dr
+fer (o [35)
x [az(z)i;q(z) + a(t)a(t) By (1) + ia(t)q - ﬁBq(t)] } (7.1.6)

Using this in Eq. (7.1.4) and integrating by parts, yields our final formula
for the scalar temperature fluctuation

(AT(?:))m _ (AT(fz))(S) N (AT(ﬁ))“’ 1)

To To Jcarly To /Jisw
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7 Anisotropies in the Microwave Sky

where the first, “early,” term receives contributions only from times with
an appreciable free electron density, before recombination and after

reionization,
AT @)\
( ) = / d*q a(q)
To early

I 0 df/ 0]
x/ dt exp [iq-ﬁ/ - —/ a’t/wc(t/)}
f ¢ a(t) t

3 3 A
ch<r>[ (.0 + (1~ @),

1 ; o
—§a2<z)Bq<z) — za(z)amBq(r)
—i(q - 7) <8u3q(t)/a(t) +a(t)Bq(t)/2>} , (7.1.8)

and the second, “integrated Sachs—Wolfe term,” receives contributions from
the whole period from ¢#; to the present,

AT\ 1 [ ;
( Ty >lsw__§/dqa(q)f “

0] dt/ d
iq - 7 1 w(t
X exp [zq n/t ) ¢ ( )]

x % 4,0 + 0B, ) + aaw B, 0] . (7.1.9)

(Here we are ignoring a surface term in the integration by parts at 1 = ¢y,
because it is linear in 72, and therefore just contributes to the £ = 0 and ¢ = 1
partial waves. This “late” term is calculated by a different method later in
this section, and given in Eq.(7.1.38).)

The integrated Sachs—Wolfe term (7.1.9) represents the effect of chang-
ing gravitational fields during the passage of the microwave photons from
last scattering to the present. As already noted in Section 2.6, the ISW term
would vanish if the gravitational field from last scattering to the present (or
more precisely, at times 7 when the transparency exp (— f;o wc(t’)dt/) was
non-negligible) arose solely from the density of cold matter. (This feature
provides another reason, apart from gauge invariance, for the rearrangement
of terms that led to Eq. (7.1.7).) Under this approximation, Egs. (6.5.15)
and (6.5.16) show that 8p, o t*/* and ¥, o« ¢~'/3. Eq. (5.3.38) gives
qu = 87a*ppd Dg — 2Hda? Yy, both terms of which are constant in the
matter-dominated era, so A does not contribute to Eq. (7.1.9). With Aq
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negligible, v, = —quq, SO Bq o 7173 and therefore both terms aZBq and
aéqu in Eq. (7.1.9) are time-independent, and therefore do not contribute
to the ISW effect either. For this reason the ISW term (7.1.9) is relatively
small. The early-time ISW effect depends sensitively on the ratio of matter
to radiation at last scattering, which is an aid in using observations of tem-
perature fluctuations to measure 3742, The late-time ISW effect receives
its main contribution from times near the present, when the dark matter
density falls below the vacuum energy density. Anisotropies subtend larger
angles when viewed nearby than from great distances, so the late-time ISW
term in the temperature anisotropy contributes to the temperature multipole
coefficients C; only for relatively small £, say £ < 20. It is the integrated
Sachs—Wolfe effect that causes the predicted values of £(£ + 1)Cy to rise
as £ drops from around 20 to smaller values. This effect has been difficult
to see in present data on the cosmic microwave background temperature
fluctuations.!

It is the “early” term (7.1.8) that makes the largest contribution to the
scalar temperature fluctuation for £ > 20. The terms in Eq. (7.1.8) pro-
portional to q - 1 represent the Doppler effect,? while the other terms give
the combined effect of gravitational time dilation and intrinsic temperature
fluctuations.

Let’s pause to check invariance under the limited set of gauge trans-
formations that preserve the conditions for synchronous gauge. These trans-
formations induce the changes ABq = 21 /a2 and Adup, = T, where 7 is
an arbitrary function of x, so the Doppler term proportional to iq - 72 in

IThe ISW effect can be detected through its correlation with inhomogeneities in the distribution
of matter (which are also linear in «(q)), as suggested by R. G. Crittenden and N. Turok, Phys. Rev.
Lett. 76, 575 (1996) [astro-ph/9510072]. This effect has been seen in the correlation of data from the
WMAP satellite (discussed in the next section) with various surveys, by P. Fosalba and E. Gaztafiaga,
Mon. Not. Roy. Astron. Soc. 350, L37 (2004) [astro-ph/0305468]; P. Fosalba, E. Gaztafiaga, and
F. Castander, Astrophys. J. 597, L89 (2003) [astro-ph/0307249]; N. Ashfordi, Y-S. Loh, and M. A.
Strauss, astro-ph/0308260; S. P. Boughn and R. G. Crittenden, New Astron. Rev. 49, 75 (2005) [astro-
ph/0404470]; N. Padmanabhan, C. M. Hirata, U. Seljak, D. Schlegel, J. Brinkmann and D. P. Schneider,
Phys. Rev. D 72,043525 (2005) [astro-ph/0410360]. More recent cross-correlations of anisotropies seen
by the three-year Wilkinson Microwave Anisotropy Probe (discussed in the next section) with galaxies
in the Sloan Digital Sky Survey and with radio galaxy data from the NRAO VLA Sky Survey give
0.7 < Qp < 0.82and 0.3 < Qp < 0.8 at a 95% confidence level, respectively; see A. Cabré et al.,
astro-ph/0603690; D. Pietrobon, A. Balbi, and D. Marinucci, Phys. Rev. D 74, 043524 (2006) [astro-
ph/0606475]. Unfortunately, cosmic variance limits the accuracy with which this approach can be used
to study the time dependence of the vacuum energy.

2In a gauge in which cold dark matter remains at rest, the effect of gravitational perturbations on
the cold dark matter particles is canceled by the definition of surfaces of equal time, so in this gauge the
velocity perturbations of the baryonic plasma arise solely from pressure forces, not from gravitational
forces. This is why the gravitational term proportional to Bq appears accompanying the plasma velocity
potential in Eq. (7.1.8); it represents the velocity that in a different gauge would be given to the photon—
baryon plasma by gravitational forces.
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Eq. (7.1.8) is separately gauge invariant. Also,> A® = —(4/3)Tt/T =
(4/3)atr/a and ATl = 0, so the other terms in Eq. (7.1.8) are also gauge
invariant; and A4 = —2at/a, so also Eq. (7.1.9) is invariant under this
limited set of gauge transformations.

Our results so far are exact, aside from the use of first-order perturbation
theory and the assumption that photons interact only through purely elastic
Thomson scattering. (In Egs. (7.1.2) and (7.1.3) we are assuming that the
scalar and tensor fluctuations are each dominated by a single mode, but it
would be trivial to introduce a sum over modes in these expressions.) These
results are equivalent to those given by Seljak and Zaldarriaga,* which are
used in computer programs like CMBfast and CAMB. At the cost of only
a small loss of numerical accuracy, they can be greatly simplified if we now
make the approximation of a sharp transition from thermal equilibrium to
perfect transparency at a definite time 77 .

The integrand of the “early” contribution (7.1.8) to the scalar tempe-
rature perturbation contains a factor P(¢) equal to the probability distribu-
tion of the last photon scattering

to
P(t) = w.(1) exp (—/ dr’ wc(t/)) ) (7.1.10)
t
Assuming that w.(¢) drops sharply at time ¢7, from a value much greater than

the expansion rate to zero, the function P(¢) is non-zero only in a narrow
interval around 77. But P() is a normalized probability distribution:

t
/OP(t)dt:I (7.1.11)
131

so the integral over ¢ in Eq. (7.1.8) can be evaluated by dropping the factor
P(t) and setting t = ¢.:

AT )\ o dt
( (n)) ~ fd3q a(q) exp [iq-ﬁ/ d }
T early 17 a(t’)

3(1) 3 { . a 21'[
x|:4—1 (q’tL)+E< —(q-n)) (q.11)

3This follows from the rule (5.3.42), that the change Ads in the perturbation 8s to a scalar s with
unperturbed value 5 is As = —57. In using this rule, we note that the unperturbed photon distribution
is isotropic and unpolarized, so that, of the terms in Eqs. (6.1.29) and (6.1.30) for ® and II, the only
one that has an unperturbed value is A(T‘S}) /3. For the purposes of assessing the gauge transformation

property of this term, we must define the unperturbed value of A(Tsz) so that its perturbation is the

fractional photon density fluctuation 487 /T, and so its unperturbed value is 41n 7.
4u. Seljak and M. Zaldarriaga, Astrophys. J. 459, 437 (1996) [astro-ph/9603033].
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1 . 1 .
—§a2<z>Bc,<zL) — 5a(tn)a(tr) By(tr)

—i(q- ) (Sug(t1)falir) + atir) By(1p) /2)] ENCARE!

Under the same assumption of a rapid drop in w.(¢) from a large value for
t < 17 to a negligible value for ¢ > 17, the factor exp <— ftto dr’ a)c(t/)> in

Eq. (7.1.9) rises sharply from zero for ¢ < ¢7 to unity for ¢ > 7, so Eq(7.1.9)
becomes

AT 2 &) 1 to to /
< (n)) ~ ——/d3q a(q)/ dt exp |:iq~ﬁ/ dl/ :|
Ty ISW 2 17 ¢ a(t)

x %[Aq(t) +d>(t)By () + a(t)c'l(t)Bq(l)] : (7.1.13)

The same approximation applied to the tensor contribution (7.1.5) gives

AT \D
( (n)> =3 Z /d3qﬁ(q,)»)nknl€kl(q,?»)

To 45
o . o dt/
X —2/ dt D,(1) ex (z’ fz/ )
[ ” q(0) exp | iq alt)
I dt/
+W(g,tr) exp (iq-ﬁ/ - )i| . (7.1.14)
159 a(t)

Further, in local thermal equilibrium photons are unpolarized and have an

isotropic momentum distribution, so A?,SE, AEDTZ) , and A(T) vanish for all

£, and A(T Y vanishes for all £ except £ = 0, so that the formulas (6.1.29),
(6.1.30), and (6.6.21) for the source functions give [T = ¥ = 0 and & =
A(T*S})/S = 48T /3T in local thermal equilibrium.> The assumption of a
sharp drop from a very high to a very low photon collision frequency then

5This can be seen formally by taking the limit w, — oo in the Boltzmann equations (6.1.27), (6.1.28),
(6.6.18), and (6.6.19). This gives

s s 1 1
AR = 71'1(84()4-552) . AP = <3<1>+ Er1> 5e0 + 51802

(T _ (1)
AT =80%, Ap)=—8p¥.
The formulas (6.1.29), (6.1.30), and (6.6.21) for the source functions thenread & = ®—TI1/12, IT = 3I1/5,
and W = 7W¥/10, which require that [I = WV =0 and ¢ = A(Sz)/3
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allows Egs. (7.1.12) and (7.1.14) to be further simplified to

AT - S to /
( (n)) 2/d3qoz(q) exp [iq-ﬁf dl, }
TO early 155 a(l )

x[Fl@)+i@-m6@] (7.1.15)

where F(g) and G(gq) are the form factors

0Ty(tr) 1 .. 1 . .
F(@) = 305 = 3@ 0By ) = i By (7110
G(@) = —q(uyq (i) alin) + atr)By(11)/2) (7.1.17)

and

AT )\ 1
< (n)> =— Z fd3q,3(qz)~)f7k;llekl(2]:)~)

TO A42
flod D v (7.1.18)
X t D,() ex (i ﬁ/ ) . 1.
Rt N ATy
%k %k ok

We will now make the same approximation, of a sudden drop in opacity
at 77, and use it to derive formulas for the scalar and tensor temperature
fluctuations by following photon trajectories, without needing to use the
Boltzmann equation formalism of Section 6.1. Because it is easy, we will
carry out this derivation in a more general class of gauges. After this deriva-
tion, we will check that it yields the results (7.1.15) and (7.1.13) for scalar
fluctuations in synchronous gauge, and (7.1.18) for tensor fluctuations. The
reader who is comfortable with the derivation of these formulas using the
Boltzmann equation in synchronous gauge may want to skip the rest of this
section.

We start with some general remarks, that apply equally to scalar and
tensor perturbations, and that for scalar perturbations apply in any gauge
in which g;o = 0, including both Newtonian and synchronous gauge. Con-
tinuing to neglect a possible unperturbed spatial curvature, we write the
perturbed metric in any gauge with g;o = 0 in the form

g0=—-1—Ex1, g0=0, gj=d®)8+h;jx,0. (71.1.19)

A light ray travelling toward the center of the Robertson—Walker coordinate
system from the direction 72 will have a co-moving radial coordinate r related
to t by

0 = gudxidy’ = —<1 + E(rh, z))dz2 n <a2(t) + By (1, t)) dr? , (7.1.20)
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or in other words

—1/2
dr (a2+h,.,> P E

=

1+ E a + 2¢3 2a (7.1.20)
(To first order in perturbations we don’t have to worry about a deflection
of the ray from the radial direction, because g9 = g4 = 0, so that any
deflection would have to be of first order, and its effect in the term hgdxidxj
would therefore be of second order.)

We now make the approximation that the transition of cosmic mat-
ter from opacity to transparency occurred suddenly at a time 77 of last
scattering, at a red shift 1 4+ zz =~ 1090. With this approximation, the
relevant first-order solution of Eq. (7.1.21) is

t /

1) =s(t N(s(Hn,t 7.1.22
) S(H/ZL iy VOR ), (7.1.22)
where LT hox.)
(X, 1
NX, 1) == —EXx,t 7.1.23
(X, 1) 2[ 200 (X, )] : ( )
and s(7) is the zeroth order solution for the radial coordinate which has the
value rp at t =t
tdr o dr’
D =rp— —_—= . 7.1.24
W= /,L a(t') /t a(t') (7129

In particular, if the ray reaches » = 0 at a time ¢, then Eq. (7.1.22) gives
o dt o dt
0= s(t —N(s(n,t) = — (N(s()n,t)—1) .
s(to) +/,L a(t) (S( ", ) 'L +,/;L a(t) ( (S( ", ) )
(7.1.25)
A time interval §7;, between the departure of successive light wave crests

at the time 77 of last scattering produces a time interval §¢y between arrival
of successive crests at 7o given by the variation of Eq. (7.1.25):

3 o d, N (ri
0= i 1— N(l"[fl, tL> +/ _l <M)
a(tr) 1 a(t) ar r=s(t)
- . Sty
817, 8ul, (rpfy 1r) + W[ — 1+ N, 10)] .
(7.1.26)

(The term on the right-hand side involving the radial velocity u;, of the
photon gas or photon—electron—nucleon fluid arises from the change with
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time of the radial coordinate r; of the light source in Eq. (7.1.25). We
don’t consider the variation of the argument s(¢)# in N, because to zeroth
order r7 and ¢ are related in such a way that s(z) = 0 for all rz, so its
variation with ry, is of first order, and the effect of this variation on N would
be of second order.) The total rate of change of the quantity N (s(¢)7, t) in
Eq. (7.1.25) is

dN(s(t)ﬁ t> (0 N (A1) 1 (ON(rn,t)
dt ) \oe ’ r=s(t) a(t) ar r=s() ’

so Eq. (7.1.26) may be written

) fo 0
0= ‘L l—N(O,to)+/ dt{—N(rﬁ,l)}
a([L) tr at r=s(t)

8t
8t 8l (rpf 1) + —0[ — 14 N(O, zo)] . (7.1.27)
Y a(to)
This gives the ratio of the coordinate time interval between crests when
emitted and received, but what we want is the ratio of the proper time
intervals

Sty =1+ E@,tp)dtr, dto=+1+ E,1)dt, (7.1.28)

which to first order gives the ratio of the received and emitted frequencies
as

1
— = 1+ =(E®(rrn — E
= = i |1 2( (rei tr) — E( ,zo))

) 9
—/ {—N(rﬁ, t)} dt
199 a1 r=s(t)

—a(tr) Su;(l’[fl, l)] . (7.1.29)

v _ 8t a(tL)[

The temperature observed at the present time 7y coming from direction 7
is then

T = o/ve) (T(1) + 8T e, 1))

where now we have added a term 87 to take account of the intrinsic
temperature fluctuation at time #7,. Likewise, in the absence of perturbations
the temperature observed in all directions would be

To = (attw)/a(t0) ) T(10)
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7.1  General formulas for the temperature fluctuation

so the fractional shift in the radiation temperature observed coming from

direction 7 from its unperturbed value is®
ATG) T —To _ Vo | 8T LA 1)
To To —a(tr)ve/a(ty) T(tr)
1 o 0
= 5 (ECLi 1) - EO.10) - / dt {—N(rﬁ, z)}
2 tr at r=s(t)
ST (rpn,tr)

—a(tp) duy, (ren, i) + (7.1.30)

T(tr)

Because tensor and scalar perturbations are uncorrelated, we will treat
their contribution to Cy independently.

For scalar perturbations in any gauge with h;0=0, the metric
perturbation is given by Eqgs. (5.1.31)—(5.1.33) as

. b 3’B

Also for scalar perturbations the radial photon fluid velocity is given in
terms of a velocity potential du, as
00Uy 1 98uy,

Su, = = —
U =8 oo T2 ar

(7.1.32)

Thus Eq. (7.1.30) gives the scalar contribution to the temperature
fluctuation

(A;ﬁ@)s _ %(E(r;ﬁ, (1)~ EQ.19)) - /IO dt {%N(Vﬁ, z)}

199 r=s(t)

1 06 i, t 8T (rpn,t

- ( ty (1 L)) p o) (7.1.33)
a(tr) ar r=rp, T(tr)

where now
1 3’B
N=—-|A+——-FE]| . 7.1.34
2 |: + ar2 j| ( )

Eq. (7.1.33) is not in the form that is most useful for our purposes. The
total temperature fluctuation given by Eq. (7.1.33) is invariant with respect
to the limited class of gauge transformations that leave g;o = 0, but this is
not true of its individual terms, including even the integral of (0N /91),=(s).

6This result is essentially that first found by R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73
(1967).
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It will be much more convenient to rewrite Eq. (7.1.33) in a way that leaves
the integral term separately gauge invariant.

For this purpose, we make use of an identity corresponding to Eq. (7.1.6):

32B(ri, 1)
ar2
r=s(t)

d

g e dB(rh, 1)
=——|(3a“()B@rn,t) +at)a(t)B(rn,t) + a(t) ————
dt or s

+ %(612(03(1’1% 0+ a(a)B(ra, Z)) },~:s<z)

Together with Eq. (7.1.34), this gives the integrand in Eq. (7.1.33) as

[ ()]

r=s(t)

_1d e L AB(ri, 1)
=-57 {a (OB@rn, t) +a(t)a(t)B(rn, 1) +a(t)—8r }r "
41 3( 20 B, 1) + a()a() B(ra, 1)
2 8[ a rn, a a rn,
YA, ) — E(ri, t))} . (7.1.35)
r=s(t)

The scalar fractional temperature fluctuation (7.1.33) may therefore be
written

AN S AN\ S AN\ S A\ S
(AT(n)) _ (AT(n)) n (AT(H)) n (AT(n)) . (7.1.36)
Ty Ty early To late To ISW

where

(Am)) = LB ) - Sata) B
To early_ 2a L Ln, L 261 Lya\lp L L

1 . 8T (rpn,tr)
+§E(”Ln, L) + W
a (1.
—a(tr) [5 (EB(M’ 1) + 2( )8uy(rn ZL))i|r:rL ,
(7.1.37)
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AT (n)
(%7

S 1 N 1 .
) = Eaz(row(o, t0) + 5alto)a(t0) B, 10)
late

. 9 (1. . Suy, (ri, to)
—5E(0.10) + alto) [5 (53(””’ fo) + W)]r 0
(7.1.38)

AN\ S
(AT(n)) _ _l/ dz[ (a (O)B@ri, 1) + a(Ha(t)B(ri, t)
T Jisw 2y

T AGh, t) — E(rit, 0) ] . (7.1.39)

r=s(t)

The “late” term (7.1.38) (which was ignored earlier in this section) is the
sum of a direction-independent term and a term proportional to 72, which has
been added to represent the anisotropy due to the local cosmic gravitational
field and velocity. It only affects terms in the multipole expansion of the
temperature correlation function with £ = 0 and ¢ = 1, so it can be ignored
if from now on we consider only multipole orders £ > 2.

Now let us check the separate gauge invariance of the ISW, Doppler,
and the remaining combined terms, at least for the limited class of gauge
transformations that preserve the condition gjp = 0, or in the notation of
Eq. (5.1.32), F = 0. Eq. (5.3.13) tells us that these gauge transformations

have
3 (€5
_ 2 .
0= at ( ) ’

and so AB = 2¢g/a*. According to Egs. (5.3.13) and (5.3.16), a gauge
transformation therefore shifts the terms —a?B/2, —aaB/2, E/2,and 8T /T
in the combined gravitational and intrinsic temperature fluctuations by the
amounts —a?d(eg/a?)/dt, —aey/a, ¢, and egT/T = —epa/a, giving no
net change; it shifts the terms aB/2 and 8uy, /a in the Doppler contribu-
tion by €p/a and —€o/a, giving no net change; and it shifts the four terms
a*B, 2aaB, A, and —E in the integrand of the integrated Sachs—Wolfe
term by the amounts 2éy — 4epa/a, 2¢pa/a, 2€pa/a, and —2¢&g, respec-
tively, giving no net change. Thus the integrated Sachs—Wolfe term, the
Doppler term, and the combined gravitational and intrinsic temperature
terms are separately gauge invariant. In particular, both Newtonian and
synchronous gauge will give the same results for each of these three
contributions.
Let us now assume that from last scattering to the present the scalar
contributions to the fluctuations are dominated by a single mode, so that
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any perturbation X (x, #) (such as B, E, éu,,, or §T) can be written as

X(x,1) = / d*qa(q) e X, (1) (7.1.40)
with @ (q) a stochastic variable (the same for all X), normalized so that
(a(@a*(q) =8@—-q). (7.1.41)
Then Eqgs. (7.1.37) and (7.1.39) give
ATH)\S -
( (”)> _ f d3q a(q) 4L <F(q) +ig- i G(q)) . (7.1.42)
To early

AT(ﬁ))S 1/’L / 3 wisind (2
=—— | dt | @qaq) DB,
( T Jsw . 2)s qa(q 7\ DB, @)

+ a()a(t) By (1) + Ag(t) — Eq(t)) , (7.1.43)

where
1 2 . 1 . . 1 8Tq(lL)
F(g) = —5d (tL)By(tL) — za(ZL)a(tL)Bq(fL) + EEq(tL) + 0
(7.1.44)
1 . 1
G(g) = —¢q (z a(tp)By(tL) + —— 2D 8u},q(tL)) (7.1.45)

As we have seen, the form factors F(¢) and G(¢g) and the integrand of the
ISW term are separately invariant under gauge transformations that leave
gio equal to zero.

In synchronous gauge E, = 0, so Eqs. (7.1.42)—(7.1.45) are the same as
the previously derived results (7.1.15), (7.1.13), (7.1.17), and (7.1.18). In
Newtonian gauge B = 0 and E = 2®, so the form factors are

8Ty(tr)
F(q) = ® 4 7.1.46
G(g) = —2i )MM(Q) (7.1.47)

(Of course, § T, and du,, 4 are different in Newtonian gauge from what they
are in synchronous gauge.) Also, the integrated Sachs—Wolfe term is

AT (i fo s ()
( @ ) _ / dt f Byl O, . (7.1.48)
To Jisw 1

It is left as an exercise for the reader to show that ®, is constant during
the matter dominated era. Therefore, as we saw earlier in synchronous

342



7.2 Temperature multipole coefficients: Scalar modes

gauge, the integrated Sachs—Wolfe effect receives contributions only from
departures from strict matter dominance.

Finally, we consider the tensor contribution to temperature fluctuations.
In the approximation of a sudden transition from thermal equilibrium to
transparency at time 77, the only contribution of tensor perturbations to the
observed temperature anisotropy comes from the term #,,/2a* in the defi-
nition (7.1.23) of N, which according to Eq. (5.1.33) contains a term D,, /2.
Using this in Eq. (7.1.29) gives the tensor contribution to the temperature
fluctuation

AT\ iy o9
( (”)) =_@/ {—Dij(rﬁ,z)} dr (7.1.49)
TO 2 t at r=s(t)

L

The gravitational wave amplitude D;;(x, f) can be expressed as a Fourier
integral (5.2.21)

Dy(x,t)= Y _ / d*q €V e;(3, )P, 1) Dy(t) , (7.1.50)
A==2
where Dy (¢) is the dominant solution of the wave equation (5.2.16):
2

By(t) + 32D, + LD, (0) = 167Gl (1) (7.1.51)
a a

e;j(A,q) are polarization tensors defined in Section 5.2, and B(q, 1) is a
stochastic variable chosen to satisfy Eq. (5.2.22). The tensor mode contri-
bution to the temperature fluctuation is then

AT\ 1
< Ty ) __EZ

A=%2

1o . A .
/ d*q hifje;(L, ) B(Q, ) / dr "DV Dy (1) .
199
(7.1.52)

This is the same as our previously derived result (7.1.18). We will return to
the tensor term in Cy in Section 7.3, after we have studied the scalar term
in the next section.

7.2 Temperature multipole coefficients: Scalar modes
We will now apply the results of the previous section to the calculation

of the contribution C7S~T ¢ of scalar modes to the multipole coefficients of
temperature—temperature angular correlations:

1
Crre = E/dzﬁ /dzﬁ’ Po(i- W) (AT () AT #)) , (7.2.1)
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7 Anisotropies in the Microwave Sky

where AT (#) is the stochastic variable giving the departure from the
mean of the temperature observed in the direction #, and (.. .) denotes an
average over the position of the observer, or equivalently, over the sequence
of accidents that led to the particular pattern of temperature fluctuations
we observe. (We are including a label 7T to distinguish this multipole coef-
ficient from those in temperature—polarization or polarization—polarization
correlations, which are the subject of Section 7.4.) Of course this is not what
is observed; the observed quantity is

1
P, = o f d’n / d*HPy(h - W) AT() AT (W) ,

but as shown in Section 2.6, the cosmic variance, the mean square fractional
difference between this and Eq. (7.2.1), is 2/2¢ + 1, and therefore may be
neglected for € > 1. In this section we will consider only the contribution
C%T’ ¢ of scalar modes to Crr ¢; as we saw in Section 5.2, tensor and scalar
modes do not interfere, so we can take up the contribution of tensor modes
separately in the following section.

First let’s apply the results that were obtained in the previous section
by using the kinetic theory approach described in Section 6.1. The use of
the Boltzmann equation yields formulas (7.1.7)—(7.1.9) for the temperature
fluctuation. To calculate the coefficients in a partial wave expansion of
the temperature fluctuation, we use the familiar expansion (2.6.16) of a
plane wave in Legendre polynomials, together with the addition theorem
for spherical harmonics:

00 £
M =4 3" N (o) YY) - (7.2.2)
=0 m=—¢

Using this in Egs. (7.1.7)—(7.1.9), and replacing factors of ig - n with deriva-
tives of the spherical Bessel function j,, the scalar contribution to the tem-
perature fluctuation observed in a direction 7 is given by

NS R
(A1) =Y af Y@, (7.2.3)
m
where
S 3 o
ar em = 4ni€TO/d q a(q) Y;1*(2]) / dt
N

x [je(ar0) Fag. 0+ /i (a70)) Gg, 0 +j¢ (ar0) Hig. 0] -
(7.2.4)
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7.2 Temperature multipole coefficients: Scalar modes

Here a(q) is the stochastic parameter for the dominant scalar mode,
normalized to satisfy Eq. (5.2.7):

(a@a*@) =8@q—-1q); (7.2.5)

t1 is any time sufficiently early before recombination so that a photon present
then would have scattered many times before the present; r(¢) is the radial
coordinate of a point from which light emitted at time # would reach us at
the present time #g;

to dl/

and F(q,t), G(g,t), and H(q, t) are time-dependent form-factors, given by
11
F(g,t) =exp |:— / ' we (1) d;/:|
t

{ () F@( H+ i1'1( 1)

X @W¢ 4 q, 16 q,
1, . 1.

—54 (OB, (1) — Ea(t)a(t)Bq(t)
1d 5 o

~3% [Aq(z)+a (t)Bq(t)—i—a(t)a(t)Bq(t)] , (1.2.7)

11
G(q,1) = —q (1) exp [— / Owc(t’> dﬂ]
t

x [Supy(t)/a(t) + a(t)By(1)/2] , (7.2.8)
t
H(g,1) = %a)c(l) exp [—/ ' w(t) dl/] M(q,1) . (7.2.9)
t

As a reminder: w.(?) is the photon collision frequency at time ¢; 4,(t)
and B,(¢) are the scalar fields in the perturbation to the metric in syn-
chronous gauge, defined in Section 5.2; ® (g, ¢) and I1(q, t) are the scalar
source functions, defined by Eq. (6.1.21); and dup,(¢) is the scalar veloc-
ity potential of the baryonic plasma. A subscript T has been appended
to the agy, introduced in Section 2.6, to indicate that these are partial
wave coefficients in the temperature rather than the polarization, and a
superscript S has been included to distinguish scalar from tensor
contributions.

Together with the orthonormality property (2.6.19) of Legendre
polynomials, Eqgs. (7.2.1) and (7.2.3)—(7.2.5) give the scalar multipole
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7 Anisotropies in the Microwave Sky

coefficients!
o0
Cor = 167r2T§/ q* dq
’ 0

/ :0 i [je(gr®)) F(g,0

i (ar®) G0 + 5 (470 H e, z)]‘z . (7.2.10)

X

This formula gives results of high accuracy, but the computer calculations
used to calculate the multipole coefficients C %T, , in this way are not partic-
ularly revealing. Instead, we will apply a series of approximations that lead
to a simple analytic formula for the C%T’ ‘-

First, we will neglect the integrated Sachs—Wolfe effect, given by the last
term in Eq. (7.2.7). This effect is important only for relatively small values
of £, where cosmic variance intrudes on measurements of C ;K ¢

Next, we assume a sudden transition from perfect opacity to perfect
transparency at a definite time ¢7,> and a single dominant mode of

perturbation. The fractional temperature fluctuation then takes the form
(7.1.15):

<AT(")> - / g (@ eV (Flg) +i4-1G(@)) (7.2.11)
To
which was also derived at the end of Section 7.1 by following photon tra-
jectories after the time of last scattering. (Here r; = r(¢) is the co-moving
radius of the surface of last scattering.) For the present we will not use
formulas (7.1.16) and (7.1.17) for the form factors F(g) and G(g), but will
proceed for general form factors, returning later to the specific form factors
(7.1.16) and (7.1.17).

Using Eq. (7.2.2) in Eq. (7.2.11), and replacing ig - 2 in the Doppler term
with 9/0(qrr), we again have the partial-wave expansion (7.2.3), but this

IThe derivatives of the spherical Bessel functions in Eq. (7.2.10) can be expressed as time derivatives,
and then integrating by parts this can be written at the integral of a single form factor times j, (qr(t)).
The result is equivalent to Eq. (16) of M. Zaldarriaga and U. Seljak, Phys. Rev. D 55, 1830 (1997)
[astro-ph/9609170], except for a difference of normalization: the source functions IT and ® used here
are 4 times those of Zaldarriaga and Seljak.

2To correct for whatever inaccuracy is introduced by this approximation, we will later include the
effect of damping of acoustic oscillations before ¢7 , and average the temperature fluctuation over the
time of last scattering.
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7.2 Temperature multipole coefficients: Scalar modes

time with
@ =47 To [ 4@ @ (i) F @ 4 6@) |- (0:2.12)

Inserting this in Eq. (7.2.1) and using Eq. (7.2.5) gives the multipole
coefficients

l 00
1
S _ § : 2 __ 22 2

2
x [jearF@) +ji(ar 6] (7.213)

This is a standard result, but it does not provide transparent information
about the dependence of C?T,z on £. For this purpose, we now make a
further approximation: we specialize to the most interesting case of large
¢, where cosmic variance can be neglected. In this case, we can use an
approximate formula for the spherical Bessel functions:?

cosb cos [v(tanb—b)—n/4}/v\/sinb 0>V
Je(p) —
0 o<V,
(7.2.14)

wherev = £+1/2,andcosb = v/p, with0 < b < 7 /2. This approximation
is valid for |v2 — p2| > v#3. Hence for £ > 1, this formula can be used
over most of the ranges of integration in Eq. (7.2.13). Furthermore, for
o > v > | the phase v(tan b — b) in Eq. (7.2.14) is a very rapidly increasing
function of p, so the derivative acting on the spherical Bessel function in
Eq. (7.2.13) can be taken to act chiefly on this phase:

—cosb+/sinb sin [v(tanb —b) — 71/4]/1) P>V

Je(p) =

0 o<V,
(7.2.15)

(Letting the derivative act on the factor 1/+/sin b in Eq. (7.2.14) introduces
an apparent divergence in the integral at o = v, but this divergence is
spurious; for p very close to v the approximation (7.2.14) breaks down, and

3See, eg, 1. S. Gradshteyn & 1. M. Ryzhik, Table of Integrals, Series, and Products, translated,
corrected and enlarged by A. Jeffrey (Academic Press, New York, 1980): formula 8.453.1.
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there is no singularity.) Using these limits in Eq. (7.2.13) and changing the
variable of integration from ¢ to b = cos™! (v/qrr) gives

S 1672y /”/2 db
Tt ”2 o cos?bh
X[F( Y ) cos[v(tanb — b) — 7 /4]
rr cosb
2
—sian( ) sin[v(tanb — b) —71/4]] . (7.2.16)
rr cosb

For v > 1 the functions cos[v(tan b — b) — /4] and sin[v(tan b — b) — 1t /4]
oscillate very rapidly, so cos?[v(tan b—b) — /4] and sinz[v (tanb—b)—m /4]
average to 1/2, while cos[v(tan b— b) — /4] sin[v(tan b — b) — v /4] averages
to zero. Dropping the distinction between £ and v = £+ 1/2, and changing
the variable of integration again, from b to 8 = 1/cosb, Eq. (7.2.16) then
becomes®

87203 [ BdB

s N JpT—1

2 _
x [F2 (%) + 5ﬂ2 L (%)] . (7.2.17)

We will see that the form factors F(g) and G(g) fall off rapidly for large ¢,
in part because |RZ|2 decreases more or less like g3, so the integral over
B converges at B = oo, and in fact is dominated by small values of 8. The
integral of the F2 term thus receives its greatest contribution from g ~ 1,
or in other words, for ¢ ~ £/rr, or g/ar ~ £/d4, where dq4 = rpayr is the
angular diameter distance of the surface of last scattering. On the other
hand, the factor 82 — 1 multiplying G2 in Eq. (7.2.17) kills the contribution
of B values very close to unity, so the Doppler term proportional to G2
makes a relatively small contribution to the multipole coefficients.

Even without a detailed calculation of the form factors F(g) and G(g),
we know that they depend on the baryon and total matter densities at
last scattering, which for a given present microwave background temper-
ature can be expressed in terms of Q2 gh? and k2, but since spatial cur-
vature and dark energy are (presumably) negligible at last scattering, the
form factors cannot depend on Qg or 24 or Hy. Thus there is a high

L+ DCp, =

4A more rigorous but rather more complicated derivation was given by S. Weinberg, Phys. Rev. D
64, 123512 (2001) [astro-ph/0103281]. The contribution of F(g) had earlier been calculated by J. R.
Bond, “Theory and Observations of the Cosmic Background Radiation,” in Cosmology and Large Scale
Structure, eds. R. Schaeffer, J. Silk, M. Spiro and J. Zinn-Justin (Elsevier, 1996), Section 5.1.3.
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7.2 Temperature multipole coefficients: Scalar modes

degree of degeneracy here; all dependence on Qg or Q4 or Hp can only
enter in the single parameter rz, the Robertson—Walker radius of the sur-
face of last scattering If we assume as commonly done that Qx = 0,
so that Q5 =~ 1 — Qjy, then temperature anisotropies can tell us the val-
ues of Hy as well as Qy7 and Qp, but they cannot tell us that Qx = 0
unless we have information about Hy from other source. Likewise, they
cannot distinguish quintessence from a constant vacuum energy. Further-
more, 7, and £ appear in £(¢ + l)C TT4 only in the ratio ¢/ry, so the val-
ues of Q K, Qa, and Hy can only effect the scale of the ¢-dependence of
£(0 + l)CTT ¢ For instance, the values of these parameters can affect the

positions of the peaksin £(£+1) CTT ¢ by acommon factor, but cannot affect
their heights.

We next make the approximation that the gravitational field perturba-
tions at last scattering are dominated by perturbations in the dark matter
density. We already remarked in connection with the ISW effect in the previ-
ous section that in this case 4, vanishes (because each term on the right-hand
side of Eq. (5.3.38) is time-independent). The field ¥, whose evolution we
followed in Chapter 6 is defined in general as ¥, = (34, — ¢*B,)/2, so
here Bq = —2wq/q2, and since Eq. (6.5.16) gives ¥, o =173, we have also
Bq = 2wq/3tq2. Also, a o t*/3, so Egs. (7.1.16) and (7.1.17) give the form
factors as

1 a* (1) (tr)
Fg) = 38yq(t1) + Mfti (7.2.18)
G(g) = —q8uyq(tL)/a(tL) +a(tp) vyt /q , (7.2.19)

in which we have used 5Tq/T = 0pyq/40y = 8y4/3.

As our next approximation, we shall use the results (6.5.16), (6.5.17),
and (6.5.18) of our analysis of cosmic evolution in Chapter 6, in which we
neglected the baryon/dark matter density ratio:

3q2tLRgT(/c)

, 7.2.20
7 (7.2.20)

1ﬁq(tL) = -

3R?
Byq(1L) = ?q[m)(l +3Ry)

(4 Ry M4 e T S0

X COS </IL gdt ))} (7.2.21)
o a(t)/3(1+ R(1)) ’ o
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3RO
Sutyq(1L) = Tq[ ~ 117 (k)
ar

.l‘L
+ e~ Jo" Tt S
V3q(1 + Rp)3/4 )

x sin </tL g dt +A(K)):|
0 a(H3T+ R() ’
(7.2.22)

Here R(¢) = 3pp(t)/4p, (1), R, = R(t1), and ar = a(ty); T (), S(x),
and A(k) are the transfer functions defined and calculated in Section 6.5;
K =2q/ gEeQ, Where ggq is the wave number that comes into the horizon
at matter—radiation equality; and I"(¢) is the acoustic damping rate (6.4.25).
Using Egs. (7.2.20)—(7.2.22) in Egs. (7.2.18) and (7.2.19) gives the form
factors as

o

R
F(g) = ?q[sT(x)RL

—(L+ Ry e BT S )
L q dt 55
X COS (/0 OB TRD + A(K)) ] , (7.2.23)

V3R
TS50+ R )AC

. L qdt )
X sin (/0 N R 0) + Al) ) . (7.2.24)

Note that the “slow” terms have canceled in G(¢g), and would have canceled
in F (q) if it were not for a finite baryon/photon density ratio at last scattering.

Now we must take up a complication that arises only for the “fast”
part of the form factors in the case of short wavelengths. We have been
assuming that the opacity of the universe drops to zero instantaneously at
a time 77, of last scattering, but of course the drop takes place during some
finite interval of time, over which the form factors must be averaged. This
makes little difference for the contribution of the slow modes, but for large
wave numbers the cosines and sines in Eqs. (7.2.23) and (7.2.24) are rapidly
oscillating functions of 77, so the fast terms can be significantly reduced by
this averaging. This is similar to what in other contexts is called Landau
damping, except that usually Landau damping arises from a spread in the
frequency of an oscillation, while here it is produced by a spread in the
moment at which the oscillating amplitude is observed.

Gg) = — ot T 5 )
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7.2 Temperature multipole coefficients: Scalar modes

To continue with our analytic treatment, since the probability of last
scattering is a sharply peaked function of time, we can approximate it as a
Gaussian: the probability that last scattering occurs between ¢ and ¢ + dt
will be taken in the form

exp[—(t — t1)%/207] dt

P(t)dt = 7.2.25
In Egs. (7.2.23) and (7.2.24), we must make the replacements
155 t
cos odt+ A +00 cos odt+ A
_ (ff ) _>/ P@ydi | U? ) , (7.2.26)
sm(foLwdt—l-A> —00 sm(fowdt—I—A>

where w = ¢/a+/3(1 + R). For a sharply peaked distribution function P(z),
we can do these integrals by expanding the arguments of sines and cosines
to first orderin ¢t — #r:

t 153
/ w dt :/ wdt +or(t—1t1) .
0 0
The integrals (7.2.26) are now easily done

/+00 cos (fot wdt + A)

P(1) dt
—0 sin(fola)dt+ A)

cos <f0[L wdt + A)

(7.2.27)
sin (fOtL wdt + A)

~ exp(—w3 07 /2)

Thus, the whole effect of this averaging is to introduce an additional damp-

ing factor exp(—a)iat2 /2) in the fast part of the form factors. Both I and

a)% are proportional to g%, so we may write

199
/ Tdt 4+ wro})2 = ¢*d})ar | (7.2.28)
0

where dp is a damping length, given by Eqs. (6.4.25) and (7.2.27) as

dp = dy + 4 ndan - (7.2.29)
L t 16 R?
dZ, = 2f —r 4+ _— 1, 7.2.30
Sik =L | 620+ R |15 T A+ R (7.2.30)
2
A2, = ——t (7.2.31)

andau 6(1 + RL) ’
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with t, = 1/w, the photon mean free time, and R = 3pp/4p, .
To evaluate the Silk damping term, we recall that R « a, so
1 R}

ty = = 3 , (7.2.32)
NeOTC nBORO(l — Y)Xorc

where Ry = 3Q23/4Q, is the present value of R, ¥ =~ 0.24 is the fraction of
nucleons in the form of un-ionized helium around the time of last scattering,
ngy = 3H§S2 B/8m Gmy is the present number density of baryons, and X (R)
is the fractional ionization, calculated in Section 2.3. Also,
0 dR B RdR
RHov/Qu (Ro/R)> + Qr(Ro/R*  Hov/Qu Ry \/Req + R

(7.2.33)

where Rgg = QrRo/Qy = 3QrQp/4Q2M 2, 1s the value of R at matter—
radiation equality. Putting this all together, the Silk damping length is
given by

R2
d2_ — L
Silk 9/2
6(1 — Y)npoorcHov/Q2u R
Re R%*dR 16 R?
X — 4+ —1 (7.2.34)
0o X(R(U+R/Req+R |15 (A+R

Also, the standard deviation o, in the time of last scattering is related to
the standard deviation o in the temperature of last scattering, calculated in
Section 2.3, by oy = 3t10/2Ty, so

d? = %. (7.2.35)
Landau 8Tz(1 +RL)

The form factors (7.2.23) and (7.2.24) may now be written as explicit
functions of wave number

o

Ry
F(q) = ?|:3T(da/aL)RL

— (1+ Rp) 4S8 (qdr far) e 4b/E cos (qu/aL + A(da/aL))],
(7.2.36)
V3RY

S R

—qzdﬁ/aiS(da/aL) sin (qu/aL + A((]dT/aL)) ,
(7.2.37)
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where dr is a length defined by writing the argument of the transfer functions
as k = gdr/ar, so that Eq. (6.5.9) gives

B VR ~0.0177
T (A +zp)HoQum  Quh?

dr Mpc . (7.2.38)

Also, dp is the acoustic horizon distance at last scattering, given by

‘L dt
tn=ar [
_ 2 ln<\/1+RL+\/REQ+RL
Hov/3R.Qum (1 +21) 1+ /Riq

where again Rgq = 3QrQp/4Q21, 2, and Ry = 3Qp/4Q2, (1 + z1).

Before using these form factors in Eq. (7.2.17), there is one more com-
plication that needs to be mentioned. At a redshift z.o, of order 10,
the neutral hydrogen left over from the time of recombination becomes
reionized by ultraviolet light from the first generation of massive stars.
The photons of the cosmic microwave background have a small but non-
negligible probability 1 — eXp(—Teion) (Where Tyion 1S the optical depth
of the reionized plasma) of being scattered by the electrons set free by
this reionization. The temperature anisotropy AT is then the sum of two
terms. One arises from photons that are not scattered by the reionized
hydrogen, and is just equal to the anisotropy we have calculated times the
probability exp(—Tyeion) Of no scattering. The other term arises from scat-
tered photons, and since this scattering occurs at redshifts much less than
zr =~ 1,090, we see the anisotropies at a smaller distance, and hence at
much lower values of £. Thus the effect on C;ST,K of scattering by the

) . (7.2.39)

reionized plasma is simply to multiply C%T’Z by a factor exp(—2teion),
except for very small values of £, where in any case cosmic variance inter-
feres with the interpretation of observations. This means that observa-
tions of temperature anisotropies alone cannot effectively disentangle the
reionization probability from the over-all scale of the function R? that
characterizes primordial fluctuations; they can only tell us the value of
|72;|2 eXp(—2Teion). The measurement of the polarization of microwave
photons (discussed in Section 7.4) produced by scattering after reionization
suggests that exp(—2tyeion) ~ 0.8.

Itis conventional to parameterize the quantity Ry in a form equivalent to

ns—1
9/ ao) ’ (7.2.40)

RO12 — N2473
IRy q i
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with ng perhaps varying with wave number. This parameterization is
convenient, because then

rr Ptire B3 \krds(1+4zp) ’

and it will turn out that ng is not very different from 1. It is only N Zk;a_"s
that enters in the normalization of |RZ |2, so the choice of k is arbitrary; it

is conventional to take it as kg = 0.05 Mpc ™.

We conclude from all this that for reasonably large values of ¢ (say, £ >
20), where we can ignore cosmic variance and the integrated Sachs—Wolfe
effect, use the large £ approximations that led to Eq. (7.2.17), and treat the
effect of reionization as a simple factor exp(—27ion), the quantity usually
quoted as giving the scalar contribution to the multipole coefficients is

L€ + l)CTTK 47 TgNZe—zrreion / ip /%
2 25 1 ER

1
—— |37 (BL/¢T)R
X{ﬂz\/ﬁ[ (BL/LT)RL

2
—(1+ Ry VES(Be/er) P 1D cos (e/tn + A(ﬂwr))]

W

_25262/62 ) .2
+,34(1 +RL)3/2 pS (BL/Lr) sin <:3£/£H + A(,BE/ET)>} 5
(7.2.41)
where
bp=dy/dp, Lr=dy/dr, ly=ds/dy, tr=4+z)krd,,
(7.2.42)

and again d4 is the angular diameter distance of the surface of last
scattering:

1 ) 12 ! dx
dq=rpapL= o /2 sinh|Q/
Ho(1+2zp) 1/(+21) v/ Qp x4 + Qg x2 —I—QMx
(7.2.43)

with Qg neglected, and Qg = 1 — Q4 — Q. If we assume as discussed
earlier that the integral over 8 is dominated by values 8 &~ 1, neglect the
Doppler term, and for the moment neglect the term proportional to the
transfer function 7, then Eq. (7.2.41) shows that C ;T’ , has peaks at x (£) =
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mw,2m, 3w, etc., where x (€) = £/€y + A(€/L7) is the phase of the cosine in
Eq.(7.2.41) for B8 = 1. The presence of the positive term 37 Ry arising from
the inertia of the baryonic plasma enhances and slightly shifts the peaks for
x = m, 3w, etc., where the cosine is negative, and reduces the peaks for y =
27, 47, etc., where the cosine is positive. For large £ the Silk and Landau
damping factor exp(—pB2¢2/ dlz)) damps out all these peaks. As we will soon
see, the results of numerical calculations exhibit this expected pattern, of a
sequence of decreasing peaks, with odd peaks somewhat enhanced over the
even peaks.

We can now read off the dependence of the quantities appearing in C“TqT’ P
on various cosmological parameters. Taking as fixed the well established
value of the present microwave temperature, (which yields values for thz
and Qrh? = thz + Q,h?), and also fixing the values of 7, z, and o,
which are only weakly dependent on other cosmological parameters, we see
that

s R; o« Qph?.

* The integral in Eq. (7.2.34) for déﬂk is a complicated but not very
sensitive function of Qh% and /4%, Aside from the integral, déﬂk is
proportional to (Qgh?)~7/2(h?)~1/2.

o 42

Landau

depends on Q2 gh? through a factor (1 + Ry~ L

o« dr o< (Quh*) 7!

» Aside from a slowly varying logarithm, dy oc (2ph?)~V/2(Qph*)~1/2.

* Only d4 depends on Hy, Q4, Qur, 25, or Qg apart from a dependence
on Qpgh? and Qyh2. (For any observationally allowed values of Q,
or Qg, the effects of a constant vacuum energy or of spatial curvature
would be quite negligible at times before recombination, so their effect
on C?T ¢ 1s limited to their influence on the propagation of light after
recombination, that is, on dy4.)

To see how well the various approximations we have made work in prac-
tice, we shall calculate C%T,z for a realistic set of values for cosmological
parameters taken from a fit> to data on the microwave background from
the CBI, ACBAR, and first-year WMAP observations (about which more
below). These are the same parameters that have been used in a full-scale
computer calculation whose results are readily available,® so that we will

SDN. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003) [astro-ph/0302209].
Shttp://lambda.gsfc.nasa.gov/data/map/powspec/wnap_lcdm pl_model yri
vl.txt
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7 Anisotropies in the Microwave Sky

conveniently be able to compare Eq. (7.2.41) with an accurate numerical
calculation. The cosmological parameters of this set are

Quh? =0.13299, Qph*> =0.02238, h=0.71992, Qr=1—Qu .
(7.2.44)
and’

ng = 095820, kg =0.05Mpc~!, N?=1736x10"17,
e~ 2Treion = ().80209 . (7.2.45)

We take Ty = 2.725K, which yields thz = 2.47 x 107>, and we assume

three flavors of massless neutrinos, which gives 2 rH? = 1.681352],}12 =
4.15 x 107>, We will also adopt the parameters describing recombination
calculated in Section 2.3 (which are not very sensitive to other cosmological
parameters) for gh* = 0.02 and Q4% = 0.15; in particular,

l1+z,=1090, o=262K, ¢ =370,000 yrs. (7.2.46)
From the values (7.2.44) of Q uh? and Qph?, we find
Ry =679.6, Rp =0.6234, Rgq=0.2121. (7.2.47)
Then Egs. (7.2.38), (7.2.39), (7.2.43) give

dr =0.1331 Mpc, dy =0.1351 Mpc, dygq=1299 Mpc, (7.2.48)
while the damping lengths are given by Eqs. (7.2.34), (7.2.35) and (7.2.29):

dsiik = 0.006555 Mpc , dpandauw = 0.004809 Mpc, dp = 0.008130 Mpc .
(7.2.49)
Finally, the parameters (7.2.42) appearing in Eq. (7.2.41) are

Lr =97.60, £y =096.15, £p=1598, Lr =708 (7.2.50)
while the factor multiplying the integral is

47 T3 N2 e~ treion

—519.7 pK?2. 7.2.51
G W ( )

TThe parameter N2 is related to what is often given as an “amplitude” 4 by 4xN? =
20,00071A/9TJ,0(;/,K)2 = 2.95 x 10724. For instance, see L. Verde ef al., Astrophys. J. Suppl. 148,
195 (2003) [astro-ph/0302218]. It should be noted that, because of different conventions used in writing
Fourier integrals, the quantity 7R in this paper is equal to what we have defined as RZO & times a factor

(27)3/2. Reference 6 uses A = 0.73935, corresponding to the value of N2 given in Eq. (7.2.45).

356



7.2 Temperature multipole coefficients: Scalar modes

Using these values, the result of using Eq. (7.2.41) with the parameter set
of reference 6 is

(e+HCsr, 0 e\ 00418
— Tt —519.7 ukK? d —
2 H /1 P <708)

[3(0.6234)7(/% /97.6)

|
" { BB -1
2
—(1.6234)"1/45(8£/97.6) e~ BL/1599 o (6£/96.15 + A(BE /97.6))]

3B 1

BA(1.6234)32
x sin2 <,31£ /96.15 + A(,BE/97.6)>} .

6—2(/36/1598)282 (8£/97.6)

(7.2.52)

The integral over 8 converges very rapidly, and can be done with a cut-off
at 8 = 5; raising the cut-off to 8 = 50 has a negligible effect.

The results are shown in Figure 7.1, in comparison with the more accu-
rate Boltzmann hierarchy calculation of reference 6, based on Eq. (7.2.10).
Evidently the hydrodynamic calculation does quite well; like the computer
calculation of reference 6, it shows a high first peak, followed by two nearly
equal lower peaks, followed by a decaying tail punctuated by successively
lower peaks. To give a quantitative comparison, Tables 7.1 and 7.2 show the

1+ ¢,
2

5,000
4,000
3,000
2,000
1,000

== ]

250 500 750 1,0001,250 1,500 1,750

Figure 7.1: The scalar multipole coefficient £(¢ + l)CZ9 /27 in square microKelvin, vs. ¢,
for the cosmological parameters given in Egs. (7.2.44) and (7.2.45). The hydrodynamic
approximation (7.2.41) is indicated by the dashed curve, while for comparison the solid
curve gives the more accurate large scale computer calculation of reference 6, based on
Eq. (7.2.10).
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7 Anisotropies in the Microwave Sky

Table 7.1: Comparison of the results for the values of ¢ at the first five peaks in £(¢ +
1)C§T /27, as given by Eq. (7.2.52) and as given by reference 6.

Eq.(7.2.52): 220 541 821 1134 1425
reference 6: 219 536 813 1127 1425

Table 7.2: Comparison of the results for the values of ¢(£ + 1)C¥T /27 (in pLKz) at the
peaks listed in Table 7.1, as given by Eq. (7.2.52) and as given by reference 6.

Eq. (7.2.52): 5155 2694 2783 1126 746
Reference 6: 5591 2525 2451 1221 806

peak positions and heights calculated using Eq. (7.2.52) and those given by
the results of reference 6. In all cases, the peak heights given by Eq. (7.2.52)
agree with the more accurate computer results to within 10%, while the
results of Eq. (7.2.52) for the peak positions are almost embarrassingly
good, in no case being off by more than 1%.

Among other things, the general success of the calculations of this sec-
tion shows that the evolution of cosmological perturbations is primarily
hydrodynamic, in the sense that it can be well described by the equations
of hydrodynamics without the full apparatus of coupled Boltzmann equa-
tions used in computer calculations like those of reference 6. The Boltz-
mann equation is implicit in our calculations, because in calculating the
Silk damping rate we have used standard values for the shear viscosity and
heat conductivity that were obtained by using the Boltzmann equation for
photons in an ionized gas, but evidently not much is lost by not solving the
Boltzmann equation over again in a cosmological context.

To the extent that the general formula (7.2.41) has been validated by this
comparison, we can use it to see what can be learned from measurements
of CTT,E:

* Eq. (7.2.41) shows that the shape of the function £(£ + l)CgT,e, as for
instance the set of ratios of the peak positions or of the peak heights,
depends on only four quantities: dp, dy, dr, and ng. Also, with the
present radiation temperature and the number of massless neutrinos
fixed, the three lengths dp, dyy, and dr depend only on the two cos-
mological parameters gh? and 742, which can therefore be found
from the shape of the function ¢(¢ + 1)C *TQT’ ‘-
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7.2 Temperature multipole coefficients: Scalar modes

* Measurement of the scale of this function’s ¢-dependence (as for
instance, the £ value of any one peak) depends on these two parame-
ters, but also on d4, which is a function not only of Qph? and /4>
but also of 4 and Q. It is therefore impossible, without taking the
integrated Sachs—Wolfe effect into account, to use measurements of
CYST’ , alone to make separate determinations of both /7 and Q4. Itis
often simply assumed that the universe is spatially flat, in which case
to a good approximation Q5 = 1 — Qjy, and then measurements of
C;"T, ¢ can be used to determine /2 as well as Q gh* and Q2.

* Measurement of the magnitude of the function £(¢+1)Crr ¢ for € > 1
(as for instance measurement of the height of any one peak) only tells
us the quantity N2 exp(—27yejon), S0 as already remarked we cannot use
it to make a separate determination of N2 or Tyejon. This ambiguity is
resolved by measurements of the polarization of the cosmic microwave
background, discussed in Section 7.4.

The original discovery of microwave background anisotropy was made
by the COBE collaboration, and is discussed in Section 2.6. This only gave
information about the anisotropy for relatively small £, well below the posi-
tion of the first acoustic peak at £ ~ 200. This discovery was followed by
a series of balloon-borne and ground-based observations,® which gave def-
inite evidence for the first acoustic peak, and some data on higher peaks,
extending in the case of the CBI collaboration up to values of £ beyond the
position of the fifth acoustic peak, at £ ~ 1400. The accuracy of these mea-
surements up to about £ ~ 600 was then greatly improved by observations
made by a remarkable satellite mission, known as the Wilkinson Microwave
Anisotropy Probe, or WMAP.” The WMAP satellite was launched on June
30, 2001, made loops around the moon to pick up kinetic energy from the
Moon’s motion, and finally reached an orbit about the equilibrium point
known as L.2. This point orbits the Sun at the speed needed to keep it about
1.5 x 10° km from Earth, on the other side of the earth from the sun, a loc-
ation chosen to isolate the instrument from microwave radiation from the
sun, earth, or moon. The satellite carries two back-to-back 1.4 x 1.6 meter

8The collaborations are ARCHEOPS: A. Benoit ef al., Astron. Astrophys. 399, L19, L25 (2003)
[astro-ph/0210305, 0210306]; CDMP & MAT/TOCO: A. Miller et al., Astrophys. J. Suppl. 140, 115
(2002) [astro-ph/0108030); BOOMERANG: J. E. Ruhl et al., Astrophys. J. 599, 786 (2003) [astro-
ph/0212229]; MAXIMA: A. T. Lee et al. Astrophys. J. 561, L1 (2001) ; DASI: N. W. Halverson et al.,
Astrophys. J. 568, 38 (2002) [astro-ph/0104489]; CBI: T. J. Pearson et al., Astrophys. J. 591, 556 (2003)
[astro-ph/0205388]; ACBAR: C. L. Kuo et al., Astrophys. J. 600, 32 (2004) [astro-ph/0212289]; and
VSA: C. Dickinson et al., Mon. Not. Roy. Astron. Soc. 353, 732 (2004) [astro-ph/0402498].

9C. L. Bennett 7 al., Astrophys. J. Suppl. 148, 1 (2003) [astro-ph/0302207]. Aspects of this mission
are treated in detail in other articles in the same volume of Astrophys. J. Suppl.
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microwave receivers, cooled by thermal radiators to about 90 K, and mea-
sures the polarization of the microwave background as well as differences
in its temperature over the whole sky.

Afterayear of observation, Crr ¢ had been measured out to £ >~ 600 with
small errors arising mostly from cosmic variance and foreground emission. !
These measurements were fit to the results of the “ACDM” model we have
been studying, with zero curvature; the contents of the universe supposed to
consist of photons, three flavors of massless neutrinos, baryonic matter, cold
dark matter, and a constant vacuum energy; and a primordial spectrum of
purely adiabatic fluctuations given by Eq. (7.2.40), with ng constant. The
values of cosmological parameters derived from this fit were:!!

e Qph?* =0.024 +0.001
o Quh?=0.1440.02
h=0.724+0.05

INI?=(2.1£0.2) x 10710
« ng = 0.99 +0.04

+0.076
* Treion = 0.1667007¢

(Measurements of polarization were used here chiefly to measure the optical
depth Tyeion Of the reionized plasma,'? which is needed to obtain |N|? from
the value of |N|? exp(—27eion) given by the measured values of C“TQT 0-)

In March 2006 the WMAP group announced the results of the second
and third years of observation.!3 The results are shown together with a best
fit of £(£ + l)C“TqT’ /27 to the ACDM model (with zero tensor anisotropies)

in Figure 7.2. This fit gave the parameters:!4
« Qph? =0.02229 4+ 0.00073
« Quh? = 0.127710005%
.l +0.031
h=0.73275031

« INI>=(1.93+£0.12) x 10710

10G. Hinshaw e al., Astrophys. J. 148, 135 (2003) [astro-ph/0302217].

HpN. Spergel et al., ref. 5. Errors given here represent a 68% confidence range.

12A. Kogut et al., Astrophys. J. 148, 161 (2003) [astro-ph/0302213].

13Temperature and polarization results are given by G. Hinshaw ez al., Astrophys. J. Suppl. Ser.
170, 288 (2007) [astro-ph/0603451] and L. Page et al., Astrophys. J. Suppl. Ser. 170, 335 (2007) [astro-
ph/0603450], respectively.

14D, N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007) [astro-ph/0603449].
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Figure 7.2: Comparison of theory and WMAP observations for the multipole coefficient
£(£+1)Cy /27 in square microKelvin vs. ¢, from D. N. Spergel et al., astro-ph/0603449. The
solid data points are the three-year WMAP data, and the light gray data points are the first
year WMAP data. The bottom curve is the best fit to the three-year WMAP data. The top
curve is the best fit to the first-year WMAP data, and the middle curve is the best fit to the
first-year WMAP data combined with data from CBI and ACBAR.

. ng = 0.958 +0.016
* Treion = 0.089 % 0.030

The new results are consistent with those found before, but evidently
there has been a significant improvement in the precision with which these
parameters are known. This increased precision has now revealed the
important information that n; is very likely somewhat less than unity, as
expected on the basis of typical inflationary theories, to be discussed in
Chapter 10. It is also important that the optical depth of the reionized
plasma found by polarization measurements is considerably less than pre-
viously found, suggesting a more plausible time of reionization.!> Because
the magnitude of C*TqT’ ¢ 1s proportional to [N |2 exp(—2Treion), the reduction

in Tyeion has led to a corresponding reduction in the estimated value of [N|?;
there has been very little change in the reported value of | N|? exp(—2%seion)-

I5SFor the implications of the three-year WMAP measurement of the plasma optical depth
for theories of early star formation, see M. A. Alvarez, P. R. Shapiro, K. Ahn, and
I. T. Iliev, Astrophys. J. 644, L101 (2006) [astro-ph/0604447]; Z. Haiman and G. L. Bryan, A4stro-
phys. J. 650, 7 (2006) [astro-ph/0603541]; T. R. Choudhury and A. Ferrara, Mon. Not. Roy. Astron.
Soc. 371, L55 (2006) [astro-ph/0603617]; M. Shull and A. Venkatesan, astro-ph/0702323.
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It is truly satisfying to see that the values of i, Q37h2, and Qgh?® obtained
from the cosmic microwave background anisotropies confirm the values
obtained by the very different methods discussed in Chapters 1 and 3. The
values of |N|? and ny are also in good agreement with values inferred from
observations of large scale structure, discussed in the next chapter. The
general agreement of theory and observation, both for the microwave back-
ground anisotropies alone and for the microwave background anisotropies
in conjunction with other observations, goes far to confirm the general
assumptions of the cosmological model, including cold dark matter and
dark energy, that we have been using.

7.3 Temperature multipole coefficients: Tensor modes
We next consider the contribution of cosmological gravitational radiation to
the temperature multipole coefficients.! Accordingto Eq. (7.1.5), in the case

of a single dominant tensor mode the tensor contribution to the fractional
temperature fluctuation is

AT\ 1
( (n)) =— Z fdsc]ﬂ(q,k)ﬁkﬁzekz@,k)

T
0 A=t2

1o to dt/
xf dt exp |:iq-f1/ p i| dg,t), (7.3.1)
5] t a(t)

where for brevity we have now introduced the quantity

1
d(q,t) = exp [—/ ' dt’ a)c(t/)i| (T)q(z) — %a)c(t)\ll(q, t)) ) (7.3.2)
t

As a reminder: B(q, A) is the stochastic parameter for the mode that does
not decay outside the horizon, which is assumed to dominate the tensor
perturbation; ey;(q, A) is the polarization tensor defined in Section 5.2 for
a gravitational wave with wave number q and helicity A; ¢#1 is any time suf-
ficiently early before recombination so that any photon present then would
have been scattered many times before the present; w,(7) is the photon colli-
sion rate at time ¢; D,(7) is the gravitational wave amplitude, defined in Sec-
tion 5.2; and W(qg, ?) is the tensor source function, defined by Egs. (6.6.11)
and (6.6.12).

IFor an early calculation of the first few multipole moments, see V. A. Rubakov,
M. V. Sazhin, and A. V. Veryaskin, Phys. Lett. 115B, 189 (1982). A general formula was given by
R. Fabbri and M. D. Pollock, Phys. Lett. 125B, 445 (1983).
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7.3 Temperature multipole coefficients: Tensor modes

Againusing Eq. (7.2.2) to expand the exponential in spherical harmonics,
the tensor temperature fluctuation has the expansion

(T)
(a7@) " =Y af 0, (7.3.3)
m
where
A==2

fem(@, 1) = =27 / AR YR gy e (@, 1) Y iY@ Y@)
LM

fo
x / dtju(qr(0) d(g.1). (713.5)
131

and r(¢) is again the radial coordinate of a point from which light emitted
at time ¢ would reach us at the present:

to d[/
(1) = /t arl (1.3.6)

It will be very convenient first to calculate fy,,(q, 1) for q in the three-
direction Z. In this case we have Yi” () = Spmo~/2L + 1/47w. Also, using
Eq. (5.2.15), for i = (sin @ cos ¢, sinf sin ¢, cos ) we have

1 .
iy (2, £2) = sin2 0 ¢*2¢ = 4 /% YE2(h) . (7.3.7)

The integral over 71 is given by a special case of the general formula?

QA+ DQ2C+1)
4w 2L+ 1)

/ d*n YM () YR () Y™ (R) = \/

XCZA(Ln M; m, _:u') C@A(La 0;070) s (7'38)

where Cya(L, M;m,u) is the usual Clebsch—Gordan coefficient for
combining angular momentum quantum numbers £,m and A, u to form

2See, e.g., J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John Wiley & Sons, New
York, 1952): Appendix A, Eq. (5.11).
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angular momentum quantum numbers L, M. Hence

20+ 1
fom(g2,£2) = 2,/ % 3 i Cea(L, 0; 2, F2) Cea(L, 00,0)
L

1o
XS 42 / dt ji (qr(t)) d(q,1) . (7.3.9)
131

In our case we have A = 2, u = £2, and M = 0, so the relevant Clebsch—
Gordan coefficients are

3+2)(¢+1)
22¢ + 1)(2¢ + 3)

Ce2(£+2,0:0,0) = \/

1 € — 1)t
Coo(£+2,0;+2,F72) = =
2 +2,0,+2,F2) 2\/(2£+1)(2£+3)

Ll +1)
2¢ —1)(2e+3)

3—-D(+2)
220 — (2L +3)

Cea(£,0,£2,F2) = \/

30 —1)
22¢-1DR2e+1)

1

L+ 1DH+2)
2

20— DL+ 1)’

while Cy2(£ £ 1,0;0,0) = 0. Putting this together shows that for q in the
three-direction, the non-vanishing values of the quantity (7.3.5) are>

720+ 1)(€ +2)!
200 —2)!

jer2(a7(0)) 2e(ar®)  je2(qr@)
2+ 120+ 3) * 2 —-1)(2¢+3) * 2e-1)2e+1)
(7.3.10)

ﬂnl(q29 :l:z) = lz\/ 5m,j:2 / dt d(qa t)

3This is essentially the result originally obtained by L.F. Abbott and M. B. Wise, Nucl. Phys. B 244,
541 (1984), and A. A. Starobinsky, Sov. Astron. Lett. 11(3), 133 (1985), generalized to an arbitrary
gravitational wave amplitude D, (#) and including the correction proportional to ¥ in Eq. (7.3.2).
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7.3 Temperature multipole coefficients: Tensor modes
This can be greatly simplified by iterating the familiar recursion relation

Je(@)/p = lje=1(p) + je+1()1/ 2+ 1),

which gives

Je(p) Je—2(p) 2je(p) Je+2(p) (7.3.11)
02 2U+DRL—-1) 2+3H2L—-1) +DERe+3) T
Using this in Eq. (7.3.10), we have
. g [T+ D+ 2)' / Je (qr(l))
fﬁm(flzaiz)—l \/ 2(£—2)' m:l: dl d(q:[) 2 Z(t) .
(7.3.12)

The amplitude (7.3.5) can now be found for a general direction of q
by performing a standard rotation S(g) that takes the three-axis into the
direction ¢. (An explicit formula for S(g) will be given in the next section;
it is not needed here.) This gives

fon@.3) = 320}, (@) fimiaz. ). (7.3.13)

The coefficients (7.3.4) are then

T g | TQE+DE+2)! 3 © .
aT.om = Toi \/ 200 —2)! ;[d q B(q, +2) Dm,:I:Z(S(CI)>

Je (qr(f))

W . (7.3.14)

fo
x/ dtd(q,t)
n

We can now easily calculate the multipole coefficients of the temperature
correlation function, defined by

m%,ém a%ke’m/) = 8¢/ Spumy C%T’g . (7.3.15)

For this purpose, we recall that the stochastic parameter 8(q, 1) is normal-
ized so that

(B@, 1) B*(@, 1) = 58° @ —q) . (7.3.16)
In the calculation of C%T’ ¢, We encounter an angular integral

/dz DY, (S(Cfi))D“,)ﬁ(S(c?))*
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This matrix can readily be seen to commute with all rotation matrices, so
that it must be proportional to §,,,,8¢¢ with an m-independent coefficient.
To calculate this coefficient, we can set m = »’ and £ = ¢’ and sum m from

—{ to +¢; using the unitarity of the matrix D,(ﬁ)n <S (&)), this must equal

[d*q =4m,s0
R . ' A\ K 4
/ @) D)y (S@) Do (S@) = 5gommder . (1307)

Using this and Egs. (7.3.14) and (7.3.16) in Eq. (7.3.15), we see that the sum
over helicities in Eq. (7.3.14) now just yields a factor 2, so*

2

2 2 o0 [ ] q}"(l)
r w/ 4 fodz d(q. 1) H(or0) (73.18)
0 i

e - 7 0N
(This formula can be obtained more easily by a direct calculation of the
temperature correlation function, without calculating the al. om» DUt we will

need the a% +m 1N the next section to find the correlation between polarization
and temperature anisotropies.)

It remains to calculate D,(7) and the source function W(g, 1), As we
saw in Section 6.6, if the gravitational wave amplitude D,(¢) is written as
a function of k¥ = qﬁ/HEQaEQ and y = a(t)/agq instead of ¢ and ¢ (the
subscript EQ referring to the time of radiation—matter equality), then aside
from an over-all factor Dy (equal to the value of D, (¢) outside the horizon),
the amplitude D, () is independent of any other cosmological parameters.
We write this as

Dy(1) = D) Dk, ) - (7.3.19)

For a spectrum of gravitational waves that is scale invariant outside the
horizon, the quantity ¢> Dy |2 is a constant. To take account of more general
possibilities, it is conventional to write it as proportional to a power n7 of

g, or equivalently,
q/ap\""
kp ’
1

where kp is an arbitrary wave number, often taken as kp = 0.002 Mpc™",
and N7 isaconstant analogous to the constant N that describes the strength

71D)* = N7 ( (7.3.20)

4This result is derived in a different way by M. Zaldarriaga and U. Seljak, Phys. Rev. D 55, 1830
(1997) [astro-ph/9609170]. Their resultis the same as Eq. (7.3.18), if we take their undefined gravitational
wave amplitude / to be Dy () /2, with their stochastic parameter normalized so that P, = 1.
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of the adiabatic scalar mode. The conventional ratio r of tensor and scalar
modes is r = 4|N7|?/|N|?. Also, until vacuum energy becomes important,
we have df = /2y dy/HgqQ+/1 + y, so we can write

dt dy
& — 2 /T+y.
q/a(t) ST

The wave equation (6.6.58) then gives

D 1 23 D
(1+y)8 (Kz,y)+<_+ ( +y))8 (/c,y)Jr
ay 2 y ay

24f, (7 N\ D@k, )
=2 fo K(2K[\/1+y—\/1+y])a—y/dy, (7.3.21)

«? D(k, y)

where f, = p,/pr = 0.4052 and K (v) = j>(v) /U2, with the initial condition
D(k,0) = 1. Having found D(k, y) in this way, the source function ¥ (g, 1)
is calculated in computer programs such as CMBfast and CAMB by using
Eq. (6.6.21), with the amplitudes A(TTz and Age) found by a numerical sol-
ution of the coupled Boltzmann equations truncated at some maximum
value of £. There is an easier alternative procedure, based on the integral

equation (6.6.27):°

t t
V(g 1) = % / dr’ exp [— / we (") dt”]
11 t

. , t dt/l , t dt// ,
* [‘”’q(f W (Q/ﬂ <—>) FodOF (‘I/ﬂ <—>) ‘”q’”] ’
(7.3.22)

where F(v) = jo(v) — 2j1(v) /v + 2j»(v) /v*. We can also put the differential
optical depth in the form

dt(y) = w.dt = neoredt = Xy dy,

A
»yl+y
where X () is the fractional hydrogen ionization calculated in Section 2.3,
which depends on Qph? and /4% as well as y, and A4 is the dimensionless
constant

3QpQy Hyorc

8 Gmpﬂi/z

A=0.76 = 1.9646 x 10° (Quh?) (2ph?) .

5S. Weinberg, Phys. Rev. D 74, 063517 (2006) [astro-ph/0607076]; D. Baskaran,
L. P. Grishchuk, and A. G. Polnarev, Phys. Rev. D 74, 083005 (2006) [gr-qc/0605100].
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7 Anisotropies in the Microwave Sky

(It 1s assumed that the baryons are 76% hydrogen, with the rest un-ionized
in the era of interest.) It follows that the source function takes the form

(g, 1) =DyS(k,y) (7.3.23)

where S depends only on Q7% and Qph? as well as « and y, and satisfies
the integral equation

3 y y d /!
Sk, y) = 5/0 dy’ exp [— 4% )dy”}
y/

dy/ /

dD(x.y) ,

dz(y)
dy

+ F (2/([\/1 +y—4/1 +y']) S(K,y/):| . (7.3.24)

The multipole coefficient calculated from Eqgs. (7.3.18)—(7.3.24) is shown
by the solid curve in Figure 7.3. The dashed line in Figure 7.3 shows the

result of simplifying the expression for the multipole coefficients in the case
¢ > 1, using the approximate formula (7.2.14) for the spherical Bessel

I(I+I)C¥T,l

2r
500 ¢

400

300 +

200

100

1

400 600 800 1,000

Figure 7.3: The tensor temperature—temperature multipole coefficient £(¢ 4+ 1)C %T, (/27 in
square microKelvin, vs. €, from ref. 6. The solid line is the result of using the essentially
exact formula (7.3.18); the dashed line gives the result of the large-£ approximation (7.3.25).
The cosmological parameters used in these calculations are described in the text.
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7.3 Temperature multipole coefficients: Tensor modes

function in Eq. (7.3.18), which gives®

o0
L0+ I)C%TE — 4712Tg/ q* dg
’ 0

3
X / dtd(q,t) {COS_ b cos [Z(tanb—b)—n/4]}
r(0)>t/q sinb

cosb=L/qr(t)
(7.3.25)

The source function W(g, ¢) is calculated in both cases using the integral
equation (7.3.22), instead of using the equivalent formula (6.6.21) together
with the truncated Boltzmann hierarchy (6.6.18), (6.6.19). Both of these
curves are calculated with a cosmological model that in most respects is
consistent with current observations: We assume Qg = 0, and constant
vacuum energy, with Qp = 0.0432, Q) = 0.257, Qo = 0.743, h = 0.72,
and Ty = 2.725K. In calculating the photon collision frequency, we use
the Recfast recombination code,’ with helium abundance ¥ = 0.24. The
parameters in Eq. (7.3.20) are taken as NV % = 4.68 x 107! (corresponding
approximately to the WMAP3 value of the scalar amplitude N quoted in
the previous section, and r = 1) and n7 = 0. Reionization is ignored in this
calculation. To take into account a different value of r or a finite optical
depth t of the reionized plasma, for £ > 10 it is only necessary to multiply
the multipole coefficients shown in Figure 7.3 by r exp(—21).

(In the approximation of a sharp transition at time 7, from thermal equ-
ilibrium, in which w.(¢) > H(¢) and ¥(q, t) = 0, to perfect transparency,
in which w.(?) = 0, Eq. (7.3.25) becomes

o0
(e+nHek., - 4n2T§/ ¢* dg
’ 0

3
X / dt Dy (1) { COSD cos [Z(tanb —b)— n/4]}
rp>r(t)>4/q sin b

cosb=~C/qr(t)
(7.3.26)

Because of the spread of values of tan b — b, we cannot here make the sort
of further simplification that we made for scalar temperature fluctuations
in going from Eq. (7.2.16) to Eq. (7.2.17).)

6R. Flauger and S. Weinberg, Phys. Rev. D 75, 123505 (2007) [astro-ph/0703179].
7s. Seager, D. D. Sasselov, and D. Scott, Astrophys. J. 523, L1 (1999) [astro-ph/9909275]; Astrophys.
J. Suppl. 128, 407 (2000) [astro-ph/9912182].
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7 Anisotropies in the Microwave Sky

Figure 7.3 shows that C %T, , has an ¢-dependence very different from that
of the scalar contribution calculated in the previous section, so the agree-
ment between existing observations and theory including only scalar per-
turbations sets an upper bound on the strength of the tensor perturbations.
Under the assumption (as suggested by theories of inflation discussed in
Chapter 10) that Dy and Rg have about the same ¢g-dependence, the WMAP

collaboration has concluded?® after three-years of operation that r < 0.55,
at a 95% confidence level, where r = 4|D2|2 / |R2|2. This limit arises chiefly
from temperature rather than polarization measurements, because of the
much greater signal to noise ratio of the temperature measurements; the
limit on r from polarization measurements alone is r < 2.2.

Strictly speaking, the limit r < 0.55 does rely on polarization mea-
surements, which are used to determine the optical thickness of the reionized
plasma. This is needed to determine the value of the slope parameter ng for
scalar modes, which in turn is needed in subtracting the scalar contribution
to Crr from the observed values in order to set a limit on the tensor
contribution. But cosmic variance sets a limit to the accuracy with which
this subtraction can be made, and in the long run the best upper limits or
the actual detection of tensor modes will come directly from polarization
measurements, to which we now turn.

7.4 Polarization

Observations of the cosmic microwave background reveal not only its inten-
sity in various directions, but also its polarization. The microwave back-
ground is expected to be polarized because of its scattering by free
electrons,! such as were present around the time of recombination, or during
the later period of reionization due to ultraviolet light from the first gen-
eration of stars. Polarization measurements have become of importance in
learning when reionization began, and in disentangling the effects of reion-
ization from the primordial intensity of fluctuations, and they may become
even more important in future, in revealing the effects of gravitational waves

8L. Page et al., Astrophys. J. Suppl. Ser. 170, 335 (2007) [astro-ph/0603450].

IM. I Rees, Astrophys. J 153, L1 (1968). Polarization correlations at small angu-
lar separation were considered in early papers on the polarization of the cosmic microwave
background; see e.g. A. G. Polnarev, Sov. Astron. 29, 607 (1985); R. Crittenden,
R. L. Davis, and P. J. Steinhardt, Astrophys. J. Lett. 417, L13 (1993); D. Coulson,
R. Crittenden, and N. Turok, Phys. Rev. Lett. 73, 2390 (1994); A. Kosowsky, Ann. Phys. (N.Y.)
246, 49 (1996). Then all-sky analyses were given by U. Seljak and M. Zaldarriaga, Phys. Rev. Lett.
78, 2054 (1997) [astro-ph/9609169]; M. Zaldarriaga and U. Seljak, Phys. Rev. D 55, 1830 (1997) [astro-
ph/9609170], and by M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev. Lett. 78, 2058
(1997) [astro-ph/9609132]; Phys. Rev. D. 55, 7368 (1997) [astro-ph/9611125].
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7.4  Polarization

produced during inflation.

In Section 6.1 we introduced a dimensionless photon intensity perturba-
tion matrix J;;(x, p, 1), defined by Eq. (6.1.13). It is Hermitian, transverse
in the sense that ' .

ﬁl JU'(X,ﬁ, 1) Iﬁ] Jij(X,ﬁ, nHn=0, (7.4.1)
and, as already noted in Section 7.1, its trace at x = 0 and ¢ = ¢ is related
to the fractional photon temperature fluctuation seen from earth at present
in any direction 7 by

ATH) 1 X
o = ZJI','(O, —n, ty) . (7.4.2)
For i = —p in the three-direction Z, any matrix with these properties can be

put in the form
ATE)+QE) UE—-iVE) 0
Jij(0,=2,100=— [ UG +iV(E) ATE -Q0(¢) 0], (743)
To 0 0 0

where Q, U, and V are three real functions of direction with the dimen-
sions of temperature, known as Stokes [wtmnfzeters.2 In this case the Stokes
parameters can be expressed in terms of the matrix Jj;, as

Ay L rra T A A A
0() £iUE) = Texi(2) ex;(2) (0.2, 10) (7.4.4)
~ I . . . .
V(Z) = Ze— i(Z) €+j(Z) (‘]l](oa ) tO) - ‘]ji(oa —Z, tO)) ’ (7'45)
where e (%) = (1, +i,0)/+/2 are the polarization vectors for a photon com-

ing from the three-direction. Accordingly, for a photon coming from an
arbitrary direction 7, we define the Stokes parameters as

T
Q) +iUG) = Zex iR ex 1) T30, i 10) (7.4.6)
T
V(@) = e (@) es 1) (J5(0, =i t0) = SO, =i t0)) . (7:47)

where ey (1) are the polarization vectors for a photon coming from the
n-direction. Writing 7 in terms of polar and azimuthal angles 6 and ¢ as

n=(sinf cosg, sinf sin¢g, cosh), (7.4.8)

2The Stokes parameters are sometimes defined with extra constant factors to give them the dimen-
sions of intensity rather than temperature.
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7 Anisotropies in the Microwave Sky
we can take
er(d) = O +id)/V2, (7.4.9)

where 6 and ¢ are orthogonal unit vectors in the plane perpendicular to 7,
in the directions of increasing 6 and ¢, respectively:

6 = (cos® cos¢, cosfsing, —sinf) , q§ = (—sin¢, cos¢ ,0) .
(7.4.10)

It is the Stokes parameters that are measured in observations of the
microwave background. The scattering of light by non-relativistic elec-
trons does not produce circular polarization, and therefore we expect that
all microwave background photons are linearly polarized, so that Jj; is
real, and therefore 7 = 0. In this case the fractional intensity pertur-
bation e'e/ Jij reaches a maximum value 2(AT + v/ U? + 0?)/ T for a real

polarization vector e in a direction 6 cos& + ¢ sin &, where tan 26 = U /0.
For a polarization vector in the orthogonal direction, ele/ Jjj takes its mini-
mum value 2(AT — /U? + 0?)/ Ty, giving a total fractional intensity per-
turbation 4AT /Ty, as is necessary since the photon energy density goes
as T4

Now we have to face a complication: Aswe have defined them, the Stokes
parameters are not rotational scalars. That is, under an arbitrary rotation
X; = x; = Rjx; of the three-dimensional coordinate system, we do not have
Q'(n') = Q) or U'(7') = U(n). This is because the polarization vectors
are not really three-vectors. We note that

er;(n) = Sjj()e+;(2), (7.4.11)

where S;;(77) is a standard rotation that takes the three-axis into the direction
n. For i = (sinf cos ¢, sinf sin ¢, cosd):

cosf cos¢p —sing sinf cos¢
Sjj(n) = | cosf sing cos¢ sinf sing | , (7.4.12)
—sinf 0 cosf

and again e, (2) = (1, %i,0)/ V2. For an arbitrary rotation R, we can write

ex /(i) = Sy(Rijes ;(3) = [R S(ﬁ)lk [S_l(ﬁ)R_lS(Rﬁ)]kjei i3

Now, S(Rn) takes the three-axis into the direction R, R~! takes this into
the direction 71, and then S~ (77) takes this back to the direction of the three-
axis, so S~1(M)R~1S(Rn) leaves the three-direction invariant, and must
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7.4  Polarization

therefore be a rotation by some angle ¥ (R, i) around the three-direction.
Acting on e (%), this yields a factor eV, and so

er;(Ri) = eEVRDRue, (7). (7.4.13)

The matrix Jj; is an ordinary three-tensor, in the sense that an arbitrary
rotation R takes J; into Ji/j, with

Jj(Ri)) = Ry Riy Iy (1)

Because RTR = 1, a rotation R subjects the Stokes parameters (7.4.6) to
the transformation Q — Q’, U — U’, with

O'(iW) £ iU W) = eP2VRD [0 + iU )] . (7.4.14)

For this reason, if we were to expand the Stokes parameters in a series
of ordinary spherical harmonics, as we do for scalars like the tempera-
ture fluctuation, then the expansion coefficients would not transform under
rotations according to the usual representations of the rotation group.
Instead, we expand the Stokes parameters Q(71) and U (1) seen in a direc-
tion 7 in a series of functions? Y, () with the same dependence on the
polarization vectors as the Stokes parameters themselves:

00 14
QM) +iUM =Y Y apum V{'() (7.4.15)
=2 m=—¢
My (¢ -2) ~ AT T, YIS
V') =2 @+l eti(n) et j(n) Vi V; Y, () , (7.4.16)
where V is the angular part of the gradient operator:
- . D o
V=0— —. 7.4.17
06 + sinf d¢ ( )

The subscript “P” (for “polarization”) on the coefficients ap ¢, is introduced
here to distinguish them from the coefficients entering in the expansion
(2.6.1) of the temperature fluctuation, which in this chapter are denoted
ar.em. Under a rotation R, the ordinary spherical harmonics transform as

YPU(RA) =Y D) (R v () (7.4.18)
m’

3Thesearea special case of functions introduced in a study of gravitational radiation by E. T. Newman
and R. Penrose, J. Math. Phys. 7, 863 (1966). In their notation, which is used in some recent papers on
microwave background polarization, the function Y} is denoted 5 Yy ;.
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7 Anisotropies in the Microwave Sky

where DO (R) are the unitary irreducible matrices* of rank 2¢ + 1 that form
a representation of the rotation group, in the sense that D (R1)D®) (R,) =
DW(R{R»). It follows then from Egs. (7.4.13), (7.4.16) and (7.4.18) that

V{'(Ri) = 2VED X DO (RTH V@) (7.4.19)
m/
and hence also
Vi (Riry = e 2V RD N Dl (R Vi (i) (7.4.20)
m/

For this reason, )" and its complex conjugate are known as spherical
harmonics of spin 2 and —2, respectively. Just as for ordinary spherical har-
monics, it follows from these transformation properties that [ d2 ygl*ygf’
vanishes except for £ = ¢’ and m = m/, and in that case is independent
of m. The factor 2./(¢ — 2)!/(£ + 2)! is inserted in Eq. (7.4.16) to make
these functions satisfy the orthonormality condition

/ dQ VIV = 800 Smm » (7.4.21)

just like the ordinary spherical harmonics Y;". Direct evaluation of
Eq. (7.4.16) gives®

€ —2)!

T = € +2)!

9 L icscol ’ 0 (2 ticseo ) | yma
— I1CSCU— — CO — I1CSCU— n
30 ¢ 30 ap) | "

imp | L= (L —mD!2¢+1
E+2)! L+ m])! 4m

20m 4 W) (m— )
n (m 1/1_)(272 M)Ptlz ()

[— e+ 1P (w

4See, eg., A. R. Edmonds, Angular Momentum in Quantum Mechanics, (Princeton
University Press, Princeton, 1957):  Chapter 4; M. E. Rose, Elementary Theory of
Angular Momentum (John Wiley & Sons, New York, 1957): Chapter IV; L. D. Landau and E. M.
Lifshitz, Quantum Mechanics — Non Relativistic Theory, 3rd edn. (Pergamon Press, Oxford, 1977): Sec-
tion 58; Wu-Ki Tung, Group Theory in Physics (World Scientific, Singapore, 1985): Sections 7.3 and 8.1.
Note that the rotation matrices we use are appropriate for the representation furnished by the spherical
harmonics we use, with phases such that Y;"()* = Y, " (). The corresponding angular momen-

tum matrices J( are not the usual ones, for which the elements of J 1(0 + iJée) are real and positive.

If we changed the phase of the spherical harmonics so that Yé" n* = (—=nHM Y[m(ﬁ), then the rota-
tion matrices would be generated by conventional angular momentum matrices, with the elements of
J 1(‘{) + ijéz) real and positive, but then we would have to introduce phases into the definition (7.4.25) of
the E and B-type partial wave amplitudes, different from those used by Zaldarriaga and Seljak in ref. 1.

5The final expression is taken from Zaldarriaga and Seljak, ref. 1, while the first expression, which is
derived here from our definition (7.4.16), is their definition of the spin +2 weighted spherical harmonic.
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7.4  Polarization

206+ Im))(m + 1) im
e (u))]

L+t -2)! 4n

(57 (32)

x (=) cot? 27 )2) | (7.4.22)

_ [(e +m)l(€ —m)! 20 + 1]”2 sin2(6/2)(— 1)t D2

where u = cos6@ and P;'(u) are the usual associated Legendre functions.
(Here we will only need the first expression in Eq. (7.4.22).) Unlike the ordi-
nary spherical harmonics, the ;" do not satisfy any simple reality condition.
Rather, the complex conjugate of Eq. (7.4.15) gives

o0 £
Q) —iUG) =Y " ap g VI@)*, (7.4.23)
=2 m=—{
where
Tk (t—2)! ~ AN YT O —m
Y/'m)* =2 @32 e_i(n) e—j(m)V;V; Y, " (n), (7.4.24)

in which we have used the reality property of the spherical harmonics
employed here, Y}"* = Y, .

Because V)" does not satisfy any simple reality condition, neither does
apem. Instead, we can define coefficients

ag,om = _(aP,Em +ap, _m)/2 , A em=1i (aP,em —dp, _m> /2 :
(7.4.25)

This is a useful decomposition, because of the properties of the coeffi-
cients under space inversion. If we reverse all three coordinate axes, then
0 — 7 —6,whilegp > ¢ +m,500 — §and p — —¢. It follows then
that the polarization vectors (7.4.9) of definite helicity are interchanged
under space inversion; that is, e+ (—7) = e (1), and therefore according to
Eq. (7.4.6), under space inversion Q(n) — Q(—n) while U(#n) — —U(—n)
and V(1) — —V (—n). (The reader will later be able to check these space-
inversion properties of Q and U, by noting that these are the changes
that are produced if replace the stochastic parameters a(q) and 8(q, 1) in
Eqgs. (7.4.31) and (7.4.40) with their space-inversion transforms «(—q) and
B(—q, —X), respectively.) Thus by applying a space inversion to Eq. (7.4.15),
we find that space inversion takes the partial wave amplitudes ap ¢, into
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7 Anisotropies in the Microwave Sky
/
Ap pm> where

O(=n) —iU(—n)

00 12
=2 > D> dpum

=Dl
( ) ey () ey j () V; V; Y (1)

=2 =0 m=—¢ (6 + 2)'
X € —2)! -
=2(=DY" Y dpy, Y T i(—=) e_ j(=) V; V; Y (—it)
=0 m=—¢
oo ¢
= (=D dpy, V()"
=2 m=—¢

the factor (—1)¢ coming from the reflection property Y (=n) — (-1t
Y(n). Comparing this with Eq. (7.4.23), we see that space inversion
changes ap ¢, into a},,em = (—l)ea;,z _u» SO it changes ag ¢, (and also
the corresponding temperature multipole coefficient ar ¢ ;) by a sign (—1)¢,
while it changes ap ¢, by a sign —(—1)*.

These coefficients are stochastic variables, governed by a probability dis-
tribution that is presumably invariant under space inversion, so there can
be no bilinear correlation between polarization fluctuations of B and E-
type, or between temperature fluctuations and polarization fluctuations of
B type, though there can be correlations between temperature fluctuations
and polarization fluctuations of E type. Taking into account also the rota-
tional invariance of the probability distribution, the only non-vanishing
bilinear averages are of the form®

(@7 omar.em) = CTT,080.0' S » (7.4.26)
(@ g, ¢ m) = CTE, ¢ 80,0 Smm (7.4.27)
{aF omaE, 0 m) = CEE ¢ 800 Smm (7.4.28)
(B ¢mas o) = CBB.0Se0 Smm - (7.4.29)

s

All Cyy ¢ coefficients have the same dimensions, of square temperature. By
their definition, the ar, ag, and ap all satisfy the reality conditions

k * *
a7 .om = ATt —m > AFgm = AEL—m > AR om = AB.L—m » (7.4.30)

SHere ar gm is the coefficient ayy,, in Eq. (2.6.1). The multipole coefficients Cyy ¢ defined here are
the same as those defined by Zaldarriaga and Seljak, ref. 1. They are related to coefficients defined
by Kamionkowski, Kosowsky, and Stebbins, ref. 1, by CZG = Cg’EElz/ZTZ, CZC = Cg’Bglz/zTg,
crG = —Creel /\fZTg, where [ is the radiation intensity. (The superscripts G and C stand for
“gradient” and “curl”, because the pattern of polarization vectors of type E or B resemble the pattern
of velocity in potential or solenoidal flow, respectively.)
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7.4  Polarization

and hence the coefficients Cyy ¢ are all real, while the Cyy , are all also
positive. The results of measurements of correlations between tempera-
ture and/or polarization fluctuations in different directions are generally
reported in terms of the Cyy ;.

Another simplification provided by the decomposition of the Stokes
parameters into £ and B terms is that, as we will see, scalar perturba-
tions can only contribute to the E terms. This result is important, because
it means that any sign of a primordial B-type polarization’ will be clear
evidence for cosmological gravitational waves, of the sort that we shall see
in Chapter 10 are expected to be produced during inflation.

We now turn to the calculation of the multipole coefficients (7.4.27)—
(7.4.29). The hydrodynamic treatment that worked reasonably well for
temperature correlation functions is not well suited to the treatment of
polarization, so we will rely on the more accurate kinetic theory outlined
in Section 6.1. Here we must distinguish between scalar and tensor modes.
As already mentioned, these do not interfere, so the multipole coefficients
can all be written as a sum of a scalar and a tensor term, denoted by super-
scripts S and T°:

Cxve=Ciy,+Chy,- (7.4.31)

A. Scalar modes

For scalar modes, the matrix J;; in Eq. (7.4.6) is given by the Fourier integral
(6.1.18) and the line-of-sight integral (6.1.36):

[f l t
Jij(0, 1, to) =/d3q a(q) fodt eXp(—iq-i)/O d,/) / di’ (1 ))
5] t
<[ = (o= uiy) () - G- 028,0)

3w (1) . n
+ 7 (85 — nin;)®(q, 1)

3we(t O N S
w4( ) l)(‘]i —ni(q - n) (q; —nj(q - n))
2w (1)

W[&'j — ] iy Suy (q, 1)] :

TWeak lensing by foreground objects converts the E-type polarization produced by scalar perturb-
ations into a B-type polarization that may be large enough to interfere with measurements of the
primordial B-type polarization; M. Zaldarriaga and U. Seljak, Phys. Rev. D 58, 023003 (1998)[astro-
ph/9803150]. For a review, see A. Lewis and A. Challinor, Phys. Rep. 429, 1 (2006) [astro-ph/0601594].
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7 Anisotropies in the Microwave Sky

Since njey (1) = 0 and e ; () ey ;(77) = 0, the only term in the integrand
that contributes to the Stokes parameters is the one proportional to g;q;:

e . 3Ty . ) .
05 (i) + iUS (h) = ?0 et i(f) ey () / d*q §iGj a(q)

o 0 dt/
X / dt P(t) T1(q,t) exp (iq . ﬁ/ —) , (7.4.32)
1 ¢ a(t)

where P(t) dt is the probability that the last scattering occurs between ¢ and
t+dr:

i
P(t) = w.(1) exp <—/ ' w (1) dﬂ) ) (7.4.33)
1

Asareminder: «(q) is the stochastic parameter for whatever mode (presum-
ably the non-decaying adiabatic mode) is assumed to dominate the scalar
perturbations; w.(¢) is the photon collision rate; #; is any time taken early
enough so that a photon present at that time would suffer many collisions
before the present; and I(q, ¢) is a source function, given by Eq. (6.1.30) in
terms of the partial wave amplitudes of the temperature and polarization
perturbation amplitudes:

M(g. 1) = AP)(q. ) + Apy(q. ) + Ap)(g. 1) . (7.4.34)

To use Eq. (7.4.31) to calculate the EE and TFE multipole coefficients,
we recall the familiar formula

exp (i v) = 47 Y i) YD) Y™ @)

£,m

where here v = #ig ftlo di'/a(t). Acting on this, we can replace g; with
—id/dv;. Since O = f, we can write 9/dv; = 1;0/dv + V;/v, where V is
the angular gradient operator (7.4.17) acting on 7. Since #1;e4; = 0 and
etieri =0, Eq. (7.4.31) then reads

T .
QS(fa)+iUS(f1)=—3n 0€+i(ﬁ)€+_j(ﬁ)ViV/Ziﬁng(ﬁ) /d361 a(q)
Im
yoeay [ oo jz(qr(t)) 7.4.35
x ! (q)/,l PONgD sl (7.4.35)

where here r(¢) is the radial coordinate of a point from which light emitted
at time ¢ would just reach us at present

to d[/
r(t) = /t 0 (7.4.36)
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(Note that @,ﬁ; doesn’t contribute here, because it equals 8;; — 7;71;, which
vanishes when contracted with e;;ey;.) Comparing Eq. (7.4.34) with
Egs. (7.4.15) and (7.4.16), we see that the scalar contribution to ap g, is

3 Toit | (€ +2)! [l
S — _ 3 m*
dpym = 1 @) fd qaq) Y, (q) j;l dt (7.4.37)

je(arm)
q>r’ (1)
To check the reality properties of ap ¢, we note that Egs. (6.1.18) and
(6.1.21) require that a*(q)I1*(q, 1) = a(—q)I1(q, 1), while Y;"(§) = (-1t
Y, "™ (—q), and of course i = (=D, so agj“em = af)’ﬁ _n- Inspection of
Eq. (7.4.25) then shows that, as promised, the scalar modes contribute only
an E-type polarization

x P(t) (g, 1) (7.4.38)

S S S
Agem = —49pom » agem = 0. (7.4.39)

We can now give formulas for the scalar contribution to the EE and TE
multipole coefficients defined by Egs. (7.4.28) and (7.4.27). Recalling the
normalization condition (7.2.5) of the scalar stochastic parameter «(q), we
see from Egs. (7.4.36) and (7.4.37) that®

O2T? (£ +2)! [ fo Je (q r(l))
cs., = 0 / 2d / dt P()T1(q, {) ———2
EECS g -y )y TU), APONGD " 550

(7.4.40)

2

Combining Eq. (7.4.36) with the general formula (7.2.4) for the scalar
contribution to the temperature partial wave amplitudes, we find in the
same way that

(L +2)!
C¥E1=—3”2Tg € —2)!
tOdP o je(QV(t))
X/tl t P(1) (q’t)—quz(z)
4]
i ) F(q,t)+j, ) G(g,t) +j) H)H(q, 1|,
< [ i(aro) oo +ii(gr0) 6.0 45 (gr0) Ha.0)]

(7.4.41)

8This is the same as Eq. (17) of Zaldarriaga and Seljak, ref. 1, except that IT here is 4 times their IT.
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Figure 7.4: The multipole coefficient £(£ 4+ 1)C g £ o/27 in square microKelvin, vs. £, for the

cosmological parameters given in Eqs. (7.2.44) and (7.2.45).
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Figure 7.5: The multipole coefficient £(£ 4+ 1)C %E /27 in square microKelvin, vs. ¢, for the
cosmological parameters given in Eqs. (7.2.44) and (7.2.45).

where F(q,t), G(q,t), and H(q,t) are the quantities (7.2.7)—(7.2.9). The
values of C gE’ , and C%E, o calculated® for the cosmological parameters
(7.2.44)—(7.2.45), are shown in Figures 7.4 and 7.5. Comparing these figures
with each other and with Figure (7.3), we see that CgE’ <K C%E, K C;T’K.
The microwave background polarization is small, because the universe goes
swiftly at the time of recombination from a state of nearly perfect thermal
equilibrium to one of nearly perfect transparency, and photons are not
polarized in thermal equilibrium.

Eqgs. (7.4.38) and (7.4.39) must be used for maximum numerical accuracy,
but we can get a good idea of the £ dependence of the multipole coefficients
for £ > 1 by using much simpler approximate versions. The function P(¢)
in Eq. (7.4.38) is sharply peaked at a time #; of last scattering, and it has

http://lambda.gsfc.nasa.gov/data/map/powspec/wnap_lcdm pl_model yri
vl._txt
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7.4  Polarization

[ dt P(t) = 1, so to a fair approximation we can do the integral over time
by simply setting ¢t = ¢; and dropping the factor P(z). Also, by using the
same approximations that led us from Eq. (7.2.13) to Eq. (7.2.17), we find
that for £ > 1

OS5 a 9;12@3/ dp (15,3 )
EE,E 32}’2 1 ﬁ\/ﬂzi > L .
This does not give a reliable result for the magnitude of CE £ ¢» because the
function I(g, #) varies rapidly around the time of recombination, but since

this function falls off rapidly with ¢, so that the integral is dominated by
B ~ 1, this approximation does suggest that the peaks and valleys in C}?E, ¢

arise chiefly from a factor IT2(¢/rz, tr). On the other hand, as remarked
in Section 7.2, the peaks and valleys in C}?T,e arise chiefly from a factor
F2(¢/rr), and by the same reasoning, the peaks and valleys in C“Tqu arise
chiefly from a factor F(£/rp)T1(€/rp, tL).

To get an idea of the g-dependence of T1(g, ¢1), we note first that, to the
extent that the photon polarization arises solely from the last scattering,
(g, t) would be given by just the first term A(S) »(g,1) in Eq. (7.4.33). This
is because the differential cross section for the scattering of an unpolarized
photon of initial momentum p with |p| <« m, by a non-relativistic electron
to yield a photon with real polarization vector e is!®

do e*

aQ 32n2m2( — @ e))

If the distribution of initial momenta p were spherically symmetric then the
average of this cross section over initial directions would be independent of
e, so the final photon would be unpolarized. But for a direction-dependent
phase space density n,, 7 (p) of photons with momentum p at the position
and time of last scattering, the intensity of photons after last scattering
coming from direction 7 and having polarization vector e (with > = 1 and
e -1 = 0) is proportional to

/d3ppny,L(p)<1 — (- e)z) :

The part of J;; that contributes to the Stokes parameters is thus proportional
to the traceless part of [ d3p pn, 1 (p)pip;, which in turn is proportional to
the £ = 2 part of A(zig) evaluated at the time and position of last scattering.

10See, e.g., QTF, Eq. (8.7.40). This was first calculated by O. Klein and Y. Nishina,
Z. Phys. 52,853 (1929).
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7 Anisotropies in the Microwave Sky

The additional terms AEDS())(q, H+ A}S% (g,t)in T1(q, t) take account of what-
ever polarization the photon may already have acquired by the time of last
scattering, and can be expected to be relatively small since photons must be

unpolarized under conditions of rapid photon scattering. But then, accord-
ing to Eq. (6.1.32),

Ky _
M(q. 1) ~ AR)(q. 1) = ¢*7) (1) By (L) -

Recall that, according to the first line of Eq. (5.1.43), aiajnS (x, 1) is the term
in the scalar part of 6 7'; that is not proportional to §;;, while Eq. (B.50) tells
us that for short mean free times, this term equals!!

aiajﬂs = aiznyaiajafl R

where 7, is the shear viscosity due to photon momentum transport, given
in terms of the photon mean free time #, by'? , = % Py ty, and di(x, 1) is
the gauge-invariant velocity potential'?
3 a’B
Su=déu—alF + —,
2

with F and B metric perturbations defined by Eqgs. (5.1.32) and (5.1.33).
Also, Eq. (7.1.45) (which was derived for a gauge in which the metric com-
ponent F vanishes) gives the coefficient of the stochastic parameter «(q) in
the Fourier transform of the gauge-invariant velocity potential in terms of
the form factor G(q) as dity(11) = —a(t1)G(q)/q. We conclude then that

2 16¢

H(q, tL) ~ mfy (Sflq(tL) ~ —mzy

G(g) -

where 7,, is some appropriate average of ¢, () during the era of recombina-
tion. Thus the peaks and valleys in C]:?E,e and in |CLT§E,E| are more-or-less
the same as those in |G(¢q/rr)|? and |F(q/rr)G(q/rL)|, respectively, and we
recall that the peaks and valleys in C?T ¢ are essentially those in [F(q/rr) 2.
Eqs. (7.2.23) and (7.2.24) give ’

o

R 159
Flgy= = [SRLT(K)—(1+RL)’1/4e*f0 rdt ) cosx(q)] ,

Here we use the relation Sui;j = Suj;i = a*28u,-;]' - a*4h,-jaiz.

12N, Kaiser, Mon. Not. Roy. Astron. Soc. 202, 1169 (1983). For a discussion, see footnote 5 of
Section 6.4.

Bwe recognize §u as the same velocity potential that appears in Eq. (7.1.37) as the Doppler contribu-
tion to the temperature shift in the class of gauges with vanishing metric component F. In the special
case of Newtonian gauge we have F = B = 0, and §it = Su.
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7.4  Polarization

o V3RS
(@)= T 5(14 R34
where yx (¢) is an approximately linear function of ¢:

e~ I T4 Sy sin x(q)

<)=f[Lq—dt+A<K>
Y= o aJv3(1T+R) ’

and the argument « of the transfer functions S, 7', and A is proportional
to g. As remarked in Section 7.2, the peaks in CYS” are thus roughly at
x(/rr) = m, 2w, 3w, ... On the other hand, we expect the peaks in

CEE’Z to be roughly at the peaks in ‘sin (X (E/rL))
x®/rp) =m/2, 37/2, 57/2, ..., and the peaks in |CLTS‘E,€| to be roughly at
the peaks in ‘cos (X (Z/rL)> sin (X (E/rL)> ‘, or in other words, at x (£/rp) =

, or in other words, at

/4, 3m/4, Sm/4, ... In particular, we expect a peak in CEEJ before the
first peak in C‘TQT, ¢» followed by one peak in C gE , between successive peaks
in C‘T?T,E, while there should be two peaks in |C§E,5| before the first peak
in C%T,g, followed by two peaks in |C§E,e| between successive peaks in
C%T,Z' This is precisely the pattern seen in computer calculations.'* For
instance, for a plausible set of cosmological parameters there are indeed
two peaks in |C§“E,€| (at ¢ = 36 and £ = 144) below the first peak in C‘Tqr’g
at £ = 230.

The E-type polarization and temperature—polarization correlation were
first detected by the Degree Angular Scale Interferometer (DASI) collabora-
tion.!> Then the Wilkinson Microwave Anisotropy Probe (WMAP) collab-
oration measured the coefficients Crg ¢ with good accuracy over a range of
multipole orders from £ = 2 to £ ~ 570.'® The results for £ > 10 are in good
agreement with the concordance model, assuming primordial fluctuations
with a spectrum close to the Harrison—Zel'dovich form Ry o g—32, and
a constant vacuum energy along with cold dark matter, baryonic matter,
photons, and massless neutrinos, and using the same values of the cos-
mological parameters 2 gh?, Qurh?, h, and N as used in fitting the model
to measurements of temperature anisotropies. In particular, there is clear
evidence of the second expected peak in |CrE |, at around ¢ ~ 140, and
the third expected peak, at £ ~ 300. More recently, the QUaD collabora-
tion!'” has reported preliminary results from the first season of operation of a

14For instance, see http://1ambda.gsfc.nasa.gov/data/map/powspec/wmap_lcdm_
pl_model_vrl_vl.txt.

155 Kovac et al., Nature 420, 772 (2002).

16 A Kogut et al., Astrophys. J. Suppl. 148, 161 (2003).

17p. Ade et al., 0705.2359.
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microwave polarimeter at the South Pole, which show clear evidence for the
first peak in Cgg ¢ at £ >~ 350, about where it is expected from scattering
around the time of recombination. But if reionization were not included
in the cosmological model, there would be a clear discrepancy between its
predictions and the data for C7g ¢ for £ < 10. This discrepancy is attributed
to polarization caused by scattering in a plasma that has been reionized by
ultraviolet light from a first generation of stars.

The most important application of polarization measurements so far has
been in working out the history of the reionization of intergalactic matter at
redshifts much less than z;, ~ 1090, which contributes to the last-scattering
probability distribution P(7). Because nearby events subtend large angles,
the additional terms in Cgg ¢ and Crg ¢ due to reionization are negligible
except for relatively small ¢, in fact £ < 10. After three years of oper-
ation, the WMAP collaboration!8 found on the basis of the EE correla-
tion alone that if reionization is sudden and complete at a redshift z,, then
Zy = 10.93';, corresponding to an optical depth T = 0.09 & 0.03. This
result is in line with expectations of the onset of star formation, and it has
played an essential role in the use of temperature correlations to determine
the magnitude of R and to set an upper limit on Dy, discussed in Sections
7.2 and 7.3, respectively. Scattering by the reionized plasma produces a
peak in Cgg ¢ much like the peak at £ ~ 140, but shifted to much smaller
¢, around £ >~ 4, because it occurs at an angular diameter distance much
smaller than the angular diameter distance of the era of recombination. The
WMAP measurements and other measurements of Cgg , for larger values
of ¢ are in good agreement with the theoretical formula (7.4.38) for C gE, o
as shown in Figure 7.6, and future measurements are expected to further
reduce the uncertainties in this comparison.

B. Tensor modes

For tensor modes, the matrix J;; in Eq. (7.4.4) is given by the Fourier integral
(6.6.9) and line-of-sight integral (6.6.24):

Tix.p, 0= fd3q ' 1*B(q, 1)

A==£2

/td[/ exp ( iq- p /t dt” /t dr’ (l”))
X —iq - _— = We
fn P ¢ oa(t”) 1% ‘

181, Page et al., Astrophys. J. Suppl. Ser. 170, 335 (2007) [astro-ph/0603450].
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Figure 7.6: Observed values of the multipole coefficient (¢ + 1)Cgg¢/27m in square
microKelvin, vs. ¢, from L. Page et al., astro-ph/0603450. (Note that Cgg ¢/2m is mul-
tiplied here with ¢ + 1, rather than the usual £(¢ + 1).) Dark squares are the WMAP data;
the triangles are BOOMERanG data; the lighter squares are the DASI data; the diamonds
are the CBI data; and the asterisk is the CAPMAP datum. The solid curve is the theoret-
ical curve for (¢ + 1)C gE ¢/2m, with cosmological parameters taken from a fit to WMAP
temperature and low-£ polarization data.

x [ — Pkbi (51] —ﬁzﬁj) exi(§. 1) Dy(t')
— 0t Wig, 1) (0@ %) — hibrer(@.2)
— DiPrei(q, 1) + pip;prpieri (4, A))] ,
Again using the conditions 7;e ;(7) = 0 and ey ;(W)ey ;(n) = 0, we see that

the only term in the integrand here that contributes to the Stokes parameters
in Eq. (7.4.4) is the one proportional to ¢; ¥. This term gives

1
0" Gy + iU i) = ~5 Toes es ) 3 [ g pan

A==£2

. 0] ] ~ to dl/
x ejj(q, 1) f dt exp <zq-n/ ; ) Pt)W(q,t). (7.4.42)
t1 ¢ a(t)
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7 Anisotropies in the Microwave Sky

where B(q, 1) is the stochastic parameter for a gravitational wave of wave
number q and helicity A; P(¢) is the last-scattering distribution (7.4.32);
and W(g, 1) is a source function, given by Eq. (6.6.21) in terms of the
partial wave amplitudes of the temperature and polarization perturbation
amplitudes:

1 3
V(g 1) = —AY g0+ - A<T)<q,z)+7 ISR —A”)(q, )

10 0

6 3
- AY (g, 1) — —A(T’(q, 0. (7.4.43)

Also, e;(q, 1) is the polarization tensor

eij(q, 2) = Sic (@) Sji(q) exi (2, 1) , (7.4.44)

where S;;(¢) is the standard three-dimensional rotation (7.4.12) that takes
the three-axis into the direction of ¢, and e;;(Z, A) is the polarization ten-
sor (5.2.15) for waves traveling in the three-direction, with non-vanishing
components

1
ik
(7.4.45)

e11(2,£2) = —en(Z,£2) = Fien(G, £2) = Fiexn (G, £2) =

We will first show how to find the tensor multipole coefficients CETE o

CgB’E, and C%E,E for a given source function ¥ (q, ¢), and then report the
results of a numerical evaluation using W (q, ) calculated as described in
Section 7.3.

We begin by deriving a formula for the coefficients a}T,’ +m I the expansion
of the Stokes parameters in spin-weighted spherical harmonics:

OT (A +iUT () =" ap 1 VI' () . (7.4.46)
tm

Using Eq. (7.4.40) and the orthonormality property (7.4.21) of the V}", we
have

T
Ap g = / d*i yZ”*(ﬁ)(Q(ﬁ) + iU(ﬁ))

To o A
=D ;/afq pan) [ di P w0 gimn(ar.0.0) .

51

(7.4.47)
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7.4  Polarization

where r(¢) is the unperturbed co-moving radial coordinate of a photon at
time ¢ that reaches us at time #:

to d[/
r(t) = _ 7.4.48
0=[" (7.4.48)
and
gom(p, 3, 1) = f d*h Y™ (R) &P17 N " ey i(ey j()ey(@, 1) . (1.4.49)
i

Itis convenient first to calculate the amplitude g, (0, g, A) for g along the
direction Z of the three-axis. Using the graviton polarization tensor (7.4.43)
and the photon polarization vector (7.4.9), a straightforward calculation
gives

1 2 1 .
erilies ey, 32) =7 (e+ 1(A) + z‘e+z<ﬁ)) = meﬁ% ¥ cos6)’,
(7.4.50)

where as usual ¢ and 6 are the azimuthal and polar angles of the direction
i. Eq. (7.4.22) shows that Y™ (#) is e~" times a function of 6, so the ¢
integral in Eq. (7.4.47) vanishes unless m = A = £2, in which case it just
gives a factor 2. For ygtz we will use the top line of Eq. (7.4.22), which
gives

(€ —2)! 2200 2@+1(£—2)

+2 +2 2
0,9) = | ——F-0+Y, (0 ———— 0P 0

Vio(0,¢) @32 + @,9) = @12 +P;(cosb) ,
(7.4.51)

where 01 are the differential operators

0L = d 2csch i cot6 d 2csch
==\ T o
41+
—(l-pu )— pq 4 K “) , (7.4.52)
du -2
where u = cos 8, and P% (cos ) is the usual associated Legendre polynomial
2 2 42

Py(w) =0 —n )d—MzPe(u) : (7.4.53)

Putting this together, for q in the three-direction z, Eq. (7.4.47) becomes

. [r24+1) (€ —2)! [+ AN, >
gem(p,2,£2) = 8y, +2 g (€+2)!/1 du[BiPe(u)]ep“(lqzu) )

(7.4.54)
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We use (7.4.51) for the associated Legendre polynomial, use integration by
parts to let the derivatives in 4 act on (1 F u)%e’?*, and apply the formula

0> 2 2 ion 3 41+
G- i) o (a4 + 220

= (=) (125 8ip(1 F W) - P21 F W)™

) F w2

Replacing p with —id/dp, we find

. TU+1) =2 [H!
L2, 42) = 8y du P
gem(p, 2, £2) = 2 g @+ ) w Pe()

9? , :
x-s [12F 8ip(1 F ) = P21 F 3] (1= w27
au

204+ 1) (¢ —2) [H!
=ty T [ P

2

0 0
X |:12—i—8,0——,02—i—p2
ap

dp?
AW 5
ip
X 1+8,02 pe“

The integral over u is now simply

9
F8ipF 21'/)2—}
ap

+1 )
/ 1 dp e Py(u) = 2i%(p) .

A straightforward though tedious calculation using the defining differential
equation j} (p) + (2/p)y(p) + (1 — €L+ 1)/p*))je(p) = 0 gives

2
9? 2. _ (+2D)je(p)
<1+7> P Je(p)——(£_2)17,

so finally

A . [m(2€+41)
me(/)a Z, :|:2) = _2188m’i2 T

d 9? 3 | je(p)

12480— — p2+ p>—— T 8ipF2i— |22

x{ + Pap P +p apﬁ ipF pr:| ps;
(7.4.55)
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Just as in Eq. (7.3.13) for temperature fluctuations, the amplitude for q
in a general direction is given by applying the standard rotation S(g) that
takes the three-axis into the direction of q:

gm0, 3, £2) = Y D) (S@ )gens (0.2, %) (7.4.56)
m/

where D is the spin-£ unitary representation of the rotation group. Using
Eqgs. (7.4.45), (7.4.54), and (7.4.53), we have then

apém _ /71(2€ +1 Z/d3q B(q. :|:2)Dm ﬂ(S(@)>

X / dt P(1) W(q, 1)
n

3 32
X 12-1—8,0——,02—i-/o2 2:|:81,o:|:2 2 ]2(120) .
ap ap ap | »p
p=qr(1)
(7.4.57)

In order to separate the £ and B terms in a}T, o W need the reality
properties of g and D®. First, note that

(@ %2) = —=(Su@ £ iSn@) (51 @ £ i52@)

1
7l
and

Si(q) £iSn(g) = (cos@ cos¢ Fi sing, cosf sing +i cosg, —sin@) ,
SO
€ (g, £2) = €(q, F2) = e;j(—4, £2) .

With the gravitational field dominated by a single mode, D;‘[‘ (t) must be
proportional to Dy(?), so that by absorbing any phase in B(q, £2) we can
choose D, (7) to be real. The reality of D;;(x, ¢) then requires that

B*(q,+2) = B(—q,£2) . (7.4.58)

Also, by writing D® <S(@)) = exp ( — i¢J3(Z)) exp ( — i@JZ(Z)> where J*!

are the angular momentum matrices'® for angular momentum ¢, we can

19As noted in footnote 4, the phases in these angular momentum matrices depend on the phase
/
convention chosen for the spherical harmonics. They are related by [ d Y({" m)*L Yé" n) = an ,
where L = —ix x V is the orbital angular momentum operator.

m’
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show that i
DY (5@) = =1, 1o(S¢-0) - (7.4.59)
The sign (—1)¢ here cancels the same sign in i~¢ = (—=1)%i*. It follows that

the whole effect of taking the complex conjugate of a}T,, /m» and changing

m to —m, is to replace the differential operator acting on j;(p)/p? with its
complex conjugate:

20 —|— 1 A
afs = Toit | TEEED Z f g B(a. %2) D)), (S@)

x/ dt P(t) ¥ (q,1) (7.4.60)
1

9 92

x 1124 8p-— — p? + p? 5 % 8ip £ 2ip 29 | e .
ap 8 8,0 p2

p=qr(t)

The definitions (7.4.25) then give

= i Ty TEED D [ ¢4 a2 0, (s@)

x/ dt P(1) W(q, 1)
1
] 3% |j
w1280 = p2 g 2 00 |10 . (7.4.61)
dp p* | p?
p=qr(1)

20+1 )
W= 1Ty | T )Zi [ a2 0, (s@)

x/ dr P(t) W(q, t){|:8,0+2 23 ]”(‘2’)} (7.4.62)
t Pl P qr()

We can now calculate the multipole coefficients, using the stochastic
averages

(B@. 1) B*(@. 1)) =87 (q — )8 (7.4.63)
and the unitarity relation (7.3.17):

2 (D) A @) A\ K 4
/d qu:I:Z S(Q)>D /:|:2<S(q)) - %—Hammlagg’ .

The sum over helicities +2 just gives a factor 2 in the EE and BB
correlations, while as expected in the EB correlation there is a complete
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cancelation, due to the + sign in Eq. (7.4.60). The tensor mode contribu-
tions to the polarization multipole coefficients are then2°

o0
CgE,e =71'2T§/0 qqu

2
to 9 82 ]
X f dt P(t)¥(q,1) 12+ 8p— — p? +,02—2 Jz(,;J)
51 8/) 8,0 0 -
p=qr(t)
(7.4.64)
T 22 [ 2
Cppy=m TO/O q- dq
fo P .
<|[Farovan ([0 ]22) e
" 9 P p=qr(t)

The results (7.4.59) and (7.4.60), together with Eq. (7.3.14), allow us also
to calculate the multipole coefficients in the correlation between temperature
and polarization. In C%B the 4 sign in front of the integral over wave
numbers in Eq. (7.4.60) produces a cancelation between the two terms in
the sum over helicities -2, so that as expected C%B = (. On the other hand,
in C 7T~E the sum over helicities £2 just gives a factor 2, so that Egs. (7.3.14),
(7.4.61) and (7.4.59) give

(e+2) [
C7T~E7[=—2712T§ /0 q* dg

€ —-2)!
t ) _
x/odzP(z)lIJ(q,t) 12+8,Oi—,02+p28_2 ]A_,;))
4 ap ap 0 B
p=qr(1)
o) -
X'/t‘l t (qst) qzrz(t/) s ( 4. )
where
. 1 to
d(g,1) = [Dq(l) - Ea)c(l)] exp <—/ w(1) dﬂ) . (7.4.67)
t

The calculation of the gravitational wave amplitude D, () and source
function W (q, t) is described in the previous section. For the same cosmo-
logical parameters as assumed there, Eqs. (7.4.62) and (7.4.63) give the EE

20These formulas, and also Eq. (7.4.64), are equivalent to those of Zaldarriaga and Seljak, ref. 1.
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Figure 7.7: The multipole coefficients ¢(£ + l)CEE’ /27 and £(¢ + l)CgB’ /27 in square
microKelvin, vs. ¢, for cosmological parameters given in Section 7.3, from ref. 21. The
results agree to about 1% with those obtained (adopting the same cosmological parameters)
by employing the computer programs CMBfast or CAMB, in which, instead of using the
integral equation (7.3.22) as done here, the Boltzmann hierarchy is truncated at a maximum
value of £. (The results of these two computer programs also differ from each other by about
the same amount.)

and BB multipole coefficients shown in Figure 7.7. (We will come to the TE
coefficients below.)

The results (7.4.62)—(7.4.64) provide a basis for highly accurate computer
calculations of the tensor multipole coefficients, but a casual inspection of
these formulas does not provide much insight to the qualitative behavior of
these coefficients as functions of £. In particular, looking at Egs. (7.4.62)
and (7.4.63), we could hardly guess that CZ;B,Z < CETE,E forall £ > 15, or
that C g peand C ETE ¢ approach each other for £ < 100, as shown for one set
of cosmological parameters in Figure 7.7.

These results become much simpler and more transparent for large £.
Recall that for p — v? > v*3 (where v = € + 1/2), the spherical Bessel

functions have the well-known asymptotic behavior?!
cosbh
i1 (p) - ———=cos |v(tanb — b) — /4], 7.4.68
Jelp) = s cos| ) — /4] (7.4.68)

211, S. Gradshteyn & I. M. Ryzhik, Table of Integrals, Series, and Products, translated, corrected and
enlarged by A. Jeftrey (Academic Press, New York, 1980): formula 8.453.1. The same approximation is
used by J. R. Pritchard and M. Kamionkowski, Ann. Phys. 318, 2 (2005) [astro-ph/0412581], but their
subsequent approximations are very different from those made here and in ref. 21.
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where cosh = v/p, with 0 < b < 7/2. On the other hand, for v? —
02 > v*3_ji(p) is exponentially small. In the range in which |p? — V2| <
v#3 neither approximation is valid, but j¢(p) is a smooth function of p
in this range, without the singularity at p = v that might be suggested
by the factor 1/+/sinb in Eq. (7.4.66). For v > 1 this range contributes
only a small part of the range of integration, and we would expect to be
able to use the approximation (7.4.66). For p? — v2 > v¥3 > 1, the
dominant contributions to derivatives of j¢ () / p* come from terms in which
the derivative acts only on the cosine in Eq. (7.4.66), so that

d 02 | Jje(p) . ,
12+8p— — o>+ p*— |02 = o)+ )
p p=] p

N _(1 +sin2b) cosbh
v+/sin b

cos [v(tanb — by — 71/4] (7.4.69)

. 2S5
[8,0 + 2p2%} ﬂ;—’;) — 2j,(p) > —w sin [v(tanb —b) — 71/4]
(7.4.70)

(Letting the derivatives act on 1/+/sin b would produce a non-integrable
singularity at » = 0, but this is spurious, because the asymptotic formula
(7.4.66) breaks down for p very near v, where in fact there is no singularity.)
Then Eqgs. (7.4.62)—(7.4.64) become, for v = £+ 1/2 > 1,22

272 00
T T 2
CEE,e = 2 /0 q- dg

X f dt P(t) W(q,1)
r(t)>v/q

2
. 2
y { a1+ s1n.b) cos b cos [u(tanb —b) — n/4]}
sin b cosb=v/qr(t)
7T2T2 00
ct,, =T / 2 dg / dt P(1) W (g, 1)
v 0 rt)>v/q
2
X {2\/ sin b cos b sin [v (tanb — b) — 7'[/4i| }cosb=v/q (1)
(7.4.71)

2R, Flauger and S. Weinberg, Phys. Rev. D 75, 123505 (2007) [astro-ph/0703179].
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2772T2 00
CYT‘E,E =T 2 f qz dq
f dt P(HV¥(q, 1)
r(>v/q

[(1 + sin b) cosh

cos [v(tanb —b) — n/4]]
cosb=v/qr(t)

/ dr' d(q,t)
r(t)>v/q

X { COS‘ b, cos [v(tan b - n/4]} . (7.4.72)
sinb cosb'=v/qr(t

This approximate result for C1,. ¢ 1s compared with the exact result (7.4.64)
in Figure 7.8.
For CETE’E and CgB ¢,» we can usefully make a further approximation.

The quantity » = cos™! <v/qr(t)) does not vary appreciably within the

relatively narrow range of times ¢ in which the last-scattering probability
P(?) is appreciable, so we can set r(¢) equal to rp = r(tr) everywhere except
in the phase v(tan b — b), which for v > 1 does vary over a wide range in this
time interval. Furthermore, because this phase varies over a wide range, the

10+1)CY
2
\ i
200" 400 600 800 1,000
/l
-1
2

Figure 7.8: The multipole coefficient £(£ + l)CTE /27 in square microKelvin, vs. ¢, from
ref. 21. The solid curve is taken from the exact formula (7.4.64); the dashed curve represents
the approximation (7.4.71). In both cases, the method of calculating the gravitational wave
amplitude and the source function, and the assumed cosmological parameters, are those
described in Section 7.3.
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7.4  Polarization

difference between cos[v(tanb — b) — /4] and sin[v(tanb — b) — 7 /4] is
inconsequential, and we may as well replace both with cos[v(tan b — b)].
Then Egs. (7.4.69) and (7.4.70) become??

o0
L+ 1D)Cfp, — Ty f q* dq {(1 +sin® b1)? cos® bLYeos by =v/qrp

v/rp
2
cos [v(tanb — b)]
X dt P(t) V(q, 1) _ ;
/r‘(t)>v/q /sinb
cosb=v/qr(t)
(7.4.73)
°° 2
U+ 1)Chy, — 7T / q* dq {4sin® by, cos® br)cosb, =v/qr,
v/rr
2

cos [v(tanb — b)]
Vsinb

y / dt P(1) W (q, 1)
r)>v/q cosb=v/qr(t)
(7.4.74)

(We have not set b = by in the factors 1/+/sin b in both integrals over ¢,
in order to avoid a divergence in the integration over ¢ at ¢ = v/rr.) The
results of using these approximate formulas are compared with the results
of using the exact formulas (7.4.62) and (7.4.63) in Figures 7.9 and 7.10.

Our approximate result for ng,z agrees with the exact result to about
1%, which is good enough for any practical purpose. The approximate
result for CIZ:E, , 1s not quite as good, agreeing with the exact result only to
about 14%, but these approximations are evidently good enough to use them
to draw qualitative conclusions. One immediate conclusion is that, since
1+ sin’ br) > 4sin® by for all real by, we have CJ;ZE,e > ng,z- Also, for ¢
small enough so that the wave number £/r;, comes into the horizon before
matter-radiation equality, say £ < 100, for which W(£/rr, 1) is small, the
integrals over ¢ are dominated by values for which cos b is small, in which
case (1 + sin” b)? ~ 4sin” b, and hence CEE’ . C;B’e. As already noted,
both properties are evident (for at least one set of cosmological parameters)
in Figure 7.7.

The smallness of Cg& , makes it a difficult target for future observations,
but the detection of the primordial BB mode would be of great importance to
cosmology, as it would provide clear evidence of cosmological gravitational
waves. The expectations for such tensor modes in theories of inflation are
discussed in Chapter 10.

%k %k 3k
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Figure 7.9: The multipole coefficient £(¢ + 1)CT BB /27 in square microKelvin, vs. ¢, from

ref. 22. The solid curve is taken from the exact formula (7.4.63); the dashed curve represents
the approximation (7.4.70). In both cases, the method of calculating the gravitational wave

amplitude and the source function, and the assumed cosmological parameters, are those
described in Section 7.3.
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Figure 7.10: The multipole coefficient £(¢ + 1)C

E /27 in square microKelvin, vs. ¢, from
ref. 22. The solid curve is taken from the exact formula (7.4.62); the dashed curve represents

described in Section 7.3

the approximation (7.4.69). In both cases, the method of calculating the gravitational wave
amplitude and the source function, and the assumed cosmological parameters, are those

The multipole coefficients Ceg ¢, Cppe, and Cre may be measured
by using data on correlations among the Stokes parameters and tempera-
ture fluctuations in comparison with general theoretical formulas for these
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7.4  Polarization

correlation functions,?® analogous to the general formula (2.6.4) for the

temperature correlation function. To derive these formulas, we start by
noting from Egs. (7.4.15) and (7.4.25) that

~ 1 m s —1 ANk
i) = =35 D ag.en[ V') + V7" )']
tm
i nm -~ —M AN\ Xk
N RACER O (7.4.75)
tm
~ i m —1 N
UGy = 5 ag.on| Vi = ;" " |
tm
1 nm .~ —Mm Nk
_5 ZaB,Em I:yg (n) + yg (n) :| . (7476)
tm
From Egs. (7.4.28) and (7.4.29), we then find the correlation functions

1
() 06 = 3Re Y Cr (Fei, ) + Ge(a, i)
1
+3Re ; Capo(Feliit) = GeGi)) . (7477)
1
(U@ UG) = 3Re 3 Cr (Feti, i) = GeGi, i)

1 AT Y
+5Re 2@: Capo(Fei, i) + GeGi)) . (7:4.78)

1

() UG = 31m Y Cpp.o( = Fulh,if) + Ge(i i)
12

1 . .
—|—§Im2€: CBB,Z( — Fy (i) — Go(hy i )) . (7.4.79)

where
Foa, 2y =) Vi) Vi' )" (7.4.80)
Ge(n, i) = Z V) V@) (7.4.81)

23General formulas for the correlation functions are presented by M. Zaldarriaga,
Astrophys. J. 503, 1 (1998).
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7 Anisotropies in the Microwave Sky

Also, using Eq. (2.6.2) (with ¢, now written as ar ¢,) and Egs. (7.4.27),
(7.4.74) and (7.4.75), the correlation functions between temperature fluctu-
ations and Stokes parameters are

(AT () Q) = — Y Crze ReHy(h, i) , (7.4.82)
¢
(AT () U@)) = Z CreeImHy (7, 7) , (7.4.83)
L
where
Hy(h, i) = Z Y{(R) V) R)* (7.4.84)

with Y}" the ordinary spherical harmomc.

To calculate the functions Fy(n,#') and Gy(n1,#'), we note first (for
instance, by inspection of the last line of Eq. (7.4.22)) that, for 7 in the
three-direction Z with § = ¢ = 0,

20+ 1
47

Then, using the definitions (7.4.16) and (7.4.11) and the transformation rule
(7.4.18), we can express V" as an element of a unitary rotation matrix?*

i =30, (s i)' e = |20, (s @) (7430

m

V' (©E) =bm—2 (7.4.85)

where S(7) is the rotation (7.4.12) that takes Z into 2. Using Eq. (7.4.57), it
follows then also that

VR = (DY (—i)* . (7.4.87)

Hence, by using the group multiplication property D (S)D®(S) =
D®W(SS") and the unitarity of D©(S), we obtain addition theorems® that
give us the functions needed in our formulas (7.4.76)—(7.4.78) for the corre-
lation functions

o 2] R
Foli,ity = =D (s~ @s@)) . (7.4.88)

. 2e+1 o
Geliif) = (~)' =D _,(s7'@S(=i)) . (7.4.89)

24E. Newman and J. Penrose, ref. 3; J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rorlich, and
E. C. G. Sudarshan, J Math. Phys. 8, 2155 (1967); K. S. Thorne, Rev. Mod. Phys. 52,299 (1980).

25General addition theorems for spin-weighted spherical harmonics are given by W. Hu and M. White,
Phys. Rev. D 56, 596 (1997) [astro-ph/9702170].
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To calculate the function Hy(n,n'), we recall that the ordinary
spherical harmonics can also be written as elements of a rotation matrix.
From the formula Y;"(Z) = /(2€ + 1)/4m 8,0 for the case 6 = ¢ = 0 and
the transformation rule (7.4.18), we have

YPG) =,/ 2t 4+ ! DY) (S‘l(fz)> .

Hence, again using the group multiplication property of the D matrices,
we find

Hy(h i) = 64—“1)“’ (S‘l(fz)S(ﬁ’)) . (7.4.90)
Note incidentally that
Fy(=h, =) =YY" @) V") = Ff (i) (7.4.91)
m
and
Ge(—h, —i) = Z TR VD = GE (i) (7.4.92)

Also, using the property Ym( —n) = (— l)e "(n)*,

Hy(—h, —i) =Y Y "()* V") = Hf (0, 7) . (7.4.93)
Hence the correlation functions have the reflection properties
(0@ 0@")) = (O(—h) O(=11)) , (7.4.94)
(Umny) UMW) = (U(—=n) U(-1)) , (7.4.95)
Q@) UW)) = —(Q(=i) U(=i1)) , (7.4.96)
(AT () Q)) = (AT (—n) Q(—=1)) , (7.4.97)
(ATG) U#R)) = —(AT (=) U(—#)) , (7.4.98)

as expected from the space inversion properties of the Stokes parameters
and temperature fluctuation and the assumed space-inversion invariance of
the probability distribution over which we average.

It may be noted that, in measuring the correlation functions of the Stokes
parameters observed in directions 72 and 7', observers commonly choose the
system of polar coordinates so that 7 and 7’ are on the same meridian; that is,
sothat ¢ = ¢’. (Thisis usually expressed as the condition that the first of the
two polarization vectors that are used to define the Stokes parameter should
be aligned with the great circle between 71 and 7,26 but we have defined these

26Kamionkowski, Kosowsky, and Stebbins, ref. 1.
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7 Anisotropies in the Microwave Sky

two polarization vectors always to lie in the directions of increasing 6 and ¢,
so it amounts to the same thing.) This has the advantage that the functions
Fo(n, '), Gy(n,n') and Hy(n, i) are then all real, and depend only on 6 —6'.
To see this, note that by using the representation

pO <S(7AZ)> = exp < — i¢J3(£)) exp ( — i9J2(5)>

of the standard rotation from Z to 7 in terms of the angular momentum
matrices Jl-(e), we can rewrite Eqgs. (7.4.87)—(7.4.89) as

Foiiy = 2 4: ! [exp (ier“)) exp (i¢J3“))

X eXp < — i¢/J3(€)> exp < — i9']2(6)):| ,
—2,-2

20+ 1
Gy, i) = (=)t 4+ |:exp (i@Jz(e)) exp (id)JS(E))
T

X exp < — g+ n].zy)) exp ( —ilm — 9’]J2“’>] :
-2,-2

iy =2 4: ! [exp (ier“)) exp (z‘¢J3“))

X €xp < — i¢/J3(€)> exp < — iG’JZ(E)):|
0,2

If ¢ = ¢’, then

2+ _
Folh, ity = = |:exp (1(9 — 9/)J2“)>] ,
-2,-2

so Fy(n,n') for ¢ = ¢’ depends only on 6 — 6’. Also, iJz(Z) is a real matrix,
so Fy(n, i) for ¢ = ¢’ is also real. Asto Gy, for ¢ = ¢’ we have

20 + 1
Ge(n, i) = (—1)Z—4+
TT

X |:exp (i@.]z(e)) exp ( — inJée)) exp ( —i[m — 9’]]56))]

20+ 1
47

—-2,-2

= (=1)f
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x |:exp (i03) exp (+ il — 0105 ) exp (— inng)}

2041 . )
:(—1)6 |:exp 1(9—9/+7T)J2 5
4 ( ) 0

2,22

so Ge(n,n') for ¢ = ¢’ is real because iJz(Z) is a real matrix, and depends
only on & — 6’. Finally, Hy(n,#') is real and depends only on 6 — 6’, for
the same reasons as for F, (71, 7). We conclude then that if the coordinate
system is chosen so that ¢ = ¢, the correlation functions (Q(7) Q(#)) and
(Um) U')) and (AT (n) Q")) depend only on the angle 6 — 0’ between
nand 7/, while (Q(n) U(')) and (AT (n) U(R')) vanish. Also, (Q(n) Q())
and (U n) U(')) are obviously symmetric between 7 and 7/, so for ¢ = ¢’
they actually depend only on |6 — 6'|; that is, on the angle between 72 and 7.
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8
The Growth of Structure

In Chapter 6 we followed the evolution of small perturbations through
the radiation and matter dominated eras, up to the time of decoupling,
when radiation no longer interacted effectively with matter. Now we will
continue the story past the time of decoupling. In Section 8.1 we will
follow the perturbations while they remained small, continuing our lin-
ear analysis. This era is increasingly becoming accessible to observation, as
studies of the cosmic matter distribution are pushed to larger redshifts.
As we shall see, data on the distribution of matter fluctuations already
provides an important extension of results from cosmic microwave back-
ground anisotropies to smaller wavelengths, and it is hoped that eventu-
ally it may provide information of the effect of dark energy on cosmic
expansion.

Of course, eventually the perturbations in the matter density became
strong enough for the linear approximation to break down, as shown vividly
by the existence of stars and galaxies and galaxy clusters. It is believed that
these structures were formed in a two-step process.! First, in regions where
the density was a little larger than average, the cold dark matter and bary-
onic matter together expanded more slowly than the universe as a whole,
eventually reaching a minimum density and then recontracting. This sce-
nario is discussed in Section 8.2. If an overdense region was sufficiently
large then as shown in Section 8.3 its baryonic matter collapsed along with
its cold dark matter. Then in a second stage, after this collapse, the baryonic
matter lost its energy through radiative cooling, and it condensed into pro-
togalaxies consisting of clouds of gas that eventually form stars. The cold
dark matter particles could not lose their energy through radiative cooling,
so they remained in large more-or-less spherical halos around these galaxies.
We will not attempt a proper treatment of this second stage, which involves
complications of astrophysics and mathematics that deserve a treatise to
themselves.

8.1 Linear perturbations after recombination

After the disappearance of almost all free electrons the baryonic plasma
decoupled from photons, and behaved like just another form of cold
dark matter. (Effects of pressure at small wavelengths are discussed in

I'S. D. M. White and M. J. Rees, Mon. Not. Roy. Astron. Soc. 183, 341 (1978).
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Section 8.3.) With the gravitational field perturbations dominated by fluc-
tuations in the total density of cold matter, the Newtonian treatment of
Appendix F is applicable, and tells us that the fractional density perturba-
tion eventually grew as a o« t2/3. However, we need a relativistic analysis
to connect the constant wave-number dependent factor in this growth with
the strength of primordial fluctuations, characterized by the quantity R?, to
describe certain small but interesting oscillations in the density fluctuations
arising from the interaction of baryons and radiation before decoupling,
and to carry this analysis forward to near the present, when vacuum energy
became important.

In our relativistic analysis baryons and cold dark matter are treated
somewhat differently, because we continue to use a synchronous gauge in
which the cold dark matter velocity potential but not the baryon velocity
potential vanishes. After decoupling the baryon velocity potential was no
longer locked to the photon velocity potential by Thomson scattering, so to
obtain the equation for baryon conservation, we may use Eq. (5.3.34) with
DB, 8pBy, and ng ” all vanishing (because baryons move slowly), and find

2
(Squ + 3Hdppy — Cq?ﬁB(Squ = —pBYyq ,

or, dividing by pz o< a3,

8Bg — (q°/a”)Supy = — Vg 8.1.1)

where as before, p; = dpp,y/pp. For cold dark matter there is no velocity
potential, so we again have Eq. (6.2.11) for cold dark matter
conservation:

$pg = —Vq (8.1.2)

It is only our choice of gauge that makes the velocity potential of the dark
matter rather than the baryons vanish, so it is best to think of dup, as the
relative velocity potential of the baryons and dark matter.

The equation for baryon momentum conservation is given by
Eq. (5.3.32) with zero pressure and anisotropic inertia,

d0(pBSuBy) + 3H ppdup; =0,
so, dividing by s o« a~3, we have simply:
Sitgg =0. (8.1.3)

(As we will see in Section 8.3, our neglect of the baryon pressure after
recombination is justified except for the smallest wavelengths.) Finally, if
we neglect the contribution of photon and neutrino density fluctuations
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8.1 Linear perturbations after recombination

to the gravitational field perturbation, then the gravitational field equation
(5.3.36) becomes

d g, 2
E(a wq) — —47Ga ,0M<(1 — B)opg + ,33Bq> . (8.1.4)
where g is again the constant
0 Q
g=LE _ 28 /6. (8.1.5)
oM Qum

We are keeping terms of order 8 for the present, because as we shall see they
lead to effects that although small are quite distinctive.

To derive the initial conditions for these equations, we note that at times
sufficiently early (say, z > 1), at which vacuum energy as well as curvature
made a negligible contribution to the expansion rate, we have ¢ o /3, and
4w Gpy = 2/31%, so Eq. (8.1.4) gives

d
dt

The reader can easily check that the general solution of Egs. (8.1.1)—(8.1.3)
and (8.1.6) is

(z4/3wq) - —212/3<(1 — B)op, + /%Bq) . (8.1.6)

3

bpg = —5aqt* +bgt™! + (1= B)eg = 3(1 = P)1(q’ /a*)bu, . (8.1.8)
3

Spg = _anﬂﬂ + byt~ — Bey + 3Bt(¢%/a*)Sup, (8.1.9)

where ay, by, ¢4, and up, are constants that must be found by matching these
solutions to the values of ¥4, §py, 8pg, and Sup, at the time of decoupling
of matter and radiation. For late times, we need only keep the leading terms
in this solution, with coefficient a,; the other terms are suppressed relative
to these by factors =>/3, 1=2/3 and ¢~!. To calculate the coefficient ag, we
note that Bépy + (1 — B)dpy — 14 + ,Bt(qz/az)augq = —5aq12/3/2. Setting
t here equal to the time 77 of decoupling?® (when to a good approximation

2The subscript L stands for “last scattering,” and indicates the time of the decoupling of radiation
from matter, associated with the recombination of hydrogen. (To use a subscript R or D for this time
might produce confusion with the subscripts R and D that we continue to use to denote radiation
and dark matter.) Of course, this is not the moment of last scattering; some photons of the microwave
background were scattered again when hydrogen became reionized at much later times. Strictly speaking,
we should take 77 here as the time during recombination when a typical electron stops exchanging
appreciable momentum with the photons, rather than the slightly earlier time when a typical photon
stops exchanging appreciable momentum with the electrons. Because Ry is not very different from
unity, there is little difference between these times.
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8 The Growth of Structure
8Bq = 8,4 and Sup, = du, ) then gives for 1 > 1.

3
8pg(t) — 8pg(t) — —anzm

3/ t\*?
~3 (Z) [ﬁ5yq(fL) + (= B)pg(tL) — tLe(tr)

+ﬁZL(q2/a%)8uyq(tL)i| . (8.1.10)

Note that, even though the fractional density perturbations of the baryons
and dark matter were quite different at decoupling, they approached each
other at late times thereafter, an assumption we made in analyzing the obser-
vations of X-rays from clusters of galaxies in Section 1.9. It follows that the
fractional fluctuation 8,4, in the total mass density approaches

PD8pg + PBOBy
pp + PB

My — dpg — By (8.1.11)

Since these fractional density perturbations all eventually became equal,
we will concentrate from now on 8,74 (f). We now want to carry our calcul-
ation forward to the present, when dark energy may no longer be neglected.
According to Egs. (8.1.1)—(8.1.4), under the approximation of neglecting
fluctuations in the photon and neutrino energy densities, 8, (¢) satisfies the
second-order differential equation

d 2 d 2 =

7 |:a Ean] =d4nGa"pymdmy - (8.1.12)
The most important consequence of this equation, together with Eq. (8.1.10),
is that whatever we assume about dark energy, well after recombination
when the terms in 8,7, () that decay as 1/¢ have died away, the dependence
of 8p14(1) on g and ¢ factorizes:

Saq(1) = A(q) F(t) (8.1.13)
where
A(q) = BSyq(tr) + (1 — B)dpy(tr)
—1LYq (1) + Bio(q® [a7)duyq(1L) | (8.1.14)
and F(¢) satisfies the differential equation
% [ 2%F] = 4nGd’py F , (8.1.15)
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8.1 Linear perturbations after recombination

with the initial condition, that well after recombination, until dark energy
becomes important,

376\
F(z)—>§<z) . (8.1.16)

For instance, if we assume that the vacuum energy is constant, then the
Friedmann equation for a(¢) reads

i [87G
‘E’:/”—(pAﬂsM) — HoV/Qay/1+1/x,  (8.1.17)

3

where

Q 3
E{’_Az_A(i) . (8.1.18)
ao

oM QM

Using x instead of ¢ as the independent variable allows us to put Eq. (8.1.15)
in a parameter-free form

Vx(l + x) dx( T+ x — ) -l p (8.1.19)

6x1/3

The growing solution? that becomes proportional to t2/3 for x < 1 is

7 l+x/x du
4/ .
x Jo ul/0 4+ u)3/2

Eq. (8.1.16) requires that for x < 1

3/a 3 xQ 173
Fo>2(2)=20
AS(aL) 5 “L)(QA) ’

SO we can write
a(r) a(r)
F()_5<CIL>C(QM< )), (8.1.20)

where C(x) is a correction factor, normalized so that C(0) = 1:

Cx) = 5/6«/ /

W (8.1.21)

Numerical values of C(x) are given in Table 8.1.

3H. Martel, Astrophys. J. 377, 7 (1991).
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8 The Growth of Structure

Table 8.1: Values of the function C(x), giving the suppression of the growth of matter
fluctuations by dark energy as a function of x = (4 /27)(a/ag)>.

X C(x) X C(x)
0 1 1.0 0.8725
0.1 0.9826 1.5 0.8314
0.2 0.9667 2.0 0.7981
0.3 0.9520 2.5 0.7702
0.5 0.9256 3.0 0.7462
0.7 0.9025 3.5 0.7254

We see that at all scales and times, dark energy suppresses the growth of
density fluctuations.

It is A(g) that contains information about conditions at decoupling. In
place of A(g), it is conventional to introduce a power spectral function P(k),
defined as a function of the present value k = ¢/ag of the physical wave
number, by*

P(k) = Qm) ad F>(to) |A(aok)|* . (8.1.22)

Most surveys of large scale structure report their results in terms of P (k).

Now we must consider how these surveys are used to measure A(g) or
P(k). Werecall that for a single dominant scalar mode (and assuming spatial
flatness), the fractional density perturbation in coordinate space takes the
form of a Fourier transform like Eq. (5.2.1):

aMmm=/7%mmmmnﬂ*=mnffqmmA@d“ (8.1.23)
where a(q) is a stochastic variable, normalized so that

(a(@a*(q)) =8 @q—q) . (8.1.24)

The quantity A(g) can be found either from measurements of the correlation
of matter density perturbations at different points, or more directly, from
an angular average of the square of a Fourier integral of the matter density
perturbation over the survey volume.

4The factor (27) is inserted here because the position-space perturbations are usually written as
Fourier transforms with an extra factor of (271)*3/ 2, and the factor aS is included because these three-
dimensional Fourier transforms are usually written as integrals over the present value of the physical
wave number, k = g/ag, rather than the co-moving wave number ¢. If the reader wishes, the co-moving
coordinates could be normalized so that @y = 1, in which case all gs in this section could be replaced
with ks.
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8.1 Linear perturbations after recombination

According to the ergodic theorem discussed in Appendix D, as long as
the survey volume V is large compared with the volume over which density
fluctuations are correlated, the ensemble averages of products of density
fluctuations can be found from an average of these products over the survey
volume, In particular, the two-point correlation function can be found from

By (x, ) dpm(y, 1) = %/V Az Spr(x + 2, 1) Sm(y+1z,1) . (8.1.25)

Of course, we measure density fluctuations as functions of redshifts and
angular positions rather than of three-dimensional positions and times, so
the correlation function actually measured is the correlation of the fractional
matter density perturbation observed at a redshift z and direction 7 with
the perturbation observed at a redshift z’ and direction 7’

£z hiZ W) = <5M (r(z)ﬁ, t(z)) Sar (r(z’)ﬁ/, z(/))) . (8.1.26)

where r(z) and #(z) are the Robertson—Walker co-moving radial coordinate
and emission time associated with a redshift z. Using Egs. (8.1.23), (8.1.24),
and (8.1.13), this is

JCNEN DR f 4 8114 (1(2)) 837, (1)) exp (i - ()i = r()it)

- F(t(z))F(z(z/)) / B 1A exp <iq (r(2)h — r(z’)ﬁ/)) .

(8.1.27)
In terms of P(k), this reads
o F<t(z)) F(z(z/)) o
E(z,ny 2, 1) = 72 20 /0 k P(k) dk
sin (k‘ds(z)ﬁ — ds(H )
, (8.1.28)

[ds(2i = ()i

where dg(z) is a convenient structure distance, related to r(z) and to the
angular diameter and luminosity distances at a redshift z by:

ds(z) = apr(z) = (1 + 2)da(z) = (1 + 27 YdL(2) .

Eq. (8.1.28) can be used to measure the power spectral function if we know
ds(z), or to measure dg(z) if we know something about features in the power
spectral function. In particular, for observations at relatively low redshift,
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8 The Growth of Structure

we can use ds(z) ~ z/Hy and ¢(z) =~ ty, in which case Egs. (8.1.28) gives the
correlation function as

sin ((k/HO)‘zﬁ —z'n

) , (8.1.29)

E(z iz i) = —02 /OOkP(k)dk
27= Jo

‘zfa —z'n

Measurements of the shape of this correlation function can evidently tell us
about the dependence of the power spectral function on k/Hj, rather than
k itself.

It is more common in large surveys to measure P(k) from the angular
average of the square of a Fourier integral of the matter density perturbation
over the survey volume. Define a Fourier transform as an integral over the
co-moving survey volume V'

1 —iQ-x

(The reason for this normalization will soon be made clear.) Using
Eq. (8.1.23), this is

S = /d3q a(@Fy(q—Q)dumy(0) , (8.1.31)

where

— 1 3 iq-x
Fr(q) = NGEE /Vd x efx | (8.1.32)

It is plausible, and will be shown formally at the end of this section, that as
long as the co-moving survey volume J contains many co-moving
wavelengths 277 /¢, the angular average of |81\K[Q |2 is the same as its ensemble
average

—/d2 ‘(SMQ(z)‘ < fdz ‘aMQ(z)M (8.1.33)

Using Eqgs. (8.1.31) and (8.1.24), this is
L/sz B <z>\2 = ifdzéfd%; Fy(@— QP a0
47 MQ 4r a4 '
(8.1.34)
Now, for large V', Fy (q — Q) approaches ((27r)3/2/ﬁ)83(q —Q),so

( )32

F _ 2
[Fy(q— QI — Ni7

8- QFr(0)=8@-Q), (8139
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8.1 Linear perturbations after recombination

and therefore
1 24 |5V 2 2
Efd 0 ‘3MQ(1)‘ = |8aro®[* (8.1.36)

where O = |Q].

Again, we measure density fluctuations as functions of direction and
redshift rather than position and time. Using Eq. (8.1.30) in Eq. (8.1.36)
and expressing the result in terms of the power spectral function (8.1.22),
we have

1 - .
Pk) = m/dzg‘fvdzndzdg(z)

x d. (z)m&w(;’(z)ﬁ 1(2)) e~ i Okds () ’ (8.1.37)
ST (12) ’ ’ h

where V = ag V' is the physical survey volume. As in the case of Eq. (8.1.28)

for the correlation function, we can use this formula either to calculate P(k)

from data for surveys with relatively low redshifts, or to find ds(z) from

larger redshift surveys combined with information about P(k) from other
sources.

Let’s now consider the calculation of A(g) and the power spectral

function. We begin by neglecting all terms of order g in Eq. (8.1.14), so that

A(q) = 8pg(tL) — trg(trL) (8.1.38)

We will return at the end of this section to the very interesting effects
associated with the small baryon density. Using Eqgs. (6.5.5) and (6.5.6),
this is
3PRIT (k) 24°RT (k)
2 - 2 2
2a; 3Hja;

Ag) = , (8.1.39)

where 7 is the dimensionless transfer function given in Table 6.1, and x/+/2
is the ratio of the wave number g to the wave number ggq that comes into the
horizon just at matter—radiation equality. (The second expression is derived
using 17 = 2/3H, where Hy = /S4arHo(1 + z1)3/% is the Hubble rate at
decoupling if radiation is neglected. This is more accurate than using the
actual age of the universe at decoupling, because Egs. (8.1.38) and (8.1.39)
were derived using a definition of the zero of time for which a o */3 during
the matter-dominated era.) Using Eq. (8.1.20), the power spectral function
(8.1.22) is then

427)3a3 C(Q2n/ Qm)
25Q3, Hy

Pk) = Reak*T*(V2k [kpg) . (8.1.40)
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8 The Growth of Structure
where, according to Eq. (6.4.58),
kEQ = qrqQ/a0 = V2HoQ/v/Qr = [13.6 Mpc]~'Quh? . (8.1.41)

In particular, if we suppose that R, ~ Ng=3%(q/q.)"s~D/2 with some
spectral index ng and constant N (which for ng # 1 depends on the arbitrary
choice of the reference wave number ¢, ), we would have
42m)’N? C*(Qn/2m)
2 prdpns—1
25 Q3 HkiS

P(k) = K'ST?(V2k/kpq),  (8.1.42)

where k., = ¢./ap. The shape of this function for ng = 1 is shown in
Figure 8.1.
Knowledge of the power spectral function allows us to calculate the mean
square value o2 of the fractional density fluctuation:
1 (F(t
02(2) = &(z. iz ) = ( ()

2 po0
N S e 2
222 U Fag) ) /(; Pk) k= dk , (8.1.43)

With P(k) given by Eq. (8.1.42), for any plausible ngs this integral is conver-
gent at k = 0, where 7 (x) — 1, but for ng > 1 it diverges at k — oo like
[ ks 21’ k dk. (Recall that, as we saw in Section 6.5, 7 (k) o In k/k? for
k — 00. On the other hand, the sine factor in the integrand in Eq. (8.1.27)
makes &(z,n;z/, ') finite for 2/ # z or ' # n.)

In order to avoid the ultraviolet divergence in o<, it is common instead
to express the intensity of the primordial fluctuations in terms of the mean
square value o 1% of the average of the fractional density perturbation over a

2

K T(x)?
0.7
0.6
0.5
0.4
0.3
0.2
0.1

K

2 4 6 8 10

Figure 8.1: Shape of the power spectral function. This plot gives k7 2(x) as a function
of k, where 7 (k) is the transfer function discussed in Section 6.5, k = ﬁk/kEQ, and
kgg = [13.6 Mpc]_1 Qrh? is the wave number that just comes into the horizon at radiation—
matter equality. Eq. (8.1.42) shows that for ng = 1, the power spectral function P(k) is
proportional to k7" (k).
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8.1 Linear perturbations after recombination

sphere of co-moving radius R/ay:

2
208 3"8 3
<;R(z)=<<4ﬂR3 fa0|x|<Rdx6M<x,t(z)> L (8.1.44)

(Because of the translation invariance of the average, it would make no
difference if we wrote the argument of § s as x+y, with y any fixed coordinate
vector.) Again using Eqs. (8.1.22) and (8.1.23), and now also Eq. (8.1.20),
we find

o2(z) =

2
1 C(QA/QM(1+Z)3) 00 -
T | Paorwr P a.
2m4(1 + z) C(QA/QM) 0

(8.1.45)

where f(kR) is the top hat distribution function

3

3a . 3
kR) = —0 dPx e™®X0 — = (sinkR — kR cos(kR)) .
TR 4nR3/ao|x|<R T (kR>3(Sm cos(ki)

(8.1.46)
In particular, if we take P(k) to be given by Eq. (8.1.42), then

lorn? €20/l +27)
—1 2
25k Q3 HY (1+2)

01%(2) =

x f oo|7(ﬁk/kEQ)|2 f kR)> I2H"S dke . (8.1.47)
0

The top hat function has f(0) = 1, so there is no change in the infrared
convergence of the integral for the mean square fluctuation, but |f'(kR)|?
decays as 9 cos?(kR) /(kR)* for k — oo, which is fast enough to remove the
ultraviolet divergence for ng < 5.

Many observations of the distribution of matter in the universe are
commonly expressed in terms of a quantity called og, which is the value of
or(z) forz = 0and R = 847! Mpc. In calculating og, we can evaluate
the transfer function using the Dicus fitting formula (6.5.12), with the
Eisenstein—Hu baryonic correction (6.5.22). Using the parameters 7 = 0.72,
Quh* = 0.14, Qph? = 0.024 and |N|? = 2.1 x 10710 which as discussed in
Section 7.2 were found at the end of the first year of WMAP observations,
and taking the present radiation temperature as 7, o = 2.725 K which yields
Qrh* = 4.15 x 1073, Eq. (8.1.47) gives oy = 0.92, in agreement with the
result og = 0.919 found by the WMAP collaboration, which was calculated
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8 The Growth of Structure

using the CMBfast computer program.> (The three-year WMAP data®

gives a smaller value, oy = 0.7611’0:832, because the reduced optical depth

inferred from three-year polarization data requires a smaller value of |N |2
to give temperature correlations about the same magnitude. The reduction
in |N|? also yields a corresponding decrease in the value of oy calculated
from Eq. (8.1.47).)

Even though Eq. (8.1.43) gives a divergent integral for ng > 1, it sug-
gests that P(k)k> can be used as a measure of the strength of the fluctuations
of co-moving wave number ¢ = agk. With P(k) given by Eq. (8.1.42) with
ns ~ 1,we have F2(¢) P(k)k> oc t*3k*| T (k /kgq)|*. Thisis a monotonically
increasing function of k, so we can conclude that it is the perturbations of
large co-moving wave number and hence small mass that become strong first,
with small condensations merging into pre-galactic dark matter haloes and
then ultimately into clusters of galaxies. This “bottom-up” picture of struc-
ture formation is the reverse of the “top-down” picture long advocated by
Zel’dovich,” according to which very large condensations form first and
then fragment into condensations on the scale of clusters of galaxies and
finally into individual galaxies. The bottom-up picture is supported by the
observation that the commonest galaxies are dwarf spheroidals, and that
our galaxy and the Andromeda Nebula M31 each have about 20 smaller
satellite galaxies.

Returning now to the power spectral function, inspection of Table 6.1
shows that the function «|7 (x)|* has a maximum value of 0.74, reached at
k = 2.0. Since Eq. (6.4.58) gives k proportional to «, with k = Qah%«/
19.3 Mpc, P(k) for ng = 1 has a maximum at this value of «,
corresponding to

kmax = 0.10 274> Mpc ™. (8.1.48)

Taking C(25/ Q) = 0.767 and ns = 1, the value of the spectral function
at its maximum is

-1
Prax =72 x 101 (@) [N Mpc? (8.1.49)

SD. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003). The result oy = 0.9 quoted
in this reference was rounded off from og = 0.919, in order to reflect uncertainties in the input
parameters.

OD. N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007) [astro-ph/0603449].

TYa. B. Zel'dovich, Soviet Scientific Reviews, Section E: Astrophys. and Space Physics Reviews 3, 1
(1984); S. F. Shandarin and Ya. B. Zel'dovich, Rev. Mod. Phys. 61, 185 (1989); and earlier references
cited therein.
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8.1 Linear perturbations after recombination

There are a number of measurements of the matter distribution at low
redshift that have been used to calculate P(k):

» There have been several surveys of galaxy positions and redshifts, of
which the two most recent and detailed are the Sloan Digital Sky Sur-
vey,® which will include about 800,000 galaxies, and the 2dF Survey,’
which at its completion in 2003 had included 220,000 galaxies. Results
of the Sloan Digital Sky Survey are shown in Figure 8.2.

These two surveys give values of P(k) in fair agreement with each other,
for values of k ranging from about 0.0154Mpc~! to 0.2hAMpc~!.
(Wave numbers are given in these surveys in units of / Mpc_1 because
distances are inferred from redshifts, and are therefore proportional
to #~'.) The measured P(k) has a shape consistent with the result o
k|7 (x)|* expected from Eq. (8.1.42) for ng ~ 1, and in particular seems
to reach a maximum at k& ~ 0.02/4Mpc~!, in good agreement with
Eq. (8.1.48) for Q37 ~ 0.3 and /1 = 0.7. The value at this maximum is
measured to be Ppax ~ 5 x 10* 13 Mpc3. Comparison of this result
with Eq. (8.1.49) indicates a value |N| ~ 2 x 107> for the strength of
primordial fluctuations, if we take Q37 ~ 0.3 and & =~ 0.7.

* The counts of numbers of “virialized” clusters of galaxies (like the
Coma cluster) as a function of redshift gives information about the
distribution of mass with distance.!® (See Section 1.11.) Their results
yield values for og ranging from 0.66 to about 1, and can be interpreted
as giving a value P(k) ~ 6 x 103 h=3Mpc3 for k ~ 0.1 hMpc~!, which
falls on the curve provided by the above galaxy surveys.

» Other information about the distribution of mass with distance comes
from correlations between the positions of intergalactic regions of
higher than average density, revealed through Lyman « absorption
of light from distant quasars that passes through these regions.!! (See
Section 1.10.) Their results yield values for P(k) for k between about
0.12Mpc~! and 6 A-Mpc~", which lie on the curve provided by the

8D. G. York et al., Astron. J. 120, 1579 (2000); M. Tegmark et al., Astrophys. J. 606, 702 (2004)
[astro-ph/0310725]; Phys. Rev. D 69, 103501 (2004) [astro-ph/0310723]. The latest data release at the
time of writing is analyzed by W. J. Percival et al., Astrophys. J. 657, 645 (2007) [astro-ph/0608636] and
M. Tegmark et al., Phys. Rev. D 74, 123507 (2006) [astro-ph/0608632].

9W. J. Percival et al., Mon. Not. Roy. Astron. Soc. 327, 1297 (2001); M. Colless et al., Mon. Not.
Roy. Astron. Soc. 328, 1039 (2001); M. Colless et al. (the 2dFGRS team), astro-ph/0306581. The final
data set is analyzed in S. Cole et al. (the 2dF-GRS Team), Mon. Not. Roy. Astron. Soc. 362, 505 (2005)
[astro-ph/0501174].

10For a summary with references to the original literature, see Table V of M. Tegmark et al., Phys.
Rev. D 69, 103501 (2004).
11U, Seljak et al., Phys. Rev. D71, 103515 (2005).
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Figure 8.2: Measurement of the power spectral function by the Sloan Digital Sky Survey,
from W. J. Percival et al., astro-ph/0608636. Dark circles show values of h3P(k), inferred
from the survey of galaxy positions and redshifts, with distances calculated from redshifts
using assumed cosmological parameters ;7 = 0.24, Q4 = 0.76. Vertical bars indicate
1 — o errors. The solid curve is calculated using linear perturbation theory, with cosmo-
logical parameters taken from the WMAP third-year temperature and polarization data:
h=0.73 Qy =024, Qx =0.76, Qp/ 2y = 0.174. The normalization of this curve is
taken from a fit to the data for k between 0.01 / Mpc*1 and 0.06 1 Mpcfl. The departure
of the data from this theoretical curve for large k is attributed to non-linear effects on the
growth of perturbations. The inset shows the effect of baryon acoustic oscillations, discussed
at the end of this section. Data points give the ratio of the measured power spectral function
to its value when smoothed to eliminate the oscillations. The solid curve shows the expected
ratio, calculated using parameters from the third year WMAP data.

galaxy surveys for k < 0.22Mpc~!, and extend this curve to larger

values of k, again in agreement with the expected shape o k|7 («)|2.

* Yet more information about the distribution of mass comes from weak
lensing of galactic images.'? (See Section 9.5). Their results yield

128¢e, e.g., H. Hoekstra et al., Astrophys. J. 647, 116 (2006).
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8.1 Linear perturbations after recombination

values of og ranging from 0.67 to 0.97, and can be interpreted as
giving values of P(k) for k in the neighborhood of 0.3/ Mpc™!, that
fall on the curve provided by the galaxy surveys.

These measurements are subject to various uncertainties, which raise
highly technical issues of astrophysics. In relying on redshifts to give dis-
tances, these measurements are vulnerable to complications arising from
the peculiar velocities of galaxies or galaxy clusters or Lyman « clouds.
The theory used to interpret these measurements assumes that the con-
centrations of dark matter can be treated as small perturbations, so it
is necessary to avoid using data for values of k where fluctuations have
become non-linear. Finally, in interpreting the distribution of baryonic
matter in galaxies or clusters of galaxies or Lyman « clouds in terms of
the total mass density, it is necessary either to assume that this introduces
no bias, or else to know what the bias is. Only the weak lensing tech-
nique directly measures fluctuations in the fotal mass density. For this
reason, although the other techniques can give good information about
the shape of the function P(k), they leave its overall normalization rather
uncertain. The results from the galaxy surveys quoted above are for “no
bias,” that is, with the distribution of baryonic matter before perturba-
tions become nonlinear assumed to trace the distribution of cold dark
matter.

One of the striking things to emerge from the study of the cosmic
microwave background described in the previous chapter is that these results
for P (k) obtained from studies of large scale structure agree with the strength
of primordial fluctuations found from the cosmic microwave background.
That is, the primordial fluctuation strength q3|7€q|2 seems to be roughly
constant over a wide range of physical wave numbers k = ¢/ag, from the
values ~ 10~3 Mpc~! probed by observations of the cosmic microwave
background down to all but the smallest multipole orders, to values more
than 1 Mpc~! probed by studies of large scale structure. Indeed, even before
the advent of the COBE measurements discussed in Section 2.6, the study of
the large scale structure of matter had led to the expectation that the cosmic
microwave background would show fractional temperature fluctuations of
order 1072, corresponding to |N| ~ 107>,

The measurements discussed so far were all at small or moderate red-
shifts, where the structure distance in Eq. (8.1.28) is not very different from
the linear approximation ds(z) ~ z/Hy. It is widely hoped that measure-
ments of the matter correlation function & at larger redshifts will provide
a determination of the functional form of ds(z) (or equivalently of d4(z))
beyond this approximation, which could illuminate the time dependence
of the vacuum energy. But Eq. (8.1.28) shows that in the integral for

&(z,n;zZ', 1) it is only wave numbers k <1 /r for which the integrand is
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8 The Growth of Structure

sensitive to the value of r = |ds(z)it — ds(z)i'|. If r < 1/kgg (where
kgq is the wave number that comes into the horizon just at radiation—

matter equality) then for k ~ 1/r and ng =~ 1, the approximate for-
mula (8.1.42) for P(k) together with the asymptotic formula (6.5.11) for
the transfer function give P(k) ~ k3[nk + O(1)]?, so the part of the
integral (8.1.28) for the correlation function that depends on r has the
r-dependence

© dk . )
/ — sin(kagr)[Ink + O(1)]~ ,
1/r rk

which varies only logarithmically with ». Thus in order to use measure-
ments of the matter correlation function to learn something about the
z-dependence of dg(z), we need either to carry the measurements of the
correlation function to redshifts and angles that are sufficiently different
so that |ds(z)ii — ds(z))i'| is at least of order 1/kgpq = 19.3Mpc/
Qarh?, or take advantage of the small departures of the transfer function
from the asymptotic formula (6.5.11) for k > kgg, or else take advan-
tage of small departures from our formula (8.1.42) for P(k) at
k > kgq.

Such departures from Eq. (8.1.42) for P(k) are provided by terms of
order 8 = Qp/Qu, produced by baryon acoustic oscillations before the
time of decoupling.!3 To see the effect of these oscillations, we must return
to Eq.(8.1.14), and now look at the “fast” termsin the various perturbations,
which oscillate with wave number for large wave number. In estimating the
order of magnitude of these terms, we take pp(tz) and p, (¢1) to be of the
same order of magnitude, so that R(¢z) is of order unity, and 87 Gp, (1)
is of order B H*(tz). In estimating orders of magnitude we also do not
distinguish between a; and agq, which only differ by a factor of order 3.
Then, keeping track only of the small factors 8 and ay Hy /q, Eqs. (6.4.45)—
(6.4.48) show that, aside from a common factor R exp(— fOZL ['dt), the

13The influence of baryon acoustic oscillations before decoupling on the matter distrib-
ution after decoupling was recognized by P. J. E. Peebles and J. T. Yu, Astrophys. J. 162, 815 (1970);
R. A. Sunyaev and Ya. B. Zel’dovich, Astrophys. Space Sci. 7, 3 (1970); J. R. Bond and G. Efstathiou,
Astrophys. J. 285, L45 (1984); J. A. Holtzmann, Astrophys. J. Suppl. 71, 1 (1989); W. Hu and
N. Sugiyama, Astrophys. J. 471, 30 (1996); D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998). 1
believe that the first to suggest using redshift surveys to measure d 4 (z) by observation of baryon acoustic
oscillations were D. J. Eisenstein, W. Hu, and M. Tegmark, Astrophys. J. 504, L57 (1998), and that the
suggestion to use this method to measure the evolution of dark energy is due to D. J. Eisenstein, in Next
Generation Wide-Field Multi-Object Spectroscopy, eds. M. Brown and A. Dey (ASP Conference Series,
vol. 280, 2002): p. 35.
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8.1 Linear perturbations after recombination

fast terms in B6,4(t1), (1 — B)dpy(tL), and tpy4(¢1) are of the order of
B, ,BHia%/qz, and ,BH.LaL/q, respectiv'ely, while ﬂZL(qz/a%)Suyq(lL) is of
order B(q/ar Hr), and is therefore dominant (aside from Silk damping) for
qg/arHyp > 1. Keeping only this term, we see that the oscillating part of
A(q) is approximately

AR (g) ~ Bir.(q? fap )sulSt(1r)

2B9Ry g
~ exp| — [dt | sin (gd ,
\/gaLHL(l + Ry)3/4 P ( /0 ) <q H/aL)
(8.1.50)

where as usual R = 3pp/p,; dy is the acoustic horizon distance (7.2.39) at
decoupling

i L dt
" :aL/o /30 + R)

. 2 In «/1+RL+\/REQ+RL )
Ho3RrQp(1 4 z1)3/? 1+ /REgqQ ’

(8.1.51)

and, for reasons explained earlier, we have replaced 77, in Eq. (8.1.14) with
2/3Hy. Thus the ratio of P(k) to the smooth curve given by Eq. (8.1.42)
will have bumps at k ~ wkg/2, 3nkyg/2, Smkg/2 ..., where kg =
1/dg (1 +zr). These bumps have been seen in the spectral function inferred
from observations by both the Sloan Digital Sky Survey!* and the 2dF
Galaxy Redshift Survey.!> (See the inset in Figure 8.2.) The propor-
tionality of dy to Q;;/ ? has allowed a determination of by matching
the observed and predicted positions of these bumps!'#!>. The result! is
Quy = 0.2561“8:8%2, or with a larger sample,17 Qur = 0.24 £0.02. Unfortu-
nately, these measurements are at moderate redshifts (0.16 < z < 0.47 for
the Sloan survey, and z < 0.3 for the 2dF Survey), and although they give
evidence for dark energy, they do not yet provide information about its time
dependence.

14D J. Eisenstein et al., Astrophys. J. 633, 560 (2005) [astro-ph/0501171].
158 Cole et al., Mon. Not. Roy. Astron. Soc. 362, 505 (2005).

16w, J. Percival ez al., Astrophys. J. 657, 51 (2007) [astro-ph/0608635].
7M. Tegmark et al., Phys. Rev. 74, 123507 (2006) [astro-ph/0608632].
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8 The Growth of Structure

% %k %k

As promised, we close by estimating the cosmic variance incurred in
using Eq. (8.1.33). The mean square fractional error in this formula is

AV(Q,z>z<[/ o (G ) >)}>

() i
maMQQ(t)‘ )‘SMQQ’(Z)H < MQQ(Z)‘Z><‘8MQQ’(I)‘ H

(8.1.52)

Assuming Gaussian statistics, this is

d2 d2 /
Ay (Q,0) =38y, (l)/ 9 Q

XU( oo SAI;*QQ’O)H + 53 g0 SAZQQ/(I)HZ] ‘

Using Eqgs. (8.1.31) and (8.1.24) (and recalling that a(q) = «*(—q) and
8myq(2) 1s real) then gives

d2 d2 /
Ay (Q,1) =26y, (t)/ Q/ g

y / dqFy (@ — 00) Fi(q — 00)8%,

The large volume limit Fy (q — Q) — ((27)3/2/V/V)83(q — Q) then gives
the cosmic variance as

2027)3 [ d*0 [ d*0 . .
ave.n =" / 4an 2 F00-00).

Now, FZ(Q0 — QQ') takes the value V' /(2r)3 for Q|0 — Q| < V™13,
and vanishes exponentially for 0|Q — 0’| > V~1/3, so aside from factors
of order unity,

Ay(Q,0) ~ (8.1.53)

AZER

Thus the mean square fractional error in using Eq. (8.1.33) vanishes as
Q21 ~%/3, and becomes negligible when the survey volume contains many
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8.2 Nonlinear growth

wavelengths. The numerical factor depends on the shape of the survey
volume. For instance, if the survey volume is a sphere of co-moving radius
R, then for QR > 1,

Ap(Q,1) — (8.1.54)

4Q2 R2 -
8.2 Nonlinear growth

The study of the growth of perturbations beyond the linear approximation
presents formidable mathematical difficulties. It is usually pursued by the
use of computer simulations, which are beyond the scope of this book. To
allow an analytic treatment, we can adopt a generalization of an idealiza-
tion of nonlinear growth originally due to Peebles.! With Peebles, we will
consider a fluctuation to have an overdensity Apys (that is, a total density
oM + Apys greater than the cosmic average pys) that is uniform within
a finite sphere.2 According to the Birkhoff theorem,? the metric and the
equations of motion of a freely falling test particle inside the sphere are
independent of what is happening outside the sphere, and are therefore the
same as in a homogeneous isotropic universe, described by a Robertson—
Walker metric, with a density pps () + Apar(2), and a curvature constant
that is not in general equal to the cosmological curvature constant K. In a
Robertson—Walker metric with curvature constant K, the scale factor a(z)
satisfies the Friedmann equation (1.5.19):

87 Ga? (1)
3

Likewise, the scale factor A(¢) of the Robertson—Walker metric inside the
fluctuation will satisfy a Friedmann equation:

P+ K = (5M(z) n ,0V> . 8.2.1)

87 GA2(1)
3

where K + AK is the curvature constant of the interior metric. We are
including in the total density both a non-relativistic mass density, and a

A0+ K+ AK = (5w + Aoy (1) + pv) . (82.2)

IP. J. E. Peebles, Astrophys. J. 147, 859 (1967).

2J. E. Gunn and J. R. Gott, Astrophys. J. 176, 1 (1972) took into account the infall of matter from
outside a sphere of uniform overdensity, which amounts to treating the overdensity of the sphere and
its surroundings as a step function of radius. A non-vanishing vacuum energy was incorporated in the
Gunn-Gott model by H. Martel, P. R. Shapiro, and S. Weinberg, Astrophys. J. 492, 29 (1998), who
considered fluctuations consisting of a ball with a uniform overdensity surrounded by a spherical shell
with a uniform underdensity.

3G&C, Sec. 11.7.
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8 The Growth of Structure

vacuum density py (not included by Peebles) which for want of any contrary
evidence is taken to be time-independent.

We will only consider the case of vanishing cosmological curvature,
K = 0. We are primarily interested in fluctuations that have a chance to
stop expanding and recollapse to high density, so we shall take AK > 0.
The total matter density obeys the conservation law

4

P (6) + Appr (D) o< A7) (8.2.3)
while the unperturbed density satisfies
o) xa3(1) . (8.2.4)

With K = 0, the normalization of a is arbitrary; we will find it convenient
to use Egs. (8.2.3) and (8.2.4) to normalize « so that

A0 (50 + Aoy () = & DM () . (8.2.5)

In order to provide initial conditions for this problem, we must first
consider times that are sufficiently early in the matter-dominated era so that
Appr(t) and AA(1) = A(r) — a(t) can be treated as small perturbations, and
the vacuum energy may be neglected. As we saw in Section 1.5, in this case
Egs. (8.2.1) and (8.2.4) have the solution

1
C6nGr?

To first order in the perturbations around this solution, Eq. (8.2.2)
becomes

ax*?,  pu (8.2.6)

. 8t Ga’py (2A A
2aAA + AK = ”“pM< A, pM).

3 a M
or, using Eq. (8.2.6)
AK 4 (20A  Apy\ 4 AA
az 92 a oM 3t a

Also, to first order in perturbations, Eq. (8.2.5) gives at early times

AA _A,oM
a  3pyu

b

4The case of negative cosmological curvature is considered by B. Freivogel, M. Kleban, M. N.
Martinez, and L. Susskind, J. High Energy Phys. 0603, 039 (2006) [hep-th/0505232].
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8.2 Nonlinear growth

so AA is governed at early times by the first-order differential equation

AK _4aA_4aA 627

This has solutions for  — 0 of the form AA « */3 and AA « t~1/3.
Assuming that enough time has passed for the solution AA =173 to die
away, we have AA  r*/3, and so

AK = —Q lim 1~ 2a(H) AA(t) = 407G lim az(t)ApM(t) . (8.2.8)
9 >0 t—0
In characterizing the initial strength of a fluctuation within a co-moving
radius r, we note from Eq. (8.2.8) that at early times Apys(f) x a=%(f)
2/ 3 2 (1), so we can define a time-independent quantity, which we shall call
the initial fluctuation strength:

3
t
o1 = lim 2Pu ) (8.2.9)
=0 PM([)
Then Eq. (8.2.8) can be written
40 G
AK = 22220520 (1)
4071(;
%m@mwmmﬂxw (8.2.10)

Note that we do not have to take the limit # — 0 here, because azﬁif is

time-independent.

Now let’s consider the development of the fluctuation at later times, when
it can no longer be treated as a small perturbation. Using Eq. (8.2.10) allows
us to write the Friedmann equation (8.2.2) (with K = 0) as

87 G.A2
9

A= [3(PM + Apu + pv) — 5o + Apa)*p 1/3] ,
or, using Eq. (8.2.3),
J 2
(Par + Apar) ™ (E@M + Apm) =87G

x (3(/3M + Apy + pv) — 5w + Ao py! 3) . 8211

The right-hand side vanishes at a total mass density oy + Apayr = pe
satisfying

3(pe + pv) =52 p" . (8.2.12)
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8 The Growth of Structure

For p, > 0, the quantity 5/03/3 ,011/3—3,oc takes values from —ocoto 5007 /243,
so Eq. (8.2.12) has a solution if and only if the fluctuation is strong enough
so that’

729

> — . 8.2.13
PLZ 555PV ( )

Aslongas Eq. (8.2.12) has a solution, the density pps(¢) + Apas (¢) will drop
until it reaches the value p., and then increase again to infinity. The total
time elapsed for this expansion and collapse is given by Eq. (8.2.11) as

f 2 o0 dp

c — .
Vi 1/3
871G o o350+ pv) = 5920

(8.2.14)

(The factor 2 appears here because it takes the same time to contract from
the minimum density p, to infinite density as it does to expand from infinite
to minimum density.) For example, in the limit p; > pyp, this gives

I
te > —/—— .
© 7532 /8nGpy

If linear perturbation theory held up to this time then instead of becoming
infinite, in this case the fractional density perturbation at time z, would be

Apm p\'" s 2y1/3 24372\
s 6w GrH)3 = = 1.686 .
n=(5) e ( 500 )

(8.2.15)

We see that gravitational collapse occurs at a time when linear perturbation
theory would predict a fractional density perturbation large enough to make
obvious its own invalidity.

Of course, different fluctuations will have different initial strengths p;
and co-moving radii R. In order to make contact between this analysis and
observation, it is convenient to make use of an approach due to Press and
Schechter.® By inverting Eq. (8.2.14), we can calculate the minimum initial
fluctuation strength p;(¢.) required for collapse at or before a time ¢.. For
instance, for fluctuations that are sufficiently strong to collapse before vac-
uum energy becomes important, Eq. (8.2.15) gives p1(t.) = 8171/1000Gt3.
To calculate the probability that a random point in space will be in a fluc-
tuation this strong, we assume that at an early time ¢, before non-linearities
become significant, the probability P; r(Apar) d Apys that the average den-
sity within a co-moving sphere of radius R is increased by a density excess

3S. Weinberg, Phys. Rev. Lett. 59,2607 (1987).
OW. H. Press and P. Schechter, Astrophys. J. 239, 1 (1974).
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8.2 Nonlinear growth
between Apyr and Apyr + d Apyy is given by the Gaussian distribution

dApy ( Ap3,

P r(App) dApy = - exp| ———4L—
t V2w or(z) P (1) 202(z)) 52, (1)

) . (8.2.16)

For a Harrison—Zel’dovich spectrum of fluctuations with R, = Ng—3/2, the
standard deviation o for the fractional fluctuation Apys/par averaged over
a radius R is given by Eq. (8.1.47), which for ng = 1 reads
16en? CH(@n/Qu(1+2)°)
2 g4 2
25Q3%, H (1+2)

oR(z) =

/ - T (V2k /kg) | |f (kR) |1 k3 dk . (8.2.17)
0

where f is the top hat distribution function (8.1.46); 7 is the scalar trans-
fer function, defined and calculated in Section 6.5; and kgq is the wave
number (8.1.41) that comes into the horizon at matter-radiation equality.
Using Eq. (8.2.9), this can be expressed as a time-independent probability
Pr(p1) dpy for fluctuations averaged over a co-moving sphere of radius R
to have a initial strength between p; and p; + dpy:

= dpi "
Pr(pr)dpr = ———~+—exp | ——15 (8.2.18)
32y 6 253

where 6 is a time-independent quantity, given by

6r = lim py (1(2)0R()

167 N2 3 \? a3 [ , ,
- ] P T(V2k R 3 die .
25 <8nG) Pumo /0 T (V2k/keQ) [f kR &k dk

(8.2.19)

Because we are averaging over a sphere of co-moving radius R, it is only
fluctuations whose co-moving radii are greater than R that contribute to this
probability. Integrating, we see that at early times, before the fluctuations
become strong, the probability that a random point in space is in a fluctu-
ation with initial strength greater than p; and co-moving radius greater
than R is

00 d,O p2/3
P(> 1,>R):/ ——  _exp|-—
P o 32w p?36R P 253

_ % (1~ exf (o} 1¥25%) ] (8.2.20)
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8 The Growth of Structure

where erf () is the usual error function

W2
erf(y) = J% 7yﬁdx exp(—x2/2) . (8.2.21)

At early times the universe has uniform matter density, so Eq. (8.2.20)
also gives the fraction of all matter that is in fluctuations with initial strength
greater than p; and co-moving radius greater than R. If we now set o1 in
Eq. (8.2.20) equal to the critical initial strength p;(¢) for collapse by a time
t, then we find that at time ¢, when nonlinearities have become important,
the fraction of all matter that is in collapsed structures with co-moving radii
greater than R will be

F(> R,1) = % [1 — erf(pll/3(t)/«/§61g>] . (8.2.22)

The massin a sphere of co-moving radius R is the time-independent quantity
47 par (D@ (£)R3 /3, so at time ¢ the number density n(M, ) dM of collapsed
structures with mass between M and M + dM is given by

pm(t) d -
g/[M Wﬁ‘rf(pll/s(l)/ﬁUR(M))

13, = 2/3

t t t

= 0w exp (20D | 8223
M~ 2m 26 )

where R(M) = (3M /4na’py)'/3. (Press and Schechter somewhat arb-
itrarily multiplied this by a factor 2, to take account of the matter in regions
with a negative density fluctuation.”) These collapsed structures eventually
furnish the halos of cold dark matter that surround galaxies in the present
universe.®

In using Eq. (8.2.23), we need to know the mass dependence of ().
For large masses and radii, the integral (8.2.19) is dominated by low values
of the wave number k, for which the transfer function 7 (k) is close to unity,
so Eq. (8.2.19) gives 63 o« R™%, and 50 G5 5, o« M~*3. (For a primor-

n(M,t) = —

-1
doR(M)
dM

dial fluctuation spectrum R, oc ¢‘=4")/2 we would have a factor k>*"s dk
in place of k3dk in Eq. (8.2.19), which would give 61% o« R™37"s and so

7For a derivation of this factor of 2,see J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser, Astrophys.
J. 379, 440 (1991).

8The effects of non-spherical collapse on the mass function n(M, t) is considered by P. Monaco,
Astrophys. J. 447, 23 (1995); J. Lee and S. F. Shandarin, Astrophys. J. 500, 14 (1998); R. K. Sheth and
G. Tormen, Mon. Not. Roy. Astron. Soc. 308, 119 (1999); R. K. Sheth, H. J. Mo, and G. Tormen,
Mon. Not. Roy. Astron. Soc. 323, 1 (2001).
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8.3 Collapse of baryonic matter

512«1\/1) o« M~G+75)/3 ) The argument of the exponential in Eq. (8.2.23) in

this case is thus proportional for ng = 1 to M*/3, giving a rapid fall-off of
the number density for large mass. On the other hand, for small masses and
radii, the integral (8.2.19) is dominated by large values of the wave number
k, for which according to Eq. (6.5.11) the transfer function T («) falls off like
Ink/k?. The integral (8.2.19) then varies only logarithmically with R, and
so the number density n(M) goes for small M more-or-less like M 2. The
detailed M -dependence predicted by Eq. (8.2.23) is in reasonable agreement
with the results of large computer simulations of the evolution of cold dark
matter.’

8.3 Collapse of baryonic matter

Until now we have supposed that the baryonic matter of the universe, which
after recombination consisted chiefly of neutral hydrogen and helium, had
negligible pressure. In this case baryonic matter just followed along with
cold dark matter in its expansion and possible recontraction. Actually, aswe
saw in Section 2.3, the baryonic matter retained a small residual ionization
even after the nominal era of recombination, providing enough electrons
for Compton scattering of photons of the cosmic microwave background
to keep the temperature of baryonic matter equal to the temperature of
the microwave background until the redshift dropped below about 150.
Small overdense regions did not have enough of a gravitational field to
overcome the baryonic pressure, so their baryonic matter did not collapse
along with the cold dark matter. This led to relatively small clumps of cold
dark matter that now do not contain galaxies, and are therefore undetectable
except for their gravitational effects. The question is, how small did a clump
of matter have to be for its baryonic component to have resisted gravitational
collapse?

Before the existence of cold dark matter was generally accepted, this
question was addressed in a simple theory due originally to James Jeans.!
According to this theory, small perturbations either oscillate or grow
according to whether their wave number is greater or less than a criti-
cal wave number k; = /4w Gpp/vs (where vy is the speed of sound) so
a clump is too small to collapse if its mass is less than the Jeans mass,
given by pp(27/ky)3. This theory naturally (given its date) was not orig-
inally set in the context of an expanding universe, but not much changes

oV, Springel et al., Nature 435, 629 (2005) [astro-ph/0504097].

1], Jeans, Phil. Trans. Roy. Soc. 199A, 49 (1902), and Astronomy and Cosmogony (2nd ed., first
published by Cambridge University Press in 1928; reprinted by Dover Publications, New York, 1961),
pp- 345-350.
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8 The Growth of Structure

when the expansion is taken into account.”? But as we shall see, it turns
out that results are quite different when we include the effects of cold dark
matter.

We are considering only non-relativistic matter during an era in which
radiation contributed little to the gravitational field, so we can apply the
Newtonian cosmological theory described in Appendix F. By following the
same reasoning that led there to Egs. (F.15) and (F.16), but now including
both baryonic matter with a squared sound speed dpp/dpp = vf and cold
dark matter with zero pressure, we find that the velocity potential perturba-
tions Sup and Sup and the density perturbations §pp and §pp for co-moving
wave number q are governed by the equations of continuity

dépp

-+ 3Hdpp — a ' ppq*sup =0. (8.3.1)
ds
d‘;B +3HSpp —a~ ppqPoup =0 . (8.3.2)
and the Euler equations
dsu 4 Ga
2+ Houp = =60 + o0 (8.3.3)
dt q
déu 4 Ga v?
5 Houg = 2= [8/)1) + 5,03] % Sp, (8.3.4)
dt q aps

As in the relativistic case, it is convenient to introduce the fractional density
perturbations §, = 8p,/0,. Using the Friedmann result that both unper-
turbed densities p, go as > o 2, and eliminating the velocity potentials,
these equations then become

.. 4 . 2
) —8ép = —|BS 1—p8)38 8.3.5
D+ 30D 3t2[,33+( ﬂ)D], (8.3.5)
. 4 . 2a 2
1) —8ép=—=—=96 —| 86 1—p8)8 8.3.6
B+308=—75 B+3t2[}63+( ,B)D], (8.3.6)
where o and 8 are defined by
3q2v3212 qzvsz OB Qp
= = , E_—:—20.17, 8.3.7
“ 2a? 47 Gppa® P M Qum ( )

and py = pp + pB.

Note that o was constant during the era (roughly for z > 150) when
baryonic matter had the same temperature as radiation, because ,Usz x T
a~'. Thus we can find power-law solutions’ to Egs. (8.3.5) and (8.3.6) that

2G&C, Sec. 15.9.
3Approximate power law solutions were given by P. J. E. Peebles, Astrophys. J. 277, 470 (1984).
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8.3 Collapse of baryonic matter
apply during this era. We set
ép o t’ s sp=E&6p, (8.3.8)

where v and & are time-independent (but q-dependent) quantities to be
determined. Egs. (8.3.5) and (8.3.6) then become

4v 2
v@—1H~;=§V5+a—ﬂﬂ, (8.3.9)
4 24 2
v@—n+3w~;=gk+a—ﬁy4. (8.3.10)

Eliminating & yields a quartic equation for v. This generically has four
different solutions, so there are four independent power-law solutions of
the fourth-order system of differential equations (8.3.5) and (8.3.6), which
therefore form a complete set of solutions.

The general solutions of Egs. (8.3.9) and (8.3.10) are too complicated
to be illuminating, but we can find useful approximate solutions if we take
into account the small value of 8. In the limit of very small 8, there are two
baryon-poor solutions for which & < 1:

1

=2/3 = 8.3.11
V=23, £=1— (8:3.11)
=—1 £ = : (8.3.12)

V= s - 1 +C( oI

and two baryon-rich solutions for which & > 1:
1 1 2« l+o

=—— — - — =— 3.1

v 3 % 3 & 5 (8.3.13)

All of these solutions decay with time, except for the first solution (8.3.11),
in which the baryon and cold dark matter fractional density perturbations
both grow as ¢2/3. This solution therefore dominates at late times. To first
order in B, the power-law exponent and baryon fraction in this mode are

2Ba 1 Ba?

U:2/3_5(1—|—a)’ S:1+a_(1-|—oe)3'

The fractional baryonic corrections to v and & are a maximum for very
short wavelengths, for which they take values 38/5 ~ 10% and 8 >~ 17%,
respectively.
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8 The Growth of Structure

There is nothing here like a critical wave number marking a transition
from growth to oscillation, as in the classic one-component Jeans theory.
The growing mode (8.3.11) grows for all wave numbers, with a growth rate
that for small 8 depends very little on wave number. This of course is
because the pressure of baryonic matter could not prevent clumps of cold
dark matter from becoming increasingly denser than average. What does
depend on the wave number is the fraction & of the baryons that follow the
growing condensation of the cold dark matter. This can most conveniently
be expressed in terms of the total mass M (dark and baryonic matter) in a
cubic physical wavelength 2 a/q:

b 3
M = jy <ﬂ> (8.3.14)
q
According to the formulas for & and « given by Egs. (8.3.11) and (8.3.7),
the fraction of baryons that collapsed along with the cold dark matter can
be written

SpB/p 1
PBIPE _ ¢ _ — (8.3.15)
8pp/pPD 1+ (M;/M)?/
where M is a sort of Jeans mass
T\3/2 v
My = (5) - (8.3.16)
Py

Baryons collapsed along with cold dark matter for clumps of mass much
greater than M, while clumps of mass much less than M are largely free
of baryonic matter.

The speed of sound for a gas of hydrogen and helium atoms at
temperature T is vy = (5kgT /3umny)'/2, where p is the mean molecu-
lar weight, which for a helium abundance by weight of 24% is u = 1.22.
Since we are considering an era in which 7 = T, and T. 3 /om equals its

present value TS o/ P 0, the Jeans mass can be written

SeksTy o\ __
My = (2Z5B20) 52 002 % 105 (@) V2 M (8.3.17)
3umy G

For Q7h* = 0.13, this is 6 x 10° Mg, corresponding to a baryonic mass
BMy ~ 10° M.

After the redshift dropped to about 150, the Compton scattering of the
cosmic microwave background by the residual ionized hydrogen no longer
kept the temperature of baryonic matter equal to the radiation temperature.
According to Eq. (1.1.23), the kinetic energy and hence the temperature of
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8.3 Collapse of baryonic matter

the hydrogen and helium atoms then dropped like a—2. Additional baryons
then began to fall into the already growing clumps of cold dark matter,
until the baryons were heated again by the energy released in gravitational
collapse, and eventually by the first generation of stars. The increased
baryonic temperature inhibited the further accretion of baryonic matter,
and may have resulted in the expulsion of some baryonic matter from the
clump. This is all quite complicated,* but it does not change the conclusion,
that a clump of cold dark matter whose mass is less than My will not contain
a full complement of baryonic matter.

4P R. Shapiro, M.L. Giroux, and A. Babul, Astrophys. J. 427, 25 (1994).
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9

Gravitational Lenses

In 1979 Walsh, Carswell, and Weymann' noticed a pair of quasars at the
same redshift, about 1.4, separated by just 6”. The similarity of the spectrum
of the two quasars suggested to them that there was really just one quasar,
now known as Q0957+561, split into two images by the deflection of light in
the gravitational field of an intervening massive body. This suggestion was
verified with the discovery of a galaxy with a redshift 0.36 between the lines
of sight to the quasar. Such gravitational lenses had already been studied
theoretically by many authors, and now a serious search for them was put
in train.> Many more lensing galaxies were discovered, generally elliptical
field galaxies, and also some lensing clusters of galaxies, which generally
produce arc-like images.?

Strong gravitational lensing has been used to search for dark objects, to
explore the structure of galaxy clusters, and to measure the Hubble constant.
Weak lensing offers great promise in measuring the correlation function of
density fluctuations. Lensing is a large subject; in this chapter we will give
only an overview of its cosmological applications.

9.1 Lens equation for point masses

We will first consider the gravitational lens provided by a point mass, and
later take up more detailed models. To analyze the splitting of images by a
point mass, suppose that the lines from the earth to a point source and the
earth to the lensing mass in a Robertson—Walker coordinate system centered
on the earth are separated by a small angle «. (See Figure 9.1.)

This is the angle that there would be between the images of the source
and lens, if their were no gravitational deflection of light. Because of the
deflection of light by the lens, there is a different angle 8 between the actual
images of the source and lens. We need to derive a lens equation, which gives
the relation between 8 and «.

In the coordinate system centered on the earth, the light ray from the
source follows a path from the source to the neighborhood of the lens that

Ip. Walsh, R. F. Carswell, and R. J. Weymann, Nature 279, 381 (1979).

2For a comprehensive review, see Gravitational Lenses, by P. Schneider, J. Ehlers, and E. E. Falco
(Springer-Verlag, Berlin, 1992). A more recent review is given by G. Soucail, Proceedings of the XX
Texas Symposium on Relativistic Astrophysics, Austin, December 2000.

3R. Lynds and V. Petrosian, Bull. Amer. Astron. Soc. 18,1014 (1986); G. Soucail, B. Fort, Y. Mellier,
and J. P. Picat, Astron. Astrophys. 172,114 (1987); G. Soucalil et al., Astron. Astrophys. 191, L19 (1988).
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9 Gravitational Lenses

Figure 9.1: Quantities referred to in the derivation of the lens equation, (9.1.5). The bent
solid line is the path of a photon from the source S past the lens L to the Earth E. The point
X is the apparent position of the source. The transverse distances b and ¢ from the lens to
the light path and from the source to its apparent position are greatly exaggerated, as are
the angles «, B8, and y. This is drawn for the case K = 0; in a Robertson—Walker coordinate
system centered on the Earth, the path from the source to the bend would be curved for
IK]| # 0.

is curved for K # 0; is bent by the gravitational field of the lens; and then
follows a straight line to the earth. The proper distance b of this path from
the lens at its closest approach (which we assume to be much less than the
cosmological scale 1/Hp) is

b= Bd4(EL) , 9.1.1)

where d4(EL) is the “angular diameter distance” of the lens as seen from the
earth. As discussed in Section 1.4, in general the angular diameter distance
d4(PQ) of a point Q as seen from a point P is the ratio /6 of a proper
length /& at O (normal to the line PQ) to the angle 6 subtended at P by this
length. It is given by

dq(PQ) = a(tg)rp(Q) , 9.1.2)

where rp(Q) is the radial coordinate of Q in the Robertson—Walker coor-
dinate system centered at P (in which rays of light received at P all travel
on straight lines), and 7¢ is the time the light leaves or arrives at Q. From
Figure 9.1, we can see that the line segment SX from the true to the apparent
position of the source has a proper length ¢ given by

y dy(LS) = ¢ = <,B _ a) d4(ES) (9.1.3)
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9.1 Lens equation for point masses

where y is the angle of deflection of the light ray near the lens as seen from
the lens, given by general relativity as*

_4MG
=
and d4(LS) and d4(ES) are the angular diameter distances of the source
from the lens and from the earth, respectively. From Egs. (9.1.1), (9.1.3)
and (9.1.4) we have

( B ) _yda(LS) b _ 4AMGd4(LS)
P=@)P ="0(ES) d1(EL) ~ ds(ES)d4(EL)

y (9.1.4)

= B2 . 9.1.5)

This is our lens equation. It is a quadratic equation for g, the two solutions
giving the directions of the two images into which the point source is split.
All the effects of the large scale spacetime geometry and the expansion of the
universe are contained in the angular diameter distances d4(EL), d4(ES),
and d4(LS). (In general these are independent distances; for K # 0 we do
not have d4(ES) = d4(EL) + d4(LS).)

The lens equation (9.1.5) has two roots,

2
po=3SE T +AE 9.1.6)

The angle « is not observed, because we cannot remove the lens. If all we
measure is the angular separation between the two images of the source,
then all we can learn is an upper bound on the mass of the lensing galaxy:

B+ — B> = 4B% . 9.1.7)

For instance, if d4(EL) = d4(LS) = 100 Mpc, d4(ES) = 200 Mpc, and
the sources are separated by 1”7, then (remembering that Mo G = 1.475 km
and 1 Mpc = 3.09 x 10! km), we find that M < 6 x 10° solar masses.

On the other hand, if the lensing galaxy and the two images are all
observed, we can measure the angles 81 between each image and the lensing
galaxy, but with & unknown the best use we can make of Eq. (9.1.6) is to
eliminate o by multiplying the roots

BB = B - 9.1.8)

(The minus sign just means that the two images are on opposite sides of the
lensing galaxy.) This allows us to calculate the mass M, but if the distances

4G & C, Section 8.5.
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9 Gravitational Lenses

are calculated from measurements of redshifts, then they scale with 1/H,
so what we really calculate in this way is MGHy. (As we saw in Section
1.9, velocity dispersions and angular diameters also only tell us the value of
MGHy.)

In the special case where the lensing galaxy lies directly on the line
between the source and the earth, the problem has cylindrical symmetry
around this line of sight, and we get an Einstein ring rather than a pair of
images. The angular radius of the Einstein ring is the value of 8 given by
setting « = 0 in Eq. (9.1.5), so it is just the angle g, which is why we label
it with a subscript £. Einstein rings have been observed for a number of
radio sources, starting with the source MG1 131+0456.5

9.2 Magnification: Strong lensing and microlensing

The various images that are produced by a gravitational lens will not all
have the same apparent luminosity. The apparent luminosity is the power
received per receiving area, so now we need to consider light paths that
end at various points on the telescope receiving area. For this purpose it is
helpful to refer positions in the receiving area relative to some fixed point Y,
which we can conveniently take on the axis of symmetry of the problem —
the line extending from a point source (or a luminous point on an extended
source) through the lens and past the earth. (See Figure 9.2.) We can
think of the distance 4 of a point on the telescope mirror from this line as a
function of 6, the angle at the source between the light ray to the point on
the mirror and the fixed line (in the Robertson—Walker coordinate system
centered on the source) from the source through the lens. The fraction of
all light that is emitted between polar angles 6 and 6 + d6 (with 0 < 1)
and azimuthal angles ¢ and ¢ + d¢ (measured at the source, around the
fixed line to the lens) is 6 d6 d¢/4m, while the receiving area between in
the rectangle with height dh and width hd¢ is hdhd¢, so the apparent
Iuminosity is

| Lododg/An
“\hdhdp (1 + zg)?

B L
C Axm (1 + zg)?

o (9.2.1)

QdG‘

(The factor (1 + zg)~2 accounts for the reduction of energy of individual
photons and the reduction in the rate at which photons are emitted from
the source.) From Figure 9.2, we see that

h=d SE)x = ds(SE)d4(EL)a/d4(SL) , (9.2.2)

5G.H. Chen, C. S. Kochanek, and J. N. Hewitt, Astrophys. J. 447, 62 (1995).

436



9.2 Magnification: Strong lensing and microlensing

Figure 9.2: Quantities referred to in the derivation of the magnification formula, (9.2.4).
The bent solid line is the path of a photon from the source S past the lens L to a point
E on a telescope mirror. The point Y is a fixed point near the earth on the line from the
source through the lens. The transverse distances b and / from the lens to the light path and
from the point Y to the point E where the photon arrives at the telescope mirror are greatly
exaggerated, as are the angles «, 8, x, and 6. As in Figure 9.1, this is drawn for the case
K = 0; in a Robertson—-Walker coordinate system centered on the earth, the path from the
source to the bend would be curved for |K| # 0.

where x is the angle between the line from the source to the point on the
mirror and the line from the source to the lens, and

0 =b/d(SL) = Bd4(EL)/d4(SL) . (9.2.3)

(As in Section 9.1, for any points P and Q, d4(PQ) is the angular diameter
distance of Q as seen from P.) Hence Eq. (9.2.1) gives

pdp

L=/
0 o da

9.2.4)

b

where £ is the luminosity that would be observed in the absence of the lens:

L
"7 4n (1 + z5)2d2(SE)

(9.2.5)

(Note that rg(E) = rg(S), so Eq. (9.1.2) gives d4(SE) = (1 + zs)d4(ES).
According to Eq. (1.4.12), the luminosity distance of the source as seen
from the earth is d7.(S) = (1 + z5)>d4(ES) = (1 + zs)d4(SE), which is the
distance whose square appears in Eq. (9.2.5).)

Eq. (9.2.4) is a very general result, which applies to lenses and sources of
all types. It has a particularly useful consequence for extended sources. If a
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9 Gravitational Lenses

small part of the image of such a source subtends a solid angle 8 A8 A¢ and
has an apparent luminosity A¢, then it hasa surface brightness AZ/8 AB A¢.
According to Eq. (9.2.4), this equals Afp/a Aa A¢, which is the surface
brightness that this part of the image would have if there were no lens.
Thus surface brightness is unaffected by lensing. This of course is because
gravitational lensing changes neither the number nor the energy of photons.

Let us now specialize to the case of a point lens. The lens equation (9.1.5)
gives here

a=p—BE/B. 9.2.6)
SO
ade g ghspt 9.2.7)
Bdp

The luminosity (9.2.4) is then
)

(= —— . (9.2.8)
1 - B3/ B
When the distance! a of the lens from the line joining the source and

observer is small, we have « < B, so the two solutions (9.1.6) for 8 become
B+ — £PE+ la. (9.2.9)

In this case both images are amplified by a factor |8g/2«|. On the other
hand, when the distance a of the lens from the line joining the source and
observer is large, we have a > B, so the two solutions (9.1.6) for 8 become

Br—a>»Pr, —PB-— Prla < BE. (9.2.10)

Under these conditions, the “—” ray becomes invisible, while the “+” ray
has the normal brightness expected without gravitational deflection.

Roughly speaking, therefore, a point mass can only produce noticeable
strong lensing, with more than one image, ifithasa < B, i.e., if it lies within
a proper distance amax of the line between the source and the observer,
given by

timax = Bpda(EL) = \/ AMGda(LS)dA(EL) ©2.11)

d4(ES)

IHereaisa proper distance transverse to the line of sight, and is not related to the Robertson—Walker
scale factor, which is distinguished in this section by always writing it with a time argument, as a(?).
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9.2 Magnification: Strong lensing and microlensing

Using Eq. (9.1.2), this is

g _ AMGrp (S)rg(L)a(tr) . AMGrp(S)yrg(L)a(tg) 1
e re(S) B re(S) JTI+tzr’
(9.2.12)

where 7 is the time the light signal reaches the earth (elsewhere in this book
called #(), while zy, is the redshift of the lens

1421 = a(tg) Ja(ty) . (9.2.13)

The radial coordinate r;(S) of the source in the Robertson—Walker coor-
dinate system centered on the lens can be calculated in terms of the radial
coordinates of both the source and lens in the Robertson—Walker coordi-
nate system centered on the earth by using the condition that the three-
dimensional proper distance between the source and the lens is equal in
these two coordinate systems

re(S)

r(S)
(9.2.14)
.[) vl—Kr re(L) vl—Kr

This gives

re(S) = re(S)y/1 — Krk(L) — rg(L)y/1 — Kri(S) . (9.2.15)

If at time ¢ there are n(¢, M) objects per proper volume with mass between
M and M + dM, then (using Eq. (1.1.12)) the total number of objects that
can produce a detectable splitting of the image of the source S is

'ES) drg(Lya(ty) ™
NS:/ —/ wa>, n(tp, M)ydM
J1—Kri(L) 70 -

re(S) dre(L) p(tr) rr(S)re(L)

O (42 fl- k2@ TES

where 77 is the time that the light from the source reaches the lens, and p (7)
is the mass density of possible lenses at time ¢:

= 47 Gd*(1g)

(9.2.16)

o) = /OO n(t, MYM dM . (9.2.17)
0

Also, in the integrand rg (L) and 77, are related as usual by

e dy

rg(L) )
L 9.2.18
/(; vV 1 — Kr2 173 a(t)
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9 Gravitational Lenses

and 1 + zy = a(tg)/a(ty). If there is no evolution of the density of lensing
galaxies, then p(77) = p(tg)(1 + zz)3, and Eq. (9.2.16) reads

"EGS) drp(L) (1 + z7) (VL(S)VE(L)

Ns = 4nGa2(tE)p(tE)/ S
0 1— k2L N TEG)

) (9.2.19)

Where Ng « 1 we can ignore the possibility of multiple lensing, and inter-
pret Ns as the probability that the image of the source S is appreciably
modified by a lens near the line of sight.

For sources with zg < 1, Eq. (9.2.19) simplifies to

) £ (re(S) = re(@))re()
Ng = 4nGa (tE)p(tE)/ dre(L)
0 re(S)

_ 2nGri(S)d*(tp)p(tr)  2wGzg p(tp)  z5QL
B 3 ) ¢ S

(9.2.20)

where Q7 = 8mp(tg)/ 3H3 is the fraction of the critical mass that at present
is provided by the lensing objects. We see that even for ©; as large as
Qur ~ 0.3, the probability of strong lensing is small for nearby sources
with zg « 1, but the probability should become appreciable for sources at
cosmological distances.?

For zg of order unity or larger, the strong lensing probability turns out to
depend sensitively on the cosmological model. Since the integral (9.2.19) is
complicated in general, we will consider here just two extreme cases, of a flat
universe dominated either by vacuum energy or by non-relativistic matter.

De Sitter model (2, =1, Qx = Qpr = Qr =0)

Here a(t)/a(tg) = exp (Ho(t — t(E))), so

re(L) = /t:E acz) = a(tEl)H() [CXp <H0(ZE — lL)> — 1] .

We can invert this, and find

a(tg)
1 +a(tp)Hore(L)

a(tp) =

2W. H. Press and J. E. Gunn, Astrophys. J. 185,397 (1973).
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9.2 Magnification: Strong lensing and microlensing
Then Eq. (9.2.19) becomes

Ns = 4n Gp(tg)a*(tE)
x/”@<mwwm$—m@»
0

re(S)

It is convenient to change the variable of integration from rg(L) to the
redshift z; of the lens, which is given by

q:(“wﬁ—lzwmmm@>
a(tr)

) (1 n a(zE)HOrE(L))drE(L) .

SO

N = 471G,0(IE) (ZL(ZS — ZL)) (l + ZL)dZL

_ nGp(tE)< e )

o = L(z3+2:3). (9.2.21)

Einstein-de Sitter model (2); = 1, Qx = QA = Qr =0)
Here a(t) = a(tg)(t/tp)*3 and 1 + z = (tg/tr)*/3, so

‘£ dt 1 2/3.1/3
L) = _ —
re(L) [L a(t) 3a (tE)<tE gty )

= 3a_1(tE)tE (1 -1 +ZL)_1/2> .

Hence Eq. (9.2.19) here becomes

187 Gp(tp)t. (=S

1—A+z5)712 Jo
>{a+arm—a+mrm)

_ 8t Gp(tg) (_4+ «/1+Zs+11 (1 +ZS)>

n
H} VIi+zs—1
«/1+Z +1 )
=3Q Y —— " In(l+ : 9.2.22
(e a1 ) 0222

This grows like z?S for zg « 1, in agreement with Eq. (9.2.20), but it flattens
out for zg > 1, growing only logarithmically with zg.
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9 Gravitational Lenses

We see that the probability of a given source being lensed increases
much more rapidly with the redshift of the source for a vacuum-energy
dominated model than for a matter-dominated model. For instance, for
zs = 2, Eq. (9.2.21) gives Ns = 4 for a vacuum-dominated model,
while Eq. (9.2.22) gives Ng = 0.30 1, for a matter-dominated model.

Comparison of lensing theory (under the assumptions K = 0 and con-
stant vacuum energy) with the number density of strong gravitational lenses
measured as a function of redshift by the Cosmic Lens All Sky Survey> has
given the result that

Qu = 0.31:“8:%1 (68% stat.) t&}z (syst.) .

This is not yet competitive with other measurements of 2,7, but it shows
definite evidence of the effect of dark energy on the number of observed
strong lenses.

The assumption that the lens can be approximated as a point mass is
appropriate for so-called microlensing by stars in our galaxy. Note that for
d4(EL) ~ 103 pc, d4(LS) ~ d4(ES), and MG ~ 1km ~ 3 x 10~ pc,
the effective radius \/4M Gd4(EL)d4(LS)/d4(ES) of the point mass lens
is of order 10~> pc, which is much larger than the size of even a large
star. Typically in microlensing observations a change is detected in the
luminosity of a distant point source (such as a star outside our galaxy) as
the star moves past the line of sight to the source. For a star that moves
at 100 km/sec transverse to the line of sight, the time within which the
source will be within the effective radius 107> pc of the star is about a
month, which is convenient for monitoring changes in apparent luminosity.
Between 13 and 17 microlensing events toward the Large Magellanic Cloud
(LMC) have been seen by the MACHO collaboration,* and another three
toward less crowded fields of the LMC by the EROS collaboration.” Of
these, only four of the lenses have been identified, and all of them are in
the LMC itself, rather than the halo of our galaxy.® This suggests though
it does not prove that the mass of the halo does not consist of dark objects
with the masses of typical stars.” Microlensing has also been extensively
used in searches for dark stars and extra-solar planets by the Microlensing

3K.-H. Chae et al., Phys. Rev. Lett. 89, 151301 (2002) [astro-ph/0209602].

4C. Alcock et al., Astrophys. J. 542, 281 (2000).

ST. Laserre et al., Astron. and Astrophys. 355, L39 (2000).

ON. W. Evans, in IDM 2002: The 4th International Workshop on the Identification of Dark Matter,
eds. N. Spooner and V. Kudryavtsev (World Scientific) [astro-ph/0211302].

TFor discussion of this issue, see A. F. Zakharov, Publ. Astron. Obs. Belgrade 74, 1 (2002) [astro-
ph/0212009]; K. C. Sahu, proceedings of the STSci symposium Dark Universe: Matter, Energy, and
Gravity [astro-ph/0302325].
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9.3 Extended lenses

Observations in Astrophysics collaboration® and the Optical Gravitational
Lensing Experiment collaboration.’

9.3 Extended lenses

The point source model is not at all valid for clusters of galaxies, and it
is only marginally valid for individual galaxies. (Note that for d4(LS) ~
d4(EL) ~ 1010 pc, d4(ES) ~ 2 x 10'° pc, and MG ~ 10'2km ~ 0.03 pc,
the effective radius \/4M Gd4(EL)d4(LS)/d4(ES) of the point mass lens
is of order 5 x 10* pc, which is close to the size of the spherical halo of
our own galaxy.) To deal with light rays that pass through the galaxy, it
has become common to approximate the massive halos of these galaxies as
spheres of matter in “isothermal” equilibrium, with a ratio of pressure p to
mass density p given by the mean square value (v) of any one component
of star velocity, assumed to be equal throughout the lens:

p(r) = p(r)(v?) . 9.3.1)

We have already seen in Section 1.9 that the solution of the equation of
hydrostatic equilibrium with this equation of state behaves at a large proper
distance r from the center of the lens as

20000  (v?)

= = 9.3.2
pU) 9r/ro)? 2 Gri’ ( )
which gives the mass contained within a sphere of radius r as
2 2
M(r) = @” (9.3.3)

The solution departs from this result for small r, but most of the mass of

the lens is at distances from the center where it is a good approximation.
The rate of change of the unit vector @ giving the direction of a ray

of light in a gravitational field g = —V¢ is given in the post-Newtonian

approximation by!
Ji
-%:—mx@xg. (9.3.4)

8P, Yock et al., Proceedings of the ninth Marcel Grossman meeting, Rome, July 2000 [astro-
ph/0007317].

9A. Udalski et al., Acta Astron. 54, 313 (2004) [astro-ph/0411543].

I'See, e.g., G&C, Eq. (9.2.7). A factor —2 that was missing on the right-hand side of this equation
has been supplied.
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For any spherically symmetric non-relativistic distribution of matter, we
have

GM(r)
g =——73—r, (9.3.5)
which for the outer parts of an isothermal sphere becomes
2(v?
g(r) = - <}"2 >r 5 (9.36)

For a light ray that passes the center of the lens at a distance b of closest
approach, the light ray direction a remains very close to a fixed direction.
The small change in direction then has a magnitude

®  bdx
y = 4(?) /_oo i 47t (%), (9.3.7)
and is independent of b. (We are taking the speed of light to be unity, so that
(v2)172 is dimensionless, equal to the rms velocity in units of the speed of
light.) The direction of this change is toward the center of the lens, so light
can arrive at the earth from the source along two different rays, which pass
on opposite sides of the lens center, and are separated in angle by 87 (v?).
The “+” ray, which passes the lens on the side toward the source, makes
an angle 85 at the earth with the ray from the earth to the lens given again
by Eq. (9.1.3), while the ‘—’ ray makes an angle with the earth-lens ray S_
(now taken positive), given by replacing « with —« in Eq. (9.1.3), so

yda(LS) = (B+ F @) d4(ES) (9.3.8)
which with Eq. (9.3.7) gives us our lens equation
B+ =+a+ BE, (9.3.9)
where now
47 (v*)d4(LS)
=7 9.3.10
BE Z1(ES) ( )

Here again for a lens on the line of sight from the earth to the source we
have « = 0, and the two images become an Einstein ring with angular
radius 8. Because we have now defined B+ to be positive the lens equation
gives two images only if « < Bg, which requires that the proper distance
a = d4(EL)x of the lens from the line between the earth and the source be
less than a maximum value

A7 (v¥)d4(LS)d4(EL)

amax = Brd4(EL) = 4.(ES) (9.3.11)
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9.3 Extended lenses

The magnification of the two images is again given by Eq. (9.2.4)
Bdp

=1
0 ado

b

but now we must use this with the lens equation (9.3.9), which gives

B+
B+ — BE
The magnification becomes infinite as the lens approaches the line of sight
between the earth and the source, in which case « — 0, f+ — Bg, and
the image pair becomes an Einstein ring. On the other hand, for a lens
approaching the maximum distance (9.3.11) from the earth—source line, we
have « — Bg, so B+ — 2a and B_ — 0. According to Eq. (9.3.12), the *—’
ray disappears in this limit, while the apparent luminosity of the ‘+’ ray is
doubled.

The number of possible isothermal spherical lenses that are actually able
to split the image of a point source is now given by

Ng = /FE(S) dre(Lya(tr) 5
0

——————mag,, n(L)
J1 = Kri(L)

re(S)
= 16713(02)2/0 drg(L)

te =0 : (9.3.12)

=
(07

n(tr)a(tr) (”L(S)VE(L)

J1—ki2@y N TEG)

where n(?) is the proper number density of these lenses at time ¢. For sim-
plicity, we have here taken (v?) the same for all lenses. If we also now take
K =0, sothat Eq. (9.2.15) gives rs(L) = rg(S)—rg(L), and also assume no
evolution of the population of lensing galaxies, so that n(f)a(¢) is constant,
then

2
) ,(9.3.13)

reS) [ (re(S) —re(L) )re(L)
Ns=167>(v*)n(tp)a(tp)? f < ) drg(L)
0 re(S)
872 (v?)2n(tp)a(tp)’ry(S)
o 15
872 (v?)2n(tg)
= 9.3.14
5] F(zs) , ( )
where
3
3 I+z dy
F(z) = tp)H S = . (9.3.15
() = () Hori(S)) (/1 ¢szA+szMy3+szRy4> 9.3.15)



9 Gravitational Lenses

This shows that the chance of a source being lensed depends strongly on
Qa. For instance, for Qp, = Qg = 0 and Q) = 1 we have F(z) =
8(1 — 1/4/T+ z)3, which approaches the constant 8 for large z, while for
Qy = Qr = 0and 5 = 1 we have F(z) = z3. The lensing probability for
a source at redshift z = 3 is 27 times greater if the cosmic energy density is
vacuum dominated than if it is matter dominated. From direct observations
of galaxies, the constant in Eq. (9.3.15) has been estimated as?

872 (v?)2n(tE)

~0.02. 9.3.16
15H; ( )

so for Q3 = Qg = 0 and Q2 = 1 the probability of lensing should become
large when z ~ 3.7.

Lensing probabilities for quasars of large redshift can provide sensitive
limits on 4.3 At one time it was thought on the basis of early surveys that
strong lensing statistics ruled out the possibility that a constant vacuum
energy made a dominant contribution to producing a spatially flat universe.*
Since then, many groups have carried out such studies, with corrections for
finite core radii, selection effects, etc., to set limits on 2, in flat cosmologies
with Q4 + Qu = 1. They find Q4 < 0.9, Q4 < 0.7° Q4 = 0.6470,2,7
Qp <0.743Qp <0.79.° Qp = 0.7102,1% and Q@4 ~0.45-0.75.11

The deflection A6 calculated in the isothermal sphere model of
gravitational lenses is relevant only if the light path actually passes through
the sphere. For galaxies of relatively small mass, we may have one or both
of the deflected rays passing outside the galactic radius R. The deflection
of light depends only on the Newtonian gravitational potential, and, as
Newton showed, the gravitational potential outside a spherically symmet-
ric distribution of matter is just the same as if all the mass were concentrated
at the center of symmetry, so the motion of a light ray outside the galaxy is
described by the point mass lens model considered earlier. If the light ray
passes far outside the effective radius of the galaxy we have so-called weak
lensing, which is typically discovered statistically, through a correlation in

2E. L. Turner, J. P. Ostriker, and J. R. Gott, Astrophys. J. 284, 1 (1984).

3E. L. Turner, Astrophys. J. 242, L135 (1980).

4E. L. Turner, Astrophys. J. 365, 143 (1990).

SM. Fukugita and E. L. Turner, Mon. Not. Royal Astron. Soc. 253,99 (1991).

5D. Maoz and H-W. Rix, Astrophys. J. 416, 425 (1993)

7M. Im, R. E. Griffiths, and K. U. Ratnatunga, Astrophys. J. 475, 457 (1997).

8E. E. Falco, C. S. Kochanek, and J. A. Muiioz, Astrophys. J. 494, 47 (1998).

9A.R. Cooray, J. M. Quashnock, and M. C. Miller, Astrophys. J. 511, 562 (1999) [astro-ph/9806080];
A. R. Cooray, Astron. Astrophys. 342, 353 (1999) [astro-ph/9811448].

10M. Chiba and Y. Yoshii, Astrophys. J. 510, 42 (1999) [astro-ph/9808321].

IY.C. N. Cheng and L. M. Krauss, Astrophys. J. 511, 612 (1999) [astro-ph/9810392].
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9.4 Time delay

the orientation of the images of several lensed galaxies, rather than by the
study of individual sources. This is the subject of Section 9.5.

9.4 Time delay

In addition to light rays being bent by the gravitational fields of intervening
objects, they are also delayed,! so that a fluctuation in the distant light
source appears at different times on earth in the several lensed images of the
source.” There are two effects here.

First, there is a geometrical time delay, caused by the increased length
of the total light path from the source to the earth. Since this arises over
very long distances, it can be calculated by idealizing the light path as a
geodesic of the Robertson—Walker metric from the source to the point P
of closest approach to the lens, where the light path is bent, followed by a
similar geodesic from that point to the earth. The time ¢£ that a light signal
that leaves the source at time zg arrives at the earth is given by

‘£ dt
/ —— =osp +OpE (941)
ts a(l)

where osp and opg are the proper lengths (the integrals of (g;dx'dv/)!/?)
along the paths from the source to P and from P to the earth, respectively.
The time ¢go that the light would arrive at the earth if there were no gravi-
tational deflection is given simply by

1920) dt
L 9.4.2
/IS o = o 9.4.2)

where ogg is the proper length along the geodesic from the source to the
earth. Hence the geometric time delay (which is always very short compared
to a Hubble time) is

Atgeom = tg — tgo = a(tg) (USP +opE — USE) . (9.4.3)

Now, it is easy to calculate proper lengths along geodesics that end at the
earth:

re(S) dr re(P) dr
osE = —— ., om= S 9.4.4
e - N A o - S

IThe time delay of radar reflections from planets and of radio signals from artificial satellites caused
by the gravitational potential of the sun has provided a fourth test of general relativity, as first proposed
and measured by I. Shapiro, Phys. Rev. Lett. 13,789 (1964). For a discussion, see G&C, Section 8.7.

28. Refsdal, Mon. Not. Roy. Astron. Soc. 128, 307 (1964).
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9 Gravitational Lenses

where r£(S) and rg(P) are the usual radial coordinates (in a Robertson—
Walker coordinate system centered on the earth) of the source S and the
point P of closest approach of the light to the lens. To calculate ogp we
have to do a little more work. By using Eq. (1.1.17) for the spatial affine
connection F]’fl, we see that the equation (1.1.26) of a spatial geodesic is

d>xt ;
Jo? +Kx'=0. (9.4.5)
The general solution is
_ Aicoso + B'sino , K =+1
x'(o)=1{ A"+ Bio , K=0 (9.4.6)
A'cosho + Bisinho , K=-1,

where A’ and B’ are constants characterizing different paths. These con-
stants are subject to a normalization condition

| = ~“a'xi dx/ _(dx 2 % (x - dx/do)?
_gl]dada_ do 1—-Kx2 ~
which gives

(1-KA*> (1 -—B% =K(A-B)?. (9.4.7)

We can determine the constants A and B for the geodesic from the source to
the point P by requiring that x*(0) = rg(S)nigs and x'(osp) = rg(P)igp,
where 71gs and 7igp are the unit vectors from the earth to the source or point
P, respectively. Imposing the normalization condition (9.4.7) then gives

osp

cos™! [rE(P)rE(S) cos@ + /1 —rg(P)2y/1 — l”E(S)Z] K=+l
= 12 (P) + r%(S) — 2 (P)ri(S) cos b K=0
cosh™! [—rE(P)rE(S) cos® + T+ re(P)2y/1 + rE(S)Z] K=-1,
(9.4.8)

where 6 is the angle between the directions from the earth to the source and
to the point P. This result applies for a geodesic triangle with arbitrary
angles, but of course we are interested here in the case where 6 is very small.
In this case, Eq. (9.4.8) becomes

re(P)re(8)6* =
O'ES_UEP+WS—UE1§) K=+l
P
osp = UES_UEP"'%% k=0

re(P)rg(S)0 =
OFS = OEP + 3iihops—opp) K = 1

b
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9.4 Time delay

In the terms proportional to 62 we can ignore the separation of the lens
from the point P of closest approach, taking rg(P) = rg(L); 0 = 8 — «;
and (using Eq. (9.2.14)) ogs — ogp = ors, with errors that would introduce
terms of higher order in 6. Thus, in all three cases

re(L)re(S)62
= ogs — LR 4.
osp = OES — OEP + 22.(5) 9.4.9)

The geometric time delay (9.4.3) is then

_a(tp)re(L)re(S) (B — a)?
Atgeom = 5r2(S) . (9.4.10)

Using Eq. (9.1.2), we can write this in terms of angular diameter distances
and the redshift of the lens:

(1 + z1) d4(EL)d4(ES) (B — a)?

L (LS) (9.4.11)

Al‘geom =

The details of the lens enter here only in the lens equation, which for each
image gives the unobservable angle « in terms of the observable angle 8.

There is also a potential time delay, caused directly by the motion of
the light through the gravitational potential of the lens. The calculation
of these time differences is generally done on a case-by-case basis, using
detailed models of the lensing galaxy rather than either the point source or
isothermal sphere models. Here we will consider only the case of a general
spherically symmetric lens. In a coordinate system centered on the lens with
line element in the ‘standard’ form

dt? = B(r)di* — A(r)dr* — r*do* — r*sin® 0de? , (9.4.12)
the time required for light to travel from a large coordinate distance r to a
distance b of closest approach to the lens and then out again to r is’
1/2

A(r)/B(r) dr . (9.4.13)

2t(r,b) = 2/r
o \ 1= /2 (Boy/B®))

For the weak gravitational fields that concern us here, we can use the post-
Newtonian approximation,* which gives

Ar) =1+ 2r¢'(r) B(r)=1+2¢(r), (9.4.14)

3G&C, Eq. (8.7.2)
4G&C, Eqs. (9.1.57) and (9.1.60). It is necessary to redefine the radial coordinate in order to put the
line element given by the post-Newtonian approximation in the form (9.4.12).
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9 Gravitational Lenses

where ¢ (r) is the Newtonian gravitational potential. Then to first order in ¢
—1,2

r 2
2t(r,b) =2V r? — b2 + 2/ (1 — (é) ) (rqb/(r) — ¢(r)) dr
b

’ b\ 2 =3/2 b\ 2
+2/ (1 — (-) ) <—) (¢(r> —¢(b)) dr . (9.4.15)
b r r

We will be interested in this in the case r — 00, because the effects of the
finite distance between the lens and the source and earth are already included
in the geometric time delay. The second integral in Eq. (9.4.15) converges
for r — oo, but the first integral diverges. Noting that for any kind of lens
of mass M, the Newtonian potential at large distances goes as —MG/r, we
can put the limit of Eq. (9.4.15) for »r — oo in the form

21(1,b) — 2r + 2MG In(2r) + £ (b) (9.4.16)

where

00 2\ ~1/2
fb) = —2MG1nb+2/b (1 _ (?) ) (rqb/(r) - 2z\rm) .

o 7\ —3/2 )
(R ) R G N T Pt
b r r

The first two terms in Eq. (9.4.16) diverge for »r — oo, but they are
independent of b, so when we calculate the time difference between the
arrival of fluctuations in different images of the source we need only to take
account of the differences in f'(b) for various values of . But this would
give the delay in the time used in the metric (9.4.12), which is the time told
by clocks that are far enough from the lens to ignore the lens’s gravitational
potential, but close enough to ignore cosmological effects. Because of the
cosmological redshift, the time delay observed on earth is lengthened by a
factor 1 4 zz, so the potential time delay is

Atpor = (1 +20)f (b) . (9.4.18)

For instance, if the lens is a point mass then ¢ = —MG/r, so the first
integral in Eq. (9.4.17) vanishes and the second integral is independent of
b, so the gravitational potential of the lens produces a difference in time
between the arrival of fluctuations in images of the source at angles 8; and
B> to the image of the lens, given by

Atpot(B1) — Atpot(B2) = 2MG(1 + z1) In(b2/by)
=2MG(1 + z) In(B2/B1).
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9.4 Time delay

Evidently, the potential time delay will generally be of order MG. As
shown for instance in Eq. (9.1.5), if d4(EL), d4(ES), and d4(LS) are all
of the same order d, then for strong lensing the squared angle (8 — «)? is
generally of order MG/d, so the geometric time delay (9.4.11) is also of
order MG. For a galaxy of 10!! solar masses this is 5.7 days. Measurement
of this delay can be used to measure the mass of the lens, without needing
to know the Hubble constant. We have seen that the measurement of the
angles between the source image and the lens can tell us HyM G, while the
measurement of these angles and time delays can tell us MG, so the com-
bination of angular and time-delay measurements can yield a value of Hy.
Here is a list of several lenses that have been used in this way:

* QSO 0957+561: Two images separated by 6.1”, z; = 1.41, zg = 0.36,
with time difference 417 & 3 days (95%), gave Hy = 64 & 13 km sec™!
Mpc~! .’ subsequently recalculated® as 77’:32 km sec™! Mpc~!.

* B 0218+357: Two images separated by 0.335” and an Einstein ring,
zs = 0.96, z; = 0.68, time difference 10.540.4 days, gave Hy = 69J_rlg

km sec™! Mpc~!.7

» PKS 1830-211: Two images separated by 1.0”, plus an Einstein ring,
zr = 0.89, time difference 26J_r‘5l days (8.6 GHz).8 Source redshift
measured as 2.507+.002, gave Hy = 657> kmsec™! Mpc~! for Qy =
1, Qp =0, Hy = 76J_r}g km sec™! Mpc~! for @ = 0.3, Q4 =0.7.°

* B 1608+656: four lensed images, with three time differences from four
to ten weeks, gave Hy = 75 km sec™! Mpc~! & 10%.10

A table of time delay measurements up to 2003 is given in the review article
of Kochanek and Schecter.!! In 2006, a survey!? of time delays in ten
gravitational lenses (under the assumptions that 2, = 0.3 and 2, = 0.7,
and with a number of parameters for each lens found by requiring that all
give the same Hubble constant) gave Hy = 751“{2 km sec™! Mpc—!.

ST. Kundic e al., Astrophys. J. 482,75 (1997) [astro-ph/9610162].

6G. Bernstein and P. Fischer, Astron. J. 118, 14 (1999).

7A.D. Biggs et al., Mon. Not. Roy. Astron. Soc. 304, 349 (1999) [astro-ph/9811282.

8J.E. I Lovell et al., Astrophys. J. 508, L51 (1998) [astro-ph/9809301]

9C. Lidman et al., Astrophys. J. 514, L57 (1999) [astro-ph/9902317].

0L V. E. Koopmans, T. Treu, C. D. Fassnacht, R. D. Blandford, and G. Surpi, Astrophys. J. 599, 70
(2003).

1C. S. Kochanek and P. L. Schecter, Carnegie Observatories Astrophysics Series, Vol. 2, ed. W.L.
Freedman (Cambridge University Press, 2003) [astro-ph/0306040]: Table 1.1.

12p Saha, J. Coles, A. V. Maccio’, and L. L. R. Williams, Astrophys. J. 660, L17 (2006) [astro-
ph/0607240].
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9 Gravitational Lenses
9.5 Weak lensing

For cosmology, the most promising application of gravitational lenses
probably lies in surveys of weak lensing, the study of the distortion of
the images of distant galaxies by numerous small deflections of light as
it passes from the galaxies to us through a slightly inhomogeneous distri-
bution of matter. Consider a ray of light from a point source on a distant
galaxy at co-moving coordinates rgi, where 7 is a unit vector. Whether
the intervening lenses are galaxies or clusters of galaxies or concentra-
tions of intergalactic matter, we can think of the total deflection of the
light ray as the sum of deflections caused by encounters with point lenses
L of mass my, at positions xz. (Since we will be considering only terms
of first order in the total deflection, we can think of the lenses as indi-
vidual particles, even if they are aggregated into extended objects.) For
weak lensing, the angle oy between the directions to the source and the
lens is much larger than the “Einstein ring” parameter S8gy for lens L, so
as we have seen there is only a single image, given by taking the + sign in
Eq. (9.1.6), which with « « B gives the amount of the deflection caused
by the lens as By —ar = /312:1 /ar. We decompose the co-moving lens
coordinate vector x; into components parallel and perpendicular to the
light ray:

XL=VLfl+yL, rp=n-xXg, yLEXL—fl(ﬂ-XL). (9.5.1)

The lens L deflects the light ray in a direction —j;, so the total deflection
caused by all the lenses is

N . . AMpGd4(LS)
A== PrBr /oL =—) jL , 9.5.2)
T T dy(ES)d4(EL) ar

where for any points P and Q, d4(PQ) is the angular diameter distance
of Q as seen from P. According to the definition of the angular diameter
distance d4(EL) of the lens as seen from the earth, the angle between the
directions to the source and the lens is oy = arlyr|/d4(EL), where ar is
the Robertson—Walker scale factor at the time that the light passes the lens
L. Also, it is convenient to use Eq. (9.1.2) to write d4(LS) = a(ts)r(rr,rs)
and d4(ES) = a(ts)rs, where tg is the time the light leaves the source,
and r(rz,rs) and rg are the radial coordinates of the source in Robertson—
Walker coordinate systems centered on the lens and the earth, respectively.
According to Eq. (9.2.15),

r(rp,rs) = rS\/l — Kr% — rL\/l — Kr% . (9.5.3)
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9.5 Weak lensing

The deflection is then

Aﬁ:-—E:yLi%£919£§§3. (9.5.4)
7 rsarlyLl

This is not in itself a useful result, because we do not generally know
where the image of a point on the source would be if there were no lenses. It
is more interesting to consider the variation of the deflection with position
of the ray origin. Suppose we consider a small change # in the undeflected
direction 7 to the ray origin, with @ perpendicular to 72 and |#| < 1. The
change in the vector yz from the light ray to lens L at the point of closest
approach due to the displacement of the source is then

8yL = —0(@n-x) —n(0 - xr)

Dropping the term proportional to 72, we see that to first order the change
in the deflection of the image normal to the line of sight is

Aba =) Map(rs.i) by . (9.5.5)
a

with @ and b running over two orthogonal directions normal to 7, and
My (rs, ) the 2 x 2 shear matrix for images of a source at a distance rg:

. AMpGr(rr,rs)re { Sap 2VLaVIb
Mp(rs.i) =) ab__ DLl (9.5.6)
T rsar lyLl lyLl
It is conventional to write this matrix as
M:<K+” v2 ), 9.5.7)
V2 K—V1

with « called the convergence and y; known as the shear field.
We may conveniently rewrite the shear matrix in terms of the perturb-
ation to the total Newtonian potential due to the lenses:!

MG M; G
SN == T T
L TN L ar(0r =)+ = y.()?)
(9.5.8)

IWe can neglect the effect of lenses at a cosmological distance from the light ray, so the denominator,
including the factor ay, is the proper distance to the lens L. We are here representing the complete
perturbation to the mass density as a set of lensing point masses, but since these may be particles as well
as galaxies, this introduces no loss of generality.
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9 Gravitational Lenses

where x = rin+y with 71-y = 0. (We are here explicitly taking into account
the fact that the lenses may have a time dependence, as for instance from
peculiar motion or cosmological evolution. In Eq. (9.5.6) we are using the
abbreviations

rr=rity,), YL =yr(t,),

where ¢, is the time that a light wave that reaches us at the present moment
was at a radial coordinate r, given by r = fot" dt/a(t).) In particular, the
second transverse derivatives of the potential on the light ray are

92 MG 84
{a PG z)} =Y aL b -
yalb =0 L\ (0= +yop)

3L (DL (D)
5/2
(0= r@? + 1y 0)

b

) -3/2 -5/2
The functions ((r—rL)2+ |yL|2) and ((r—rL)2+|yL|2) are sharply
peaked at r = rr, so the integral of this second derivative times any smooth

function f'(r) (smooth, in the sense that it varies little when » varies by an
amount of order |yz|) is

2
/f(r) dr |: 0 Sp(rn+y, Z)j|

0yadys y=0, 1=t,
_ Zf(VL)MLG (25ab 3 4yLayLb)
T ar lyLI? lyelt )

Comparing this with Eq. (9.5.6), we see that the shear matrix M, for a
source at radial coordinate rg is

'S yr@r,rs)r 92
0y40yp

Mop(rs i) =2 /

Sp(rn+y, Z)j| dr. (9.5.9)
0 rs

y:()s =ty

So measurement of the shear matrix can yield information about pertur-
bations to the gravitational potential by masses al a the line of sight. In
particular, by contracting the indices @ and b, we see that

1 rs , 32 .
K= —TrM:/ M Vi — Sp(rn+y,t) dr .
2 0 rs 87’2 y=0, 1=t
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9.5 Weak lensing

If the lensing is due to a collection of bodies (such as a cluster of galaxies),
all at about the same radial coordinate ry, then §¢ falls off rapidly for large
values of [r —rp |, so that the factor r(r, rs)r can be replaced with r(rz, rs)rr,
and the integral of 828¢/32r can then be set equal to zero. Using the Poisson
equation a—2V28¢ = 4w G Spyr, we can write the resulting expression in
terms of the density fluctuation §py:

_ 4n Ga*(ty,)d4(LS)d4(EL)
o dA(ES)

the integral being taken over a range of » passing through the lens. Hence,
assuming that we know the angular diameter distances appearing in
Eq. (9.5.10), a measurement of the value of x for sources seen in some direc-
tion can tell us the total mass density of a cluster of lensing masses that lie
along that line of sight, projected onto the plane normal to the line of sight.

Now let’s consider how the lensing of the images of galaxies can be
used to measure the shear matrix. In order to deal with galaxies that are
irregularly shaped, it is convenient to describe the shape of a galaxy by a
quadrupole matrix:

SpM(rfla ZI‘L)a(tI‘L)dr s (9510)

[ d*6 L(6)6,6p

Qu =Lt
[d%6 L(6)

Here the integral is over the transverse displacement 6 of the direction of
points on the image of the galaxy from some central point; the indices a, b,
etc. run over two orthogonal directions in the plane of this image; and £
is the surface brightness—the apparent luminosity per solid angle—of the
image. (In order for the integral in the numerator to converge, it may be
necessary to replace £ by some function of £, such as one that equals £
when L is above some threshold brightness, and otherwise vanishes. This
has no effect on the following analysis.) As remarked in Section 9.2, the
surface brightness of any point is the same as would be seen in the absence
of lensing from the same point on the source, so

(9.5.11)

E((l +M)o) - 55(0), (9.5.12)
where £° is the surface brightness of the source in the absence of lensing.

Introducing a new variable of integration 6" in Eq. (9.5.11) by writing 6, =
(1 4+ M) 0, and using Eq. (9.5.12), we have

/ d*0 L£(0)6,6p = (1 + M)ge(1 + M)py Det(1 + M) / d*0’ £°(0"6.6), ,
and likewise

/dze L£(0) = Det(1 + M)fdze/ £50) ,
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9 Gravitational Lenses
The determinant cancels in the ratio, so (dropping primes) we have
Oup = 1+ M)ge(1 + M)pa Q2 (9.5.13)
where QF is the quadrupole matrix in the absence of lensing

s _ S 420 L®)0abp
b= [d2 £5(6)

(9.5.14)

For simplicity of presentation, we will limit ourselves here to the case of
lensing that is sufficiently weak so that all elements of M have |M | < 1,
the case of greatest interest in cosmology. In this case (9.5.13) becomes

Oub = Oy + Mac Qg + Map Oy - (9.5.15)

Of course, we would not know the unlensed quadrupole matrix for any
particular galaxy. But if we have a sample of galaxies in about the same
direction and with about the same redshift, so that the shear matrix is the
same for all the galaxies in this sample, then we can learn something about
this shear matrix by making the reasonable assumption that the orientations
of the galaxies are uncorrelated. There are at least two ways that this can
be done.

Standard method?
In the standard method, one considers the ellipticity matrices
Xup = Qup/TrQ, 3y = 05,/ Tr0’ 9.5.16)

which are normalized to have unit trace. To first order in M, Eq. (9.5.15)
gives

Xap = X+ MacXig + Mpa X3y = 2X3Tr(MX) . 9.5.17)

If the orientation of galaxies is random, then the average of X, over a
sufficiently large sample will be proportional to §,5, and since these matrices
are defined to have unit trace, it follows that the coefficient of proportionality
must be just 1/2:
, 1

(X5, = ES“b . (9.5.18)
To deal with the term in Eq. (9.5.17) that is quadratic in X, we also need the
average of X, X ,. The random orientation of the galaxies and the symme-
try of the product requires this average to be a linear combination of 8,468+

2See, e.g., M. Bartelmann and P. Schneider, Phys. Rep. 340, 291 (2001).
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9.5 Weak lensing

and 8,4:8pg + 8440pc, and since X has unit trace, this linear combination
must take the form

1
< cfb :d> = Z |:5ab8(?d + 5(5110817([ + ‘Sadabc - Sab50d>] , (9519)
where, contracting a, b with ¢, d in Eq. (9.5.19),

£ =(Tr(x?)) - 172, (9.5.20)

(For instance, if the galaxies in our sample are all spheres, then X has both
eigenvalues equal to 1/2, and & = 0, while if they are all extremely prolate
ellipsoids then one eigenvalue is unity and the other is zero, and & = 1/2.
More generally, 0 < & < 1/2.) Taking the average of Eq. (9.5.17) and using
Egs. (9.5.18) and (9.5.19), we have

(Xap) = %84,1, +(1-8) (Ma;7 — %8abTrM) . (9.5.21)

We do not observe the average of Tr(X*2) that appears in our formula
(9.5.20) for &, but since & appears only in (9.5.21) multiplying a term that is
already of first order in M, in calculating (X,;) to first order in M we only
need & to zeroth order, and to this order we can replace X* in Eq. (9.5.20)
with the observed ellipticity matrix X:

g =(Tr(x?))-172. (9.5.22)

This can be measured from the observed shapes of the galaxies in our sample,
and Eq. (9.5.21) can then be used to find the traceless part of the shear matrix
from a measurement of the average of the observed ellipticity matrix X.

A word on formalism: In the literature, in place of the real ellipticity
matrix, one often encounters a complex ellipticity parameter

X = X1 — X +2iX12, (9.5.23)

and in place of Eq. (9.5.21) one finds a formula relating the complex shear
parameter y = y| +iy» to averages of functions of the ellipticity parameter>

(x) =2y —2(x Re(x™»)) . (9.5.24)
Using Eq. (9.5.19), it is easy to see that the average on the right is
(xRe(x*y)) =¢vr, (9.5.25)

3P, Schneider and C. Seitz, Astron. Astrophys. 294, 411 (1995). This is Eq. (4.16) of ref. 2, in the
limit |y;| < 1 and |¢| < 1.
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9 Gravitational Lenses

and that therefore the relation (9.5.24) between x and y reads

<Q11 — 02 +2i012
O11 + On

which is the same as Eq. (9.5.21).

Alternative method

It is possible to avoid the need to measure the parameter & for a sample
of source galaxies, by considering averages of the quadrupole matrix O,
itself, rather than the matrix X,;, normalized to have unit trace. The random
orientation of galaxies in our sample of sources tells us that the average of
unlensed quadrupole matrices takes the form

> =2(1-&)(y1 +iv2), (9.5.26)

1.
(0%) = 5 Qab » (9.5.27)

with O an unknown positive constant. Eq. (9.5.15) then gives

_[1
(Qup) = Q [—(Sab + Mab] : (9.5.28)

2

We can eliminate the unknown Q by dividing by the average of the trace of
the quadrupole moment. Eq. (9.5.28) and its trace give, to first order in M,

(Ow) 1 1

% = 50ab + May — 58, TeM (9.5.29)
That is,

i+ iy = (O — 02 +2i012) ‘ 9.5.30)

2(011 + On)
Thus we can calculate the traceless part of M, — that is, the shear field
— from a measurement of the average quadrupole tensor, with no need to
make a separate measurement of a parameter like &.

The difference between the standard and alternative methods is not
just one of formalism, for they involve different kinds of averages. In the
alternative method galaxies are weighted proportionally to the area of their
images, while in the standard method all galaxies are weighted equally. Thus
in the alternative method one does not have to worry so much about missing
galaxies of small apparent area.

Frequently it is not practical to measure the redshifts of the individual
galaxies whose images are distorted by weak lensing. In such cases we must
assume that there is some probability distribution NV (rs) for these galaxies to
be at a radial coordinate rg, with fooo N (rs) drs = 1. Using the alternative
method described above, we can still use Eq. (9.5.29) to calculate the traceless
part of the shear matrix from the average observed quadrupole matrix, but
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9.5 Weak lensing
now the average of the quadrupole matrix is calculated using all galaxies

along a given line of sight, and the shear matrix is replaced with an effective
shear matrix

Mo () = /0 N (rs) Map(rs, i) drs

o0 T 2
_ 2/ N(rs) drS/ Crrs)r [ O sty z,)} dr
0 0

rs 9Yadyh y=0
[ee) 32
= / Sop(rn+y,t) g dr, (9.5.31)
0 0ya0yp y=0
where % o )
g(r =2 f %2”/\/@5) drs . 9.5.32)
r

Similarly, using the standard method we can still calculate the traceless part
of the effective shear matrix from the mean ellipticity matrix, provided there
is no evolution in the shape of galaxies. In this case, Eq. (9.5.21) still applies,
but with the shear matrix given by Eq. (9.5.31), and with the average squared
ellipticity matrix in our formula (9.5.22) for the & parameter calculated by
averaging over all galaxies along the line of sight. But if galaxy shapes
evolve, then Eq. (9.5.31) must be modified accordingly: Instead of a factor
1 — & multiplying the shear matrix in Eq. (9.5.21), it is necessary to use
Eq. (9.5.22) to calculate a function &(rs) from the average of the squared
ellipticity matrix of galaxies at a radial coordinate rg, and include a factor
1 —&(rs) in the integrand of Eq. (9.5.31). This complication does not occur
with the alternative method.

Whichever method we use to extract the shear matrix from
measurements of weak lensing, we now must face a problem. We would
like to use weak lensing measurements to learn about the density pertur-
bation 8p, but as shown in Eq. (9.5.10), it is only the convergence « that is
related in any simple way to the density perturbation, while Egs. (9.5.21)
and (9.5.29) show that measurements of weak lensing tell us about the shear
field y;, not x. Fortunately, although there is no simple relation between y;
and k, there is a simple relation among their gradients.* From Eq. (9.5.9),
we have

9 'S r(r, a3
M e i) 2/ r(r,rs) Sp(rn+y,1) dr .
anc 0 rS ayaaybayf y:o =t

(9.5.33)

4N. Kaiser, Astrophys. J. 439, L1 (1995).
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Similarly, from Eq. (9.5.31), we have

9 00 83
M) = f _ Y sty Q@ 9534
one 0 | 9yadypdye r

y=0
The important point is that both expressions are completely symmetric

among a, b, and ¢. Thus the divergence of the traceless part of the shear
matrix is proportional to the gradient of the trace:

9 ! 19
% My — =5, TeM ) = =—TrM | 9.5.35
afaa< ab = 50%b T ) 2om 9.5.33)

where M can be either M (rg, 7)) or M (#). In other words,

de Oy B O In o (g536)

any ony  dnp ony  d0np  0np
Thus k can be calculated from the shear field y;, up to an 7i-independent con-
stant. As mentioned earlier, the values of ¥ obtained in this way can be used
to measure the projected mass density of lensing bodies along the line of
sight. Starting in the late 1990s, numerous groups using telescopes of mod-
erate size have detected shear due to weak lensing.” These measurements,
together with the above analysis, have been used to map out the distribution
of all matter, dark as well as baryonic, in various clusters of galaxies, such
as the bullet cluster 1E0657-558 described in Section 3.4.

Now let us turn to the application of weak lensing to find the distribution
of inhomogeneities in the cosmological mass density. In using weak lensing
to study the large scale distribution of matter in the universe, we are not
so much interested in the shear matrix in any one direction, as in its dis-
tribution around the sky. Fluctuations in the gravitational potential have
random sign, so the average over the sky of the shear matrix is zero. It is
most useful to consider instead the average of the product of shear matrix
elements along two different lines of sight, with “average” understood in the
same sense as used in the analysis of fluctuations in the cosmic microwave
background: either an average over positions from which the sky might be
observed, or an average over the particular series of accidents that lead to
a particular distribution of cosmic matter. Neither average corresponds to
what we observe, but the difference vanishes for large multipole orders, for

SFor references to these observations and a brief general review, see D. Munshi and P. Valageas,
Roy. Soc. London Trans. Ser. A 363, 2675 (2001) [astro-ph/0509216]. Comprehensive reviews of weak
lensing are given by P. Schneider and M. Bartelmann, ref. 2; A. Refrigier, Ann. Rev. Astron. Astrophys.
41, 645 (2003); P. Schneider, in Gravitational Lensing: Strong, Weak, and Micro, eds. G. Meylan et al.
(Springer-Verlag, Berlin, 2006): 269 [astro-ph/0509252].
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9.5 Weak lensing

the same reason as explained in Section 2.6 for the multipole coefficients of
anisotropies in the cosmic microwave background.

Since we are now considering different directions, it is convenient to write
the definition (9.5.7) of the convergence and shear fields more explicitly. If
we write 7 in terms of polar and azimuthal angles as

n = (sin? cosg,sin® sing,cos ) , (9.5.37)
and take the two orthogonal directions normal to 7 as

D = (cos ¥ cosg,cos? sing, —sind), ¢ = (—sing,cosg) (9.5.38)

then
k() + y1(R) = 09, My () (9.5.39)
Kk () — y1 (1) = @;9; M (i) , (9.5.40)
ya(it) = D@y M) . (9.5.41)

We are here using ¢ and ¢ instead of the usual 6 and ¢ for the polar and
azimuthal angles, to avoid confusion with other uses of the symbols 8 and ¢
in this section. Also, since we will now be considering different directions 7,
we have promoted the two-valued indices a, b, etc. to three-valued indices
i, j, etc. Eq. (9.5.31) for the 2 x 2 shear matrix M, has accordingly been
extended to give a 3 x 3 matrix

00 82
M;(n) = / |:8x-8x<8¢(x’ t):| g(r)dr . (9.5.42)
0 e X=rn, t=t,

Equivalently, we can write
y () = y1 () + iya(n) = eq;(n) eqj(n) My (i) , (9.5.43)

where, as in Section 7.4, e, = (9 + i¢)/~/2. Also, since ¢ and ¢ span the
space normal to 7,

. 1 . .
) = 5 (85 — oty ) My (9.5.44)
The expansion of the convergence in spherical harmonics follows along
almost the same lines as the expansion of microwave background tempera-

ture fluctuations described in Sections 2.6 and 7.2. We write the perturbation
in the gravitational potential as

S (X, 1) = / d*q a(q)8¢y (e ™, (9.5.45)
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where «a(q) is the stochastic parameter for scalar perturbations, normalized
so that

(a(@a*@)) =8 @—q) . (9.5.46)
Then Eqs.(9.5.42), (9.5.44), and (9.5.45) give

1 o0 -
i) == [ dga /O g1 89 (1) (o = (q-)?) 7"

The quantity —(q - 71) can be replaced with 82/9r2, and for the exponential
we can use the familiar formula

S = 47 3" i jo(qr) YR Y @) - (9.5.47)
tm
This gives the partial wave expansion for the convergence
K(R) =) aem Y () (9.5.48)
tm

with coefficients
i om = — 2" f d*q q* a(q) Y™ (@)

X /() g(r) 8¢y (tr) (je(qr) +jZ(qr)) dr . (9.5.49)

This can be used together with Eq. (9.5.46) to calculate the correlation of the
convergence with itself, or with microwave background temperature fluctu-
ations or any other scalar perturbations. In particular, for the correlation
of the convergence with itself, we have

(a/c,ﬁm a:,g/mﬂ = 08¢0/ Spmy Kkl s (9550)
where Cy ¢ is the multipole coefficient

2

Cur = 4m° /0 q° dg ' /0 2(r) 8, (1)) (jg(qr) +jg(qr))dr . (9.5.51)

On the other hand, comparing Eqgs. (9.5.43) and (7.4.6), we see that
the shear components y(77) and y»(7) involve the polarization ey (7)) in
much the same way as the Stokes parameters Q(77) and U #), so for the
same reason as in Section 7.4, it is necessary to expand the complex shear
parameter y (71) + iy2(71) in the spin 2 spherical harmonics )} (i), defined
by Eq. (7.4.16):

£ —2)!

V/'(n) =2 @+

ey i) e (i) Vi V; Y (R) (9.5.52)
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where V is the angular part of the gradient operator:

- A0 ¢ 0
V=9— —. 9.5.53
v + sin® dg ( )
Using Egs. (9.5.42), (9.5.43), (9.5.45), and (9.5.47), we have
Vi) +ia () =Y ay V' (R) (9.5.54)
Im

with coefficients

£+ 2)! Y . _
i =2t [ [ @ @7 [ swunian g

(9.5.55)

The reality of §¢(x,t) requires that a*(q)8¢,}“(t) = a(—q)d¢p,(1), while
Y@ = (=DYY;™(=q), s0 ayom = at, - Thatis, the shear pro-
duced by perturbations in the mass density is of “E” rather than “B” type,
in the sense of Eq. (7.4.25). Thus any observation of B-type shear, for which
Ay om = —a;’e _n» Would be a sign of lensing caused by something other

than density perturbations, such as gravitational waves. Unfortunately, the
lensing due to gravitational waves produced in inflation is much too small
to be observed.®

Using (9.5.46) and the orthonormality of the spin 2 spherical harmonics,

(y em & gry) = See:8pm Cyy 5 (9.5.56)

where the multipole coefficients in shear—shear correlations are

2

2
4 (t+2)! . 95.57)

Crve = —G =21

/0 ¢’ dg ‘/0 8q(tr) je(qr) g(r) = dr

The Poisson equation V2§¢ = 4m Ga®8py relates the quantity Sy (1)
appearing in Eqgs. (9.5.51) and (9.5.57) the power spectral function P(q/agp)
of fractional density fluctuations introduced in Section 8.1:

G180y (> = (A G)2a* (1) 3, (1) 18 pag (1)

_ (4 GY2d* (05X (1)P(q/av) ( 2 ((l )))

9Q3, Hya) F(1)
= 22 )@n) 4w (F(r)) ’

with F(¢) the function (8.1.20), and a¢ = a(ty).

(9.5.58)

63, Dodelson, E. Rozo, and A. Stebbins, Phys. Rev. Lett. 91, 021301 (2003).
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It is possible to give less complicated formulas for the multipole
coefficients in the most interesting case, of £ > 1. Let us first consider
the kk correlation. We can evaluate the integral over r in Eq. (9.5.51) by
recalling that for £ > 1, if ¢gr differs from ¢ + 1/2 by more than an amount
of order £-1/3, the spherical Bessel function j;(¢r) is exponentially small
for gr < € + 1/2 and rapidly oscillating for gr > £ + 1/2, while (unlike the
source functions in microwave background anisotropies) all other ingredi-
ents in the integral vary slowly with r. For £ >> 1, we can therefore replace
r with £/q in g(r) and ¢,:

2

b

Cut = 47° /O dq ¢°180(te/9) | &% (¢/q) ‘ /O (jie(ar) + ¢ @) ) dr
(9.5.59)

The integral of j; (gr) gives’

441
o0 Ja b (T) 1 [7
Je@grydr = ————%~ — — | —. (9.5.60)
/0 29 (%) gV 2¢

On the other hand, since for large ¢ the contributions from r <« £/¢ and
r > £/q are strongly suppressed, we can drop the integral over r of j; (¢r).
Thus Eq. (9.5.58) gives, for £ > 1,

273 [ 4 2.2
Cece = - J; dq q* 8¢y (tes)|1” g~ (£/q)

o
= 271364/0 drr=> |5¢6/r([r)‘2 g% (r)

0} Hyay [~ g*(r) F()\2
= T/o dr —az(lr)rzP(E/aor) (m) . (9.5.61)

The large ¢ limit of the yy multipole coefficient is precisely the same. In
this limit, the factor (¢ + 2)!/(¢ — 2)! in Eq. (9.5.57) becomes ¢4, and the
factor 2 in the integral over r in Eq. (9.5.57) can be replaced with (¢/£)2,
so for large ¢ the ratio of the integrand of the g-integral in Eq. (9.5.57) to
that in Eq. (9.5.51) (dropping j; (¢r)) is

g0t

1.
¢°

TThis is a special case of formula 6.561.14 of 1. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals,
Series, and Products, ed. A. Jeffrey (Academic Press, New York, 1980).
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Hence for large ¢,

902, Hia} g ) F())?
Cyyt = Cexe — T/o dr a2(t,)r 2,2t/ aon) (F(to)>

(9.5.62)

Thus we get just the same information by measuring the shear multipole
coefficients at large £ as we would get if we could measure the convergence
multipole coefficients at the same £.

For a given weighting function g(r) defined by Eq. (9.5.32), observation
of the ¢ dependence of C,, ¢ (or Cyc) provides a measurement of the
k dependence of the power spectral function P(k). It should be noted
that if the integral receives its main contribution from radial coordinates
r such that vacuum energy has not yet become important by the times
tr, then according to Eq. (8.1.20), F(¢) o a(?), so Eq. (9.5.62) simplifies
further, to

992H4a0/ dg()

Cyyt = Ciece = P(/apr) . (9.5.63)

This is the formula usually quoted.?

We can express the correlation functions for the shear components and
microwave background temperature fluctuations by taking over results we
have already found for the correlation functions of microwave background
polarization and temperature fluctuations. Comparing Eq. (9.5.54) with
Egs. (7.4.15) and (7.4.25), and comparing Eq. (9.5.56) with Eq. (7.4.28),
we see that we can obtain the correlation functions for the shear compo-
nents from Eqs. (7.4.76)—(7.4.78) by replacing Q and U with y; and y, and
replacing Cgg ¢ with C,,, , and (since shear is purely of E-type) dropping
Caae:

(N @)y (@) = Z Cpt Re(Fg(fz W)+ G, ﬁ’)) (9.5.64)
(r2) ya (i) = Z Cyy.e Re(Feli,il) = Ge(@, i), (9.5.69)

() (i) = Z Cpyt Im( — Fy (i, i) + G, ﬁ/)) (9.5.66)

8D. J. Bacon, A. R. Refrigier and R. S. Ellis, Mon. Not. Roy. Astron. Soc. 318, 625 (2000). Correl-
ation functions for elements of the shear matrix were studied by N. Kaiser, Astrophys. J. 498, 26
(1998).
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where F; and Gy are functions given by Egs. (7.4.87) and (7.4.88):

Fo(h, i) = 2’54“0(_@ 2(5 ) S (i )), (9.5.67)

Geth i) =~ 22D (5T S) . 0569

with D® the irreducible unitary representation of the rotation group for
angular momentum ¢, and S(7) the standard rotation (7.4.12) that takes
the three-direction with = ¢ = 0 into the direction 7. Also, if we write
the microwave background temperature fluctuation as in Eq. (2.6.1)

AT@) =) armY{' @) ,

tm

and use rotational invariance to define
(@t em @, gry) = See:8mm Cry e 5 (9.5.69)

then we can obtain the correlation functions for the shear components
with microwave background temperature fluctuations from Eqgs. (7.4.81)
and (7.4.82) by again replacing Q and U with y; and y» and replacing Crg ¢
with —C Tyl

(AT@) (@) =) | Crye ReHe(i 1Y) , (9.5.70)
14

(AT@R) () = = Cry o ImHy (A, /) , (9.5.71)
V4

where H, is the function (7.4.89):

£+1
Hy(h, 7y = 4—+Dg‘>2(s WS()) - (9.5.72)

For comparison, we mention also that the convergence correlation function
is given by the analog of the temperature correlation function (2.6.4):

20+1
(i) = Z%CM JPo(i- 1) (9.5.73)
4

The measurement of C,,, ¢ or (with the aid of Eq. (9.5.36) or (9.5.62)) of
Cir.¢ can be used not only to learn about the power spectral function P(k),
but also to put constraints on the cosmological parameters that enter in
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9.6 Cosmic strings

Eq. (9.5.32) for g(r). So far, shear measurements from the Canada—France—
Hawaii Telescope Wide Synoptic Legacy Survey have been used’ to set a
value for the parameter og discussed in Section 8.1: under the assumption
that ), = 0.3, it is found that og = 0.85 £ 0.06. Although this param-
eter is also measured in studies of large scale structure, the weak lensing
measurement has the advantage of not depending on the use of luminous
sources as a tracer of dark matter. The same group also finds from cos-
mic shear data alone that the ratio w = p/p, if assumed constant, is less
than —0.8 at 68% confidence. Another group,'? combining shear measure-
ments from the CTIO lensing survey with cosmic microwave background
data and measurements of Type la supernova redshift and luminosities, has
found that og = 0.81:{ 8'115, and that (if constant) w = —0.89J_r8:£?, with 95%
confidence. The application of weak lensing surveys to cosmology has really
just begun.

9.6 Cosmic strings

The spontaneous breakdown of symmetries in the early universe can pro-
duce linear discontinuities in fields, known as cosmic strings.! Cosmic
strings are also common in modern string theories.> Unless we are unlucky
enough to have a cosmic string slice through the solar system, the only way
that a cosmic string can be discovered seems to be through its action as a
gravitational lens.

At a sufficient distance r from a string, the gravitational field becomes
Newtonian. For a long straight string the solution of Laplace’s equation
with cylindrical symmetry has a gravitational potential of the form

¢ =—-2Golnr+C, (9.6.1)

where o and C are constants of integration. If the string is non-relativistic,
then o is the string’s mass per length. At a sufficient distance from the string
the post-Newtonian approximation applies, and the direction i of a light

9H. Hoekstra et al., Astrophys. J. 647, 116 (2006) [astro-ph/0511089].
100\, Jarvis, B. Jain, G. Bernstein and D. Dolney, Astrophys. J. 644, 71 (2006) [astro-ph/0502243].
IT. W. B. Kibble, J. Phys. A9, 1387 (1976); A. Vilenkin and E. P. S. Shellard, Cosmic Strings and
Other Topological Defects (Cambridge University press, Cambridge, 1994).
2E. Witten, Phys. Lett. B 153, 243 (1985); E. J. Copeland, R. C. Myers, and J. Polchinski, J. High
Energy Phys. 0406, 013 (2005) [hep-th/0312067].
3The relativistic calculation of lensing by a cosmic string is due to J. R. Gott, Astrophys. J. 288, 422
(1985). The anisotropy in the cosmic microwave background due to cosmic strings was calculated by
N. Kaiser and A. Stebbins, Nature 310, 391 (1984).
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ray is governed by the equation®

g
7;‘ — 20 x (X V). 9.6.2)

As long as the deflection of the light ray is small, it can be calculated as
Su = —2ig x (i1 x /dthS) , (9.6.3)

where i1 is the photon’s initial direction. An elementary integration shows
that the light ray is deflected toward the string in a direction perpendicular
to both the string and the light ray, by an angle

. dro G
|dul =

Snd (9.6.4)
where 0 is the angle between the directions of the string and the light ray.
Because the deflection is toward the string, it is in the opposite direction
for rays passing the string on opposite sides, so that the image of a source
behind the string is split into two parts. It is noteworthy that neither the
direction nor the magnitude of this deflection depends on the distance of
the light ray from the string, as long as the distance is large enough to allow
the use of the non-relativistic formulas (9.6.1) and (9.6.2).

In 2003, general interest in cosmic strings was heightened by the dis-
covery of what seemed at first to be a plausible candidate for lensing by a
cosmic string. A pair of images of elliptical galaxies separated by about 1.8
arcseconds was found to have substantially the same redshift, z = 0.46, and
the same spectra. The images were not distorted in the way that would be
expected for lensing of a single galaxy by a more-or-less spherical source, but
are consistent with lensing by a cosmic string.> Subsequently an excess of
gravitationally lensed objects was found in the neighborhood of this string
candidate,® lending further support to the view that this was the image of
a single galaxy lensed by a cosmic string. But in 2006 this interpretation
had to be abandoned, when observations at the Hubble Space Telescope
revealed that this was in fact a pair of interacting elliptical galaxies, not the
result of any sort of lensing.” This episode illustrates how difficult it will be
to detect cosmic strings through their lensing action.

4See footnote 1 of Section 9.3.

SM. V. Sazhin et al., Mon. Not. Roy. Astron. Soc. 343, 353 (2003) [astro-ph/0302547].
SM. V. Sazhin et al., astro-ph/0406516.

7M. V. Sazhin et al., Mon. Not. Roy. Astron. Soc. 376, 1731 (2007) [astro-ph/0611744].
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Inflation as the Origin of Cosmological
Fluctuations

The most exciting aspect of the inflationary cosmological theories described
in Chapter 4 is that they provide a natural quantum mechanical mecha-
nism for the origin of the cosmological fluctuations observed in the cos-
mic microwave background and in the large scale structure of matter,! and
that may in the future be observed in gravitational waves.> We have seen
in Chapter 6 that the magnitude and wavelength dependence of adiabatic
scalar and tensor fluctuations depend on initial conditions only through
the quantities Rg and Dy, respectively. As given by Eq. (5.4.24), R{ is the
value of the gauge-invariant quantity R, (1) = A4(¢)/2+ H ()duy() outside
the horizon, thatis for g/a(t) < H(t), where for adiabatic fluctuations R, is
time-independent. Likewise, Dy is the time-independent value of the grav-
itational wave amplitude D, () for g/a(t) <« H(t). During the matter- or
radiation-dominated eras a(7) increased like /3 or +1/2, respectively, while
H () = a(t)/a(t) decreased like 1/¢, so any wavelength will be found outside
the horizon if we go back early enough in one or the other of these eras.
But during the period of inflation that is supposed to precede the radiation-
dominated era, H(z) was roughly (perhaps very roughly) constant, while
a(t) increased more-or-less exponentially, so even if a perturbation was out-
side the horizon at the end of inflation it would inevitably have been found
deep inside the horizon sufficiently early in the era of inflation. At these very
early times fields oscillated much more quickly than the universe expanded,
and their quantum fluctuations therefore were essentially just what they
would be in ordinary Minkowski spacetime. In this chapter we will follow
adiabatic scalar fluctuations and tensor fluctuations from this very early
era, through the epochs when fluctuations of various wavelengths exited the
horizon, to the time when R (#) and D,(¢) reached the constant values R;
and Dy that are measured in the cosmic microwave background and in the
large scale structure of matter, and that may some day be measured through
the direct detection of cosmological gravitational radiation.

IS. V. Mukhanov and G. V. Chibisov, Sov. Phys. JETP Lett. 33,532 (1981); S. Hawking, Phys. Lett.
115B, 295 (1982); A. A. Starobinsky, Phys. Lett. 117B, 175 (1982); A. Guth and S.-Y. Pi, Phys. Rev.
Lett. 49, 1110 (1982); J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D 28, 679 (1983);
W. Fischler, B. Ratra, and L. Susskind, Nucl. Phys. B 259, 730 (1985).

2The cosmological generation of gravitational waves was considered by L. P. Grishchuk, Sov. Phys.
JETP 40, 409 (1974); A. A. Starobinsky, Sov. Phys. JETP Lett. 30, 682 (1979), and calculated in
the context of inflation by V. A. Rubakov, M. V. Sazhin, and A. V. Veryaskin, Phys. Lett. 115B, 189
(1982).
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10 Inflation as the Origin of Cosmological Fluctuations
10.1 Scalar fluctuations during inflation

We will first consider the simplest model of inflation, with a single real
“inflaton” field ¢(x), and an action (B.63):

1 dg 0
I, = | d*x J/—Detg [—Eg“”—‘”—‘” - V(go)i| , (10.1.1)

dxH oaxV

involving an arbitrary real potential V' (¢). This is not the only possibility;
we will take up the question of its plausibility at the end of this section.

In line with the observed isotropy and homogeneity of the universe on
the average, we take the scalar field as an unperturbed term ¢ (#) that depends
only on time, plus a small perturbation d¢(x, ¢):

o(x, 1) = @(1) + Sp(x, 1) . (10.1.2)

Similarly, as in Chapters 5-7, the metric is given by the unperturbed
Robertson—Walker metric g, (¢) (with K = 0) plus a small perturbation
huv (X, 1)
(X, 1) = guv (@) + (X, 1) . (10.1.3)
The energy momentum tensor of the scalar field is shown in Appendix B
to take the perfect fluid form, with an energy density, pressure, and velocity
four-vector given by Egs. (B.66)—(B.68) as

1 dp J¢
= _ghv T 1%
p Zg axH* axV V)
1 dp J¢
— v Y _
)4 38 S (®)
1/2
wi— [ g 09 0077 00
axP 9x° ox®

The energy-density and pressure of the unperturbed scalar field are then

1. i 1. )
p=§<p2+V(so), p=§<p2—V(<p), (10.1.4)

while the unperturbed velocity four-vector has components
=0, @=1. (10.1.5)
The Friedmann equation (with zero spatial curvature) is here

_871G
3

H? (%@2 + V((,Z)) : (10.1.6)
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10.1  Scalar fluctuations during inflation

and the energy conservation condition p = —3H (5 + p) yields the field
equation of the unperturbed scalar field

¢+3Ho+ V(@) =0, (10.1.7)

where as usual H(¢) = a(t)/a(t).
The perturbation 8g,, = h,, to the metric will be taken in the
Newtonian gauge form (5.3.18):

hoo = —2W, hyi=0, hj=—2a>8;¥. (10.1.8)
(The scalar anisotropic inertia term 7%, as well as 7" and =7, vanishes
in scalar field theories, so according to Eq. (5.3.20) the other scalar grav-
itational perturbation & here equals W.) The perturbations to the pres-
sure, energy density, and velocity three-vector are given by the terms in
Eqgs. (B.66)—(B.68) that are of first order in perturbations:

80 = P8¢ + V'(9)8¢p — Wg? (10.1.9)

8p = §8¢p — V(@89 — W§? (10.1.10)
a6 )

Su; = 221 where su= -2 . (10.1.11)
ox! @

The field equations may be taken as the Einstein equation Eq. (5.3.21) and
the energy conservation condition (5.3.24), which here take the form

U+ HY =47G @by, (10.1.12)

92 a? 7

2V (@ V2 AV (@ ..
SG+3H 8¢+ @) 3(p—<—>8g0:—2\11 a(‘”)+4\p¢, (10.1.13)
7 7

while the constraint (5.3.26) is here
. V2 . -
-3 lIJ:47rG(—¢8¢+¢8go>. (10.1.14)
a

(In deriving Eq. (10.1.14), we make use of the convenient relation H =
—47 G2, which follows from Eqs. (10.1.6) and (10.1.7).) The field equation
(5.3.20) has already been accounted for by setting ® = W, while the remain-
ing field equations (5.3.19) and (5.3.22) and the momentum conservation
equation (5.3.23) just repeat the information contained in Eqs. (10.1.12)-
(10.1.14).

Let us first consider the plane wave solutions of Egs. (10.1.12)—(10.1.14),
in which 8¢ and W are of the form exp(iq - x)d¢,(?) and exp(iq - X)W (1),
respectively. We will return later to the issue of how to put these solutions
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10 Inflation as the Origin of Cosmological Fluctuations

together in forming the perturbations ¢ (x, ) and W(x, ¢). The time depen-
dence of the plane wave solutions is given by Egs. (10.1.12) and (10.1.13),

with —V?2 replaced with ¢ = ¢
U, + HY, = 47G ¢ 8¢, , (10.1.15)
) A7) s
8¢q + 3H 8¢, + 8—(225% + ) 8y
aV(p) -
=2y, 5 +4¥, ¢, (10.1.16)

while the constraint (10.1.14) now reads
. qz . .
H+ 2 \Ifq=4nG<—(/_)5(/')q+(,55<pq>. (10.1.17)

At sufficiently early times ¢/a will be much larger than H or 32V (¢)/9%2,
so we can look for WK B solutions, for which time derivatives of fields yield
factors of order ¢/a, of the form

8pg(t) — f(1) ex (—i /t dt/)
Pq P q . a(t) ;

[t dr
W, (1) — g(1) exp <—1q /z* a(z’)) , (10.1.18)
where f(¢) and g(¢) vary much more slowly than the argument of the
exponential, and ¢, is arbitrary. The exponential factor is chosen so that the
terms in Eq. (10.1.16) of second order in ¢/a should cancel. Egs. (10.1.15)
and (10.1.17) are both satisfied to leading order in g/a if we take

g/f =4inGga/q . (10.1.19)

The terms in Eq. (10.1.16) of first order in ¢/a then give 2f + 2Hf =0,
so f o« 1/a. For reasons that will soon become clear, we will choose the
common constant factor in both f and g so that f = 1/(2x)%/ 2\/2_q a.
With this normalization, d¢,(f) and W,(?) are defined as the solution of
Eqgs. (10.1.15)—(10.1.17) that satisfies the initial condition, that for a(z) — 0,

1 todr
8 —i , 10.1.20
Pq(1) — o a0 T2 exp( lq/t* a(t,)> ( )

4in Gy(1) Crtodr
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10.1  Scalar fluctuations during inflation

The complex conjugate Sgo;,"(l), \If;‘(t) is another independent solution, and
since the system of equations (10.1.15)—(10.1.17) is second order, these are
the only solutions.

In general, the fields d¢(x,7) and W(x,?) satisfying Eqs. (10.1.12)-
(10.1.14) can be written as superpositions of these two solutions, which
the reality of the fields requires to take the form

Sp(x, 1) = f d’q [(S(pq(t)el’q'xa(q)+5<p;(z)e*l“l"‘a*(q)] (10.1.22)
W(x,1) = / d3q [xyq(oel‘l'xa(q)+\p;(t)e*f‘rxa*(q)] . (10.1.23)

Now we must say something about the coefficients «(q) and «*(q). For
this purpose, we use the canonical commutation relations of the fields. The
interaction of the scalar field with gravitation makes these commutation
relations rather complicated, but they become simple at very early times. For
any given ¢, we can find a time sufficiently early so that the expansion rate H
is negligible compared with ¢/a. For such early times, both ¢ and ¢ on the
right-hand side of Eq. (10.1.17) become negligible, so ¥, becomes negligible,
as can also be seen by noting from Egs. (10.1.18) and (10.1.19) that the ratio
of W, to §¢, vanisheslike a(7) fora(f) — 0. Atsuchearly times, asfarasa/(q)
and o™(q) are concerned, we can find the canonical commutation relations
by using Eq. (10.1.1) with g, taken as the unperturbed Robertson-Walker
metric:

1 [op 2 1 d¢ dp
I,= | d*x Lo=aD|=(=) - — =V
v / Yoo v a()|:2(81> 2a%(r) dx x! @1

The canonical conjugate to the field g isthenw = 9L, /0¢ = a*¢. Since the
unperturbed fields are c-numbers, the commutators of perturbations are the
same as the commutators of the fields themselves. This gives, for very early
times,

[s0(x. ), 80,0 =0, [s9(x.0), 89(v.0| =ia (8 x—y).
(10.1.24)
With 8¢, (#) normalized to satisfy Eq. (10.1.20) for a(r) — 0, these com-
mutation relations imply that «(q) and «*(q) behave as conventionally
normalized annihilation and creation operators

a(, @) =0, |a@,a*q)|=8@q-q). (10.1.25)
[ J=0. | ]

It may come as a surprise that the same annihilation and creation operators
appear in the scalar field and gravitational perturbations, but it should be
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10 Inflation as the Origin of Cosmological Fluctuations

keptin mind that ¥ does not represent gravitational radiation, whose quanta
are created and annihilated by independent operators. Rather, W is an
auxiliary field, given by Eq. (10.1.14) as a functional of the inflaton field §¢,
in much the same way that in the Coulomb gauge quantization of quantum
electrodynamics, the time-component of the vector potential is a functional
of the charged matter fields.?

It may be noted in passing that the scalar field we have constructed
is in accord with the Principle of Equivalence of general relativity. As
long as we do not concern ourselves with co-moving wave numbers below
some infrared limit Q (as for example by confining measurements to a
cube of co-moving volume less than (277/Q)%), then at times for which
Q/a > H the form of the scalar field §¢(x, f) ought to be essentially the
same as a free massless real scalar field ¢(x, ) in ordinary Minkowskian
space-time:

3
f(zn)i% [A(k)eik-ax exp (—i/k dl‘)+ A*(k)e—ik'ax exp (l/kdt>:| ,

where 4(k) and 4*(k) are annihilation and creation operators, satisfying
the familiar commutation relations

[AK), AK)] =0, [AK),A*K)] =8k -K).

Note that the space coordinate appearing in the exponentials is ax, because
in the K = 0 Robertson—Walker metric this is the vector that measures
proper distances. It follows that k is related to the time-independent
co-moving wave number vector q by k = q/a, so it is time-dependent, which
is why we had to write the time-dependence factors as exp (:Fi [k dt) rather
than exp(Fik?). Also, 83(k — k') = a83(q — q'), so we can define operators
a(q) that satisfy (10.1.25) as a(q) = a~3/?>4(k). Changing the variable of
integration from k to ¢ then gives the field for a(z) — 0 as

dsq/a3 3/2 iq-x :
/—(Zn)3/2 Zq/a[ a(q)e' T exp (—z/th/a)

+a*2a*(q)e M exp (z‘ / th/a)] :

in agreement with Eqgs. (10.1.20) and (10.1.22).
Finally, we have to choose the quantum state of the inflaton field during
inflation. Though there are other possibilities, the simplest and most natural

3See QTF, Vol. 1, Eq. (8.2.9).
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10.1  Scalar fluctuations during inflation

assumption is that the state of the universe during inflation is the vacuum
|0), defined so that*

a@0)=0,  (0]0)=1. (10.1.26)

One other possibility is that it is a linear combination of o and o* rather
than « that annihilates the state |0).> Another is that inflation takes place
in the presence of a thermal distribution of inflatons.®

But although not certain, the assumption (10.1.26) is at least plausible.
The initial condition (10.1.20), which picks out a particular solution of
the second-order system (10.1.15)—(10.1.17), is imposed at an early time,
at which g/a > H. At such times, we can treat the action as if it were
nearly time-independent, so there exists a Hamiltonian operator H which
to a good approximation generates the time-dependence of the fields:

[H: 8¢(X’ t)] = _i¢(xa [) .

According to Eq. (10.1.18), for g/a > H the time dependence of the coef-
ficient function ¢, () is given approximately by

$q = —i(q/a)eq »

SO

[H,a(@)] =~ —(q/a) a(q) .
Hence if a state |y) is an eigenstate of H with energy E, then a(q)|¥) is an
eigenstate of H with a lower energy >~ E — ¢/a, unless |v/) is the state |0)
for which «a(q)|0) = 0, which is therefore the state of lowest energy. Just
as in ordinary laboratory physics, we expect any other state to decay into
the state |0) of lowest energy, although there remains a question whether
the c%ecay occurs rapidly enough to be effective in the period before horizon
exit.

In the state satisfying Eq. (10.1.26), quantum averages (08¢ (X1, #)d¢
(x2,1)---10) (as well as those also involving W (x, 7)) may be calculated by
moving all annihilation operators «(q) to the right and all creation operators
a*(q) to the left, picking up commutators when a «a(q) is moved to the right
past a o*(q’) or a a*(q) is moved to the left past a a(q'). The result is then
given by Wick’s theorem:® The quantum averages of products of $¢s and/or

4This state is often called the Bunch-Davies vacuum: see T. S. Bunch and P. C. W, Davies, Proc. Roy.
Soc. Ser. A 360, 117 (1978).

SE. Mottola, Phys. Rev. D 31, 754 (1985); B. Allen, Phys. Rev. D 32,3136 (1985).

oK. Bhattacharya, S. Mohanty, and R. Rangarajan, Phys. Rev. Lett. 96, 121302 (2006).

TThis is studied by C. Armendariz-Picon, J Cosm. & Astropart. Phys. 0702, 031 (2007) [astro-
ph/0612288].

8See QTF, Vol. I, Sec. 9.1.
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10 Inflation as the Origin of Cosmological Fluctuations

Ws are Gaussian in the sense of Appendix E (except that we must keep track
of the order of operators), with the pairings given by vacuum expectation
values of products of the paired fields:

(018¢(x, 1)8¢(y, H)|0) = /d3q 80, (D]> ™Y | (10.1.27)
O (x, HW(y, 1)|0) = fd3q W, (1) [? ey (10.1.28)
0180 (x, )W (y, 1)|0) = / d*q 8og (W (1) ™7V (10.1.29)
01w (x, 1)8¢(y, 1]|0) = / dq Wy (1) 8} (1) ™Y (10.1.30)

For instance,

(O[3 (w, W (x, )W (y, Née(z, 1)]0)
= (018w, NW (x, )]0){(0[W (y, 1)d¢(z, )]0)
+ (018w, W (y, 1)|0) (0] W (x, Ndp(z, 1)]0)
+ (018@ (W, )d¢(z, 1)|0) (0] W (x, H W (y, 1)|0)

These are quantum averages, not averages over an ensemble of classical
field configurations. We see this most clearly in Egs. (10.1.29) and (10.1.30),
which give complex results for the averages of products of real fields, and
consequently also depend on the order of the fields. Just as in the measure-
ment of a spin in the laboratory, some sort of decoherence must set in; the
field configurations must become locked into one of an ensemble of classical
configurations, with ensemble averages given by the quantum expectation
values calculated as in Egs. (10.1.27)—(10.1.30) It is not apparent just how
this happens, but it is clear that decoherence cannot occur until expectation
values of products of real fields become real, which for free fields will also
imply that the expectation values do not depend on the order of the fields.
As we shall see, this happens after perturbations leave the horizon, when the
various functions ¢, (7) and W, (7) become dominated by a single solution
of the field equations, which (since the field equations are real) is necessarily
real up to a possible complex factor. Once the universe becomes classical in
this sense, we can invoke the Ergodic Theorem of Appendix D to interpret
averages over ensembles of possible classical universes as averages over the
position of the observer in our universe.

For any given potential V' (¢), it is always possible to find ¢,(f) and
W, (¢) by numerically solving Egs. (10.1.15)—(10.1.17), subject to the initial

9For a discussion of this point, see D. H. Lyth and D. Seery, astro-ph/0607647.
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10.1  Scalar fluctuations during inflation

conditions (10.1.20) and (10.1.21). But this is complicated, and gives more
information than we can use. Between the time of inflation and the present
there intervenes a so-called reheating period when the energy of the inflaton
field ¢ is converted into ordinary matter and radiation. We know essentially
nothing about this process, so the solutions for §¢ and ¥ during inflation
do not have an immediate interpretation in terms of observations of the
present universe. Fortunately, the reheating era (and other ill-understood
eras) occur when all cosmological fluctuations of observational interest are
outside the horizon. The one use that we can make of the solutions for the
fields during inflation is to calculate some quantity that becomes conserved
outside the horizon, and that thus provides an initial condition for the
evolution of perturbations after they re-enter the horizon.

Here we will concentrate on the quantity R discussed in Section 5.4,
defined in Newtonian gauge by

=W+ Hou . (10.1.31)

With a single scalar field this is conserved outside the horizon during inflation,
because as shown in Section 5.4 there are always two solutions for which R is
constant for g/a <« H, and as already noted the equations for
inflation with a single scalar field only have two independent solutions.
Using Egs. (10.1.11) and (10.1.22)—(10.1.23) we find that during inflation

R(X, 1) = f dq [Rq(t) ea(q) + R (1) e—"‘l'xa*(q)] . (10.1.32)

where )

Ry=—Yy— Hbp,/¢ . (10.1.33)
Of course, the quantum averages of products of R(x, ¢)s are Gaussian in
the same sense as those of W, (7) and d¢,(7), with pairings given by the
expectation value

(O|R(x, HR(y, 1)|0) = f d3q 1Y) |7zq(z)|2 (10.1.34)

Instead of calculating W,(¢) and §¢,(#) and then using the results to
calculate R4 (?), it is much more convenient to solve a differential equation
for Ry (¢) itself. This equation can be derived in Newtonian gauge with
some trouble from Eqs. (10.1.15)-(10.1.17), but it is more easily derived in
a different gauge, defined by the conditions

=0, B;=0
Inspection of Egs. (B.66)—(B.68) shows that in this gauge

1 > 1 =
dp =68p = Ehoogoz = —EEgoz , du=20.
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10 Inflation as the Origin of Cosmological Fluctuations

Also, as mentioned in Appendix B, the energy-momentum tensor for a single
real scalar field has the perfect fluid form, so the anisotropic inertia 7;;
vanishes. The gravitational field equations (5.1.44) and (5.1.46) and the
energy conservation equation (5.1.49) then give

0=HE+2CH*+ H)E+a *V*A—4—6HA+2a 'HV’F,

0=-HE+ 4
19 . IR I
0= —58—<EH> ~3HHE —a ' HV?F + SHA,
in which we have again used the relation # = —47 G|¢|?. Eliminating E

and F yields a differential equation for A4:

. 2H H 1,
A+ (3H -2+ = A——VA_O
H 0

The gauge invariant formula (5.4.22) tells us that in this gauge R = 4/2, so
the same equation applies to R. Going over to its Fourier transform, this
gives what is sometimes known as the Mukhanov—Sasaki equation:'°

d*R, 2 dz dR

q 2
- =74 =0 10.1.35
d1:2+zdf dt 4Ry ’ ( )
where 7 is the conformal time
t dt/
T z/ —_— (10.1.36)
1, a(t)

with z, an arbitrary time, to be chosen later, and

(10.1.37)

N
1
m|‘§|.

The initial condition is provided by returning to Newtonian gauge, and using
Egs. (10.1.20) and (10.1.21) in Eq. (10.1.33). Assuming that a(£)@>(¢)/H (¢)
vanishes in the limit a(¢) — 0, only the term in Eq. (10.1.33) proportional
to 8¢, contributes in this limit, and we find that for a(z) — 0:

H(?)
(2m)32/2q a(t) ¢(1)

Ry(t) — — exp (—igt) (10.1.38)

10y, S. Mukhanov, JETP Lett. 41,493 (1986); S. Sasaki, Prog. Theor. Phys. 76, 1036 (1986); V. S.
Mukhanov, H. A. Feldman, and R.H. Brandenberger, Phys. Rep. 215, 203 (1992); E. D. Stewart and
D. H. Lyth, Phys. Lett. B302, 171 (1993).
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10.1  Scalar fluctuations during inflation

For a given potential we must integrate Eq. (10.1.35) out from ¢ = 0 to
beyond the horizon, where g/a « H. In this limit we can drop the quq
term in Eq. (10.1.35), which then has two solutions, a dominant solution
with R, a non-zero constant, and a solution for which R, approaches zero
with dR,/dt decaying as 1/z2. It is the constant limit Ry of Ry(7) outside
the horizon that we need. (As we saw in Section 5.3, the value of the quantity
¢4 that is sometimes used in analyses of cosmological fluctuations is given
far outside the horizon by g“q(’ = R;.)

It is striking that within the scope of the general assumptions made here,
it is not necessary to make any arbitrary assumptions about the strength
of cosmological fluctuations. For any given potential, we need only solve
equation (10.1.35) with the initial condition (10.1.38), and carry the solution
forward in time to when R, (7) reaches its constant value Rf] outside the
horizon.

On what features of the potential does Ry depend? The initial behavior
(10.1.38) of R4(#) deep inside the horizon is independent of the nature of
the potential, while outside the horizon R,(¢) simply becomes constant.
Thus Ry can depend only on the behavior of the potential V (¢) for values
of ¢ near the value taken by @(t) at the time the perturbation leaves the
horizon.

This has an important implication for the part of the era of inflation that
can be revealed through observations of scalar fluctuations. As we have just
seen, in observing a fluctuation with co-moving wave number ¢, we learn
about the time #, of horizon exit during inflation, when g/a(t;,) = H(t,).
To put this another way, the number of e-foldings A/ (¢) between the time ¢,
that we learn about in observing a perturbation of wave number ¢ and the
beginning of the radiation-dominated era at a time 7 is'!

_ a(ty))\ _ a(to) H (o) H(ty)
N(g) =In (a(tq)) =MNp+In <—q ) +1In <—H(t1)) , (10.1.39)

where

(10.1.40)
a(to)H (o)

and as usual 7¢ is the present time. In particular, we cannot observe any
fluctuation unless ¢ is large enough to have entered the horizon by the
present time, which requires that the present physical wavelength a(#)/g be
less than the present horizon distance ~ 1/H (zp), so the maximum number
of e-foldings before the beginning of the radiation-dominated era that can

No=In (a(tl)H(l1)>

1A R. Liddle and S. M. Leach, Phys. Rev. D 68, 103503 (2003) [astro-ph/0305263].
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10 Inflation as the Origin of Cosmological Fluctuations

ever be observed is

B H (1)
Nmax = No +In <H(t1))max , (10.1.41)

in which the second term on the right is the maximum value of In[H (¢)/
H (t1)] for ¢ within the last Nyax e-foldings of inflation. In general we expect
energy to be lost during inflation and in the reheating phase at the end of
inflation, so H (fej) > H(t1) and hence Nmax > N, but for slow roll
inflation it may not be a bad approximation to neglect this energy loss, in
which case the second term in Eq.(10.1.41) can be neglected, and

Nrnax :NO . (10142)

The reason that we have chosen to write the formula for N(g) as in
Eq. (10.1.39) is that we have already calculated A in Section 4.1; it is

1/4

P
Y S S 10.1.43
No n<0.037heV>’ ( )

where p1 is the energy density at the beginning of the radiation-dominated
era. For instance, if we take # = 0.7 and p; = G2 = [1.2 x 10" GeV]?,
then Ay ~ 68, and according to Eq.(10.1.42) we can only explore the final
68 e-foldings of inflation. We will re-evaluate this bound in Section 10.3,
with a better estimate of p;.

There is one form of the potential for which the constant Ry can be cal-

culated analytically, with no further approximations.'? It is the exponential
potential
Vip)=ge ™ (10.1.44)

(with g and A arbitrary real constants) which we have already considered
in Section 4.2. Of course, the potential cannot have this form for all
@, or inflation would never end, but as remarked in the previous para-
graph, in the calculation of R7 it is only relevant that the potential should
take this form for values of the field near the value it takes at horizon
crossing.

The solution of Egs. (10.1.6) and (10.1.7) for the exponential potential is

8 Gg62t2>

i 1
@)= —In ( T (10.1.45)

121, F. Abbott and M. B. Wise, Nucl. Phys. B 244, 541 (1984); F. Lucchin and S. Matarrese, Phys.
Rev. D 32, 1316 (1985); Phys. Lett. B 164, 282 (1985); D. H. Lyth and E. D. Stewart, Phys. Lett. B
274,168 (1992).

480



10.1  Scalar fluctuations during inflation

and
H=1/et, (10.1.406)
where € is the positive dimensionless quantity
H A2
=——=—. 10.1.47
T THIT 162G ( )

Inflation with this potential is often called power-law inflation, because
a o« t'/€. Tt is convenient for the moment to normalize the co-moving
coordinates so that
a=1l/¢. (10.1.48)

Note that a¢p?/H o t1=9/€ so our previous assumption that a¢?/H
vanishes for a(z) — 0 is satisfied if € < 1, as we will assume.

For this potential it is convenient to take the constant 7, in the definition
(10.1.36) of conformal time as ¢, = oo, in which case the conformal time is
negative

1 —¢

r=— (L> -eare (10.1.49)

As t and a(¢) run from zero to infinity, T runs from —oo to zero. In terms
of r, Eq. (10.1.35) now reads

d*R, 2 dRy
dt? (1—-e)t dr

+¢R; =0, (10.1.50)
whose solutions are proportional to ¥ times a Hankel function Hﬁl) (—qt)
or Héz)(—qr), where

1 2 3«
”=§(1+1—e>:§+1—e‘ (10.1.51)

For large real x the first Hankel function has the asymptotic behavior

2
H" () > || = exp (ix = ivr/2 — i/4)

and ngz) x) = H,El)*(x), so the initial condition (10.1.38) picks out the
solution o r"Hél)(—qr), and fixes its normalization so that

Wit e \ V-
4Q27)3 %€ (1 - e)

Ry(t) =

P <m7v + %) (—)’HP (—¢qr) . (10.1.52)
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For small real x

—i'(v) /x\—v
o~ 2 ()

v (0= T 2
so outside the horizon, in the limit ¢/a <« H where —gt < 1, the quantity
R, approaches a constant R, given by Eq. (10.1.52) as

AT () e \“Vd-o irv  im\ /g\~V
0= —+— (= . (10.1.
Ry lSﬁnze (1 _€> exp > + ) <2> (10.1.53)

For purposes of comparison with results for other potentials, it is conve-
nient to rewrite this in terms of quantities at the time #, of horizon crossing,
defined by

q/a(ty) = H(1y) . (10.1.54)

Solving this gives 7, = (eq)/179 and H(t,) = q~/1=9e"V1-9 Tt is
also convenient to use Eq. (10.1.47) to express A in terms of € and G. Then
Eq. (10.1.53) can be written

) _ F(v)2”_3/2 _ iTv im
_ _ 3/2 _ \l/1=e)
¢y =Ry =iv16wGq "“H(ty) In?Je (1—¢) <) exp 5 + 1)

(10.1.55)

Note that this formula does not depend on the convention we have chosen
in Eq. (10.1.48) for the constant factor in a(?).

To have a sufficient number of e-foldings in inflation, it is necessary for
the potential to be fairly flat, so we are chiefly interested in the case where
¢ is small. For e « 1, we use I'(3/2) = /7 /2, and write Eq. (10.1.55) as

1

;; = RZ = —iv 167TGq_3/2H(lq)m .

(10.1.56)

The most important point is that for a nearly flat potential, for which H (¢,)
is nearly g-independent, Ry is nearly proportional to g~3/2. This result is
not limited to potentials of exponential form, as long as the potential is
fairly flat for fields near ¢(z,).

The approximate ¢~/ dependence of Ry on g is well supported by
observation. We saw in Section 8.1 that the power spectral function P (k)
that governs the distribution of dark matter has a dependence on the physical
wave number k that for small k is given by a factor k4| R " 2, so any potential
that is fairly flat for fields near ¢(z,) gives a spectrum close to the Harrison—
Zel'dovich spectrum, P(k) o k for small k. Also, as we saw in Section
6.3, the spectral function Py (q) for the Newtonian gravitational potential is
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10.1  Scalar fluctuations during inflation

proportional for long wavelengths to |RZ|2, which as shown in Section 2.6
implies that (aside from the integrated Sachs—Wolfe effect and the effects of
reionization) the quantity £(¢ + 1)C, becomes independent of ¢ for small

¢. And we saw in Sections 7.2 and 7.4 that the near proportionality of R

to g—3/? gives results for the correlations of temperature and polarization
fluctuations in the cosmic microwave background at larger values of ¢ in
good agreement with observation.

To be more precise, Eq. (10.1.53) shows that for the exponential potential,
the scalar spectral index defined in Section 7.2 by |Rfj|2 o« ¢~*t"s has the
constant value

2e

— 6 :

The third-year WMARP result ng = 0.958 £ 0.016 quoted in Section 7.2
thus shows that for the exponential potential, ¢ = 0.021 4 0.008. This is

small enough so that we can use the approximate formula (10.1.56). Writing
|RZ|2 ~ |N|>¢3, we see that for the exponential potential

ngs=4—-2v=1-

2
|N|2 ~ GHCXit

4rle
where Hj; 1s the expansion rate at horizon exit, now ignoring its weak
dependence on ¢. The third-year WMAP result [N|?> = (1.93 + 0.12) x
10710 quoted in Section 7.2 thus shows that for the exponential potential,
Heyit ~ 27 |N|/€/G ~ 1.5 x 101* GeV, corresponding to an energy density
3HZ. /87 G ~[2.6 x 10'6 GeV]*.

Of course, the exponential potential is just one special case, with the
special property that V' /V = (V'] V)2, so there is no reason to expect these
results to apply in detail for other potentials. In Section 10.3 we will see
what to expect for general potentials, under the slow-roll approximation.
But within the slow-roll approximation, the results for general potentials
are similar in order of magnitude to those we have already found for the
exponential potential.

We are now in a position to consider the plausibility of the assumption
that the action has the simple form (10.1.1).!3 With a single real scalar field
X, there is no loss of generality in taking the action in the form (10.1.1) if

B3There is a large literature on other possibilities. Here is a partial list: C. Armendariz-Picon,
T. Damour, and V. Mukhanov, Phys. Lett. B 458, 209 (1999) [hep-th/9904075]; J. Martin and R.
H. Brandenberger, Phys. Rev. D 63, 1235012 (2001) [hep-th/0005209]; R. H. Brandenberger and J.
Martin, Mod. Phys. Lett. A 16, 999 (2001) [astro-ph/0005432]; J. C. Niemeyer, Phys. Rev. D 63,
123502 (2001) [astro-ph/0005533]; J. C. Niemeyer and R. Parentani, Phys. Rev. D 64, 101301 (2001)
[astro-ph/0101451]; A. Kempf and J. C. Niemeyer, Phys. Rev. D 64, 103501 (2001) [astro-ph/0103225];
R. Easther, B. R. Greene, W. H. Kinney, and G. Shiu, Phys. Rev. D 64, 103502 (2001) [hep-th/0104102];
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10 Inflation as the Origin of Cosmological Fluctuations

we assume that the action contains at most two spacetime derivatives. The
most general action in this case is

d*x /—Detg |:——K( )g Wa ua = —Ux )]

where K and U are real functions of y that are arbitrary, except that unitarity
requires K > 0. This can be put in the form (10.1.1) by introducing ¢ =
[dx K2 (x).

But why should the terms in the action contain no more than two space-
time derivatives? This is only one of a number of similar questions: Why
should the action of gravitation contain only the Einstein term, propor-
tional to [ d*x,/—DetgR, and not other generally covariant terms with
more than two derivatives of the metric? And why should the action of
the standard electroweak model or quantum chromodynamics contain only
renormalizable terms?

We do not know the answers to any of these questions with any cer-
tainty, but we have at least a plausible possible answer. Any of these addi-
tional terms in the action would involve operators of higher dimensionality,
but dimensional analysis requires that such terms must be accompanied
by coefficients containing additional negative powers of some fundamental
mass. If that mass is large enough enough, then the additional terms in the
action are suppressed under ordinary conditions. For the success of general
relativity, it is only necessary that the length 1/M be sub-macroscopic, but
unless we impose a condition of baryon and lepton conservation, the funda-
mental mass appearing in the action of quarks and leptons has to be at least
of order 10'® GeV, in order to suppress proton decay below experimental
bounds.

The inflaton field is considered to take values of the order of the Planck
mass, so there is nothing to suppress arbitrary powers of the scalar field in
the inflaton action, which is why we take the potential V' (¢) as an arbitrary
function. But spacetime derivatives of the inflaton field yield factors of
order ¢g/a, so each additional spacetime derivative would introduce a factor
of order ¢/aM. At horizon exit, ¢/a equals H, which we have seen is of
order 10'* GeV, while we would expect M to be much larger, somewhere

Phys. Rev. D 66,023518 (2002); Phys. Rev. D 67,063508 (2003) [hep-th/0110226]; R. H. Brandenberger,
S. E. Joras, and J. Martin, Phys. Rev. D 66, 083514 (2002) [hep-th/0112122]; N. Kaloper, M. Kleban,
A. Lawrence, and S. Shenker, Phys. Rev. D 66, 123510 (2002) [hep-th/0201158]; N. Kaloper, M. Kleban,
A. Lawrence, S. Shenker, and L. Susskind, J. High Energy Phys. 0211, 037 (2002) [hep-th/0209231];
U. H. Danielsson, Phys. Rev. D 66,023511 (2002); L. Bergstrom and U. H. Danielsson, J. High Energy
Phys. 12, 38 (2002); C. P. Burgess, J. M. Cline, F. Lemieux, and R. Holman, J. High Energy Phys. 2, 48
(2003); J. Martin and R. Brandenberger, Phys. Rev. D 68, 063513 (2003); J. Martin and C. Ringeval,
Phys. Rev. D 69, 083515 (2004); T. Okamoto and E. A. Lim, Phys. Rev. D 69, 083519 (2004). R. de
Putter and E. V. Linder, 0705.0400.
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10.2  Tensor fluctuations during inflation

in the range from |V|'/4 ~ 10'® GeV to 1/+/G ~ 10" GeV. Hence it is
plausible that at and after horizon exit, and for some time before horizon
exit, terms with more than the minimum number of spacetime derivatives
are suppressed. This is all we need to justify the calculations of this section,
at least as a good first approximation, as long as we stick to a single inflaton
field. The possibility of more than one inflaton field will be discussed in
Section 10.4.

10.2 Tensor fluctuations during inflation

The fluctuations in the tensor field D;;(x, 7) during inflation can be treated
in much the same way as the scalar fluctuations considered in the previous
section. Since the tensor anisotropic inertia 7TiJT vanishes for scalar field
theories, the field equation (5.1.53) for the tensor modes takes the simple
form

V2D — a*Dyj — 3aaD; =0 . (10.2.1)
We recall also that Dj; satisfies conditions that eliminate any vector or scalar
contributions:

Dj=Dj, Dy=0, D;=0. (10.2.2)

The plane wave solutions have the form ei]-Dq(t)eiq'x, where Dy (1) satisfies
the differential equation

Dy +3HD, + (¢*/a*)Dy = 0 (10.2.3)
and e;; 1s a time-independent polarization tensor satisfying the conditions
ejj = ¢€ji , e = 0 . qiéjj = 0. (10.2.4)

We recall from Section 5.2 that for a given unit vector ¢, there are two
independent polarization tensors satisfying these conditions. For g in the
three-direction, these can be chosen to have components

el =—en=1/V2, enp=en==%i/vV2, ei=e3=0. (10.2.5)

For g in any other direction we define ¢; to be the tensor obtained by
applying to (10.2.5) the standard rotation (7.4.12) that takes the three-axis
into the direction of §. The polarization tensors constructed in this way are
called e;;(g, £2), because Eq. (10.2.5) describes a wave of helicity +2.

At early times, when ¢/a > H, Eq. (10.2.3) has WKB solutions of the
form

Dy (1) = h(t) ex (—i /l d’/) (10.2.6)
q P q L aiy) 2.
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10 Inflation as the Origin of Cosmological Fluctuations

where A(¢) varies much more slowly than the argument of the exponential,
and t, is arbitrary. Then the terms in Eq. (10.2.3) of second order in ¢/a
cancel, while the terms of first order give 24 + 2Hh = 0, so that & oc a~ 1.
From now on we will define D,(¢) as the solution of Eq. (10.2.3) which is
normalized so that, for a(t) — 0,

V167 G o ( ; /t dr )
(27)3/2,/2q a(t) P\ noa) )’
Since D, (1) and D;;(t) are a complete set of solutions of Eq. (10.2.3), the

most general real tensor field satisfying the conditions (10.2.1) and (10.2.2)
takes the form

Dy(1) — (10.2.7)

Dyx.ny= Y [ a[Dy0e pla. ey @)

A=%2

+D2(1)e ™ B (q, Vel @, ,\)] (10.2.8)

(That is, instead of characterizing two independent solutions Dy, (#) and
Dyy(1) of Eq. (10.2.3) by their behavior at late times, as we did in Section
5.2, we now take them as D,(7) and D;’]‘(t), characterized by their behavior
at early times.) With D, (¢) normalized to satisfy Eq. (10.2.7), the canonical
commutation relations require that

[IB(q, )“) s ﬁ(q/’ )",)] =0 ) [ﬁ(q’ )") ’ ﬂ*(q/a )"/)] = 83(‘1 - q/)a)\)\/ . (1029)

Thus 8(q, A) and *(q, A) can be interpreted as the annihilation and creation
operators for a graviton of helicity A.

As in the case of scalar perturbations, we assume that during infla-
tion the universe is in a quantum state |0) satisfying the vacuum condition
B(q,21)|0) = 0. Then expectation values of products of Ds are Gaussian,
with pairings

Q- (x— 2 N
(01D (x, £) Dy (y, 1)]0) = / dPq Y DO TMy(@  (10.2.10)
where IT;; 4(q) is the helicity sum given by Eq. (5.2.25):
Mijke (@) =Y €@, 1) €5y (@, 1)
A

= SiSje + 8iedjk — 8ijdke + Sijqrqe + Skeqiq; — SikqjGe — Sieqjqx
=8 qiqe — 8jeqiqk + 4iqiqxqe- (10.2.11)

For any given potential, the function D,(?) is to be calculated by inte-
grating the differential equation (10.2.3) with the initial condition (10.2.7).
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10.2  Tensor fluctuations during inflation

Outside the horizon, for g/a <« H, the solution becomes a constant
Dy, which provides an initial condition for the gravitational wave when
it re-enters the horizon. In carrying this out, it is again useful to replace
ordinary time as the independent variable with conformal time

0.¢] dz/
= — —_ 10.2.12
ft a(t) ( )
and take ¢, = coin Eq. (10.2.7). Eq. (10.2.3) then becomes
d*D, dD
2Ha— + ¢*D,; = 0. 10.2.13
g2 g T (10.2.13)
Note that
H da 1da
a=—=——.
dt adrt

Thus Eq. (10.2.13) is the same as the Mukhanov—Sasaki equation (10.1.35)
except that z = ag/H is replaced with a.

The initial condition (10.2.7) for ¢/aH > 1 is independent of the details
of the potential, while for g/aH <« 1 the tensor amplitude D,(7) simply
approaches a constant DY. Hence, just as for the scalar amplitude Rg, the
tensor amplitude D? outside the horizon can only depend on the behavior
of the potential at values of ¢(¢) at around the time of horizon exit, when
q/aH is of order unity. Thus the measurements of the tensor amplitude after
horizon re-entry can only tell us about the last \ e-foldings of inflation, with
N bounded by Eq. (10.1.40), just as for scalar modes.

As for scalar modes, it is useful to consider as a test case the one
potential for which Dy can be calculated analytically without relying on
the slow-roll approximation, the exponential potential (10.1.44). For this
potential ¢/H is the constant 2¢/A, so Eq. (10.1.37) gives z  a, and in
this case Eq. (10.2.13) is precisely the same as the Mukhanov—Sasaki equa-
tion. Also, the initial condition (10.2.7) is the same as the initial condition
(10.1.38), except for a factor —2e+/167 G/A = —2,/€. Hence for the exp-
onential potential:

D, (1)/Ry(t) = —2/167G /1 = —24/€ . (10.2.14)

Of course, the values Dg and RZ outside the horizon then also have this ratio.
This is usually expressed in terms of a scalar tensor ratio, conventionally
defined as

rg =4[DY/Ro> . (10.2.15)

We see that for the exponential potential, r, has the wavelength-independent
value
r=16¢ . (10.2.16)
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10 Inflation as the Origin of Cosmological Fluctuations

We saw in the previous section that for the exponential potential the third-
year WMAP results give ¢ = 0.021 £0.008, so that » = 0.34 £ 0.13. This is
almost incompatible with the upper bound r < 0.3 on r set (for this value of
€) by the third-year WMAP results,! so a potential ¥ (¢) that is exponential
around the value that ¢ takes at the time of horizon exit is almost ruled out.
(Of course, we already knew that the potential could not be exponential over
the whole range of ¢, for then inflation would never end, but we are here
not relying on any assumption about the form of the potential except for
the values of ¢ taken around the time of horizon exit.) To analyze tensor as
well as scalar perturbations for more general potentials, we need to invoke
the slow-roll approximation, to which we turn in the next section.

10.3 Fluctuations during inflation: The
slow-roll approximation

It is not possible to calculate the scalar and tensor perturbations R, (f)
and D, (¢) analytically for general potentials. However, the need (discussed
in Chapter 4) for a substantial number of e-foldings of expansion during
inflation suggests that A should have been slowly varying during an era
long compared with 1/H. We will therefore now assume that H varies little
throughout a “slow-roll” era, during which g/aH goes from much less to
much greater than unity. We saw in Sections 10.1 and 10.2 that the asymp-
totic values Ry and Dy depend only on the evolution of the fields around
the time of horizon crossing, when ¢/a ~ H, so it will not be necessary
for us to assume that the slow-roll era extends back to the beginning of the
expansion, or forward to the end of inflation.
We will work with the Mukhanov—Sasaki equation (10.1.35):!

ARy 2dz dRy 5
S =24 ¢Ry=0 10.3.1
dr? + zdrt dt TR ’ ( )

where 7 is the conformal time, and

(10.3.2)

[\
I
m|‘§|

I'See Figure 14 of D. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007) [astro-ph/0603449].
IThis is usually given in the equivalent form

d?uy , 1d%
dr? +[q T |0

where ug = zRy. It is easier to work with it in the form (10.3.1), if only because in this way we only
need to calculate the first derivative of z.
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10.3  Fluctuations during inflation: The slow-roll approximation

Recalling once again that H = —47 G¢?, we can write
1 d
ST UHA 45+ (10.3.3)
z dt

where for a general potential
e=—H/H>, §=H/2HH. (10.3.4)

We also need a formula for ¢ in terms of t. For this purpose, we note that

d 1

So far, everything is exact. The slow-roll approximation requires that
€ and § are small during the era of horizon crossing, which has the conse-
quence that € varies little during this era, because

é=2¢ (e + 5) H. (10.3.6)

We will also assume that § varies little.2 (Of course, € and § cannot be
strictly constant except for an exponential potential, for which H o 1/t
and therefore § = —e.) Integrating Eq. (10.3.5) then gives, for a suitable
choice of an additive constant in t,

1

aH = — .
(1—-er

(10.3.7)

As in the case of the exponential potential, T is negative, and its magnitude
goes from —t > 1/¢ early in inflation when ¢/aH > 1, to —t <« 1/¢ for
g/aH <« 1. Using Egs. (10.3.3) and (10.3.7) in Eq. (10.3.1) then gives, to
first order in € and 4,

d*R, _2(1438+42¢) dR,
dz? T dt

The general solution of this equation for constant § and € is a linear com-
bination of r”ngl)(—qr) and ‘EVngz)(—q‘L'), where now

+¢*R,; =0, (10.3.8)

3
V=328, (10.3.9)

2This is the case for a power-law potential, under the same condition |¢| > 1/+/47 G that was found
necessary in Section 4.2 to justify the slow-roll approximation. For the consequences of dropping this
assumption, see S. Dodelson and E. D. Stewart, Phys. Rev. D 65, 101301 (2002) [astro-ph/0109354];
E. D. Stewart, Phys. Rev. D 65, 103508 (2002) [astro-ph/0110322].

489



10 Inflation as the Origin of Cosmological Fluctuations

This agrees to first order in € with the result (10.1.51) for the exponential
potential, for which § = —e.

Now, we are not assuming that the slow-roll approximation applies all
the way back to the beginning of the expansion, but fortunately this is not
necessary. Eq. (10.1.38) should still apply by the beginning of the slow-roll
era, when ¢g/aH is still very large, so this initial condition fixes the solution
during the whole of the slow-roll era as

RA(F) = N mv/2+m/4H(1) _ ] 10.3.10
(D TN » (—=q7) ( )

(Note that Egs. (10.3.3) and (10.3.7) give z(t) o« v~"+1/2 during the slow-
roll era.) Then late in the slow-roll era, when ¢/aH <« 1, Eq. (10.3.10) has
the asymptotic value

RO VZIPOW)  imvainga (Z47 B (10.3.11)
17 2 mQr)32 2(1) 2 ’ B

which is constant because Eqgs. (10.3.3) and (10.3.7) give z o« —V+1/2. Thus
R has the g-dependence?

Ry ocqg ™ =q 220 (10.3.12)

This may be regarded as a generalization of the result Ry o g~3/2~¢€ that
we found for the exponential potential, to the case where § # —e.

Because RY is time-independent, it can be calculated by setting ¢ in
Eq. (10.3.11) to any convenient value. We shall evaluate it at the time ¢,
of horizon crossing, defined as in Sections 10.1 and 10.2 by

q/a(ty) = H(1y) . (10.3.13)

(But note that Eq. (10.3.10) with ¢ = #, does not give the correct value of
Rj.) Ignoring corrections of order € or § except in exponents, Eq. (10.3.7)
gives
(ty) ! ! (10.3.14)
T =— >~ ——, 3.
! (1-eg ¢

Also, H = —4x Ggf)z, SO

P(ty) = £/ —H (1)) /VAn G = £H (1), /e(ty) /V4n G .

3E. D. Stewart and D. H. Lyth, Phys. Lett. B 302, 171 (1993). This calculation was carried to
the next order of the slow-roll approximation by A. R. Liddle and M. S. Turner, Phys. Rev. D 50,
758 (1994). For a review, see J. E. Lidsey, A. R. Liddle, E. W. Kolb, E. J. Copeland, T. Barreiro, and
M. Abney, Rev. Mod. Phys. 69, 373 (1997).
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10.3  Fluctuations during inflation: The slow-roll approximation

and so
+,/€e(ty)q
Z(ty) = ———— . 10.3.15
) = ) VaxG (10313
The slow-roll approximation thus gives*
V16r Gg—3?H(t
Ry =it (tg) (10.3.16)

87312\ Je(ty)

This is the same as the result (10.1.56) for an exponential potential, except
that the factor 1/,/€(74) now contributes to the g-dependence of Rg. (To
check that the ¢ dependence of H (¢,) and €(#,) gives the extra factor g9,

we differentiate Eq. (10.3.13) with respect to ¢, and find
dig 1
dq g1, (Hz(tq) + H(zq))

Then .
g dH(ty) B H(ty) €(ty)

H(y dg  HXtp)+H(y) 1 —ely
and Eq. (10.3.6) gives

q delty) _ 2(e(ty) +5(19)
€(ty) dg 1 —e(ty)

Hence, replacing the denominators 1 — ¢ with unity, H(7;) o ¢ ¢ and
€(ty) g2t and so H(ty)/\/e(ty) ¢*/?>~7, which gives Eq. (10.3.16)
the g-dependence (10.3.12).)
Now let us apply the slow-roll approximation to the tensor modes. In
general, the tensor wave equation (10.2.3) can be written as
d*D, dD

2 T 2aHd—rq +¢*Dy;=0. (10.3.17)

During the slow-roll era, we can use Eq. (10.3.7) to put this in the form

d*D, 2 dp,

2
— D,=0. 10.3.18
dt2 (1 —e)t dr TP ( )

4s. W, Hawking, Phys. Lett. B 115, 295 (1982); A. A. Starobinsky, Phys. Lett. B 117, 175 (1982);
A. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982); J. M. Bardeen, P. J. Steinhardt and M. S. Turner,
Phys. Rev. D28, 679 1983); D. H. Lyth, Phys. Lett. B147,403 (1984); B 150, 465 (1985); Phys. Rev. D
31, 1792 (1985).
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10 Inflation as the Origin of Cosmological Fluctuations

The general solution for constant € is a linear combination of t* H ,Sl) (—q7)

and r“Hp(Lz)(—qr), with
3 . €
=27 1—¢
The solution during the slow-roll era that satisfies the initial condition
(10.2.7) is

(10.3.19)

_ V16w G \/—qrn ) . )
Dy(r) = (271)3/2\/2—qa(t) 5 exp(ium/2 + in/4) H,’(—qr) .

(10.3.20)
(Note that Eq. (10.3.7) gives (t/a)da/dt = aHt = —1/(1 —€), so a «
7~ 1/0-) and therefore «/—7 /a  t*.) The asymptotic solution for q/a <«
H is then

= — —
DO = 167 GT (W Texp(i,un/2+i7r/4) (T) . (10.3.21)

1= ' ) Par)
Thus Dy has the g-dependence?

DYoo g g (10.3.22)

In contrast with the case of the exponential potential, the asymptotic
g-dependence of the tensor modes is in general different from that of the
scalar modes.

We can give a more convenient expression for Dy by setting 7 = #, in
Eq. (10.3.21). Then using Eq. (10.3.14) and a(t,) = ¢q/H (t;) and taking
€ — 0 everywhere but in the g-dependence of H(z,), Eq. (10.3.21) gives’

o _ Y16 GH (1)

= g (10.3.23)

It is conventional to write the g-dependence of the squared magnitudes
of the tensor and scalar amplitudes outside the horizon as

DY o g3 TMT@ RO oc g HS@) (10.3.24)
Then in the slow-roll approximation, Egs. (10.3.12) and (10.3.22) give
nr(q) = —2e(ty) , ns(q) =1 —4e(ty) —25(1,) . (10.3.25)

(As acheck, recall that for the exponential potential § = —e, so Eq. (10.3.25)
gives ng = 1 — 2¢, in agreement with the result of Section 10.1.) Also,

5A. A. Starobinsky, JETP Lett. 30, 683 (1979).
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10.3  Fluctuations during inflation: The slow-roll approximation
comparison of Egs. (10.3.16) and (10.3.23) yields the relation

r(q) = 16e(1y) = —8nr(q) , (10.3.26)

where, with the conventional definition of r, r(¢) = 4Dy /7'\’,Z|2 . This rela-
tion among measurable quantities is known in the literature as the slow-roll
conmsistency condition. For any potential other than the exponential poten-
tial the scalar/tensor ratio r depends on g.

For inflation with a single inflaton field, the relation H = —47 G2 tells
us that e(¢) is always positive, but §(z) can have either sign, so in general
Eq. (10.3.25) gives n7(q) < 0, while ns(q) can be greater or less than unity.
Nevertheless, experience with many models shows® that physically plausible
potentials that are not finely tuned tend to have ng(g) less than unity, and
even less than 0.98. But for slow-roll inflation, € and § are small, so ng(g)
cannot be very much less than unity. Thus the general picture of slow-roll
inflation received some support from the third-year WMAP result quoted
in Section 7.2, that ng = 0.958 & 0.016.

As we saw in Chapter 7, the quantities (]3|Dg|2 and q3|73§|2 provide a
measure of the contribution of tensor and scalar fluctuations to the multi-
pole coefficients C77 ¢ in the angular distribution of the cosmic microwave
background temperature. From Eq. (10.3.26) we can see that the tensor
modes are likely to contribute much less to the Crr ¢ than the scalar modes.
Also, Eq. (10.3.16) and the fact that anisotropies in the cosmic microwave
background temperature are small but not too small to be observed indi-
cates that the Hubble constant during the slow-roll era must be small com-
pared with the Planck mass 1/ VG, but not too small. In the slow-roll limit,
where v >~ 3/2, we can write |RZ|2 = |N|?¢~3, and Eq. (10.3.16) shows
that

NP = 167 GHgy (87 G)? i
647T3|6exit| 967T3|6exit|

where the subscript “exit” denotes the time of horizon exit, and in accor-
dance with the slow-roll approximation we here ignore the weak dependence
of this time on ¢. As we saw in Section 7.2, the factor |N|? has the value
(1.93£0.12) x 10719, 50

Pt — [(6.70 +0.10) x 10'6 GeVT* . (10.3.27)

| €exit

6M. B. Hoffman and M. S. Turner, Phys. Rev D 64, 023506 (2001); W. H. Kinney, Phys. Rev. D 66,
083508 (2002); H. V. Peiris et al., Astrophys. J. Suppl. Ser. 1148, 213 (2003); G. Efstathiou and K. J.
Mack, J. Cosm. Astropart. Phys. 05,008 (2005); L. A. Boyle, P. J. Steinhardt, and N. Turok, Phys. Rev.
Lett. 96, 111301 (2006).
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10 Inflation as the Origin of Cosmological Fluctuations

Measurements of cosmic microwave background anisotropies have so far
been sensitive only to the spectral index of the scalar rather than the tensor
modes, and therefore have yielded information only on § + 2¢, not ¢, but
unless there is a cancelation between & and 2¢, these measurements suggest
that |e| is probably not much greater than a few percent. If for instance
we take |€|exit = 0.05, then peyit =~ [3.2 x 10'® GeV]*. In any case, we
now see that in inflationary theories, the smallness of cosmic fluctuations
before horizon re-entry is simply a reflection of the fact that, for reasons
that are still mysterious, the energy scale defined by the energy density of
the universe at horizon exit is a few orders of magnitude less than the Planck
energy scale, (87G)™1/2 = 2.4 x 108 GeV.

This mystery is strongly reminiscent of another mystery encountered in
elementary particle physics: the unification energy scale, where the three
coupling constants of the electroweak and strong interactions all come
together,7 is about 2 x 10!¢ GeV, also a few orders of magnitude less than
the Planck energy scale (877 G)~1/2. Perhaps they are the same mystery.

The measured values of ng and |N| and the observational upper limit
on the tensor/scalar ratio r already allow us to put useful constraints on the
inflaton potential. We saw in the previous section that this data is close to
ruling out any potential (@) with an exponential dependence on ¢ for the
values that ¢(¢) takes around the time of horizon exit. To go further, it is
useful first to express € and § in terms of the potential. Using the general
relation (4.2.3)

H=—47G§*,
and the slow-roll formula (4.2.8)
_ V(@) _ V(@)

3H V2 GV (@)

gives ,
L (V(e0)
167G \ v (500)

Also, the time-derivative of Eq. (4.2.3) gives H = —87G{¢, and using
Eq. (4.2.12) then gives

L (Vo) 27(50)
167G\ r2(sm) v (60)

€(t) = (10.3.28)

(1) = (10.3.29)

7See e.g. QTF, Vol. 11, Sec. 28.2.
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10.3  Fluctuations during inflation: The slow-roll approximation

For instance, for a power-law potential V' (¢) o 9%, we have

o? 20 — o2
€() = m , 8(r) = m , (10.3.30)
s0 8(1) = (2/a — 1)e(¢), and therefore
ns(q) =1 &FIr@ (10.3.31)
8

The experimental bound on ng depends on the value assumed for r, so
observations define an allowed region in the ng—r plane.® At present, the
straight line (10.3.31) intersects the (68% confidence level) allowed region
for all positive «, even when WMAP three year data is combined with
data from the CBI and VSA microwave backgrounds, or from the Sloan
or 2dF sky surveys. However, low values of « are favored, and even a
modest shrinking of the allowed area would rule out high values
of a.

To go further, we need to say something about the value of the scalar field
at horizon exit. For this purpose, we can make use of the relation (4.2.14),
which gives the number AN of e-foldings when the scalar field goes from
@1 to @y, under the assumption that the slow-roll approximation holds over

this period, as
»2 (8T GV (p)
AN = —/ (—) do . 10.3.32
w \ Ve ) (1033

If |V'/ V] >~ /167 Ge is essentially constant over the range of ¢ from ¢; to
@2, then the number of e-foldings associated with this change in ¢ is

AN = Ap /4G /e (10.3.33)

Lyth? has used this relation in the case where ¢; and ¢, are the field values
at horizon exit for wave numbers corresponding to £ ~ 1 and ¢ ~ 100,
for which AN = In 100 = 4.6, to show that if € is large enough to give a
detectable tensor mode, then the scalar field must change by an amount that
is at least as large as the Planck scale 1/4/47 G.

If we make the strong assumption that the slow roll approximation holds
over the whole era from horizon exit to the end of inflation, but do not now
assume that € is necessarily constant through this era, then for a power-law

8See Figure 14 of D. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007) [astro-ph/0603449].

°D. H. Lyth, Phys. Rev. Lett. 78, 1861 (1997) [hep-ph/9606387]. Also see G. Efstathiou and K. J.
Mack, J. Cosm. & Astropart. Phys. 05, 008 (2005) [astro-ph/0503360]; R. Easther, W. H. Kinney, and
B. A. Powell, J. Cosm. Astropart. Phys. 08, 004 (2006) [astro-ph/0601276].
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10 Inflation as the Origin of Cosmological Fluctuations

potential V' (p) o ¢%, Eq. (10.3.32) gives the number of e-foldings from
horizon exit for a wave number ¢ to the end of inflation as

4n G
N(g) = == [7(t) = ttena) | (10.3.34)

where 7, and f¢,q are the times of horizon exit and the end of inflation,
respectively. If we further assume that |@(feng)| < |@(74)[, then

72 (tg) ~ ag(g) : (10.3.35)
so Eq. (10.3.30) gives
P F A TPp poy
4N (g) 4N (q)
and therefore!”
o2 da (10.3.36)

~1-— , = .
ns(q) NG r(q) N@)

We noted in Section 10.1 that if the energy density at the beginning of
the radiation-dominated era is the Planck density G2, then N (g) ~ 68
for wave numbers that are just coming into the horizon at the present, and
correspondingly less for larger wave numbers; for instance, for wave numbers
corresponding to £ = 100, N would be less by an amount In 100 = 4.6. To
derive a better estimate of A/, we can use Eq. (10.3.27). Under the risky
assumption that the energy density p; at the beginning of the radiation-
dominated era is the same as at horizon exit, and taking ¢ = O(.02), we
have p; ~ [2.5 x 10'® GeV]!/4, so Eq. (10.1.43) with 4 = 0.7 shows that
for a wave number that just enters the horizon at the present, N >~ 62,
while for the wave number corresponding to £ ~ 100, N' ~ 57. Taking
N = 60, for a quadratic potential Eq. (10.3.36) gives ng = .97 and r =
0.13, which is consistent with the WMAP third-year results, while for a
quartic potential Eq. (10.3.35) gives ng = 0.95 and r = 0.26, which is barely
outside the range allowed by WMAP!! Any o > 4 is ruled out. But this
conclusion is contingent on the assumption of a slow-roll inflation from the
time of horizon exit until the end of inflation, with V' (¢(r)) o ¢*(¢) over this
whole period.

10D, H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999).
Hp, Spergel, ref. 8.
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10.4 Multifield inflation

Observations of the cosmic microwave background and large scale structure
indicate that the primordial scalar fluctuations outside the horizon are

* nearly Gaussian,
* adiabatic,

* nearly scale invariant, in the sense that Ry is nearly proportional to
-32
q ,

« weak, in the sense that ¢/ 273?] & 1. (We saw in Section 7.2 that ¢/ 27%2
is of order 107°.)

We have seen in Sections 10.1 and 10.3 that these properties of primordial
scalar fluctuations follow under the assumptions that

1. The energy density during inflation receives appreciable contributions
from just a single real “inflaton” scalar field. This implies that the
fluctuations are adiabatic during inflation, in which case they remain
so thereafter.

2. During the era of horizon exit (say, for q/aH falling from 10 t00.1), H
is sufficiently small so that q/a is less than whatever fundamental scale
(such as the grand unification scale or the Planck scale) characterizes
the theory, not only during this era but for some time before it. (For
the case considered in Section 10.1, we estimated that H ~ 10!4 GeV,
which is probably small enough.) This implies that during this era the
scalar field is described by a simple effective action, involving no more
than two spacetime derivatives. It follows that for some time before
the era of horizon exit the inflaton behaves like a free field, so that the
fluctuations are Gaussian.

3. For observed fluctuations, in the era of horizon exit inflation is “slow-
roll,” in the sense that |H|/H?* < 1 and |H/HH| <« 1. Together with
assumptions 1 and 2, this implies that the fluctuations are nearly scale
invariant.

But there is no particular reason to believe that the energy density during
inflation is dominated by a single scalar field, so we are naturally led to
consider the case of several inflaton fields ¢ (x). We shall show that the same
properties of primordial scalar fluctuations follow if we make assumptions
2 and 3, but replace assumption 1 with
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10 Inflation as the Origin of Cosmological Fluctuations

1*. The energy in all the scalar fields is converted at the end of inflation into
ordinary matter and radiation in local thermal equilibrium, in which all
chemical potentials vanish. (Baryon and lepton number would then
have to be generated later, as discussed in Section 3.3.)

Whatever the number of scalar fields, under assumption 2, the effective
action of the scalar fields is dominated by terms with a minimum number of
spacetime derivatives during and after the era of horizon exit and for some
time before it. For arbitrary numbers of scalar fields, the most general such
action takes the form

1 dp" dp™
I, = [ d'x /~Detg [—zg““ynm@)i - V«o)] . (104D

dxH* axV

where V (¢) is an arbitrary real potential, repeated scalar field indices are
summed, and v, (¢) is an arbitrary real symmetric positive-definite matrix,
which we shall call the field metric. (This matrix must be positive-definite to
give the right sign to commutators of fields and their time derivatives.) The
energy-momentum tensor, which serves as the source of the gravitational
field, is derived as described in Appendix B from the action (10.4.1), and
takes the form

m m

0¢" d¢
- V((p):| +Vnm(§0)m IxV

1 ap" dgp
Tuv = &uv [_Egpgynm(q’)@ X0

. (10.4.2)

The scalar field equations are derived from the principle that I, must be
stationary with respect to infinitesimal variations in the the scalar fields,
and take the Euler-Lagrange form

0¢"
axVv

d
I — 4
Py ( Detg g™ yum(®)

) = VDetz

(L Bvim(p) 99 dp™ BV (p)
2% " IxH 9xV dpn |

(10.4.3)
We take each scalar field ¢"(x) as an unperturbed term ¢"(¢) that

depends only on time, plus a small perturbation d¢"(x, t):
P"(x, 1) = @" (1) + 8¢" (X, 1) . (10.4.4)

Similarly, as in Chapters 5-8, the metric is assumed to be given by the
unperturbed Robertson—Walker metric g,,(¢) (with K = 0) plus a small
perturbation /1, (X, t)

Suv(X, 1) = guv () + hyy (X, 1) . (10.4.5)
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10.4  Multifield inflation

The unperturbed energy-momentum tensor is of the perfect fluid
form (5.1.35), with unperturbed energy density, pressure, and velocity

_ 1 - = 2 -

p=EWM@Wd”+W@, (10.4.6)

_o 1 )

P = 2Vnm(§0)§0 (ﬂ - Vg, (10.4.7)
'=1, #=0. (10.4.8)

The scalar field equation (10.4.3) for the unperturbed fields is

9 V(w)

¢+ v @¢"¢ +3HG" + y" (@) ——— =0, (10.4.9)

where y""" is the reciprocal of the matrix yy,, y}fq ; 1s the affine connection
in field space:

1 nk
Y1 (@) = SV ()( +

Vi () ayk1<¢>_ayml<¢>) (10.4.10)
¢! g™ agk )’ o

and H is the expansion rate H = a/a = /87 Gp/3. The reader may
check that Eq. (10.4.9) guarantees that the energy-conservation equation

p = —3H(p + p) is satisfied by the quantities (10.4.6) and (10.4.7). From
Egs. (10.4.6) and (10.4.9) we find the convenient formula

H = —47 Gyum(®)@" ™ . (10.4.11)

For more than one scalar field 7),, is not of the perfect fluid form
(5.1.35) to all orders in perturbations, but by comparing the first-order
terms in Eq. (10.4.2) with Egs. (5.1.39)—(5.1.41), we see that to first order
the anisotropic inertia vanishes, and the perturbations to the energy density,
pressure, and velocity potential are

1 ‘n=m aynm((/))

30 = Yum(@)@"8¢™ + =¢"¢
2 B(p
V(@) 1
+ 4 8(9 + hOOVnm((p)(p (0 (10412)
Q" 2
) 1. d
5p — Vnm(¢)¢n8§0m + (ﬂn@m Vnm((ﬂ)
2 8@
AV (p) 1 ..
- _Z) 8¢" + =hooYum(@)@"¢™ (10.4.13)
R17) 2
- Lna m
Su —@ﬂ@%g} (10.4.14)
Vil (@)p* @
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10 Inflation as the Origin of Cosmological Fluctuations

The reader can easily check that these formulas reduce to Eqgs. (10.1.9)-
(10.1.11) in the single-field case, with y;; = 1.

Since there is no first-order anisotropic inertia, in Newtonian gauge we
have ® = W, so gy = —2W, and the Einstein field equation Eq. (5.3.21)
takes the form

U+ HY =47 G Y ()@ 8™ , (10.4.15)

The terms of first order in the field equation Eq. (10.4.3) are much simpli-
fied if we now adopt a notation that reveals the transformation of quantities
under redefinitions ¢ — ¢'"(¢) of the scalar fields. Under such transfor-
mations, quantities like ¢" and 8¢" transform as contravariant vectors, in

the sense that . .

mo s g = S om (10.4.16)
agom a(pm

For any vector v” that transforms in this way, we can define a rate of change

that is also a vector:

Sp

D ad
Ev = a—’u —|—ylm(go)v (10.4.17)

With this notation, the first-order terms in the field equation (10.4.3) give

D? D 2V (@) v2
b 3H—=—$ (g sp' — 8
D2<ﬂ+ Di 9" +y (‘p)wma@l ¢ 2 ¢"

V()

3 + AV G4y (@) @8N, (10.4.18)

= —2y""(¢) !

where y" .1 (@) is the Riemann—Christoffel tensor in field space:

Y1 (P) 3V, (@)
Ak aqp!

V" ik (@) = + Vi@ Vi (D) = Vi (@) Ve (@) . (10.4.19)

(The scalar fields can be redefined to make y,;;, = 8, if and only if Yy, =
0. We are not assuming that this is the case.) Also, the constraint (5.3.26)
is here

V2 . D D
(H—?) _471Gynm(<p)( @' 50" + 8¢ qu"). (10.4.20)

The solutions are written as superpositions of plane waves
Sp"(x,1) =
> [ @afser e a@ ) + s et @ W] 10421
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10.4  Multifield inflation
U(x,t) =
3 / d’q [xqu(z)e"q'xa(q,N)+w7vq(z)e—’qx *(q,N)] (10.4.22)

Here N labels different solutions of the coupled equations (10.4.15)—
(10.4.17), with V2 replaced with —g?:

Ung + HUng = 4G yun (@)@ 347, . (10.4.23)
D’ D V@ (4
Y 539, "4 3H—5(pq Y™ (G) 257 5] Spg + ) 5(,0’;
_ aV(p) .. .
= =2y""(@) ¥, T,f + 40, G+ v (@) 650l (10.4.24)
%

2
. q B D D .
(H + E) v, = 471Gynm(<p)( ¢ " 5.8 +oe 5 ”) (10.4.25)

There is one second-order equation for each scalar field, and one first-
order equation for W, so with one constraint on first derivatives the number
of independent solutions equals twice the number of scalar fields. Since
((S(qu, Wy,) and (5<qu, j(,q) are all independent solutions, the index N
takes as many values as the index 7.

To find the initial conditions for Egs. (10.4.23)—(10.4.25), and to find the
commutation relations for the operators a(q) and «*(q) in Egs. (10.4.21) and
(19.4.22), we note that for some time before the era of horizon exit we will
have ¢/a > H, and ¢*/a* much greater than any element of 32V /35"95™.
Hence the solutions up to the beginning of the era of horizon exit take the
WKB form

@Nq Nq eXp lq " a(t/) >
t dt/
v —i , 10.4.26
Ng(t) = gng (D) exp( q /ll a(t’)) ( )

where f]’\}q(t) and gy, (?) vary much more slowly than the argument of the
exponential, and ¢ is arbitrary. Eqgs. (10.4.23) and (10.4.25) are both satis-
fied to leading order in ¢/a if we take

4im Ga

8Ng = VHM((Z))(Z)nf]}\,/nq . (10.4.27)
The terms in Eq. (10.4.24) of first order in ¢/« then give

D .
o/ Ng + Hfy = 0. (10.4.28)
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10 Inflation as the Origin of Cosmological Fluctuations

To solve this, we note that, because ™" (@(Z)) is positive-definite, it can be

written in terms of a set of vielbein vectors ef;(¢) (with N running over as
many values as n), as

ym (@(z)) =Y e . (10.4.29)
N
These vielbeins can be defined to satisfy the equation of parallel transport!
D
Ee’}vq =0, (10.4.30)
so the solution of Eq. (10.4.28) is
Iy (0 occa” ey (o) . (10.4.31)

For reasons that will soon become apparent, we shall normalize these sol-
utions so that, for g/a > H,

frg = Q0P Pa e,

With this normalization, at the beginning of the era of horizon exit
we have?

/

1 todt
Sy = n —1 10.4.32
(qu(l) (27{)3/2a(Z)\/2_qu(l) €Xp < q \/[1 a(ﬂ)) ) ( )

4ir GYum (@) (1) 9" (1) ( . f’ dﬂ)
W (1) = — . (10.4.33
Ng (D) TN P\ ( )

For times early enough so that ¢/a >> H the commutation relations for ¢”
can be obtained from the action (10.4.1) with ¥ neglected, and therefore

I'We define the vectors ey q(t) to satisfy the first-order differential equation (10.4.30), and, as an initial
condition, to satisfy Eq. (10.4.29) at some initial time ¢ = ¢;. From Eq. (10.4.30) and the definition
(10.4.10) it follows that for all times

by, = [—V,”kDf; + V/,;DZ] g
where
Dl = Zeﬁ’\,ef‘\,ykm .
N
This differential equation for D/, has a solution D}, = §;,, and our initial condition tells us that D}}, = 4,
at ¢t = 11, so this is the solution for all times. It follows that the vectors e}, q (?) defined in this way satisfy
the condition (10.4.29) for vielbeins for all times.

2A result equivalent to Eq. (10.4.32) is given in Eq. (4.4) of H.-C. Lee, M. Sasaki, E. D. Stewart,
T. Tanaka, and S. Yokoyama, J. Cosm. & Astropart. Phys. 0510, 004 (2005) [astro-ph/0506262], using
a “§N” formalism due to M. Sasaki and E. D. Stewart, Prog. Theor. Phys. 95, 71 (1996) [astro-
ph/9507001]. But their paper does not reach the conclusion (10.4.41) found in this section.
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104 Multifield inflation
take the form:

"%, 0, " (v, )] = 0,

"%, 0, ¢"(y, 01 = ia > (0 7™ (30 )8} x — y)

With §¢" normalized as in Eq. (10.4.32), this implies that the time-
independent operator coefficients in Eqgs. (10.4.21) and (10.4.22) satisfy the
commutation relations

0@ M), a@ V)] =0, [a@N), a*@.N)| =5 @ - d)ony
(10.4.34)

Assuming that there is enough time before horizon exit for the state of the
world to decay into the Bunch-Davies vacuum |0), with «(q, N)|0) = 0, it
follows then from Egs. (10.4.21) and (10.4.22) that the observed perturb-
ations will be Gaussian, just as in the single-field case.

According to assumption 3, during the era when ¢/a drops from being
somewhat larger to somewhat smaller than H — say, from 10H to 0.1H,
the scalar fields are rolling slowly down the potential hill. We assume that
V () satisfies whatever flatness conditions are necessary to allow us to drop
all terms in Egs. (10.4.23)—(10.4.25) proportional to <,ZJ7V or ¢7v and to ignore
the second derivative of the potential in Eq. (10.4.24). Then during the era
of horizon exit Eq. (10.4.24) is approximately

2
8¢y + 3H 3@, + (%) 8¢, =0. (10.4.35)

H is roughly constant during this era,? so the independent solutions of
Eq. (10.4.35) are proportional to (1 + igt)exp(—igr) and its complex
conjugate, where t is again the conformal time

/f dr’ 1

T = >~ — .

oo a(t’) Ha(1)

The scalar field perturbations at the beginning of the era of horizon exit are
given by Eq. (10.4.32), so during this era we have

1 1 iHY\ .
son ~_ L (1, _> oHig/at gn 10.4.36
PN = )i g <a q N ( :

) 3The fractional change in H during the era of horizon exit is | /H| x In(100)/H , which is small if
|H|/H? < 1/1n(100) = 0.22.
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10 Inflation as the Origin of Cosmological Fluctuations

By the end of the era of horizon exit we have g/a <« H, and the scalar field
perturbations approach the quantities
H
Sy = ey (10.4.37)

(271)3/2 /2q3

Since H and e}, are slowly varying, they can be evaluated at the time of
horizon exit, and depend weakly on g.

At some time after the era of horizon exit the slow-roll conditions must
become violated, if only in order that the energy in the inflaton fields can
eventually be converted into ordinary matter and radiation. The potential
term on the left-hand side of Eq. (10.4.24) is then no longer negligible, and
things get complicated. But once ¢/a becomes much less than H, the subse-
quent evolution of the scalar fields during inflation cannot depend on ¢, so
until horizon re-entry all scalar field perturbations s¢,, will have the same

wave number dependence, close to ¢ /2, as given by Eq. (10.4.37) at the end
of the era of horizon exit. The same applies to the scalar metric perturba-
tions; when a becomes sufficiently large so that ¢2/a? < |H|, Eq. (10.4.25)
gives Wy, approximately proportional to g2,

In general, it is not easy to see what these results imply for the perturb-
ations observed in the cosmic microwave background or large scale struc-
ture. However, there is one case where an important conclusion can be
reached. If according to assumption 1* the energy in all the scalar fields is
converted at the end of inflation into ordinary matter and radiation in local
thermal equilibrium, and if at this time all conserved quantities like electric
charge have zero density, then as remarked in Section 5.4, the perturbations
become adiabatic, with R, taking a constant value R until horizon re-entry.
For small fluctuations, R? will be some linear combination of the perturba-
tions § ¢y, and Wy, at the end of the era of horizon exit. We do not know the
coefficients in this linear combination, which in general will depend on the
shape of the potential experienced as the field evolves until the end of infl-
ation, as well as on the mechanism of energy transfer to matter and radi-
ation. But we can be sure that these coefficients are independent of wave
number, because once the era of horizon exit is over the perturbations are
far outside the horizon. Hence we can conclude that in this case R? will
have the same wave number dependence as 8<p7\,q and Wy, at the end of the

era of horizon exit, which for slow-roll inflation will be close to ¢—3/2.

The ubiquity of the ¢~3/?> wavelength dependence can be understood
on very general grounds. For negligible spatial curvature, nothing should
depend on how the co-moving coordinate vector X is normalized, so suppose
we change its scale by a transformation x — AX, with A constant. To keep
q - x unchanged, we must then change the scale of co-moving wave numbers
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10.4  Multifield inflation

by a transformation ¢ — A~!q. Consider any perturbation Z(x, t) that,
like 8¢"(x, t) and W (X, ), is given by a Fourier integral

Zx.n =) / d*q [M%a(q, Nzng (1) + e (g, M)z, (0] |
N

where N labels the various solutions of the field equations, and a(q, N) and
a*(q, N) are annihilation and creation operators satisfying the commutation
relations
[a@. N), a* (@, N)] = $yn8>@—q) -

Under the transformation ¢ — A~ !q, the delta function in this commutation
relation transforms as 83(q—q') — A38%(q—q’), so we must have a(q, N) —
13/2a(q, N). Also, of course d3q — 1»~3d3q. Hence in order for Z(x, 1) to
be unaffected by this change of scale, we must have zy, (1) — A3z, (2).
This condition is satisfied if z, (¢) has a g-dependence q=3/%, andif it does
not depend on the scale of a(#). Of course, to keep the physical coordinate
vector xa(t) independent of the normalization chosen for the co-moving
coordinates, a(f) has the scale transformation a(f) — A~ 'a(¢), so q/a(t)
is scale-invariant, and if zy,(¢) depends on the scale of the function a(r)
then we cannot conclude that it is proportional to ¢—3/2. But if zng (D),
like 5go§’\,q(t) and Wy, (), takes a nearly time-independent value Zjovq after
horizon exit, then outside the horizon it will not depend strongly on a(z). It
could still depend on H (t,), H (t4), etc., where ¢, is the time of horizon exit,
defined by the scale-invariant condition g/a(t4) = H (t,), but in the limit of
very slow roll inflation H, H, etc. depend only weakly on time, so z]”\,q can
depend only weakly on the scale of the function «, and the scale-invariance
of Z(x, t) requires that Zjovq be nearly proportional to ¢g—3/2.

The intensity of observed adiabatic fluctuations is related to the quantity
R defined by Eq. (5.4.1). Using Eqgs. (10.4.14), (10.4.11), (10.4.21), and
(10.4.22), during inflation this is

R(x, 1) = —V(x, 1)+ H()Su(x,t)
I o (2)) (030" (.1
H(l‘) VYom\ @ % @ >
=2 / d*q [M%a(q, NYRny (1) + ¥ a* (@, MRy, (0]
N

= —W(x,0)+

(10.4.38)

where
47 GH (1)

Ring(1) = =Wy (1) + a0

Yn(6(0)@" (DR, () . (104.39)
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10 Inflation as the Origin of Cosmological Fluctuations

Because of the factor H in the denominator, at the end of the era of horizon
exit the second term in Eq. (10.4.39) dominates over the term —Wy,, and
Eq. (10.4.37) then gives at this time

4w GH? .
: Vnm((ﬂ)(ﬂne% . (10.4.40)

Ryg — i—
T emdn 285

The definition (10.4.29) of the vielbeins and the formula (10.4.11) then lead
immediately to a sum rule

172 5
(Z \RNq\Z) __vor (10.4.41)

N 2rq32/|H|

That is, the root-mean-square value of the quantities |72Nq| at the end of the
era of horizon exit is the same as the value of |R,| outside the horizon in
the single-field case, given by Eq. (10.3.16). But Egs. (10.4.38) and (10.4.34)
tell us that the correlation function of R in the Bunch—Davies vacuum is

/ d*xe YV (R(x, ) R(y. 1) = 27)° Y 1Rg|” (10.4.42)
N

So from Eq. (10.4.41) it follows that the correlation function (R(x, t) R(y, 1))
is the same at the end of the era of horizon exit as in the single field case. With
more than one scalar field the correlation function (10.4.42) is not in general
time-independent outside the horizon, but it is plausible that the value of
|R4| during a period of thermal equilibrium after inflation will not be orders
of magnitude different from Eq. (10.4.41) at the end of the era of horizon
exit. Thus the observed strength and spectral shape of anisotropies in the
cosmic microwave background suggests a value of H at horizon exit of order
10'% GeV, as in the single field case.

One can derive stronger results in the case where all but one of the eigen-
values of the matrix (@) 32V (¢)/3¢™9¢' in Eq. (10.4.23) are large and
positive. In this case, the unperturbed scalar fields roll along the direction
of the eigenvector for the small eigenvalue, and the only significant perturb-
ations lie in that direction. The problem then reduces to the single field
case; we have an essentially adiabatic perturbation, with the amplitude R
given in the slow-roll approximation by Eq. (10.3.16), and the slope ns(q)
given in this approximation by Eq. (10.3.25), where € and § are to be calc-
ulated in terms of the time-derivatives of the expansion rate by Eq. (10.3.4).
But there is no known reason why the potential should have the properties
needed to justify these results. On the other hand, tensor perturbations
during inflation are governed by Eq. (10.3.17) however many scalar fields
there are, and the only role played by the scalar fields is to contribute to the
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10.4  Multifield inflation

Hubble rate H. Thus for slow-roll inflation with any number of scalar fields,
the tensor amplitude Dy is given by Eq. (10.3.23), and the slope parameter
nr(q) is given by Eq. (10.3.25), just as in the single field case.

The fact that observations of cosmic microwave background anisotropies
and large scale structure indicate that scalar fluctuations outside the horizon
are adiabatic and Gaussian, with R{ approximately proportional to g3,

and with ¢3/?R? « 1, evidently is consistent with a very large class of
models of inflation. This is encouraging, because it supports the general
idea of slow-roll inflation, but also disappointing, because it shows that
these observations so far do not really tell us anything specific about the
details of inflation. With further improvements in experimental precision,
we can look forward to a more decisive test of theories of the early universe.
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Appendix A

Some Useful Numbers

Numerical Constants

T = 3.1415927 1”7 = 4.84814 x 107 radians
e =2.7182818 In 10 = 2.3025851
y = 0.5772157 £(3) = 1.2020569

Physical Constants'

Speed of light in vacuum ¢ = 2.99792458 x 10'" cm sec™!
Planck constant h = 6.6260693(11) x 10727 erg-sec
Reduced Planck constant /= /2w = 1.05457168(18) x 10~27 erg sec
= 6.58211915(56) x 10722 MeV sec
Electronic charge (unrat.) e = 4.80320441(41) x 10710 esu
Electron volt 1 eV=1.60217653(14) x 10~'% erg
he = 197.326968(17) x 10713 MeV cm
Fine structure constant  « = e2/Ac = 1/137.03599911(46)

Electron mass me = 9.1093826(16) x 10728 g
mec? = 0.510998918(44) MeV
Rydberg energy heR = mye? /2)"12 = 13.6056923(12) eV
Thomson cross section o = 8ne4/3m§c4 = 0.665245873(13) x
10724 cm?
Proton mass my, = 1.67262171(29) x 1072 ¢
myc? = 938.272029(80) MeV
Neutron mass myc = 939.565360(81) MeV
Deuteron mass myc? = 1875.61282(16) MeV
Atomic mass unit m(C'2)/12 = 1.66053886(28) x 10~%* g
m(C'2)¢2 /12 = 931.494043(80) MeV
Avogadro’s number N4 = 6.0221415(10) x 1023 /mole
Boltzmann constant kp = 1.3806505(24) x 10~'6 erg/K
= 8.617343(15) x 107 eV/K
Radiation energy constant ap = % =7.56577(5) x 10~15 erg cm 3

K-

IFrom Review of Particle Physics, S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1
(2004).
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Weak coupling constant G, = 1.16637(1) x 107> GeV~2
Gravitational constant G = 6.6742(10) x 108 dyn cm? g2
Planck energy Vhe/G = 1.22090(9) x 1012 GeV

Astronomical Constants?

Julian year 1 year = 365.25 days = 3.1557600 x 107 sec

Light year 1 light (Julian) year = 9.460730472 x 10'7 cm

Mean earth-sun distance 1 A.U. = 1.4959787066 x 103 cm

Parsec 1 pc = 648000/ A.U. = 3.0856776 x 10'8 cm
= 3.2615638 light (Julian) year

Solar mass Mo =1.9891 x 103 ¢

Solar luminosity Lo = 3.845(8) x 103 erg sec™!

Apparent luminosity for apparent magnitude m

£=252x%x1073 ergcm~2 sec™! x 10-2"/3
Absolute luminosity for absolute magnitude M

£ =13.02 x 103 erg sec™! x 1072M/5
For a Hubble constant Hy = 4 x 100 km sec™! Mpc~!:

Hubble time HO_1 =3.0857h~! x 1017 sec = 9.778 h~ 1 x
10” years
Hubble distance ¢/Ho = 2997.92458 h~! Mpc
2
Critical density Perit = ;nig =1.8784* x 1072 gcm ™3
= [0.00300 eV]* 42

2From Allen’s Astrophysical Quantities, ed. A. N. Cox (AIP Press, New York, 2000).
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Appendix B

Review of General Relativity

In this appendix we offer a brief introduction to the General Theory of
Relativity, Einstein’s theory of gravitation. This appendix is not a substitute
for a thorough treatment of the theory, but it outlines the parts of the theory
that are used in this book, and it serves to establish our notation.

1 The Equivalence Principle

General Relativity is based on the Principle of the Equivalence of
Gravitation and Inertia, or the Equivalence Principle for short. The Equiv-
alence Principle is a generalization of the familiar observation that, because
of the equality of gravitational and inertial mass, freely falling observers do
not feel the effects of gravitation. According to the Equivalence Principle,
at any spacetime point in an arbitrary gravitational field there is a “locally
inertial” coordinate system in which the effects of gravitation are absent in
a sufficiently small spacetime neighborhood of that point. This Principle
allows us to write the equations governing any sufficiently small physical
system in a gravitational field if we know the equations governing it in the
absence of gravitation: it is only necessary to write the equations in a form
which is generally covariant — that is, whose form is independent of the
spacetime coordinates used — and which reduce to the correct equations
in the absence of gravitation. Such equations will be true in the presence
of a gravitational field, because general covariance guarantees that they are
true in any set of coordinates if they are true in any other set of coordinates,
and the Equivalence Principle tells us that there is a set of coordinates in
which the equations are true — the set of coordinates that is locally inertial
at the spacetime location of the system in question. In general there will
be more than one set of generally covariant equations that reduce to the
correct equations in the absence of gravitation, but the differences between
these equations always involve terms with extra spacetime derivatives, which
become negligible if we restrict ourselves to a spacetime region that is small
compared with the scale of distances and times over which the gravitational
and other fields vary appreciably.

2 The metric: Ticking clocks

As an example of this procedure, consider the equation that governs the rate
at which clocks tick in a gravitational field. Special Relativity tells us that if

511



Appendix B Review of General Relativity

a clock ticks once in every time interval d7" when at rest in the absence of a
gravitational field, then the separation d£“ between the spacetime locations
of successive ticks when the clock is moving in the absence of a gravitational
field is governed by the relation

Nap dEdEP = —dT? . (B.1)

(Here ¢!, £2, and &3 are the Cartesian space coordinates, using units of
length in which the speed of light ¢ is unity; £ = r; Nap 1s the Minkowski
metric, the diagonal matrix with 11 = 2 = n33 = 1 and ngp = —1; and
repeated indices are summed.) The correct equation governing the ticking
of the clock in a general gravitational field is then

2o (X)dxtdx” = —dT? , (B.2)

where g, (x) is the metric, a field defined by the two properties that, first, a
transformation to a coordinate system x"* changes the metric to

axt 9xY

AxX'P dx'?
and, second, in coordinates that are locally inertial and Cartesian at a point
X, the metric at x is nqg and its first derivatives at x vanish. (In Eq. (B.3),
x*and x"* are the coordinates of the same physical point in two different

coordinate systems.) Eq. (B.2) is generally covariant, because the coordinate
differentials have the obvious transformation property

2o (X)) = guv(x) (B.3)

ax’?
dx'* = ax—udx“ , (B.4)
X
so that
ax* 9xY ax’” ax’’
g;m (x)) dx'"’dx'° = v (X) 577 5170 Dk K = dxt = Zuv (X) dxPdx’ .

To repeat our general argument, Eq. (B.2) is true, because in locally inertial
Cartesian coordinates it reduces to the equation (B.1) that describes clocks
in the absence of gravitation, and its general covariance means that if it is
true in one set of coordinates then it is true in any other set of coordinates.
In the same way, the spacetime separation dx* of the ends of a small ruler
whose length is dL when measured at rest in the absence of gravitation will
in general be given by

Zuv(x) dxPdx" = +dL? .

Likewise, the differences dx* between the spacetime coordinates of two
successive positions along a ray of light are governed by the equation

guv(x) dxtdx" =0 .
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3 Tensors, vectors, scalars

Quantities that transform as in (B.3) and (B.4) are known as covariant ten-
sors and contravariant vectors, respectively. In general, contravariant and
covariant quantities are labeled with upper and lower indices, respectively,
and for each such index there is a factor in the transformation rule of 9x’/9x
or dx/dx’, respectively. It is also possible to have mixed quantities, with
some upper and some lower indices. For instance, there is a mixed tensor
84, defined in any coordinate system by

1 u=v
{0 Lty (B.5)

Even though its components are the same in all coordinate systems this is
a tensor because

8y

1P 74
(wax oxV _ ox'" oxt Yy

Y axt 9x’c  9xHt 9x'° o

There is also a contravariant tensor g”¥, defined as the inverse of the metric
gen =8 (B.6)

To see that this is a tensor, just note that

oy 90X ax*\ , e X ax" 9x" 9xT
8" (x) & (X) =g" (x) IxP IxT I 8x,vgnr(x)

oxP 9x°
ax'* axT ax" ax?
= 8 O o gm0 = e g = 8

Thus the quantity in parenthesis in the first line is the reciprocal of the
transformed metric

ax'M gx*

A
dxP 9x° ="

g"% (x)

verifying that the reciprocal of the metric is a contravariant tensor.

A scalar s(x) is a quantity whose value at a physical spacetime point is not
changed by a coordinate transformation; that is, using a set of
coordinates x"* it is

S (x) = s(x) (B.7)
The derivative v, = ds/9dx" of a scalar s(x) is a covariant vector:
Y = s’ _ ds dxH axH (B.3)

=7 .
PaxP 9xk ax'P Hoxr
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Scalars and vectors may be regarded as tensors with no indices or one index,
respectively. We can make tensors out of other tensors by taking the direct
product; for instance, if 4%, and B,, are tensors, then so is the direct
product C*,,, = A", B,;. We can also make tensors with fewer indices
out of other tensors by contracting upper and lower indices, as Egs. (B.2)
and (B.6). As a special case, we often lower (or raise) an index on a tensor
by taking the direct product of the tensor with the metric (or its inverse)
and then contracting an upper (or lower) index on the tensor with an index
on the metric (or its inverse). For instance, if A*" is a tensor, then so is
A," = gupA", while if B," is a tensor then so is B°Y = g??B,,”. Note that
raising and lowering the same index just gives back the original tensor; for
instance g7 (g,,A"") = A°". Any equation that states the equality of two
tensors of the same type or that a tensor of any type vanishes is generally
covariant.

4 The affine connection: Falling bodies

But not everything is a tensor. For instance, Eq. (B.4) tells us that the first
derivative of the coordinate x* of a particle with respect to some scalar
quantity u that parameterizes position along the particle’s trajectory (such
as the time on some fixed clock) is a vector

dx'? _ ax'? dxH

— , B.9

du oxH du (B.9)
but the second derivative is not a vector
d*x'? _d ax'? dxH
du?  du \ Ox* du

_ ax'P d*xt 32X dxt dx” (B.10)

COxHt du? Xt XY du du

This means that the correct generalization of the equation d2£% /du® = 0 for
the motion of a particle in the absence of gravitation is not d?x* /du* = 0,
because this equation is not generally covariant. Instead, to cancel the
second term on the right-hand side of Eq. (B.10) we must introduce a quan-
tity Fl’;v (x) defined by the transformation property

2
o ax'" ax* 9xV o _ 9 X" axt 9xY ’ B.11)
9 dxr AxXIT ax'P MY JxH 9xY 9x’? 9x'P

and the proviso that Ffw(x) vanishes in a coordinate system that is locally
inertial and Cartesian at x. The correct equation of motion for a particle
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that is freely falling in a gravitational field is then

d?x* 5 dx™dx?
— =0 B.12
du? " du  du ’ (B.12)

because this is generally covariant, and reduces to the correct equation of
motion d?£% /du* = 0 in the absence of gravitation. The field Ffw is known
as the affine connection, and of course is not a tensor.

There is a simple formula for the affine connection in terms of the metric

1 g dgov  0guv
l—w)» — Ao PH pv. M . B.13
w =8 |:8x" + axt  9xP (B.13)

It is straightforward to check that this is generally covariant, and it is true in
a locally inertial Cartesian coordinate system because in such a system both
sides vanish, so it is correct for general gravitational fields and coordinate
systems.

A trajectory that satisfies Eq. (B.12) is called a spacetime geodesic,
because on such a trajectory the integral

/ " \/ (1)) dxif”) i CIPY
u)

di du

is stationary under variations that leave x*(u) fixed at the endpoints u
and u. Often instead of specifying the metric we specify the line element
ds? = guvdxtdx" for arbitrary differentials dx*.

The equation of motion (B.12) is not valid for just any choice of the
parameter u. To see this, note that Eq. (B.12) implies a conservation law

d dx* dx” 08y ﬁ dx” d_x)‘ d?x* dx” dx* d*x”

@[gwwa] = oxk du du du a8 a
8g;1,v dx* dx” dx*

= -5 g — gl ) =~
(ax)‘ Bt va. — &y ‘M) du du du

=0. (B.14)

It follows that ¥ must be a linear function of the proper time t, defined by

dt =/ —guy dxt dxV, (B.15)

which according to Eq. (B.2) is the time told by a clock that falls freely along
with the particle. The only exception to this conclusion is for massless parti-
cles like photons, whose spacetime trajectory satisfies the same equation of
motion (B.12) as for a massive particle, but for which the conserved quantity
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dt/du vanishes. For a massless particle or a ray of light we need to choose
the parameter u as the time told by some other freely falling clock.

In the case of non-zero mass m, it is convenient to take the affine param-
eter u as u = t/m, for then we can define the energy-momentum four-vector
as

M dx*  dxH
= m — = — .
P dt du
and, using Eq. (B.15),
gwpupv =—m’.
For massless particles we have g, (dx" /du)(dx"/du) = 0 however u is

normalized, so we can simply suppose that it is normalized in such a way
that the energy-momentum four-vector is p* = dx* /du.

5 Gravitational time dilation

These results allow us to derive one of the most important consequences of
the Equivalence Principle. For a slowly moving particle, dx’/du is much less
than dx°/du, so Eq. (B.12) becomes

d*x LT dx? dx° .
du? 0 gy du —

For a weak gravitational field, the metric g,,, isnearly equal to the Minkowski
metric 7,,, SO

(B.16)

g =N + h;w > (B.17)
with the components of /,,, much less than unity. We then can take u =
t ~ x¥ = ¢, so the equation of motion of a freely falling slowly moving
particle in a weak gravitational field is

d’x' ,

where i runs over the values 1, 2, 3, labeling spatial directions in a Cartesian
coordinate system. The affine connection for a weak gravitational field is

T ah oh oh
Ao o pv 9Ny
Fiv = 2 [ axv  OxH  IxP :| ' (B.19)

In particular, for a weak time-independent gravitational field we have
0= "2 gxi -
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Egs. (B.18) and (B.20) allow us to identify —/hgp/2 as the Newtonian
gravitational potential ¢, so in a weak static gravitational field we have

200~ —1—2¢. (B.21)

Now consider a clock at rest in such a field. According to Eq. (B.2), if the
time between ticks in the absence of a gravitational field is dT, then in the
presence of the field it is df, where

(=1 = 2¢)di> ~ —dT? .
Hence the time between ticks is no longer dT, but rather
dt ~ (1 — ¢)dT . (B.22)

In the negative gravitational potential at the surface of a star clocks there-
fore tick more slowly than in interstellar space, or in the much weaker
gravitational potential at the surface of the earth. Thiscould not be observed
on the star’s surface, since all physical processes would be slowed there by the
same factor, but it is observed at a distance, by measuring the decrease in the
frequency of photons emitted from atomic transitions on the star’s surface.
The gravitational time dilation is measured most accurately by observing
the shift of spectral lines as photons rise or fall in the earth’s gravitational
field.

6 Covariant derivatives

Although the spacetime derivative of a scalar field is a vector, the derivative
of a vector or a tensor field is in general not a tensor. For instance, a
contravariant vector field v* has the transformation property

ax'?
v =g (B.23)
adxH
so that
v 9x'" 9x¥ dvH 92x'? 9x¥

ok (B.24)

X' axH ax’° 9xV + axHIxY ax’°

To construct a tensor we must add a term that cancels the second term in
this transformation law. In this way we are led to introduce a covariant
derivative

vt

V= oo ot (B.25)
which does transform as a mixed tensor
ax'? ax¥
VP = PR vty . (B.26)
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Likewise, the covariant derivative of a covariant vector is defined by

v

Uy = ﬁ — T, (B.27)
and is a covariant tensor. More generally, the covariant derivative of a
tensor with any number of upper and/or lower indices is given by simi-
lar formulas, with a +T" for every upper index and a —TI" for every lower
index. It is easy to check that the covariant derivatives g, ., of the metric
tensor all vanish, as they must, since in a locally inertial Cartesian frame
the covariant derivative is an ordinary derivative and the first derivatives
of the metric vanish, so that the covariant derivatives vanish, and a tensor
guv . that vanishes in one coordinate system must vanish in all coordinate
systems.

7 Effects of gravitation: The Maxwell equations

Given the equations that govern some set of fields in the absence of grav-
itation, we can find the equations that apply (at least in sufficiently small
regions) in a gravitational field by replacing all Minkowski metrics n with
metric tensors and all derivatives with covariant derivatives. As mentioned
earlier, the procedure does not give a unique result, since there are tensors
formed from second and higher derivatives of the metric that vanish in the
absence of gravitation, but the effect of including such tensors in the gen-
erally covariant field equations would be negligible in a sufficiently small
spacetime region.

For instance, in Cartesian coordinates in the absence of gravitation
electric and magnetic fields are governed by Maxwell’s equations

3 FP = —JF | (B.28)
aaFﬂy + 35Fya + a,,Faﬂ =0, (B.29)

where F®P is the electromagnetic field strength tensor (with FO' = Ej,
F = By, etc.), J¥ is the electric current four-vector (with J© the charge
density and J!, J2, J3 the electric current density), and

Fop = naynpsF7° . (B.30)
Hence in the presence of gravitation the field equations are
F'", = —J* (B.31)

Fuv;k + ka;u + Fku;v =0 s (B-32)
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with
A
Fuo = guguF™* . (B.33)

We use the same letter of the alphabet for tensors like F),, and F*¥ that
are related by raising and lowering indices by contraction with the metric,
because they represent the same physical quantity.

8 Currents and conservation laws

For a system of particles labeled by an index n, with spacetime coordinates
X, (u) and electric charges e, the electric current four-vector is given by

1 dx* (u)
M) =~ 4 —
T = s / dan:enS (xn(u) x) -
B 1 3 B dx™(t)
‘\/thoc);e’“S (o0 =)=

. (B.34)

Here 8%(z) is a fictitious function with an infinitely narrow and infinitely
high peak at z = 0, normalized so that, for any smooth function f(z),

/ d*x )8ty —x) =f(x),

and 83(z) is the same in three dimensions. In particular, the integral of
/—Detg J over a finite three-dimensional volume equals the total electric
charge within that volume. (In cosmology we would be more interested in
the baryon current, with the baryon number of the nth particle or the nth
galaxy appearing instead of e,,.) The factor 1//—Detg(x) is needed here,
because the four-dimensional delta function is not a scalar. We can see this
by noting that, under a transformation from coordinates x* to coordinates
x'¥, the differential spacetime volume element is changed to

ax’
ox

d*x' = d*x (B.35)

where |0x/0x| is the Jacobian of the coordinate transformation — that
is, the determinant of the matrix whose components are dx'*/dx". The
Jacobian can be expressed in terms of the determinants of the metrics; by
taking the determinant of Eq. (B.3), we find

-2
Detg . (B.36)

/

0x
Detg/ = ‘8—
X
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Hence it is the spacetime volume d*x./—Detg rather than d*x that trans-
forms as a scalar. (A minus sign is inserted in front of the determinant of the
metric, because in physical spacetimes this determinant is negative.) From
the defining equation of the delta function

F) = / A f ()54 (x — y)
= / (d*x y=Detg()) f () (8*Cx = 1)/v/~Detg)) ,

we see that it is the ratio §*(x, — x)/+/—Det g(x) appearing in the current
(B.34) rather than the delta function itself that transforms as a scalar. This
current satisfies the conservation law

9, <,/—Detg(x) J“(x)) - / du% Zn:en S 0w —x) =0, (B37)

provided x is not at the value of any x,(u) at either endpoint of the integral.
This is the same as the generally covariant conservation law

d
OZJM;H_ = ax—MJu-i-FCLMJU (B38)

because { {

L= Eg"kaﬂgm = zau In ( — Detg) )
This is the correct conservation condition, because in the absence of
gravitation there is a current that in Cartesian coordinate systems satis-
fies the conservation law 9,J* = 0, and therefore in general coordinates
in a gravitational field must satisfy the generally covariant generalization
(B.38).

9 The energy-momentum tensor

Likewise, in the absence of gravitation any set of particles and/or fields will

have a symmetric energy-momentum tensor 7%#, which is conserved in the
sense that

TP

axP

Just as J# is the B component of the current of electric charge, we can

think of 7% as the 8 component of the current of p®. In the presence of a
gravitational field the conservation law becomes

oTHY
axVv

—0. (B.39)

THY ., = + 8TV + T, T =0. (B.40)
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The final T" term here is a geometric effect, similar to what we found for
conserved currents, but the other I' term represents the exchange of energy
and momentum between gravitation and the other fields.

For instance, for an ideal gas of particles that move freely except for
gravitational forces and perhaps for collisions that are localized in space,
the energy-momentum tensor is given by replacing e, in Eq. (B.34) with the
energy-momentum four-vector pj, = E, dx!; /dt, whose spatial components
are the components of the three-momentum, and p = E,:

dxly (u)
du

1
YN 4 _ v
) = s / du §nj8 (a0 — x) ()

1
= m 253 (Xn(t) - X>P#(¢)PZ(¢)/En(f) . (B4l

In particular, 7% is the energy density. Direct calculation using the equation
of motion (B.12) shows that this satisfies the covariant conservation law
(B.40).

10 Perfect and imperfect fluids

A perfect fluid is defined as a medium for which at every point there is
a locally inertial Cartesian frame of reference, moving with the fluid, in
which the fluid appears the same in all directions. In such a locally inertial
co-moving frame the components of the energy momentum tensor must
take the form

TV =b;p, T'=Tyu=0, T"=p,

where i and j run over the three Cartesian coordinate directions 1,2, 3. (This
is because non-zero value of 7%° and any term in 7% other than one propor-
tional to 8;; would select out special directions in space, such as the direction
of T, or of one of the non-degenerate eigenvectors of 77.) The coefficients
p and p are known as the pressure and energy density, respectively. Then
in a locally inertial Cartesian frame with an arbitrary velocity, the energy-
momentum tensor takes the form

T = pn® + (p + p)u*u” (B.42)

where p and p are defined to be the same as in the co-moving inertial
frame, and u* is defined by the conditions that it transforms as a four-
vector under Lorentz transformations, and that in the locally Cartesian
co-moving inertial frame it has components #° = 1 and « = 0. This four-
vector, known as the velocity vector, is normalized so that, in any inertial
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frame, na,gu"‘uﬁ = —1. It follows that in a general gravitational field the
energy-momentum tensor of a perfect fluid is

™" =pg"’ + (p + p)utu”, guutu’ =—1 (B.43)

where p and p are defined by the condition that they are equal to the
coefficients in the energy-momentum tensor in a locally co-moving iner-
tial coordinate system, so that they are scalars, and u* is defined by the
conditions that it transforms as a four-vector under general coordinate
transformations and has the components 4’ = 1 and #’ = 0 in the locally
co-moving Cartesian inertial frame. This formula for 7" is correct because
it is generally covariant and it is true in locally inertial Cartesian coordinate
systems. The equations of relativistic hydrodynamics in a gravitational field
are derived by imposing the conservation condition (B.40) on this tensor.
In addition, if the pressure depends on the density n of some conserved
quantity such as baryon number as well as on the energy density p, then
we need the equation of conservation, which in locally inertial Cartesian
frames reads

% (n u“) —0. (B.44)

Thus in a general coordinate system in an arbitrary gravitational field, we
have

(n u“)m —0. (B.45)

For an imperfect fluid, there is a small correction A 7% to formula (B.42)
for the energy-momentum tensor in locally inertial Cartesian coordinate
system:

T = pn*? + (p + p)u®uP + AT*P (B.46)

and a small correction AN® to whatever current may be conserved

i(n e+ AN“) —0. (B.47)
ax%

The scalar p is defined as the energy density observed in a co-moving frame
in which «/ = 0, so that in this frame AT% = 0. This implies that in
all locally inertial Cartesian frames u ug AT «f = (, since this quantity is a
scalar and vanishes in a co-moving frame. The scalar n can be defined as the
value of the conserved density observed in such a co-moving frame, so by the
same reasoning in all locally inertial Cartesian frames we have u, AN* = 0.
The pressure can be defined as whatever function of p and perhaps n gives
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the pressure in a static homogeneous fluid. (A different definition is used in
Chapter 5 et seq.) But the definition of the velocity four-vector u* remains
somewhat ambiguous. We could define u' to be the velocity of particle
transport,! in which case in a co-moving frame with ' = 0 we would have
AN’ = 0 as well as AN = 0, so that in general locally inertial Cartesian
frames AN* = 0. Instead we will define u’ to be the velocity of energy
transport,? so that in co-moving frames we also have 70 = AT = 0, and
SO uﬁAT“ﬂ = AT*" = 0 in this frame, which implies that uﬂAT"‘ﬂ =0
in all locally inertial Cartesian frames, but in general AN® # 0. With this
definition of velocity, the second law of thermodynamics together with the
conditions uﬁAT"‘/g =0 and uy, AN = 0 gives’

] ou 0 ou
ATeg = —1 (&+—ﬁ+uﬂu7’ ta + uqu? ﬂ)

axP  oxv axv axv
2 _ou¥
—(¢ - 5’7)@(’70:,3 + ua”ﬂ) , (B.48)

AN,

—x (p"fp)z [% (%) + uauﬂ% (%)] . (B49)

Here n, ¢, and y are the positive coefficients of shear viscosity, bulk viscosity,
and heat conduction, respectively, and u is the chemical potential associated
with the conserved quantum number, defined by the condition that the
entropy density is (p + p — un)/T. It is then an immediate consequence
of the Equivalence Principle that in general coordinate systems in arbitrary
gravitational fields that vary little over a mean free path or mean free time,

K K
ATy = =1 (e + g + w0t upe 4w u )

2
—( - gn)uk;x (gpw + ”u“v) 5 (B.50)

AN, = —x (p”fp)z [% (%) + u,m”aa7 (%)} . (BS])

IThis is the option adopted by C. Eckart, Phys. Rev. 58,919 (1940), and also in Secs. 2.11 and 15.10
of G&C.

2This is the definition used by L. D. Landau and E. M. Lifschitz, Fluid Mechanics, trans. by
J. B. Sykes and W. H. Reid (Pergamon Press, London, 1959), Section 127. We will adopt this definition
of velocity in this book, because it imposes the maximum possible constraint on the energy-momentum
tensor at the cost of putting less of a constraint on the current of conserved quantities, and in cosmology
we frequently have to do with situations in which there are either no non-zero conserved quantities at
all, such as in the early universe before cosmological leptogenesis or baryongenesis, or no conserved
quantities that are large enough to seriously affect the relation between pressure and density, as in the
radiation-dominated era at temperatures above about 104 K.

3Landau & Lifschitz, op. cit.
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11 The action principle

There is a general algorithm for deriving the energy-momentum tensor for
systems that may be more complicated than an ideal gas or perfect fluid,
provided only that they are governed by an action principle. According
to the action principle, the differential equations governing the behavior
of particles and fields can be expressed as the statement that the “matter
action,” a functional I, of the fields and particle trajectories, is station-
ary with respect to infinitesimal variations of the fields and particles. The
Equivalence Principle tells us to include the metric in the matter action in
such a way that I, is invariant under general coordinate transformations.
Then the change in the action when we make an infinitesimal change 6g,,,
in the metric (leaving all other dynamical variables unchanged) must be of
the form

81, = % f d*x /—Det g(x) T""(x) 8guv(x) , (B.52)

where T"V(x) is a symmetric tensor, which we identify as the energy-
momentum tensor.

For instance, the action for a gas of charged particles with masses m1;,
charges e, and trajectories x}, (1) interacting with electromagnetic fields is
taken as

= _—/d4 —Detg Fy, Fpog"°g"°

dxl (u) dx> () 7'
_Zmn/ |: g,uV(xn(u)) a qu) al (u)]

du
dxk (u)
+ En en/du i Ay (u)

in which the homogeneous Maxwell equations (B.29) are enforced by writing
the field strength tensor in terms of a vector potential 4, as Fy,, = 3,4, —
0vA4,. The reader can verify that the conditions for the matter action to
be statlonary with respect to arbitrary small variations in 4, (x) and x; Hw)
(arbitrary, except that they vanish for x* — oo or u — =£o00) are the
inhomogeneous Maxwell equations (B.28) together with the equations of
motion of charged particles in a combined gravitational and electromagnetic
fields

2 M v o v
|:d Xp i dx; dxn:| _ endx
dty

I’lF,LL ,
dt? + " dt, dt, v(in)
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where 7, is the invariant proper time along the nth particle trajectory,
defined by

drn
du |: guv(xn( u))

Eq. (B.52) gives an energy-momentum tensor

dxff(u) dx; (u) 172
du

dxy dx) 4
§4(x —
dt, dt, (= xn)

T (x) = [-Detg(0)]™"/> > " m, f dt,

+FPE()F," (x) — %g’”(X)F PO (x) Fpo (x)

which is the same as Eq. (B.41), with extra terms representing the energy
and momentum in the electromagnetic field. (In the derivation we use the
relations §Detg = Detg g"" §g,., and 6g"* = —g""6g,58°".)

The justification of the identification of TV in Eq. (B.52) is that this
tensor is conserved, in the sense of Eq. (B.40). To show this, note that in
general our assumption that /,, is a scalar tells us that it is unchanged if we
simultaneously make the replacements

d ad
d*x > d*x, — > —, (B.53)
IxH axH
ax
Xy w) = X, Au(x) > 4,(x) = P /MA (x), (B.54)
ox* 9x°
g/w(x) - g,,w(x) = 9x Py Ix ,vgpo(x) 5 (BSS)

and likewise for any other fields entering in the action. But the coordinate
X" (unlike X'} (u)) is just a variable of integration, so we can change x'"
back to x* everywhere without changing 7,,. It follows that 7, is unchanged
by the replacements

xH ) — X (u) , (B.56)
0x

Au(x) = A4, (x) = P ,MA (x) = [4),(x') = 4;,(x)] (B.57)
oxf ax°

8uv(¥) = 80,0 = =5 =5 8p0 (X) = (8, (x) — g, (0], (B58)

with x* and 9/9x* now left unchanged. (This combination of a coordinate
transformation and a relabeling of coordinates is sometimes called a gauge
transformation.) For a general infinitesimal coordinate transformation we
have x* — x* + e*(x), with €*(x) arbitrary infinitesimal functions of x.
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Then the transformations (B.56)—(B.58) become

xi(u) — xh ) + €"(x,) , (B.59)
A (x) > Ay (x) — 82‘)(3)@@) - %e”(x) . (B6D)
P 9¢°

G0 = g0 — 2= g0 - 15 g
8g/w( X)
—WEp(X) . (B61)

Now, as long as the equations of motion of particles and the field equations
for “matter” (including electromagnetic) fields are satisfied, the action is
unaffected by any infinitesimal changes in particle trajectories and matter
fields. On the other hand, unlike the total action of matter plus gravitation,
the matter action is not stationary under variations in the metric, even
when the field equations are satisfied. For a general infinitesimal coordinate
transformation, using Eq. (B.61) in Eq. (B.52) lets us write the condition
that 7,, is a scalar as

0=461, —/d4 v/ —Detg(x) ) THY (x) |: 'l )gpv( ) — 8€p(X)gup( )

a v

0guv(X)
28 ep(x)} , (B.62)

Integrating by parts and setting the coefficient of €”(x) equal to zero then
yields the conservation condition (B.40).

12 Scalar field theory

We will frequently encounter cosmological models involving a scalar field
¢(x), with an action?

/d4 “Detg [1g 88 Maa v )} (B.63)

where V (¢) is a function known as the potential. The field equations for
¢ in a gravitational field are given by the condition that this be stationary
with respect to variations in ¢:

19 b0 V(e
% | /Detgg ¥ | = . B.64
J/—Detg ax~ [ e 8x"i| 9 (B.64)

4In general, the coefficient of the first term in square brackets might depend on ¢, but such a field-
dependent coefficient can always be eliminated by a redefinition of the scalar field. This simplification
is not generally possible, however, with more than one scalar field, the case discussed in Section 10.4.
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The energy-momentum tensor for the scalar field is found by varying the
metric and comparing with Eq. (B.40):

1 g 0@ dep ¢
TW — _oghv | _gpo Z% 7V | mpgvo T T B.65
A g [2g 57 oy (w)} e e (B.65)

This has the same form as the energy-momentum tensor (B.43) for a perfect
fluid, with energy density, pressure, and velocity four-vector given by?

1 dp g
= ——gtV Vv B.66
P 28 S e (®) (B.66)
1 dp Jp
=——gtV T _ ) B.67
p=—38" e V@ (B.67)
dp 99 17?9
ut = — _gpff_ga_(p ur 9% (B.68)
dxP 0x° oxT

(The sign of u* does not affect the energy-momentum tensor, so it cannot
be found by comparing Egs. (B.65) and (B.43). It is chosen here so that
u® should have the value #° = +1 in the case considered in Chapter 4 —
a spacetime with g% = —1 and a scalar field that does not depend on
position and increases with time — provided the square root is understood
to be positive.) The reader can check that T}, " is conserved in the sense of
Eq. (B.40) as a consequence of the field equation (B.64) for ¢.

13 Parallel transport

A body carried along an orbit x* = x*(¢) may be characterized by one
or more ¢-dependent vectors or tensors. If these vectors or tensors do not
change at time ¢ in a frame of reference that is locally inertial at x*(¢), then

5This result for pressure is different from that given (without explanation) by E. W. Kolb and
M. S. Turner, The Early Universe (Addison-Wesley, Redwood City, CA, 1990), Eq. (8.21), accord-
ing to whom the pressure of a scalar field in a Robertson—Walker metric is

P=¢%/2-V(p) - Vo)’ /6 ,
instead of the result for a Robertson—Walker metric given by Eq. (B.67)
p=¢*/2=V(p) - (Vo)*/2d> .

The Kolb-Turner result is obtained if we define the pressure as the value of T%;/3 measured by an
observer in a locally inertial coordinate system moving with four-velocity v,

1
P=3 (gup + vuvp) TP (8 + vevt) |
but take the velocity v# to have components o0 =1, v' = 0. It seems more natural in using this formula
for pressure to take v# as the velocity u** given by Eq. (B.68), for this is the velocity that appears in the

perfect fluid formula (B.43) for the energy-momentum tensor. This choice of v* leads to Eq. (B.67).
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in an arbitrary frame of reference they will undergo a change known as
parallel transport. For instance, a contravariant vector v*(¢) will have a rate
of change

WO~ rt (v0) '

To check that this is valid, we note that it is assumed to be true at time ¢

A(t)

(B.69)

in frames of reference in which the affine connection F{fx (x(t)) vanishes,

and it is generally covariant, and it is therefore true in all frames if it is
true in such locally inertial frames. In particular, Eq. (B.12) shows that
the momentum p* = dx*/du satisfies the equation of parallel transport.
Similarly, any tensor carried along an orbit that does not change in a frame
that is locally inertial at a point along the orbit will have a rate of change in
general frames at that point given by a sum of terms like the right-hand side
of Eq. (B.69), with a —T" for every contravariant index and a +I" for every
covariant index. For instance, for a covariant tensor J,,,, the equation of
parallel transport is

dJ (1)
dt

A(t)

xxt( ) < ( t)> (D)

=417, (x(l))Jpv(t)d -

14 The gravitational field equations

It remains only to give the equations that govern the gravitational field itself.
These must satisfy two requirements: they must be generally covariant, and
for weak slowly changing gravitational fields they must yield the Poisson
equation for the Newtonian potential ¢ in Eq. (B.21)

V2 =47 GTY, (B.70)

where G is Newton’s constant. If we limit ourselves to partial differential
equations that (like the Poisson equation) have just two spacetime derivatives
of the metric, then the field equations are unique:

1
Ry — ngg“RM = —87GT,, , (B.71)

where 7),, is the energy-momentum tensor with lowered indices

Ty = gua 8o T* (B.72)
and Ry, is the Ricci tensor:
ar*  ar*
Ry = avaA - axﬂ; + %, Th —T% T, . (B.73)
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For weak static fields the time—time component of this equation is the same
as the Poisson equation (B.70), provided ggo is related to ¢ by Eq. (B.21).
The tensor appearing on the left-hand side of Eq. (B.71) satisfies a set of
differential Bianchi identities:

v 1
|:g)L (R;w - Eg;wngR,o;c>:|;)k =0. (B.74)

This is why this is the linear combination of the tensors R,,, and g, g Ry
that appears on the left-hand side of the field equations; otherwise the field
equations would not be consistent with the energy-momentum conservation
law (B.40). The field equations could have been derived more easily by
including a gravitational term in the action

1
I, = —
g 167G

/ d*x/—Detg(x) g"(x) Rue(x) . (B.75)

The Bianchi identities (B.74) can be derived from the fact that 7, is auto-
matically invariant under general coordinate transformations of the metric,
and the field equations (B.71) can be derived from the condition that the
total action I, + I, be stationary with respect to arbitrary variations of the
metric.

If we allow terms in the gravitational field equation with fewer than
two spacetime derivatives, then it is possible to include a term on the left-
hand side of the field equation (B.71) proportional to g,,. This is the
so-called cosmological constant term, discussed in Section 1.5. It can be
regarded as a “vacuum-energy” correction to 7). Aside from a cosmolog-
ical constant, the only other possible modification of the left-hand side of
Eq. (B.71) would involve terms with more than two spacetime derivatives.
(They can be derived, for instance, by including terms in the integrand of the
gravitational action proportional to ./—Detg R*" R, or ./—Detg (R* M)z.)
Dimensional analysis tells us that such terms would have coefficients whose
dimensionality (relative to that of the factor 1/16z G in Eq. (B.75)) is a posi-
tive power of length. The experimental success of General Relativity shows
that this length is much smaller than the scale of the solar system, so the
effect of such terms would be completely negligible at cosmological distance
scales.
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Appendix C

Energy Transfer between Radiation
and Electrons

One often needs to know the rate at which a photon will lose or gain energy
when passing through anionized gas. For instance, we need this information
in calculating the Sunyaev—Zel’dovich effect, discussed in Section 2.5, and in
understanding the preservation of thermal equilibrium between matter and
radiation, treated in Section 2.2. This appendix will first derive formulas
for the mean and the mean square change in energy of a photon in striking
a single electron, and will then use these results to derive the rate of change
of the photon energy distribution function in passing through an ionized
gas. For the purposes of this section, we take i = ¢ = 1.

Suppose that an electron traveling in the three-direction with momentum

four-vector
p:(OaOJPE’EE‘)a EEE \/p62>+mg’ (Cl)

is struck by a photon with energy « moving along a direction with polar
and azimuthal angles n and ¢, giving the photon a new energy «’ and a
new direction with polar and azimuthal angles ’ and ¢’. That is, the initial
four-momentum ¢ and final four-momentum ¢’ of the photon take the forms

qg= <sinncos ¢, sinnsin ¢, cosn, l)a) , (C2)
q = (sin n'cos¢’, sinn’sing’, cosn’, l)a)/ ) (C.3)

To calculate the cross section for this scattering event, we perform a Lorentz
transformation to a frame of reference in which the electron is initially at
rest, in which case the cross section takes a simple and well-known form. In
the electron rest-frame, the initial and final photon four-momenta are Lg
and Lq', where L*, is the Lorentz transformation

1 0 0 0
01 0 0

L= , C4
00 y —By (C4)
00 -8By vy

where B = p./E, is the electron velocity, and y = (1 — 82)~1/2. This gives
the initial and final photon four-momenta in the electron rest frame as

Lg = ( sinw cos ¢, sin« sin ¢, cosa, 1>k , (C.5)
Lqg = (sina’cos¢’, sina’sing’, cosa’, 1>k/ ) (C.6)
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where the initial and final photon energies in the electron rest frame are
k= (=Bycosn+ylo, k'=(=Bycosn +y) (C7)

while the initial and final polar angles of the photon’s velocity in this frame
are given by

cosn— B , cosn —p
cosg =———, cosa' = ———— |
1 —Bcosny

1—pBcosn’ €8)

and there is no change in the azimuthal angles. We also recall that the
conservation of energy and momentum in the electron rest frame gives the
final photon energy in this frame as!

k
I = , C9
14+ (k/me)(1 — cos ) (€9)
where 6 is the scattering angle in the electron rest frame
cosf = Lg- Lg = cosacosa’ + cos(¢p — ¢')sinasina’ . (C.10)

The fractional change in the photon energy in the original frame of reference
can then be expressed in terms of quantities in the electron rest frame by

/ /
v-o_ 1 ( L+pcosa —,Bcosoz—l) . (C.11)
w 14+ Bcosa \ 1+ (k/m,)(1 —cos0)
In most cases of interest k/m, and 8 are much less than unity, so we will
keep only terms of first order in k/m, and zeroth order in B together
with terms of (for the moment) arbitrary order in 8 and zeroth order
in k/me:

YT (k/my)(1 — cosO) + ﬁ(cfi“ﬂ;‘;‘:“) . (C.12)

For an electron at rest and for photon energy k < m,, the cross-section
differential (summed over final spins and polarizations, and averaged over
initial spins and polarizations) is’

_ 307

2 / /
= 20T 1
do 16n(l+cos 9) d(cosa’)dg' (C.13)

IQTF, Vol. L, Eq. (8.7.14).
2QTF, Vol. 1, Eq. (8.7.42).
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where o7 is the Thomson cross section e*/67m2. The cross-section differ-
ential is itself Lorentz invariant, though the variables on which it depends
are not, so the average photon energy change per collision is

(0 —w) = /(a)—a))do

2
F d(cosoz)/ d¢’ (@ — w) (1 + cos®0)

wCcos kw
_ _pocose ko . (C.14)
1+ Bcosa  m,

We must average this over the electron direction of motion, or equiva-
lently over «. In calculating this average we must keep in mind that it is
cos i rather than cos « whose distribution function in the interval from —1
to +1 is flat. Also, the transition probability is proportional not only to do
but also to the relative speed’

_Ip-4l 1—p?

=1- = C.15
E.0 preosn 1+ Bcosa ( )

Hence the average of the energy change over the relative direction of the
initial electron and photon is

+1 +1
((d—w))z/ (w/—w)udcosn// udcosn
-1 -1

1/“ (1—B%)? [ Bwcosa ka)]
— — — | dcosa .
1+ Bcosa  mp

2J_1 (14 Bcosa)’

(C.16)

The terms of first order in 8 make no contribution to the integral over «, so
the leading terms in the fractional energy transfer are those of second order
in B or first order in w/m,:

(0 —ofo= 3~ g @ (€17
Me me
Since the mean photon fractional energy change contains terms of order
B2 and w/m,, we will be interested in any terms in the average squared
fractional energy change of the same order. Inspection of Eq. (C.12) shows
that to this order, we have

(0 — w)?/w? ~ B*(cosa’ — cosa)? (C.18)

3QTF, Vol. 1, Eq. (3.4.17).
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To this order we can neglect the difference between u and unity and between
d cosn and d cos «, so that

38242 [+ +1
(@ — 0)?)) ~ pro dcosa dcosa’
327'[ -1 ~1

2

X d¢' (cosa’ — cosa)>(1 + cos? 0)
0

2

=357 (C.19)

All this is for an electron of a fixed speed S. If the number of electrons
with speed between B and B + dp is given by the Maxwell-Boltzmann
distribution with electron temperature 7,, and is hence proportional to
B2 exp(—m B2 /2kpT,) dB, the average value of B2 is 3kgT./me., and
Egs. (C.17) and (C.19) become

2
({0 — w)) ~ 4kBTea) _ Y , (C.20)
mg mg
and
(@ —»)?) = —2]:5T"w2 (C.21)

Now suppose that photons with a number N (w)dw with energies between
o and w + dw interact with a gas of non-relativistic electrons. For photon
energies w < m,, the rate of change of the distribution function is

n(w)dw = n, / do' n(0) R(@ — w)dw (1 + N(w))
—ne n(w) da)/ do' R(w — o) (1 +N(@)). (C22)

Here n, is the number density of electrons; R(w — w')dw’ is the aver-
age of udo over initial electron velocities for collisions in which a photon
of initial energy w is given an energy between ' and o’ + do'; N(w) =
Qrh)3n(w)dw/8nw?dw is the number of photons per quantum state of
energy o (the denominator is 87 w?dw instead of 4w w’dw because of the
two polarization states of photons); and the factors 1 + N (w) and 1 + N (o)
are included to take account of the stimulated emission of photons into
states that are already occupied. The first term in Eq. (C.22) gives the
increase in n(w) due to scattering of photons of any initial energy o’ into
energy w, while the second term gives the decrease in n(w) due to scattering
of photons of energy w into any final energy «’. We saw that collisions
of photons of energy w <« m, with a non-relativistic gas of electrons at
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temperature 7 typically change photon energies by only small fractional
amounts, of order w/m, or kgT /m,, so the rate constants R(ow’ — w) and
R(w — ') are sharply peaked around o’ >~ w. It is therefore convenient
to change the variable of integration from o’ to A = @ — ' in the first
term and to A = o’ — w in the second term of Eq. (C.22). Also canceling
the unintegrated differential dw and multiplying with (27/)3 /87 w?, this
formula now reads

N(w) = %/oo dA (0 — A2 N(w— A) R(w — A — o) (1 + N())

—1eN (@) f dA R(® — o+ A) (1 + N+ A)) . (C.23)

Since the rate coefficients R(w — A — w) and R(w — w + A) are sharply
peaked around A = 0, we can expand the other factors in Eq. (C.23) (and
the difference between R(w — A — w) and R(w — w+ A)) to second order
in A:

N(w) = —% /_Z dA A (1 + N(a)))% [a)zN(a)) R(w — o+ A)]

+%/;ZdA A? (1+N(a)))aa—:2|:w2N(a)) R(w — a)+A)]

_neN(a))/ dn A Y9 Rt A
w
2
N()/ dAAZaN(w)R(a)ea)—i—A).

This can be rewritten as

N(w) = —%foo dA A ai [a)zN(a))R(a) S w+A) (1 +N(w))]

Ne ) 82 )
5.2 f da A22 a [a) N(@®) R — -+ A) (1 + N(w))]
/ dA A2 [a) N(@®) Rl — -+ A) a]g(“’)} .
w

Inverting the order of integration and differentiation, this becomes

neUT 8
w? | dw

Nw) = - (* N@) (14 N @)t - o))

1 92

5o (P N @ (14 N @) (@ - 0))

i (w2N<w><<<w’—w>2>>aN(‘”))] , (C.24)

+% w
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in which we use

/Oo dA AR(w — o+ A) = o7 {(0) — w)),

X foo dA A’R(w —> o+ A) = o7 (0 —w)?)) .  (C.25)

—0o0

Inserting the values (C.20) and (C.21) of ({(& — )) and (((&' — w)?)) gives
the Kompaneets equation:*

neor kgTe [ 48N(a))} neor 9
_— +

N(w) = Mew? o

[a)4N(a)) (1 +N(a))>] .
(C.26)

Jw Mew? d

As a check, we may note that if the photon distribution function is
given by the Planck formula with photon temperature equal to the electron
temperature, so that N(w) = [exp(w/kpT,) — 117!, then the two terms in
Eq. (C.26) cancel, giving no change in N (w), as of course must be the case for
photons in equilibrium with electrons. As a further check, we note that (as
long as w* N (w) and w* N /dw both vanish at v = 0 and w — o0) the total
number density of photons fooo 4 w? N (w) dow does not change with time,
as could also be seen by integrating Eq. (C.22) over w, and interchanging
and ' in the second term.

4A. Kompaneets, Zh. Exper. Teor. Fiziki 312+, 876 (1956).
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In cosmology we often have to deal with position-dependent variables like
temperature or density or scalar fields whose fluctuations are governed
by some sort of probability distribution. In this appendix we will con-
sider a general real random variable ¢(x) depending on a D-dimensional
Euclidean coordinate x. The generalization to several random variables will
be obvious.

We will assume that the distribution function giving the probabilities
of various functional forms for ¢(x) is homogeneous, in the sense that the
average of any product of ¢s with different arguments depends only on the
differences of the arguments. That is, for arbitrary z,

(p(xDe(x2) - - p(xp)) = (p(x1 +2)p(x2 +2) - -@(xp +2)) . (D.1)

In cases where x is a time coordinate, such distributions are said to be
Stationary.

We will further assume that the ¢s at distant arguments are uncorrelated.
To put this formally, we assume that for |u| — oo,

(p(x1 +wex2+u)--o(y1 —we(2 —u)--+)
= (px1 +wex2+u)-- ) (1 — w2 —u)---)

= (p(xDe(x2) -+ ) (@D () ---) , (D.2)

with the final expression justified by Eq. (D.1).

Under these conditions, we can prove an important result known as the
Ergodic Theorem: If the limit in Eq. (D.2) is approached sufficiently rapidly,
then the root mean square difference between any product ¢ (x1 + z)@(x2 +
z)---, averaged over a range R of z values around an arbitrary point z,
and the ensemble average of the same product, vanishes as R~?/2 for large
R. That is, if we define

AR (X1, %2,...) = <(/dDzNR(z)go(x1 +2)p(x2+2)- -

2
—(p(xDp(x2) - - )) > , (D.3)
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where!
Nr@) = AR P exp (= 2= 20P/R) (D4)
then for R — oo,
AR — O(R™P/?y . (D.5)

To prove this theorem, we first use the condition [ Ng(z) dPz = 1to
rewrite Eq. (D.3) as

ARG x2, ) = <(dezNR<z> oG + 202 +2) -

2
~lpeg () >]) > :

Expanding the square and again using Eq. (D.1) and the normalization
condition for Ng, and introducing new integration variables u = (z — w)/2
and v = (z + w)/2, we have

A% = / dPz Ngr(z) / dPw Nr(w)

X [<<p(X1 +2)p(x2+2)- (X1 +wWe(xa +w)--- >

2
—<§0(X1)<ﬂ(x2) : > }
_ <L>D f dPv exp ( v — Zo|2/R2> /dDu exp ( _ 2|u|2/R2)
7 R?
X [<¢(X1 +u)p(x2+u) - o(x1 —we(x2 —u)-- >
2
—<¢(X1)¢(Xz) ' > }
7 \D2
_ (m) /dDu exp ( - 2|u|2/R2)

IThe specific form (D.4) for the function Np is not essential. It is only important that the function
be constant for |z — zo|2 <« R2, vanish rapidly for |z — zo|2 > R2, and be normalized so that
[Nr@)dPz=1.
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X [<¢(X1 w2 +u) - @(x1 —u)p(x2 —u) - >

2
—<¢(X1)¢(XZ) : > ] .

Assuming that the limit in Eq. (D.2) is approached sufficiently rapidly, the
u integral would converge even without the factor exp ( —2|ul? /R2) , so for
R — oo we can take this factor as unity, and find our final expression

7 \D/2
A%{ — (_RZ) /dDu
b4

X [<¢)(X1 +uwe(x2 +u) (X1 —we(x2 —u) - >

2
—<<p(x1)<o(Xz) - > } , (D.6)

thus confirming Eq. (D.5).
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Appendix E

Gaussian Distributions

Consider a random variable ¢(x) depending on a D-dimensional coor-
dinate x. We will define it to have zero average value, by subtracting from
¢ any non-zero average it may have. The distribution function governing ¢
is said to be Gaussian if the average of a product of an even number of ¢s
is the sum over all ways of pairing ¢s with each other of a product of the
average values of the pairs:

(e )= Y [[lee). (E.1)

pairings pairs

(with the sum over pairings not distinguishing those which interchange
coordinates in a pair, or which merely interchange pairs), while the aver-
age of the product of any odd number of ¢s vanishes. For instance

(p(xDe(x2)e(x3)@(xa)) = (P(xD@(x2)) {(@(x3)@(x4))
+{p(xDe(x3)) (p(x2)@(xa)) + {(p(x1)@(xa)){@(x2)p(x3)) . (E.2)

(Of course, there is no way of pairing all of an odd number of ¢s, which is
why for Gaussian distributions the average of any odd number of ¢s must
vanish.) More generally, in the average of a product of 2n factors of ¢, each
of (2n)! permutations of the coordinates defines a pairing (with the first
permuted ¢ paired with the second, the third with the fourth, and so on),
but 2"n! of these differ only by permutations of the two coordinates within
a pair or permutations of the n pairs, so in general this average contains
(2n)!/2"n! terms.

If ¢(x) is governed by a Gaussian distribution, then so is any linear
functional of ¢(x). For instance, consider a set of linear functionals of the
form

Filg] = / dPx f(x) o(x) . (E3)

By multiplying Eq. (E.2) by f1(x1) f2(x2) f3(x3) f4(x4) and integrating, we
find

(FiF2F3Fy) = (F1F) (F3Fa) + (FLF3) (FoFa) + (F1Fa)(FaF3) . (E4)
Such distributions are called Gaussian because of the form taken by the

probability distribution of general linear functionals Fl¢] = [ dPxf (x)p(x)
of . In (F?"[¢]), each of the (2r)!/2"n! terms makes the same contribution
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(F2[g])", s0

(F2"[@]) = (F2[])"2n)!/2"n! . (E.5)
This implies that the probability P(F) dF that the functional is between F
and F + dF is the Gaussian function

F2 )
P(F)dF = —— ) ar. (E.6)

1
V2 (F2) =P ( 2(F?)

Distributions of this sort arise commonly when ¢(x) is the sum of a large
number of independently fluctuating terms. The central limit theorem tells
us that in this case the distribution of the sum is Gaussian. In the application
that most concerns us here, the fluctuations in the temperature of the cosmic
microwave background are believed to be nearly Gaussian because they arise
(as discussed in Chapter 10) from the quantum fluctuations of one or more
nearly free quantum fields.
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Appendix F

Newtonian Cosmology

During the era when the energy density of the universe is dominated by
cold dark matter, the behavior of perturbations can be adequately treated
by the methods of Newtonian mechanics. This has applications both for
our introductory study of anisotropies in the cosmic microwave background
in Section 2.6, and for the treatment of the large scale structure of matter
in Section 8.1.

The equations of non-relativistic hydrodynamics and Newtonian
gravitational theory for a fluid with mass density p, velocity v, zero pressure,
and gravitational potential ¢ are the equation of continuity

ap
E—FV'(V,O)—O, (E1)
the Euler equation
ov
ot (v : V)v — Vg, (F2)
and the Poisson equation
V3¢ =4nGp . (E3)

These equations have an unperturbed solution (distinguished by bars) of
the form

p=pola/a)’, ¥=HX, ¢=2rGpX*/3, (F4)
where H = a/a; ap and pg are constants; and «a(¢) satisfies the equation
&+ K =87Gpa’/3, (E.5)

with K a constant. (We use X to denote the ordinary Euclidean coor-
dinate vector, to distinguish it from the co-moving coordinate vector x.)
This of course corresponds to a cosmological theory with a Robertson—
Walker metric, and indeed we have already encountered this solution in
Section 1.5, as an alternative approach to the derivation of the Friedmann
equation (F.5). In particular, the solution of the equation dX/dt = v =
HX for the motion of a co-moving object is X(z) = [a(?)/a(t9)1X(t0),
in agreement with Eq. (1.5.22). The co-moving coordinate is thus
x = X/a.

To this unperturbed solution for p, v, and ¢ we now add small
perturbations §p, §v, and §¢. The terms in Egs. (F.1)~(F.3) of first
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order in these perturbations are

25
8—” F3HSp+ HX-Vép+ 5V -ov=0, (E.6)
a0V
S HX VoV Hov =~V (E7)

V25¢ = 4w GSp . (E.8)

Egs. (F.6)-(F.8) do not appear translation-invariant, but the underly-
ing spatial homogeneity of this problem can be restored by writing the
equations in terms of the co-moving coordinate X/a. This is brought out
most conveniently if we write the perturbations as Fourier transforms in the
co-moving coordinate:

sp(X, 1) = / dq exp( (f) 8pq(0) (F.9)

and likewise for v and 8¢. The partial differential equations (F.6)—(F.8)
then become the ordinary differential equations

ddpq

T+3H8,oq+za pq-8vqg=0, (F.10)

ds
TV“ + Hovg = —ia~'qsgy . (E11)
q?8¢q = —dw Ga*Spq . (F.12)

The solutions of Egs. (F.10)-(F.12) can be classified according to the
transformation properties of the dependent variables under three-dimensional
rotations:

Vector modes: In these modes, all scalars vanish: not only 6pq and ¢q, but
also q - 8vg. Then Eqs. (F.10) and (F.12) are automatically satisfied, while
Eq. (F.11) becomes

ds
TV"+H5 Vg =0, (F.13)

whose solution is simply dvgq o< 1/a. Because the vector modes simply decay,
they are widely ignored.

Scalar Modes: In these modes, the velocity perturbation §v(X, ¢) can be
expressed as the gradient (with respect to x = X/a) of a scalar potential
perturbation su(X, ¢). For the Fourier transforms, this means that
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Then, using Eq. (F.12) to eliminate ¢4, Eq. (F.11) becomes

dés 4n G
;%Hw%_ﬁﬂwr_”“@m (F.15)
while Eq. (F.10) gives
ds
%+3H5pq—a 0q 8u =0. (F.16)

For K = 0 we have 47 Gp = 3H?/2. Using p & a~> and the definition of
H, we can eliminate duq from these coupled equations and write them as a
second-order differential equation for the fractional density perturbation

d (»d (dpq 3.2 2%k _
dt(a d[(ﬁ)) 2Ha 5 =0, (F.17)

or, recalling that for K = 0 we have a o 23 and H = 2/3t,

d (apd (8pa)) _2 23 (%Pa _
m( m( ~ ) =o. (F.18)

The general solution of this equation is a linear combination of the pow-
ers */3 and ¢~!. It is reasonable to suppose that by the time of last scat-
tering only the leading mode with §pq/p */3 o a will have survived.
Since the mean density p(¢) is proportional to a=3(7), we have 8pq (1) o
a=2(1). Eq. (F.12) then shows that 8¢q 1s time independent, a result used in
Section 2.6.

To verify that these are the most general solutions of Egs. (F.10)—~(F.12),
we need only count equations and solutions. With 8¢q(?) eliminated by
use of Eq. (F.12), Egs. (F.10) and (F.11) are a set of 1 + 3 = 4 coupled
first-order differential equations, so they have four linearly independent
solutions. We have found two independent vector modes (corresponding to
the two directions perpendicular to q) and two independent scalar modes
(with épq/p proportional to t*/3 or t=1), so these are indeed the most general
solutions.

The cases of non-zero pressure or K # 0 are treated in detail in
Section 15.9 of G&C.
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Appendix G

Photon Polarization

The polarization of photons is of great interest in cosmology, not only
because it can be observed in the cosmic microwave background, but also
because it affects the anisotropic inertia terms appearing in the gravitational
field equations for both scalar and tensor perturbations. This appendix will
review the description of the spin state of an individual photon in terms
of photon polarization vectors and the related density matrix, and the
somewhat unusual parallel transport equation that governs the time depen-
dence of photon polarization vectors and density matrices in gravitational
fields.

Let us first recall how we describe the polarization of a photon in the
absence of gravitational fields. The most general pure state of a single pho-
ton is a linear superposition a4 W + o W_, where W, are states of helicity
F1 (that is, eigenstates of the component of angular momentum in the
direction 7 from which the photon is coming! with eigenvalues ¢ = +#,
and normalization (W,, ¥;/) = 8,,/) and a4+ are complex numbers satis-
fying the normalization condition |o|?> + |—|?> = 1. We represent such
a state by a polarization vector e = oje; + o_e_ with e* - e = 1, where
e is the polarization vector for photons of helicity 1. For instance, for a

photon that is seen coming from the direction?
n=(sinf cosg, sinf sin¢g, cosh), (G.1)
we can take
er =0 Lid)/V2, (G.2)

where 6 and ¢ are orthogonal unit vectors in the plane perpendicular to 7:
6 = (cos® cos¢, cosfsing, —sinh), ¢ = (—sing, cosg ,0). (G.3)

Alinearly polarized photon has |« | = |«—|, and hence a polarization vector
that is real up to an unimportant over-all phase factor. The opposite case is
circular polarization, for which either || or |@—| vanishes. Between these

IThis is the opposite of the direction of the photon’s motion, so the helicity, which is defined as the
component of angular momentum along the direction of the photon’s motion, is the negative of the
component along the direction from which it is coming. This is why we use a label & to indicate photons
of helicity 1.

2For correlations between polarizations in a small patch of sky, one can choose the three-axis to be
in the direction 7 of this patch, in which case the polarization vectors for helicity =1 could be chosen
simply as (1, %, 0)/\/2
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two extremes is elliptic polarization, for which |oy| and |e—| are unequal,
but neither vanishes.

An individual photon will in general have probabilities P, of being in
any one of various pure states W,;, = a4+ V1 + o,,— W_, so according to the
rules of quantum mechanics, the probability of finding it in a particular state
W = oy WV, +o_W_ represented by a polarization vectore = oye. +o_e_,
will be

Pe) = Pul(Wn, W)* =) Pylag ay + ap_a_|> =NV (G4)
m m
where N7 is the density matrix for that photon
NI =3 "Pyel,eh . (G.5)
m

(Repeated indices i, j, etc. are summed over the coordinate indices 1,2,3.)
Because the probabilities are real and positive, the matrix N¥ is hermitian
and positive:

N = N NTEIE > 0 for all £ | (G6)

and because ) ,, P, = 1 and e}, ¢)* = 1 (not summed over m), this matrix
has unit trace

Ni=1. (G.7)

Of course, the photon polarization vectors are all orthogonal to the photon’s
direction of motion —#, so also

N/t =N/ =0, (G.8)

The scattering of light by non-relativistic electrons does not produce cir-
cular polarization, and therefore we expect that all microwave background
photons are linearly polarized, in which case NV is real.

So far, we have defined the polarization vector ¢’ in the absence of
gravitation as a unit three-vector, transverse to the photon’s direction of
motion. We can if we like define it in a gravitational field as the spatial
part of a four-component object e# that happens to have ¢” = 0, and that
satisfies

pie =puet =0, g,]-eiei* =gunele™ =1, (G.9)
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where p* = ghVp, is the photon four-momentum.3 But since this object

obviously does not transform as a four-vector there is no reason to think
that its time dependence would be given by the equation (B.69) of parallel
transport. Indeed, it cannot evolve by parallel transport, for if it did then
the condition ¢Y = 0 would not be preserved along the photon trajectory
x! = x!(¢) unless it so happened that F (x(z) t) vanishes, which is not usu-
ally the case. Instead, we expect that i 1n a locally inertial frame of reference

in which the affine connection FffA (x(t)) vanishes, the polarization vector

of a photon will be time-independent only up to a gauge transformation
et — et + apt, so that gauge-invariant quantities like the field strength
pteY — p¥et will be time-independent. Then in a general frame of reference,
a photon polarization vector will undergo parallel transport up to a gauge
transformation:

ety L dx () dx (z)
— _—rm(x(z))e (1) +al) . (G.10)

The gauge transformation parameter «(z) can then be determined from the
condition that ¢° = 0, so that de” /dt =0

dx*(l)

a(t) =0, (x(t)) V(1) (G.11)

With ¢? = 0, Eq. (G.10) then reads

de’ (1) dx/ ()7 ;  dx*(D)
. =[ (x(z)) ((z)) — i|e(t) = (G1)

Note that the conditions (G.9) are preserved with time, for p,, e# and g, e e’
are preserved by ordinary parallel transport because they are scalars, and are
preserved under gauge transformations because p,p* = 0 and p,e* = 0.

In a gravitational field we continue to define the statistical matrix N by
Eq. (G.5), and it continues to satisfy the hermiticity and positivity conditions
(G.6), but now instead of (G.7) and (G.8) we have

giN" =1, pN'=pN/=0. (G.13)

3we can construct e/ in a gravitational field in a general coordinate system x* from the polarization
vector ei’,1 ot Of the photon in a locally inertial frame with coordinates &% as

axH .
et = Tsjeﬁat + B

with B adjusted to make D =0.
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It follows from Eq. (G.12) that the statistical matrix of a photon moving in
a gravitational field satisfies the parallel transport equation

D [ Fk/\( (t))+1“2k< (t))dx (t)} kf(t)dx ©

dt
. dx/ dx*
+[—Ffd<x(l)>+1“2x< (z)) ()] Nik(p) xt(z)
(G.14)
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The Relativistic Boltzmann Equation

In this appendix we derive the Boltzmann equations for neutrinos and
photons, that govern the evolution of the distribution of these relativistic
particles in phase space. This will provide the basis for our account in Sec-
tion 6.1 of the widely used numerical calculations of the evolution of scalar
perturbations. In addition, these results will be needed in Section 6.6, where
we evaluate the damping of tensor modes due to the anisotropic inertia of
free-streaming neutrinos, and in Section 7.4, where we calculate the polariza-
tion of themicrowave background produced by thescatteringof ananisotropic
distribution of photons by non-relativistic electrons. This appendix will first
consider the simpler case of neutrinos, for which scattering may be neglected,
and then turn to the more complicated case of photons, for which scattering
plays an essential role. In an elementary application of the results for pho-
tons, we will derive a formula for the rate of damping of acoustic waves in a
medium of photons and charged particles, used in Section 6.4.

Throughout this appendix we shall adopt a coordinate system for which

goo=-1, go=0, (H.1)

while g;;(x, 7) is unconstrained. In the linear approximation, this form of the
metric is automatic for tensor modes, and follows if we work in synchronous
gauge for scalar modes. However, we will not specialize to the case of
linear perturbations until later. With this metric, the only non-vanishing
components of the affine connection are

rk = Lok <@ 408 _ agij) : (H.2)

vo2 ax/  axt 9x!
Ry 1,
T = Eg]kgki ) F,-Oj = 58ij - (H.3)

1 Neutrinos

It will be convenient to work with a neutrino distribution function n, (X, p, 1),
defined by

3 3
m(x,p.0) =y (1'[ S(x' — xi(r))) (1'[ 5(pi —Pri(t))) . (H4
r i=1 i=1

with r labeling trajectories of individual neutrinos (or antineutrinos). This
expression has the defining property of a number density, that the integral
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of n, over any volume of phase space equals the number of neutrinos in that
volume. According to Section 4 of Appendix B, the momentum variable in

Eq. (H.4) is defined by p,; = g; pi, where p* is the momentum four-vector
pl = dx!'/du, . (H.5)

where u, is a suitably normalized affine parameter for which the spacetime
trajectory satisfies Eq. (B.12):
d’x*
du?

dx," dx?
du, du,

+ Ty () =0. (H.0)

Then between collisions the rate of change of the momentum is simply
given by

. 1 j k 8gjk
i = —=PrDr : , H.7
Pri 2p9p D (ax, — (H.7)

while the rate of change of the coordinate is

X =pl/py - (H.3)
It follows then directly from Egs. (H.4), (H.7), and (H.8) that in the absence
of collisions, n, satisfies a Boltzmann equation

dn,  dnm, p' dn, p/pF agik B

ot + axipO = dp; 2p0 Axi

(H.9)

It should be understood that p’ and p° are expressed here in terms of the
. . , - . 1/2
independent variable p; by p' = g¥(x, 1)p; and P = (g” (x, t)pipj) , SO
they depend on position and time as well as on p;.

We now specialize to the case of a small perturbation. The spatial metric
is then of the form

gj(x, 1) = a* (18 + 8g;(x, 1) , (H.10)

with 8g;; small. With only a small perturbation to the metric, the neutrino
distribution function never gets very different from its equilibrium form, so

we write

ny(X, 1) =, (a(t),/gU(x, t)pipj> +ny(x, 1), (H.11)
where

- 1 - -1

D) = (exp (p/ksad T ) +1] (H.12)
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and 8n, is a small perturbation. (Note that the factor a(¢) in the argument of
nin Eq. (H.11) is canceled by the factor a(7) multiplying T'(¢) in Eq. (H.12);

this factor has been included in Egs. (H.11) and (H.12) because at times
of interest, when 7" < 10'°K, we have T(r) o 1/a(f), so that Eq. (H.12)
defines 7, as a time-independent function of its argument.) The first term
in Eq. (H.11) is the neutrino distribution we would expect according to the
Principle of Equivalence in a perturbed gravitational field, if the distribution
in locally inertial frames were just the equilibrium distribution 7, (p); the
second term én, thus represents the departure of the neutrino distribution
from its equilibrium form.

We can derive an initial condition for én, by noting that, at a time 7|
corresponding to a temperature 77 &~ 10° K, the neutrino scattering rate had
already dropped well below the expansion rate, but there had not yet been
time for the perturbations in the metric to distort the neutrino distribution
away from /local thermal equilibrium, but with a perturbed temperature.
Thus as a convenient initial condition we may take

ST (X, t1)  Pr - Sug(X, tl):|
- + ,
T(t) a(ty)

5%, p, 11) = —pii, (p) [ (H.13)

where T'(t1) ~ 10° K. The second term in square brackets represents the
Doppler shift due to a possible neutrino streaming velocity du, analogous
to that given for microwave background photons by Egs. (2.4.5) and (2.4.6).
In local thermal equilibrium this is the same velocity perturbation as for
baryons and photons. (Note that the metric position vector is ax¥, so the
metric velocity vector is au® = a=luy.)

To first order in metric and density perturbations, Eq. (H.9) reads

_ a(snv(xapz t) + aanv(xap, Z) Di

at axt a(t)p
i, n,(p)
i WD D (@ wseh .0 )iy
a(ni,(p) 0887 (x, 1)
+ 2p2 8xk PiPjPk
DiDe 08gii(X,t
—H%(p) DiPjPk gij (X, 1) ’

2a3(H) p*  axk

where here p = /p;p;. (The third from last and penultimate terms on
the right-hand side arise from the dependence of the argument of #, in
Eq. (H.11) on 7 and x through the combination a?(7)g¥ (x, t1)pip;.) To first
order, we have g/ = a*Z(S,-j — a*48g,-j, so the penultimate and last terms on
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the right-hand side cancel, leaving us with the much simpler result

agnv(xapa t) &887[\1()@[’, t) _pﬁ/(p)/\/\i
o1 a0 ax 2 PPy

(a2wsgyx.) .
(H.14)

where again p = . /pipr, and as usual we write p; = p;/p.

2 Photons

The Boltzmann equation for photons is considerably more complicated than
for neutrinos, because of the necessity of taking photon scattering into
account. Since scattering can change the polarization of photons, we can
no longer write a separate Boltzmann equation for each helicity state of
photons, as we did for neutrinos. Instead, we now define a number density
matrix:

3 3
ni{(x,p, 1) = Z (l_[ 8(xk — Xf(l))) (1_[ S(Pk _prk(t))> Ni{l(l) >
k=1 k=l (H.15)

with r here labeling trajectories of individual photons, and N/ (¢) the
polarization density matrix of the rth photon. As discussed in Appendix
G, if an individual photon can have any one of several polarization vectors
efn, with probabilities P,,, then it has a polarization density matrix

N =" Pyelei . (H.16)
m

If we observe whether the polarization of a photon with polarization
density matrix N¥ is in a particular direction ¢’ rather than in an orthogonal
direction, we find a probability gikgj;e*i e/ N¥ . Recall that for a photon of
three-momentum p; in a general three-metric g;;, the photon polarization
vectors are defined so that

piet =0, g,je"ej* =1 (H.17)
so the polarization density matrix of photon r satisfies
PN/ () =piON/ 0 =0, gi(x 0, ) N/ (=1,  (HI8)
and the number density matrix correspondingly satisfies
pinl(x,p, 1) = pin (X, p, ) =0, g5(X,nd (X, p, 1) = n, (X, p, 1) ,

(H.19)
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where n,, (X, p, 7) is the phase space number density of photons, defined just
asin Eq. (H.4). By their definition, both N/ (¢) and nljf (x, p, t) are Hermitian
matrices.

As discussed in Appendix G, between collisions the time dependence of
the polarization vectors is given by a combination of parallel transport with
a gauge transformation that keeps the time component of e} (¢) vanishing:

J . J
de’m=[—Fa(xru),r)+F%(xr<z>,r)dxr(t)} STOLCALNEY

dt dt

and consequently the time dependence of the density matrix of the rth pho-
ton is

dNY (1) dxi(t) dx’\(t)
~ [ O (% (0.1) + T, (xe(00.0) =2 = ] (S

, J
+ [—Fék(xr(t),l) +TY (Xr(t),l> dxc’h(t)} Nkt )dx D w2

The time dependence of the variables p,;(¢) and xf,(t) is given by the same
equations (H.7) and (H.38) as for neutrinos. It follows then directly from

Egs. (H.15), (H.21), (H.7) and (H.8) that n’ (x p, 1) satisfies a Boltzmann
equation:

3L;Z 8an 8” pl " aglm

at  axkpd " apr 2p0 axk
. P o\ i
+(F’ F > J
kr p ka pO y
Jr(r,{A P r“)p ik = i, (H.22)
P P

where C? is a term representing the effect of photon scattering. (As a
reminder, we note that in Eq. (H.22) p’ and p are functions of x, 7, and the
pj» given by p' = g¥p; and p° = [gVpip;1'/2.)

To evaluate the collision term C¥ in Eq. (H.22), let us first consider the
case of flat spacetime, where g;; = §;;. Since the Thomson scattering of an
unpolarized or linearly polarized photon can only produce linearly polar-
ized photons, we will limit ourselves here to the case of linear polarization,
for which polarization vectors can be taken to be real, and the polarization
density matrix and number density matrices are real and symmetric. We will
first consider the case of electrons at rest, and later (in dealing with scalar
perturbations) take up the case of a non-zero plasma velocity.
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The scattering of photons of momentum p into some other direction
causes a decrease in 13, (x, p, #) which is simply given by a term in C¥:

U x,p, 1) = —wc(On] (x.p, 1) | (H.23)

where w,(7) is the total collision rate. (We hold here to the convention of

writing 73, and C¥ with upper indices, though of course in flat spacetime
there is no distinction between contravariant and covariant spatial tensors.)
There is also an increase in ny (x, p, t) caused by the scattering of photons
with some initial momentum p; into momentum p, with energy conservation
requiring (assuming that |p| < m,) that |p1| = |p|. The Klein—Nishina for-
mula! tells us that when a photon with momentum p1; and real polarization
vector e’i is scattered by an electron at rest, the probability of finding a
photon in the final state with real polarization vector ¢’ is proportional to
(e-e1)?, with no dependence on the initial photon momentum py; or the final
photon momentum p;, except of course that e’i and ¢’ must be orthogonal to
p1; and p;, respectively. If the initial photon can have various polarizations
ein with probabilities P,, then correspondingly the probability of ﬁnding

the photon in the final state with polarization e’ is proportional to e’e/ N7 1

where N, g =, Pnelne{n. As already mentioned, this probability must
equal e eJ N ’-7 , where N7 is the polarization density matrix of the photon in
the final state. Together with the conditions that p;NV = 0 and N¥ = 1,
this tells us that the scattered photon has polarization density matrix

.o ~ _ ~ . ~ A~ k' ~n A o A A A ~
Ni(p)y==s l(p)[N{’ — pipiNy — pipk N +pipjpkpsz‘l} . (H.24)

where -
S(p)=1-pipiN{ . (H.25)

The rate of increase in nZ(x, p,?) due to scattering of photons from an
arbitrary direction p into direction p is then

g d%c
clix.p.n=n [ &

d2p
Loy P s os ki -
X ST (D) [ny(x, Iplp1, 1) = pipic ) (X, [pIP1, 1)
— pipic iy (. pIp1, ©) + pippibi n (x., Ipp1, t)] . (H26)

where n, is the electron density, and d2o/d?p is the differential scattering
cross section. Summing (e - e1)? over final polarizations gives a differential
cross section proportional to S(p), and [ d?p S(p) = 8m/3, so equating

ISee, e.g., QTF, Vol. I, Sec. 8.7.
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i d?p (d*c /d*p) to the Thomson scattering cross section o7, we have

d*c  3or

= S (H.27)

Then Egs. (H.23), (H.26), and (H.27) give a net change in ni{(x,p, 1)
equal to
Cl(x,p,1) = CL(x, p, ) + CL(x,p, 1)

= ol (x,p. 1) + 2 / d*py

8
X [ni{(x, [plP1,t) — Dibk n]’ij(x, [plp1, 1) —j?]f)k n;z‘(x, Iplp1, 1)
+pipipihi n (x. plp1, t)] : (H.28)

in which we use w.(f) = n.(t)or.
As a check, it is easy to see that the collision term (H.28) vanishes in

local thermal equilibrium. In equilibrium photons are unpolarized, so 73,

8;j — piDj, and their momentum distribution is homogeneous and isotropic,
so the coefficient of proportionality / depends only on |p| and

(. p. 1) = £ (1Bl [ 85 — iy ]

Then g
i ) T

Using this in Eq. (H.28) shows that in equilibrium the two terms in C¥
cancel, as of course they must.

To find the result for an arbitrary three-metric g;;, we must simply write
Eq. (H.28) in a form that is invariant under general three-dimensional
coordinate transformations, and reduces to Eq. (H.28) in the case of a flat
three-metric with g;; = §;;. In this way, we find

CU(x,p, 1) = —wc (Nl (X, p, 1)

ECRU) d*p1/Detg(x, 1)

5(p"0x.p. 1) = (1. 1))

8 P2, p, 1)
ik
i gh (X, Oprpr i
x| n?(x,p1, 1) — Z———n (X, P1, 1)
[)’ Po2x,p, 1) 7

g (x, Dprpe
_ & X DPKPE il oy b g
e 0) ny, (X, p1, 1)
ik jl
Hell(x, t
g (x, )%4 (x, )Pkplpmpnnf;m(xjpl,t)], (H.29)
P (X, p, 1)
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Px.p,0) = /gl (x, pip; . (H.30)

We now again specialize to the case of a small perturbation, writing the
metric as in Eq. (H.10), and putting the photon number density matrix in a
form analogous to Eq. (H.11):

where

P2, p, 1)
+onl(x,p. 1) , (H.31)

" 1 . ik 1 jl 1
nJ (X, p, I)ZEﬁy<a(t)p°(x,p, t)) [g”(x,z)—g (x, g’ (x )Pkpl:|

where 7, (p) is the equilibrium phase space number density, a time-
independent function of its argument

(0 = s [oxp (prksaT@) 1] L 4132

and 8n” is a small perturbation. Fortunately, to first order in perturbations
the Boltzmann equation (H.22) is greatly simplified by the fact that the
quantity in square brackets in Eq. (H.31) satisfies a collisionless Boltzmann

equation
3 3 L™ dgy, 0 o pipi
_ _+P_O_+1%ﬁ_ gl -2
at - pYoaxk  2p0 axk gpk p

A i J
P ( P ) ) W Pp
+2(ri, —£r g —
pO kA pO ki |: p02 j|

v j ik
P P’ o ik PP
+= (1‘,’d — FF“) {gt _ W} . (H.33)

(This can be proved directly, or more easily by noting thatif we set p; = py;(?)
and x' = x.(¢), then the quantity in square brackets is the sum over two

orthogonal polarizations of the quantity ei(t)e{ (¢), and therefore satisfies
Eq. (H.33) as a consequence of Eq. (H.20). Since Eq. (H.33) holds in this
sense for any photon trajectory, it is necessary for it to hold for arbitrary x’
and p;.) Acting on the factor n,, (ap®), the derivative operators in Eq. (H.22)
give to first order

a pt o progn, 0\ 0 1
<5+_0_k+ 20 axk ap iy (@p”) = —=/pipi

_ N
i, (\/pipi)pkpza(a 28gkz) : (H.34)
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with the effect of the position and momentum derivative terms in parenthe-
ses on the left-hand side canceling. There is another simplification provided
by the fact that the the first term in Eq. (H.31) does not contribute to the
collision term, since even in a gravitational field collisions by themselves
do not alter equilibrium distribution functions. Keeping only terms of first
order in perturbations, the Boltzmann equation (H.22) then becomes

a8nl(x,p, 1) pr 08AL(x,p, 1) 2a(1)

;
Y a() oxk a) R0
1 9 .

T aa Z)P (p)pkpla—<a 881 (X, Z)) <3ij —Pipj>

. 3we(t .
= —wc(1) dn) (x,p, 1) + () /d2p1
81
x [ 8nL(x,pr. 1) — b 1 (%, pi1, 1) = i S (%, 1)
hiiprpr O (%, pb1, D] (H.35)

where again p = ,/p;p;, and p = p/p. As a check, note that Eq. (H.35) is
consistent with the condition p;én¥ = 0. As a further check, note that the
first-order perturbation to the photon phase space number density gijn;{ is
a*sn", and according to the trace of Eq. (H.35), the Boltzmann equation
for azénif is the same as the Boltzmann equation (H.14) for the perturba-
tion to the neutrino phase space density, aside from the presence of the
collision term and the appearance of ﬁ;, instead of 7.

For tensor modes, Eq. (H.35) can be used as it stands, but in dealing with
scalar (or vector) modes, we need to take up a complication that has been
ignored until now: in general the plasma has a small velocity su(x, ¢) (which
in Section 6.1 et seq. is denoted Sup(x, ¢)). Since du is itself a first-order
perturbation, in calculating its effect on the collision term C¥, to first order
we can ignore any perturbations to the gravitational field or the photon
number density matrix. The effect of the plasma velocity is to shift the
energy |p;| of the incident photon that when scattered yields a final photon
with momentum p. To calculate this effect, let’s first consider the case of
flat spacetime. Since photon energy is conserved in the rest frame of the
plasma, in which the plasma metric four-velocity is simply v# = (0, 0,0, 1),
we have (p; — p) - v = 0; evaluating this scalar in the “lab” frame in which
the plasma velocity four-vector is v* = [§v, /1 — (8v)?] we have

0=uvu(p1—pH =8v-(p1 —p) —v1— V2P - pY),
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or, to first order in velocity,
pil = IpI[ 1+ (51 — ) - ov] .

As already noted, the flat-space velocity components v* are related to the
velocity components in a Robertson-Walker three-metric g; = azéij by
vk = auk = a_luk, SO
(P1 — P)rduy

pil = IpI[ 1 4+ L] (H.36)
As a result, the two terms in the collision term (H.28) do not cancel even
when we set the three-metric g;; equal to azéij and set the photon number
density matrix equal to the form it would have in equilibrium with this
three-metric:

i (D) [85 = iy ] -

1
ny eq(X, P, 1) = m

Since in this case these two terms in C ¥ would cancel if |py | were equal to |p,
we find a new term in CY(x, p, 1), equal to the difference between the term

—wc(t)ng,eq (x, p, 1) and the same term with |p| replaced with |py|, averaged
over pi. The linearized Boltzmann equation (H.35) now becomes

86m) (X, p.1)  Pr 3Sny(X,p,0) | 2a(7)

s (x,p, 1)

at a(t) dxk a(t)
1 3 A
T aa Z)p (P)PkMa(a ()88 (X, t))( pipj)

iy 3w (1 .
= —w.(1) Sngﬂ(x, p.t) + (1) /d2p1
81
X [5”3(&17131, 1) — PiDk 5",’§j(x,P131, 1) — PiDx 5”5(5(,1?131, )
ipipibr 61 (<, pp. 1) |

_;)aCT((tt))@ka“k(X’ 0) i, (p) [5ij —f?if?j] - (H.37)

(The term in Eq. (H.36) proportional to py;8uy gives no contribution to the
integral over p1.)

% 3k %k

In an important application of Eq. (H.37), we may derive the decay rate
of acoustic waves in a homogeneous and time-independent plasma in flat
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spacetime (with ¢ = 1 and w, time-independent) when the collision rate is
much larger than the sound frequency. (This result will be used in Section
6.4.) We seek a solution of the Boltzmann equation (H.37) of the form

snll (x, p, 1) = XX onl(p) ,  Suj(x, 1) = &M NeTou; . (H.38)

Then with ¢ = 1 and w, constant, Eq. (H.37) becomes

[a)c o+ ip- k] sn'l (p)

3w, 9
= d
S P1
x[n (ppr) = pipic 1 (ppr) — By S () + biyprr o1 o) |
We A A
—7(p 8u>n (p)[ pipj] . (H.39)

We now need a formula for the plasma velocity §u;. For this purpose, we
note that in flat space the first-order photon and baryonic plasma
contributions to the energy-momentum tensor have

51y = [t wipiy. 57 = [ e iplpy . (.40
and
§Th; =0, 8Ty = ppou;, (H.41)
so the equation of momentum conservation may be written
w ppoU; = fd3p a28n§k(p)pj (k -p— a)> . (H.42)

To evaluate the right-hand side, multiply Eq. (H.39) with p; and integrate
over p; this gives

: A 4w,
i / &’p (k- p — o) péni(p) = —o. f d*p pysnk =

where p, = [ d’ppi, (p) = —(1/4) [ d*pp? i, (p). Using thisin Eq. (H.42)
gives our formula for du:

_ diw, _
(a)pg + 3 < >8u] iwe fd3ppj8n§k(p) . (H.43)

For scalar modes, k is the only parameter in the problem with a sense
of direction, so we can express the integrals appearing in Eqgs. (H.39) and
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(H.43) as
[ @oivi s = 5, x5, + Y. (H.44)
/ &p oni ) py = 6y Z ki | (H.45)

where X, Y, and Z are here functions of k = |k| and w. Eq. (H.43) then
lets us express du in terms of Z:

3z .
su= — %2} H.46
Y0 Zienr (H.46)

where R = 3pp/4p,, and 1. = 1/w. is the mean time between collisions.
Using Egs. (H.44) and (H.46) in Eq. (H.39) then yields a formula for the
perturbed intensity:

_— 35 Z(p-k) .
4 / sn (pp)pdp = Py [ (X + (p—) (&y —pipj>

2[1 —iwt. + ip - kt.] 1 —iwt.R
w7 (=i b) (b= po-b) | @

By inserting this back in the definitions (H.44) and (H.45), we find three
homogeneous linear relations among X, Y, and Z. For these to be
consistent, the determinant of the coefficients must vanish, which yields
a relation between w and k = |k|.

The resulting dispersion relation is quite complicated, but it becomes
much simpler in the case of small mean free time .. As an ansatz, we can
try taking Y /X of first order in 7., while Z/ X is of order unity, leaving it for
later to check whether this leads to a consistent solution. To second order
in t., the terms in Eq. (H.44) proportional to §;; and k;k; and the coefficient

of k; in Eq. (H.45) yield the homogeneous linear relations

2 1
0= (ia)lc -’ — gkzzf.) X + —(1 +iwt) Y

10
2
+§(—ikzc+wkz§(2+R))z (H.48)
1, 37
=22 X 4 (-2 L) ¥
0 Sk [ —i—( 1O+10a)tc)
: 2+ R
+ (éktc—( Jg )wsz) z (H.49)
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. 2 1.
0= ( — ikt + 2a)ktc) X — gzkzc Y

3
+ (z’a)tc(l +R) —w?2(1+ R+ R?) — gk%f) Z . (H.50)

(As anticipated, these relations are consistent with the assumption that Y
is of order ¢, relative to X and Z.) To first order in ¢., the vanishing of the
determinant of the coefficients in these relations yields the condition

0=15(1 + R)w? — 5k> + ia)3lc[ _5_5R+ 15R2] + Tiwk?t, .

This has the solution, again to first order in z:

k

w=+———— — i, H.51
V30 +R) ( )
where I is the decay rate
k2t. 16 R?
= —+ ——1 . H.52
6(1+R){15+1+R} (H.52)

This is the same as the formula (6.4.25) for the damping rate given in Section
6.4, originally derived by Kaiser.> As discussed there, it is equivalent to the
formulas (6.4.24) for the coefficients of shear viscosity and heat conduction
of anon-relativistic plasma in which momentum and energy are transported
by photons.

2N. Kaiser, Mon. Not. Roy. Astron. Soc. 202, 1169 (1983).
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Glossary of Symbols

(These are symbols used in more than one section. Numbers following the
symbol give the section in which the symbol is first used.)

a 1.1 scale factor in Robertson—Walker metric
ag 2.1 radiation energy constant
agn 2.6 temperature partial wave amplitude (same as ar ¢)
A 5.1 one of scalar perturbations to metric
B 3.3 baryon number
5.1  one of scalar perturbations to metric
6.1  subscript denoting baryonic plasma
C; 5.1 one of vector perturbations to metric
C¢ 2.6 temperature multipole coefficient (same as C7r )
d 1.2 proper distance
d4 1.4 angular diameter distance
dy 2.6 horizon distance
dr 1.4  luminosity distance
D 6.1 subscript denoting cold dark matter
D® 7.4  representative of the rotation group for spin £
D; 5.1  tensor perturbation to metric
D, 5.2  gravitational wave amplitude
DY 6.6 constant gravitational wave amplitude outside horizon
e;j 5.2 graviton polarization tensor
E 5.1 one of scalar perturbations to metric
EQ 6.2  subscript indicating the time of matter-radiation equality
F 5.1 one of scalar perturbations to metric
6.6  function appearing in tensor anisotropic inertia
7.1  form factor in scalar temperature fluctuation
g 3.1 multiplicity of states
gw 1.1 spacetime metric
gj 1.1  spatial part of Robertson-Walker metric
G 1.5 Newton’s gravitational constant
7.1  form factor in scalar temperature fluctuation
G; 5.1 one of vector perturbations to metric
h 1.3 Hubble constant in units of 100 km sec™! Mpc~!
2.4  Planck’s constant = 27/
hyy 5.1 perturbation to the metric
H 2.2 expansion rate a(t)/a(t)
Hy 1.2 Hubble constant a(ty)/a(to)

565



HY 10.1
I 1.12
ISW 2.6
je 2.6
J 6.1
JE 1.1
Jij 6.1
k8.1
kg 2.2
K 1.1
6.6
l 1.3
2.6
L 13
2.1
3.3
m 1.3
1.5
M 13
1.9
Mpc 1.3
n 1.10
n’ 6.1
nsg 7.2
N 72
N 31
4.1
p 1.1
pc 1.3
P, 24
P 8.1
Py 2.6
q 26
q 1.4
r 1.1
7.3
R 26
Ry, 1.5
R 54
RC 6.2
S 1.1
3.1

Glossary of Symbols

Hankel functions

action

contribution of integrated Sachs—Wolfe effect
spherical Bessel function

dimensionless neutrino intensity

current four-vector

dimensionless photon intensity matrix

physical wave number at present = ¢/ag
Boltzmann constant

curvature constant in Robertson—Walker metric
function appearing in tensor anisotropic inertia
apparent luminosity

multipole order

absolute luminosity

subscript indicating time of last scattering
lepton number

apparent magnitude

particle mass

absolute magnitude

total mass

million parsecs

number density

photon number density matrix

slope parameter in R?

coefficient of ¢=3/2 in Ry

effective number of particle types

number of e-foldings in inflation

pressure

parsec

Legendre polynomials

power spectral function of density fluctuations
power spectral function of gravitational potential
co-moving wave number vector

deceleration parameter

radial coordinate in Robertson—Walker metric
tensor/scalar ratio

3/4 the ratio of baryon to photon energy density
Ricci tensor

curvature perturbation

constant curvature perturbation outside horizon
proper length

entropy density
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S 7.1
S 1.5
Sm) 7.4
S 65
SW 2.6
t 1.1
tp 1.5
5] 6.1
T 2.1

7.1
T 1.1
7 6.5
u 1.1

5.1
u, 5.1
U 6.6
vy 2.6
Vo112
w 1.1
X 1.1
X 23
X 19
y 63
Y 2.6
Y 7.4
z 1.2

10.1
o 5.2

9.1
B 5.2

6.4

9.1
Be 9.1
y 6.1

6.4
r o4
re 1.1
Fjl.k 1.1
§; 1.1
dxqg 6.2
A 53

Glossary of Symbols

superscript indicating scalar mode

source term in Einstein field equation
standard rotation from three-axis to direction 7
a scalar transfer function

contribution of Sachs—Wolfe eftect

time

present age of universe

initial time in solution of Boltzmann equation
temperature

superscript indicating tensor mode
energy-momentum tensor

the main scalar transfer function

affine parameter

velocity potential

velocity four-vector

a tensor transfer function

sound speed

scalar field potential

ratio of pressure to density

co-moving spatial coordinate

fractional ionization

Newtonian spatial coordinate

ratio of matter and radiation densities= a/agqQ
ordinary spherical harmonics

spin +2 spherical harmonics

redshift

quantity a¢/H in Mukhanov—Sasaki equation

stochastic parameter of scalar modes

angle between gravitational lens and true source positions
stochastic parameter of tensor modes

ratio of baryon and total matter densities

angle between gravitational lens and apparent source positions
angular radius of Einstein ring

subscript denoting photons

Euler constant

acoustic decay rate

affine connection

spatial affine connection for Robertson—Walker metric

Kronecker delta

Spxq/(px +px) (for X = B,D,y,v)
change due to gauge transformation

567



6.5
A 6.1
A 6.1
AP 6.6
AT 6.6
€ 10.1
€ ,€5.3
e 54
n 3.2
Nuv 1.5
0 1.1
K 6.2
w 3.1
v 1.2
6.1
E 66
mp 1.5
75 1.5
7TZ~V 1.5
JTUT 1.5
I 6.1
0 1.1
o 1.10
2.2
8.1
T 1.1
1.10
5.3
10.1
¢ 1.1
2.6
o 1.12
d 53
6.1
¥ 53
¥ 53
6.6
Qg 1.5
Qu 1.5
Qr 1.5
Qp 1.5

Glossary of Symbols

a scalar transfer function

scalar photon temperature amplitude
scalar photon polarization amplitude
tensor photon temperature amplitude

tensor photon polarization amplitude

—H/H?

gauge transformation parameters

perturbation conserved outside horizon
baryon/photon ratio

Minkowski spacetime metric

polar angle (except in Sec. 9.5)

dimensionless rescaled wave number

chemical potential

frequency

subscript denoting neutrinos & antineutrinos

a tensor transfer function

total anisotropic inertia tensor

scalar anisotropic inertia

vector anisotropic inertia

tensor anisotropic inertia

a scalar source function

energy density

cross section

entropy per baryon

standard deviation of density perturbations
proper time

optical depth

parameter for transformation between synchronous gauges
conformal time

azimuthal angle (except in Sec. 9.5)

gravitational potential

scalar field

a scalar metric perturbation in Newtonian gauge
a scalar source function

a scalar metric perturbation in synchronous gauge
a scalar metric perturbation in Newtonian gauge
tensor source function

—K/a}H}

ratio of matter density to critical density

ratio of radiation density to critical density

ratio of vacuum density to critical density

568



Assorted Problems

. Consider a universe described by a Robertson—-Walker metric with
K = +1. Give a transformation of co-moving space coordinates that
leaves the metric unchanged, and that takes the point x = (0, 0, r) into
a point x = (0,0,7"), with no change in the time. (Hint: Consider
the three-dimensional space as the surface of a four-dimensional ball,
construct this transformation as a rotation in four dimensions, and
then express it in terms of the Robertson—Walker coordinates.) Also
give the corresponding transformation for K = —1.

. Suppose that the total pressure and energy density of the universe are
related by p = —p+p?/p1, where p; is a constant. Assume zero spatial
curvature. Calculate p as a function of the Robertson—Walker scale
factor a, taking @ = a; when p = oo. Calculate @ and p as functions
of time, taking # = 0 as the time when p = oco. Calculate the age
of the universe and the deceleration parameter ¢go for a given present
density pp.

. Consider the empty cosmology, with Q3 = Qr = Q5 = 0. Calculate
the luminosity distance and angular diameter distance as functions of
redshift in this cosmological model. What is the age of the universe as
a function of the present Hubble constant?

. Suppose that astronomers measure the age of a galaxy with redshift
z = 2.5. How old would this galaxy have to be (at the time the light
from it was emitted) in order to rule out the hypothesis that Q3 = 1
with negligible vacuum and radiation energy density. Use Hy = 70
km/sec/Mpc.

. Suppose that Q; = 0.25 and Qy = 0.75, with Qg negligible. What is
the redshift at which the expansion of the universe stopped decelerating
and began to accelerate?

. Suppose that the gravitational potential energy of any pair of galaxies
with separation r decreases as r—" instead of r~!. What combination
of the mass of a virialized cluster of galaxies and the Hubble constant
could be calculated from measurements of angular separations and
velocity dispersions of its individual galaxies?

. Suppose that the fluctuations in the temperature of the cosmic
microwave background are governed by a Gaussian isotropic
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10.

11.

12.

13.

Assorted Problems

translation-invariant probability distribution. Calculate the quantity

<(Cé)bs _ cé)3>/cg3

as a function of £.

. Suppose that there is some new massless elementary particle that

effectively decouples from everything else at a temperature 10'° K.
Suppose that the particles with mass less (and in fact much less) than
1 TeV are those of the minimal Standard Model: three generations of
quarks, leptons, antiquarks, and antileptons with helicity +1/2; the
W= and Z° with helicity =1 and 0; the photon and eight massless
gluons with helicity +1; and a single neutral boson of helicity zero;
together with their antiparticles (where distinct from the particles).
What is the ratio at present of the temperature of the new massless
particles and the temperature of photons?

. Suppose that the binding energy of deuterium were 5% less. Estimate

the effect that this would have on the abundance of He* produced in
the early universe.

Suppose that instead of B — L, only the combination 3B — L of
baryon number and lepton number were conserved, along with the
usual conserved quantities of the Standard Model. Taking account of
the particles of the minimal (non-supersymmetric) Standard Model,
what is the density of baryon number and lepton number in thermal
equilibrium for a given density of 3B — L?

Suppose that the Robertson—Walker scale factor increases during
inflation by a factor ¢°°; that the scale factor at the beginning of
the radiation-dominated era was the same as at the end of inflation;
that the energy density at the end of inflation was [2 x 101°GeV1]*;
and that the energy density at the beginning of the radiation-dominated
era was [2 x 101°GeV]*. Over what range of angles would you expect
the cosmic microwave background now to have a nearly uniform
temperature?

Use the “slow-roll” approximation to calculate the inflaton field ¢(7)
as a function of time for a potential V' (¢) = g ¢", where g and n are
positive constants.

Find the two independent solutions of the field equations and conser-
vation equations for scalar perturbations far outside the horizon in
Newtonian gauge in the case of a perfect fluid having p = wp, with
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14.

15.

16.
17.

18.

19.

20.

Assorted Problems

w constant. Use the results to calculate R = —W¥ + H Su for each
solution.

Consider the equations for scalar fluctuations in Newtonian gauge in
a universe containing only cold dark matter. Find the two solutions
of the coupled equations for ®, and du,. (You can normalize these
solutions any way you like, but keep it simple.) For each solution,
calculate Ry, 8p4, and ¢;,. Do not make any assumption about the
magnitude of the wave number.

Consider a vector field
VI, 1) = V) +8VH(x, 1),

where the unperturbed space components V' are zero, and the
unperturbed time component 7 is som