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PREFACE

The Men of the Great Assembly had three sayings: “Be patient before reaching

a decision; Enable many students to stand on their own; Make a fence around your
teaching.”

Ethics of the Fathers 1:1

There are two aspects of cosmology today that make it more alluring than ever.
First, there is an enormous amount of data. To give just one example of how rapidly
our knowledge of the structure of the universe is advancing, consider galaxy surveys
which map the sky. In 1985, the state-of-the-art survey was the one carried out by
the Center for Astrophysics; it consisted of the positions of 1100 galaxies. Today, the
Sloan Digital Sky Survey and the Two Degree Field between them have recorded
the 3D positions of half a million galaxies.

The other aspect of modern cosmology which distinguishes it from previous
efforts to understand the universe is that we have developed a consistent theoret-
ical framework which agrees quantitatively with the data. These two features are
the secret of the excitement in modern cosmology: we have a theory which makes
predictions, and these predictions can be tested by observations.

Understanding what the theory is and what predictions it makes is not trivial.
First, many of the predictions are statistical. We don’t predict that there should be
a hot spot in the cosmic microwave background (CMB) at RA = 15k, dec= 27°.
Rather, predictions are about the distribution and magnitude of hot and cold spots.
Second, these predictions, and the theory on which they are based, involve lots of
steps, many arguments drawn from a broad range of physics. For example, we
will see that the distribution of hot and cold spots in the CMB depends on quan-
tum mechanics, general relativity, fluid dynamics, and the interaction of light with
matter. So we will indeed follow the first dictum of the Men of the Great Assem-
bly and be patient before coming to judgment. Indeed, the fundamental measures
of structure in the universe —the power spectra of matter and radiation — agree
extraordinary well with the current cosmological theory, but we won’t have the
tools to understand this agreement, completely until Chapters 7 and 8. Sober minds
have always knows that it pays to be patient before pronouncing judgment on ideas
as lofty as those necessary to understand our Universe. The modern twist on this
“Be patient” theme is that we need to set up the framework (in this case Chapters
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1-6) before we can appreciate the success of the current cosmological model.

Pick a random page in the book, and you will see that I have tried very hard to
fulfill the second part of the aphorism. The hand-waving and qualitative arguments
that facilitate understanding are here, but the main purpose of the book is to give
you the tools to get in the game, to do calculations yourself, and follow cosmological
arguments from first principles. Once you have mastered these tools, you will be
prepared for any changes in the basic theoretical model. For example, much of the
book is predicated on the notion that inflation seeded the structure we see today.
If this turns out to be incorrect, the tools developed to study perturbations in
Chapters 4 and 5 and the observations and analysis techniques described in the
last half of the book will still be very relevant. As a more exotic example: all of
the book assumes that there are three spatial dimensions in the universe. This
seems like a plausible assumption (to me), but many theoretical physicists are now
exploring the possibility that extra dimensions may have played a role in the early
universe. If extra dimensions do turn out to be important, perturbations still need
to be evolved and measured on our 3D brane. The tools developed here will still be
useful.

The final part of the quote above is particularly relevant today since cosmology
is such a broad subject. Many important papers, discoveries, and even subbranches
of cosmology must be left ouside the fence. I think I have built the fence in a natural
place. Enclosed within is the smooth expanding universe, with linear perturbations
generated by inflation and then evolved with the Boltzmann-Einstein equations.
The fence thus encloses not just the classical pillars of the Big Bang — the CMB, the
expansion of the universe, and the production of the light elements— but also the
modern pillars: the peaks and troughs in the CMB anisotropy spectrum; clustering
of matter on large scales at just the right level; dark matter production and evolu-
tion; dark energy: inflation; the abundance of galaxy clusters; and velocity surveys.
It also leaves room for important future developments such as weak lensing and
polarization.

Outside the fence are some topics that will stay there forever, such as the steady
state universe and similar alternatives. Other topics —notably cosmic strings and
other topological defects— have been relegated beyond the fence only recently.
Indeed, given the exciting research still being carried out to understand the cosmo-
logical implication of defects, it was a difficult decision to omit them entirely. Still
other topics are crucial to an understanding of the universe and are the subject of
active research, but are either too difficult or too unsettled. The most important of
these is the study of nonlinearities. It would have been impossible to do justice to
the advances over the last decade made in the study of nonlinear evolution. How-
ever, the linear theory presented here is a necessary prerequisite to understanding
the growth of nonlinearities and their observational implications. A hint of the way
in which our understanding of linear perturbations informs the nonlinear discus-
sions is given in Section 9.5, where I discuss the attempts to predict the abundance
of galaxy clusters (very nonlinear beasts) using linear theory.

Who is this book for? Researchers in one branch of cosmology wishing to learn
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about another should benefit. For example, inflation model builders who wish to
understand the impact of their models on the CMB and large scale structure can
learn the basics here. Experimentalists striving to understand the theoretical impli-
cations of their measurements can learn where those theory curves come from. Peo-
ple with no previous experience with statistics can use Chapter 11 to get up to
date on the latest techniques. Even theorists who have heretofore worked only in
one field, say large scale structure, can learn about new theoretical topics such as
the CMB, weak lensing, and polarization. I have tried to emphasize the common
origin of all these phenomena (small perturbations around a smooth background).
More generally, researchers in other fields of physics who wish to understand the
recent advances in cosmology can learn about them, and the physics on which they
depend, here.

My main goal though is that the book should be accessible to beginning graduate
students in physics and astronomy and to advanced undergrads looking to get an
early start in cosmology. The only math needed is ordinary calculus and differential
equations. As mentioned above, quite a bit of physics impacts on cosmology; how-
ever, you needn’t have taken classes in all these fields to learn cosmology. General
relativity is an essential tool, so a course in GR would be helpful, but I have tried
to introduce the features we will need when we need them. For example, while we
won't derive the Einstein equations, we will use them, and using them is pretty easy
as long as one is comfortable with indices. Similarly, although inflation in Chapter 6
is based on field theory, you certainly do not need to have taken a course in field
theory to understand the minimal amount needed for inflation. It can be easily
understood if you understand the quantum mechanics of the harmonic oscillator.

To make the book easy to use, I have included summaries at the ends of some
of the chapters. The idea is that you may not be interested in how the Boltzmann
equations are derived, but you still need to know what they are to obtain the main
cosmology results in Chapters 7-10. In that case, you can skip the bulk of Chapter 4
and simply skim the summary.

Writing the book has been almost pure pleasure in no small part because it
forced me to read carefully papers I had previously been only dimly aware of. Thus
a big acknowledgment to the many people who have pushed cosmology into the
21°* century with all of their hard work. In the “Suggested Reading” sections at the
end of each chapter, I have pointed to other books that should be useful, but also
to the papers that influenced me most while working to understand the material
in the chapter. These references, and others sprinkled throughout the text, are far
from complete: they simply offer one entry into a vast literature which has grown
dramatically in the last decade.

Many thanks to people who looked over early versions of the book and provided
helpful comments, especially Mauricio Calvao, Douglas Scott and Uros Seljak. Kev
Abazajian, Jeremy Bernstein, Pawel Dyk, Marc Kamionkowski, Manoj Kapling-
hat, Eugene Lim, Zhaoming Ma, Angela Olinto, Eduardo Rozo, Ryan Scranton,
Tristan Smith, and Iro Tasitsiomi also offered useful suggestions. Jeremy Berstein,
Sanghamitra Deb, James Dimech, Jim Fry, Donghui Jeong, Bob Klauber, Chung-
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Pei Ma, Olga Mena, Aravind Natarajan, Mark Alan Peot, Eduardo Rozo, Suharyo
Sumowidagdo, and Tong-Jie Zhang found mistakes in earlier printings and gra-
ciously let me know about them. Thanks also to Andy Albrecht who introduced me
to Susan Rabiner, and to Susan who was very supportive throughout. Thanks to
Nora Donaghy, Julio Esperas, Jeremy Hayhurst, and Lakshmi Sadasiv, my contacts
at Academic Press. I was supported by a grant from Academic Press, by NASA
Grant NAG5-10842, by the DOE, and by NSF Grant PHY-0079251. Finally, I am
most grateful to Marcia, Matthew, Ilana, David, and Coby for their support and
love.
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1
THE STANDARD MODEL AND BEYOND

Einstein’s discovery of general relativity in the last century enabled us for the first
time in history to come up with a compelling, testable theory of the universe. The
realization that the universe is expanding and was once much hotter and denser
allows us to modernize the deep age-old questions “Why are we here?” and “How did
we get here?” The updated versions are now “How did the elements form?”, “Why
is the universe so smooth?”, and “How did galaxies form from this smooth origin?”
Remarkably, these questions and many like them have quantitative answers, answers
that can be found only by combining our knowledge of fundamental physics with
our understanding of the conditions in the early universe. Even more remarkable,
these answers can be tested against astronomical observations.

This chapter describes the idea of an expanding universe, without using the
equations of general relativity. The success of the Big Bang rests on three observa-
tional pillars: the Hubble diagram exhibiting expansion; light element abundances
which are in accord with Big Bang nucleosynthesis; and the blackbody radiation
left over from the first few hundred thousand years, the cosmic microwave back-
ground. After introducing these pieces of evidence, I move beyond the Standard
Model embodied by the three pillars. Developments in the last two decades of the
20" century — both theoretical and observational — point to

o the existence of dark matter and perhaps even dark energy

e the need to understand the evolution of perturbations around the zero order,
smooth universe

o inflation, the generator of these perturbations

The emergent picture of the early universe is summarized in the time line of Figure
1.15.

1.1 THE EXPANDING UNIVERSE

We have good evidence that the universe is expanding. This means that early in
its history the distance between us and distant galaxies was smaller than it is

1



2 THE STANDARD MODEL AND BEYOND

today. It is convenient to describe this effect by introducing the scale factor q,
whose present value is set to one. At earlier times a was smaller than it is today.
We can picture space as a grid as in Figure 1.1 which expands uniformly as time
evolves. Points on the grid maintain their coordinates, so the comoving distance
between two points-—which just measures the difference between coordinates —
remains constant. However, the physical distance is proportional to the scale factor,
and the physical distance does evolve with time.

@0 (1,0 (0,0) (1,0) ©0.0) (1,9)
Physical Physical
o d Distance Distance
omoving - -
Distance alty) =alty)
=1 Comoving >alty)
Distance
=1
AN
/
Time

Figure 1.1. Expansion of the universe. The comoving distance between points on a hypothet-
ical grid remains constant as the universe expands. The physical distance is proportional to
the comoving distance times the scale factor, so it gets larger as time evolves.

In addition to the scale factor and its evolution, the smooth universe is char-
acterized by one other parameter, its geometry. There are three possibilities: flat,
open, or closed universes. These different possibilities are best understood by con-
sidering two freely traveling particles which start their journeys moving parallel to
each other. A flat universe is Euclidean: the particles remain parallel as long as
they travel freely. General relativity connects geometry to energy. Accordingly, a
flat universe is one in which the energy density is equal to a critical value, which we
will soon see is approximately 1072° ¢ cm~3. If the density is higher than this value,
then the universe is closed: gradually the initially parallel particles converge, just
as all lines of constant longitude meet at the North and South Poles. The analogy
of a closed universe to the surface of a sphere runs even deeper: both are said to
have positive curvature, the former in three spatial dimensions and the latter in two.
Finally, a low-density universe is open, so that the initially parallel paths diverge,
as would two marbles rolling off a saddle.

To understand the history of the universe, we must determine the evolution
of the scale factor a with cosmic time t. Again, general relativity provides the
connection between this evolution and the energy in the universe. Figure 1.2 shows
how the scale factor increases as the universe ages. Note that the dependence of a
on t varies as the universe evolves. At early times, a o t!/2 while at later times the
dependence switches to a x t2/3. How the scale factor varies with time is determined
by the energy density in the universe. At early times, one form of energy, radiation,
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THE EXPANDING UNIVERSE 3

dominates, while at later times, nonrelativistic matter accounts for most of the
energy density. In fact, one way to explore the energy content of the universe is
to measure changes in the scale factor. We will see that, partly as a result of such
exploration, we now believe that, very recently, a has stopped growing as t%/3, a
signal that a new form of energy has come to dominate the cosmological landscape.

@ 1 o S
| 10 f
o 0.1 L o : o
g 10-2 | Radlatlo:ulzt)/!mlnatlon 10 ;
&c -3 103 -
10 \ o
2 10-+ 1% g
o]
o s 108 &
n 10 ¢ E
10-¢ Efi 100 o

1 10 10%10%10410510°10710°10°10!°
Cosmic Time t (Yrs)

Figure 1.2, Evolution of the scale factor of the universe with cosmic time. When the universe
was very young, radiation was the dominant component, and the scale factor increased as /2.
At later times, when matter came to dominate, this dependence switched to t%/3 The right
axis shows the corresponding temperature, today equal to 3K.

To quantify the change in the scale factor and its relation to the energy, it is
first useful to define the Hubble rate

_ da/dt

a

H(t) (1.1)
which measures how rapidly the scale factor changes. For example, if the universe
is flat and matter-dominated, so that a o t%/3, then H = (2/3)t™!. Thus a powerful
test of this cosmology is to measure separately the Hubble rate today, Hp, and the
age of the universe today. Here and throughout, subscript 0 denotes the value of
a quantity today. In a flat, matter-dominated universe, the product Hgty should
equal 2/3.

More generally, the evolution of the scale factor is determined by the Friedmann
equation

871G Per — PO
H(t) = —= |p(t) + 5 1.2
0= T2 oty + £ (1.2

where p(t) is the energy density in the universe as a function of time with pg the
present value. The critical density

_ 3H§

= O 1.3
p e (1.3)

where GG is Newton’s constant.
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4 THE STANDARD MODEL AND BEYOND

To use Einstein’s equation, we must know how the energy density evolves with
time. This turns out to be a complicated question because p in Eq. (1.2) is the sum
of several different components, each of which scale differently with time. Consider
first nonrelativistic matter. The energy of one such particle is equal to its rest mass
energy, which remains constant with time. The energy density of many of these is
therefore equal to the rest mass energy times the number density. When the scale
factor was smaller, the densities were necessarily larger. Since number density is
inversely proportional to volume, it should be proportional to a=3. Therefore the
energy density of matter scales as a=".

The photons which make up the cosmic microwave background (CMB) today
have a well-measured temperature To = 2.725 £+ 0.002K (Mather et al., 1999). A
photon with an energy kg7, today has a wavelength hc/kpTy. Early on, when
the scale factor was smaller than it is today, this wavelength would have been
correspondingly smaller. Since the energy of a photon is inversely proportional to
its wavelength, the photon energy would have been larger than today by a factor
of 1/a. This argument applied to the thermal bath of photons implies that the
temperature of the plasma as a function of time is

T(t) = To/a(t). (1.4)

At early times, then, the temperature was higher than it is today, as indicated in
Figure 1.2. The energy density of radiation, the product of number density times
average energy per particle, therefore scales as a™%.

Evidence from distant supernovae (Chapter 2; Riess et al., 1998; Perlmutter ef
al., 1999) suggests that there may well be energy, dark energy, besides ordinary
matter and radiation. One possibility is that this new form of energy remains con-
stant with time, i.e., acts as a cosmological constant, a possibility first introduced
(and later abandoned) by Einstein. Cosmologists have explored other forms though,
many of which behave very differently from the cosmological constant. We will see
more of this in later chapters.

Equation (1.2) allows for the possibility that the universe is not flat: if it were
flat, the sum of all the energy densities today would equal the critical density, and
the last term in Eq. (1.2) would vanish. If the universe is not flat, the curvature
energy scales as 1/a%. In most of this book we will work within the context of
a flat universe. In such a universe, the evolution of perturbations is much easier
to calculate than in open or closed universes. Further, there are several persua-
sive arguments, both theoretical and more recently observational, which strongly
support the flatness of the universe. More on this in Chapters 2 and 8.

Figure 1.3 illustrates how the different terms in Eq. (1.2) vary with the scale
factor. While today matter, and possibly a cosmological constant dominate the
landscape, early on, because of the a~* scaling, radiation was the dominant con-
stituent of the universe.

Let’s introduce some numbers. The expansion rate is a measure of how fast
the universe is expanding, determined (Section 1.2) by measuring the velocities of
distant galaxies and dividing by their distance from us. So the expansion is often
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Figure 1.3. Energy density vs scale factor for different constituents of a flat universe. Shown
are nonrelativistic matter, radiation, and a cosmological constant. All are in units of the critical
density today. Even though matter and cosmological constant dominate today, at early times,
the radiation density was largest. The epoch at which matter and radiation are equal is @eq.

written in units of velocity per distance. Present measures of the Hubble rate are
parameterized by h defined via

with a 95% confidence level lower limit of 10.4 Gyr (Krauss and Chaboyer, 2001),
so this test suggests that a flat, matter-dominated universe is barely viable. You
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6 THE STANDARD MODEL AND BEYOND

will show in Exercise 2 that the age of the universe with a cosmological constant
is larger (for fixed h); in fact one of the original arguments in favor of this excess
energy was to make the universe older.

Newton’s constant in Eq. (1.3) is equal to 6.67 x 1078cm3g~!sec™2. This,
together with Eq. (1.5), enables us to get a numerical value for the critical density:

per = 1.88h% x 1072 cm™3. (1.6)

An important ramification of the higher densities in the past is that the rates
for particles to interact with each other, which scale as the density, were also much
higher early on. Figure 1.4 shows some important rates as a function of the scale

Log,o( Temperature [eV] )

Y 8 6 4 2 0 -2
.sIOOO:EIII'TII—IIIIIIIlIIIIII\II
(a4 =

o " =
L Coolin
2 100 | g
=] =

= f

Ay 10 E Comptop

) F Scattering
= - of photons
=

)}

e Weak Scattering

%6 of neutrinos

= 0.1 X

8 111 l 1 1 l L1 i Ll 11 I L_ 111 l L1 1
n

-12 -10 -8 -6 -4 -2 0
Log,,(Scale Factor a)

Figure 1.4. Rates as a function of the scale factor. When a given rate becomes smaller than
the expansion rate H, that reaction falls out of equilibrium. Top scale gives (kg times) the
temperature of the universe, an indication of the typical kinetic energy per particle.

factor. For example, when the temperature of the universe was greater than several
MeV /kpg, the rate for electrons and neutrinos to scatter was larger than the expan-
sion rate. Thus, before the universe could double in size, a neutrino scattered many
times off background electrons. All these scatterings brought the neutrinos into
equilibrium with the rest of the cosmic plasma. This is but one example of a very
general, profound fact: if a particle scatters with a rate greater than the expansion
rate, that particle stays in equilibrium. Since rates were typically quite large, the
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THE HUBBLE DIAGRAM 7

early universe was a relatively simple environment: not only was it very smooth, but
many of its constituents were in equilibrium. Chapter 2 explores some manifesta-
tions of the equilibrium conditions, while Chapter 3 touches on several cases where
equilibrium could not be maintained because the reaction rates dropped beneath
the expansion rate.

1.2 THE HUBBLE DIAGRAM

If the universe is expanding as depicted in Figure 1.1, then galaxies should be
moving away from each other. We should therefore see galaxies receding from us.
Recall that the wavelength of light or sound emitted from a receding object is
stretched out so that the observed wavelength is larger than the emitted one. It is
convenient to define this stretching factor as the redshift z:

Ao 1
l+o= 200 = 2 (1.7)

emit a

For low redshifts, the standard Doppler formula applies and z ~ . So a measure-
ment of the amount by which absorption and/or emission lines are redshifted is a
direct measure of how fast the structures in which they reside are receding from us.
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Figure 1.5. The original Hubble diagram (Hubble, 1929). Velocities of distant galaxies (units
should be km sec™!) are plotted vs distance (units should be Mpc). Solid (dashed) line is the
best fit to the filled (open) points which are corrected (uncorrected) for the sun’s motion.

Hubble (1929) first found that distant galaxies are in fact receding from us.
He also noticed the trend that the velocity increases with distance. This is exactly
what we expect in an expanding universe, for the physical distance between two
galaxies is d = ax where z is the comoving distance. In the absence of any comoving
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motion (& = 0, no peculiar velocity) the relative velocity v = d is therefore equal to
ax = Hd. Therefore, velocity should increase linearly with distance (at least at low
redshift) with a slope given by H, the Hubble constant. Hubble’s Hubble constant
can be easily extracted from Figure 1.5. It is simply H = 1000/2 km sec™! Mpc™!,
almost a factor of 10 higher than current estimates. Also notice that Hubble’s data
went out to redshift z = 1000 km sec™!/c ~ 0.003.
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Figure 1.6. Hubble diagram from the Hubble Space Telescope Key Project (Freedman et al.,
2001) using five different measures of distance. Bottom panel shows Hp vs distance with the
horizontal line equal to the best fit value of 72 km sec™! Mpc™!.

The Hubble diagram is still the most direct evidence we have that the universe
is expanding. Current incarnations use the same principle as the original: find the
distance and the redshift of distant objects. Measuring redshifts is straightforward;
the hard part is determining distances for objects of unknown intrinsic brightness.
One of the most popular techniques is to try to find a standard candle, a class
of objects which have the same intrinsic brightness. Any difference between the
apparent brightness of two such objects then is a result of their different distances
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from us. This method is typically generalized to find a correlation between an
observable and intrinsic brightness. For example, Cepheid variables are stars for
which intrinsic brightness is tightly related to period. The Hubble Space Telescope
measured the periods of thousands of Cepheid variables in galaxies as far away as
20 Mpc. With distances to these galaxies fixed, five different distance measures were
used to go much further, as far away as 400 Mpc. Figure 1.6 shows that all of these
five indicators agree with one another and have converged on Hy = 72 km sec™!
Mpc! with 10% errors.

As shown in Figure 1.6 the standard candle that can be seen at largest dis-
tances is a Type Ia supernova. Since they are so bright, supernovae can be used
to extend the Hubble diagram out to very large redshifts (the current record is
of order z ~ 1.7), a regime where the simple Doppler law ceases to work. Figure
1.7 shows a recent Hubble diagram using very these very distant objects. In the
next chapter, we will derive the correct expression for the distance (in this case
the luminosity distance) as a function of redshift. For now, I simply point out that
this expression depends on the energy content of the universe. The three curves
in Figure 1.7 depict three different possibilities: flat matter dominated; open; and
flat with a cosmological constant (A). The high-redshift data are now good enough
to distinguish among these possibilities, strongly disfavoring the previously favored
flat, matter-dominated universe. The current best fit is a universe with about 70%
of the energy in the form of a cosmological constant, or some other form of dark
energy. More on this in Chapter 2.

1.3 BIG BANG NUCLEOSYNTHESIS

When the universe was much hotter and denser, when the temperature of order an
MeV /kp, there were no neutral atoms or even bound nuclei. The vast amounts of
radiation in such a hot environment ensured that any atom or nucleus produced
would be immediately destroyed by a high energy photon. As the universe cooled
well below the binding energies of typical nuclei, light elements began to form.
Knowing the conditions of the early universe and the relevant nuclear cross-sections,
we can calculate the expected primordial abundances of all the elements (Chapter
3).

Figure 1.8 shows the predictions of Big Bang Nucleosynthesis (BBN) for the
light element abundances'. The boxes and arrows in Figure 1.8 show the current
estimates for the light element abundances. These are consistent with the predic-
tions, and this consistency test provides yet another ringing confirmation of the
Big Bang. The measurements do even more though. The theoretical predictions,
which we will explore in detail in Chapter 3, depend on the density of protons and
neutrons at the time of nucleosynthesis. The combined proton plus neutron density

!Recall nuclear notation: The 4 in “He refers to the total number of nucleons (protons and
neutrons). So *He has two neutrons and two protons, while >He has two protons and one neutron.
See the box on page 63 for more details.
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Figure 1.7. Hubble diagram from distant Type la supernovae. Top panel shows apparent mag-
nitude (an indicator of the distance) vs redshift. Lines show the predictions for different energy
contents in the universe, with {25s the ratio of energy density today in matter compared to the
critical density and 25 the ratio of energy density in a cosmological constant to the critical
density. Bottom panel plots the residuals, making it clear that the high-redshift supernovae
favor a A-dominated universe over a matter-dominated one.

is called the baryon density since hoth protons and neutrons have baryon number
one and these are the only baryons around at the time. Thus, BBN gives us a way
of measuring the baryon density in the universe. Since we know how those densities
scale as the universe evolves (they fall as a=3), we can turn the measurements of
light element abundances into measures of the haryon density today.

In particular, the measurement of primordial deuterium pins down the baryon
density extremely accurately to only a few percent of the critical density. Ordi-
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Figure 1.8. Constraint on the baryon density from Big Bang Nucleosynthesis (Burles, Nollett,
and Turner, 1999). Predictions are shown for four light elements —*He, deuterium, 3He, and
lithium —spanning a range of 10 orders of magnitude. The solid vertical band is fixed by
measurements of primordial deuterium. The boxes are the observations; there is only an upper
limit on the primordial abundance of *He.

nary matter (baryons) contributes at most 5% of the critical density. Since the
total matter density today is almost certainly larger than this— direct estimates
give values of order 20-30% — nucleosynthesis provides a compelling argument for
nonbaryonic dark matter.

The deuterium measurements (Burles and Tytler, 1998) are the new develop-
ments in the field. These measurements are so exciting because they explore the
deuterium abundance at redshifts of order 3-4, well before much processing could
have altered the primordial abundances. Figure 1.9 shows one such detection. The
basic idea is that light from distant QSOs is absorbed by intervening neutral hydro-
gen systems. The key absorption feature arises from transition from the (n = 1)
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Figure 1.9. Spectrum from a distant QSO (Burles, Nollett, and Turner, 1999). Absorption of
photons with rest wavelength 1216 A corresponding to the n = 1 to n = 2 state of hydrogen
is redshifted up to 1216 (1 4+ 3.572) A. Bottom panel provides details of the spectrum in this
range, with the the presence of deuterium clearly evident.

ground state of hydrogen to the first excited state (n = 2), requiring a photon with
wavelength A = 1215.7 A. Since photons are absorbed when exciting hydrogen in
this fashion, there is a trough in the spectrum at A = 1215.7 A, redshifted by a
factor of 1 4+ z. The corresponding line from deuterium should be (i) shifted over
by 0.33 (1 + z) A(see Exercise 3) and (ii) much less damped since there is much less
deuterium. Figure 1.9 shows just such a system; there are now half a dozen with
detections precisely in the neighborhood shown in Figure 1.8. Note that the steep
decline in deuterium as a function of baryon density helps here: even relatively large
errors in D measurements translate into small errors on the baryon density.
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CosMIC MICROWAVE BACKGROUND SPECTRUM FROM COBE
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Figure 1.10. Intensity of cosmic microwave radiation as a function of wavenumber from Far
InfraRed Absolute Spectrophotometer (FIRAS) (Mather et al., 1994), an instrument on the
COBE satellite. Hidden in the theoretical blackbody curve are dozens of measured points, all
of which have uncertainties smaller than the thickness of the curve!

1.4 THE COSMIC MICROWAVE BACKGROUND

The CMB offers us a look at the universe when it was only 300, 000 years old. The
photons in the cosmic microwave background last scattered off electrons at redshift
1100; since then they have traveled freely through space. When we observe them
today, they literally come from the earliest moments of time. They are therefore the
most powerful probes of the early universe. We will spend an inordinate amount of
time in this book working through the details of what happened before the epoch
of last scattering and also developing the mathematics of the freestreaming process
since then. A crucial fact about this history, though, is that the collisions with
electrons before last scattering ensured that the photons were in equilibrium. That
is, they should have a blackbody spectrum.
The specific intensity of a gas of photons with a blackbody spectrum is

4mhv/c?

L= exp {2rhv/kpT} — 1’ (18)

Figure 1.10 shows the remarkable agreement between this prediction (see Exercise 4)
of Big Bang cosmology and the observations by the FIRAS instrument aboard the
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COBE spacecraft. We have been told? that detection of the 3K background by Pen-
zias and Wilson in the mid-1960s was sufficient evidence to decide the controversy in
favor of the Big Bang over the Steady State universe. Penzias and Wilson, though,
measured the radiation at just one wavelength. If even their one-wavelength result
was enough to tip the scales, the current data depicted in Figure 1.10 should send
skeptics from the pages of physics journals to the far reaches of radical Internet
chat groups.

The most important fact we learned from our first 25 years of surveying the
CMB was that the early universe was very smooth. No anisotropies were detected
in the CMB. This period, while undoubtedly frustrating for observers searching for
anisotropies, solidified the view of a smooth Big Bang. We are now moving on. We
have discovered anisotropies in the CMB, indicating that the early universe was
not completely smooth. There were small perturbations in the cosmic plasma. To
understand these, we must go beyond the Standard Model.

1.5 BEYOND THE STANDARD MODEL

While the three pillars put the Big Bang model on firm footing, other observa-
tions cry out for more details. I hinted above at one of these, the notion that there
must be nonbaryonic matter in the universe. Dark matter is a familiar concept to
astronomers; the first suggestion was put forth by Zwicky in 1933(!). Figure 1.11
illustrates the way dark matter can be found in galaxies, with the use of rota-
tion curves probing the gravitational field. Indeed, a mismatch between the matter
inferred from gravity and that we can see exists on almost all observable scales.

Because of the limits inferred from Big Bang nucleosynthesis, the dark matter,
or at least an appreciable fraction of it, must be nonbaryonic. What is this new
form of matter? And how did it form in the early universe? The most popular idea
currently is that the dark matter consists of elementary particles produced in the
earliest moments of the Big Bang. In Chapter 3, we will explore this possibility in
detail, arguing that dark matter was likely produced when the temperature of the
universe was of order hundreds of GeV/kpg. As we will see, the hypothesis that dark
matter consists of fundamental relics from the early universe may soon be tested
experimentally.

The last decades of the 20*" century saw a number of large surveys of galaxies
designed to measure structure in the universe. These culminated in two large sur-
veys, the Sloan Digital Sky Survey and the Two Degree Field Galaxy (Figure 1.12)
Redshift Survey, which between them will compile the redshifts of, and hence the
distances to, a million galaxies. Galaxies in Figure 1.12 are clearly not distributed
randomly: the universe has structure on large scales. To understand this structure,
we must go beyond the Standard Model not only by including dark matter, but also
by allowing for deviations from smoothness. We must develop the tools to study

2For a fascinating first-hand account of the history of the discovery of the CMB, see Chapter
1 of Partridge (1995).
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Figure 1.11. (a) Image of spiral galaxy M33. The inner brightest region has a radius of several
kpc. (b) Rotation curve for M33 (Corbelli and Salucci, 2000). Points with error bars come from
the 21-cm line of neutral hydrogen. Solid line is a model fitting the data. Different contributions
to the total rotation curve are: dark matter halo (dot-dashed line), stellar disk (short dashed
line), and gas (long dashed line). At large radii, dark matter dominates.

perturbations around the smooth background of the Standard Model. We will see in
Chapters 4 and 5 that this is straightforward in theory, as long as the perturbations
remain small.

The best ways to learn about the evolution of structure and to compare theory
with observations are to look at anisotropies in the CMB and at how matter is
distributed on large scales. To compare theory with observations, we must at first
try to avoid scales dominated by nonlinearities.

he intermediate steps— collapse of matter into a galaxy; molecular cool-
ing; star formation; planetary formation; etc. — are much too complicated to allow
comparison between linear theor

. Similarly, anisotropies in the CMB have remained
small because the photons that make up the CMB do not clump.

Identifying large-scale structure and the CMB as the two most promising areas of
study solves just one issue. Another very important challenge is to understand how
to characterize these distributions so that theory can be compared to experiment. It
is one thing to look at a map and quite another to quantitative tests of cosmological
models. To make such tests, it is often useful to take the Fourier transform of the
distribution in question; as we will see, working in Fourier space makes it easier
to separate large from small scales. The most important statistic in the cases of
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Figure 1.12. Distribution of galaxies in the Two Degree Field Galaxy Redshift Survey (2dF)
(Colless et al., 2001). By the end of the survey, redshifts for 250,000 galaxies will have been
obtained. As shown here, they probe structure in the universe out to z = 0.3, corresponding
to distances up to 1000h™! Mpc away from us (we are located at the center). See color
Plate 1.12.

both the CMB and large-scale structure is the two-point function, called the power
spectrum in Fourier space. If the mean density of the galaxies is 72, then we can
characterize the inhomogeneities with 6(Z) = (n(Z) —7)/n, or its Fourier transform
6(k). The power spectrum P(k) is defined via

(3(R)3(E")) = (2m)3 P (k)83 (k — k). (1.9)

Here the angular brackets denote an average over the whole distribution, and 63()
is the Dirac delta function which constrains k = k'. The details aside, Eq. (1.9)
indicates that the power spectrum is the spread, or the variance, in the distribution.
If there are lots of very under- and overdense regions, the power spectrum will be
large, whereas it is small if the distribution is smooth. Figure 1.13 shows the power
spectrum of the galaxy distribution. Since the power spectrum has dimensions of
k=3 or (length)?, Figure 1.13 shows the combination k*P(k)/2n%, a dimensionless
number which is a good indication of the clumpiness on scale k.

The best measure of anisotropies in the CMB is also the two-point function
of the temperature distribution. There is a subtle technical difference between the
two power spectra which are used to measure the galaxy distribution and the CMB,
though. The difference arises because the CMB temperature is a two-dimensional
field, measured everywhere on the sky (i.e., with two angular coordinates). Instead
of Fourier transforming the CMB temperature, then, one typically expands it in
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Figure 1.13. The variance A? = kQ’P(k)/Qﬂ'2 of the Fourier transform of the galaxy dis-
tribution as a function of scale. On large scales, the variance is smaller than unity, so the
distribution is smooth. The solid line is the theoretical prediction from a model in which the
universe contains dark matter, a cosmological constant, with perturbations generated by infla-
tion. The dashed line is a theory with only baryons and no dark matter. Data come from the
PSCz survey {(Saunders et al., 2000) as analyzed by Hamilton and Tegmark (2001).

spherical harmonics, a basis more appropriate for a 2D field on the surface of a
sphere. Therefore the two-point function of the CMB is a function of multipole
moment !, not wave number k. Figure 1.14 shows the measurements of dozens
of groups since 1992, when COBE first discovered large-angle (low [ in the plot)
anisotropies.

Figures 1.13 and 1.14 both have theoretical curves in them which appear to
agree well with the data. The main goal of much of this book is to develop a first-
principles understanding of these theoretical predictions. Indeed, understanding
the development of structure in the universe has become a major goal of most
cosmologists today. Note that this second aspect of cosmology beyond the Standard
Model reinforces the first: i.e., observations of structure in the universe lead to
the conclusion that there must be dark matter. In particular, the dashed curve in
Figure 1.13 is the prediction of a model with baryons only, with no dark matter. The
inhomogeneities expected in this model (when normalized to the CMB observations)
are far too small. In Chapter 7, we will come to understand the reason why a
baryon-only universe would be so smooth. For now, though, the message is clear:
Dark matter is needed not only to explain rotation curves ot galaxies but to explain
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Figure 1.14. Anisotropies in the CMB predicted by the theory of inflation compared with
observations. z-axis is multipole moment (e.g., [ = 1 is the dipole, | = 2 the quadrupole) so
that large angular scales correspond to low [; y-axis is the root mean square anisotropy (the
square root of the two-point function) as a function of scale. The characteristic signature of

inflation is the series of peaks and troughs, a signature which has been verified by experiment.
See color Plate 1.14,

structure in the universe at large!

While trying to understand the evolution of structure in the universe, we will
be forced to confront the question of what generated the initial conditions, the
primordial perturbations that were the seeds for this structure. This will lead us
to a third important aspect of cosmology beyond the Standard Model: the the-
ory of inflation. Chapter 6 introduces this fascinating proposal, that the universe
expanded exponentially fast when it was but 1073 sec old. Until recently, there
was little evidence for inflation. It survived as a viable theory mainly because of its
aesthetic appeal. The discoveries of the past several years have changed this. They
have by and large confirmed some of the basic predictions of inflation. Most notably,
this theory makes concrete predictions for the initial conditions, predictions that
have observable consequences today. For me, the most profound and exciting dis-
covery in cosmology has been the observation of anisotropies in the CMB, with a
characteristic pattern predicted by inflation.

The theory encompassing all these Beyond the Standard Model ingredients —
dark matter plus evolution of structure plus inflation — is called Cold Dark Matter,
or CDM. The “Cold” part of this moniker comes from requiring the dark matter
particles to be able to clump efficiently in the early universe. If they are hot instead,
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i.e., have large pressure, structure will not form at the appropriate levels.

1.6 SUMMARY

By way of summarizing the features of an expanding universe that I have outlined
above and that we will explore in great detail in the coming chapters, let’s construct
a time line. We can characterize any epoch in the universe by the time since the
Big Bang; by the value of the scale factor at that time; or by the temperature
of the cosmic plasma. For example, today, a = 1; t ~ 14 billion years; and T =
2.725K= 2.35 x 10~* eV /kp. Figure 1.15 shows a time line of the universe using
both time and temperature as markers. The milestones indicated on the time line
range from those about which we are quite certain (e.g., nucleosynthesis and the
CMB) to those that are more speculative (e.g., dark matter production, inflation,
and dark energy today).

INucleosynthesisI l'grgi?
cale

Structure

Inflation

Log(kgT/GeV)

Log(t/sec)
/

Dark Matter Cosmic
Production Microwave
Background

Figure 1.15. A history of the universe. Any epoch can be associated with either temperature
(top scale) or time (bottom scale).

The time line in Figure 1.15 shows the dominant component of the universe
at various times. Early on, most of the energy in the universe was in the form of
radiation. Eventually, since the energy of a relativistic particle falls as 1/a while
that of nonrelativistic matter remains constant at m, matter overtook radiation.
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At relatively recent times, the universe appears to have become dominated not by
matter, but by some dark energy, whose density remains relatively constant with
time. The evidence for this unexplained form of energy is new and certainly not
conclusive, but it is very suggestive.

The classical results in cosmology can be understood in the context of a smooth
universe. Light elements formed when the universe was several minutes old, and
the CMB decoupled from matter at a temperature of order kgT ~ 1/4 eV. Heavy
elementary particles may make up the dark matter in the universe; if they do, their
abundance was fixed at very high temperatures of order kgT ~ 100 GeV.

We will be mostly interested in this book in the perturbations around the smooth
universe. The early end of the time line allows for a brief period of inflation, during
which primordial perturbations were produced. These small perturbations began to
grow when the universe became dominated by matter. The dark matter grew more
and more clumpy, simply because of the attractive nature of gravity. An overdensity
of dark matter of 1 part in 1000 when the temperature was 1 eV grew to 1 part in
100 by the time the temperature dropped to 0.1 V. Eventually, at relatively recent
times, perturbations in the matter ceased to be small; they became the nonlinear
structure we see today. Anisotropies in the CMB today tell us what the universe
looked like when it was several hundred thousand years old, so they are wonderful
probes of the perturbations.

Some of the elements in the time line in Figure 1.15 may well be incorrect.
However, since most of these ideas are testable, the data which will be taken during
the coming decade will tell us which parts of the time line are correct and which
need to be discarded. This in itself seems a sufficient reason to study the CMB and
large-scale structure.
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SUGGESTED READING

There are many good textbooks covering the homogeneous Big Bang. I am most
familiar with The Farly Universe (Kolb and Turner), which has especially good
discussions on nucleosynthesis and inflation. Peacock’s Cosmological Physics is the
most up-to-date and perhaps the broadest of the standard cosmology texts, with
more of an emphasis on extragalactic astronomy than either The Early Universe or
this book. A popular account which still captures the essentials of the homogeneous
Big Bang (testifying to the success of the model: it hasn’t changed that much in 25
years) is The First Three Minutes (Weinberg). More recently, three books of note
are: The Whole Shebang (Ferris), The Little Book of the Big Bang (Hogan), and A
Short History of the Universe (Silk).

A nice article summarizing the evidence for an expanding universe and some
methods to quantify it is Freedman (1998). Two of the pioneers in the field of Big
Bang nucleosynthests, Schramm and Turner, wrote a very clear review article (1998)
right before a tragic accident took the life of the first author. An excellent account
of the evidence for dark matter in spiral galaxies is Vera Rubin’s 1983 article in
Scientific American.

I have not attempted to record the history of the discovery of the Big Bang.
Three books I am familiar with which treat this history in detail are Blind Watchers
of the Sky (Kolb), 3K: The Cosmic Microwave Background (Partridge), and Three
Degrees Above Zero: Bell Labs in the Information Age (Bernstein). An article which
sheds light on this history is Alpher and Herman (1988).

EXERCISES

Exercise 1. Suppose (incorrectly) that H scales as temperature squared all the
way back until the time when the temperature of the universe was 10'® GeV /kg (i.e.,
suppose the universe was radiation dominated all the way back to the Planck time).
Also suppose that today the dark energy is in the form of a cosmological constant
A, such that pa today is equal to 0.7p., and pa remains constant throughout the
history of the universe. What was pa/(3H?/87G) back then?

Exercise 2. Assume the universe today is flat with both matter and a cosmological
constant, the latter with energy density which remains constant with time. Integrate
Eq. (1.2) to find the present age of the universe. That is, rewrite Eq. (1.2) as

1 QA} -1/2

d
-1 a[ﬂ/\*l‘ 3
a

dt = H;

“ (1.10)
a

where (2 is the ratio of energy density in the cosmological constant to the critical
density. Integrate from @ = 0 (when ¢ = 0) until today at a = 1 to get the age of
the universe today. In both cases below the integral can be done analytically.

(a) First do the integral in the case when Q4 = 0.

(b) Now do the integral in the case when Q4 = 0.7. For fixed Hp, which universe
is older?
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Exercise 3. Using the fact that the reduced mass of the electron—nucleus in the D
atom is larger than in hydrogen, and the fact that the Lyman a (n =1 — n = 2)
transition in H has a wavelength 1215.67A4, find the wavelength of the photon
emitted in the corresponding transition in D. Astronomers often define

=c— 1.11
v=ey ( )

to characterize the splitting of two nearby lines. What is v for the H-D pair?

Exercise 4. Convert the specific intensity in Eq. (1.8) into an expression for what
is plotted in Figure 1.10, the energy per square centimeter per steradian per second.
Note that the z-axis is 1/A, the inverse wavelength of the photons. Show that the
peak of a 2.73K blackbody spectrum does lie at 1/A = 5em™1.



2
THE SMOOTH, EXPANDING UNIVERSE

Just as the early navigators of the great oceans required sophisticated tools to
help them find their way, we will need modern technology to help us work through
the ramifications of an expanding universe. In this chapter I introduce two of the
necessary tools, general relativity and statistical mechanics. We will use them to
derive some of the basic results laid down in Chapter 1. the expansion law of
Eq. (1.2), the dependence of different components of energy density on the scale
factor which governs expansion, the epoch of equality a.q shown in Figure 1.3, and
the luminosity distance needed to understand the implications of the supernovae
diagram in Figure 1.7. Indeed, with general relativity and statistical mechanics,
we can go a long way toward performing a cosmic inventory, identifying those
components of the universe that dominate the energy budget at various epochs.

Implicit in this discussion will be the notion that the universe is smooth (none
of the densities vary in space) and in equilibrium (the consequences of which will
be explored in Section 2.3). In succeeding chapters, we will see that the deviations
from equilibrium and smoothness are the source of much of the richness in the
universe. Nonetheless, if only in order to understand the framework in which these
deviations occur, a basic knowledge of the “zero order” universe is a must for any
cosmologist.

In this chapter, I begin using units in which

h=c=kp=1. (2.1)

Many papers employ these units, so it is important to get accustomed to them.
Please work through Exercise 1 if you are uncomfortable with the idea of setting
the speed of light to 1.

2.1 GENERAL RELATIVITY

Most of cosmology can be learned with only a passing knowledge of general relativ-
ity. One must be familiar with the concept of a metric, understand geodesics, and be
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able to apply the Einstein equations to the Friedmann-Robertson-Walker (FRW)
metric thereby relating the parameters in the metric to the density in the universe.
Eq. (1.2) is the result of applying the Einstein equations to the zero order universe.
We will derive it in this section. Chapters 4 and 5 apply them to the perturbed
universe. With the experience we gain in this section, there will be nothing difficult
about these subsequent chapters. The principles are identical; only the algebra will
be a touch harder.

2.1.1 The Metric

Figure 1.1 from Chapter 1 highlights the fact that even if one knows the com-
ponents of a vector, say the difference between two grid points there, the physical
distance associated with this vector requires additional information. In the case of a
smooth expanding universe, the scale factor connects the coordinate distance with
the physical distance. More generally, the metric turns coordinate distance into
physical distance and so will be an essential tool in our quest to make quantitative
predictions in an expanding universe.

We are familiar with the metric for the Cartesian coordinate system which
says that the square of the physical distance between two points separated by dx
and dy in a 2D plane is (dz)? + (dy)?. However, were we to use polar coordinates
instead, the square of the physical distance would no longer be the sum of the
square of the two coordinate differences. Rather, if the differences dr and df are
small, the square of the distance between two points is (dr)? + r?(d8)? # (dr)? +
(d6)2. This distance is invariant: an observer using Cartesian coordinates to find
it would get the same result as one using polar coordinates. Thus another way of
stating what a metric does is this: it turns observer-dependent coordinates into
invariants. Mathematically, in the 2D plane, the invariant distance squared di? =
Zi,j:I.Q gijdz*dz?. The metric g;; in this 2D example is a 2 x 2 symmetric matrix.
In Cartesian coordinates the metric is diagonal with each element equal to 1. In
polar coordinates (taking z! = r and z2? = ) it is also diagonal with g;; = 1, but
g22 which multiplies (d#)? is equal to 2.

There is yet another way of thinking about a metric, using pictures. When
handed a vector, we immediately think of a line with an arrow attached, the length
of the line corresponding to the length of the vector and the arrow to its direction.
In fact, this notion is rooted too firmly in Euclidean space. In actuality, the length
of the vector depends on the metric. An intuitive way of understanding this is to
consider the contour map in Figure 2.1. The number of lines crossed by a vector is
a measure of the vertical distance traveled by a hiker. Vectors of the same apparent
2D length — corresponding to identical coordinate distances — can correspond to
significantly different physical distances. Mathematically the surface of the Earth
can bhe parametrized by two coordinates, say 6 and ¢. Then the metric is a very
nontrivial function of € and ¢ which accounts for all the elevation changes on the
surface.
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Figure 2.1. Contour map of a mountain. The closely spaced contours near the center corre-
spond to rapid elevation gain. The two thin lines correspond to hikes of significantly different
difficulty even though they appear to be of the same length. Similarly, the true length of a
vector requires knowledge of the metric.

The great advantage of the metric is that it incorporates gravity. Instead of
thinking of gravity as an external force and talking of particles moving in a gravita-
tional field, we can include gravity in the metric and talk of particles moving freely
in a distorted or curved space-time, one in which the metric cannot be converted
everywhere into Euclidean form.

In four space-time dimensions the invariant includes time intervals as well, so

3
ds? = Z Gupdatdz” (2.2)

pn.v=0

where the indices p and v range from 0 to 3 (see the box on page 27), with the first
one reserved for the time-like coordinate (dz® = dt) and the last three for spatial
coordinates. Here I have explicitly written down the summation sign, but from now
on we will use the convention that repeated indices are summed over. The metric
guv is necessarily symmetric, so in principle has four diagonal and six off-diagonal
components. It provides the connection between values of the coordinates and the
more physical measure of the interval ds? (sometimes called proper time). Special
relativity is described by Minkowski space-time with the metric: g, = 7., With
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-1 00 0
0 100

=119 01 0 (2.3)
0 00 1

What is the metric which describes the expanding universe? Let us return to the
grid depicted in Figure 1.1. We said earlier that two grid points move away from
each other, so that the distance between the two points is always proportional to the
scale factor. If the comoving distance today is x¢, the physical distance between the
two points at some earlier time ¢ was a(t)xg. At least in a flat (as opposed to open
or closed) universe, the metric then is almost identical to the Minkowski metric,
except that distance must be multiplied by the scale factor. This suggests that the
metric in an expanding, flat universe is

-1 0 0 0
[ o @@ o o

9w =119 0 a2(t) o0 (2.4)
0 0 0 a?(t)

This is called the Friedmann-Robertson-Walker (FRW) metric.

As noted in Eq. (1.2), which we will shortly derive, the evolution of the scale
factor depends on the density in the universe. When perturbations are introduced,
the metric will hecome more complicated, and the perturbed part of the metric will
be determined by the inhomogeneities in the matter and radiation.
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Indices

In three dimensions, a vector A has three components, which we refer
to as A%, superscript i taking the values 1,2, or 3. The dot product of two
vectors is then

3
A B=) A'B'=AB (2.5)
i=1

where I have introduced the Einstein summation convention of not explicitly
writing the }_ sign when an index (in this case 7) appears twice. Similarly,
matrices can be written in component notation. For example, the product of
two matrices M and N is

(MN)Z']‘ = ]uilcNkj (2.6)

again with implicit summation over k.

In relativity, two generalizations must be made. First, in relativity a
vector has a fourth component, the time component. Since the spatial indices
run from 1 to 3, it is conventional to use 0 for the time component. Greek letters
are used to represent all four components, so A* = (A%, A*). The second, more
subtle, feature of relativity is the distinction between upper and lower indices,
the former associated with vectors and the latter with 1-forms. One goes back
and forth with the metric tensor, so

Ay =guA” AP =g"A,. (2.7)

A vector and a 1-form can be contracted to produce an invariant, a scalar. For
example, the statement that the four-momentum squared of a massless particle
must vanish is

P?=p,P* =g, P*P’ =0. (2.8)

This contraction is the equivalent of counting the contours crossed by a vector,
as depicted in Figure 2.1.

Just as the metric can turn an upper index on a vector into a lower
index, the metric can be used to raise and lower indices on tensors with an
arbitrary number of indices. For example, raising the indices on the metric
tensor itself leads to

9" = ¢""¢""gas. (2.9)

If the index o = v, then the first term on the right is equal to the term on the
left, so if the combination of the last two terms on the right force a to be equal
to v, then the equation is satisfied. Therefore,

guﬁgaﬁ - 5'/0‘ (210)

where §”, is the Kronecker delta equal to zero unless v = « in which case it is

1.
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2.1.2 The Geodesic Equation

In Minkowski space, particles travel in straight lines unless they are acted on by a
force. Not surprisingly, the paths of particles in more general space-times are more
complicated. The notion of a straight line gets generalized to a geodesic, the path
followed by a particle in the absence of any forces. To express this in equations,
we must generalize Newton's law with no forces. d27/dt> = 0, to the expanding
universe.

The machinery necessary to generalize d®7/dt?> = 0 is perhaps best introduced
by starting with a simple example: particle motion in a Euclidean 2D plane. In that
case. the equations of motion in Cartesian coordinates a! = (r, y) are

— =0. (2.11)

However, if we use polar coordinates x” = (r,f) instead, the equations for a free
particle look significantly different. The fundamental difference between the two
coordinate systems is that the basis vectors for polar coordinates f,é vary in the
plane. Therefore, d2F'/dt? = 0 does not imply that each coordinate r and @ satisfies
dr'/dt? = 0.

To determine the equation satisfied by the polar coordinates, we can start from
the Cartesian equation and then transform. In particular,

drt or' da'

= - 2.12
dt or'J dt ( )
Ox'/0x" is called the transformation matriz going from one basis to another. In the
gomg
case of Cartesian to polar coordinates in 2D, 2! = z/! cos 2’2 and 2% = 2’} sinz’?,
so the transformation matrix is
dr'  (cosx'? —z''sinz’ (2.13)
8r7 ~ \sinz?  z2'lcosaz’? ‘

Therefore, the geodesic equation becomes

d [dx! d [ Ox* dx”

B [ S iy ) (2.14)

dt | dt dt | 9z’ dt
The derivative with respect to time acts on both terms inside the brackets. If the
transformation from the Cartesian hasis to the new hasis was linear, then the deriva-
tive acting on the transformation matrix would vanish, and the geodesic equation in

the new basis would still be @t /dt? = 0. In the case of polar coordinates, though,
the transformation is not linear, and we need the fact that

d [ or B 2] dr!
dt \ 8z ]~ 824 \dt
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O2xt da'k

= 2.15
Ox19x’k dt ( )

where the first equality holds since derivatives commute and the second comes from
inserting da' /dt from Eq. (2.12), changing dummy indices from j — k. The geodesic
equation in the new coordinates therefore becomes

= 0. (2.16)

dt oz dt | = oen der T arior* dt dt

d [6.# d.T’J] dr! %2 9%t da'* dxt
To get this in a more recognizable form. note that the term multiplying the second
time derivative is the transformation matrix. If we multiply the equation by the
inverse of this transformation matrix, then the second time derivative will stand

alone, leaving
d2z" ory-1\' 8%z dx'* dz'
_— — —_— | —— = 0. 2.17
dt? + [ <{ 617’} )i Oz oxr'k | dt dt ( )

You can check that this rather cumbersome expression does indeed give the correct
equations of motion in polar coordinates. More importantly, by keeping things
general, we have derived the geodesic equation in a non-Cartesian basis.

It is convenient to define the Christoffel symbol, I‘ljk, to be the coeflicient of
the (dx'*/dt)(dx" /dt) term in Eq. (2.17). Note that by definition it is symmetric
in its lower indices j and k. In a Cartesian coordinate system, the Christoffel sym-
bol vanishes and the geodesic equation is simply d?z'/dt?=0. But in general, the
Christoftel symbol does not vanish; its presence describes geodesics in nontrivial
coordinate systems. The reason why this generalized geodesic equation is so power-
ful is that in a nontrivial space-time such as the expanding universe it is not possible
to find a fixed Cartesian coordinate system, so we need to know how particles travel
in the more general case.

There are two small changes we need to make when importing the geodesic
equation (2.17) into relativity. The first is trivial: allow the indices to range from
0 to 3 to include time and the three spatial dimensions. The second is also not
surprising: since time is now one of our coordinates, it will not do to use it as
the evolution parameter. Instead introduce a parameter A which monotonically
increases along the particle’s path as in Figure 2.2. The geodesic equation then

x#(A)

X”'(}\i) /

DN

Figure 2.2. A particle's path is parametrized by A, which monotonically increases from its
initial value A; to its final value Aj.
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becomes ) s
d=xt dr® d.
v pe 2 (2.18)
dA? dh dX
We derived this equation transforming from a Cartesian basis, so that the Christoffel
symbol is given by the term in square brackets in Eq. (2.17). It is almost always
more convenient, however, to obtain the Christoffel symhol from the metric directly.
A convenient formula expressing this dependence is
Herg 0g; 7]
F“a,@ _ g_[ Jav 93y 9Gas . (219)
2 Loz Oxe foad

Note that the raised indices on g are important: g*" is the inverse of g,, (see the
box on page 27). So g"* in the flat, FRW metric is identical to g,, except that its
spatial elements are 1/a? instead of a?.

Using the general expression in Eq. (2.19) and the FRW metric in Eq. (2.4), we
can derive the Christoffel symbol in an expanding, homogeneous universe. First we
compute the components with upper index equal to zero, '’ ,5. Since the metric is
diagonal, the factor of g% vanishes unless v = 0 in which case it is —1. Therefore,

_ (2.20)

0, , = -1 [8ga0 n Bgp0 3906}

2 Loxf T Hre 9z

The first two terms here reduce to derivatives of ggp. Since the FRW metric has
constant ggp, these terms vanish, and we are left with

1 agaﬁ
2 020
The derivative is nonzero only if a and 3 are spatial indices, which will be identified
with Roman letters 4, j running from 1 to 3. Since z° = t, we have

%5 = (2.21)

%y =0
% =T% =0
I%; = 6;aa (2.22)

where overdots indicate derivatives with respect to time.! It is a straightforward,
but useful, exercise to show that I'' .5 is nonzero only when one of its lower indices
is zero and one is spatial, so that

A . a

with all other I'" 5 zero.

T will use this convention until Chapter 4. After that, overdots will denote derivatives with
respect to conformal time.
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This has been a long, rather formal subsection, opening with the generalization
of the geodesic equation to curved space-time and then proceeding with a calcu-
lation of the Christoffel symbol in the expanding universe described by the FRW
metric. Before completing our main task and using the Einstein equations to derive
Eq. (1.2), let’s take a break and apply the geodesic equation to a single particle. In
particular let’s see how a particle’s energy changes as the universe expands. We'll
do the calculation here for a massless particle; an almost identical problem for a
massive particle is relegated to Exercise 4.

Start with the four-dimensional energy-momentum vector P* = (£, P), whose
time component is the energy. We use this four-vector to define the parameter X in
Eq. (2.18): o

o dz
P = o (2.24)
This is an implicit definition of A. Fortunately, one never needs to find A explicitly,
for it can be directly eliminated by noting that

d _di® d
d\ ~ d\ dx®
d
=E—. 2.25
E— (2.25)
The zeroth component of the geodesic equation (2.18) then becomes
E% =-I%;P'P (2.26)

where the equality holds since only the spatial components of I'°,5 are nonzero.
Inserting these components leads to a right-hand side equal to —é,;aaP*P/. A
massless particle has energy-momentum? vector (E, P) with zero magnitude:

guvP*P" = —E%* 4 6,;0*P'P? =0 (2.27)

which enables us to write the right hand side of Eq. (2.26) as —(a/a)E?. Therefore,
the geodesic equation yields

dE ¢

L E=0 2.28
- +-E=0, (2.28)

the solution to which is 1
Eox = (2.29)

a

This confirms our hand-waving argument in Chapter 1 that the energy of a massless
particle should decrease as the universe expands since it is inversely proportional
to its wavelength, which is being stretched along with the expansion. In Chapter 4
we will rederive this result in yet another way using the Boltzmann equation.

2Note that P measures motion on the comoving (nonexpanding) grid. The physical momentum

which measures changes in physical distance is related to P by a factor of a. Hence the factor of
a? in Eq. (2.27).
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2.1.3 Einstein Equations

If vou did a word search on the previous two subsections, you might be surprised to
discover that the words “general relativity” never appeared. The concept of a metric
and the realization that nontrivial metrics affect geodesics both exist completely
independently of general relativity. The part of general relativity that is hidden
above is that gravitation can be described by a metric, in our case by Eq. (2.4).
There is a second aspect of general relativity, though: one which relates the metric
to the matter and energy in the universe. This second part is contained in the
Einstein equations, which relate the components of the Einstein tensor describing
the geometry to the energy-momentum tensor describing the energy:

Gunw=R, — %g#,,R = 81GT,,. (2.30)
Here G, is the Einstein tensor; R, is the Ricci tensor, which depends on the
metric and its derivatives; R, the Ricci scalar, is the contraction of the Ricci tensor
(R = ¢"”R,.): G is Newton’s constant; and T},, is the energy-momentum tensor.
We will spend some time on the energy-momentum tensor in Section 2.3. For now,
all we need to know is that it's a symmetric tensor describing the constituents of
the universe. The left-hand side of Eq. (2.30) is a function of the metric, the right
a function of the energy: the Einstein equations relate the two.
The Ricci tensor is most conveniently expressed in terms of the Christoffel sym-
bol,
R =T%a ~T%au + TP, — 96,7 0. (2.31)

Here commas denote derivatives with respect to z. So, for example, I'*},, o =
or<,, /0x®. Although this expression looks formidable, we have already done the
hard work by computing the Christoffel symbol in an FRW universe. It turns out
that there are only two sets of nonvanishing components of the Ricci tensor: one
with ¢ = v = 0 and the other with = v = 1.
Consider
Roo = T%00.0 — %000 + Tgal?00 — T ol P0a. (2.32)

Recall that the Christoffel symbol vanishes if its two lower indices are zero, so the
first and third terms on the right vanish. Similarly, the indices & and 3 in the second
and fourth terms must be spatial. We are left with

ROO = ‘FiOi.O - I‘i]0]~-‘j0i~ (233)

Using Eq. (2.23) leads directly to

R ___(5”6 a — g 266
00 — nat E a iylij
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=32, (2.34)
a

The factors of 3 on the second line arise since 4;; means sum over all three spatial
indices, counting one for each. I will leave the space-space component as an exercise;
it is

Rij = (5” [2(1 + aa] . (235)

The next ingredient in the Einstein equations is the Ricci scalar, which we can
now compute since

R=¢""R,.

1
= _ROO + EERZZ (236)

Again the sum over 7 leads to a factor of 3, so
. g
R=6 [3+ <3) } (2.37)
a a

To understand the evolution of the scale factor in a homogeneous universe, we
need consider only the time-time component of the Einstein equations:

RO() - %gOOR = 87TGT00. (238)

The terms on the left sum to 3a?/a?, and the time-time component of the energy-
momentum tensor is simply the energy density p. So we finally have

(%)2 _ %,;_ (2.39)

To get this into the form of Eq. (1.2), recall that the left-hand side here is the square
of the Hubble rate and that the critical density was defined as p., = 3HZ/87G. So,
dividing both sides by HZ leads to

H2(t) _ P
HE Per

(2.40)

Here the energy density p counts the energy density from all species: matter, radia-
tion, and the dark energy. In our derivation, we have assumed the universe is flat, so
Eq. (2.40) does not contain a term corresponding to the curvature of the universe.
I leave it as an exercise to derive the Einstein equation in an open universe.

2.2 DISTANCES

We can anticipate that measuring distance in an expanding universe will be a tricky
business. Referring back to the expanding grid of Figure 1.1, we immediately see
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two possible ways to measure distance, the comoving distance which remains fixed
as the universe expands or the physical distance which grows simply because of
the expansion. Frequently, neither of these two measures accurately describes the
process of interest. For example light leaving a distant QSO at redshift 3 starts its
journey towards us when the scale factor was only a quarter of its present value
and ends it today when the universe has expanded by a factor of 4. Which distance
do we use in that case to relate, say, the luminosity of the QSO to the flux we see?

The fundamental distance measure, from which all others may be calculated, is
the distance on the comoving grid. If the universe is flat, as we will assume through
most of this book, then computing distances on the comoving grid is easy: the
distance between two points &} and 7y is equal to [(x1 — 72)? + (y1 — ¥2)? + (21 —
Z2)2]1 /2

One very important comoving distance is the distance light could have traveled
(in the absence of interactions) since t = 0. In a time dt, light travels a comoving
distance dxr = dt/a (recall that we are setting ¢ = 1), so the total comoving distance

light could have traveled is
t dt/
n= / —. (2.41)
o a(t’)

The reason this distance is so important is that no information could have prop-
agated further (again on the comoving grid) than 7 since the beginning of time.
Therefore, regions separated by distance greater than n are not causally connected.
If they appear similar, we should be suspicious!

We can also think of 7, which is monotonically increasing, as a
time variable and call it the EomformaMtme. Just like the time ¢, the temperature
T, the redshift z, and the scale factor a,  can be used to discuss the evolution
of the universe. In fact, for most purposes 7 is the most convenient time variable,
so when we begin to study the evolution of perturbations, we will use it instead
of t. In some simple cases, 7 can be expressed analytically in terms of a (Exer-
cise 11). For example, in a matter-dominated universe, n  a'/2, while 7 « a in a
radiation-dominated universe.

Another important comoving distance is that between a distant emitter and us.
In that case, the comoving distance out to an object at scale factor a (or redshift

z=1/a—1)is
o dt Y da
o= [ i~ e (242)

Here I have changed the integration over ¢’ to one over a’, which brings in the
additional factor of da/dt = aH in the denominator. Typically we can see objects
out to z < 6; at these late times radiation can be ignored (recall Figure 1.3). If the
universe is purely matter dominated at such times, then H o a=3/? and we can do
the integral in Eq. (2.42) analytically,

2
Pt MD () — e [1 _ al/Q}
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~ _;_O [1 - _1L+—z] : (2.43)

This comoving distance goes as z/Hp for small z (verifying our hand-waving dis-
cussion of the small-z Hubble diagram in Section 1.2) and then asymptotes to 2/Hy
as z gets very large.

A classic way to determine distances in astronomy is to measure the angle
# subtended by an object of known physical size [. The distance to that object
(assuming the angle subtended is small) is then

l
da = X (2.44)
The subscript 4 here denotes angular diameter distance. To compute the angular
diameter distance in an expanding universe, we first note that the comoving size of
the object is [/a. The comoving distance out to the object is given by Eq. (2.42),
so the angle subtended is # = (I/a)/x(a). Comparing with Eq. (2.44), we see that
the angular diameter distance is

diat — gy = X 2.45
A ax 1+ 2 ( )

Note that the angular diameter distance is equal to the comoving distance at low
redshift, but actually decreases at very large redshift. At least in a flat universe,
objects at large redshift appear larger than they would at intermediate redshift!
The superscript here is a warning that this result holds only in a flat universe.
In an open or closed universe, the curvature density is defined as Qp = 1 — Qg
where € is the ratio of total to critical density today, including contributions from
matter, radiation, and any other form of energy such as a cosmological constant. If
the curvature is nonzero, the angular diameter distance generalizes to

dy = a {sinh [V Hox] Q. >0 (2.46)
Hy/19%] sin [V=%Hox| Q<0

Note that both of these expressions reduce to the flat case in the limit that the
curvature density € goes to zero. Figure 2.3 shows the angular diameter distance
in a flat universe, both with and without a cosmological constant.

Another way of inferring distances in astronomy is to measure the flux from
an object of known luminosity. Recall that (forgetting about expansion for the
moment) the observed flux F a distance d from a source of known luminosity L is

L

= o (2.47)

since the total luminosity through a spherical shell with area 4nd? is constant. How
does this result generalize to an expanding universe? Again it is simplest to work
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ol

Distance (1/H,)

Figure 2.3. Three distance measures in a flat expanding universe. From top to bottom, the
luminosity distance, the comoving distance, and the angular diameter distance. The pair of
lines in each case is for a flat universe with matter only (light curves) and 70% cosmological
constant A (heavy curves). In a A-dominated universe, distances out to fixed redshift are larger
than in a matter-dominated universe.

on the comoving grid, this time with the source centered at the origin. The flux we
observe is
L(x)

" ()
where L(x) is the luminosity through a (comoving) spherical shell with radius
x(a). To further simplify, let’s assume that the photons are all emitted with the
same energy. Then L(x) is this energy multiplied by the number of photons passing
through a (comoving) spherical shell per unit time. In a fixed time interval, photons
travel farther on the comoving grid at early times than at late times since the
associated physical distance at early times is smaller. Therefore, the number of
photons crossing a shell in the fixed time interval will be smaller today than at
emission, smaller by a factor of a. Similarly, the energy of the photons will be
smaller today than at emission, because of expansion. Therefore, the energy per
unit time passing through a comoving shell a distance x(a) (i.e., our distance) from
the source will be a factor of a® smaller than the luminosity at the source. The flux
we observe therefore will be

(2.48)

L 2
F=_=4 (2.49)
drx*(a)
where L is the luminosity at the source. We can keep® Eq. (2.47) in an expanding
universe as long as we define the luminosity distance

dp =X, (2.50)
a

3 Actually there is one more difference that needs to be accounted for: the observed luminosity
is related to the emitted luminosity at a different wavelength. Here we have assumed a detector
which counts all the photons.
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The luminosity distance is shown in Figure 2.3.

All three distances are larger in a universe with a cosmological constant than in
one without. This follows from the fact that the energy density, and therefore the
expansion rate, is smaller in a A-dominated universe. The universe was therefore
expanding more slowly early on, and light had more time to travel from distant
objects to us. These distant objects will therefore appear fainter to us than if the
universe was dominated by matter only.

2.3 EVOLUTION OF ENERGY

Let us return to the energy-momentum tensor on the right-hand side of the Einstein
equations. We will eventually include perturbations to T, but in the spirit of this
chapter, first consider the case of a perfect isotropic fiuid. Then,

-p 0 0 O
0 P 0 0

TH, = 0o 0 P o0 (2.51)
0 0 0 P

where P is the pressure of the fluid.

How do the components of the energy-momentum tensor evolve with time?
Consider first the case where there is no gravity and velocities are negligible. The
pressure and energy density in that case evolve according to the continuity equation,
Op/0t = 0, and the Euler equation, 0P/9x* = 0. This can be promoted to a 4
component conservation equation for the energy-momentum tensor: 97*#, /0z# = 0.
In an expanding universe, however, the conservation criterion must be modified.
Instead, conservation implies the vanishing of the covariant derivative:

oT*H,

o

T“V'»H = + F“Q[LTGU - FauuT#ou (252)
The vanishing of T#,,, is four separate equations; let’s consider the v = 0
component. This is
9THq
OxH
Since we are assuming isotropy, 7% vanishes, so the dummy indices x in the first
term and « in the second must be equal to zero:
ot THoup —T%, 1" = 0. (2.54)
From Eq. (2.23), I'p, vanishes unless «, u are spatial indices equal to each other,
in which case it is @/a. So, the conservation law in an expanding universe reads

4T, T% = T%, T =0 (2.53)

Op a
4z =0. 2.55
e +a[3p+373] 0 (2.55)

Rearranging terms, we have
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30 [pa®] a
3 — _3Z i
0 3=P. (2.56)

The conservation law can be applied immediately to glean information about
the scaling of both matter and radiation with the expansion. Matter has effectively
Zero pressure, so

0 [pma’]
ot
implying that the energy density of matter p,, « a™. We anticipated this result in
Chapter 1 based on the simple notion that the mass remains constant, while the
number density scales as the inverse volume. The application to radiation also offers
no surprises. Radiation has P = p/3 (Exercise 14), so working from Eq. (2.55),

Opr @ _ _48[pra4]
o tatr= Ta

=0. (2.58)

~0 (2.57)

Therefore, the energy density of radiation p,  a~4, accounting for the decrease in
energy per particle as the universe expands.

Through most of the early universe, reactions proceeded rapidly enough to keep
particles in equilibrium, different species sharing a common temperature. We will
often want to express the energy density and pressure in terms of this temperature.
For this reason, and many others which will emerge over the next few chapters,
it is convenient to introduce the occupation number, or distribution function, of a
species. This counts the number of particles in a given region in phase space around
position ¥ and momentum 5.* The energy of a species is then obtained by summing
the energy over all of phase space elements: " f(Z,p)E(p) with E(p) = v/p? + m2.
How many phase space elements are there in a region of “volume” d*zd®p? By
Heisenberg’s principle, no particle can be localized into a region of phase space
smaller than (27h)*, so this is the size of a fundamental element. Therefore, the
number of phase space elements in d3zd3p is d*xd3p/(27h)* (see Figure 2.4), and
the energy density is

3
b= 0 / (jT’;’ £ PHE®) (259)

where i labels different species, g; is the degeneracy of the species (e.g., equal to 2
for the photon for its spin states), and I have gone back to & = 1. In equilibrium
at temperature T', bosons such as photons have Bose-Einstein distributions,

1

foe = CEmnr 1 (2:60)

and fermions such as electrons have Fermi-Dirac distributions,

4By p here I mean not the comoving momentum defined in Eq. (2.24), but rather the proper
momentum which decreases with the expansion. See Exercise 15 for a discussion.
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2nh

X

Figure 2.4. Phase space of position and momentum in one dimension. Volume of each cell
is 2mh, the smallest region into which a particle can be confined because of Heisenberg's
principle. Shaded region has infinitesmal volume dzdp. This covers nine cells. To count the
appropriate number of cells, therefore, the phase space integral must be fdzdp/(27rh).

1

_ 61

with u the chemical potential. It should be noted that these distributions do not

depend on position ¥ or on the direction of the momentum p, simply on the mag-

nitude p. This is a feature of the zero-order, smooth universe. When we come to

consider inhomogenities and anisotropies, we will see that the distribution functions

have small perturbations around these zero order values, and the perturbations do
depend on position and on the direction of propagation.

The pressure can be similarly expressed as an integral over the distribution

function,
d3p p2

Pi=g; | —= fi(£,p)—~—. 2.62

= | 5 1 P3G (262

For almost all particles at almost all times in the universe, the chemical poten-

tial is much smaller than the temperature. To a good approximation, then, the

distribution function depends only on E/T and the pressure satisfies (Exercise 14)

oP; _pi+73i
oar — T

(2.63)

This relation can be used to show that the entropy density in the universe scales
as a=3. To see this, let’s rewrite Eq. (2.56) as
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a_gc') [(p+ P)a®] 0P
ot o

The derivative of the pressure with respect to time can be written as

(dT/dt)(0P/OT) so

=0. (2.64)

0Pyl dTp+P 500 [(p+P)a’
ot d T ot T

= 0. (2.65)

So the entropy density®
§= ——— (2.66)

scales as a~3. Although we have framed the argument in terms of a single species,
this scaling holds for the total entropy including all species in equilibrium. In fact,
even if two species have different temperatures. the sum of their entropy densities
still scales as a~3. We will make use of this fact shortly when computing the relative
temperatures of neutrinos and photons in the universe.

2.4 COSMIC INVENTORY

Armed with an expression for the energy density of a given species (Eq. (2.59)), and
a knowledge of how it evolves in time (Eq. (2.56)), we can now tackle quantitatively
the question of how much energy is contributed by the different components of the
universe.

2.4.1 Photons

The temperature of the CMB photons has been measured extraordinarily precisely
by the FIRAS instrument aboard the COBE satellite, T = 2.725 4+ 0.002K (Mather
et al., 1999). The energy density associated with this radiation is

d3p 1

The factor of 2 in front of Eq. (2.67) accounts for the two spin states of the photon.
The energy of a given state is simply equal to p since the photon is massless. The
chemical potential is zero; we expect this theoretically because early in the universe,
photon number is not conserved (e.g., electrons and positrons can annihilate to
produce photons). We also know it observationally because the spectrum of the
CMB has been measured so accurately. The limits on a chemical potential are
p/T < 9 x 107° (Fixsen et al., 1996), so p can be safely ignored. Since there is

5Technically, there is another term in the entropy density —proportional to the chemical
potential— but, as mentioned above, this term is usually irrelevant in cosmology. Even with
nonzero chemical potential, though, the entropy density scales as a~3.
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no angular dependence in the integrand of Eq. (2.67). the angular integral yields
a factor of 4w and we are left with a one-dimensional integral. Define a dummy
variable x = p/T; then

Bl x 3
_ 8T / dr r (2.68)
4]

Pr= (2m)3 et -1

The integral can be expressed in terms of the Riemann ¢ function; it is 6¢(4) =
7l /15, so ,

T

Py = —l—gT . (2.69)

Since we derived (Eq. (2.58)) that the energy density of radiation scales as a~4, the
temperature of the CMB must scale as a™!.

[t will be useful to have all energy densities in the same units. The simplest way

to do this is to divide all energy densities by the critical density today.® Thus,

py w2 (2.7251()4 1
pe 15\ a 8.098 x 10~11h2eV?

2.47 x 107°

= (2.70)
where to get the last line, it is useful to remember the conversion between kelvin and
eV: 11605 K = 1 eV. To reiterate an important point, the photon energy deunsity
in Eq. (2.70) depends on time via the scale factor, but has no spatial dependence.
This is because we have used the zero-order distribution function, the Bose-Einstein
function, for the photons. In fact there are small perturbations around this zero-
order distribution function. These do have a spatial dependence and correspond to
the anisotropies in the CMB.

2.4.2 Baryons

Unlike the CMB, baryons’ cannot be simply described as a gas with a tempera-
ture and zero chemical potential. Therefore, the baryon density must be measured
directly, not via a temperature. There are now four established ways of measuring
the baryon density, and these all seem to agree reasonably well (Fukugita, Hogan,
and Peebles 1998). These are all measurements at different redshifts, and we know
that the density scales as a™3, so to facilitate comparison, one defines € via

P — Qs (2.71)

pcr

That is, 4 is the ratio of the baryon density to the critical density today.

6The critical density — just like the Hubble rate which defines it — changes with time. However,
it is common to define pc; to be a constant, the critical density today, and I will follow this
convention.

1 refer to all the nuclei and electrons in the universe as baryons. This is technically incorrect
(electrons are leptons), but nuclei are so much more massive than electrons that virtually all the
mass is in the baryons.
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The simplest way is to observe the baryons today in galaxies. The greatest
contribution to the density, though, comes not from stars in galaxies, but rather
from gas in groups of galaxies. In these groups, €2 is about 0.02. The second way to
count baryons is by looking at the spectra of distant quasars. The amount of light
absorbed from these beacons is a measure of the intervening hydrogen, and hence
the baryon density. These estimates (Rauch et al., 1997) suggest Qyh*®> ~ 0.02 with
a fairly large uncertainty. A third method is to infer the baryon density by careful
scrutiny of the anisotropies in the universe. As we will see in Chapter 8, these
depend on the baryon density. Preliminary results (Pryke et al., 2001; Netterfield
et al., 2001) give Qph® = 0.024*_’8:883 from the CMB. Finally, we will see in Chapter
3 that the light element abundances are sensitive to the baryon density, and that
estimates of these abundances pin down QA% = 0.0205 & 0.0018.

Remarkably, then, these estimates of the baryon density with very different
techniques all agree.® They all place the baryon density at roughly 2-5% of the
critical density. The total matter density in the universe is higher than this, so
there must be matter in the universe that is nonbaryonic.

2.4.3 Matter

All of the methods of measuring the baryon density mentioned above involve the
interaction of matter and radiation. For example, simply counting stars works at
some level because we roughly know how much mass is required to output the light
from a typical star. There are, however, methods of measuring the mass of matter
that do not rely on the way light and matter interact. These classically have involved
measuring the gravitational field in a given system, thereby inferring information
about the mass responsible for that field. Figure 2.5 shows the inferred mass-to-
light ratios of many systems, ranging from galaxies to superclusters. Historically
this ratio was measured on small scales first, suggesting that the density in the
universe was far less than critical. As more large-scale data were obtained, the
steady increase in the mass/light ratio led some cosmologists to speculate that
eventually we would find that the density was critical. Bahcall and collaborators
(Bahcall, Lubin, and Dorman 1995; Bahcall et al., 2000), however, have argued that
mass-to-light ratios do not increase past R ~ 1Mpc; a leveling off occurs consistent
with a matter density §2,,, ~ 0.3, where 2,,, is the ratio of the total matter density
today to the critical density and

Pm = Qmpcragq (272)

Recently a number of other techniques for inferring the matter density have
emerged. We will see in Chapter 7 that the distribution of galaxies in the universe,
in particular the power spectrum of this distribution, is very sensitive to Q,,h;

8Whether or not agreement holds is subject to debate. There have been claims (e.g., Persic and
Salucci, 1992) that there is a missing baryon problem because the present-day abundance appears
to be lower than that inferred from the light element abundances.
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Figure 2.5. Mass vs. light ratio as a function of scale (Bahcall et al., 2000). On the largest
scales, the ratio flattens so that Q,, ~ 0.3.

virtually all galaxy surveys® have inferred ,,h ~ 0.2. Another cosmological probe

9To mention three examples, the Automated Plate Measuring (APM) Survey, to be discussed
further in Chapter 9, has been analyzed by Efstathiou and Moody (2001); the Two Degree Field
(2DF) by Percival et al. (2001), and early data from the Sloan Digital Sky Survey by Dodelson et

al. (2001). These groups found Q,h = 0.14f81(2)49,0.20 + 0.03, and 0.14fg'_(1)é, respectively.
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we will encounter in Chapter 9 is the cosmic velocity field (Strauss and Willick,
1995) and its relation to the observed galaxy distribution. These are related by the
continuity equation, a relation sensitive to 0,,. Again most of the measurements
are clustered around ,,, ~ 0.3.

Another way of measuring the total mass density is to pick out observations
sensitive to {2, /€, and use the apparent value of ), to infer the matter density. For
example, most of the baryonic mass in a galaxy cluster is in the form of hot gas. The
ratio of the mass of gas in clusters of galaxies to the total mass can be measured

either by looking for X-ray emission (White et al., 1993) o_
Grego et al., 2001). If this ratio

is characteristic of the universe as a whole — and it probably is, because clusters
are so large — then the cosmic baryon to matter ratio is around 20%. Since baryons
make up only about 5% of the critical density, the total matter density is inferred
to be about 0.25. Another way of inferring the baryon/matter ratio is by looking
for features in the power spectrum of galaxies; if the baryon fraction is truly of
order 20%, then there will be wiggles in the spectrum (again Chapter 7). There are
tentative hints of these wiggles in the early data from the Two Degree Field (2DF)
survey (Percival et al., 2001). These pin down Q,/9,, = 0.15 + 0.07, consistent

with the cluster observations. Finally,
Recent determinations indicate §,,h? =

0.16 £ 0.04 (Pryke et al., 2001; Netterfield et al., 2001). Given the fact that current
best estimates of the Hubble constant give h = 0.72, the CMB observations also
are consistent with a matter density equal to 30% of the critical density.

We therefore have an enormous amount of evidence telling us that the baryon
density is of order 5% the critical density, while the total matter density is some
five times larger. Most of the matter in the universe must not be baryons. It must
be some new form of matter: dark matter.

2.4.4 Neutrinos

The next component we need consider is the neutrino. Unlike photons and baryons,
cosmic neutrinos have not been observed, so arguments about their contribution to
the energy density are necessarily theoretical. However, these theoretical arguments
are quite strong, based on very well-understood physics.

A basic understanding of the interaction rates of neutrinos enables us to argue
that neutrinos were once kept in equilibrium with the rest of the cosmic plasma.
Since they are fermions, their distribution was Fermi-Dirac with zero chemical
potential. At late times, they lost contact with the plasma because their interac-
tions are weak. Nonetheless, their distribution remained Fermi-Dirac, with their
temperature simply falling as a=!. The main task therefore is to relate the neu-
trino temperature to the photon temperature today. The tricky part of this is the
annihilation of electrons and positrons when the cosmic temperature was of order
the electron mass. Neutrinos lost contact with the cosmic plasma slightly before
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this annihilation, so they did not inherit any of the associated energy. The photons,
which did, are therefore hotter than the neutrinos.

We can account for the annhilation of electrons and positrons by using the fact
that the total entropy density s (Eq. (2.66)) scales as a~3. Massless bosons con-
tribute 2727 /45 to the entropy density for each spin state, while massless fermions
contribute 7/8 this, and massive particles contribute negligibly (Exercise 17). Before
annihilation, the fermions are electrons (2 spin states), positrons (2), neutrinos (3
generations and one spin state) and anti-neutrinos (3). The bosons are photons (2
spin states). So at a, before annihilation,

s(ay) = 2{;7}3 24+ (7/8)(2+2+3+3))

4372
= T3 2.73
90 11 (2.73)

where T is the common temperature at a;. After annihilation, the electrons and

positrons have gone away and the photon and neutrino temperatures are no longer

identical: we must distinguish between them. Therefore, the entropy density is
272

7
s(as) = S [21‘3 + gGT;’] . (2.74)

Equating s(a;)a3 with s(az)a3 leads to

2 (@)t =4 [(%)3 * %1} (T,(@)az)”. (2.75)

But the neutrino temperature scales throughout as ™!, so a1T; = a2T, (a3). There-
fore, the ratio of the two temperatures is

T, 4\ 173
== <H) . (2.76)
3

We can now evaluate the energy density of neutrinos in the universe. Let’s sum
up what we know about the cosmic abundance of neutrinos

One spin degree of freedom for neutrinos

Neutrino has antiparticle

Three generations of neutrinos

Neutrinos are fermions — Fermi-Dirac distribution function

Neutrino temperature is lower by a factor of (4/11)!/3 since photons are heated
by ete~ annihilation

The first three items on the list then imply that the degeneracy factor of neu-
trinos is equal to six. The fourth means we need to change the denominator in the
integrand in Eq. (2.67) to e?”’T 4+ 1. The Fermi-Dirac integral is then smaller by a
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factor of 7/8. Finally, since the energy density of a massless particle scales as T4,
the last item implies that the neutrino energy density is smaller than the photon
density by (4/11)%/3. Putting all these factors together leads to

7 /4 \Y3
=3 - [ — . 2.77

py=3 3 <ll> Py ( )
Equivalently, if there were three species of massless neutrinos today, then their
contribution to the energy density would be

 1.68x 1070

oiny = B m, = 0. (2.78)

Per
In reality, all the neutrinos do not appear to be massless. Observations of neu-
trinos from both the sun (Bahcall, 1989) and from our atmosphere (Fukuda et al.,
1998) strongly suggest that neutrinos of different flavors (generations) oscillate into
each other. This can happen only if the neutrinos have mass. The atmospheric neu-
trino observations in particular imply that at least one neutrino has a mass larger
than 0.05 eV.1? The energy density of a massive neutrino is
d’p PP +m]
(2m)3 er/Tv 417
At high temperatures, this reduces to Eq. (2.77) (without the 3), so when consider-
ing neutrinos in the early universe, it is often sufficient to use Eq. (2.77).Indeed, we
will do this shortly when we come to esimtate the epoch at which the energy density
of matter equals that of radiation. At late times, the massive neutrino energy den-
sity is m,n,, with the neutrino number density equal to 3n,/11 (Exercise 18). As
can be seen from Figure 2.6, the transition takes place when T,, ~ m,. Therefore,
my
Q, = 9IhieV m, # 0. (2.80)
Those who trafficked in both astrophysics and particle physics (Gerstein and
Zel’dovich, 1966; Marx and Szalay, 1972; Cowsik and McClelland, 1972) early on
noted that the simple observation that the total density was not much greater than
the critical density leads to constraints on neutrino mass, constraints much more
stringent than those obtainable at accelerators. When the need for nonbaryonic
dark matter first became evident, a number of cosmologists {(e.¢., Gunn et al., 1978)
proposed neutrinos as the natural candidate. Subsequent studies (Bond, Efstathiou,
and Silk, 1980; White, Frenk, and Davis 1983) of the structure of the universe with
neutrinos as the dominant dark matter component looked significantly different
from the actual universe. Nonetheless, the possibility that neutrinos might make
up a fraction of the total density reemerged in the 1990s. We can then hope to detect
a trace amount — corresponding to masses smaller than an eV — by observing its
effect on large-scale structure.

Py =2 (2.79)

10 The oscillation experiments are sensitive to mass differences, mg —mf, so the actual constraint
is that the mass squared difference is of order 10~3. This could also be accomodated with two
nearly degenerate masses with a small splitting.
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Figure 2.6. Energy density of one generation of massive neutrinos as compared with the
density in the CMB. At high temperatures, the ratio is a fixed constant; at low temperatures,
the neutrino behaves like nonrelativistic matter (scaling as a™*) and so begins to dominate
over the photon density (which scales as a™*).

2.4.5 Dark Energy

There are two sets of evidence pointing toward the existence of something else,
something beyond the radiation and matter itemized above. The first comes from a
simple budgetary shortfall. The total energy density of the universe is very close to
critical. We expect this theoretically (Chapter 6) and we observe it in the anisotropy
pattern of the CMB (Chapter 8). Yet, the total matter density inferred from obser-
vations is only a third critical. The remaining two-thirds of the density in the
universe must be in some smooth, unclustered form, dubbed!!dark energy. The
second set of evidence is more direct. Given the energy composition of the universe,
one can compute a theoretical distance vs redshift diagram. This relation can then
be tested observationally.

In 1998, two groups (Riess et al., 1998, Perlmutter et al., 1999) observing super-
novae reported direct evidence for dark energy. The evidence is based on the differ-
ence between the luminosity distance in a universe dominated by dark matter and
one dominated by dark energy. As Figure 2.3 indicates, the luminosity distance is
larger for objects at high redshifts in a dark-energy-dominated universe. Therefore,
objects of fixed intrinsic brightness will appear fainter if the universe is composed
of dark energy.

11 After the discovery, quite a bit of attention was focused on choosing an appropriate name.
Cosmological constant, everyone’s initial moniker, is too restrictive in that the energy density
is constant at all times, and we do not yet know that this is true of the dark energy. Variable
cosmological constant fixes that problems but introduces an inherent contradiction (“variable” and
“constant”?). Variable Lambda using the Greek letter reserved for the cosmological constant is
too obscure. Quintessence is a good choice: it expresses the fact that, after cosmological photons,
baryons, neutrinos, and dark matter, there is a fifth essence in the universe. It seems to me that
dark energy has become a bit more popular, with quintessence referring to the subset of models
in which the energy density can be associated with a time-dependent scalar field.
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More concretely, the luminosity distance of Eq. {2.50) can be used to find the
apparent magnitude m of a source with absolute magnitude A/. Magnitudes are
related to fluxes via m = —(5/2)log(F)+ constant. Since the flux scales as dzz,
the apparent magnitude m = Al + 5log(dy )+ constant. The convention is that

m—]\[:510g< du )+K (2.81)
10pc

where K is a correction for the shifting of the spectrum into or out of the wavelength
range measured due to expansion.

The two groups measured the apparent magnitudes of dozens of Type la super-
novae, which are known to be standard candles, i.e., they have nearly identical
absolute magnitudes. Although they were able to place tight constraints on dark
energy using the many supernovae that they detected, we can get a feel for the
measurement by simply considering two of these. Consider then Supernova 1997ap,
found at redshift z = 0.83 with apparent magnitude m = 24.32, and Supernova
1992P, found at low redshift z = 0.026 with apparent magnitude m = 16.08. Since
the absolute magnitudes of these are the same, the difference in apparent magni-
tudes is due solely to the difference in luminosity distance:

24.32 — 16.08 = 5log (d..(z = 0.83)) — 5 log (dL(z = 0.026)). (2.82)

The nearby luminosity distance is independent of cosmology, simply equal to
z/Hp = 0.026/Hy. Therefore, the only unknown remaining in Eq. (2.82) is fixed by
the observations to be

Hody (2 = 0.83) = 1.16. (2.83)

In a flat, matter-dominated universe (§},, = 1), the luminosity distance out to
z = 0.83 is equal to 0.95H0_1, whereas a universe with Q,,, = 0.3 and a cosmological
constant {24 = 0.7 has a luminosity distance of 1.23H0_1. The apparent magnitude of
this single distant supernova then suggests that dark energy pervades the universe.

Of course, the discussion of the previous paragraph does not account for uncer-
tainties (typical uncertainties in the magnitudes are of order 0.2), nor does it do
a careful fit to all known supernovae, allow for extinction by dust, or allow for
the variation of the absolute magnitude correlated with the duration. The super-
nova groups did all of those things, and emerged with the constraints shown in
Figure 2.7. The two free cosmological parameters are the matter density €2, and
a cosmological constant {25, something we now recognize as one possible form of
dark energy, one in which the energy density is constant. Note that the “theorists’
dream” universe —flat and matter-dominated (£}, = 1) —1is excluded with high
confidence. Indeed, even a pure open universe with Q,, = 0.3,Q24 = 0 is strongly
disfavored by the supernova data.

While highly popular, Figure 2.7 suffers from two drawbacks. It allows for too
much freedom in one sector and too little in another. Most of the region in the figure
is taken up by a universe with both dark energy and nonzero curvature (not flat).
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Figure 2.7. Constraints from Type la supernovae on the parameters (Q,,,Qa) (Perlmutter
et al., 1999). Flat, matter-dominated universe, the dot with §,, = 1,024 = 0, is ruled out
with high confidence. The line extending from upper left to lower right corresponds to a flat
universe,

Although one or the other of these has heen argued for, seldom have cosmologists
suggested that the universe contains both. Thus, except for the “flat” line and the
QA = 0 line, most of the region in Figure 2.7 is. at least aesthetically, unappealing:
the figure allows for too much freedom. On the other hand, the only form of dark
energy budgeted for is the cosmological constant. To open up other possibilities,
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Figure 2.8. Constraints in a flat universe from Type la supernovae on the matter density (2)
and equation of state of the dark energy (w) (Perlmutter et al., 1999). Cosmological constant
corresponds to w = —1, matter to w = 0.

consider Eq. (2.55) as applied to the cosmological constant. The only way for this
equation to be satisfled with constant energy density is if the pressure is equal
to —p. One might imagine energy with a slightly different pressure and therefore
energy evolution. Define

= E (2.84)

P
A cosmological constant corresponds to w = —1, matter to w = 0, and radiation

to w = 1/3. With this new freedom, let’s see what the supernova data imply for
the equation of state of the dark energy if we fix the universe to be flat. Figure 2.8
shows that values of w greater than ~ —0.5 are disfavored; a cosmological constant is
consistent with the data, but it is by no means the only possibility. Equation (2.55)
can be integrated to find the evolution of the dark energy,

a d r
Pde X €Xp {—3/ #‘/ [1+w(a")] } . (2.85)
a
Note that —if w is constant — this expression agrees with our knowledge of the
cases explicated above w = 1/3,0, —1.
2.4.6 Epoch of Matter—Radiation Equality

The epoch at which the energy density in matter equals that in radiation is called
matter-radiation equality. It has a special significance for the generation of large-
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scale structure and for the development of CMB anisotropies, because perturbations
grow at different rates in the two different eras. It is therefore a useful exercise to
calculate the epoch of matter-radiation equality. To do this, we need to compute
the energy density of both matter and radiation, and then find the value of the
scale factor at which they were equal.
Using Egs. (2.70) and (2.78), we see that the total energy density in radiation
is
pr _415x1075 _ Q.
P h2a4 at’

i

(2.86)

To calculate the epoch of matter-radiation equality, we equate Equations (2.86)
and (2.72) to find

_ 415x107°
Qeq = ~—th2 .

A different way to express this epoch is in terms of redshift z; the redshift of equality
is

(2.87)

1+ 2eq = 2.4 x 100, A% (2.88)

Note that — obviously — as the amount of matter in the universe today, ,,h2, goes
up, the redshift of equality also goes up. For our purposes it will be very important
that the redshift of equality is at least several times larger than the redshift when
photons decouple from matter, z, ~ 10%. Thus, we expect photons to decouple
when the universe is already well into the matter-dominated era.

2.5 SUMMARY

The smooth universe can be described with the Friedmann-Robertson-Walker met-
ric given in Eq. (2.4), which implies that physical distances are related to coordinate
(comoving) distances with the time-dependent scale factor a(t). The time depen-
dence of the metric is determined by the Einstein equations. The time-time com-
ponent of the Einstein equations reduces to Eq. (2.39) in a flat universe.
Measuring distances in the expanding universe is tricky, but all relevant dis-
tances can be obtained from the comoving distance between us and a source at

redshift z: . )
><(2):/0 ) (2.89)

Another important distance is that light could have traveled since ¢ = 0. This is
usually expressed as a time, the conformal time,

tdt/ o0 dz'
_ [T 2.90
L /o o) ). ' (2.90)

The conformal time will be the natural time variable when we come to consider the
evolution of perturbations in the universe.
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Photons in the universe have a Bose-Einstein distribution with zero chemical
potential, so their energy density can be determined by measuring their tempera-
ture. Neutrinos have a Fermi-Dirac distribution, also probably with zero chemical
potential, but there is some ambiguity in their energy density because of our igno-
rance of the neutrino masses. Early on, this ambiguity is irrelevant since the tem-
peratures are so much larger than the masses and neutrinos hehave relativistically.
Thus, the uncertainty in neutrino mass does not affect Big Bang nucleosynthesis at
temperatures of order 1 MeV and probably not even the epoch of matter radiation
equality at temperatures of order 1 eV. The neutrino temperature is a factor of
(4/11)'/3 smaller than the photon temperature. This, and the difference in statis-
tics, implies that a species of massless neutrinos has an energy density equal to
0.23 times that of photons. A single neutrino generation with mass m, contributes
Q, = 0.01(m, /0.94eV h?). In addition to photons and neutrinos, the universe con-
sists of baryons, best determined by nucleosynthesis to have Q,h? = 0.020540.0018;
dark matter (€0, =~ 0.3); and dark energy (with Q4e =~ 0.7). a new form of energy
with negative pressure.

There is significantly more energy today in nonrelativistic matter than in radi-
ation. However, since the energy density of radiation scales as a=* while that of
matter as a3, the very early universe was radiation dominated. The epoch at which
the matter density was equal to the radiation density delineates these two regimes:
Qeq = 4.15 x 1073 /Q,,, h2.
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SUGGESTED READING

My favorite book on general relativity at this level is A First Course in General
Relativity (Schutz), which gives many simple examples to introduce the seemingly
profound ideas of general relativity. Also very good are Flat and Curved Spacetimes
(Ellis and Williams) and Essential Relativity (Rindler). Slightly more advanced is
Gravitation and Cosmology: Principles and Applications of the General Theory of
Relativity (Weinberg), which also has a nice discussion of the early universe in
Chapter 15. Two more advanced books are General Relativity (Wald) and the clas-
sic Gravitation (Misner, Thorne, and Wheeler). Some of the thermodynamics and
statistical mechanics introduced in this chapter is presented in The Farly Universe
(Kolb and Turner). The distance formulae of Section 2.2 are covered in all standard
texts. Neutrinos and their relation to cosmology are covered in the standard texts
as well, but there are also several other good books focused solely on neutrinos
and astrophysics, Neutrino Astrophysics by the pioneer of the field, Bahcall, and
Massive Neutrinos in Physics and Astrophysics by Mohapatra and Pal.

A number of papers treat the topics in this chapter at an accessible level. An
especially coherent review of all the different distance measures is given by Hogg
(1999). Fukugita, Hogan, and Peebles (1999) do the baryon inventory outlined in
Section 2.4.2. Since the supernova discoveries in the late 1990s, many popular arti-
cles have appeared attempting to explain the dark energy. The two seminal articles
though — Perlmutter et al. (1999) and Riess et al. (1998) — are extremely clear and
well worth reading.

EXERCISES

Exercise 1. Convert the following quantities by inserting the appropriate factors
of ¢, h, and kpg:

To = 2.725K — eV

py =72Ty /15 — eV* and g em™3

1/Hy — c¢m

mp; = 1.2 x 1012 GeV —K, em™, sec™!

Exercise 2. Show that the geodesic equation gets the correct equations of motion
for a particle traveling freely in two dimensions using polar coordinates. You can
get the Christoflel symbols one of two ways (or both!) and then proceed to (b).

(a) Get the Christoffel symbol either directly from the term in brackets in Eq. (2.17)

or from the 2D metric Lo
Gij = (0 7.2) (2'91)

using Eq. (2.19). Show that the only nonzero Christoffel symbols are

1
2, =12 = - rl, =—r (2.92)

with 1,2 corresponding to r, 6.
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(b) Write down the two components of the geodesic equation using these Christoffel
symbols. Show that these give the proper equations of motion for a particle traveling
in a plane.

Exercise 3. The metric for a particle traveling in the presence of gravitational
field is gy = Muw + huy where hgg = —2¢ where ¢ is the Newtonian gravitational
potential; hig = 0; and h;; = —2¢4;;. Find the equation of motion for a massive
particle traveling in this field.

(a) Show that "%y = 8¢/t and Moy = 6904 /827.

(b) Show that the time component of the geodesic equation implies that energy
p° + m¢ is conserved.

(c) Show that the space components of the geodesic equation lead to d%z’/dt? =
—~mé79¢ /87 in agreement with Newtonian theory. Use the fact that the particle
is nonrelativistic so p® > p'.

Exercise 4. Find how the energy of a massive, nonrelativistic particle changes
as the universe expands. Recall that in the massless case we used the fact that
gu P#PY = 0. In this case, it is equal not to zero, but to —m?.

Exercise 5. Fill in some of the blanks left in our derivation of the Einstein equa-
tions.

(a) Compute the Christoffel symbol I, for a flat FRW metric.

(b) Compute the spatial components of the Ricci tensor in a flat FRW universe,
R;;. Show that the space-time component, R;q, vanishes.

Exercise 6. Show that the space-space component of the Einstein equations in a
flat universe is

d%a/dt? N 1 (da/dt

2
) = —4nGP (2.93)
a 2

a

where P is the pressure, the T%; (no sum over i) component of the energy-
momentum tensor.

Exercise 7. Find and apply the metric, Christoffel symbols, and Ricci scalar for a
particle trapped on the surface of a sphere with radius r.
(a) Using coordinates t,8, ¢, the metric is

-1 0 0
Qv = 0 r? 0 . (2.94)
0 0 r2?sin?6

Show that the only nonvanishing Christoffel symbols are T4, %44, and I'?4y.
Express these in terms of 6.

(b) Use these and the geodesic equation to find the equations of motion for the
particle.
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(c) Find the Ricci tensor. Show that contraction of this tensor leads to

2
R=g"Ru = 5.

(2.95)

Exercise 8. Apply the Einstein equations to the case of an open universe. The
interval in an open universe is

dr?

ds® = —dt? + a*(t) { —————
S +a() 1+Qng7"2

+ r%(d§? + sin® 6d¢?) } (2.96)
where 7,0, ¢ are the standard 3D spherical coordinates, and €y is the curvature
density.
(a) First compute the Christoffel symbols. Show that the only nonzero ones are
equal to

Tlo; = H8'; I =giH

' i
I = g_2_ (91,6 + k.5 — Gkl - (2.97)

(b) Show that the components of the Ricci tensor are

Rgo = —32
a
a 20, HE
Rij =0i |-+ 2H? — % . (298)
a a
(c¢) From these, compute the Ricci scalar, and then derive the time-time component
of Einstein equations.

Exercise 9. Show that the geodesic equation we derived in a flat universe implies

that P22
T

— =0 2.99

= (299)

where 7 is the conformal time.

Exercise 10. Assume that there is only matter and radiation in the universe (no
cosmological constant) and that the universe is flat (pg = pe:). Integrate Eq. (1.2)
to determine the times when the cosmic temperature was 0.1 MeV and 1/4 eV.

Exercise 11. Derive some simple expressions for the conformal time 7 as a function
of a.

(a) Show that 7 o a'/? in a matter dominated universe and a in one dominated by
radiation.
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{b) Consider a universe with only matter and radiation, with equality at aeq. Show

that
n= \/9—175 [V 5 Geq — \/aeq) - (2.100)

What is the conformal time today? At decoupling?

Exercise 12. Consider a galaxy of physical (visible) size 5 kpc. What angle would
this galaxy subtend if situated at redshift 0.17 Redshift 1?7 Do the calculation in a
flat universe, first matter-dominated and then with 30% matter and 70% cosmo-
logical constant.

Exercise 13. How is the energy density of a gas of photons with a blackbody
spectrum related to the specific intensity of the radiation? That is, what is the
relation between p., and I, defined in Eq. (1.8)7

Exercise 14. (a) Compute the pressure of a relativistic species in equilibrium
with temperature T. Show that P = p/3 for both Fermi-Dirac and Bose-Einstein
statistics.

(b) Suppose the distribution function depends only on E/T as it does in equilib-
rium. Find dP/dT. A simple way to do this is to rewrite df /dT in the integral as
—(E/T)df /dE and then integrate Eq. (2.62) by parts.

Exercise 15. The general relativistic expression for the energy-momentum tensor
in terms of the distribution functions is given by

o / dP,dP,dPy
=9 —_W

1/2P P

T, (&,1) (—det[gas]) ™

(Z,5,t)  (2.101)

species i

where P, was defined in Eq. (2.24), g; is the number of spin states for species ¢, and
det[g,,] is the determinant of the 4D matrix g,,.. Eliminate the comoving momenta
P, in favor of the magnitude of the proper momentum defined via

p* = g“"PP; (2.102)

and the direction vector p. Note that while the comoving momenta P; remain con-
stant as the universe expands, p falls off as a~'. Show that the time-time component
of Eq. (2.101) agrees with the expression for the energy density given in Eq. (2.59).
Use the fact that P? = g, P*P” = —~m? for a particle of mass m.

Exercise 16. Plot m— M as a function of redshift for a flat, matter-dominated uni-
verse (this can be done analytically) and for a flat universe with Q4 = 0.7, Q,, = 0.3
(for this you need to evaluate numerically a 1D integral). Neglect the K correction.
Compare with Figure 1.7.

Exercise 17. Consider the entropy density, s, defined in Eq. (2.66). For a massless
particle, you showed in Exercise 14 that P = p/3, so s = 4p/3T. Express s as a
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function of T for both bosons and fermions (assumed massless) in equilibrium with
zero chemical potential. Show that the entropy density for a massive particle in
equilibrium (T <« m; u = 0) is exponentially small.

Exercise 18. Show that the number density of one generation of neutrinos and
anti-neutrinos in the universe today is

3
M =g = 112cm™2.

For this calculation, you will also have to compute the photon number density;
both can be expressed in terms of Riemann zeta functions (Eq. (C.27)). Using this
result, verify Eq. (2.80).

Exercise 19. We computed the epoch of equality in the event that all three neu-
trinos are massless. Suppose instead that two are massless, but the third has mass
m = 0.1 eV. What is a.q is this case?



3
BEYOND EQUILIBRIUM

The very early universe was hot and dense. As a result, interactions among particles
occurred much more frequently than they do today. As an example, a photon today
can travel across the observable universe without deflection or capture, so it has a
mean free path greater than 10?® cm. When the age of the universe was equal to 1
sec, though, the mean free path of a photon was about the size of an atom. Thus in
the time it took the universe to expand by a factor of 2, a given photon interacted
many, many times. These multiple interactions kept the consitituents in the universe
in equilibrium in most cases. Nonetheless, there were times when reactions could
not proceed rapidly enough to maintain equilibrium conditions. These times are —
perhaps not coincidentally — of the utmost interest to cosmologists today.

Indeed, we will see in this chapter that out-of-equilibrium phenomena played a
role in (i) the formation of the light elements during Big Bang nucleosynthesis; (ii)
recombination of electrons and protons into neutral hydrogen when the temperature
was of order 1/4 eV; and quite possibly in (iii) production of dark matter in the
early universe. Each of these three periods, for obvious reasons, is the subject of
intense study by many different groups.

I think it is important to
understand that all three phenomena are the result of nonequilibrium physics and
that all three can be studied with the same formalism: the Boltzmann equation.
Section 3.1 introduces the Boltzmann equation and some approximations to it that
are common to all three processes. The remaining three sections of the chapter are
simply applications of this general formula.

Beyond the intrinsic importance of these nonequilibrium phenomena, this chap-
ter also serves as a bridge between the smooth, homogeneous universe described in
Chapter 2 and the inhomogeneous perturbations we will explore in the rest of the
book. One way to think of this transition is in terms of phase-space distributions f
of Egs. (2.60) and (2.61). Until now, we have assumed that the chemical potentials
are zero and temperatures uniform. In this chapter, we will have to abandon the
idea of trivial chemical potentials in order to track abundances of particles losing
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contact with the plasma. In succeeding chapters, we will move beyond uniformity
and explore temperatures which depend on both position and direction of propa-
gation.

3.1 BOLTZMANN EQUATION FOR ANNIHILATION

The Boltzmann equation formalizes the statement that the rate of change in the
abundance of a given particle is the difference between the rates for producing
and eliminating that species. Suppose that we are interested in the number density
ny of species 1. For simplicity, let’s suppose that the only process affecting the
abundance of this species is an annihilation with species 2 producing two particles,
imaginatively called 3 and 4. Schematically, 1+2 < 3+4; i.e., particle 1 and particle
2 can annihilate producing particles 3 and 4, or the inverse process can produce 1
and 2. The Boltzmann equation for this system in an expanding universe is

a_gd(n1a3) _ / d*p / d*ps / dps / d®py
dt @m)°2E; | @n92E, | (2n)%2E; | (2n)32E,

x (2m)*63(p1 + p2 — p3 — pa)6(E1 + By — E3 — Ey) M|

x {fafall £ Ai][L £ f2] = fifol £ f3][1 £ fa]}- (3.1)

In the absence of interactions, the left-hand side of Eq. (3.1) says that the density
times the scale factor cubed is conserved. This reflects the nature of the expanding
universe: as the comoving grid expands, the volume of a region containing a fixed
number of particles grows as a®. Therefore, the physical number density of these
particles falls off as a=3. Interactions are included in the right-hand side of the
Boltzmann equation. Let’s consider the interaction term starting from the last line
and moving up. Putting aside the 1 & f terms on the last line, we see that the rate
of producing species 1 is proportional to the occupation numbers of species 3 and
4, fs and f4. Similarly the loss term is proportional to fy fo. The 1 £ f terms, with
plus sign for bosons such as photons and minus sign for fermions such as electrons,
represent the phenomena of Bose enhancement and Pauli blocking! If particles of
type 1 already exist, a reaction producing more such particles is more likely to

occur if 1 is a boson and less likely if a fermion. I have suppressed the momentum
dependence of f, but of course all the occupation numbers depend on the corre-
sponding momentum (e.g., fi = fi1(p1)). Moving upward, the Dirac delta functions

almost all cases of interest, this amplitude is reversible, identical for 1+2 — 3+ 4
and 3 +4 — 1+ 2. Indeed, reversibility has been assumed in Eq. (3.1).
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The last two lines of Eq. (3.1) depend on the momenta of the particles involved.
To find the total number of interactions, we must sum over all momenta. The
integrals on the first line do precisely that. As in Figure 2.4, the factors of (27)3
[really (2mh)3] represent the volume of one unit of phase space; we want to sum
over all such units. Finally, the factors of 2F in the denominator arise because,
relativistically, the phase space integrals should really be four-dimensional, over the
three components of momentum and one of energy. However, these are constrained
to lie on the 3-sphere fixed by E? = p? + m?. In equations,

0 = (B +m?)
/d3p / dE §(E* —p* —m?) = /d3p/ dE . (32
0 0 2F

Performing the integral over E with the delta function yields the factor of 2E.

Equation (3.1) is an integrodifferential equation for the phase space distribu-
tions. Further, in principle at least, it must be supplemented with similar equations
for the other species. In practice, these formidable obstacles can be overcome for
many practical cosmological applications. The first, most important realization is
that scattering processes typically enforce kinetic equilibrium. That is, scattering
takes place so rapidly that the distributions of the various species take on the generic
Bose-Einstein/Fermi-Dirac forms (Egs. (2.61) and (2.60)). This form condenses all
of the uncertainty in the distribution into a single function of time g. If annihila-
tions were also in equilibrium, u would be the chemical potential, and the sum of
the chemical potentials in any reaction would have to balance. For example, the
reaction et + e~ — v + v would cause pc+ + fe- = 24 In the out-of-equilibrium
cases we will study, the system will not be in chemical equilibrium and we will have
to solve a differential equation for u. The great simplifying feature of kinetic equilib-
rium, though, is that this differential equation will be a single ordinary differential
equation, as opposed to the very complicated form of Eq. (3.1).

We will typically be interested in systems at temperatures smaller than F — pu.
In this limit, the exponential in the Bose-Einstein or Fermi-Dirac distribution is
large and dwarfs the +1 in the denominator. Thus. another simplification emerges:
we can ignore the complications of quantum statistics. The distributions become

J(E) = et/ Tem /T (3.3)

and the Pauli blocking/Bose enhancement factors in the Boltzmann equation can
be neglected.
Under these approximations, the last line of Eq. (3.1) becomes

fafal £ A1 = fo] = fife[l £ f3][1 £ f4]
e (Ei+E)/T {e(/l3+xt4)/T _ ewlm)/T} . (3.4)

Here 1 have used energy conservation. £} + Ey = FE3+ F;. We will use the number
densities themselves as the time-dependent functions to be solved for. instead of p.
The number density of species 7 is related to pu; via
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Table 3.1. Reactions in This Chapter: 14+ 2 — 3 +4

[ [1] 2 3] 4 |

Neutron-Proton Ratio veoret [ ple” or i
Recombination e P H y
Dark Matter Production | X X l {
Sy R a3)
1 1 (27'(')3

where g; is the degeneracy of the species, e.g., equal to 2 for the two spin states
of the photon. It will also be useful to define the species-dependent equilibrium
number density as

0) _ dsp —E./T i 1, 7)3/2 e=mi/T m; > T
n = . _ 1/ — 271' (3 6)
7 =g (2 )36 - T3 . .
Jizz m; <1

With this defintion, e#/T can be rewritten as ni/ngo), so the last line of Eq. (3.1)
is equal to

—(E1+E2)/T 13Ny ning (
e - . 3.7)
{n;%am nOn

With these approximations the Boltzmann equation now simplifies enormously.
Define the thermally averaged cross section as

(ov) = 1 / d*p / d*py / d®ps / d*p4 o (Bt Ep)/T
ngo)ngo) (2m)32E, J (2w)32FEs J (2m)32E3 | (2m)32E,

x (21)46%(py + pa — ps — pa)S(EL + By — Es — Eg) (M2, (3.8)

Then, the Boltzmann equation becomes

d (n1a3) nsn nin

-3 (0) (0) 374 172

a ’——= =n; 'ny’ {(ov) - . (3.9)
dt Lo ngo)nflo) n§0)n§0)

We thus have a simple ordinary differential equation for the number density.
Although the details will vary from application to application (see Table 3.1}, we
will in the remainder of the chapter start from this equation when tracking abun-
dances.

One qualitative note about Eq. (3.9). The left-hand side is of order n;/t, or,
St ety picalicosmologicalltimensiil: "l H. The right-hand side is of order
ninz{ov). Therefore, if the reaction rate ny{ov) is much larger than the expansion
rate, then the terms on the right side will be much larger than the one on the left.
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The only way to maintain equality then is for the individual terms on the right to
cancel. Thus, when reaction rates are large,

nang ning

= , (3.10)
0)_ (0 0) (0
g’ niPng?

n

This equation, which follows virtually by inspection from the Boltzmann equation,
goes under different names in different venues. The particle physics community,
which first studied the production of heavy relics in the early universe, tends to
call it chemical equilibrium. In the context of Big Bang nucleosynthests, it is called
nuclear statistical equilibrium (NSE), while students of recombination, the process
of electrons and protons combining to form neutral hydrogen, use the terminology
Saha equation.

3.2 BIG BANG NUCLEOSYNTHESIS

As the temperature of the universe cools to 1 MeV, the cosmic plasma consists
of:

o Relativistic particles in equilibrium: photons, electrons and positrons.
These are kept in close contact with each other by electromagnetic interactions
such as ete™ « <. Besides a small difference due to fermion/boson statistics,
these all have the same abundances.

e Decoupled relativistic particles: neutrinos. At temperatures a little above 1
MeV, the rate for processes such as ve — ve which keep neutrinos coupled to the
rest of the plasma drops beneath the expansion rate. Neutrinos therefore share
the same temperature as the other relativistic particles, and hence are roughly
as abundant, but they do not couple to them.

¢ Nonrelativistic particles: baryons. If there had been no asymmetry in the ini-
tial number of baryons and anti-baryons, then both would be completely depleted
by 1 MeV. However, such an asymmetry did exist: (ny —ng)/s ~ 1071 initially,’
and this ratio remains constant throughout the expansion. By the time the tem-
perature is of order 1 MeV, all anti-baryons have annihilated away (Exercise 12)
80

_om 10 [ h?
= _-55x1 L 3.11
™=, 55 x10 (0.020 (3-11)

There are thus many fewer baryons than relativistic particles when T ~ MeV.

Our task in this section will be to determine how the baryons end up. Were
the system to remain in equilibrium throughout, the final state would be dictated
solely by energetics, and all baryons would relax to the nuclear state with the lowest
energy per baryon, iron (Figure 3.1).

So, in principle, we need to solve the

3

s is the entropy density which scales as a—3, as we saw in Chapter 2.
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equivalent of Eq. (3.9) for all the nuclei, i.e., a set of coupled differential equations.
In practice, at least for a qualitative understanding of the result, we can make
use of two simplifications that obviate the need to solve the full set of differential
equations.

Lightning Introduction to Nuclear Physics

A single proton is a hydrogen nucleus, referred to as 'H or simply
p; a proton and a neutron make up deuterium, 2H or D; one proton and two
neutrons make tritium, 3H or T. Nuclei with two protons are helium; these
can have one neutron (*He) or two (*He). Thus unique elements have a fixed
number of protons, and isotopes of a given element have differing numbers of
neutrons. The total number of neutrons and protons in the nucleus, the atomic
number, is a superscript before the name of the element.

The total mass of a nucleus with Z protons and A — Z neutrons
differs slightly from the mass of the individual protons and neutrons alone.
This difference is called the binding energy, defined as

B=Zm,+(A-2Z)m, —m (3.12)

where m is the mass of the nucleus. For example, the mass of deuterium is
1875.62 MeV while the sum of the neutron and proton masses is 1877.84 MeV,
so the binding energy of deuterium is 2.22 MeV. Nuclear binding energies
are typically in the MeV range, which explains why Big Bang nucleosynthesis
occurs at temperatures a bit less than 1 MeV even though nuclear masses are
in the GeV range.

Neutrons and protons can interconvert via weak interactions:

ptiente’ . pte ondrv ; nepte +b (3.13)

where all the reactions can proceed in either direction. The light elements are
built up via electromagnetic interactions. For example, deuterium forms from
p+n — D+~. Then, D+ D — n+3He, after which 3He+D — p+*He produces
4He.

The first simplification is that essentially no elements heavier than helium are
produced at appreciable levels.? So the only nuclei that need to be traced are
hydrogen and helium, and their isotopes: deuterium, tritium, and *He. The second
simplification is that, even in the context of this reduced set of elements, the physics
splits up neatly into two parts since above T ~ 0.1 MeV, no light nuclei form: only
free protons and neutrons exist. Therefore, we first solve for the neutron/proton
ratio and then use this abundance as input for the synthesis of helium and isotopes
such as deuterium.

2An exception is lithium, produced at a part in 109-10'°, and this trace abundance may be
observable today. See, e.g., Pinsonneault et al. (2001).
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Binding Energy per Nucleon
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Figure 3.1. Binding energy of nuclei as a function of mass number. Iron has the highest
binding energy, but among the light elements, *He is a crucial local maximum. Nucleosynthesis
in the early universe essentially stops at *He because of the lack of tightly bound isotopes at
A = 5— 8. In the high-density environment of stars, three *He nuclei fuse to form *2C, but
the fow baryon number precludes this process in the early universe.

Both of these simplifications — no heavy elements at all and only n/p above 0.01
MeV —rely on the physical fact that, at high temperatures, comparable to nuclear
binding energies, any time a nucleus is produced in a reaction, it is destroyed by a
high-energy photon. This fact is reflected in the fundamental equilibrium equation
(3.10). To see how, let’s consider this equation applied to deuterium production,
n + p < D+ ~. Since photons have n, = ngo), the equilibrium condition becomes

np 'fl(g) ( )
- _ D 3.14
mnnp  pOp
The integrals on the right, as given in Eq. (3.6), lead to
3/2
np _ § 27TmD e[mn+mp—mD]/T (315)
npnp 4 \mym,T ’

the factor of 3/4 being due to the number of spin states (3 for D and 2 each for p
and n). In the prefactor, mp can be set to 2m,, = 2m,, but in the exponential the
small difference between m,, +m, and mp is important: indeed the argument of the
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exponential is by defintion equal to the binding energy of deuterium, Bp = 2.22
MeV. Therefore, as long as equilibrium holds,

3/2
np _3 < in ) eBo/T. (3.16)
nenp 4 \mpT

Both the neutron and proton density are proportional to the baryon density, so

roughly, ,
P

As long as Bp/T is not too large, the prefactor dominates this expression. And
the prefactor is very small because of the smallness of the baryon-to-photon ratio,
Eq. (3.11).

The small baryon to photon ratio thus inhibits nuclei production until the tem-
perature drops well beneath the nuclear binding energy. At temperatures above 0.1
MeV, then, virtually all baryons are in the form of neutrons and protons. Around
this time, deuterium and helium are produced, but the reaction rates are by now
too low to produce any heavier elements. We could have anticipated this by con-
sidering Figure 3.1. The lack of a stable isotope with mass number 5 implies that
heavier elements cannot be produced via *He+p — X. In stars, the triple alpha
process ‘He+*He+*He— 2C produces heavier elements, but in the early universe,
densities are far too low to allow three nuclei to find one another on relevant time
scales.

3.2.1 Neutron Abundance

We begin by solving for the neutron—proton ratio. Protons can be converted into
neutrons via weak interactions, p+e~ — n+v, for example. As we will see, reactions
of this sort keep neutrons and protons in equilibrium until 7' ~ MeV. Thereafter,
one must solve the rate equation (3.9) to track the neutron abundance.

From Eq. (3.6), the proton/neutron equilibrium ratio in the nonrelativistic limit
(E=m+p?/2m) is

n;O) e—mp/dep p? e—P"/2mpT

5 = e T dp g e T (3.18)

The integrals here are proportional to m®/?, but the resulting ratio (m,/m,)%? is

sufficiently close to unity that we can neglect the mass difference. However, in the
exponential the mass difference is very important, and we are left with

n®
P = T (3.19)
(0)
Nn
with @ = m,, —m, = 1.293 MeV. Therefore, at high temperatures, there are as
many neutrons as protons. As the temperature drops beneath 1 MeV, the neutron
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fraction goes down. If weak interactions operated efficiently enough to maintain
equilibrium indefinitely, then it would drop to zero. The main task of this section
is to find out what happens in the real world where weak interactions are not so
efficient.
It is convenient to define
X, = (3.20)
Np + Ny

that is, X,, is the ratio of neutrons to total nuclei. In equilibrium,
1
L+ (ny) /ni)

To track the evolution of X,, let’s start from Eq. (3.9), with 1 = neutron, 3 =
proton, and 2,4 = leptons in complete equilibrium (n; = nl(o)). Then,

d (nna® ©)
a"3-—(ﬁ—)- = n;o) {ov) {npz;; — Ny P (3.22)
Np

Xn,— Xn,EQ = (3-21)

We have already determined the ratio ng © /n(O) = ¢ <%T and we can identify

§ )(av) as Apnp, the rate for neutron — proton conversion since it multiplies n,
in the loss term. Also if we rewrite n, on the left as (n, + np)X,, then the total
density times a® can be taken outside the derivative, leaving

dX,

dXn _ X )e-9/T _
= = Ay { (1= Xn)e Xn}. (3.23)

Equation (3.23) is a differential equation for X,, as a function of time, but it
contains the temperature T and the reaction rate Ay, both of which have compli-
cated time dependences. It is simplest therefore to recast the equation using as the
evolution variable 0

=3 (3.24)

The left-hand side of Eq. (3.23) then becomes & dX,,/dz, so we need an expression
for dz/dt = —2T/T. Since T x a™!,

xr

1 dT _ 8nGp

T dt 3

(3.25)

the second equality following from Eq. (2.39). Nucleosynthesis occurs in the
radiation-dominated era, so the main contribution to the energy density p comes
from relativistic particles. Recall from Chapter 2 that the contribution to the energy
density from relativistic particles is

= —T4 Z gi + = Z g{l (¢ relativistic)

i=bosons 1—fermions
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_ T (3.26)

— 930 :
The effective numbers of relativistic degrees of freedom, g., is a function of tem-
perature. At temperatures of order 1 MeV, the contributing species are: photons
(9y = 2), neutrinos (g, = 6), and electrons and positrons (ge+ = g.- = 2). Adding
up leads to g. ~ 10.75, roughly constant throughout the regime of interest. Then,
Eq. (3.23) becomes

dXn = Ty

- T _ X, (14e® 3.27
i ~Ha=p e "Xt} (3.27)
with
3 4
Hz=1)= 4”_g—g— x V10.75 = 1.13 sec™ . (3.28)

Finally, we need an expression for the neutron-proton conversion rate, A,,. Under
the approximations we are using, the rate is (Bernstein 1988 or Exercise 3)

255
5

Anp = (12 + 6z + z?) (3.29)

TnZ
with the neutron lifetime 7,, = 886.7 sec. Thus, when T = Q (i.e., when z =
1), the conversion rate is 5.5 sec™!, somewhat larger than the expansion rate. As
the temperature drops beneath 1 MeV, though, the rate rapidly falls below the
expansion rate, so conversions become ineflicient.

We can now integrate Eq. (3.27) numerically to track the neutron abundance
(Exercise 4). Figure 3.2 shows the results of this integration. Note that the result
agrees extremely well at temperatures above ~ 0.1 MeV with the exact solution
which includes proper statistics, nonzero electron mass, and changing g¢.. The neu-
tron fraction X,, does indeed fall out of equlibrium once the temperature drops
below 1 MeV: it freezes out at 0.15 once the temperature drops below 0.5 MeV.

At temperatures below 0.1 MeV, two reactions we have not included yet
become important: neutron decay (n — p + e~ + ) and deuterium production
(n+p — D + 7). Decays can be added trivially by adding in a factor of e=t/™
to the results of Figure 3.2. By the time decays become important, electrons and
positrons have annihilated, so g, in Eq. (3.26) is 3.36 and the time-temperature
relation is (Exercise 5):

0.1MeV \?
)
We will see shortly that production of deuterium, and other light elements, begins
in earnest at 7' ~ 0.07 MeV. By then, decays have depleted the neutron fraction by
a factor of exp[—(132/886.7)(0.1/0.07)2] = 0.74. So the neutron abundance at the
onset of nucleosynthesis is 0.15 x 0.74, or

t = 132sec ( (3.30)

X (Taue) = 0.11. (3.31)

We now turn to light element formation to understand the ramifications of this
number.
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Figure 3.2. Evolution of light element abundances in the early universe. Heavy solid curves
are results from Wagoner (1973) code; dashed curve is from integration of Eq. (3.27); light
solid curve is twice the neutron equilibrium abundance. Note the good agreement of Eq. (3.27)
and the exact result until the onset of neutron decay. Also note that the neutron abundance
falls out of equilibrium at T ~MeV.

Fractional Abundance

3.2.2 Light Element Abundances

A useful way to approximate light element production is that it occurs instanta-
neously at a temperature 7, when the energetics compensates for the small baryon
to photon ratio. Let’s consider deuterium production as an example, with Eq. (3.17)
as our guide. The equilibrium deuterium abundance is of order the baryon abun-
dance (i.e. if the universe stayed in equilibrium, all neutrons and protons would
form deuterium) when Eq. (3.17) is of order unity, or

3 B
ln(ﬁb) + 5 ln(Tnuc/mp) ~ = P

2 nuc

(3.32)

Equation (3.32) suggests that deuterium production takes place at Ty, ~ 0.07
MeV, with a weak logarithmic dependence on 7.

Since the binding energy of helium is larger than that of deuterium, the expo-
nential factor e®/T favors helium over deuterium. Indeed, Figure 3.2 illustrates
that helium is produced almost immediately after deuterium. Virtually all remain-
ing neutrons at T' ~ Ty, then are processed into *He. Since two neutrons go into
4He, the final *He abundance is equal to half the neutron abundance at Tyy.. Often,
results are quoted in terms of mass fraction; then,
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X, = Ml _ox (7). (3.33)
y
Figure 3.2 shows that this relation holds. Indeed, to find the final helium mass
fraction, we need only take the neutron fraction at Ty, Eq. (3.31), and multiply
by 2, so the final helium mass fraction is 0.22. This rough estimate, obtained by
solving a single differential equation, is in remarkable agreement with the exact
solution, which can be fit via (Olive, 2000; Kolb and Turner, 1990)

Y, = 0.2262 4 0.0135 In(n, /107 19). (3.34)

One important feature of this result is that it depends only logarithmically on
the baryon fraction. We saw in Eq. (3.32) that Ty, has this dependence. You might
think that the exponential sensitivity to Ty in the decay fraction would turn this
into linear dependence. However, Ty, is sufficiently early that only a small fraction
of neutrons have decayed: the exponential in this regime is linear in the time.
Therefore, the final helium abundance maintains only logarithmic dependence on
the baryon density.

0.30 T T T

0.28 | 4
0.26

Y 0.24

0.22 | 1

0.20 1

0.18 L s L
0 50 100 150 200

106 O/H

Figure 3.3. Helium abundance (Y = Y}) as a function of oxygen/hydrogen ratio. Lower
oxygen systems have undergone less processing, so the helium abundance in those systems is
closer to primordial. Line, and extrapolation to Y, = 0.238, from Olive (2000). Data from
Pagel et al. (1992), Skillman and Kennicutt (1993), Skillman et al. (1994), and lzotov and
Thuan (1998). Short lines connect the same region observed by different groups.

The prediction agrees well with the observations, as indicated in Figure 3.3. The
best indication of the primordial helium abundance comes from the most unpro-
cessed systems, typically identified by low metallicities. As Figure 3.3 indicates, the
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primordial abundance almost certainly lies between 0.22 and 0.25. Although there
have been claims of discord in the past, the agreement remains one of the pillars of
observational cosmology.

Figure 3.2 shows that not all of the deuterium gets processed into helium. A
trace amount remains unburned, simply because the reaction which eliminates it
(D +p — 3He + «) is not completely efficient. Figure 3.2 shows that after Ty,
deuterium is depleted via these reactions, eventually freezing out at a level of order
1075-10~4. If the baryon density is low, then the reactions proceed more slowly, and
the depletion is not as effective. Therefore, low baryon density inevitably results
in more deuterium; the sensitivity is quite stark, as illustrated in Figure 1.8. As a
result, deuterium is a powerful probe of the baryon density. Complementing this
sensitivity is the possiblity of measuring deuterium in gas clouds as z ~ 3 by
looking for absorbtion in the spectra of distant QSOs. For example, O’Meara et
al. (2001) combine the measurements of primordial deuterium in four systems to
obtain, D/H= 3.0 & 0.4 x 107%, corresponding to Qyh? = 0.0205 % 0.0018.

3.3 RECOMBINATION

As the temperature drops to ~ 1 eV, photons remain tightly coupled to electrons
via Compton scattering and electrons to protons via Coulomb scattering. It will
come as no surprise that at these temperatures, there is very little neutral hydrogen.
Energetics of course favors the production of neutral hydrogen with a binding energy
of eg = 13.6 eV, but the high photon/baryon ratio ensures that any hydrogen atom
produced will be instantaneously ionized. This phenomenon is identical to the delay
in the production of light nuclei we saw above, replayed on the atomic scale.
As long as the reaction® e~ + p +» H 4 7 remains in equilibrium, the condition
in Eq. (3.10) (with 1 = ¢,2 = p,3 =H) ensures that
ey _ niny? (3.35)
ny ng_(;)
We can go further here by recognizing that the neutrality of the universe ensures
that n, = n,. Let’s define the free electron fraction
Ne np

Xe = = , (3.36)
Ne + Ny Ny + Ny

the denominator equal to the total number of hydrogen nuclei. Carrying out the
integrals on the right of Eq. (3.35) leads then to

3/2
XZ _ 1 meT e~ [metmp—mul/T (3.37)
1-X. ne+npy 2

where we have made the familiar approximation of neglecting the small mass dif-
ference of H and p in the prefactor. The argument of the exponential is —ep /7.

3Here p stands for free protons and H for neutral hydrogen, i.e., a proton with an electron
attached.
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Neglecting the relatively small number of helium atoms, the denominator n. + ny
(or n, + ng) is equal to the baryon density, myn, ~ 107973, So when the temper-
ature is of order €, the right-hand side is of order 10%(m,/T)3%/? ~ 10'%. In that
case, Eq. (3.37) can be satisfied only if the denominator on the left is very small,
that is if X, is very close to 1: all hydrogen is ionized. Only when the temperature
drops far below ¢y does appreciable recombination take place. As X, falls, the rate
for recombination also falls, so that equilibrium becomes more difficult to maintain.
Thus, in order to follow the free electron fraction accurately, we need to solve the
Boltzmann equation, just as we did for the neutron—proton ratio.
In this case, Eq. (3.9) for the electron density becomes

3 2
g-ad(nea®) O (o) {fﬁ ne }

dt MORESONO

= ny(ov) {(1 - Xe)(”;f)me‘w - anb} (3.38)

where the last line follows since the ratio ngo)néo) / ng) is equal to the term in square
brackets in Eq. (3.37). Meanwhile, since nya® is constant it can be passed through
the derivative on the left after expressing n. as ny X, so that

dze = {(1- X8 - X2ma®} (3.39)
where the ionization rate is typically denoted
T~ 3/2
8 = (ov) (n;jr ) e~/T (3.40)
and the recombination rate
o = (ov). (3.41)

The recombination rate has superscript () because recombination to the ground
(n = 1) state is not relevant. Ground-state recombinations lead to production of
an ionizing photon, and this photon immediately ionizes a neutral atom. The net
effect of such a recombination is zero: no new neutral atoms are formed this way.
The only way for recombination to proceed is via capture to one of the excited
states of hydrogen; to a good approximation, this rate is

2 1/2
o =978, (T) In T). (3.42)

The Saha approximation, Eq. (3.37), does a good job predicting the redshift
of recombination, but fails as the electron fraction drops and the system goes out
of equilibirium. Therefore, the detailed evolution of X, must be obtained by a
numerical integration of Eq. (3.39) (Exercise 8). Results from numerical integration
of Eq. (3.39) are shown in Figure 3.4.
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Figure 3.4. Free electron fraction as a function of redshift. Recombination takes place suddenly
at z ~ 1000 corresponding to T ~ 1/4 eV. The Saha approximation, Eq. (3.37), holds in
equilibrium and correctly identifies the redshift of recombination, but not the detailed evolution
of X.. Here £, = 0.06,Q,, = 1,h = 0.5.
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The computation of the neutron/proton ratio affects the abundance of light
elements today. Similarly, the evolution of the free electron abundance has major
ramifications for observational cosmology. Recombination at z, ~ 1000 is directly
tied to the decoupling of photons from matter.# This decoupling, in turn, directly
affects the pattern of anisotropies in the CMB that we observe today.

Decoupling occurs roughly when the rate for photons to Compton scatter off
electrons becomes smaller than the expansion rate.’ The scattering rate is

NedT = XenbaT (3.43)

where o7 = 0.665x 10724 em? is the Thomson cross section, and I continue to ignore
helium, thereby assuming that the total number of hydrogen nuclei (free protons
+ hydrogen atoms) is equal to the total baryon number. Since the ratio of the

4Notice from Figure 1.4 that even though photons stop scattering off electrons at z ~ 1000,
electrons do scatter many times off photons until much later. This is not a contradiction: there
are many more photons than baryons. In any event, many cosmologists shy away from the word
decoupling to describe what happens at z ~ 1000 for this reason.

5In Chapter 8 we will define a more precise measure of decoupling, making use of the visibility
function, the probability that a photon last scattered at a given redshift. Using the visibility
function, we will show that a CMB photon today most likely last scattered at a slightly higher
redshift than inferred by the simple ncor = H criterion.
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baryon density to the critical density is mpyny/per = Qpa~3, np can be eliminated
in Eq. (3.43) in favor of {:

neor = 7477 x 107 em™ X Qha ™. (3.44)
Dividing by the expansion rate leads to
NeOT _3 H()
— =0. X Qph—. 3.45
% 0.0692a vh (3.45)

The ratio on the right depends on the Hubble rate, which is given in Eq. (1.2). From
that equation or from Figure 1.3, we see that at early times, the main contribution
comes from either matter or radiation, so H/Hy = Q},{Qa_sm[l + @oq/a)/?. Then,

T _ 1oy (B 15\ 142\ L4 Ltz 015 12 (3.46)
H “\0.02 Q. h2 1000 3600 Q,,h? T

Here 1 have normalized with “best fit” values for the baryon and matter densi-
ties. When the free electron fraction X, drops below ~ 1072, photons decouple.
From Figure 3.4, we see that X, drops very quickly from unity to 10~3. Therefore,
decoupling takes place during recombination.

Let’s forget all we just learned and ask what would happen if the universe
remained ionzied throughout its history. In that hypothetical case, X, = 1, and
Eq. (3.46) can be trivially solved to find the redshift of decoupling. Setting the
right hand side to 1 leads to

2/3 g\ 1/3
1 + zdecouple = 43 (%) <%m1]; ) (no recombination). (3.47)
Equation (3.47) tells us that even if the electrons remained ionized throughout the
history of the universe, eventually the photons decoupled simply because expansion
made it more difficult to find the increasingly dilute electrons. In theory, we do
not expect the electrons to remain ionized throughout, so this calculation would
appear academic. However, Eq. (3.47) is relevant for a more general reason. We
do expect that at some late time, the electrons were reionized. We expect this
because the universe we observe back to redshift z ~ 6 appears to be ionized. If
the universe was reionized at very late times, much after the zqecouple of Eq. (3.47),
there would not be a huge change in the CMB anisotropy pattern. However, if the
universe was reionized earlier than this redshift, multiple scattering of the photons
would dramatically alter the primordial anisotropy pattern set up at z ~ 1000.
Observations of the most distant quasars (Becker et al., 2001; Fan et al., 2002)
suggest that reionization took place at z ~ 6, so the alteration is expected to be
slight.

3.4 DARK MATTER

There is strong evidence for nonbaryonic dark matter in the universe, with Qqy, ~
0.3. Perhaps the most plausible candidate for dark matter is a weakly interacting
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massive particle (WIMP), which was in close contact with the rest of the cosmic
plasma at high temperatures, but then experienced freeze-out as the temperature
dropped below its mass. Freeze-out is the inability of annihilations to keep the
particle in equlibrium. Indeed, were it kept in equilibrium indefinitely, its abundance
would be suppressed by e~™/T: there would be no such particles in the observable
universe. The purpose of this section, then, is tc solve the Boltzmann equation for
such a particle, determining the epoch of freeze-out and its relic abundance. The
hope is that, by fixing its relic abundance so that Q4 ~ 0.3, we will learn something
about the fundamental properties of the particle, such as its mass and cross section.
We then might use this knowledge to detect the particles in a laboratory.

In the generic WIMP scenario, two heavy particles X can annihilate producing
two light (essentially massless) particles {. The light particles are assumed to be
very tightly coupled to the cosmic plasma, so they are in complete equilibrium
(chemical as well as kinetic), with n; = nl(o). There is then only one unknown,
nx, the abundance of the heavy particle. We can use Eq. (3.9) to solve for this

abundance: J ( 3)
—zd\nxa”) 02 2
L (ov) {(nx ) nx} . (3.48)

To go further, recall that the temperature typically scales as a~!, so if we multiply

and divide the factor of nxa® inside the parentheses on the left by T3, we can
remove (aT)? outside the derivative, leaving T3d(nx /T?)/dt. Let’s define then

n
Y = T—’g (3.49)
The differential equation for Y becomes
day
T T3(ov) {Ygq - Y}, (3.50)

with YEQ = ng?)/T3
To go further, as in the neutron—proton case, it is convenient to introduce a new
time variable,
x=m/T (3.51)

where m, the mass of the heavy particle, sets a rough scale for the temperature
during the region of interest. Very high temperature corresponds to x < 1, in which
case reactions proceed rapidly so Y =~ Ygq. Since the X particles are relativistic
at these epochs, the m <« T limit of Eq. (3.6) implies that ¥ ~ 1. For high z, the
equilibrium abundance Ygq becomes exponentially suppressed (e~*). Ultimately,
X particles will become so rare because of this suppression that they will not be
able to find each other fast enough to maintain the equilibrium abundance. This is
the onset of freeze-out. To change from ¢ to z, we need the Jacobian dz/dt = Hz.
Dark matter production typically occurs deep in the radiation era where the energy
density scales as T*, so H = H(m)/z?. Then the evolution equation becomes

dy

A
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where the ratio of the annihilation rate to the expansion rate is parameterized by

m3{ov)

A= Him)

(3.53)

In many theories ) is a constant, but in some, the thermally averaged cross section
is temperature dependent; this leads to slight numerical changes in the following
but unchanged qualitative solutions.

Equation (3.52) is a form of the Riccati equation, for which in general there
are no analytic solutions. In this case, though, we can make use of our understand-
ing of the freeze-out process to get an analytic expression for the final freeze-out
abundance Yo = Y(z = o). Let’s review this understanding in the context of
Eq. (3.52). The left-hand side is of order Y (for z ~ 1) while the right is of order
Y2). We will see that X is typically quite large, so as long as Y is not too small, the
right-hand side must zero itself by setting ¥ = Ygq. At late times, as Ygq drops
precipitously, the terms on the right-hand side will no longer be much larger than
the one on the left. In fact, well after freeze-out, Y will be much larger than Ygq:
the X particles will not be able to annihilate fast enough to maintain equilibrium.

Thus at late times, )

dY AY
Integrate this analytically from the epoch of freeze-out x; until very late times
T = o0 to get

11 (3.55)

Typically Y at freeze-out Y is significantly larger than Y, so a simple analytic
approximation is

Zf
Yoo o~ —=. 3.56
A ( )

This approximation is incomplete, in that it depends on the freeze-out temperature,
which we have not determined. Although more precise determinations are possible
(Exercise 10), a simple order-of-magnitude estimate for the dark matter problem is
x5 ~ 10.

Figure 3.5 shows the numerical solution to Eq. (3.52) for several different values
of A. The abundances do track the equilibrium abundances until m/T ~ 10, after
which they level off to a constant. The rough estimate Y., ~ 10/ is seen to be a
reasonable approximation for the relic abundance. Note that particles with larger
cross sections (e.g. in the figure, A = 1019) freeze out later, and this later freeze-out
carries along with it a lower relic abundance. Also note from the inset in Figure 3.5
that the distinction between Bose—Einstein, Fermi-Dirac, and Boltzmann statistics
is important only at temperatures above the particle’s mass. For temperatures
relevant to the freeze-out process, our use of Boltzmann statistics is completely
warranted.

There is one more piece of physics needed in order to determine the present-day
abundance of these heavy particle relics. After freeze-out, the heavy particle density
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Figure 3.5. Abundance of heavy stable particle as the temperature drops beneath its mass.
Dashed line is equilibrium abundance. Two different solid curves show heavy particle abundance
for two different values of A, the ratio of the annihilation rate to the Hubble rate. Inset shows
that the difference between quantum statistics and Boltzmann statistics is important only at
temperatures larger than the mass.
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simply falls off as a=3. So its energy density today is equal to m(a;/ag)® times its
number density where a; corresponds to a time sufficiently late that Y has reached
its aymptotic value, Yo,. The number density at that time is Y, T3, so

a1T1 3 - meTg
ang - 30 ’

The second equality here is nontrivial. You might expect that o7 remains constant
through the evolution of the universe, so that the ratio a;T)/agTp would be unity. It
is not, for the same reason that the CMB and neutrinos have different temperatures.
We saw in Chapter 2 that photons are heated by e* annihilation, while neutrinos
which have already decoupled are not. Similarly, as the universe expands, photons
are heated by the annihilation of the zoo of particles with masses between 1 MeV
and 100 GeV, so T does not fall simply as a~!. You can show in Exercise 11 that as
a result (a;71/apTy)® ~ 1/30. Finally, to find the fraction of critical density today
contributed by X, insert our expression for Y,, and divide by pc;:

px = mYo T3 < (3.57)

zy mTg

Q =
TN 300

H(m)l‘ng

—_— 3.58
30m2(ov)per (3:58)
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To find the present density of heavy particles, then, we need to compute the
Hubble rate when the temperature was equal to the X mass, H(m), for which we
need the energy density when the temperature was equal to m. The energy density in
the radiation era is given by Eq. (3.26) with g, a function of temperature. Therefore,

1/2
47r3Gg,,(m)} / z ;T3 (3.50)

Qx = :
X { 45 30(00) per

We see that Qx does not explicitly depend on the mass of the X particle.® So it is
mainly the cross section which determines the relic abundance.

Let’s now see what order of magnitude is needed to get dark matter today, i.e.,
to get Qx = Qqm = 0.3. At the temperatures of interest for dark matter production,
T ~ 100 GeV, g.(m) includes contributions from all the particles in the standard
model (three generations of quarks and leptons, photons, gluons, weak bosons, and
perhaps even the Higgs boson) and so is of order 100. Normalizing g.(m) and z
by their nominal values leads to

/2 10-39 iy 2
B o [Ty g«{m) 107%"cm
Qx = 0.3k (—10) ( o ) T (3.60)

The fact that this estimate is of order unity for cross sections of order 10~3% cm?

is taken as a good sign: there are several theories which predict the existence of
particles with cross sections this small.

Perhaps the most notable of these theories is supersymmetry, the theory which
predicts that every particle has a partner with opposite statistics. For example,
the supersymmetric partner of the spin zero Higgs boson is the spin-1/2 Higgsino
(fermion). Initially it was hoped that the observed fermions could be the partners of
the observed bosons, but this hope is not realized in nature. Instead, supersymmetry
must be broken and all the supersymmetric partners of the known particles must
be so massive that they have not yet been observed even in accelerators: they must
have masses greater than 10 to 100 GeV. Which of the supersymmetric partners is
the best candidate for the dark matter today? The particle must be neutral since
the evidence points to dark matter that is truly dark, i.e., does not interact much
with the known particles and especially does not emit photons. The particle must
also be stable: if it could decay to lighter particles, then decays would have kept it
in equilibrium throughout the early universe and there would be none left today.
The first of these criteria restricts the dark matter to be the partner of one of
the neutral particles, such as the Higgs or the photon.” The second requires the
particle to be the lightest (LSP for lightest supersymmetric partner) of these, for
any heavier particles could decay into the lightest one plus some ordinary particles.

SThere is a slight implicit dependence on mass in the freeze-out temperature z; and in g,
which is to evaluated when T' = m.

"The other neutral boson in the Standard Model is the Z vector boson. The lightest supersym-
metric partner is likely a linear combination of the partners of all of these.
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Figure 3.6. Constraints on supersymmetric dark matter (Baudis et al., 2000). Region above
the solid curves is excluded, while filled region is reported detection by DAMA (Bernabei et
al., 1999). Lowest curve (labled HDMS project) is only a projected limit based on one future
experiment. The CDMS experiment (Abusaidi et al., 2000) appears to rule out the DAMA
detection. Points scattered throughout correspond to different parameter choices in a class
of supersymmetric models. Note the limits on the cross section are in units of picobarns (1
picobarn = 107%¢ cm?).

Not only would weakly interacting particles such as LSP’s annihilate in the
early universe, but if they were around today they would scatter off ordinary mat-
ter. Although it is difficult to detect these reactions because the rate is so low,
a number of experiments have been performed searching for dark matter parti-
cles. Figure 3.6 shows the limits on the masses and cross sections of dark matter
from these experiments (note that the scattering cross section, while related to the
annihilation cross section, is not identically equal to it). Apart from a tantalizing
detection from the DAMA experiment, so far we have only upper limits. However,
as indicated in the figure, in the coming years the experiments are expected to
pierce into the region predicted by supersymmetric theories.

3.5 SUMMARY

The light elements in the universe formed when the temperature of the cosmic
plasma was of order 0.1 MeV. Roughly a quarter of the mass of the baryons is in
the form of “He, the remaining in the form of free protons with only trace amounts
of deuterium, 3He, and lithium.
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These elements remain ionized until the temperature of the universe drops well
below the ionization energy of hydrogen. The epoch of recombination —at which
time electrons and protons combine to form neutral hydrogen —is at redshift z ~
1000 corresponding to a temperature T' ~ 0.25 eV. Before recombination, photons
and electrons and protons are tightly coupled with one another because of Compton
and Coulomb scattering. After this time, photons travel freely through the universe
without interacting, so the photons in the CMB we observe today offer an excellent
snapshot of the universe at z ~ 1000. The importance of this snapshot cannot be
overstated.

The details of both nucleosynthesis and recombination are heavily influenced
by the fact that the reactions involved eventually become too slow to keep up with
the expansion rate. This feature may also be responsible for the production of dark
matter in the universe. We explored the popular scenario wherein a massive, neutral
stable particle stops annihilating when the temperature drops significantly beneath
its mass. The present-day abundance of such a particle can be deterimined in terms
of its annihilation cross section, as in Eq. (3.60). Larger cross sections correspond
to more efficient annhilation and therefore a lower abundance today. Roughly cross
sections of order 10740 are needed to get the dark matter abundance observed today.
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SUGGESTED READING

The Farly Universe (Kolb and Turner) contains especially clear treatments of the
heavy particle freeze-out problem and Big Bang nucleosynthesis, also based on the
Boltzmann equation. Kinetic Theory in an Ezpanding Universe (Bernstein) offers
some semianalytic solutions to these problems, as well as the requisite Boltzmann-
ology.

Work on nucleosynthesis in the early universe dates back to Gamow and col-
laborators, summarized in Alpher, Follin, and Herman (1953). The first post-CMB
papers were Peebles (1966) and Wagoner, Fowler, and Hoyle (1967); these got the
basics right: 256% helium and roughly the correct amount of deuterium. Yang et al.
(1984) helped many people of my generation understand that the baryonic density
could be constrained with observations of the light elements. A nice review article
on nucleosynthesis is Olive, Steigman, and Walker (2000).

As I tried to indicate in the text, the process of recombination is very rich;
it involves some subtle physics. The original paper which worked through all the
details was by Peebles (1968). Ma and Bertschinger (1996) however managed to
describe the physics succintly in just one page in their Section 5.8. Seager, Sasselov,
and Scott (1999) have presented a more accurate treatment (although, as they
emphasize, Peebles’ more intuitive work holds up remarkably well), including many
small effects previously neglected.

Jungman, Kamionkowski, and Griest (1996) is a comprehensive review of all
aspects of supersymmetric dark matter. Many papers have explored limits on super-
symmetric dark matter candidates from cosmology and accelerators. To mention
just several: Roszkowski (1991) showed that the Higgsino is likely not the lightest
supersymmetric partner; Nath and Arnowitt (1992) and Kane et al. (1994) showed
that the bino, the partner of the initial gauge eigenstate B, is the most likely —
both from the point of view of physics and cosmology — LSP; Ellis et al. (1997)
combined accelerator constraints with those from cosmology to place a lower limit
on the mass of the LSP; Edsjo and Gondolo (1997) included some subtle effects
in the relic abundance calculation which affects the limits if the LSP is composed
primarily of the partner of the Higgs boson; and Bottino et al. (2001) explored the
consequences if the signal seen in the DAMA signal is due to dark matter particles.

EXERCISES

Exercise 1. Compute the equilibrium number density (i.e., zero chemical poten-
tial) of a species with mass m and degeneracy ¢ = 2 in the limits of large and
small m/T. Take these limits for all three types of statistics: Boltzmann, Bose—
Einstein, and Fermi-Dirac. You will find Egs. (C.26) and (C.27) helpful for the
high-T' Bose-Einstein and Fermi-Dirac limits.

Exercise 2. In the text, we treated e* as relevant to the energy density at temper-
atures above m,, but irrelevant afterwards (Eq. (3.30) and the discussion leading
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up to it). Track the et density through annihilation assuming n.= = nioi) This
equality holds during the BBN epoch because electromagnetic interactions (e.g.,
et + e~ > v+ ) are so strong. When does the density fall to 1% of the photon
energy density? If n, ~ 6 x 10719, at what temperature do you expect n.- to depart
from n 7

Exercise 3. Compute the rate for neutron-to-proton conversion, A,y,. Show that it
is equal to Eq. (3.29). There are two processes which contribute to A,y n 4 ve —
p+e” and n+et — p+0.. Assume that all particles can be described by Boltzmann
statistics and neglect the mass of the electron. With these approximations the two
rates are identical.

(a) Use Eq. (3.8) to write down the rate for n+ve — p+ e~ . Perform the integrals
over heavy particle momenta to get

3
Anp = ni (o0) = i /(dp" e P /T

~ 4m? 21)32p,
d3pe 2
—_— - . .61
X/(Qﬂ,)32pe5(g+pu pE)lMl (36 )

(b) The amplitude squared is equal to |M|* = 32G%(1 + 3% )m2p,pe, where g4 is
the axial-vector coupling of the nucleon. The present best measurement of g4 is via
the neutron lifetime, 7, = A\oG% (1 + 3g%)m5/(27*), where the phase space integral

Q/me
do= [T deata - Qpme Pl - )2 = 1636 (3.62)
1

Carry out the integrals in Eq. (3.61) to get the rate, A, in terms of 7,,. Don’t forget
to multiply by 2 for the two different reactions.

Exercise 4. Solve the rate equation (3.27) numerically to determine the neutron
fraction as a function of temperature. Ignore decays. There are {at least) two ways
to perform this computation. The first is to treat it as a simple ordinary differential
equation and solve numerically. The second is to proceed analytically and reduce
the problem to an evaluation of a single numerical integral. This second method,
which I'll lead you through here, is based on a numerical coincidence noted by
Bernstein, Brown, and Feinberg (1988).

(a) Using standard differential equation techniques, show that a formal solution to
Eq. (3.27) is

i )‘" (.T/ 6AI/ Wz ) —p(x
X, (z) :/ dz’' ;Hi();r’) er(e)—u(@) (3.63)

where z; is some initial, very high temperature, and

u(z) = / ;% Anp(2) {1 v e‘“l] . (3.64)
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(b) Use Egs. (3.29) and (3.26) to compute the integrating factor p analytically.
Show that it is equal to

255 [4n%GQ%g.] 7"
™ 45

G ) G )]

i

(3.65)

The simple form for p is the result of numerical coincidence alone.

(c) With the results of part (b), do the single numerical integral in (a) numerically.
Compare the asymptotic result at £ = co with the result in the text, X,(z = 00) =
0.15.

Exercise 5. Integrate the Friedmann equation (1.2) to verify the time-temperature
relation in Eq. (3.30) in the epoch after e annihilation, but before matter domi-
nation.

Exercise 6. Determine 7, in terms of Qyh%. Show that it is given by Eq. (3.11).

Exercise 7. An important parameter for CMB anisotropies is the sound speed at
decoupling. This is determined by the ratio of baryons to photons.
(a) Find

as a function of a. Evaluate it at decoupling. Your answer should depend on ;A2
(b) We will see in Chapter 8 that the sound speed of the combined photon/baryon

fluid is
1
U S N 3.66
¢ 3(1+ R) (3.66)

Use your answer from (a) to plot the sound speed at decoupling as a function of
Qyh2.

Exercise 8. Solve for the evolution of the free electron fraction. Do not compare
your results with Figure 3.4 until you finish part (d). Throughout, take parameters
Q= 1,9, =0.06,h =0.5.

(a) Use as an evolution variable x = ¢¢/7T instead of time in Eq. (3.39). Rewrite
the equation in terms of = and the Hubble rate at T = €.

(b) Using the methods of Section 3.4, find the final freeze-out abundance of the
free electron fraction, X.(z = 00).

(¢) Numerically integrate the equation from (a) from x = 1 down to z = 1000.
What is the final frozen-out X.?

(d) Peebles (1968) argued that even captures to excited states would not be impor-
tant except for the fraction of times that the n = 2 state decays into two photons or
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expansion redshifts the Lyman alpha photon so that it cannot pump up a ground-
state atom. Quantitatively, he multiplied the right-hand side of Eq. (3.39) by the
correction factor,

Aa + A2’y

- Ao +Agy + B2

where the two-photon decay rate is Ag, = 8.227sec™!; Lyman alpha production is
,3(2) _ 66360/47’; and

(3.67)

H(360)3

(8m)%
Do this and show how it changes your final answer. Now compare the freeze-out
abundance with the result of (c¢) and the evolution with Figure 3.4.

Ay = (3.68)

Exercise 9. Find the redshift of decoupling as a function of 2. If you do not have
the evolution code of Exercise 8, use the Saha equation to determine X..

Exercise 10. Find an approximation to the freeze-out temperature of annihilating
heavy particles by setting z s such that n(®(z)(ov) = H(zj).

Exercise 11. Typically the temperature of the cosmic plasma cools as a~! with
the expansion. However, when particles annihilate, they deposit energy into the
plasma, thereby slowing the cooling. (Scherrer and Turner, 1986, showed that the
annihilations do not actually heat the universe: T' never increases, it simply decreases
more slowly than a=1.) Use the fact that the entropy density (Eq. (2.66)) scales as
a3 to compute the ratio of (aT)3 at T = 10 GeV (roughly the time when WIMPs
decouple) to its present value today.

Exercise 12. Suppose that there were no baryon asymmetry so that the number
density of baryons exactly equaled that of anti-baryons. Determine the final relic
density of (baryons+anti-baryons). At what temperature is this asymptotic value
reached?

Exercise 13. There is a fundamental limitation on the annihilation cross section
of a particle with mass m. Because of unitarity, (cv) must be less than or equal
to 1/m?, give or take a factor of order unity. Determine Qx for a particle which
saturates this bound, i.e., for a particle with (ov) = 1/m?. For what value of m is
Qx equal to 17 (Keep z¢ and g. equal to the nominal values given in Eq. (3.60).)
Note that if m is greater than this critical value, Qx > 1, which is ruled out. This is
a strong argument against stable particles (and therefore dark matter candidates)
with masses above this critical value.



4
THE BOLTZMANN EQUATIONS

We are interested in the anisotropies in the cosmic distribution of photons and
inhomogeneities n the matter. Figure 4.1 shows why these are complicated to cal-
culate. The photons are affected by gravity and by Compton scattering with free
electrons. The electrons are tightly coupled to the protons. Both of these, of course,
are also affected by gravity. The metric which determines the gravitational forces
is influenced by all these components plus the neutrinos and the dark matter. Thus
to solve for the photon and dark matter distributions, we need to simultaneously
solve for all the other components.
There is a systematic way to account for all of these couplings. We write down
a Boltzmann equation for each species in the universe. We have already encoun-
tered the Boltzmann equation in its integrated form in Chapter 3. There we were
interested solely in the number density of the dark matter, the neutrons, and the
free electrons. The number density is the integral over all momenta of the distribu-
tion function. Here we will be interested in more detailed information, not just the
integrated number density, but the full distribution of photons, say, as a function
of momentum. We then need a more primitive version of Eq. (3.1). Schematically,
the unintegrated Boltzmann equation is
df
2 _ci (4.1)
The right-hand side of the Boltzmann equation contains all possible collision terms.
These terms in general are complicated functionals of the distribution functions of
the various components. In the absence of collisions, the distribution function obeys
df /dt = 0. This seemingly innocent equation says that the number of particles in
a given element of phase space does not change with time. The catch is that the
phase space elements themselves are moving in time in complicated ways due to the
nontrivial metric. This catch makes the problem more difficult than it seems from
Eq. (4.1). Nonetheless, we can still progress systematically by reexpressing the full
derivative in terms of partial derivatives.

84
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Compton
Coulomb
Scattering

Scattermg
Figure 4.1. The ways in which the different components of the universe interact with each
other. These connections are encoded in the coupled Boltzmann—Einstein equations.

Dark

/ Matter

In this chapter, we derive the Boltzmann equations for photons, eletrons, pro-
tons, dark matter, and massless neutrinos. This set of equations governs the evolu-
tion of perturbations in the universe.

4.1 THE BOLTZMANN EQUATION FOR THE HARMONIC OSCILLATOR

Before tackling the problem of interest — the Boltzmann equation for all species
in an expanding universe — let us treat a much simpler example of the Boltzmann
equation: the nonrelativistic harmonic oscillator. This simple example is very similar
to the full general relativistic version we will encounter in the next section, but the
algebra is much less cumbersome. So here the physics will be quite transparent. It
will be useful to keep this example in mind when the algebra threatens to obscure
the physics in the next section.
Consider a one-dimensional harmonic oscillator with energy

2
P 1,
E = — 4+ —kz°. 4.2
2m + 2 T (4.2)
The distribution function of the harmonic oscillator depends on time ¢, position z,
and momentum p. Thus, the full time derivative in Eq. (4.1) can be rewritten as

df(t,z,p) O0f Ofdz 08fdp

43
& ot Tordt T opdt (43)
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Figure 4.2 illustrates the movement through phase space of a distribution of colli-
sionless (C' = 0) oscillators. The full time derivative df /dt vanishes since the number
of particles in the bunch at ¢; equals that at t,. What has changed is the location
of the phase space elements z(¢) and p(t) themselves. Alternatively, we can think of
z and p as independent variables (not dependent on t) and take partial derivatives
of f with respect to ¢, =, and p. All of these partial derivatives are nonzero, but the
appropriate weighted sum of the three vanishes.

P

Figure 4.2. Distribution function for a set of collisionless harmonic oscillators. The initial
distribution at ¢, moves in phase space by time t;. The distribution function f(t,z,p) remains
constant as long as the evolution of z(t) and p(t) is accounted for.

To determine the coefficients dz/dt and dp/dt we must use the equations of
motion. By the definition of momentum,
dr p

dt — m (44)

This equation will be generalized to a fully relativistic, three-dimensional version
in the next section. Indeed we already got a preview of this when we defined P* =
dz* /dA in Chapter 2. Newton’s equation governing the motion of the oscillator is

dp
— = —kz. 4.5
7 x (4.5)

The analogue of this familiar equation in the next section will be the geodesic

equation of general relativity.

The collisionless Boltzmann equation for the harmonic oscillator is thus
0 3] 0
N ) (4.6)

8t+-n—181_ Op
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The second term here governs how rapidly the oscillator moves in real space; the
coefficient in front is just the velocity, p/m. The last term governs how quickly
particles lose momentum.

In order to solve the Boltzmann equation, we need to know the initial conditions
on the distribution function. Even without these, though, the Boltzmann equation
offers some useful physics. Consider the equilibrium distribution, wherein 8f/0t =
0. A general solution for the equilibrium distribution is

f(p,z) = feq(E); (4.7)

that is, f is a function only of energy F. To see that this is indeed a solution,
consider

POS(E) | Of(E) _df [pOE | OF
m Oz dp  dE |{mor Op

=0. (4.8)

So any function of the energy alone is an equilibrium distribution. Of course, in
general, there will be interactions, or collisions. The only way for the full Boltzmann
equation to be satisfied is if the collision terms also vanish. This will in general
drive f to one of the familiar equilibrium distributions, e.g., e~ £/T for the classical
Maxwell-Boltzmann distribution.

4.2 THE COLLISIONLESS BOLTZMANN EQUATION FOR PHOTONS

Let us begin then by considering the left hand side of Eq. (4.1) for massless pho-
tons. First we must specify the form of the metric, accounting for perturbations
around the smooth universe described by Eq. (2.4). Whereas the smooth universe
is characterized by a single function, a(t), which depends only on time and not on
space, the perturbed universe requires two more functions, ¥ and ®, both of which
depend on both space and time. In terms of them, the metric can be written as

go()(.’i"7 t) = -] - Q\P(f,t)
gOl(fvt) = 0
gi;(F,t) = a%6;; (1 +28(7,1)). (4.9)

In the absence of ¥ and ®, Eq. (4.9) is simply the FRW metric of the zero-order
homogeneous, flat cosmology. Similarly, in the absence of expansion (a = 1) this
metric describes a weak gravitational field (Exercise 2.3) ! The perturbations to the
metric are ¥, which corresponds to the Newtonian potential, and ®, the perturba-
tion to the spatial curvature. Since the perturbations in the universe are small at
the times and scales of interest, we will treat these ¥ and ® as small quantities,
dropping all terms quadratic in them.
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There are two technical points about the metric in Eq. (4.9) which you don’t
need to worry about for most of this book, but which nonetheless are important
to be aware of, if only to better understand the literature

We want to reexpress the total derivative in Eq. (4.1) as a sum of partial deriva-
tives. The distribution function depends on the space-time point z*# = (t,) and
also on the momentum vector defined as

_ dz#

Mo 7
P_d/\

(4.10)
where A again parametrizes the particle’s path, as in Eq. (2.18) (and again we will
not need to specify A explicitly). Thus, in principle, f is a function defined in an
8-dimensional space. However, not all the components of the momentum vector are
independent since the masslessness of the photon implies that

P?=g4,,P*P” =0. (4.11)

!Historically, the initial ground-breaking work on the evolution of fluctuations was carried out
in synchronous gauge (Peebles and Yu, 1970; Wilson and Silk, 1981; Peebles 1982; Bond and Szalay,
1983; Bond and Efstathiou, 1984). Recently, the physics of the anisotropies has been elucidated
most clearly by using conformal Newtonian gauge (e.g., Hu and Sugiyama, 1995). Exercise 2 works
out some of the relevant equations in synchronous gauge.
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So there are only three independent components of the momentum vector. Before

we choose which three we will use, let us enforce the constraint of Eq. (4.11), using
the metric of Eq. (4.9).

P2=0=~(1+20)(P°)2 +p*=0 (4.12)
where I have defined _
p’ =gi;P'P. (4.13)

We can use the constraint equation then to eliminate the time component of P#:

PP=—2L __—pa-1). 4.14
57 ~F ( ) (4.14)
This last equality holds since we are doing first-order perturbation theory in the
small quantity ¥. With our sign convention, an overdense region has ¥ < 0. There-
fore, in an overdense region, the term in parentheses on the right-hand side here is
greater than one.

For the direction vector, we’ll use the unit vector p* = p;, which by definition
satisfies §;;p'p’ = 1.
We can now write Eq. (4.1) as

df _Of  0f dit ofdp 9f dpf

d o Tor dt Topdt Top dt

(4.15)

The easiest term in Eq. (4.15) is the last one since it does not contribute at first
order in perturbation theory. To see this, first recall that the zero-order distribution
function is simply the Bose-Einstein function which depends only on p, not on the
direction p'. Therefore, 0f/0p" is nonzero only if we consider the perturbation to
the zero-order f; i.e., it is a first-order term. But so is the term which multiplies it,
dp'/dt, for the direction of a photon changes only in the presence of potentials ®
and . In the absence of these potentials, a photon moves in a straight line. Thus
the last term is the product of two first-order terms, rendering it a second-order
term. We can neglect it.

Next let us reexpress the second term on the right-hand side of Eq. (4.15) by
recalling that (Eq. (4.10)) P* = dz'/d\ and P° = dt/d). Therefore,

dr’ B drt dA
dt  dx dt
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Pi
= 55~ (4.16)

We want to reexpress this ratio in terms of our favored variables p and p'. Equa-
tion (4.14) does this for P°; let’s do the same for the numerator P'. The comoving
momentum P? is proportional to p*; call the proportionality constant C:

P =Cp'. (4.17)
To determine the coefficient C, we can use Eq. (4.13):
P’ = gz‘jﬁiﬁjCZ
= a(1 + 28)6,,p'p C*
= a®(1 + 20)C? (4.18)

where the last equality holds because the direction vector is a unit vector. Equa-
tion (4.18) tells us that C = p(1—&)/a so whenever we encounter P*, we can always
eliminate it in terms of p, p* via

1-9

P! = pp — (4.19)

From Eqgs. (4.16) and (4.19), we see that

dIl ﬁi
E'_E(l+q’—®)' (4.20)
An overdense region has ¥ < 0 and ® > 0, rendering the term in parentheses less
than one. So, Eq. (4.20) says that a photon slows down (dz/dt becomes smaller)
when traveling through an overdense region. This makes perfect sense: we expect
the gravitational force of an overdense region to slow down even photons. Having
said that, I now claim that we can neglect the potentials in Eq. (4.20). For, in the
Boltzmann equation they multiply 8f/0z' which is a first-order term. (Again, the
zero-order distribution function does not depend on position.) So collecting terms
up to this point, we have

& _of 5ol  ofdp

dt 8t  adr dpdt (421)
The remaining term to be calculated is dp/dt. Alas, unlike the harmonic oscillator,
here dp/dt # —kzx. Rather we will need the geodesic equation from general relativity
and more fortitude to compute dp/dt for photons in a perturbed FRW metric.
To begin, let us recall that the time component of the geodesic equation (2.18)
can be written as
dp°

. -0, 3P PP, (4.22)
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We can rewrite the derivative with respect to X as a derivative with respect to time
multiplied by dt/d\ = P°. Also, we can use Eq. (4.14) to eliminate P° in terms of
our favored variable p. Then the geodesic equation reduces to

d p>p#

5 (1= V)] = T (1+ 7). (4.23)
Expand out the time derivative to get
dp d peph
B(1-0) = pS ~ g —(1+ ). (4.24)

Now we multiply both sides by (14 W); drop all terms quadratic in ¥; and reexpress
the total time derivative of ¥ in terms of partial derivatives so that

dp _ [0¥ pOUY o PoPP
it Pl T aor af

(1+20). (4.25)

In order to evaluate dp/dt then we need to evaluate the product I'°,3P%P? /p.
Recall that the Christoffel symbol is best written as a sum of derivatives of the
metric (Eq. (2.19)). Here we are interested only in the I'°, 5 component. It multiplies
P> P# which is symmetric in «, 8. Thus, the first two metric derivatives contribute
equally, and we have

.

(4.26)

pepB _ g% 28_(]1,0 3 8gap| P*PP
p 2 oxzf  Oxv p

Now g% is nonzero only when v = 0, in which case it is simply the inverse of goo,
0

|

a pg _ a pf
pops 1+2x1:[690a 390,3] PP (127)

p 2 orP ot p

Once again, go, in the first term in brackets is nonzero only when o = 0, in which
case its derivative is —20¥/0z”. The second term in brackets multiplied by the
product of momenta is

_ 0gap P> p? _ 9900 P°PY  9g,; P'PI

o p Ot p ot p
ov . [.8d pipi
_ 25 |02 L 2
2= p— o, [2 5 T2H(+20)| — (4.28)

But, via Eq. (4.19), 6;; P'P/ = p?(1 — 2®)/a?, so we have

PP 1429 ov o
0 _ — ps
Das P 2 [ 461/3 +2p ot



92 THE BOLTZMANN EQUATIONS

p {2% F2H(1+ 2@)} (1- 2@)]. (4.29)

The last line here simplifies since (1 + 2®)(1 — 2¢) — 1 at first order, and 1 — 2
can be set to 1 when multiplying 8®/9t. Summing over the index 3 in the first
term then leads to

PeP8 1420 ov ov pp' o od
0 _ (oY oV pp- o o
Ias p 2 [ 4<8tp+81i a)+2p8t p{28t+2H}

ov ov pp' 0P
—{_ LIPS, Seiully o GRS il ) 4.30
{ HN}[ ot " 250 p{8t+H}] (4.30)
We can insert this into Eq. (4.25) to get
dp ov  pov ov oV pp’ oo
@ _ Jo¥ (P oYL oY L,0%pp (02 . 4.3
dt p{at aazz} 5P 2o Pl U (4.31)
Collecting terms, we finally have
1dp b p'ov
Sl MY & AR il 4.32
p dt H gt a Ort ( )

Equation (4.32) is what we were after. It describes the change in the photon momen-
tum as it moves through a perturbed FRW universe. The first term accounts for
the loss of momentum due to the Hubble expansion. To understand the significance
of the next two terms in Eq. (4.32), we first need to remember that an overdense
region has ® > 0 and ¥ < 0 with our sign conventions. Therefore, the second term
says that a photon in a deepening gravitational well (0®/0t > 0) loses energy.
This is understandable: the deepening well makes it more difficult for the photon
to emerge, thereby increasing the magnitude of the redshift. Finally, a photon trav-
eling into a well (p'0¥/0x" < 0) gains energy because it is being pulled toward the
center. Conversely, as it leaves the well, it gets redshifted.

We are now in a position to write down the Boltzmann equation for photons.
Using Eq. (4.32) in Eq. (4.21) leads to

df _of pof _ of[, 0% pov

dt 8t aox p(?_p §+a8zi '

(4.33)

This equation incorporates much of the physics with which we are already familiar,
such as the fact that photons redshift in an expanding universe. It also leads directly
to the equations governing anisotropies. Working through the terms on the right,
the first two are familiar from standard hydrodynamics; when integrated, they lead
to the continuity and Euler equations (Exercise 1). The third term dictates that
photons lose energy in an expanding universe. We saw some of this in Chapter 2
when considering geodesics. Shortly, we will see how the Boltzmann formalism
enforces this result. Finally, the last two encode the effects of under-/overdense
regions on the photon distribution function.


Daniela Grandón
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To go further we must now expand the photon distribution function f about its
zero-order Bose-Einstein value. I will do this in a way that may seem odd at first.
Let us write

-1
Lo p
f(& p,p,t) = [exp{T(t){1 +9(f,13,t)]} 1] : (4.34)
Here the zero-order temperature T is a function of time only (i.e., scales as a™1),
not space. The perturbation to the distribution function is characterized by O,
which could also be called 6T /T. In the smooth zero-order universe, photons are
distributed homogeneously, so T is independent of #, and isotropically, so T is
independent of the direction of propagation p. Now that we want to describe per-
turbations about this smooth universe, we need to allow for inhomogeneities in the
photon distribution (so © depends on ) and anisotropies (so © depends on p).
There is one assumption built into Eq. (4.34). I have explicitly written down that
O depends on Z, p, and t. This assumes that it does not depend on the magnitude of
the momentum p. We will soon see that this is a valid assumption, following directly
from that fact that the magnitude of the photon momentum is virtually unchanged
during a Compton scatter. The perturbation © is small, so we can expand (again
keeping only terms up to first order)

=g (o o {2) ] e

af©

_ £0) _ 4.35
f P 5 (4.35)

In the last line I have identified the zero-order distribution function as the Bose—
Einstein distribution with zero chemical potential,

FO) = [exp{%} _ 1]‘1 7 (4.36)

and made use of the fact that for this function T9f(® /0T = —pdf© /op.

4.2.1 Zero-Order Equation

We can now set about systematically collecting the terms of similar order in
Eq. (4.33). Let us start with the zero-order terms, those with no &, ¥, or . These
lead immediately to

df ofO af®
dt ot dp

zero order

0. (4.37)

I have set df/dt here equal to zero, i.e., set the collision term on the right of
Eq. (4.1) to zero. I could justify this by claiming that we are now looking only at
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the collisionless Boltzmann equation. But there is a much deeper justification. In
fact, even when we come around to including collisions, we will see that there is
no zero-order collision term. That is, the collision terms will be proportional to ©
and other perturbatively small quantities. There is a profound reason for this: the
zero-order distribution function is set precisely by the requirement that the collision
term vanishes. Another, perhaps more familiar, way of saying this is to point out
that any collision term includes the rate for the given reaction and for its inverse.
If the distribution functions are set to their equilibrium values, the rate for the
reaction precisely cancels the rate for its inverse. If a given component is out of
equilibrium, collisions will drive it toward its equilibrium distribution. This is the
reason we expected a Bose-Einstein distribution in the first place. Its observation
is convincing evidence that photons were at one point in the early universe tightly
coupled to the electrons.
Returning to Eq. (4.37), we can rewrite the time derivative as

of® _9f@dr  dT/dt 3f©
ot oT dt T ' op

so that the zero-order equation becomes

dT/dt da/dt] 8f©
— - = 4.38
[ T a Op 0 (4.38)
Thus dT'/T = —da/a or
T zll-. (4.39)

This is precisely what we expected from the heuristic argument about the photon’s
wavelength getting stretched as the universe expands (Section 1.1) and the more
concrete argument of Section 2.1. It is reassuring to see this result emerge from the
Boltzmann treatment.

4.2.2 First-Order Equation

We now return to Eq. (4.33) and extract the equation for the deviation of the
photon temperature from its zero-order value, i.e., an equation for ©. To do this,
everywhere we encounter f in Eq. (4.33), we insert the expansion of Eq. (4.35):

df 0 [or® Pt 60 ofO o [ af®
_‘pEE[ o O Pasm ap % P op

first order

- Al il .40
pap Bt+aaxl (449)

Consider the first term on the right-hand side here. The time derivative can be
rewritten as a temperature derivative so

o fef@ 1 8598 dT 92 f©
Pot |7ap |~ PTop & P dr arap

af©® [a<1> s a\y}




COLLISION TERMS: COMPTON SCATTERING 95

aof© 00 dT/dt & | af®

=—p—5— 5 TPO——=|p -
Op Ot T 0p Op

The second line follows here since 8f() /0T = —(p/T)0f® /8p. The second term

on this second line cancels the third term on the right in Eq. (4.40), so we can
finally write down the equation governing the perturbation ©:

df __ o908 oo ob  pov
dt TP |5t Taor Tt T q0xi|

(4.41)

(4.42)

first order
The first two terms here account for “free streaming,” which translates into
anisotropies on increasingly small scales as the universe evolves. The last two
account for the effect of gravity. Note that every time x appears it is multiplied by
a, the scale factor. This must happen, for physical distances are az.

4.3 COLLISION TERMS: COMPTON SCATTERING

Our task in this section is to determine the influence Compton scattering has on
the photon distribution function. The scattering process of interest is

e (@) + (D) « e (§") + ("), (4.43)

where I have explicitly indicated the momentum of each particle.

We are interested in the change of distribution of photons with momentum p
(with magnitude p and direction p). Therefore we must sum over all other momenta
(§,4",p") which affect f(p). Schematically, then, the collision term is

ClY@ = > |Amplitude|® {f.(§)F(B") - f(DFP)}- (4.44)
§q'.p’
The amplitude is reversible so it multiplies both the reaction and its inverse. The
products of the electron distribution function f, and the photon distribution func-
tion simply count the number of particles with the given momenta. I have neglected
stimulated emission and Pauli blocking, which would lead to factors of 1 + f and
1 — f. with the appropriate momenta. At first order this turns out to be a valid
assumption. If one were to go to second order, though, stimulated emission would
have to be included. Pauli blocking is never important after electron—positron anni-
hilation because the occupation numbers f. are very small (Exercise 4).
Unfortunately, the collision term becomes a bit messier than the schematic ver-
sion when we put in all the factors of 27 to properly account for the sums over
phase space. Explicitly, the collision term is?

B 1 qu d3q/ d3p/
W=, | Gyt | wram | amen’

2Most of the phase space factors here follow from our discussion in Section 3.1, the exception
being the factor of 1/p in front. You may have wondered about one other feature of the Boltzmann
equation presented in this chapter: I started at the outset taking df /dt; does not general relativity
require us to take the derivative with respect to the affine parameter A? Exercise 5 illustrates how
these problems solve each other.
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x 8 [F+q~p" ~q'|6[E(p) + Ee(q) — E(p) — Ee(q")]

x {fe(§V (D) ~ [ ()} (4.45)

Here the delta functions enforce energy momentum conservation. The energies at
this order are the relativistic limit for photons and non-relativistic limit for elec-
trons: E(p) = p and F.(q) = m. + ¢%/{2m.). Note the similarity between this
collision term and the general one (Eq. (3.1)) we considered in Chapter 3. The only
difference is that I have not integrated this collision term over all photon momenta
P, so there are only three momentum integrals. Again, this reflects our need to
understand how photons traveling in different directions interact: we will see that
the collision term depends on p.

Since the kinetic energy of the electrons is very small at the epochs of interest
compared with their rest energy, the factors of E. in the denominator of Eq. (4.45)
may be replaced with m.. Then using the three-dimensional momentum delta func-
tion to do the ¢’ integral, we have

__T d’q d*p’ ¢, (d+p-p)
Cl@I = 4m?2p / (2m)3 | (2m)3p’ [ + ome 2me,
X IMP{felg+F~P) ") = f(DF D)} (4.46)

To go further, we need to understand the kinematics of nonrelativistic Compton
scattering. The most important feature of this process for our purposes is that very
little energy is transferred. In particular,

2 = = =n2
. ¢ (g+p-p)
E.(q) - E(d+p-7') = -
e(q) — Ee(§+p—P") S T

oy .
~ PP q (4.47)
Me
where the last approximate equality holds since ¢ is much larger than p'and 7. In
nonrelativistic Compton scattering, p’ ~ p, scattering is nearly elastic. Therefore,
p' — 7 is of order p, of order the ambient temperature T. So the right-hand side of
Eq. (4.47) is of order Tq/m, ~ Tuv, where the baryonic velocity vy, is very small. The
change in the electron energy due to Compton scattering is therefore of order T'u,.
Since the typical kinetic energy of the electrons is also of order T, the fractional
energy change in a single Compton collision is very small, of order v,. It makes
sense, therefore, to expand the final electron kinetic energy (¢4 p — p')2/(2m)
around its zero-order value of ¢2/(2m.). The delta function can be expanded as
¢, G- ,
8 L T ~d(p-p)

04 (p + Ee(Q) N p/ - Ee(ql))
OL.(q')

+(Ee(q’) — Ec(q))
E.(q)=E(q')
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(F—p")-q 9(p—p')
N ap’

=sp—p)+ (4.48)
where the second equality makes use of the fact that for a general function f of
the sum of two variables, 0f(x — y)/0x = —3f(r — y)/0y. This formal expansion
appears ill-defined at present, but when integrating over momenta, the derivatives
of delta functions will be handled by integrating by parts. With this expansion, and
using the fact that f.(¢+ 9 — p’) =~ f.(q), the collision term becomes

S [
U= g5 | 16525 | g™

p-7p')-q405(p—p
ot + LRI ) gy (a0
me p’
To proceed further, we need the amplitude for Compton scattering. This can
be computed using Feynman rules as explicated for example in Bjorken and Drell
(1965). We will take it to be constant:

M| = 8rorm? (4.50)

where or is the Thomson cross-section. This is wrong, and it is wrong for two
reasons. First of all, the amplitude squared has an angular dependence x (1 +
cos?[p-p ']). Ignoring this angular dependence, as I now propose to do, makes a small
difference in the final collision term. It needs to be included in calculations which
aspire to 1% accuracy. But it would simply distract us here, so let us ignore it for
the present. The second reason a constant amplitude is wrong is a little more subtle
and, when properly accounted for, opens up a whole new branch of CMB study. In
particular, the amplitude squared has a polarization dependence (cx |é - €|, where
€ and € are the polarizations of the incoming and outgoing photons) which I have
implicitly summed over here. The dependence on polarization means that at a small
level the CMB will be polarized due to Compton scattering (Bond and Efstathiou,
1984; Polnarev, 1985). It turns out that the information carried by the polarization
spectrum is as valuable as that carried by the temperature spectrum (Seljak, 1997;
Seljak and Zaldarriaga, 1997; Kamionkowski, Kosowsky, and Stebbins, 1997a,b). We
will devote considerable time in Chapter 10 to understanding polarization. Even if
we were not concerned with polarization, the temperature anisotropies are coupled
to the polarization field, so an accurate determination of the former requires a
treatment of the latter. Again, though, I will neglect this small effect here in the
derivation of the collision term. It is straightforward to include both the effects
of polarization and the angular dependence of Compton scattering using the same
formalism we are now in the midst of. The algebra is simply a bit more tedious.

Once we have assumed that |M|? is constant, we can multiply out the terms in
brackets in Eq. (4.49) keeping only terms first order in energy transfer. Also, the
¢ integral simply gives a factor of n. (or n.t, for the term which has a factor of
g/me). So,
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25 3,7 o
ol = T2 [ Lo+ -5 5, 2

p op’
(0 50
{16 - 10 - 20y +» 2L 0}
— NedT * ! ! f(O) ~ f(O)
= 4@/0 dpp dQ[ p- p) L O@F’) +p—3 @(p)>
G- ab?-‘s(—’;;,—’")(fwwp') - f‘o)(p))} (4.51)

where ' is the solid angle spanned by the unit vector p’. On the first line, I
have broken up the difference f(5’') — f(7) into a zero-order piece,® which doesn’t
contribute when multiplying 6(p—p’), and a first-order part which can be neglected
when multiplying the velocity term.

There are only two terms in Eq. (4.51) which depend on p ' and therefore which
must be accounted for when integrating over solid angle €. First, there is the
perturbation to the distribution function, ©(p'). It is convenient at this stage to
introduce the notation

7 t) = % / A 0(p’, 7, t). (4.52)

So ©g does not depend on the direction vector; it is an integral of the perturbation
over all directions. In other words, it is the monopole part of the perturbation.
Note that we cannot absorb this monopole into the definition of the zero order tem-
perature since the latter is constant over all space. The perturbation ©¢ therefore
represents the deviation of the monopole at a given point in space from its average
in all space. Later on we will generalize Eq. (4.52) to all other multipoles.

The second term in Eq. (4.51) which depends on p’ is the explicit factor p’ - 0.
This term integrates to zero since oy, is a fixed vector. Thus, the integration over
solid angle leaves

. © ., , ,0f© afo®
clr@ =" [ arp [cs(p—p)( e+ 00p)

9(p —p')

+0- Oy o

(FOP) - £O (p))} : (4.53)

Now the p’ integral can be done: in the first line by trivially integrating over the
delta function and in the second by integrating by parts. We are left with

3Note that we are expanding in two small quantities simultaneously, the small perturbations
and the small energy transfer. Here, we are breaking up f(p’) — f(p) into terms zero and first
order in the small perturbations.
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(0)

Cli@) = ~p2L—

s neor [Og — O(p) + P - ) - (4.54)

Already, we can anticipate the effect of Compton scattering on the photon distri-
bution. In the absence of a bulk velocity for the electrons (v, = 0), the collision
terms serve to drive © to ©q. That is, when Compton scattering is very efficient,
only the monopole perturbation survives; all other moments are washed out (Fig-
ure 4.3). Intuitively, strong scattering means that the mean free path of a photon
is very small. Therefore, photons arriving at a given point in space last scattered
off very nearby electrons if Compton scattering is efficient. These nearby electrons
most likely had a temperature very similar to the point of ohservation. Therefore,
photons from all directions have the same temperature. This is the characteristic
signature of a monopole distribution: the temperature on the sky is uniform.

Figure 4.3. A plane wave perturbation in the matter and its effect on tightly coupled photons.
Dark (white) regions represent hot (cold) spots in the electron temperature. If Compton scat-
tering is very efficient then photons last scattered very near the point of observation. Circles
denote last scattering surfaces for observation points indicated by stars. The temperature on
these surfaces is very close to uniform, so the distribution is almost all monopole. Note though
that different circles {corresponding to different observers) have different temperatures due to
the perturbation. So the monopole varies in space.

The situation changes slightly if the electrons carry a bulk velocity. In that case,
the photons will also have a dipole moment, fixed by the amplitude and direction
of the electron velocity. Even in this case, though, all higher moments will vanish.
Thus Compton scattering produces a photon distribution which is extremely simple
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to categorize: it has only a nonvanishing monopole and dipole. This is equivalent
to saying that the photons behave like a fluid. Indeed, strong scattering, or tight

coupling, produces a situation wherein the photons and electrons behave as a single
fluid.

4,4 THE BOLTZMANN EQUATION FOR PHOTONS

We can now collect the left- and right-hand sides of the Boltzmann equations from
the previous two sections. A few more definitions will complete the first goal of this
chapter, a linear equation for the perturbation to the photon distribution. Equating
Eqgs. (4.42) and (4.54) leads to
At )2 At
?a—?+%g§+%—(f+%%:near[@o—@+ﬁ~f)’b]. (4.55)
At this point, it is convenient to reintroduce the conformal time 7, defined in
Eq. (2.41), as our time variable. In terms of the conformal time, the Boltzmann
equation becomes
®+ﬁi2(2+<i>+ﬁi§—qi:neaTa[@o—@+]§-17b]. (4.56)
ox! ox?
Here, and from now on, overdots represent derivatives with respect to conformal
time.

Equation (4.56) is a partial differential linear equation coupling © to other vari-
ables ®, ¥, and , which also evolve linearly. If we Fourier transform all these
variables, so that 8/0x" — k;(= k%), the resulting Fourier amplitudes obey ordi-
nary differential equations, which are much simpler to solve. In the case of small
perturbations around a smooth universe, there is an added benefit of Fourier trans-
forming. Since the background is smooth, the only T dependence in Eq. (4.56) is
hidden in the perturbation variables themselves. In general, an equation of the form

aA(T) = bB(F) (4.57)

gets transformed into . .
aA(k) = bB(k). (4.58)

That is, every Fourier mode evolves independently: A(k;) can be evolved even if
we know nothing of A(k;). So the Fourier transform of Eq. (4.56) produces a set of
ordinary differential equations for the Fourier modes, and this set of equations is
uncoupled. Instead of solving an infinite number of coupled equations, we can solve
for one k-mode at a time.

Note that this simplification arises because the perturbations are small (equiv-
alently the equations are linear). In this case, the different Fourier modes all evolve
independently. Perturbations to the CMB remain small at all cosmological epochs,
so Fourier transforms are very useful. In contrast, perturbations to matter are more
complicated. Initially they are small. and they remain small until relatively recently.
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The largest scales today are still in the linear regime, so Fourier transforming is
certainly useful for the matter perturbations as well. However, to completely char-
acterize the matter field today requires accounting for nonlinearities, and for this
purpose, Fourier transforms lose much of their appeal. Different Fourier modes cou-
ple when nonlinear behavior becomes important, so the codes which follow matter
perturbations all the way until today work in real space. Even these codes, however,
start at z ~ 20 with the initial conditions set by linear evolution.
Our Fourier convention will be

3 T o=~ -
o(F) = /(if“—eik'fe(k). (4.59)

We will often characterize a mode by the magnitude of its wavevector? : k = Vk*k?.
Before rewriting Eq. (4.56) in terms of Fourier modes, let us make two final
definitions. First, define the cosine of the angle between the wavenumber k and the
photon direction p to be
o= _k_p (4.60)
k
From now on, p will be the variable describing the direction of photon propagation.
A good way to think of u is to go back to Figure 4.3. The wavevector k is pointing
in the direction in which the temperature is changing, so it is perpendicular to the
gradient (E is horizontal in the figure). When p = 1 then the photon direction is
aligned with k, so the photon is traveling in the direction along which the tem-
perature is changing. A photon traveling in a direction in which the temperature
remains the same (vertically in the figure) has u = 0. We will typically assume that
the velocity points in the same direction as k (this is equivalent to saying that the
velocity is irrotational), so To - p = Dpu. Next, we define the optical depth

Mo
7(n) E/ dn’ neora. (4.61)
n

At late times, the free electron density is small, so 7 < 1, while at early times, it
is very large. Note that I have defined the limits of integration in such a way that

.
1l

= —n.ora. (4.62)

&l&
[

With these definitions, we are finally left with

O+ iku®+ & + ikl = -7 [éo - ,mb] . (4.63)

4Note that k? is a 3D vector in Eudclidean space so that k; = ki; you do not need a factor of
g:j to go back and forth. The same goes for the velocity v} .
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4.5 THE BOLTZMANN EQUATION FOR COLD DARK MATTER

We can apply the formalism developed in the previous sections to derive the Boltz-
mann equation for any other constituent in the universe. Of particular importance
is the evolution of the dark matter. In almost all currently popular models of struc-
ture formation, dark matter plays an important role in structure formation and in
determining the gravitational field in the universe.

It is perhaps simplest to derive the evolution equations for dark matter by
imposing conservation of the energy-momentum tensor, as we did in Chapter 2 in
the homogeneous case. Unlike the photons, the dark matter always behaves like
a fluid so can always be described completely by T,,,. Nonetheless, here we will
sacrifice simplicity and use the Boltzmann formalism to derive the dark matter
equations. This will (i) reinforce the calculations of the previous sections and also
(ii) pave the way for the electron/proton equations of the next section.

There are several ways in which the dark matter distribution differs from that
of the photons. First, by definition, “dark” matter does not interact with any of
the other constituents in the universe. Thus we need not deal with any collision
terms. Second, cold dark matter, in contrast to the photons, is nonrelativistic. So
we need to redo some of the kinematics which led to the left side of the Boltzmann
equation. In particular, the constraint Eq. (4.11) now becomes

g PHP” = —m? (4.64)

where m is the mass of the dark matter particle. It is also useful to define the energy

as
E = +p?*+m?, (4.65)

where p is defined exactly as in Eq. (4.13): p? = g;; P*P?. In the massless case, of
course, Eq. (4.65) says that E' = p, so F is superfluous. Here it will be convenient to
let E replace p as one of the variables on which the distribution function depends
(in addition to position &, time ¢, and the direction vector p). We can now derive
the equivalent of equations (4.14) and (4.19) for the four-momentum of a massive
particle:

P = |EQ1 —\Il),pﬁi¥ . (4.66)

Only the time component is different from that of a massless particle, with E
replacing p.

Using E as one of the dependent variables means that the total time derivative
of the dark matter distribution function fq, is

dfam _ Ofam | Ofamdz'  Ofam dE + 8 fam dp'

d ot ozt dt QE dt = opt dt’

(4.67)

Once again, the last term here vanishes since it is the product of two first-order
terms. Because of the change in the constraint equation, the coefficients of the



THE BOLTZMANN EQUATION FOR COLD DARK MATTER 103

derivatives of the distribution function with respect to z' and E are slightly dif-
ferent than they were in the massless case. Working through the algebra, which is
otherwise identical to the calculation presented in Section 4.2, leads to the colli-
sionless Boltzmann equation for nonrelativistic matter:

Ofam | P p Ofam  Ofam [da/dtp®  p*0®  pipd¥

ot a E 0z°  OF a EEdt  a Oz
Equation (4.68) reduces to Eq. (4.33) in the massless limit as it must. The main dif-
ference between the two is the presence of factors of p/E, or velocity. For dark mat-
ter particles, these velocity factors suppress any free streaming, as we will shortly
see.

In the massless case, to proceed further we used our knowledge of the distri-
bution function. Namely, we knew that the zero-order distribution function was
Bose-Einstein, and we perturbed around this zero-order solution. For cold dark
matter particles, we do not need such detailed information about the zero-order
distribution function. All we need to know is that these particles are very nonrela-
tivistic. So we can neglect the thermal motion of the dark matter (Exercise 9). We
cannot however neglect p/m completely, because the density perturbations them-
selves induce velocity flows in the dark matter via the continuity equation. These
coherent flows give rise to p/m ~ v terms, which must be retained. What we can
do, however, in our linear treatment, is to neglect terms second-order in p/E.

Instead of assuming a form for fy,, we will take moments of Eq. (4.68). First,
multiply both sides by the phase space volume d®p/(27)® and integrate. This leads

to
0 d3p 190 d3p pp’ da/dt 0P d®p Ofam p?
o [ o fam A s | o fam P~ + = LDk
ot | (2m) a 0z (2m) E a ot (2r)3 OF E

=0. (4.68)

_18\11/ & Ofam . o
adr | (2m)¢ 0E P PT

Note that, since they are independent variables, the integral over p passes through
the partial derivatives with respect to z* and ¢t. The last term here can be neglected
since the integral over the direction vector is nonzero only for the perturbed part of
fam. Thus the integral is first order and it multiplies the first-order term 8V /0z".
The rest of the terms are all relevant, though. To simplify, let us recall that the
dark matter density is®

(4.69)

d3p
= | —— .70
Ndm / (27!')3 fdm (4 )
while the velocity is defined as
1 d*p . pp’
iz - [ 28 g PP 4.71
V= Gl s (4.71)

5Here I have incorporated the spin degeneracy gqr, into the phase space distribution fan,. We
implicitly did the same thing in the last section for the electrons.
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The first two terms in Eq. (4.69), then. can be simply expressed in terms of the
velocity and the density. The third term is a bit more subtle: to relate it to the
density, we need to integrate by parts. Since dE/dp = p/E, the integrand can be
reexpressed as p 0fq,,/0p. Thus, the integral becomes

/ dgp afdm _ 4w /ocd) 30f(hn
@il op ~ @ap f, PP Top

47 <,
e e

= ~3ndm. (4.72)

So the zeroth moment of the Boltzinann equation leads to the cosmological gener-
alization of the continuity equation:

andm 1 a(ndmvi)
+ - . + — | ngm = 0. 4.73
9 a or at | (4.73)
The first two terms here are the standard continuity equation from fluid mechanics.
The last term arises due to the FRW metric and its perturbations.
To go further, we can collect zero-order and first-order terms in Eq. (4.73). The
velocity is first order as is ®, so the only zero-order terms are

on) L gda/dt o) _
ot a tdm

+3

[da/dt

=0 (4.74)

where nfi ) is the zero-order, homogeneous part of the density. Equivalently, we have

d 0) 3
(Lfi';a—) 0= xa?, (4.75)

a relation we anticipated back in Chapter 1 as an obvious ramification of the expan-
sion. We also proved this scaling in Chapter 2 by using the conservation of the
energy momentum tensor.

Now let us extract the first-order part of Eq. (4.73). All factors of ngy multi-
plying the first-order quantities v and ® may be set to ndm Everywhere else, we
need to expand ngy, out to include a first-order perturbation. In particular, we will
set

ndm_nd)[1+6 )], (4.76)
which defines the first-order piece as ny (95, Since the energy density of matter is

equal to mass tlmes n 4 is also the fractlonal overdensity, dp/p, of the dark matter.
After dividing by ndm, the first-order equation is therefore

a5 19 0P

5 adr ot

As it stands, we have introduced two new perturbation variables for the dark
matter, the density perturbation § and the velocity ¥. Equation (4.77) is only one

=0. (4.77)
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equation, though, for these two variables. We need another. To get it. we return to
the unintegrated Boltzmann equation (4.68). We have just taken its zeroth moment:
to extract a second equation, let us take its first moment. In particular, multiply
Eq. (4.68) hy &*p(p/E)p’/(2n)® and then integrate. The first mowment equation is
then

3] d3p )[ﬂ 19 d*p p? pp’

at ( ) fdm adrl. ( ) fdm

d(l/df + d:gp afdm 1)31? ()\I// (PP Ofdm ]3II}J[)2
a ot /(2@3 0E E2  adr' | (273 OE E

(4.78)

The first two terms are straightforward: the first is the time derivative of ng,, v’
while the second can be safely neglected since it is of order ((p/FE)?). The last sets
of terms must be handled more carefully, though, because of the partial derivatives.
Since (p/E)J/0E = 8/0p the third term is actually of order p/E while the last is
independent of velocity. Let us do the integration by parts explicitly in the third
term. The integral is:

/ d$p 8fdm PQﬁ] _/dQﬁ] > d p afdm
emp3 op E ) @np )y PEop

dQﬁJ ¢ 4])3 p5 ’
= / WA dpfdm <‘E“ - 'E) . (479)

The p°/E® term is completely negligible, so the only relevant contribution to the
integral comes from the —4p®/E term: its integral is —4ng,v/. The same steps
carry through for the last term in Eq. (4.78); the one additional fact we need is
that

/dﬂﬁiﬁj = 6”%. (4.80)
So the first moment of the Boltzmann equation is
O(ngmv’) da/dt i Ndm OV
——— =10 4.81
ot +d a dm? * a Oz’ 0 ( )

This equation has no zero-order parts, since the velocity is a first-order quantity.
Therefore, we need extract only the first-order terms, which allows us to set ng,, —

n&(:‘)] everywhere. Using the time dependence we found in Eq. (4.75) we arrive at

ov'  dajdt ; 100
— 4+ —vV 4+ -—=0. 4.82
ot + a a OxJ ( )
Equations {4.77) and (4.82) are the two equations governing the evolution of
the density and the velocity of the cold, dark matter. The momentum conservation
equation (4.82) does not have the standard (v V)# term, since any term with two
factors of v is manifestly second order. An interesting feature of the two equations is
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generic to this process of integrating the Boltzmann equations to get the fluid equa-
tions. Note that the equation for the density depends on the next highest moment,
the velocity. This is general: the integrated Boltzmann equation for the {th moment
depends on the [ + 1 moment. In principle, then, this process of integrating leads
to an infinite heirarchy of equations for the moments of the distribution function.
Indeed, we will see that this is one way of solving the Boltzmann equation for the
photons, Eq. (4.63), which we have not yet integrated over. One might expect,
then, that the velocity equation would depend on the next highest moment, the
quadrupole, of the dark matter distribution. Why doesn’t it? The answer lies in
our assumption that the dark matter is cold. We have explicitly dropped all terms
of order (p/E)? and higher. These terms correspond to the higher moments of the
distribution, but since we are dealing with cold, dark matter they are irrelevant.
Thus, the set of two equations, (4.77) and (4.82), are a closed set of equations for
the cold, dark matter distribution.® If we were interested in dark matter particles
with much smaller masses, such as massive neutrinos, we would need to keep these
higher moments.

Let us finally rewrite Eqgs. (4.77) and (4.82) in terms of conformal time 7 and
the Fourier transforms. The density equation becomes

§5+iki+30=0 (4.83)

where I have assumed that the velocity is irrotational so ©* = (k*/k)v. The velocity
equation is

7+ k¥ =0. (4.84)

SN

v+

4.6 THE BOLTZMANN EQUATION FOR BARYONS

The final components of the universe which require a set of Boltzmann equations
are the electrons and protons. These components are often grouped together and
called baryons, nomenclature which is obviously ridiculous (electrons are leptons,
not baryons) but nonetheless common.

Electrons and protons are coupled by Coulomb scattering (e + p — e + p). The
Coulomb scattering rate is much larger than the expansion rate at all epochs of
interest (Exercise 12). This tight coupling forces the electron and proton overden-
sities to a common value:

(0)

pe =0 pp—p
R L ) (4.85)

0 - 0 -
p&¥ P

where we bow to common usage with the subscript b. Similarly the velocities of the
two species are forced to a common value,

60Of course, we still need equations for the gravitational potentials ® and ¥. These come from
Einstein’s equations, as does the zero-order equation for a.
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T, =T, = B, (4.86)

We need to derive equations then for &, and v,. The starting point will be the
unintegrated equations for electrons and protons:

dfe(Z,q,1)
4 (Cep)Qq@ra + {Cevlppra’ (4.87)

s
BELY _ e (4.88)

The notation here is more compact, and therefore more deceiving, than that in
previous sections. We will need this compactness in what follows, so let’s walk
through it slowly. First, notice that initial and final momenta for the photon are p
and §’; for electron § and §’; and the proton has been assigned @ and @’. Consider
the Compton collision term in the equation for the electron distribution function.
I have defined the unintegrated part of the collision term as

M2 .
SEGIEWE-@E.(a) VU )f4(P') — fe(@) f+(P)}
(4.89)

and the angular brackets denote integration over all momenta in the subscripts:

d3 d3 ’ d3 ’
(- Npprgr = / (27:;’3 / (2753 / (2:)3(...). (4.90)

The Coulomb collision term is similar, the main difference being the amplitude for
the two processes.

In principle, Eq. (4.88) should contain a term accounting for scattering of pro-
tons off photons. In practice, though, the cross section for this process is much
smaller than for Compton scattering off electrons (in each case the cross section is
inversely proportional to the mass squared). So the interactions of the combined
electron-proton fluid with the photons is driven by Compton scattering of electrons,
and the proton—photon process can be ignored. Also, in principle, we should include
ionization and recombination terms in Eqs. (4.87) and (4.88). These however would
merely distract us here, so we treat all electrons as ionized.

With this notation defined, we can now proceed and derive equations for &, and
vp. First, multiply both sides of Eq. (4.87) by the phase space volume d3q/(27)3
and integrate. The left-hand side then becomes identical to the left-hand side we
derived for dark matter in Eq. (4.73). So we can immediately write

on. 10(n.vt da/dt 00
ot + a ((hib) +3 [ / + E] Ne = (Cep)Q@ra'g + (Cer)ppiara- (4.91)

ey = (2m) '8 (p+q-p —¢)

Both terms on the right vanish. The mathematical way to see this is to realize that
the integration measure in the first term on the right, e.g., is completely symmetric
under the interchange of Q « @’ and q «— ¢'. Because of the factors of the distri-
bution function, the integrand — c., — is antisymmetric under this interchange. So
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the full integral vanishes. More intuitively, the processes we are considering con-
serve electron number so they certainly cannot contribute to dn/dt. That is, the
integral over fe(q')f,(Q’) counts the total number of electrons that are produced
in Coulomb scattering. But this is obviously equal to the integral over f.(q)fn(Q),
which counts the number of electrons lost in Coulomb scattering. More generally,
any time we multiply an unintegrated collision term by a conserved quantity and
then integrate we will get zero.

The perturbed version of Eq. (4.91) equation is therefore identical to Eq. (4.77).
Switching to Fourier space and using conformal time leads to

3y + ik + 30 = 0. (4.92)

The second equation for the baryons is obtained by taking the first moments of
both Egs. (4.87) and (4.88) and adding them together. We did something similar
for the dark matter; there we first multiplied by p/E and then integrated over all
momenta. Here we will take the moments by first multiplying the unintegrated
equations by ¢ (and Q for the protons) instead of by ¢/E. Therefore, our results
from the dark matter case carry over as long as we multiply them by a factor of
m. The left-hand side of the integrated electron equation, for example, will look
exactly like the left-hand side of Eq. (4.81) except it will be multiplied by m.. The
proton equation will be multiplied by m,. Since the proton mass is so much larger
than the electron mass, the sum of the two left-hand sides will be dominated by
the protons. So, following Eq. (4.81), we have

Anyvl da/dt v myny OV
My ((’;t d +4 / mpnpv}, - oxt
= <Cep(qj + Qj»QQ’q’q + <Ce7qj>pp’q'q~ (4.93)

The right-hand side here is the sum of that from both the electron and proton
equations. Both equations have the Coulomb term, so it is weighted by ¢ (by which
we multiplied the electron equation) +C§ (from the proton equation). Only the
electron equation has the Compton term, so there is only the factor of ¢ there.
Once again we can use a conservation law, this time conservation of momentum, to
argue that the integral of c.,(¢+ Q) over all momenta vanishes. So dividing both
sides by’ p, = mpngo), we are left with
8_11{) da/dt ; 1 _8_\11 !

- AN
ot * a Vot adzd  p {Cer@)opaa: (4.94)

Here I have used the by now familiar nf)o) o a~3 scaling to eliminate the nl()o) time

derivative and three of the four factors of the da/dt term on the left.

"Note that convention here, which I will stick with, that py is the zero order baryon energy
density. The total baryon density is therefore pp(1 + dy,).
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The final step is to evaluate the average momentum ¢ in Compton scattering.
As before, we can use the conservation of total momentum ¢+ p to argue that

(Cex@ppra'g = —(CerDlppaq: (4.95)

Now switch to Fourier space and multiply both sides of Eq. (4.94) by k7. Since
k- p = pp, the right-hand side of Eq. (4.94) becomes —(ceyPit)ppq’q/Pp- We have
already computed (ce)prqq in Eq. (4.54). We need simply multiply this by pu and
integrate over all p'to find the right-hand side of Eq. (4.94):

<Ce'yp/4>pp’q’q Ne0T / dsp 28f(0) ~ = -
- = & - 6 ]
o o ] @R ap p[ 0 — O(u) + Upp

neor [ dp 48f(0) /1 du [~ ~ -
—_— — —u |©y— O .(4.96
o /O 2P 5y | D #[ 0 (#)+vbu] (4.96)

The integral over p can be done by integrating by parts: it is —4p.,. The p-integration
over the first and third terms is straightforward (first term vanishes and second
gives vp/3). The second term is the first moment of the perturbation ©. Recall that
the zeroth moment was defined as ©g. It makes sense therefore to define the first
moment as

1
o=if % o) (4.97)

where the factor of i is a convention and the definition holds in either real or Fourier
space.

We now have an expression for the collision term which can be inserted into
Eq. (4.94), and after switching to conformal time, we have:

B+ Ly 4 kD = 7P [31'@1 n ab] . (4.98)
a 3ps

Why is there a factor of py in the denominator? That is, since photons scatter
primarily off electrons, why does the total baryon density (which is dominated by
protons) appear in this velocity equation? Physically, it arises from the fact that
moving electrons is difficult because they are tightly coupled to protons via Coulomb
scattering. If the proton was infinitely heavy, so p, — oo, Compton scattering would
not change the electron velocity at all; it would not have any impact on the combined
proton-—electron fluid. We derived Eq. (4.98) by setting n. = n, = ns, but it turns
out to be valid even if there is an appreciable amount of neutral hydrogen, so that
ne # np. Indeed after recombination, most protons are bound in neutral hydrogen
atoms. And even before recombination, a small fraction are in helium atoms or ions.
You might be tempted therefore to replace py in the denominator of Eq. (4.98) by
the density of free protons. In fact, though, even neutral hydrogen and helium are
tightly coupled to electrons and protons (see Exercise 12), so all baryons should
be included. Equation (4.98) quite generally governs the evolution of the baryon
velocity.
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4.7 SUMMARY

The constituents of the universe are not distributed completely uniformly in space.
For the nonrelativistic components such as the dark matter and the baryons, this
means that some regions are more dense than others and that there are small
coherent velocities. For the dark matter we denote the fractional overdensity as
0(Z,t) and the velocity as #(Z,t). The equivalent perturbations for the baryons
are dp(Z,t) and %, (&, t). In solving the linear evolution equations, it is simplest to
work with Fourier transforms of all of these. It turns out that the evolution of a
mode associated with wavevector k depends only on the magnitude of &, so we
have equations for §(k, ). We have found it convenient to use conformal time 7 as
the evolution variable. Also, it is conventional® in the literature to drop the s over
Fourier transformed variables, so our equations will be for §(k,n), dv(k,n), v(k, 1),
and vy (k,n). The scalar velocities here are the components parallel to k; these are
the only ones that are cosmologically relevant.

Relativistic particles such as photons and neutrinos require more information
to characterize. They have not only a monopole perturbation (the equivalent of
d) and a dipole (the equivalent of a velocity), but also a quadrupole, octopole,
and higher moments as well. In other words, the photon distribution depends not
only on & and time but also on the direction of propagation of the photon, p. In
Fourier space, therefore, the photon perturbations depend not only on k and 7
but also on p - k, which we defined as u. Thus, the photon perturbation variable
is ©(k, i, 1), the Fourier transform of §7°/T, the fractional temperature difference.
Neutrino perturbations require a separate variable with the same dependence; let’s
call it N(k, p, ).

We found it useful to define the monopole (Eq. (4.52)) and dipole (Eq. (4.97)) of
the photon distribution. These moments, Oy(k,n) and O (k, ), do not completely
characterize the photon distribution. More generally, it is useful to define the [th
multipole moment of the temperature field as

1
o= [ Lrwe), (4.99)
(=)t Sy 2

where P, is the Legendre polynomial of order {. The quadrupole corresponds to
l = 2, octopole to | = 3, etc. The higher Legendre polynomials have structure on
smaller scales (see Figure 4.4), so the higher moments capture information about
the small scale structure of the temperature field. So the photon perturbations can
be described either by ©(k, i, n) or by a whole hierarchy of moments, ©,(k,n). And
of course similar freedom applies to the neutrino distribution.

I have postponed a discussion of polarization until Chapter 10, but I mentioned
in Section 4.3 that a completely accurate treatment of anisotropies in the temper-
ature requires us to incorporate polarization effects| Again, waiting until Chap-
ter 10 for more formal definitions, let’s call the strength of the polarization ©p. It

8Conventional, but “abominable” according to one early reviewer.
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Figure 4.4. Some Legendre polynomials. Note that the higher order ones vary on smaller
scales than do the low-order ones. In general P, crosses zero [ times between —1 and 1.

describes the change in the polarization field in space. Upon Fourier transforming,
it too depends on k, u, and 7.

We now collect the equations we have derived for the photons, dark matter, and
baryons and supplement them with a trivial extension to massless neutrinos:

O +ikpd® = —d — ikpl — 7 [90 — O+ puy — %’PQ(}L)H] (4.100)

[I=6;+0py+Opg (4.101)
. 1
Op +thku®p = —7 [—ep + 5(1 - 'Pz(u))n] (4.102)
6+ ikv = -3 (4.103)
a
0+ v = —ikl (4.104)
by + ikvp = —3® (4.105)
) , 7 .
Up + —vp = —1k¥ + — [vp + 3i0;] (4.106)
a R
N 4 ikpuN = —d — ikpl. (4.107)

Equation (4.100) is the Boltzmann equation for photons we have derived. The
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one change from our derivation is the last term P,I1/2, which requires some expla-
nation. First, note that it is proportional to the second Legendre polynomial,
Pa(p) = (3u% — 1)/2. From Eq. (4.101), one of the new terms then is P209/2;
this term accounts for the angular dependence of Compton scattering, which we
ignored in Section 4.3. The other parts of IT represent the fact that the tempera-
ture field is also coupled to the strength of the polarization field ©p which obeys
Eq. (4.102). Note that ©p is sourced by the quadrupole, ©5, and none of the other
temperature moments.

In the equation for the baryon velocity (4.106), the ratio of photon to baryon

density has been defined as

1 _ 4pf

R 3,0

Equation (4.107) governs perturbations to the neutrino distribution, N. It is iden-
tical to the photon equation except that there is no scattering term since neutrinos
interact only very weakly. Here I have assumed that the neutrinos are massless.
If any of the neutrinos had appreciable mass, then Eq. {4.107) would have to be
amended to account for this. Exercise 11 discusses the question of how large a mass
is interesting.

(4.108)
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SUGGESTED READING

In the 1960s a national magazine ran a cartoon showing dozens of businessmen
and -women walking the streets of Manhattan looking very important and serious.
Thought bubbles over each head revealed their true focus: each was imagining a
raucus sex scene. In at least some ways, the Boltzmann equation plays a similar role
for physicists and astronomers: no one ever talks about it, but everyone is always
thinking about it.

Two excellent astronomy textbooks which do make abundant use of the Boltz-
mann equation — either explicitly or implicitly —are Radiative Processes in Astro-
physics (Rybicki and Lightman) and Galactic Dynamics (Binney and Tremaine).
In the context of cosmology, in addition to the books mentioned in Chapter 1, The
Large Scale Structure of the Universe (Peebles), written by the field’s pioneer, uses
the Boltzmann equation extensively, working in synchronous gauge. If you strug-
gled through Section 4.3, you will be amused (angered?) to see §92 of Peebles’ book,
where he takes much less space to derive terms due to Compton scattering.

A number of papers deriving the Boltzmann equation for cosmological pertur-
bations are well worth reading. There is the path-breaking work by Lifshitz (1946),
Peebles and Yu (1970), and Bond and Szalay (1983). A nice review was written by
Efstathiou (1990). The treatment of Compton scattering presented here is based on
Dodelson and Jubas (1995). If you were to read just one paper in this area, I would
recommend Ma and Bertschinger (1995), which skips many of the steps presented
here but has all the relevant formulae and the added virtue of equations in both
conformal Newtonian and synchronous gauges. For derivation of the polarization
terms in the Boltzmann equations, see Kosowsky (1996). The first paper to present
the Boltzmann equation for tensors was Crittenden et al. (1993).

We will not spend too much time in this book on different gauges or on the
decomposition of perturbations into scalar, vector, and tensor parts. Two excellent
review articles which discuss both of these topics in detail are Mukhanov, Feldman,
and Brandenberger (1992) and Kodama and Sasaki (1984). Both of these are also
very good on the subjects of the next two chapters, the perturbed Einstein equations
and inflation.

EXERCISES

Exercise 1. Derive the fluid equations for the collisionless, one-dimensional har-
monic oscillator by taking the moments of Eq. (4.6). The relevant quantities are the
number density and the velocity defined as integrals over the distribution function:

nE/ dp ; U;l/ dp g (4.109)

s 2T nJ_,2mm

Exercise 2. The metric in a synchronous gauge is

goo(l_",t) = —1
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go,'(.’f,t) =0
9i5(,t) = a® [8:; + hij], (4.110)
with perturbations
25 0 0
hy=| 0 -2 0 (4.111)

0 0 h+47
where 7 has nothing to do with conformal time. Here I have chosen the wavevector
k to lie in the Z direction. Derive the equivalent of Eq. {4.63) in synchronous gauge:
. u2h .
@+ik,u@—7—'P2(,u)f]= —7[©0 — © + uv]. (4.112)

Exercise 3. Start from the zero-order unintegrated Boltzmann equation (4.37).
Integrate this equation over all momenta to show that the number density falls off
as a3. In the course of this, you will have justified the left-hand side of Eq. (3.1).

Exercise 4. Show that the Pauli blocking factor 1— f. can be set to 1 for all epochs
of interest. First find f, as a function of temperature and number density using the
results/approximations of Section 3.1 (i.e. assume that T, « m.). Then, show that
as long as the temperature is much less than m,, f. is much less than 1.

Exercise 5. Suppose we started this chapter by writing

df

=0 4.113
Y (4.113)
Change from this form to the one in Eq. (4.1) (with df/dt) on the left. How is
the collision term here, C' related to C in Eq. (4.1)? Argue that the first-order
perturbations in the factor relating the two collision terms can be dropped since
the collision terms themselves are first-order.

Exercise 6. Derive Eq. (4.68), the unintegrated Boltzmann equation for a massive
particle.

Exercise 7. Account for the angular dependence of Compton scattering. Start
from Eq. (4.49) but instead of assuming the amplitude is constant, take

IM|? = 6rorm?2(1 + cos®[p-p ')).

Show that correctly accounting for the angular dependence introduces the factor of
(1/2)P2(1)O4 presented in Eq. (4.100).

Exercise 8. Show that the temperature of nonrelativistic matter scales as a=2 in
the absence of interactions. Start from the zero-order part of Eq. (4.68) and assume a
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form fum o e~ E/T = e=P°/2mT Note that this argument does not apply to electrons

and protons: as long as they are coupled to the photons, their temperature scales
as a”l.
Exercise 9. In Exercise 8, you showed that a thermal distribution of nonrelativistic
particles which do not interact has a temperature which scales as a~2 , as opposed
to that of relativistic particles which we have seen scales as a=!. So Ty, o T?. Fix
the normalization by requiring Ty, = T when each is equal to the dark matter
mass. Estimate the typical thermal velocity of a dark matter particle with mass
equal to 100 GeV when the photon temperature is 1 eV.

Exercise 10. The purpose of this problem is to derive the results of Section 2.3
using the Boltzmann equation. Multiply the zero-order part of Eq. (4.68) by
d*pE(p)/(27)% and integrate. Show that the resulting equation is identical to
Eq. (2.55).

Exercise 11. Consider the effect of a massive neutrino on the evolution equations.
(a) Start from the Boltzmann equation for a massive particle (4.68). Turn it into
an equation for AV, the perturbation to the massive neutrino distribution function.
Use the fact that to first order the neutrino distribution function is

_ o, 2
fo=F"+ TOTTVN (4.114)

where f,so) = [eP/Tv 4 1], Express the final equation in Fourier space using con-
formal time as the evolution variable.

(b) Recent experiments measuring the atmospheric neutrino flux suggest that the
mass of the tau neutrino is 0.07 eV, far larger than either the electron or muon
neutrino. Find the contribution of a 0.07-eV neutrino to the energy density today.
You may assume it is nonrelativistic.

(c¢) Consider the following two scenarios. Each has energy density equal to the crit-
ical density divided up between only two components: a cold, dark matter particle
and a neutrino. The neutrino in each case has the standard abundance and tem-
perature. The only difference between the two scenarios is in one the neutrino is
massless while in the other it has a mass of 0.07 eV. Plot the energy density as a
function of scale factor in each of the these scenarios. Note that they should agree
very early on (in each case there is only a relativistic neutrino early on) and very
late. The only difference comes in the middle.

Exercise 12. Show that ordinary matter is tightly coupled during the relevant
epochs in the early universe.

(a) Compute the ratio of the Coulomb scattering rate to the Hubble rate. You may
assume that all electrons and protons are ionized.

(b) Show that the rate for neutral hydrogen to scatter off ionized protons is always
much larger than the expansion rate even when the ionization fraction is on the
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order of 1071,

Exercise 13. Consider tensor perturbations to the metric. These do not perturb
goo(= —1) or go:(= 0). However, the spatial part of the metric is now

1+ hy Ny 0
gij:a2 h 1—hy O
0 0 1

Derive the equation for the photon distribution function in the presence of ten-
sor perturbations. Unlike scalar perturbations. tensor perturbations induce an
azimuthal dependence in ©,, so decompose the anisotropy due to tensors into

O (k, 1, ¢) = O (k, n)(1 — ) cos(26) + OL (k. p)(1 — ¥)sin(24).  (4.115)
Show that both the 4 and the x component satisfy

deT 1dh; 1
topkpol 4220 i leT - —oT, —
dn +l :u 1 2d77 T @1 1091.0

1 3
?G)ZQ — %924 (4.116)

where i stands for either x or +, and the moments are defined as were the scalar
monients, in Eq. (4.99).



5
EINSTEIN EQUATIONS

his formalism led to the set of equa-

tions (4.100) -(4.107). We need to supplement these equations with an account of
how the perturbations to the particle distributions affect the gravitational field. For
this, we need the Einstein equations of general relativity. The calculation detailed
in this chapter expands the Einstein equations perturbatively around the zero-
order homogeneous solution. Far from being subtle or complex as one might expect
from general relativity’s reputation, this calculation is completely straightforward,
although a bit long. Still, working through it is a “must-do-once” exercise, so the
steps are presented in some detail.

5.1 THE PERTURBED RICCI TENSOR AND SCALAR

The fundamental equation of general relativity (2.30) is a 4D tensor equation, so
in principle it represents 16 separate equations. However, since both sides of the
equation are symmetric tensors, only 10 of these are distinct. We are interested
though in only two of the 10, since the metric we are focusing on has only two
independent functions, ® and V.

Evaluating the left-hand side of the Einstein equation requires three pre-steps:

e Compute the Christoffel symbols, I'* .3, for the perturbed metric of Eq. (4.9).
e From these, form the Ricci tensor, R, using Eq. (2.31).
e Contract the Ricci tensor to form the Ricci scalar, R = ¢*'R,,,,.

Note that, unfortunately, even if we are interested in only several components
of the Einstein equations, we need to compute all the elements of the Ricci tensor.
For all the components of the Einstein tensor G, = Ry, — g, R/2 depend on the
Ricci scalar, which depends on all elements of R,,,.
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5.1.1 Christoffel Symbols

We have already computed the zero-order Christoffel symbols in Egs. (2.22) and
(2.23). Now we need to look at the first-order terms, those that are linear in @
and/or U. First let us consider I'’,,,,, which by definition is

1

Fopu = §g0a [gozp,u + Gav,u — guu,a] (51)
where again , means the derivative with respect to z®. The only nonzero compo-
nent of g% is the time component,! which is the inverse of ggg = —1 — 2¥. So, to

first-order in the perturbations, ¢°° = —1 + 2%, and

—142V¥

Fouu = —T“ [gO,u,u + Gov,u — g;u/,O] . (52)
Take each component in turn: first the one with g = v = 0. Each of the terms
in square brackets is identical, so the brackets give goo,0 = —2¥ . Since we are

interested only in first-order terms the factor of 2¥ out in front can be dropped
and we are left with

M = ¥ (5.3)

n this case, only one of terms in brackets in Eq. (5.2) is nonzero,
900,; = —2¥ ;. Once again since this is first-order, we can drop the factor of 2¥ in
front, leading to

I =T% =¥, =ik, V. (5.4)

The final equality here moves to Fourier space, where we will stay from now on.
Recall our convention of not using's for Fourier transformed variables: ¥ on the far
right is really 0.

EinalyNfbothNcwerindicesinBaNGEI2)NaeISpatiall the first two terms in

brackets vanish since go; = 0 and only the last term survives, leaving

1-2¢ 90
% = —5— g [dya*(1 +22)]. (55)

There is a zero-order term here, the one we computed in Eq. (2.22), and three
first-order terms:

I%; =60 [H+2H(® - V) + ] (5.6)

with H = (da/dt)/a.
Computing the Christoffel symbols, I, will be left as an exercise. They are

1We will do the calculation with z° = ¢, not conformal time. Therefore, ¥ ¢ for example means
derivative with respect to time. Since our convention is now ¥ = 0¥ /8n, ¥ o = ¥/a.
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Tjo =To; = b5 (H + )
[k = i@ [6:5kk + Sirk; — Ojkki] - (5.7)

Note that the only nonvanishing zero-order component is I'*jo, in agreement with
Eq. (2.23). Also remember that both §;; and the 3-vector k; live in Euclidean space,
so we can freely interchange their upper and lower indices.

5.1.2 Ricci Tensor

The Ricci tensor is most easily expressed in terms of the Christoffel symbols, as in
Eq. (2.31). First, consider the time-time component:

Roo = 00,0 — T%0a.0 + T%3aTP00 — T* 50T P 0a- (5.8)

All of these terms contribute at first-order. One simplification comes from consid-
ering the a = 0 part of all these terms. The first and second terms are equal and
opposite to each other as are the last two. So the sum over the index « contributes
only when « is spatial. Let’s consider each of the terms one by one.

e The first is

_ —k?
Mo = —5 ¥, (5.9)
a
using the first of equations (5.7).
e The second term in Eq. (5.8) is
d*a/dt?

~Tgio =3 ( — H* + ‘1),00> (5.10)

a
using the second of equations (5.7). The factor of 3 in front comes from the
implicit sum in §;;.

e The next term is [';3T%g. Note that %y is first order no matter what £ is,

so we need keep only the zero-order part of I';5. However, the last of equations
(5.7) shows that I'*;s is first-order unless § = 0. So to first-order,

5100 = 300
=3HVY . (5.11)
e Finally the last term is —Fi@OI‘BOi. In this case, if 8 = 0 both I'’s are first-order,
so their product is second-order and can be neglected. Therefore, only spatial 3
need be considered, leading to
—I ol = —T%;0I

=-3(H*+2H%). (5.12)
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Collecting these four sets of terms gives

d%a/dt®>  k?
v 2V = 3%.00 +3H(¥ 0 — 2%,0). (5.13)

Rog = -3
a

Note that the zero-order term agrees with Eq. (2.34).
The space-space part of the Ricci tensor is left as an exercise. It is

2
Ry = 63 [ <2a2H2 + agg) (1+ 20 — 20)

+ a?H (600 — W o) + a*® go + k2@ | + kik; (P + T). (5.14)

We can now contract the indices on the Ricci tensor and find the Ricci scalar:

R = gHVR,uV = gUOROO + ginij

dajdt? K
= [~1+ 29 {—3 ARy 3% g0+ 3H(W - 2@,0)}
a a
1-29 2172 d%a
+ [ — } 3{<2a H2+a"7) (1420 - 20)

+ a2H(6<1>,0 - \11,0) +a®® g + k2<1>} N HCES R (5.15)

First let us check the zero-order part of R. Combining terms, we find that it is
6(H? + ﬂléd-ﬁ), in agreement with Eq. (2.37). OIGCUMBCMISIEOrACIIDATINOTR W
go through the by-now-familiar routine of multiplying terms, keeping only those
first-order in ® and W. This gives

d%a/dt?  k?
a

§R = —60 + =W+ 3000 — 3H(T g — 20 )
a

d*a/dt?
a

— 60 <2H2 + > +3H (699 - V)

Kd kU

where the first line contains the terms from Ry (the second line in Eq. (5.15)) and
the last two from R;; {the last two lines in Eq. (5.15)). Combining these leads to

Ra/di?\ 2K
L) + 55U+ 600

SR = —120 <H2 +
a

2
P
—6H(T o — 4® o) + 4%. (5.17)
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5.2 TWO COMPONENTS OF THE EINSTEIN EQUATIONS

We can now derive the evolution equations for ® and ¥, the perturbations to
the Friedmann-Robertson-Walker metric. There is some freedom here because the
Einstein equations

GH, = 87GT", (5.18)

have 10 components and we need only two. All of the other eight components will
either be zero at first-order or be redundant.?

The first component we will use is the time-time component. Thus we need to
evaluate

1
G% = g"° {Roo - 590073}

= (1 + 20 Ry — . (5.19)

Here one of the indices has been raised by multiplying Ggo by ¢g"° (recall that g%
vanish). This turns out to simplify the energy—momentum tensor (see Exercise 3)
which sources the Einstein tensor. Also note that the second line follows from the
first since ¢"0gpp = 1. We have computed the time-time component of the Ricci
tensor (Eq. (5.13)) and the perturbed Ricci scalar (Eq. (5.17)), so the first-order
part of the time-time component of the Einstein tensor is

d?a/dt> k?
5G00 = —6¥ a/ + —Q\I/ + 3‘19,00 - 3H(\1/() — 2‘1)"0)
a
d?a/dt? k2
+ 60 <H2 i ) - 0 - 304
a a
k2O
+ 3H(\I/0 — 4@0) — 2CL—2 (520)
Combining terms leads to
0 2 K2
6G g = —6H® o +6VH" —2-—. (5.21)
a

Einstein’s equation equates G% with 87GT% where T,, is the energy-
momentum tensor. To complete our derivation of the first evolution equation for
® and ¥, therefore, we need to compute the first-order part of the source term,

T%. Recall from Section 2.3 HiafiSoGNSIEheIeneray densioN Al heiparticles]

2This is true for scalar perturbations. When we come to conside. tensor perturbations, some
of the other components will be useful.
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in the universe, and that the contribution from each species is an integral over the
distribution function (Eq. (2.59)),

3
@0 == Y o [ 5k B@RE. (5-22)

all species 1

Recall also that g; is the spin degeneracy of the species (has nothing to do with
the metric); E; = \/p? + m? is the energy of a particle with momentum p and
mass m;; and f; is the distribution function. In Section 2.3, we considered the
zero-order distributions of the smooth universe. To get the first-order part of the

his is easiest for the dark matter
and baryons. For we defined the right-hand side as —p;(1 4 d;) where ¢ labels either
dark matter or baryons. For photons, a little more care is required. Using the
definition of © in Eq. (4.35), we have

3 (0)
T = —2/ (5753 D [f(o) - p%@] (photons). (5.23)

The first term here is just the zero-order photon energy density, p,. To reduce the
second term, we first do the angular integral, which picks out the monopole ©¢ from
O. Then, we do the radial integral by parts. This changes the sign and introduces
a factor of 4 since Op*/0p = 4p®, leading to

T = —p~ |1+ 46q] (photons). (5.24)

The factor of 4 here is obvious in retrospect.

We should have expected that since p x T?,
0p/p = 46T /T. In any event, it falls out of the algebra. I harp on it only to warn
those who turn to the literature that authors are virtually split between those who
define © as dp/p and those who opt for the convention we use here. Finally, note
that the first-order contribution from massless neutrinos is identical in form,

T% = —p, [1 4+ 4Ng] (neutrinos). (5.25)

In principle, we should also include a term for the perturbation to the dark
energy. In practice, though, most models of the dark energy predict that (i) it
should be smooth and (ii) it should be important only very recently. Both of these
features are inherent in the cosmological constant model for example. There are
some models which deviate from one or both of these conditions, but for the most
part we are justified in neglecting the dark energy as a source of perturbations to
the metric.
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Returning to Einstein’s equation, we equate Eq. (5.21) with 87G times the first-
order part of the time-time component of the energy-momentum tensor. Dividing
both sides by 2 leads to

, k2@
—3H® o+ 3VH” — = —47G [pamd + ppob + 49,00 + 4pLNo] . (5.26)
It is again useful to write the equation in terms of conformal time. This introduces
an extra factor of 1/a every time a time derivative appears, so

ERiSHSIGTRAISIGVOITIoNN SqUAtoRNOIIEHANT In the limit of no expansion

(a = constant), Eq. (5.27) reduces to the ordinary Poisson equation for gravity (in
Fourier space). The left-hand side is —V2® while the right-hand side is 47Gép.
The terms proportional to a account for expansion and are typically important for
modes with wavelengths (~ a/k) comparable to, or larger than, the Hubble radius,
H~'. We need this general relativistic expression when we consider the evolution of
parturbations, because almost all modes of interest today used to have wavelengths
larger than the Hubble radius. More on this in Chapter 6.

We now obtain a second evolution equation for ® and ¥. Since we have already
dealt with the time-time component of the Einstein tensor, let’s focus on the spatial
part of G,

ik
P ik grj ] _ 6" (1 —29) bij
From Eq. (5.14), we see that most of the terms in Ry; are proportional to d;.
When contracted with 6** this will lead to a host of terms proportional to d;;, in

addition to the last term here, the one proportional to R. Therefore,

, kiki(®+ ¥
G'; = Ab;; + L(Q*_) (5.29)
a
where A has close to a dozen terms which we would rather not write down. Since
all of these terms are proportional to &;; they all contribute to the trace of ij.
To avoid dealing with these terms, consider the longitudinal, traceless part of G*;,
which can be extracted by contracting
That is, it picks out the piece which is longitudinal, traceless and only that part
(Exercise 4). This projection operator kills all terms proportional to d;;, leaving
only
. a N . N [ kEi(D+ T 2
(kzikf - (1/3)8]) G5 = (ki - (1/3)87) <%+—)> = k(@ + 1),
a a
(5.30)
This is to be equayed with the longitudinal, traceless part of the energy-—
momentum tensor, extracted in the same fashion:
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(b a1y = Y o [ SEEE U ey

all species i

We can immediately recognize the combination u? — 1/3 as proportional to the
second Legendre polynomial, more precisely equal to (2/3)P2(u). Therefore, the
integral picks out the quadrupole part of the distribution. Of course the zero-order
part of the distribution function has no quadrupole, so the source term is first order,
proportional to ©s, which is nonzero only for neutrinos and photons. The integral
in Eq. (5.31) for photons is

dpp? ,0f© dp 2 20, [d of©
3 ppzp2f / NPQ( )@()_2_2 ppzp f
2w dp J_y 2 3 27 dp
8p(0 9,

= =2 (5.32)

where the first equality follows from the definition of the quadrupole and the second
from an integration by parts

For the second Einstein equation, we therefore equate Eq. (5.30) with 87G times
the photon and neutrino anisotropic stresses:

k(@ + U) = —327Ga? [p4O2 + p, N2l . (5.33)

That is, the two gravitational potentials are equal and opposite unless the pho-
tons or neutrinos have appreciable quadrupole moments. In practice, the photons’
quadrupole contributes little to this sum, because it is very small during the time
when it has appreciable energy density. [Recall the argument after Eq. (4.54).]

5.3 TENSOR PERTURBATIONS

Until now, we have focused almost exclusively on scalar perturbations to the homo-

geneous FRW universe.
ie.,
his focus is reasonable:

For the
most part, the density fluctuations that led to the structure of the universe are our
primary interest.

Nonetheless, many theories of structure formation produce, in addition to scalar
fluctuations, tensor perturbations to the metric. These are potentially detectable

because they produce observable distortions in the CMB, especially on large scales.
Sprinkled throughout the book, therefore, are exercises (with hints) relating to
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tensor perturbations. The tools needed to study these are precisely those we crafted
when studying scalar perturbations. For the most part, therefore, 1 regard the
evolution of tensor perturbations as one rather large homework problem, one which
introduces no new physics.

One question which naturally arises when working out these exercises, though,
is why consider scalar and tensor perturbations separately? To answer this question
(and to alleviate the homework load) this section derives Einstein’s equations for

tensor perturbation:
o the presence of tensor perturbations

does not affect the scalars and vise versa. Contrast this with ® and ¥. We have just
shown that they are quite tightly coupled to each other. It is impossible to learn

about ® without also solving for W.
Needless to say, it is much more instructive

to work out an example of this theorem than to prove it abstractly. Incidentally,
as you would expect, the same theorem can be applied to vector perturbations.
These too are produced by some early-universe models (but not as ubiquitously as
tensors) and can be treated completely independently.

Tensor perturbations can be characterized by a metric with gg9 = —1, zero
space-time components go; = 0, and spatial elements

1+h+ h/>< 0
gj=a>| hx 1—hy 0]. (5.34)
0 0 1

That is, the perturbations to the metric are described by two functions, k4 and hy,
assumed small. For definiteness, I have chosen the perturbations to be in the z-y
plane. This corresponds to an implicit choice of axes; in particular, it corresponds to
choosing the z-axis to be in the direction of the wavevector, k. More generally, .
If this
perturbation tensor is written as H,;, divergenceless means that k*H,; = k' H,;; = 0.
This is clearly satisfied by Eq. (5.34) since there are no components in the k=2
direction. Tracelessness is also satisfied since the sum of the perturbations along
the diagonal vanishes.
Once the metric in Eq. (5.34) has been written down, we can blast away and
derive the Einstein equations. Once again the derivation proceeds in three steps:
(i) Christoffel symbols, (i) Ricci tensor, and (iii) Ricei scalar.

5.3.1 Christoffel Symbols for Tensor Perturbations

First consider I'°,5. The metric we are considering in Eq. (5.34) has constant goo
and vanishing go;. Recall that the Christoffel symbol is a sum of derivatives of the
metric. The only terms that will be nonzero are those which involve derivatives of
the spatial part of the metric, g;;.o. Therefore, we can immediately argue that

%0 =1%, =0. (5.35)
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The term with two lower spatial indices is
o 00
I = 5 90

1
= 591‘]"0. (536)

Let’s use the notation mentioned earlier: the 3D matrix H;; contains the per-
turbations, which in this basis (with k in the Z direction) is equal to

hi hx 0
Hij=| b —hy O (5.37)
0 0 0

so that g;; = a®(d;; + Hij). Therefore,
9ij.0 = 2Hgi; + a®Hijo (5.38)

where the Hubble rate H is not to be confused with tensor perturbations H. The

first nonzero Christoffel symbol is therefore

(127'{1']',0
2

I'Y%; = Hgi; + ) (5.39)

When both lower indices on I' are 0, the Christoffel symbol vanishes. The two
remaining components are I'*; and I'*;;. The former is
ik

Fioj = %gjk,()' (540)

The time derivative of g;; acts on both the scale factor and on the perturbations
hy x, as in Eq. (5.38), so

) ik
Iy = 97 [2Hg; + a®Hji 0] - (5.41)

But g*g;r = 8,5, so the first term here is simply §;; H. To get the second, we can
set g'F = §;1/a? (i.e., neglect first-order terms) since it multiplies the first-order H.
So,

. 1
I”Oj = H(Sij + 57‘(1]‘,0, (5.42)

where I have used the fact that H,; is symmetric.
The last Christoffel symbol we need is I jk- In Exercise 7 you will show that

) i
[ = B (kxHij + kjHix — kiHji] - (5.43)
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5.3.2 Ricci Tensor for Tensor Perturbations

Following the same steps as in the scalar perturbation case, we now combine these
Christoffel symbols to form the Ricci tensor. First we compute the time-time com-
ponent of the Ricci tensor:

Roo = T%0.0 — T%a,0 + I 8alP00 = T%01 g0 (5.44)

We have shown that the Christoffel symbol vanishes for tensor perturbations when
the two lower indices are time-time. Therefore, the first and third terms here are
zero. Using the same argument, the indices & and 3 in the second and fourth terms
must be spatial, so

Rogo = —T"0s0 — 50V 0i- (5.45)

Using Eq. (5.42) for I'Yjo which is the only element appearing, we find that

dH 1
Roo = —3?[ - §Hii,00
1 1
— <H5ij + EHij’O) (Héij + 57‘(1'3‘,0) . (5.46)

On the first line, the trace H;; vanishes since k. appears in the metric with opposite
signs along the diagonal. Expanding the second line out to first-order leads to a
similar cancellation: H;; is multiplied by d;;, so there are no first-order terms. The
zero-order terms combine to form

3d2a/dt2
a

Roo = — , (5.47)
an equation in which we are by now quite confident since this is the third time
we have derived it (see equations (2.34) and (5.13)). Of course the big news here
is not that we have correctly derived the zero-order term, but rather that tensor
perturbations do not appear at first-order in Rgg. Looking ahead, we will soon
see that the Ricci scalar also has no tensor contribution (even though R;; does).
Therefore, we can anticipate that the time-time component of Einstein’s equations
contains no tensor perturbations. This is important for it tells us that density
perturbations — which form the right hand side of the time-time component as
shown in Eq. (5.26) —do not induce any tensor perturbations. We are beginning
therefore to get a glimmer of the decomposition theorem.

Tensor perturbations, however, are decoupled from these and
evolve on their own.

The spatial components of the Ricci tensor do depend on the tensor perturbation
variables. We now turn to

Rij = Faij,a — Faia‘j + I‘“agl‘ﬁij - I“O‘le“ﬁm. (548)
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Let’s consider the first two terms together. Expanding out leads to
P =T =T 0 + Tk — T (5.49)

since o = 0 does not contribute in I'*;, ; because of Eq. (5.35). The hardest (i.e.,
longest) term here is the first, which involves multiple time derivatives. Let’s post-
pone its calculation by recalling that I'%;; = g;;,0/2 so that the first term can be
written in shorthand as g;;00/2. The last term in Eq. (5.49) vanishes since T'*;, = 0
for tensor perturbations. Combining the other terms then leads to

a ij, 1
T — Ty = & 20+ 5 [habiHe = kikiMix + K25 (5.50)
Recall that we chose k to be along the z-axis. Therefore, the indices ¢ and % in the
first term in brackets must be equal to 3. But these multiply H ;i = H;3 = 0 so this
term and its cousin k;kiH;, must both vanish. Therefore,
iy k2
Faij.a _ Faiu.j — gz],OO + _Hﬂ (551)
2 2
The third term in Eq. (5.48), ['“,T'%;;, is nonzero only when the index o is
spatial, so

I0gP 55 = TF ol + TRy (5.52)

But each of the Christoffel symbols in the second term here are first-order, so their
product vanishes. In the first term, the sum over k makes the first-order terms go
away, so ['*1o is purely zero-order, 3H. Therefore,

3
To5T%,; = §Hgij,0- (5.53)

The final term in Eq. (5.48) will be left as an exercise; it is
5,170 = 2H%g,; + 20> HH,j0. (5.54)

We can now combine all four terms in Eq. (5.48) to get

i k2 3
Rij = _932_00 + ?Hji + ngij.O

~ 2H?%g,; — 2a® HH,j . (5.55)

We now need to expand out the time derivatives of the metric. Using Eq. (5.38),
one finds
d%a/dt?

a

93,00 = 2655 (

Therefore the Ricci tensor is

Ri; = gi (

+ H2> + 4a2HHi]-,o + G2Hij,00' (5.56)

2 2
d a/dt +2H2 + §CLQI{’Hi’()
a 9 Js
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2
+ (12 Hz],OO + 'k_Hij- (557)
2 2
Again we see that we have successfully recaptured the zero-order part of the Ricci
tensor. Remarkably, we will see that the first-order parts — when used in Einstein’s
equations — do not couple to the scalar perturbations.
First, though, we must compute the Ricci scalar:

R = ¢"Rgo + gV Ry;. (5.58)

The time-time product is all zero-order, so we can neglect it when considering the
first-order piece 6R. The space-space contraction has two types of terms. First, there
are the terms in Eq. (5.57) proportional to the metric g;;. But g¥g;; = 3, so there
are no first-order terms here. All the other terms in Eq. (5.57) are proportional
to H,;, so when contracting them we can set g7 to its zero-order value, 8ij/a?.
This corresponds to taking the trace of the first-order terms in Eq. (5.57). Since
all first-order terms are proportional to H;;, the trace vanishes. Therefore, tensor
perturbations do not affect (at first order) the Ricci scalar.

5.3.3 Einstein Equations for Tensor Perturbations

Now let’s read off the perturbations to the Einstein tensor induced by tensor modes.
Since the Ricci scalar is unperturbed by tensor perturbations, the first-order Ein-
stein tensor is simply

6G'; = 6R';. (5.59)

To get Rij, we contract gikRkj, using the Ricci tensor we computed in Eq. (5.57).

The first term, proportional to the contraction of glkgkj = 0;, has no first-order

piece; the remaining terms are explicitly first-order in H, so we can set, g** = §% /a2,

leading to

Hijoo | K

: —Hij| - 5.60
y Tt (560)

, I3
0G; =% | SHMij0+

We can now derive a set of equations governing the evolution of the tensor variables,
hy and hy.

To derive an equation for h, let us consider the difference between the 1 and 2,
components of the Einstein tensor. The Einstein tensor in Eq. (5.60) is proportional
to H;; and its derivatives. Since Hy; = —Haz = hy, 6G'; is equal and opposite to
8G?,. Therefore,

k2h,
(12

(5G11 - (5G22 = 3Hh+,0 + h+,00 + . (561)

Change to conformal time so that hy o = hy/a and hy g9 = hy/a® — (a)a®)hy.
Then,

a? [§GY) = 6G%) = hy +22h, + K2hy. (5.62)
a
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The right-hand side of this component of Einstein’s equations is zero (Exer-
cise 8), and hy obeys the same equation (Exercise 9), so the tensor modes are
governed by

b + 2% R + k2he = 0 (5.63)
a

where @ = +, X. Equation (5.63) is a wave equation, and the corresponding solu-
tions are called gravity waves. For example, if we neglect the expansion of the
universe so that the damping term in Eq. (5.63) vanishes, we immediately see that
the two solutions are hq o eT**7.In real space, then the perturbation to the metric
is of the form

ho(T,n) = /dBke“;'i [Ae™* + Be™] (no expansion). (5.64)

The two modes here corresponds to waves traveling in the +2 direction at the speed
of light.
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Figure 5.1. Evolution of gravity waves as a function of conformal time. Three different modes
are shown, labeled by their wave numbers. Smaller scale modes decay earlier.

Equation (5.63) is a generalization of the wave equation to an expanding uni-
verse. Exercise 12 illustrates that if the universe is purely radiation or matter dom-
inated, exact analytic solutions can be obtained. These are oscillatory, like the
simple ones in Eq. {5.64), but also damp out. Figure 5.1 shows the evolution of A,
for three different wavelength modes. The large-scale mode (with kng = 10) remains
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constant at early times when its wavelength is larger than the horizon kn < 1. Once
its wavelength becomes comparable to the horizon, the amplitude begins to die off,
oscillating several times until the present. The small-scale mode kny = 1000 shown
in Figure 5.1 also begins to decay when its wavelength becomes comparable to the
horizon. Its entry into the horizon occurs much earlier, though, so the decay is much
more efficient. By today, the amplitude is extremely small.

5.4 THE DECOMPOSITION THEOREM

The decomposition theorem states that perturbations to the metric can be divided
up into three types: scalar, vector, and tensor. Each of these types of perturbations
evolves independently. That is, if some physical process in the early universe sets
up tensor perturbations, these do not induce scalar perturbations. Conversely, to
determine the evolution of scalar perturbations, we will not have to worry about
possible vector or tensor perturbations.

Now that we have computed the contributions to the Einstein tensor G,,,, from
scalars and tensors, we can demonstrate the decomposition of these two types of
perturbations. To do this, remember that we obtained the scalar equations by con-
sidering the two components of Einstein’s tensor:

G% (kil’cj—(1/3)5ij)cij. (5.65)

Inserting these components into Einstein’s equations led to equations (5.27) and
(5.33). If we can show that tensor perturbations do not contribute to these two com-
ponents, then we will have convinced ourselves of at least part of the decomposition
theorem, namely that the equations governing scalar equations are not affected by
tensors.

It is easy to see that tensor perturbations do not contribute to GY%. For G%
depends on Rgp and R. But we have seen that both of these do not depend on h,
or hy.

Now let’s show that (k;k; — 4y /3)G*; also does not pick up a contribution from
tensor perturbations. Multiply Eq. (5.60) by the projection operator:

(kik, = (1/3)35) 8G", = (81adya — (1/3)8)

M, k2
;00 + 55 Mis (5.66)

3
X IZEHHU'O +
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where the equality holds since we have chosen k to lie in the # direction. The terms
in which indices i and j are set to 3 vanish since H33 = 0. The only remaining terms
are those proportional to §;;. But the Kronecker delta instructs us to take the trace
of H. This too vanishes. The scalar equations we derived in the previous section
are therefore unchanged by the presence of tensor modes. This is a manifestation
of the decomposition theorem.

5.5 FROM GAUGE TO GAUGE

Let’s go back to scalar perturbations. Until now, we have characterized these with
¥ and @ in the form of Eq. (4.9). This corresponds to a choice of gauge or a choice
of a coordinate system with which to study the space-time. If we changed the
coordinate system we use, we would get a metric of a different form, i.e., a different
gauge. Although we will work almost exclusively in the gauge corresponding to
Eq. (4.9), the conformal Newtonian gauge, historically many other gauges have been
used, and for different parts of the “cosmological perturbation” problem, different
gauges have their advantages. Indeed, we will see in Section 6.5.3 that people who
work on the theory of inflation sometimes prefer a gauge with spatially flat slicing
(gi; unperturbed), since the equations for the perturbations generated by inflation
simplify considerably. Also, the code currently used by most people to compute
anisotropies and inhomogeneities in the universe uses synchronous gauge, partly
because the equations are better behaved numerically in that gauge. So the ability
to move back and forth between different gauges is useful, and I want to spend a
few pages describing how to do this.
Most generally, scalar perturbations to the metric can be written down as

goo = — (1 4+ 2A4)
goi = —aB;
gy = a <5ij [1 + 21;’)} - 2E.i]’) . (5.67)

There are four functions which characterize scalar perturbations to the metric:

In conformal Newtonian gauge,

A=W and v = ®, while B=F = 0.
How do we transform from one gauge to another? The invariant distance of
Eq. (2.2) does not change if different coordinates Z are used instead of z. Therefore,

Gop(3)di®di? = g, (x)dr"dz", (5.68)

where I have used a different set of dummy indices on both sides to make the
upcoming few lines clearer. One of the differentials on the left-hand side can be
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written as d&® = (02®/dz*)dx* and similarly with the other differential, so equat-
ing coeflients of dz#dx¥ leads to

., 07 93P
gaﬁ(@@;ﬁ = g (). (5.69)

This equation is what we are after: a prescription for how the metric changes under
a coordinate transformation.
The most general coordinate transformation is generated by

t—1i=1t+%7)
T i =2+ 6YE (4, T), (5.70)

where we take £° and £ to be small perturbations of the same order as the variables
characterizing the perturbations. Let’s examine how the metric changes under such
a transformation. I'll work out one component explicitly and leave the rest as an
exercise. Consider the g9 component of Eq. (5.69):

. 01 97
900 "t

I claim that the only term that contributes to the left-hand side is the one with
o = 3 = 0. Consider for example a = 0 and 8 = i. The off-diagonal component
of the metric gy, is proportional to B,i a first-order perturbation. But 9z%/0t is
proportional to the first-order variable £, so the product is second-order and can
be neglected. A similar argument holds for the a = i; 3 = j terms. Therefore, the

left-hand side is simply
" a0\ ?
- [1+24] (”E)

- [1 +2A} <g—f>2

= —[1+424]. (5.71)

- g0
~—-1-24-2 —. 5.72
1-2 B (6.72)
Equating this with ggo leads to
- o0
—24 -2 = =24 5.73
242 % < 24, (5:73)

so under the coordinate transformation specified by Eq. (5.70)
R 1.,
Ao A=A— 20 (5.74)
a
In a similar vein, the other components of the metric transform into

Y =19~ HE
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~ 0 .
B=B-> 1§
Qa

E=E+¢. (5.75)

One technical point: Egs. (5.74) and (5.75) describe how the components of the
metric tensor transform under general coordinate changes. These equations, which
have become standard, are a bit misleading, though, because each of the individual
functions, A for example, transforms as a scalar, i.e., does not change under a spatial
coordinate transformation. Here we have transformed the metric and accomodated
the resulting changes in new definitions of A, B,v, and E. This is not the same
thing as seeing how A by itself changes under a transformation.

To sum up, then, there are four functions which characterize scalar perturba-
tions, but these can be manipulated with two other functions which characterize
coordinate transformations. For example, starting with a metric in which E # 0,
it is trivial to make a transformation to eliminate F: simply choose £ = —F, and
the resulting £ = 0. Thus, there are really only 4 — 2 = 2 functions which mat-
ter. Indeed, this is the reason that we had only ® and ¥ in conformal Newtonian
gauge. More generally, one might hope to construct two gauge invariant variables,
those which remain unchanged under a general coordinate transformation. Bardeen
(1980) first identified two such variables:

b =A+ 258—7; [a(E—B)]
dy = - +aH(B - E). (5.76)

In conformal Newtonian gauge, in which F = B =0, &4 = ¥ and &y = —9.

We will do precisely this
in Section 6.5.3. In other words, ® 4 and ®p are useful shortcuts or recipes for
transforming from one gauge to another.

Under a general coordinate transformation, the components of the energy-
momentum tensor 7}, also change. In exact analogy with the metric tensor,

- 0x% 028
T (2) = @ﬁTaﬂ(l‘)' (5.77)
Again, though, Bardeen found combinations of the components of T},,, which remain
invariant and therefore facilitate mapping from one gauge to another. In particular,
in Fourier space A
kiTO .
v=ikB + ——— 5.78
(p+Pa (578)
remains invariant under a coordinate transformation. In conformal Newtonian
gauge, for matter, v is indeed equal to the v we defined in Chapter 4. For radi-
ation, v = —3i0©,.1, i.e., proportional to the dipole, again in conformal Newtonian
gauge. A second invariant is the generalized perturbation to the energy density,
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0
€m=—1—— 4+ —pkiTOi. (5.79)

For matter, in conformal Newtonian gauge, €, = § + (3aHuv/k); i.e., it reduces
to the ordinary overdensity § on scales smaller than the horizon. For radiation,
€m = 40,9 — 1210, 1aH/k, again reducing to the standard overdensity on small
scales.

5.6 SUMMARY

The Einstein equations relate perturbations in the metric to perturbations in the
matter and radiation| Taking two components of the Einstein equations G, =
81GT,,, we found equations governing the evolution of the two functions which
describe scalar metric perturbations, ® and ¥ of Eq. (4.9). It is easiest to write
these equations in Fourier space. Again recalling our convention of dropping the s
on transformed variables, we can write

K2® + 3% (@ - wg) = 471G a® [pmbpm + 4prOr ] (5.27)

E*(® + ) = —3271Ga’p, O, 5. (5.33)

Here subscript m includes all matter such as baryons and dark matter and subscript
r all radiation such as neutrinos and photons. More precisely

Pmbm = pamd + ppdy ; prOro = pyO0 + puNo

PmVUm = Pdm¥ + PpUb ; prOr1 = py01 + pu N7 (5.80)

Some of the other components of Einstein’s equation are redundant; they add no
new information about the evolution of ® and ¥. An example is the time-space
component, which you can derive in Exercise 5. At times, though, one form of the
evolution equation will be more useful than another. For example, one combination
(Exercise 6) of these equations leads to an algebraic equation for the potential,

3aH ;.
k2® = 47Ga? | pmbm + 4p, 0,0 + aT <2pmvm + 4pr®m)] . (5.81)

Other components of Einstein’s equation contain information not about the
scalar perturbations ® and ¥, but about vector and tensor perturbations. Scalar,
vector, and tensor perturbations are decoupled: each evolves independently of the
others. We will see in Chapter 6 that inflation can produce tensor perturbations, so
it is important to know what the Einstein equation says about their evolution. We
showed that there are two functions which can characterize tensor perturbations,
h4 and hy; each of these evolves independently and satisfies

b + 2%}1& 4 k2hg =0 (5.63)

where a denotes +, x. In an expanding universe, the amplitude of a gravity wave
described by Eq. (5.63) falls off once the mode enters the horizon.
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SUGGESTED READING

Most cosmology books offer some treatment of the perturbed Einstein equations in
cosmology. Again The Large Scale Structure of the Universe (Peebles) is a useful
reference, especially for synchronous gauge. Cosmological Inflation and Large Scale
Structure (Liddle and Lyth) has a very nice treatment which, among other virtues,
explains the physics of gauge choices. Probably the two most comprehensive works
are the review articles by Mukhanov, Feldman, and Brandenberger (1992) and
Kodama and Sasaki (1984), with the former slightly more accessible and the latter
more general. These are both based on the seminal Bardeen (1980) article which
is remarkable for its clarity and conciseness in its treatment of gauge invariant
variables.

The general relativity books mentioned in Chapter 2 all have good discussions
of gravity waves. Before turning to any of the technical literature, though, you must
read Black Holes and Time Warps (Thorne), a wonderful mixture of the history,
science, and personalities associated with 20th-century general relativity. It is the
best popular science book I have ever read.

EXERCISES

Exercise 1. Derive the Christoffel symbols, I['%,,, given in Eq. (5.7). When doing
this, you will need ¢g*/. Show that it is equal to &;;(1 — 2®)/a®.

Exercise 2. Show that R,; is given by Eq. (5.14).

Exercise 3. Use the full general relativistic expression for the energy momentum
tensor given in Eq. (2.101), which holds even in the presence of metric perturbations.
Show that, with scalar perturbations to the metric, the phase space integral for the
time-time component reduces to that in Eq. (5.22). Show that the contribution
from species o to T?; is
3
79, = gaa/ A fulp E 1), (5.82)
(2m)°

Note the extra factor of a.
Exercise 4. Consider a 3D matrix with components G;; = (lAcilAfj — ;5 /3)GE. Show

that this form is traceless and satisfies ¢G5 = 0 so it is the proper form for
the longitudinal component.

Exercise 5. Compute the time-space component of the Einstein tensor. Show that,
in Fourier space,

G = 2ik; (? - H\I/) . (5.83)

a

Combine with the energy-momentum tensor derived in Exercise 3 to show that
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. 47Ga?
b — aHV = ﬂika [Pam? + pyvy, — 4ip Oy — 4ip, Ny . (5.84)

The time-space component of Einstein’s equations adds no new information once
we already have the two equations derived in the text. Deciding which two to use
is a matter of convenience.

Exercise 6. Take the Newtonian limit of Einstein’s equations. Combine the time-
time equation (5.27) with the time-space equation of Exercise 5 to obtain the alge-
braic (i.e., no time derivatives) equation for the potential given in Eq. (5.81). Show
that this reduces to Poisson’s equation (with the appropriate factors of a) when the
wavelength is much smaller than the horizon (kn >> 1).

Exercise 7. Fill in the blanks in the derivation of the tensor equation.
(a) Show that I'*j; is given by Eq. (5.43) in the presence of tensor perturbations.
(b) Show that the last term in Eq. (5.48) is given by Eq. (5.54).

Exercise 8. We defined the perturbations to the photon distribution function via
Eq. (4.34). Show that, if © depends only on p, the cosine of the angle between
k(= % here) and p, then T — T2, vanishes. This is indeed the dependence we have
been dealing with so far. This is yet another aspect of the decomposition theorem:
the terms © that source the scalar perturbations (and are sourced by them) do not
affect tensor perturbations. Anisotropies induced by tensor perturbations will have
O of the form

O, 0) = (1 - p?) cos(2¢)0 4 () (5.85)
for those perturbations generated by h, and a similar expression for hy with the
cos replaced by a sin. These, however, have a negligible impact on the evolution of
the gravity waves, so we are justified in setting the right-hand side of Eq. (5.63) to
zero.

Exercise 9. Use the !5 component of the Einstein equations to show that hy obeys
the same equation as does h.

Exercise 10. Show that scalar perturbations (® and ¥) do not contribute to either
G'; — G?; or to G',. This completes the demonstration of the decomposition the-
orem for scalars and tensors.

Exercise 11. Consider vector perturbations to the metric. These can be described
by two function h., and h,, where again only the spatial part of the metric is
perturbed. The perturbative part of g;; is

0 0 hg,
hy=1 0 0 hy|. (5.86)
hee hy: O

Show that h;, and h,, do not affect any of the equations we have derived so far
for scalar or tensor evolution — yet another aspect of the decomposition theorem.
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Exercise 12. Solve the wave equation (5.63) if the universe is purely matter dom-
inated. Do the same for the radiation-dominated case.

Exercise 13. Define the transfer function for gravity wave evolution as

_ halk,m) kn
=5 k=0 <3j1(kn)> ' (5:87)

You should recognize the term in parentheses as the inverse of the matter-dominated
solution you derived in Exercise 12. Solve Eq. (5.63) numerically and compute the
transfer function. Compare your solution with the fit of Turner, White, and Lidsey
(1993),

T(y) = [1+1.34y + 2.59%] (5.88)

where y = (kno/370h) (with h parametrizing the Hubble constant). Assume the
universe today is flat and matter dominated, but account for transition from matter
to radiation.

Exercise 14. Derive the transformations in the metric components given by
Eq. (5.75). Show that ® 4 and @5 do not change under a general coordinate trans-
formation.



6
INITIAL CONDITIONS

In order to understand structure in the universe, we have derived the equations
governing perturbations around a smooth background. Before we start solving these
equations, we need to know the initial conditions. This quest for initial conditions
will lead to an entirely new realm of physics, the theory of inflation. Inflation
was introduced (Guth, 1981; Linde 1982; Albrecht and Steinhardt, 1982) partly to
explain how regions which could not have been in causal contact with each other
have the same temperature. It was soon realized (Starobinsky, 1982; Guth and
Pi, 1982; Hawking, 1982; Bardeen, Steinhardt, and Turner, 1983; Brandenberger,
Kahn, and Press, 1983; Guth and Pi, 1985) that the very mechanism that explains
the uniformity of the temperature in the universe can also account for the origin
of perturbations in the universe. Therefore, in order to produce a set of initial
conditions, we will need to detour into the world of inflation. One warning: we are
not sure that inflation is the mechanism that generated the initial perturbations.
It is very difficult to test a theory based on energy scales well beyond the reach of
accelerators. Nonetheless, it is by far the most plausible explanation. Indeed, one
of the current problems in cosmology is that there is really no viable alternative to
inflation. Also, the next generation of CMB and large-scale structure observations
will put inflation to some stringent tests.

6.1 THE EINSTEIN-BOLTZMANN EQUATIONS AT EARLY TIMES

Chapters 4 and 5 contain nine first-order differential equations for the nine per-
turbation variables we need to track. In principle, we need initial conditions for
¢!l of these variables. In practice, though, a combination of arguments will relate
many of these variables to each other, and we need only determine the initial con-
ditions for one of these. This section determines the way all variables depend on
the gravitational potential ® at early times; the remaining sections work out the
initial conditions for .

Let us consider first the Boltzmann equations (4.100)-(4.107) at very early
times. In particular, we want to consider times so early that for any k-mode of
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_ This inequality immediately leads to several important simplifi-
cations. Consider the terms O and iku© in Eq. .

A hypothetical observer then who sees
only photons from within his causal horizon will see a uniform sky. _
e (255 el o s T, =), S AR
perturbations to the photon and neutrino temperatures evolve according to

90 + d=0

No+d=0. (6.1)

The same principles can be applied to the matter distributions. The overdensity
equations reduce to

§=-30

oy = —30. (6.2)

The velocities are comparable to the first moments of the radiation distributions,
so they are smaller than the overdensities by a factor of order kn and may be set
to zero initially.

That is, the largeness of 7 in Eq. (4.106) ensures that v, = —310;. We will use this
later when reexamining the Boltzmann equations closer to decoupling.

Now let us turn to the Einstein equations at early times. First consider
Eq. (5.27). The first term there contains a factor of k? so may be neglected. Also
the two matter terms on the right are negligible at early times since radiation
dominates. Therefore, we have

3% <<I> - Z@) = 167Ga® (p,O0 + puNo) . (6.3)

But since radiation dominates, a o n (recall Eq. (2.100) and the discussion imme-
diately afterward) so a/a = 1/7. Therefore,

® T 167Gpa? v
__7:¥111<&%+&W0
/A 3 p p

:2<&%+&M> (6.4)
P P

n2

where the last equality follows by virtue of the zero-order Einstein equation.
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To simplify further, we can define the ratio of neutrino energy density to the
total radiation density as

P
f, = ) (6.5)
Pyt P
Then multiplying Eq. (6.4) by n? leads to
on - =2([1-£]00+ fuNo). (6.6)

Recall that Eq. (6.1) relates the derivative of the monopoles to the derivative of the
potential. We can therefore eliminate both monopoles from Eq. (6.6) by differenti-
ating both right- and left-hand sides. Then,

dn+d -0 =20 (6.7)

where the right-hand side follows since both ©g and N are equal to —& for these
large scale modes.

So far we have used only one Einstein equation. The second, Eq. (5.33), describes
how the higher moments of the photon and neutrino distributions cause ¥ + ® to
be nonzero. Let us here neglect these higher order moments, which cause the sum
of the gravitational potentials to be slightly nonzero.! Under this approximation,
we can eliminate ¥ everywhere by simply setting it to —®. Then,

dn + 49 = 0. (6.8)
Setting ® = 5P leads to the algebraic equation
plp—~1)+4p=20 (6.9)

which allows two solutions: p = 0, —3. The p = —3 mode is the decaying mode. If it
is excited very early on, it will quickly die out and have no impact on the universe.
The p = 0 mode, on the other hand, does not decay if excited. It is the mode we
are interested in. If some mechanism can be found which excites this mode, this
mechanism may well be responsible for the perturbations in the universe.

Focusing therefore on only the p = 0 mode, we see that Eq. (6.6) relates the
gravitational potential to the neutrino and photon overdensities:

®=2([1- f,]00+ fuNo). (6.10)

Both ©g and AN are also constant in time. In most models of structure formation,
they are equal since whatever causes the perturbations tends not to distinguish
between photons and neutrinos. Therefore, we will set

ok, m) = Nok.m,) (6.11)

which leads to

where I have explicitly written the k-dependence of all these variables and the fact
that we are setting up the initial conditions at some early time 7;.

1See Exercise 2 for a careful accounting of the effect of the neutrino quadrupole; the photon
quadrupole is kept minuscule by Compton scattering, so it really does not contribute to Eq. (5.33).
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The initial conditions for matter, both § and 6, depend upon the nature of the
primordial perturbations. Combining the first of equations (6.1) and (6.2) leads to

6 = 30¢ + constant (6.13)

for the dark matter overdensity, with an identical equation for the baryon overden-
sity. Primordial perturbations are often divided into those for which the constant
in Eq. (6.13) is zero (adiabatic perturbations) and those for which the constant
is nonzero (isocurvature perturbations). Adiabatic perturbations have a constant
matter-to-radiation ratio everywhere since

@__ng?r)l{lﬁ-é} (6.14)

ny ) 114360

The prefactor, the ratio of zero-order number densities, is a constant in both space
and time. For the ratio of matter to radiation number density to be uniform, there-
fore, the combination inside the brackets which linearizes to 1 + § — 3@ must be
independent of space. So the perturbations must sum to zero,

5 = 30y, (6.15)

for adiabatic perturbations. By similar arguments for the baryons, oy, = 30g. There
are models based on isocurvature perturbations, but these have not been very suc-
cessful to date; we will focus on adiabatic initial conditions.

For the most part, velocities and dipole moments are negligibly small in the very
early universe. However, we will encounter situations where we need to know the
initial conditions for these as well. You will show in Exercise 3 that the appropriate
initial conditions are

vy 1)
O =N =—2=—
1=M 3 3
kd
= ——. 6.16
6aH ( )

6.2 THE HORIZON

If this book were a novel or a biography, a better title for this section might be
Midlife Crisis. The main character would have attended a good high school, studied
hard, and gone on to a solid university. There he fell in love with an exciting, but
sensible, woman; upon graduating, he set up some interviews, and got a good job
downtown. He married his college girlfriend, and after several years in the city, they
moved to the suburbs and had three kids. Our hero contributed to the community
and was recognized all over town as a solid citizen. He was moving up fast in his
company and there was talk about a political position. Just when he was about
to declare his candidacy, he began to have doubts. “What have I been doing with
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my life? What is really important? Were all those years of study and work simply
a ‘track’? Did I take this path just because everyone else was moving in the same
direction? Where is the innovation and the signature that my life is mine?” And
worse, he has a secret, an underlying feeling that everything he has built is based
on a fallacy.

OK, maybe it wouldn’t be a bestseller, but it does serve as a useful metaphor
for our study of perturbations in the universe. Until now, we have done everything
in a systematic, proper way. We reviewed the standard Big Bang cosmology. We
expanded about this zero-order smooth universe, getting evolution equations for
the perturbations to the particle distributions and to the gravitational fields. We
realized that these coupled differential equations needed initial conditions so in the
last section we set those up. However, now we must ask, What caused those initial
perturbations? It is one thing to say that ® = 20, initially. It is quite another to
explain what caused ® to be nonzero in the first place.

And it is worse than that. To understand why let us recall the physical meaning

of the conformal time
Equivalently, objects separated by comoving

distances larger than n today were not ever in causal contact: there is simply no way
information could have propagated over distances larger than 7. For this reason, 7
is called the comoving horizon.

With this in mind, we can now revisit the condition used in the previous section
that kn <« 1. The wavenumber k is roughly equal to the inverse of the wavelength
of the mode in question (give or take a factor of 27). Therefore k7 is the ratio of
the comoving horizon to the comoving wavelength of the perturbation. If this ratio
is much smaller than 1, then the mode in question has a wavelength so large that
no causal physics could possibly have affected it. A picture worth remembering is
shown in Figure 6.1. The horizon grows as the scale factor increasesl. On the other
hand, comoving wavelengths remain constant. All modes of cosmological interest
therefore had wavelengths much larger than the horizon early on. Eventually these
cosmological modes enter the horizon; after that, causal physics begins to operate
on them.

The truly disturbing feature of this realization is most apparent when consid-
ering the microwave background today. On all scales observed the CMB is very
close to isotropic. How can this be? [The largest scales observed have entered the
horizon just recently, long after decoupling. (An example is the scale corresponding
to the quadrupole moment of the CMB, shown in Figure 6.1.) Before decoupling,
the wavelengths of these modes are so large that no causal physics could force devi-
ations from smooothness to go away.

his is a profound problem
that we have glossed over by simply assuming that the temperature is uniform and
that perturbations about the zero-order temperature are small.
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Figure 6.1. The comoving horizon as a function of the scale factor. Also shown are two
comoving wavelengths, which remain constant with time. Early in the history of the universe,
both of these modes—as well as all other modes of cosmological interest—had wavelengths
much larger than the horizon. The CMB comes from the last scattering surface at a ~ 1072,
At that time, the largest scales (e.g., the one labeled “quadrupole™) were still outside the
horizon. The horizon problem asks how regions separated by distances larger than the horizon
at the last scattering surface can have the same temperature.

A more intuitive picture of the horizon problem is shown in Figure 6.2. At
any given time, the region within the cone is causally connected to us (at the
center). Photons that we observe today from the last scattering surface were well
outside our horizon when they were first emitted. The most disturbing aspect of
this is the observation of large-angle isotropy, an indication that photons apparently
separated by many horizons at the last scattering surface nonetheless shared the
same temperature (to a part in 10°).

6.3 INFLATION

This section describes a beautiful solution to the horizon problem outlined in the
previous section. First, we explore a logical way out of the previous argument by
realizing that an early epoch of rapid expansion solves the horizon problem! Then
we consider the Einstein equations to tell us what type of energy is needed in
order to produce this rapid expansion, showing that negative pressure is required.
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Us, today

Last Scattering
Surface

Time

Space

Figure 6.2. The horizon problem. The region inside the cone at any time is causally connected
to us (at the center). Photons emitted from the last scattering surface (at redshift ~ 1000)
started outside of this region. Therefore, at the last scattering surface, they were not in causal
contact with us and certainly not with each other. Yet their temperatures are almost identical.

Finally, we consider a scalar field theory and show that negative pressure is easy to
accommodate in such a theory.

Two comments about the field theory implementation. First, field theory has
a reputation as a difficult subject. It is, but the part we will need for inflation is
decidedly simple. Indeed, almost all we will need to know about field theory we’ve
already used in the previous chapter on general relativity. The second point is that
there is no known scalar field which can drive inflation. (A skeptic might point out
that there is no known fundamental scalar field at all!) Therefore, it may well be
true that the idea of inflation is correct but it is driven by something other than
a scalar fleld. Having said that, there are a number of reasons to work with scalar
fields, as we will do whenever we need to specify the source of inflation. Almost
all fundamental particle physics theories contain scalar fields. In fact, historically
it was particle physicists studying high-energy extensions of the Standard Model
(in particular Grand Unified Theories) who proposed the idea of inflation driven
by a scalar field as a natural byproduct of some of these extensions. Indeed, almost
all current work on inflation is based on a scalar field (or sometimes two). The
alternative from a particle physics point of view is to use a vector field (such as
the electromagnetic potential) or a set of fermions (similar to the way condensates
induce superconductivity) to drive inflation. Neither of these choices works very
well, but they both complicate things severely, so we will stick to a scalar field.
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6.3.1 A Solution to the Horizon Problem

To motivate a solution to the horizon problem, let me rewrite the comoving horizon

as
“da’ 1
= —_—— 6.17
K /0 o o'H(ad) (6.17)

The comoving horizon then is the logarithmic integral of the comoving Hubble
radius, 1/aH.

o the Hubble radius is another way of measuring whether particles
are causally connected with each other: if they are separated by distances larger
than the Hubble radius, then they cannot currently communicate. There is a sub-
tle distinction between the comoving horizon 1 and the comoving Hubble radius
(aH) . If particles are separated by distances greater than n, they never could have
communicated with one another; if they are separated by distances greater than
(aH)~!, they cannot talk to each other mow. It is therefore possible that n could
be much larger than (aH)~! now, so that particles cannot communicate today but
were in causal contact early on. This might happen if the comoving Hubble radius
early on was much larger than it is now so that 7 got most of its contribution from
early times. This could happen, but it does not happen during matter- or radiation-
dominated epochs. In those cases, the comoving Hubble radius increases with time,
so typically we expect the largest contribution to 1 to come from the most recent
times. Indeed, this is precisely what Figure 6.1 indicates.

Look again at Figure 6.1. On top of the figure I have drawn an axis which depicts
the temperature of the cosmic plasma for the given value of the scale factor. We
know quite a bit about physics going up to the limits on the plot, several hundred
GeV. Beneath these energies, the standard model of particle physics works very well.
Beyond those energies, although we have ideas, there is no experimental reason to
prefer one theory over another. Since the energy content of the universe determines
a(t), when you mentally extrapolate the horizon in Figure 6.1 back to a = 0, or
equivalently to infinitely high temperatures, you are really making an assumption.
You are assuming that nothing strange happened early on, in particular that the
universe was always radiation dominated at early times. If this were true, then
it does indeed follow that the comoving horizon received a negligible contribution
from the very early universe, that photons can travel only very small distances in
the first fraction of a second after the Big Bang.

This suggests a solution to the horizon problem: perhaps early on, the universe

was not dominated by either matter or radiation_
*Then, we would have the situation depicted

in Figure 6.3. The comoving Hubble radius would decrease dramatically during this
epoch. In that case, the comoving horizon would get most of its contribution not
from recent times, but rather from primordial epochs before the rapid expansion of
the grid. Particles separated by many Hubble radii today, for example those outside
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the circle in the bottom panel of the figure, were in causal contact — were inside
the Hubble circle in the top panel — before this epoch of rapid expansion.

How must the scale factor evolve in order to solve the horizon problem? We
can first answer this question qualitatively! If the comoving Hubble radius is to
decrease, then ¢ H must increase. That is,

d [ da/dt] _ d2_a
dat |¢ T ode2?

So to solve the horizon problem, the universe must go through a period in which it is
accelerating, expanding ever more rapidly. This is the origin of the term inflation.
To understand the epoch of inflation more quantitatively, let me give away the
punchline that most inflationary models typically operate at energy scales of order
105 GeV or larger. How big was the comoving Hubble radius when the temperature
was 10'® GeV? We can get an order of magnitude estimate by ignoring the relatively
brief epoch of recent matter domination and assuming that the universe has been
radiation dominated since the end of inflation (you can correct this assumption in
Exercise 6). Then H scales as a2 so agHg/a.H, = a. where a, is the scale factor
at the end of inflation. If a. corresponds to a time at which the temperature was
10'5 GeV, then a. ~ Ty/10'® GeV ~ 10~22./So the comoving Hubble radius at the
end of inflation was 28 orders of magnitude smaller than it is today. For inflation
to work, the comoving Hubble radius at the onset of inflation had to be larger than
the largest scales observable today, i.e., larger than the current comoving Hubble
radius. So during inflation, the comoving Hubble radius had to decrease by some
28 orders of magnitude.

The most common way to arrange this is to construct _
—n that case, since da/a = Hdt, the scale factor evolves

as

> 0. (6.18)
a

Hit=te) ¢ <, (6.19)

where ¢, is the time at the end of inflation. The decrease in the comoving Hubble
radius (aH)~! is now due solely to the exponential increase in the scale factor. For
the scale factor to increase by a factor of 10?8, the argument of the exponential
must be of order In(10%®) ~ 64 (but remember the corrections in Exercise 6), so
inflation can solve the horizon problem if the universe expands exponentially for
more than 60 e-folds.

Thus, consider Figure 6.4, which shows the comoving Hubble radius as a func-
tion of the scale factor. The right side of this plot is virtually identical to Figure
6.1, which tells us that the comoving scales of interest to us were much larger than
the Hubble radius in the standard cosmology. The left-hand side of the plot though
shows that an inflationary epoch reduces the comoving Hubble radius dramati-

cally. This makes sens
which is itself

expanding with a).

a(t) = aee
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Figure 6.3. Particles on the comoving grid before (top) and after (bottom) inflation. Open
circles are the same particles on top and bottom. Before inflation, the comoving Hubble radius
was quite large, encompassing dozens of cells on the grid. After inflation, the comoving Hubble
radius has shrunk to just one cell. (In this caricature, the scale factor has grown by a factor
of order 7; during inflation the scale factor increases by greater than ¢°C.) The shrinkage of
the comoving Hubble radius means that particles which were initially in causal contact with
one another (within the large circle at top) can now no longer communicate. Note that the
physical Hubble radius, depicted by large circles on the top and bottom grids, remains roughly
constant during inflation.
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Figure 6.4. The comoving Hubble radius as a function of scale factor. Scales of cosmological
interest (shaded band) were larger than the Hubble radius until @ ~ 107°. Dark shaded
regions show when these scales were smaller than the Hubble radius, and therefore susceptible
to microphysical processes. Very early on, before inflation operated, all scales of interest were
smaller than the Hubble radius and therefore susceptible to microphysical processing. Similarly,
at very late times, scales of cosmological interest came back within the Hubble radius.

Note the symmetry in Figure 6.4. Scales just entering the horizon today —
roughly 60 e-folds after the end of inflation —left the horizon 60 e-folds before
the end of inflation. The amplitude of the perturbations on these scales remained
constant as long as they were super-horizon. So, when we measure them today, we
are actually seeing them as they were when they first left the horizon during the
inflationary era (modulo whatever processing has taken place since they reentered
the horizon, processing we will study in great detail in Chapters 7 and 8). To explain
the structure in the universe today, then, it is clearly important to understand the
generation of perturbations during inflation.

We have until now discussed inflation in comoving coordinates. But it is also
profitable to think of the exponential expansion in physical coordinates. The idea
that the horizon blows up early on is depicted in Figure 6.5. The physical size
(a times the comoving size) of a causally connected region blows up exponentially
quickly during inflation. So regions that we observe to be astronomical today were
actually microscopically small before inflation, and they were in causal contact with
each other.

The total comoving horizon ceases to be an effective time parameter after infla-
tion because it becomes large very early on, and then changes very little as the
universe expands during the matter- and radiation-dominated eras. A simple way
to rectify this is to subtract off its primordial part 7,rim, and redefine 7 as
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Us, today

Inflation

Figure 6.5. Inflationary solution to the horizon problem. Larger cone shows the true horizon in
an inflationary model; smaller inner cone shows the horizon without inflation. During inflation,
the physical horizon blows up very rapidly. All scales in the shaded region were once in causal
contact so it is not surprising that the temperature is uniform.

t dt/
so that the total comoving horizon is 7prim +7. This is the convention we will follow;
note that this means that during inflation, 7 is negative, but always monotonically
increasing. A scale leaves the horizon in the sense of Figure 6.4 when k|n| becomes
less than 1, and returns at late times when k7 becomes larger than 1.

To sum up, inflation— an epoch in which the universe accelerates —solves the
horizon problem. During the accelerated expansion the physical Hubble radius
remains fixed, so particles initially in causal contact with one another can no longer
communicate. Regions which are separated by vast distances today were actually
in causal contact before and during inflation. At that time, these regions were given
the necessary initial conditions, the smoothness we observe today, but also, as we
will soon see, the small perturbations about smoothness that eventually grew into
galaxies and other structure in the universe.
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6.3.2 Negative Pressure

We have shown that an accelerating universe can solve the horizon problem. Since
general relativity ties the expansion of the universe to the energy in it, we now need
to ask what type of energy can produce acceleration. We can get an immediate
answer if we appeal to the time-time and space-space components of the zero-order
Einstein equations. They are (Egs. (2.39) and (2.93))

(da/dt>2 87G
dajdty- _ 5%
a 3

2 2 2
4”a/dt +% (da/dt> — _4nGP. (6.21)
a a

Multiplying the first of these by one-half and then subtracting one from the other
eliminates the first derivative of a, leaving

Pa/dt?  4nG

- ~=3 (p+3P). (6.22)

Acceleration is defined to mean that d?a/dt? is positive. For this to happen, the
terms in parentheses on the right must be negative. So inflation requires

P< ——g. (6.23)

Since the energy density is always positive, the pressure must be negative. This
result is perhaps not surprising: we saw back in Chapter 2 that the accelerated
expansion which cause supernovae to appear very faint can be caused only by dark
energy with negative pressure. Inflation was apparently driven by the a similar form
of energy, one with P < 0. To reiterate what we emphasized in Chapter 2, negative
pressure is not something with which we have any familiarity. Nonrelativistic matter
has small positive pressure proportional to temperature divided by mass, while a
relativistic gas has P = +p/3, again positive. So whatever it is that drives inflation
is not ordinary matter or radiation.

6.3.3 Implementation with a Scalar Field
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a fermion like the quarks and leptons or a vector like the electromagnetic field).
The simplest version of the standard model does indeed have within it one such
field, the Higgs field. But, again unfortunately, we know too much about the Higgs
of the standard model. Its interactions and properties are constrained enough for
us to know that it cannot serve as the source for inflation. So we will drop any
pretensions of connecting the generic scalar field which drives inflation to known
physics. Making this connection is left as a homework problem for a future Nobel
laureate.

We want to know if a scalar field — which I will call ¢(Z,t), not to be confused
with the metric perturbation ®(Z,t) —can have negative p + 3P. So our first task
is to write down the energy-momentum tensor for ¢. This is

_ g 00 00 o [ 00 00
9 Gz axr 9 P39 Gun 3$V+V(¢) : (6.24)

Here V(¢) is the potential for the field. For example a free field with mass m has
a potential V(¢) = m?¢?/2. A warning about signs: if you delve into the literature
you will invariably find different signs than those in Eq. (6.24). These are dictated
by the choice of metric. Although our metric signature (—,+,+,+) is probably
most common in the context of cosmology, it is probably not as common in particle
physics. Beware. We will assume that ¢ is mostly homogeneous, consisting of a
zero-order part, ¢(®)(¢), and a first-order perturbation, §¢(Z,t). In this section we
will derive information about the zero-order homogeneous part, its energy density
and pressure, and its time evolution. Later we will consider its perturbations, d¢,
and how they are generated.

For the homogeneous part of the field, only time derivatives of ¢ are relevant so
the indices a and 3 in the first term in Eq. (6.24) and g, v in the second must be
equal to zero. The energy-momentum tensor then reduces to

T%3

OGS 1/do0\2
TOa  _ _ga 0 o |1 ) — V(@) 6.25
5= 9% (=) +9% |5(Z) V6™ (6.25)
The time-time component of T is equal to —p, so the energy density is
1 /dp@\2 )
= : 6.26
5 () Ve (6.26)

The first term here is the kinetic energy density of the field, the second its potential
energy density. A homogeneous scalar field therefore has much the same dynamics
as a single particle moving in a potential [think of ¢(®)(¢) as the position of the
particle z(t)]. In fact this analogy dominates even the language used to describe
inflation. The pressure for the homogeneous field is P = T(%%; (no sum over spatial
index 1}, so o
_ LrdetVy? (©)

- 5(7) — V(6. (6.27)
A field configuration with negative pressure is therefore one with more potential
energy than kinetic. An example is shown in Figure 6.6, in which a field is trapped
in a false vacuum| i.e., a local, but not the global, minimum of the potential.
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Figure 6.6. A scalar field trapped in a false vacuum. Since it is trapped, it has little kinetic
energy. The potential energy is nonzero, however, so the pressure is negative. The global
minimum of the potential is called the true vacuum, since a homogeneous field sitting at the
global minimum of the potential is in the ground state of the system.

There is something important to notice about a field trapped in a false vacuum.
Since ¢(©) is constant, its energy density, which is all potential, remains constant
with time. Constant energy density is much different than anything with which we
are familiar. The densities of both matter and radiation, for example, fall off very
rapidly as the universe expands. Therefore, even if the universe initially contains
a mixture of matter, radiation, and false vacuum energy, it will quickly become
dominated by the vacuum energy. For a trapped field, it is trivial to determine
the evolution of the scale factor. Since the energy density is constant, Einstein’s
equation for the evolution of a is

daédt =1/ 87r3Gp = constant. (6.28)

We immediately see that a field trapped in a false vacuum produces exponential
expansion as in Eq. (6.19), with H « p!/? constant. The primordial comoving
horizon, that generated before the end of inflation, is then obtained by integrating
the inverse of Eq. (6.19) over time,

1
Tlprim — Ha (eH(te_tb) - 1) , (629)

where {5 is the beginning of inflation. So if the field is trapped for at least 60
e-foldings (H (t. - t») > 60), the horizon problem is solved.
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Guth’s (1981) initial formulation of inflation used a scalar field trapped in a false
minimum of the potential, but it was quickly realized (Guth and Weinberg, 1983;
Hawking, Moss, and Stewart, 1982) that such a scenario is not viable. The only way
for the field to evolve to its true minimum is similar to the way an alpha particle
migrates out of the potential barrier in a nucleus: it tunnels quantum mechanically.
Thus, initially small localized regions tunnel from the false to the true vacuum.
These bubbles of the true vacuum state must coalesce in order for the universe
as a whole to move to the true vacuum state. Careful calculations showed that
these bubbles would never coalesce, that the regions of false vacuum would expand
rapidly and remain, so that the true vacuum state of the universe would never be
attained.

To avoid the problem of the universe never reaching its true vacuum state,
subsequent models of inflation (Linde, 1982; Albrecht and Steinhardt, 1982) made
use of a scalar field slowly rolling toward its true ground state. The energy density
of such a field is also very close to constant (if the potential is not too steep) so
it quickly comes to dominate. To determine the evolution of ¢(® in general when
the field is not trapped, we return to the Einstein equations as given in Eq. (6.21).
Consider the first of these. If the dominant component in the universe is ¢, then the
energy density on the right-hand side becomes (d¢(?)/dt)?/2 + V. Differentiating
this first equation therefore leads to

da/dt | d2a/dt?  [dajdt\%| 8rG [[dp© [ d2¢©® ,do©®
9 — = —_ .30
a[a <a> 3Kdt>(dt2>+vdt (6:30)
where V' is defined as the derivative of V with respect to the field ¢(®). We can

replace the first term in brackets on the left by —47G(p/3+P) as in Eq. (6.22). Sim-
ilarly the second term on the left is 87Gp/3. The left-hand side therefore becomes

)\ 2
da/dt87rG[ d¢ ) _
a dt

Equating this to the right side of Eq. (6.30) leads to the evolution equation for a
homogeneous scalar field in an expanding universe,

d?2¢p(0) det®
H—— +V' =0. 6.32
ar? a * (6.52)
A more useful form for us will be with the conformal time 7 as the time variable;
then it is straightforward (Exercise 8) to show that

# +2aH + a2V’ =0 (6.33)

where overdots still denote derivatives with respect to conformal time 7.

Most models of inflation are slow roll models, in which the zero-order field,
and hence the Hubble rate, vary slowly. Therefore, a simple relation between the
conformal time 7 and the expansion rate holds. In particular, during inflation

¢ da
. Ha?

—(p/3) =P —2p/3] = —87GH < (6.31)

=

a
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1 [“da

~ X / o

-1

~ aH
where the rough equality on the second line holds because H is nearly constant,
and the one on the third because the scale factor at the end of inflation is much

larger than in the middle (a. > a). To quantify slow roll, cosmologists typically
define two variables which vanish in the limit that ¢ remains constant. First, define

d (1 o
=—|=|=—. 6.35
‘Cu <H> aH? (6.35)
Since H is always decreasing, € is always positive. During inflation, it is typically
small, whereas it is equal to 2 during a radiation era. In fact, one definition of an

mmflationary epoch is one in which € < 1. A complementary variable which also
quantifies how slowly the field is rolling is:

(6.34)

1 d?O/at> -1
H d¢0/dt — qHeO

[a HO — ¢;<o>]

-1
aH 0

l

3aH O 1 a2V'] . (6.36)

Here the paucity of Greek letters becomes a hindrance. The second slow-roll param-
eter is more conventionally defined as 7, but we obviously cannot follow that conven-
tion as 1 is our conformal time. (Early universe cosmologists use 7 for conformal
time, freeing up 7, but we do not have that luxury since we need 7 for optical
depth.) My choice of § is also fairly common, but we need to bear in mind that
this has nothing to do with the overdensities introduced in Chapter 4. The second
line here follows from Eq. (6.33). Again, in most models ¢ is small. We will see
in Section 6.6 that some unique features of inflation, deviations from the simplest
possible spectrum and the production of gravity waves, are proportional to € and 4.
If these features are one day measured, they will not only be unique signatures of
inflation but also allow us to learn something about the physics driving inflation.

6.4 GRAVITY WAVE PRODUCTION

Inflation does more than solve the horizon problem. The power of inflation is its
ability to correlate scales that would otherwise be disconnected. The zero-order
scheme outlined in the previous section ensures that the universe will be uniform
on all scales of interest today. There are perturbations about this zero-order scheme,
though, and these perturbations — produced early on when the scales are causally
connected — persist long after inflation has terminated.

We are most interested in scalar perturbations to the metric since these couple
to the density of matter and radiation and ultimately are responsible for most of
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the inhomogeneities and anisotropies in the universe! In Section 6.5 we will study

these in detail. In addition to scalar perturbations, though
As we saw

in Chapter 5, these are

n fact, these fluctuations turn out to be a unique signature of inflation
and offer the best window on the physics driving inflation, so they are clearly
worthy of our study. I choose to study the production of tensor perturbations first
before scalar perturbations for a subtle technical reason.

The coupled
fields fluctuate together and this coupling requires a bit of work to understand.
This work, while important, is not the main point: the most important idea is that
quantum mechanical fluctuations during inflation are responsible for the variations
around the smooth background that so fascinate us. This idea is best introduced
in the much simpler context of a single field, so we start with tensor perturbations.

6.4.1 Quantizing the Harmonic Oscillator

q

is done, we will appeal to our knowledge of this simple system. Therefore, let’s first
record some basic facts about the quantization of the harmonic oscillator.

e A simple harmonic oscillator with unit mass and frequency w is governed by the
equation
A (6.37)
— +w 'z =0. .
dt?

e Upon quantization, x becomes a quantum operator

&= v(w, )i+ v*(w, t)al (6.38)

2This is not quite true. The quadrupole moments act as sources for tensor perturbations, but
these vanish if a scalar field drives inflation. See Exercise 10

3 Initial here means those when the modes of interest are still far outside the horizon. This is
well before any processing can take place, but well after inflation has generated them.
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where @ is a quantum operator which acts on the state of the system, and v is a
solution to Eq. (6.37), v oc e~™t.

o In particular, @ annihilates the vacuum state |0), in which there are no particles.
It also satisfies the commutation relation

[a,a'] = aat —ata = 1. (6.39)

Other commutators vanish: [a,a] = [a',af] = 0. It is straightforward to show
(Exercise 9) that these commutation relations are equivalent to the (perhaps
more familiar) relations between # and its momentum p:

[#,P] = 1, (6.40)

as long as v is normalized via

v(w, t) = (6.41)

These facts enable us to compute the quantum fluctuations of the operator Z in
the ground state |0):

(12]*) = (0lz"0)

= (0] (v*a' +va) (va +v*a') |0). (6.42)

Since a|0) = 0, the first term in the second set of parentheses vanishes. Similarly,
(0la’ = (a|0))T = 0, so we are left with

([2%) = lv(w, t)|*(0]aa’|0)

= |v(w, t)|2(0][a, a'] + a'al0). (6.43)

The second term again vanishes since @ annihilates the vacuum, while the first is
unity, so the variance in Z is

(%) = lv(w, )%, (6.44)

in this case 1/2w. This is (almost) all we need to know about quantum fluctuations
in order to compute the fluctuations in the early universe generated by inflation.

6.4.2 Tensor Perturbations

Recall that tensor perturbations to the metric are described by two functions hy
and hy, each of which obeys Eq. (5.63),

ha2%h +k2h=o0. (6.45)
a
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We would like to massage this equation into the form of a harmonic oscillator, so
that h can be easily quantized. To do this, define*

= ah
h= ——. 6.46
V16rG ( )
Derivatives of h with respect to conformal time can be rewritten as
h h
= ~h 6.47
V1i6rG a  a? ( )
and )
h h a : a ( )
S e S — 6.48
V16rG  a a? PR (6.48)

Inserting these into Eq. (6.45), and multiplying by V167G, gives

ﬁ—2‘13111 h+2()h+2 g—il} + k2

. (;az - ~> W =0 (6.49)

This is precisely the form we know how to use. It has no damping term (x h) so
we can immediately write down an expression for the quantum operator

h(R,m) = v(k, mig + v" (k,)al. (6.50)

where the coefficients of the creation and annihilation operators satisfy the equation

O P o)

We will shortly solve Eq. (6.51), but first let’s see how the eventual solution
determines the power spectrum of the fluctuations of the tensor perturbations.

4Regarding the factor of V167G here, the only way I know of deriving this is to write down
the action for the fields Ay x. The kinetic term is then multiplied by a factor of 1/327G. A
canonical scalar field has prefactor equal to a half. So the additional 167G must be absorbed
into a redefinition of the field. The hard part of this is writing down the action to second order
in perturbation variables. We have seen that even first-order perturbations are cumbersome to
track. On the other hand, by dimensional analysis —the fact that h(Z) is dimensionless while a
canonical scalar field has dimensions equal to mass— we could have guessed that the factor of
mp; = G~1/2 is required. Note that this prefactor does not affect the equation for h; it simply
provides the normalization that becomes important when trying to determine the amplitude of
the gravity-wave spectrum.
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Using our harmonic oscillator analogy, we can write the variance of perturbations
in the h field as

27 F

(h (k, (', m)) = |o(k, m)|*(2m)* 8% (k — K'). (6.52)
There is one difference between this expression and the analogous expression for
the one-dimensional harmonic oscillator in Eq. (6.44). A quantum field is defined in
all space, so it can be considered as a collection, an infinite collection, of oscillators,

each at a different spatial position (or, in Fourier space, at different values of k).
The quantum fluctuations in each of these oscillators are independent (as long as

the equations are linear) so h(k) is completely uncorrelated with h(E')if k # k. The
Dirac delta function in Eq. (6.52) enforces this independence; the (27)* allows for
the fact that we have moved to the continuum limit. Recalling that h = ah /V 167G,
we see that

(R R ) = T ok, ) (250 B

(27)3 Py (k)63 (k — k') (6.53)

where the second line defines the power spectrum of the primordial perturbations to
the metric. Conventions for the power spectrum abound in the literature; the one
I've chosen in Eq. (6.53) is not the most popular in the early universe community.
Often a factor of k=3 is added so that the power spectrum is dimensionless. I prefer
to omit this factor to be consistent with the large scale structure community which
likes its power spectra to have dimensions of k3. In any event, with this definition,

Py(k) = 167G '“UZ—;’)'Q (6.54)

We have now reduced the problem of determining the spectrum of tensor per-
turbations produced during inflation to one of solving a second-order differential
equation for v(k, n), Eq. (6.51). To solve this equation, we first need to evaluate é¢/a
during inflation. Recall that overdots denote derivative with respect to conformal
time, so @ = a®?H ~ —a/n by virtue of Eq. (6.34). Therefore, the second derivative
of a in Eq. (6.51) is

1 d

SIS
|

|
Q|
5]
3

N
|1 Q
—’

¢

(6.55)

So the equation for v is
2
b+ <k2 - —2> v=0. (6.56)
Ui
The initial conditions necessary to solve this equation come from considering v at
very early times before inflation has done most of its work. At that time, —7 is
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large, of order 7prim, S0 the k% term dominates, and the equation reduces precisely
to that of the simple harmonic oscillator. In that case, we know (Eq. (6.41)) that
the properly normalized solution is e ~**" /1/2k. This knowledge enables us to choose
(Exercise 11) the proper solution to Eq. (6.56),

V= % {1 - kin] . (6.57)

This obviously goes into the correct solution when the mode is well within the
horizon (k|n| > 1). Even if you don’t work through Exercise 11 (which arrives at
the relatively simple solution of Eq. (6.57) in a rather tortured way), you should at
least check that the v given here is indeed a solution to Eq. (6.56).

After inflation has worked for many e-folds k|| becomes very small. Now that v

has been normalized, we can determine the amplitude of v_
of the super-horizon ravitational wave amplinds, by aking the smoll argwracat

limit of Eq. (6.57):

y e—ikn —i
—klr?lov(k’n) N
Figure 6.7 shows the evolution of h & v/a during inflation. At early times A falls
as 1/a as inflation reduces the amplitude of the modes. Once —kn becomes smaller
than unity, the mode leaves the horizon, after which h remains constant.
The primordial power spectrum for tensor modes, which scales as |v|?/a?, is
therefore constant in time
This constant determines the initial conditions for the gravity waves,
those with which to start off hy , at early times (where in this context “early”
means well after inflation has ended but before decoupling). Equations (6.54) and
(6.58) show that this constant is

(6.58)

167G 1
Plk) = =2~ 2k312
81GH?
TR

The second line here follows from Eq. (6.34). We have assumed that H is constant
in deriving this result; more generally, H is to be evaluated at the time when the
mode of interest leaves the horizon. This is our final expression for the primordial
power spectrum of gravity waves. Detection of these waves would, quite remarkably,
measure the Hubble rate during inflation, Since potential energy usually dominates
kinetic energy in inflationary models, a measure of H would be tantamount to
measuring the potential V', again quite remarkable in view of the likelihood that
inflation was generated by physics at energy scales above 10'® GeV, 12 orders of
magnitude beyond the capacity of present-day accelerators. There is no guarantee
that gravity waves produced during inflation will be detectable. Indeed, since H* x
p/mé,, the power spectrum is proportional to p/m%,, the energy density at the time

(6.59)
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Figure 6.7. The root mean square fluctuations in the tensor field during inflation for two
different k-modes. Time evolves from left to right: 7 is negative but gets closer to zero during
inflation. Once a mode "leaves the horizon” (n ~ —1/k), its RMS amplitude remains constant.
Note that after a mode has left the horizon, its RMS amplitude times k%2 is the same for all
modes. This is called a scale-free spectrum, strictly true only if the Hubble rate is constant
when the scale of interest leaves the horizon (the choice here).

—

of inflation in units of the Planck mass. If inflation takes place at scales sufficiently
smaller than the Planck scale, then primordial gravity waves will not be detected.
Later in the book, we will develop the machinery necessary to answer the question,
How small can the gravity wave component be and still be detected?

Two final technical points are in order regarding Eq. (6.59). Although I have
not emphasized this feature of the spectrum of these primordial perturbations, the
fluctuations in h are Gaussian, just as are the quantum-mechanical fluctuations of
the simple harmonic oscillator. Gaussianity is a fairly robust prediction of inflation;
as such, many studies have been undertaken searching for signs of primordial non-
Gaussianity in CMB and large-scale structure data, signs that would jeopardize the
inflationary picture. Although there have been some hints, none have held up under
greater scrutiny, so this prediction of inflation too appears to be verified. Second,
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Eq. (6.59) is the power spectrum for h, and hy separately; these are uncorrelated,
so the power spectrum for all modes must be multiplied by a factor of 2.

6.5 SCALAR PERTURBATIONS

The goal of this chapter is to find the perturbation spectrum of ¥ (or ®; we assume
throughout that they are equal in magnitude) emerging from inflation. With that
spectrum, we can use the relations in Section 6.1 to determine the spectrum of the
other perturbation variables. Finding the spectrum for ¥  jhowever, turns out to
be complicated, more so than was the tensor case considered earlier. The primary
complication is the presence of perturbations in the scalar field driving inflation,
perturbations which are coupled to W.

To deal with this problem, we will first ignore it: in Section 6.5.1, we compute the
spectrum of perturbations in the scalar field ¢ generated during inflation, neglect-
ing ¥. This turns out to be relatively simple to do, since it is virtually identical to
the tensor calculation we went through above. Why are we justified in neglecting
¥ and how do the perturbations get transferred from ¢ to ¥? The next two sub-
sections take turns answering this question from two different points of view. First,
Section 6.5.2 argues that —in a sense to be defined there— until a mode moves far
outside the horizon, ¥ is indeed negligibly small. Once it is far outside the horizon,
this no longer holds, but we will find that a linear combination of ¥ and d¢ (the
perturbations to the scalar field driving inflation) is conserved. This will allow us to
convert the initial spectrum for §¢ into a final spectrum for ¥. The second way of
justifying the neglect of perturbations to the metric is to switch gauges and work in
a gauge in which the spatial part of the metric is unperturbed, a so-called spatially
flat slicing. In such a gauge, the calculation of Section 6.5.1 is exact; the only ques-
tion remaining is how to convert back to conformal Newtonian gauge to move on
with the rest of the book. In Section 6.5.3, we identify a gauge-invariant variable,
one which does not change upon a gauge transformation, which is proportional to
d¢ in a spatially flat slicing. It is then a simple matter to determine this variable
in conformal Newtonian gauge, thereby linking ¥ in conformal Newtonian gauge
to d¢ in spatially flat slicing. Note that the two solutions to the coupling problem,
as worked out in Sections 6.5.2 and 6.5.3, are simply alternative approaches to the
same problem. If you are comfortable with gauge transformations, Section 6.5.3 is
probably a more elegant approach; the more brute-force approach of Section 6.5.2
gives the same answer though and requires less formalism and background.

6.5.1 Scalar Field Perturbations around a Smooth Background

Let’s decompose the scalar field into a zero-order homogeneous part and a pertur-
bation,

O(F, 1) = ¢'9(t) + 60(Z, 1), (6.60)
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and find an equation governing d¢ in the presence of a smoothly expanding universe,
i.e., with metric ggo = —1;9:; = 5i]-a2. Consider the conservation of the energy—
momentum tensor,

T+,

TH, , = — ¥
e 8513/‘

+ I, 7%, —T%,,T", = 0. (6.61)
The v = 0 component of this equation, expanded out to first order, gives the desired
equation for d¢. Since we are assuming a smooth metric, the only first-order pieces
are perturbations in the energy-momentum tensor. All the ['’s are either zero-order
(T%; = 6;;0*H and To; =T";o = 6;;H ) or zero (the rest of the components), as
we found in Egs. (2.22) and (2.23). So, writing the perturbed part of the energy-
momentum tensor as §T*, and considering the v = 0 component of the perturbed
conservation equation leads to

_ 88T

0 ot

+ ik 6T + 3HOT®y — HST",. (6.62)
It remains to determine the perturbations to the energy-momentum tensor in terms
of the perturbations to the scalar field.

First let’s compute d7%;. Since the time-space components of the scalar metric
are zero, the second set of terms in Eq. (6.24), those with prefactor g%, vanish.
Therefore,

Tl = 9" 9.0 (6.63)

where I have returned to using ,, to denote the derivative with respect to z”. Since
g = a~23;,, the index v must be equal to i. Recall that the zero-order field ¢(®)
: 0y _ . _

is homogeneous, so ¢ = 0. The space-time component of the energy—momentum
tensor therefore has no zero-order piece. To extract the first-order piece, we can set
¢ to d¢; = ik;0¢. Then, setting all other factors to their zero-order values leads
to

6T = %és(%(p. (6.64)

The additional factor of a enters the denominator here because d)fg) = (z.b(o)/a (recall
that " is derivative with respect to conformal time).

The time-time component of the energy—momentum tensor is a little more dif-
ficult:

1 .
T% = ¢"(0.0)" = 59" 70005 = V. (6.65)

Setting ¢ = ¢©) + 6¢ leads to

o _ =10 L s b6, — V(e
T = 5 () +600) - 550000, - V(@ +60).  (6:66)

The spatial derivatives come in pairs, and pairs of first-order variables (8¢ ;) lead
to second-order terms. These may therefore be neglected. The potential may be
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expanded as a zero-order term, V(¢(®)) plus a first-order correction, V'8¢, so the
first-order correction to the energy-momentum tensor is

8T% = —¢'066.0 — V'6¢

—0)§
- ___¢’a2 % _vise. (6.67)

Similarly, you can show that the space-space component is
, 50) 8,
6T ; =6y <¢ 5 o _ V’5¢> . (6.68)
a

Therefore, the conservation equation (6.62) becomes

EPA()FY 2, H(0) 5
GQ + 3H> <_¢>_2ﬁ - V’6¢>> —k~3¢<°>5¢—3H <¢ QM - V’5¢> =0. (6.69)
a a a

adn

Carrying out the time derivatives (the only subtle one is 8V’/dn = V"¢(®), mul-
tiplying by a®, and collecting terms leads to

~000 + 65 (~) — 4aHHO) — aPV') + 80 (-a>V"3® — K2) = 0. (6.70)

The V" term here is typically small, proportional to the slow-roll variables ¢ and
0 (Exercise 14), so it can be neglected. The coefficient of 8¢, the first set of paren-
theses, is equal to —2aH$® using the zero-order equation (6.33), so after dividing
by —0(®, we are left with

0 + 2aH8p + k*6¢ = 0. (6.71)

This equation for perturbations to d¢ is identical to Eq. (6.45) for tensor pertur-
bations to the metric. Thus we can trivially copy our result from Section 6.4.2 and
write immediately that the power spectrum of fluctuations in d¢ is equal to

H2
P5¢: 5@

Compare this with Eq. (6.57). It is identical apart from a factor of 167G. Recall
that we inserted this factor (with a bit of hand-waving: see the footnote on page
158) in the tensor case to turn the dimensionless h into a field with dimensions
of mass. To get the result for d¢ which is already a scalar field with the proper
dimensions, we simply remove this factor.

(6.72)

6.5.2 Super-Horizon Perturbations

Until now, we have neglected the metric perturbations. When the wavelength of
the perturbation is of order the horizon or smaller. this approximation is valid, as
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we will shortly see. In the process of seeing this, we will also find that, by the end of
inflation, the metric perturbation has become important. So, although the inflation-
induced perturbations start out all-“6¢,” they end up as a linear combination of
¥ and ¢ or more generally as a linear combination of ¥ and perturbations to
the energy-momentum tensor. The trick is to find the linear combination which
is conserved outside the horizon. The value of this conserved linear combination is
determined by d¢ at horizon crossing; we can then evaluate it after inflation solely in
terms of ¥. The resulting equation will be of the form ¥ o« d¢ with the left-hand side
the post-inflation metric perturbation and the right the scalar field perturbation
produced during inflation (the power spectrum for which we have calculated above).
We can then finally relate Py (and the spectra of all other perturbation variables
using the results of Section 6.1) to the Psy of Eq. (6.72).

Let’s begin by rewriting the equation for conservation of energy, this time in the
presence of the metric perturbation. It is straightforward to show that Eq. (6.62)
gets generalized to

8T
ot

_ , v
+z'ki5T’0+3H5T%--H5T1,-::—3(1>+p)%E (6.73)

where P and p are the zero-order pressure and energy density. Were we correct to
neglect ¥ in the last section? We were, as long as the right-hand side is significantly
smaller than the individual terms on the left. Taking the first term on the left as
an example, we require

6T%
P+p

A simple way to see that this inequality holds is to use the Einstein equations
we derived in Chapter 5. The most convenient for these purposes is the time-time
(Eq. (5.21)) component:

¥«

(6.74)

k20 + 3aH(¥ + aHV) = 47Ga?5T . (6.75)

Here I have simply copied the results from Chapter 5, replacing ® with —W. The
left-hand side here is of order k¥ ~ a?H?¥ for modes which are crossing the
horizon. Therefore,

5T%  6TY
H? p

P+p (5T00>
TP . 6.76
p (P+p (670)

U~G

The left-hand side must be much less than the term in parentheses; equivalently,
the prefactor (P + p)/p must be small. In fact, during inflation, the pressure is
almost equal to minus the energy density, so this prefactor is very small. In terms
of the slow-roll parameters, it is equal to 2¢/3. So, at least in slow-roll models of
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inflation, we are justified in neglecting metric perturbations when computing the
spectrum of ¢.

The above argument holds only for modes that have not yet passed outside the
horizon. Super-horizon modes, on the other hand, require more careful treatment.
Indeed, it is inevitable that the inequality of Eq. (6.74) will break down sometime
before the end of inflation. To see this, recall that after inflation, when the universe
is dominated by radiation, 7% = —4p,0¢ and P + p = 4p,/3. Therefore, after
inflation, the right-hand side of Eq. (6.74) is —30¢. According to Eq. (6.12), ¥ =
—20 right after inflation, so it is certainly not true that the inequality of Eq. (6.74)
is satisfied for all times. At some point before inflation ends, perturbations to ¥
must grow in importance relative to those in the energy-momentum tensor.

One way to deal with the coupling between the metric perturbations and those
to the energy density is to define

3 ik;6T°; H B
Ko+ P)

For sub-horizon modes and those which have just left the horizon, ¥ is negligible;
P+ p=(¢9/a)? from Egs. (6.26) and (6.27); and Eq. (6.64) fixes the numerator
of the first term in (. We are left with

C=—aHbép/p® (6.78)

(= (6.77)

around the time of horizon crossing. After inflation ends, ik;0T%; = 4akp,O1, pro-
portional to the dipole of the radiation. Since the pressure of radiation is equal to
a third of the energy density,

3aH@1
=- —
¢ k
3 . .
= —5\1’ (post inflation). (6.79)

The second equality follows from the initial conditions relating the dipole to the
potential (Eq. (6.16)).

The variable ¢ is so important because it is conserved when the perturbation
moves outside the horizon (Figure 6.8). We will show that ( is conserved shortly,
but first let’s appreciate the importance of this conservation. Since we know that,
after inflation, { = —3¥/2, we can immediately relate ¥ coming out of inflation to
the d¢ at horizon crossing,

2 o)

= —Qid——
post inflation 3 ¢(0)

(6.80)

horizon crossing

Equivalently, the post-inflation power spectrum of ¥ is simply related to the
horizon-crossing spectrum of §¢:

4 (aH\?
Py=-—| P
YT <¢><0>> °

aH=k
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T

Horizon Crossing Inflation Ends

Time -

Figure 6.8. Cartoon view of the evolution of scalar, adiabatic perturbations during inflation in
conformal Newtonian gauge. When a mode is sub-horizon, quantum-mechanical fluctuations
are set up in the scalar field driving inflation (ik;6T% H/k*(p + P) = aHé¢/¢?). Scalar
perturbations to the metric are negligible at this time. Once the mode leaves the horizon,
the linear combination ¢ = —ik;6T°; H/k*(p + P) — ¥ is conserved. Well after inflation has
ended, the metric perturbation has grown in importance, but the linear combination ¢ remains

unchanged.
2 aH?\?
©9k3 \ $0

the second line following from Eq. (6.72). Another way to express the power spec-
trum of scalar perturbations is to eliminate (9 in favor of the slow-roll parameter
e. You will show (Exercise 12) that (aH/¢®)? = 47G /¢, so

, (6.81)
aH=k

= 87TGH_2

Py = Po(k) = 55 — (6.82)

aH=k

The first equality here follows from our ubiquitous assumption that anisotropic
strsses are small, so that ¥ = —®. Comparing to Eq. (6.59), we see that the ratio
of scalar to tensor modes is of order 1/¢; that is, we expect scalar modes to dominate.
Finally, another way of writing the scalar power spectrum is to eliminate € in favor
of the potential and its derivative, using the result of Exercise 14,
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12872G2? ( H?V?
9k3 V/2

Py (k) =

(6.83)

aH=k

It remains to prove that ( is conserved on super-horizon scales. To see this, let’s
turn to the conservation equation, Eq. (6.73). On large scales, k;6T" is proportional
to k2 and so can be ignored, leaving

98T
ot

: v
+3HTY) — HST, = —3(P + p)aa—t. (6.84)

On large scales, you will show (Exercise 13) that the energy-momentum tensor

satisfies
ik;6T°;H _ 579,

= 6.85
3 3 (6.85)
Therefore, on large scales
1 6T%
= — 6.86
¢ C3p+ P (6.86)
Eliminating ¥ in favor of ¢ in the conservation equation leads to
6T ¢ o [ 6T%
3H6T g — HOT"; = 3(P — : 6.87
™ | ser, PenZ+io+Pg || 8D

The partial derivative on the right acting on 67 cancels the first term on the left,

leaving
1 (dp dP i 8(
e 1150 )] i
Recall from Eq. (2.55) that dp/dt = —3H(p + P}, so the first term in brackets

cancels the second, and

(6.88)

A
ot 3(p+P)?

dpP

- (6.89)

[H(p + P)OT"; — 6T

I claim that the two terms in brackets on the right cancel for the class of perturba-
tions we are considering. To see this, first rewrite H(p + P) as —(1/3)dp/dt. Thus,
the terms in brackets are proportional to

6T, 'P
3

<5T0 =6P - Eap (6.90)

since —6T" is the perturbation to the energy density, while §7%;/3 is the pertur-
bation to the pressure. If we know the background pressure-energy density relation
dP/dp, then given an overdensity dp, we expect the pressure perturbation to be
proportional to the overdensity with coefficient dP/dp. Indeed, this is the charac-
teristic feature of adiabatic perturbations, precisely those set up during inflation.
Thus, ¢ is indeed conserved on large scales.
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6.5.3 Spatially Flat Slicing

The treatment of the previous subsection is complete, but it is not the most elegant
way to understand scalar perturbations in inflation. A much simpler way is to move
back and forth between different gauges, making use along the way of the concept
of a gauge-invariant variable, one which does not change under these transforma-
tions. Here I outline this method, leaving some of the more detailed calculations as
problems.

We saw earlier that one of the major complications in conformal Newtonian
gauge was that perturbations to the scalar field ¢ are coupled to the potential P.
It would obviously be nice to transform to a gauge in which these perturbations
decoupled. Consider a gauge with spatially flat slicing, with the spatial part of the
metric g;; = 6;;a*. In this gauge the line element is

ds? = —(1 + 24)dt? — 2aB ;dz'dt + §;a*dr'dx?, (6.91)

i.e., there are two functions A and B characterizing the perturbations. In this case,
the equation for d¢ is given exactly (Exercise 16) by Eq. (6.71): the perturbations
in the scalar field do not couple to those in the gravitational metric. Therefore,
without having to neglect any couplings, we can identify the power spectrum for
d¢ as given by Eq. (6.72).

The next step is to identify a gauge-invariant variable, one which remains the
same when transforming from one gauge to the next. Bardeen (1980) identified
several such variables, two characterizing scalar perturbations to the metric and
two characterizing perturbations to the matter. Of course any linear combination
of these is still gauge invariant. We would like to identify the combination that is
proportional to d¢ in the gauge with spatially flat slicing. In this gauge, Bardeen’s
velocity (Eq. (5.78)) is

(spatially flat slicing) (6.92)

where I have evaluated 67°; with Eq. (6.64). Thus, we can create a gauge-invariant
variable proportional to d¢ in a spatially flat slicing if we subtract off the kB term.
Bardeen’s &5 (Eq. (5.76)) is simply equal to aH B, so the combination

jaH
(=-dy — %v (6.93)
is gauge invariant and in spatially flat slicing is equal to
H
¢ = —%(0—) 8¢  (spatially flat slicing). (6.94)
We can immediately relate the power in ¢ to the power in ¢,

. aH\?
p={22) p.,. 6.95
¢ ( ¢(0)> 56 (6.95)
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We know Ps from Eq. (6.72) and the prefactor is 47G /¢, so

. 2nGH?

Po= =03 (6.96)

aH=Fk

Equation {6.96) is very useful, for it expresses the power spectrum of a gauge
invariant quantity. Although we computed it in a gauge of the form in Eq. (6.91),
once we have this answer, we can compute ¢ in any gauge and then relate the power
in the perturbation variables of that gauge to F.

Throughout this book, we have been working in conformal Newtonian gauge. In
this gauge, &y = —®, so ¢ as defined in Eq. (6.93) is indeed given by Eq. (6.77).
We argued in Section 6.5.2 that in conformal Newtonian gauge, after inflation,
¢ =3®/2,s0 Pp = 4P /9, or using Eq. (6.96),

B SrGH?

Py = 6.97
7 T 9ek3 (6.97)

aH=k

in exact agreement with our earlier calculation finalized in Eq. (6.82).

This is the end of the calculation, but not quite the end of the story. Bardeen
and others have argued that ® 4 has a nice geometrical interpretation, one shared
by ¢ in certain gauges. In particular, the curvature of the three-dimensional space
at fixed time is equal to 4k?®y /a?. Therefore, perturbations in ® represent cur-
vature perturbations: even though the zero-order space is flat, perturbations induce
a curvature which varies from place to place. In conformal Newtonian gauge or in
a spatially flat slicing this interpretation would seem irrelevant to perturbations in
¢, since ¢ is a combination of both ¢z and the velocity. However, if one moves
to a comoving gauge, one in which the velocities vanish, then ¢ is equal to ®g. In
comoving gauges, then, it is clear that a perturbation to { is a curvature perturba-
tion, and indeed the scalar perturbations generated during inflation are often called
curvature perturbations.

6.6 SUMMARY AND SPECTRAL INDICES

The perturbations are best described in terms of the Fourier modes. The mean of
a given Fourier mode, for example for the gravitational potential, is zero:
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(®(k)) = 0. (6.98)

Further, the perturbations to one Fourier mode are uncorrelated with those to
another. However, a given mode has nonzero variance, so

(@(k)@"(K)) = (2m)*Po (k)6 (k — K'), (6.99)

the Dirac delta function enforcing the independence of the different modes. In
the case of scalar perturbations, the ones of most importance for us, the power
spectrum is given by Eq. (6.82). Perturbations to the tensor part of the metric
are also produced and are also Gaussian with mean zero; the power spectrum of
tensor modes is given by Eq. (6.59). The scalar spectrum depends on the slow roll
parameter ¢, defined in Eq. {6.35), which is proportional to the derivative of the
Hubble rate. Since the Hubble rate is close to constant during inflation — because
of the dominance of potential energy — e is typically small.

A spectrum in which k®Pg(k) is constant (i.e., does not depend on k) is called
a scale-invariant or scale-free spectrum. Apart from small deviations encoded in
the slow-roll parameters, both the scalar and the tensor perturbations are scale
free. This is both a blessing and a curse. It is good because it is a fairly definite
prediction, easy to test. It is unfortunate because a scale-free spectrum is what one
might have expected even without the complex machinery of inflation. Indeed, a
scale-free spectrum is also referred to as a Harrison—Zel'dovich—Peebles spectrum,
crediting the smart people who first proposed it as the appropriate distribution for
the initial conditions, a proposal that predates inflation by many years. This really is
too bad, because if we observe a scale-free spectrum, and most present observations
are consistent with this, then inflation cannot fairly claim all the credit. However,
if we observe a small mixture of tensor modes and/or a small deviation from a
scale-free spectrum, then this will go a long way toward convincing skeptics that
inflation is responsible for the primordial perturbations.

To quantify the deviations from scale invariance, it is conventional to write the
primordial power spectra as

Po(h) = 57 17 _507T2(k>"’12< U >
® Ok3emd,| T~ 9K \Ho HADi(a=1)
87 H?
Pi(k) = Eor = ApknT 3, (6.100)
(2} P

These equations serve to define the scalar and tensor amplitudes, §y (subscript g
for amplitude at horizon crossing) and A7, and the spectral indices, n and n. Note
that this convention — which has become common —says that a scale-free scalar
spectrum corresponds to n = 1, while ny = 0 for a scale-free tensor spectrum. The
factor of Q,,,/D;(a = 1), where 2, is the fraction of the critical density in matter
today and D, is the growth function which will be defined in Chapter 7 (Eqs. (7.4)
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and (7.77)), is part of this convention. It is inconvenient at this stage because we
have not even encountered the growth function yet, but it has become standard
to include in the definition of §g (Liddle and Lyth, 1993; Bunn and White, 1997).
The resulting expression for the matter power spectrum today looks much simpler
when these factors are included here. We pay the price of complexity now for the
benefit of simplicity later.

We can relate the primordial spectral indices n and ny to the slow-roll param-
eters € and 0. Consider first the tensor spectrum. By virtue of the definition in
Eq. (6.100),

d ln[Ph]
dlnk

The logarithmic derivative has two terms, first the trivial one dIn(k=3)/dIn(k)
which cancels the —3 here, leaving ny = 2d1n H/dIn(k). The logarithmic derivative
of the Hubble rate at horizon crossing is a bit subtle:

=np—3. (6.101)

din H
dlnk

_ kdHdy

T Hdy " dk

aH=k

(6.102)

aH=
By definition (Eq. (6.35)), H = —aH?%, and dn|apy—i/dk = —d(aH) ' |og—r/dk =
1/k?, so
din H
dink

. k aH?c
- H k2

aH=k

= —e. (6.103)
aH=k

Therefore, the primordial spectral index of tensor perturbations produced by infla-
tion is
ny = —2e. (6.104)

The scalar spectral index follows from a similar argument. Taking the logarith-
mic derivative of Ps leads to

d
—1=——[In(H?*) -1 . 6.105
n=1= i ()~ (o) (6.105)
The derivative of H again gives —2¢ while the logarithmic derivative of € is —2(e+)
(Exercise 12). So,

n=1-4e— 26. (6.106)

The fact that the tensor index ny is proportional to € leads to one of the robust
predictions of inflation. Many inflationary models have been proposed which offer
different predictions for € and §. Almost all of these, however, maintain the feature
that the ratio of tensor to scalar modes (which we saw earlier was proportional
to €) is directly related to the tensor spectral index (here also seen to be directly
proportional to €). As you progress through this book, moving from the evolution
of anisotropies to their analyses, try to bear in mind the crucial question of whether
this prediction can be put to the observational test.
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The slow-roll parameters are a convenient way to summarize the predictions of
an inflationary model. However, ultimately we are interested in the physics, so we
are interested in how these parameters relate back to the fundamental entity, the
potential V of the scalar field responsible for inflation. You will show in Exercise 14
that these parameters can be expressed in terms of the potential and its derivatives.
Therefore, extracting the values of € and § from the data is tantamount to probing
the potential of the field driving inflation. Given that the expected scale of this
potential is on the order of 10'® GeV (Exercise 18), this is quite an impressive
probe!
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SUGGESTED READING

The 30 or so pages on inflation in this chapter, which were heavily slanted toward
production of perturbations, offer but a glimpse into the many facets of this remark-
able theory. Recently, Guth wrote a popular account of his discovery of inflation,
The Inflationary Universe. One of the other originators of the theory, Linde, has a
more technical book, Inflation and Quantum Cosmology, which emphasizes mode]
building much more than I have here. As I mentioned earlier, The Early Universe
(Kolb and Turner) has an excellent chapter on inflation. The recent Cosmological
Inflation and Large Scale Structure (Liddle and Lyth) is most similar in spirit to
this book, with a heavy emphasis on perturbations. The discussion there of the
perturbation spectrum is laden with less algebra than the one in Section 6.5 so is
worth reading. (Beware that their Planck mass is our mp;/v/87.)

An extremely clear and deep look into inflation is given in 300 Years of Gravita-
tion (ed. Hawking and Israel) in the article by Blau and Guth. Many other articles
in that thick compilation volume are also fascinating. The initial article by Guth
(1981) is completely accessible and as clear a statement possible of the problems
that led to inflation and the initial attempt (old inflation) to solve them. Indeed,
I would recommend reading Guth’s initial article because this chapter motivates
inflation with the horizon problem, while Guth had several different problems in
mind, including the monopole problem and the flatness problem (Exercise 4).

There have been many papers reviewing the production of perturbations during
inflation. Two clear reviews are Lidsey et al. (1997) and Lyth and Riotto (1999).
The former focuses on methods for going beyond the predictions elucidated here,
which are accurate only to first order in the slow-roll parameters ¢ and 4, and on
extracting the potential V' from observations. The latter summarizes efforts to tie
inflation to realistic particle physics models. The eight-page paper of Stewart and
Lyth (1993) is a remarkably concise treatment of the techniques used to go beyond
the first-order slow-roll approximation. Hollands and Wald (2002) have written a
thoughtful critique of inflation, which is a refreshing antidote to some of the eupho-
ria emanating from the discoveries of the late 1990s. Besides the importance of this
critique in its own right, the paper has one of the clearest qualitative descriptions
of perturbation generation during inflation that I have ever read.

The initial conditions relating the various perturbations described in Section 6.1
are perhaps most clearly discussed in the review article by Efstathiou (1990). Isocur-
vature perturbations, for the most part ignored here, are treated in detail there.

I have ignored the possibility of perturbations produced by topological defects.
These theories, while fascinating, have not succeeded in making robust predictions;
to the extent that predictions can be extracted from them, they are wrong. Nonethe-
less the numerics involved in their study is sufficiently complicated that I would
not be shocked to see them make a comeback some day. There exist many books
with comprehensive discussions of topological defects. Among them are Cosmic
Strings and Other Topological Defects (Vilenkin and Shellard) and The Formation
and Evolution of Cosmic Strings (ed. Gibbons, Hawking, and Vachaspati).
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EXERCISES

Exercise 1. Find the ratio of neutrino to radiation energy density, f,. Assume
that there are three species of massless neutrinos.

Exercise 2. Account for the neutrino quadrupole moment when setting up initial
conditions.

(a) Start with Eq. (4.107). This is an equation for M {z). Turn this into a hierarchy
of equations for the neutrino moments:

N0+kN1 = —(i)
ok k
Nl - 5 (NQ —2./\/2) = 5‘1’
Ny — %kj\/l = 0. (6.107)

To do this, you need to recall the definition of these moments, which is equivalent to
that for photons, Eq. (4.99). A good way to reduce Eq. (4.107) into this hierarchy
is to multiply it first by Py and then integrate over f_l , dp. This leads to the first
equation above. Then multiply Eq. (4.107) by P to get the second and P; to get the
third. More details are given in Section 8.3, where we go through the same exercise
for the photon moments. In the third equation you may neglect N3 because it is
smaller than N3 by a factor of order kn (prove this!).
(b) Eliminate N from these equations and show that
. 2k2

Ny = 15 (W +No — 2MN2). (6.108)
Drop N3 on the right-hand side because it is much smaller than ¥ + ANj.
(c) Rewrite Einstein’s equation (5.33) as

2(1)+\II
12f,

This neglects the photon quadrupole. Argue that Compton scattering sets 2 < Na
so this is a reasonable assumption.

(d) Now differentiate this form of Einstein’s equation twice to get an expression
for N3. Equate this to the expression for N derived in part (b). (You may drop
all derivatives of ® and ¥ when doing this since the mode of interest is the p =0
constant mode.) Use this equation to express A in terms of ® and .

(e) Finally assume that ©9 = Afy and use your expression for Ay to rewrite
Eq. (6.12) as a relation between the two gravitational potentials. Show that this

relation is
2f,
d=—-V|(1+ - | (6.110)

Ny = —(kn) (6.109)
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Exercise 3. Show that the initial conditions for the velocities and dipoles of matter
and radiation are as given in Eq. (6.16).

Exercise 4. Inflation also solves the flatness problem. This is the question of why
the energy density today is so close to critical.
(a) Suppose that

BrGolt) (6.111)

20 = 30

I

is equal to 0.3 today, where p counts the energy density in matter and radiation
(assume zero cosmological constant). From Eq. (1.2), plot €(¢) — 1 as a function of
the scale factor. How close to one would Q(t) have been back at the Planck epoch
(assuming no inflation took place so that the scale factor at the Planck epoch was
of order 10732)? This fine-tuning of the initial conditions is the flatness problem.
If not for the fine tuning, an open universe would be obuviously open (i.e., @ would
be almost exactly zero) today.

(b) Now show that inflation solve the flatness problem. Extrapolate Q(t) — 1 back
to the end of inflation, and then through 60 e-folds of inflation. What is (¢) — 1
right before these 60 e-folds of inflation?

Exercise 5. Another way of looking at the problems that inflation solves is to
consider the entropy within our Hubble volume. This is proportional to the total
number of particles in the volume, with a proportionality constant of order unity.
How many photons are there within our Hubble volume today? Explain how infla-
tion produces entropy this large.

Exercise 6. We showed that, if the universe was always dominated by ordinary
matter or radiation early on, then the comoving horizon when the scale factor was
a. (very small) was apHp/a.H, times the comoving Hubble radius today. Compute
this ratio assuming that the temperature was equal to 10'®> GeV at a.. Account for
the radiation-to-matter transition at a ~ 1074.

Exercise 7. Consider a free, homogeneous scalar field with mass m. The potential
for this field is V = m?2¢?/2. Show that, if m > H, the scalar field oscillates with
frequency equal to its mass. Also show that its energy density falls off as a=3, so it
behaves exactly like ordinary nonrelativistic matter.

Exercise 8. Show that Eq. (6.33) follows from Eq. (6.32) by changing variables
from t to 7.

Exercise 9. Compute some well-known properties of the quantized harmonic oscil-
lator.
(a) The momentum of the harmonic oscillator with unit mass is p = dz/dt. Com-
pute

(2, 7]
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and show that it is equal to . You can obtain the operator p by differentiating &
(Eq. (6.38)) with respect to time.
(b) Compute the zero-point energy of the harmonic oscillator with unit mass. Do
this by quantizing the energy

2 242

D x
E=-—
2jL 2

and then computing its expectation value in the ground state: (0]£|0).

Exercise 10. Show that gravity waves are not sourced by the scalar field during
inflation. To do this, recall that the right-hand side of Eq. (6.45) is

8T, — 672,

where 67 is the perturbation to the energy—momentum tensor (assun_@d to be
dominated by ¢) and, as in the derivation of Eq. (5.63), I have chosen & to be in
the 2 direction. Show that this right-hand side is indeed zero for the scalar field.

Exercise 11. Show that Eq. (6.57) is the appropriate solution to Eq. (6.56).

(a) Define ¢ = v/n and rewrite Eq. (6.56) in terms of .

(b) The resulting equation is the spherical Bessel equation. Write down the general
solution to this as a linear combination of two functions of k7).

(c) Use the boundary conditions of Eq. (6.58) to determine the coefficients of part
(b). Show that Eq. (6.57) is the correct solution for these boundary conditions.

Exercise 12. Derive some useful identities involving the slow-roll parameters dur-

ing inflation.
d
4L =e—1.
dn (aH)

(a) Show that
(b) Show that
47G(d0)? = ea® H?. (6.112)

(c) Using the definitions of € and §, show that

de

= —2aHe(e + 6). (6.113)
dn

Use this to show that dlne€|qm—i/dIn(k) = —2(c + 3).
Exercise 13. Show that on large scales Eq. (6.85) holds. One way to do this is to

combine Einstein’s equations, the time-time (5.27) and time-space (Exercise 5 of
Chapter 5) components, and take the large-scale limit.
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Exercise 14. Express the slow-roll parameters € and 7 in terms of the potential V
and its derivatives with respect to ¢. Show that, to lowest order,

1 (V\?
“= 16nG (7)

1 Vl/
- 81G V.
where primes denote derivatives with respect to ¢(®).

and
d=¢

Exercise 15. There are a number of ways of describing pressure in the universe
and of relating the pressure to the energy density. One was introduced back in

Chapter 2, the equation of state,
P

w

(6.114)

The second is the sound speed,
2
CS

l

;.
P (6.115)
dp

The way to compute c¢? is to differentiate both P and p with respect to time and
take the ratio. Finally, there is the ratio of perturbations in the energy density to
those in the pressure,

0P ~36T%

bp 0Ty
where the minus sign accounts for the fact the the time-time component of the
energy-momentum tensor is minus the energy density with our convention, and the
factor of 3 negates the sum over the three spatial indices. For adiabatic perturba-
tions, 0P /ép = cg. Show that this holds for three separate cases: matter, radiation,
and a single scalar field during inflation at the time of horizon crossing. For the last
case, it is enough to show that the difference 6P/8p — 2 is of order the slow-roll
parameters € and 4.

(6.116)

FExercise 16. Show that in a gauge given by Eq. (6.91), the equation governing
the perturbations to a scalar field d¢ is Eq. (6.71).

(a) Bardeen’s equation for the gauge-invariant density in the absence of anisotropic
stress is d

) (a®pem) = —(p + P)a’kv (6.117)

with gauge-invariant density defined as
3iH
pen = —p— T + 5 kidT", (6.118)

and velocity v via Eq. (6.92). Compute pe,, for a scalar field in a gauge with spatially
flat slicing. Show that, to lowest order in slow-roll parameters € (not €,,) and 4, the
equation reduces to
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4 (a%(o)&p) = —k2ad 98¢ (6.119)
dn

(b) Again using the slow-toll approximation reduce Eq. (6.119) to the form of
Eq. (6.45).

Exercise 17. Show that the curvature in conformal Newtonian gauge is equal to
4k*®/a?. To do this, compute the three-dimensional Ricci scalar arising from the
spatial part of the metric g;; = d;;a2(1 + 2®).

Exercise 18. Determine the predictions of an inflationary model with a quartic
potential,

V() = 2.

(a) Compute the slow roll parameters ¢ and § in terms of ¢.

(b) Determine ¢, the value of the field at which inflation ends, by setting € = 1 at
the end of inflation.

(c) To determine the spectrum, you will need to evaluate € and § at —kn = 1.
Choose the wavenumber k to be equal to agHg, roughly the horizon today. Show
that the requirement —kn = 1 then corresponds to

N eN/
= |V e

where H,. is the Hubble rate at the end of inflation, and N is defined to be the
number of e-folds before the end of inflation:

N=m(2).
a

(d) Take the Hubble rate to be a constant in the above with H/H, equal to 1. This
implies that N ~ 60. Turn this into an expression for ¢. The simplest way to do
this is to note that N = ftTe dt' H(t') and assume that H is dominated by potential
energy. Show that this mode leaves the horizon when ¢? = 60m3, /.
(e) Determine the predicted values of n and np.
(f) Estimate the scalar amplitude in terms of A. As a rough estimate, assume that
k3 Pg (k) for this mode is equal to 1078 (we will find a more precise value when we
normalize to large-angle anisotropies in Chapter 8). What value does this imply for
A?
This model illustrates many of the features of contemporary models. In it, (i) the
field is of order-—even greater than — the Planck scale, but (ii) the energy scale V
is much smaller because of (iii) the very small coupling constant.
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Having set up the system of equations to be solved and the initial conditions for
the perturbations, we can now calculate the inhomogeneities and anisotropies in
the universe. In this first solutions chapter, we start with the perturbations to the
dark matter. In principle these are coupled to all other perturbations. In practice,
though, perturbations to the dark matter depend very little on the details of the
radiation perturbations. Dark matter, by definition, is affected by radiation only
indirectly, through the gravitational potentials. At late times, when the universe is
dominated by matter, these potentials are independent of the radiation. At early
times, while it is true that the potentials are determined by the radiation, it is also
true that the radiation perturbations are relatively simple, so that all moments
beyond the monopole and dipole can be neglected. The converse is not true, as we
will see in the next chapter: To treat the anisotropies properly we will need to know
how the matter perturbations behave.

The ultimate goal of this exercise is to compare theory with observations. We
will solve for the evolution of each Fourier mode, §(k, 7). Given this solution, and
the initial power spectrum generated by inflation, we can construct the power spec-
trum of matter today. At least on large scales, this is the most important observ-
able. On small scales, comparison with observation today is more difficult: one must
worry about nonlinearities and gas dynamics when comparing with the galaxy dis-
tribution. Nonetheless, even on small scales, the linear power spectrum, which we
compute in this chapter, is often the starting point for any quantitative statement
about the distribution of matter.

7.1 PRELUDE

Gravitational instability is a powerful idea, easy to understand, and most likely
responsible for the structure in our universe. As time evolves, matter accumulates
in initially overdense regions. It doesn’t matter how small the initial overdensity
was (e.g., in typical cosmological scenarios, the overdensity was of order 1 part in
10°); eventually enough matter will be attracted to the region to form structure.

180
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7 - Pressure

Figure 7.1. Gravitational instability. Mass near an overdense region is attracted to the cen-
ter by gravity but repelled by pressure. If the region is dense enough, gravity wins and the
overdensity grows with time.

The F = ma of gravitational instability is the equation governing overdensities
8. Schematically, it reads

6 4 [Pressure — Gravity] 6 = 0. (7.1)

These basic forces, depicted in Figure 7.1, act in opposite directions. Gravity acts
to increase overdensities, grabbing more matter into the region. Since there are
more particles in an overdense region, random thermal motion causes a net loss of
mass in an overdense region. Therefore, if pressure is strong, inhomogeneities do
not grow. As indicated by the cartoon equation (7.1), if pressure is low, § grows
exponentially; if it is large, § oscillates with time.

We will see many manifestations of the simple form of gravitational instability
depicted in Eq. (7.1). Different ambient cosmological conditions alter the growth
rate. For example, in a matter-dominated universe, é grows only as a power of
time, not exponentially, whereas in a radiation-dominated universe, the growth is
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but logarithmic. We will treat super-horizon versions of this equation as well as
the more familiar sub-horizon version. When going though the math, though, it is
useful to bear in mind the dueling concepts of gravity and pressure.

7.1.1 Three Stages of Evolution

a
1 \\\ ‘T\______:
0.8 \ N k = .001
\ \
\ \

© 0.6
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Figure 7.2. The linear evolution of the gravitional potential . Dashed line denotes that the
mode has entered the horizon. Evolution through the shaded region is described by the transfer
function. The potential is unnormalized, but the relative normalization of the three modes is
as it would be for scale-invariant perturbations. Here baryons have been neglected, 2, = 1,
and h = 0.5.

The evolution of cosmological perturbations breaks up naturally into three
stages. To see this, let’s cheat and look at the solutions for several different modes.
Figure 7.2 shows the gravitational potential as a function of scale factor for long-,
medium-, and short-wavelength modes. Early on, all of the modes are outside the
horizon (kn < 1) and the potential is constant. At intermediate times (shaded in
the figure), two things happen: the wavelengths fall within the horizon and the uni-
verse evolves from radiation domination (a < aeq) to matter domination (@ > aeq).
Without getting into the details, we see that the order of these epochs (aeq and
the epoch of horizon crossing) greatly affects the potential. The large-scale mode,
which enters the horizon well after aq, evolves much differently than the small-scale
mode, which enters the horizon before equality. Finally, at late times, all the modes
evolve identically again, in this case (where €,,, = 1) remaining constant.
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We are able to observe the distribution of matter predominantly at late epochs,
in the third stage of evolution, when all modes are evolving identically. If we wish
to relate the potential during these times to the primordial potential set up during
inflation, and we do, we can write schematically

®(k,a) = (I>p(l—£) X {Transfer Function(k)} X {Growth Function(a)}. (7.2)

where @, is the primordial value of the potential, set during inflation. The trans-
fer function describes the evolution of perturbations through the epochs of horizon
cossing and radiation/matter transition (the shaded region in Figure 7.2), while
the growth factor describes the wavelength-independent growth at late times. This
schematic equation is indeed roughly how the growth factor and the transfer func-
tion are defined, with two caveats, both due to convention. Notice from Figure
7.2 that even the largest wavelength perturbations decline slightly as the universe
passes through the epoch of equality. This decline is conventionally removed so that
the transfer function on large scales is equal to 1. Therefore, the transfer function
is defined as
T(k‘) = @(k, alate)
(I)Large—Scale (k7 alate)
where ay,te denotes an epoch well after the transfer function regime and the Large-
Scale solution is the primordial ® decreased by a small amount. We will derive in
Section 7.2 that —neglecting anisotropic stresses — this factor is equal to (9/10).
The second caveat concerns the growth function. The ratio of the potential to its
value right after the transfer function regime is defined to be
®(a) _ Di(a)

P(aae) @ (@ > alate), (7.4)

(7.3)

where Dy is called the growth function. In the flat, matter-dominated case depicted
in Figure 7.2, then, the potential is constant so D;(a) = a. With these conventions,
we have D
B(F,a) = %QP(E)T(k) (@)
The ecasiest way to probe the potential is to measure the matter distribution.
Figure 7.3 shows the evolution of the matter overdensity for three different modes.
Notice that at late times— when the potential is constant and all the modes are
within the horizon —the overdensity grows with the scale factor (& o« a). This
explains the seemingly odd nomenclature above (Why is it called a growth function
if the potential remains constant?): Dy describes the growth of the matter pertur-
bations at late times. This growth is completely consistent with our intuition that
as time evolves, overdense regions attract more and more matter, thereby becoming
more overdense.
We can now express the power spectrum of the matter distribution in terms of
the primordial power spectrum generated during inflation, the transfer function,
and the growth function. The simplest way to relate the matter overdensity to the

(a > alate). (75)
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Figure 7.3. The evolution of perturbations to the dark matter in the same model as plotted in
Figure 7.2. Amplitude starts to grow upon horizon entry (different times for the three different
modes shown here). Well after aeq, all sub-horizon modes evolve identically, scaling as the
growth factor. In the case plotted, a flat, matter dominated universe, the growth factor is
simply equal to a.

potential at late times is to use Poisson’s equation (the large-k, no-radiation limit
of Eq. (5.81))

A Gpma?s
oo CEES ) )
The background density of matter is pm = Qmper/a?, and drGp = (3/2)HE, so
- k2®(k,a)a
5(k.a) = A\ a)a > Glate). 7.7

This, together with Eq. (7.5), allows us to relate the overdensity today to the
primordial potential

23 k2

6(k,a) = gmép(ﬁ)T(k)Dl(a) (a > aate)- (7.8)

Equation (7.8) holds regardless of how the initial perturbation ®, was generated.
In the context of inflation, <I>p(l_5) is drawn from a Gaussian distribution with mean
zero and variance (Eq. (6.100)) Py = (5072/9k%)(k/Ho)" '6%(Qmn/D1(a = 1))%
So the power spectrum of matter at late times is

n

n+3
HO

2
P(k,a) = 2026% —_T2(k) (#@1)) (@> iace)- (7.9)
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The power spectrum has dimensions of (length)3. If we want to express the power
as a dimensionless function, then, we must multiply by k%. More precisely, one often
associates d3kP(k)/(27)3 with the excess power in a bin of width dk centered at k.
After integrating over all orientations of k, this becomes (dk/k)A2(k), with

0.« k3P(k)
A%(k) = 57 (7.10)
Small A then corresponds to small inhomogeneities, while large A indicates nonlin-
ear perturbations. Note that, with our conventions, a Harrison-Zel’dovich—Peebles
spectrum today has A? = §% on a horizon-sized scale (k = Hp).

Figure 7.4 shows the power spectrum today for two different models. Note that
in both of the models P « k on large scales, where the transfer function is unity.
This behavior is apparent from Eq. (7.9) and corresponds to the simplest infla-
tionary model, wherein n = 1. On small scales the power spectrum turns over.
To understand this, look back at Figure 7.2. The small-scale mode there (k = 2h
Mpc~!) enters the horizon well before matter/radiation equality. During the radi-
ation epoch the potential decays, so the transfer function is much smaller than
unity. The effect of this on matter perturbations can be seen in Figure 7.3, where
the growth of § is retarded starting at a ~ 107° after the mode has entered the
horizon and ending at a ~ 10~* when the universe becomes matter dominated.
Modes that enter the horizon even earlier undergo more suppression. Thus, the
power spectrum is a decreasing function of k£ on small scales.

This leads to the realization that there will be a turnover in the power spectrum
at a scale corresponding to the one which enters the horizon at matter/radiation
equality. The power of this realization is apparent in Figure 7.4, which shows two
different models: one corresponding to a flat, matter-dominated universe today
(often called standard Cold Dark Matter or sCDM) and the other a universe with
a cosmological constant today (Lambda Cold Dark Matter or ACDM). The major
difference between the two models is that sCDM has more matter (€2, = 1) and
hence an earlier a.q. An earlier a., means only the very small scales enter the
horizon during the radiation-dominated epoch, and therefore the turnover occurs
on smaller scales. Finally, ancther important scale to keep in mind is the scale
above which nonlinearities cannot be ignored. This is roughly set by A(ky) ~ 1,
which corresponds to k) ~ 0.2 h Mpc~! in most models. The power spectra shown
in Figure 7.4 are the linear power spectra today. On scales smaller than k), one
cannot blindly compare the spectra from Figure 7.4 with the matter distribution
today.

7.1.2 Method

What are the evolution equations for the dark matter overdensity? In principle,
these are the full set of Boltzmann equations derived in Chapter 4 and the pair of
Einstein equations from Chapter 5. In practice, though, the full set of equations
is not needed. To understand why, recall that early on (before recombination at
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Figure 7.4. The power spectrum in two Cold Dark Matter models, with (ACDM) and without
(sCDM) a cosmological constant. The spectra have been normalized to agree on large scales.
The spectrum in the cosmological constant model turns over on larger scales because of a
later acq. Scales to the left of the vertical line are still evolving linearly.

a = a.), the photon distribution can be characterized by only two moments, the
monopole Oy and the dipole ©;. All other moments are suppressed because the
photons are tightly coupled to the electron/proton gas. After decoupling this ceases
to be true, and to completely characterize the photon distribution we will need to
follow high moments. However, for the purposes of the matter distribution, what
the photons are doing after a, is irrelevant. For, by that time, which is typically well
into the matter era, the potential is dominated by the dark matter itself. To sum
up then, we can neglect all photon moments except for the monopole and dipole
when we are considering the evolution of the matter distribution.

Neglecting the higher radiation moments, the four relevant Boltzmann equations
(Section 4.7) become

Oro+ kO, = - (7.11)
: k —k
1= -O,0= —® 7.12
Or1 3@ 0= (7.12)
5+ ikv = —3 (7.13)
e
v+ —v =ikd. (7.14)
a

Even with the assumption that only the monopole and dipole are retained, getting
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from Eq. (4.100) to Egs. (7.11) and (7.12) requires some explanation and work.
First, the explanation: The subscript , here refers to radiation, both neutrinos
and photons. Both species contribute to the gravitational potential (which is our
interest in this chapter) and both start out with the same initial conditions. It is
not quite as obvious that both follow the same evolution equations (the 7 terms can
be neglected in Eq. (4.100)) or that these evolution equations are the ones given in
(7.11) and (7.12). But it is true, at least in the limit of small baryon density, and
again only for the purposes of following the matter evolution. You can work out
the details in Exercise 1, and we will explore the full photon evolution equation in
the next chapter.

To close the set of equations for the dark matter density, we need an equation for
the gravitational potential ®. You may have noticed that in Egs. (7.11)-(7.14), I set
¥ — —&, an approximation valid in the limit that there are no quadrupole moments
(Eq. (5.33)). Since some of the Einstein equations are redundant, we have several
choices for one last equation relating ® to the radiation and matter overdensities.
We can use the time-time component, Eq. (5.27),

kK2® + 3% (cb + %b) = 47Ga? [pamd + 4p+Or0] . (7.15)

Here, again I have set ¥ to —®, neglected the baryons,! and merged the neutrino
and photon contributions to the potential. The alternative is to use the algebraic
(no time derivatives) equation (5.81):

H
k2(I) = 47TG0‘2 |:pdm(S + 4pr@r,0 + 3aT (iPde + 4pr®r,1>:| . (716)

Both of these equations will be useful to us at various times, although only one is
necessary to close the set of equations for the five variables 6, v, ©,.9,0,1, and ®.

At this stage, the simplest thing to do is solve the set of five coupled equations
numerically (Exercise 2). If Eq. (7.15) is used, there are no numerical difficulties,
and with very little work, you can have a code which computes the transfer function
(in the absence of baryons) in less than a second.

Analytic solutions for the dark matter density are harder to come by. I know of
no analytic solution valid on all scales at all times. To make progress, we will have
to take some limits which reduce the full set of five equations to a more managable
two or three. The cost is that these limits will be valid only for certain scales at
certain times. Patching these analytic solutions together to obtain a reasonable
transfer function is as much art as science.

As a guide to this analytic work which will occupy us much of the rest of
this chapter, consider Figure 7.5. The solid curve is the comoving horizon (confor-
mal time), which increases with time, equal to about 30 h=! Mpc at the epoch of

L This is a fairly good approximation since in most models, the baryon density is much smaller
than the dark matter density. We will explore the effects of baryons in Section 7.6.



INHOMOGENEITIES

188

105 10+ 10-3 0.01

10-¢

(odW ;-U) @ouelsiq Furaowo)

Figure 7.5. Physics of the transfer function. Hatched regions show where analytic expressions
exist. The gaps in the center show that no analytic solutions exist to capture the full evolution
of intermediate scale modes. The curve monotonically increasing from bottom left to top right

is the comoving horizon.

equality.? A given comoving scale remains constant with time. Take for example, a

0.1 h Mpc™1.

this distance is larger than the horizon, so kn <« 1.

ional to k in the evolution equations. In Sec-

tion 7.2.1, we will derive an exact solution for the potential in this super-horizon

corresponding to wavenumber k
limit. Unfortunately, Figure 7.5 indicates that, for the mode in question, this super-
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We will see in Section 7.3.2 that,

under these conditions, another analytic solution can be found. The difficulty is

evant (since the universe is matter dominated).

horizon solution to the sub-horizon solution.
The problem of matching the super-horizon solution to the sub-horizon solution

matching the super-

(k < 0.01 h Mpc™!) and very small scale (k > 0.5h

Mpc~!) modes. In the large-scale case, we will see in Section 7.2.2 that once the

can be solved for very large scale

constant is a solution to the evolution

d =

’

universe becomes matter dominated

2This is model dependent; the plot shows sCDM, with kA = 0.5.
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equations even as the mode crosses the horizon. This fact serves as a bridge between
the super- and sub-horizon solutions, both of which have constant ® in the matter-
dominated regime. In the small-scale case, we can neglect matter perturbations as
the mode crosses the horizon, since these modes cross the horizon when the universe
is deep in the radiation era. Then, once the mode is sufficiently within the horizon,
radiation perturbations decay away, and we can match on to the sub-horizon, no-
radiation perturbation solution of Section 7.3.2.

With analytic expressions on both large and small scales, we can obtain a good
fit to the transfer function by splining the two solutions together. We will see in
Section 7.4 that this works, primarily because the transfer function is so smooth,
monotonically decreasing from unity on large scales.

7.2 LARGE SCALES

On very large scales, we can get analytic solutions for the potential first through the
matter-radiation transition and then through horizon crossing. We start with the
super-horizon solution valid through the matter-radiation transition. The results
of Section 7.2.1 will be that the potential drops by a factor of 9/10 as the universe
goes from radiation to matter domination.

7.2.1 Super-horizon Solution

For modes that are far outside the

Beq
horizon, kn « 1 and we can drop \\ \§\\ ) 3
all terms in the evolution equations g D """"&\\% 4 0.01
dependent on k. From Egs. (7.11) and \\\\\\\ ] =
(7.13), we see that, in this limit, the (g } 201 ~
velocities (v and O, ;) decouple from 3 ;
the evolution equations. This imme- 1B 31 B
diately reduces the number of equa- ] =
tions to solve from five to three. For Covod el bl vl 13 1

0.1
the third equation, we notice that 10-¢ 10-% 10~* 10-* 0.01
Eq. (7.16) has terms inversely propor- a
tional to k. These will be difficult to deal with, so let us choose Eq. (7.15) instead.
We are left with

©,0=—0 (7.17)
6= —3d (7.18)

af. a )
35 P+ Eq) =47Ga [pdm5 + 4/)7-(')7«70] . (719)

We can go a step further by realizing that the first two equations require 6 — 30,
to be constant. Further, we know that this constant is zero (these are the initjal
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conditions). So let us use the dark matter equation {7.18) and the Einstein equation
with ©, ¢ set to §/3. The Einstein equation is then

o 4
3¢ (@ + 9¢>> = 47Ga2pamd [1 + ~—] : (7.20)
a a 3y
Here I have introduced “
y= 2 = Pdm (7.21)
aeq Pr

which we will use as an evolution variable instead of n or a. Again I emphasize that
we are ignoring baryons, so geq is determined solely by pqm; in the real world, the
numerator in the last term in Eq. (7.21) would be pp,, accounting for all matter
including baryons.

Equations (7.18) and (7.20) are two first-order equations for the two variables §
and ®. The stategy will be to turn these two first-order equations into one second-
order equation and then solve. First, though, let us rewrite the equations in terms of
the new variable y. The derivative with respect to y is related to that with respect
to i via the Jacobian,

d dyd
dn  dndy
= aHyi, (7.22)
dy

where the second line follows from the definition of y and the fact that @ = a?H.
In terms of y then, the Einstein equation becomes

4
d+o=—2"_s1 —}
v 2(y+1) {+3y
3y+4
YT 7.23
6(y+1)6 ( )

where prime denotes derivatives with respect to y and the right side of the first line
follows since 8mGpam /3 = (87Gp/3)y/(y + 1) = H?y/(y + 1).

In general, to turn two first-order equations into one second-order equation, the
trick is to differentiate one of them. Here, to simplify the algebra, we first rewrite
Eq. (7.23) as an expression for J; then differentiate with respect to y; and finally
set &’ to —3®’ thanks to the dark matter equation (7.18). This leads to

d [6(y+1)
30 = = 20T e @] . 7.24
dy { 3y +4 y& 4 ( )
Carrying out the derivative is tedious but straightforward. We are left with
o 21y +54y+32 @
2y(y + 1)(3y +4) y(y+ 1By +4)

= 0. (7.25)
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Remarkably, Kodama and Sasaki (1984) found an analytic solution to Eq. (7.25).
They introduced a new variable

3

Yy
u= o. 7.26
ity (7.26)
In terms of this variable, you will show (Exercise 4) that Eq. (7.25) becomes
-2 3/2 3
" /
+ _ + - - = 0 7.27
¢ u[y 1+y 3y+4] (727

That is, there is no term proportional to u. Instead of a second-order equation for
®, then, we have a first-order equation for u'. Fortunately, this first-order equation
is integrable. Starting from

du’ 2 2 3
@y __i+ , (7.28)
u’ y l1l4+y 3y+4
we can integrate to get
In(u') = constant + 21In(y) — (3/2) In(1 + y) + In(3y + 4). (7.29)
Then exponentiating gives ,
4
o = AL BVED (7.30)
(1+y)372

where A is a constant to be determined.
We are one integral away from an analytic expression for the gravitational poten-
tial. Remembering the definition of u (Eq. (7.26)), we can integrate Eq. (7.30) to

obtain 5 v P
y @:A/ ay By +4)
Vity o (L+y)

Note that there should be another constant, u(0), here. However, since y3® — 0
early on, this constant is vanishes. By similar logic, we can determine the constant
A even before performing the integral. For small y, the integrand becomes 4y'2, so
for small y, Eq. (7.31) becomes ® = 4A/3. Therefore, A = 3®(0)/4. The integral
can be done analytically (Exercise 4 again) leaving

®(0) 1
= _1(8) 7 [16\/1 +y+9y° + 2y - 8y - 16} : (7.32)

(7.31)

Equation (7.32) is our final expression for the potential on super-horizon scales.
Although it is not obvious, at small y this expression sets ® = ®(0), a constant.
This must be so0, since we chose the two constants of integration with precisely this
condition. At large y, once the universe has become matter-dominated, the y* term
in the brackets dominates, so ® — (9/10)®(0). This is precisely the result we were
after: the potential on even the largest scales drops by 10% as the universe passes
through the epoch of equality.
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Figure 7.6. Super-horizon evolution of the potential in a CDM model with no baryons, h = 0.5
and Q, = 1. Thick solid line shows the analytic result of Eq. (7.32), valid only on large scales.
White curve within is for the mode k£ = 0.001 h Mpc!. Two other smaller scale modes are
shown.

Let us compare this analytic result, valid only when modes are super-horizon,
with the numerical results. Figure 7.6 shows that the solution works perfectly on the
largest scales and even tolerably well (better than 10%) for scales as small as k =
0.01 A Mpc~!. This is slightly better than we had anticipated from a crude estimate
of where the super-horizon solution is valid (Figure 7.5) and will be important for
us later on when spline together the large and small scales solutions. A feature of
the analytic solution which may be surprising to you is that, although it is true that
the (large scale) potentials are constant in both the matter and radiation epochs,
the transition between the pure matter and pure radiation eras is quite long. For
example, and this is an important example for the purposes of the CMB as we will
see in the next chapter, the potentials, even for the largest scale modes, are still
decaying as late as @ ~ 1073, significantly after a.q. In models with less matter,
Geq is pushed even closer to 10~3 so the decay of the potentials becomes even more
apparent at the time of recombination.

7.2.2 Through Horizon Crossing
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One interesting feature of Figure "=

7.6 which you should take note of is I B i i
that large-scale potential (the numeri- ;q¢ d 0.01
cal solution) becomes constant at very (14 s
late times (a 2 1072). For k =103k ;g M 01 =
Mpc~!, the mode enters the horizon ' e ;
at 7 ~ k™! = 1000 =1 Mpc which 1 i I 1 g
corresponds to a ~ 0.03 in the flat, A =
matter-dominated universe depicted in 0.1 el ol L NGIETE (g

10-% 10-¢ 10-% 0.01

Figure 7.6. The potential remains con- 10-¢
stant as the mode crosses the horizon.

This result is valid as long as the universe is matter dominated. We now set out to
prove it.

We are interested then in our set of five equations in the limit that radiation is
not important. The potential depends only on the matter inhomogeneities, so we
can neglect the two radiation equations, (7.11) and (7.12). In addition to the two
matter equations, we now keep the second of Einstein’s equations (7.16). This is
an algebraic equation, meaning that we could in principle eliminate ® in the two
matter equations and be left with a system of two first-order differential equations.
These two first-order equations in general have two solutions. Instead of solving
them directly, though, we can cheat using our knowledge of the initial conditions.
Here is the idea: we just learned that, deep in the matter epoch, super-horizon
potentials are constant. Therefore, the initial conditions for our problem are that
the potential is constant (& = 0). If we can show that constant ® is one of the
two general solutions to the set of matter-dominated equations, then we don’t care
what the other solution is. For, the initial conditions ensure that the constant ®
solution will be the solution.

We want to see, then, if the set of equations

a

6+ikv=0 (7.33)
v+ aHv = ik (7.34)
k2P = ga2H2 [5 + 3‘”: “’} (7.35)

admits a solution with ® a constant in time. We can use the algebraic equation
(7.35) to eliminate ¢ from the other two equations. In the matter dominated era,
H x a73?2, so d(aH)/dn = —a?H?/2. Replacing é in Eq. (7.33) with & and v
therefore leads to

2k2d N 2k’®  3aHiv N 3a2H2%iv
3a2H2 ' 3aH k 2k

We now have two first-order equations for & and v. The strategy is to turn these two
equations into one second-order equation for ®. First eliminate ¢ from Eq. (7.36)
by using the velocity equation. This leaves

+ikv =0. (7.36)
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22 w20 [9a?H?
37t [E + 3GH] < 5 +k2> = 0. (7.37)

If the second-order equation is of the form a® + fd = 0, that is, if it has
no terms proportional to ®, then ® = constant is a solution to the equations. So
we differentiate Eq. (7.37) with respect to n but consider only the terms propor-
tional to ®, dropping all terms proportional to derivatives of ®. Using the fact that
(d/dn)(aH)™' = 1/2, we see that the remaining terms are

iv @] (9a*H? iv 20 ] d 9a*H?
-+ = +E )+ [+ —

k3 2 k' 3aH|dn 2

B iaHv N 20
B k 3

] (9a>H? + k?) (7.38)

where I have eliminated © by using the velocity equation again. But Eq. (7.37) tells
us that the term in square brackets on the right here is proportional to ®. So there
are no terms in the second-order equation proportional to ®. Constant potentials
are therefore a solution in the matter-dominated era. Since the initial conditions
pick out this mode, constant potential is the solution in the matter-dominated era.

Potentials remain constant as long as the universe is matter dominated. At much
later times (a > 1/10), it is conceivable that the universe becomes dominated by
some other form of energy — dark energy for example — or, less likely, by curvature.
If s0, then the potentials will decay. This decay is described by the growth function,
though (Section 7.5), and does not affect the transfer function. The main result of
this section is that the transfer function as defined in Eq. (7.3) is very close to unity
on all scales that enter the horizon after the universe becomes matter dominated.
That is, it is unity for all k < aeqH(aeq), the inverse comoving Hubble radius at
equality. You will show in Exercise 5 that the relevant scale is

keq = 0.073Mpe ™', h%. (7.39)

In the limit in which we are working, where baryons and anisotropic stresses are
neglected, the transfer function depends only on k/keq. To get a feel for when
the large-scale approximations of this section are valid, look back at Figure 7.6,
plotted for the standard CDM model with ©,, = 1 and A = 0.5. The transfer
function for the curve labeled 1072 is 7% lower (0.84/0.9) than unity. For that
mode, k/keq = 0.01/(0.073h) = 0.27. So if we are interested in 10% accuracy in the
transfer function, then we can use the large-scale approximation for k < keq/3.

7.3 SMALL SCALES

We were able to solve for the evolution of large-scale perturbations in the previous
section because the modes crossed the horizon well after the epoch of equality.
Therefore, the problem neatly divided into (i) super-horizon modes passing through
the epoch of equality and then (ii) modes in the matter-dominated era which cross
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the horizon. The converse is true for the small-scale modes considered in this section.
They cross the horizon when the universe is deep in the radiation era. So the
problem divides neatly into (i) modes in the radiation era crossing the horizon
and then (ii) sub-horizon modes passing through the epoch of equality. Step (i) we
treat in Section 7.3.1, step (ii) in Section 7.3.2. Notice that we are unable to treat
analytically modes which enter the horizon around the epoch of equality.

7.3.1 Horizon Crossing

Bag

LEALLL BRI B URALLL BERRLLL
0.01

When the universe is radiation
dominated, the potential is determined
by perturbations to the radiation. The {qq

dark matter perturbations—the ones 2 s
we are interested in in this chapter— g e / 0.1
are influenced by the potential, but do B z
not themselves influence the potential. 1 powhect 8| 1 g
So the situation is as depicted in Fig- sl -

o113 Wl I l [ ETTTT I PARRTTTT AR 10

ure 7.7. To solve for matter perturba- 0.1

tions in this epoch, therefore, is a two- 10-¢ 10-® 10™* 10~ 0.01

step problem. First, we must solve the N

coupled equations for ©,0,0,, and ®. Then we solve the equation for matter
evolution using the potential as an external driving force.

Radiation . Matter
Perturbations ¢« Potential —y Perturbations
9,8, ) 5w

Figure 7.7. Coupling of perturbations in the radiation era. Radiation perturbations and the
gravitational potential affect each other. Matter perturbations do not affect the potential but
are driven by it.

To solve for the potential in the radiation dominated era, we choose Eq. (7.16).
Dropping the matter source terms, we have

_ 6a’H?

¢ = T [Qr,o + ’3_a£9r,1:| (740)

k

since H? = 87Gp, /3 in the radiation era. Also in the radiation era, aH = 1/7.
Armed with this fact, we can use Einstein’s equation (7.40) to eliminate ©, ¢ from
the two radiation equations, (7.11) and (7.12). These become

k2772:| k2’l’]

—| -t (7.41)

3. .
Lonrenfie g -0 fi+ :

kn k2n?
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. 1 —k k?n?
O+ -6 = 01—~ (7.42)
’ n 3 6
We can turn these two first order-equations for ¢ and ©,; into one second-order
equation for the potential. Use Eq. (7.42) to eliminate ©,; from the first equation,
which then becomes ] 6
P+ -d=-—0,1. (7.43)
no kp? 7
We now have an expression for ©,; solely in terms of the potential and its first
derivative. To arrive at a second-order equation for @, we differentiate. When we do,
we will encounter terms proportional to ©,.; and its derivative. Each of these can
be eliminated with Eq. (7.42) and Eq. (7.43). The resulting second-order equation
is
. 4. k2
®+ -9+ -2 =0 (7.44)
n 3
To determine the behavior of the potential in the radiation-dominated era, we
must solve Eq. (7.44) subject to the initial conditions that @ is constant. It can be
solved analytically by defining u = ®5. Then Eq. (7.44) becomes

2
ﬂ+gu+(k——3>u:0. (7.45)
n 37

This is the spherical Bessel equation of order 1 (see Eq. (C.13)) with solutions
j1(kn/+/3) — the spherical Bessel function — and n;(kn/v/3) — the spherical Neu-
mann function. The latter blows up as 7 gets very small, so we discard it on the basis
of the initial conditions. The spherical Bessel function of order 1 can be expressed
in terms of trigonometric functions (Eq. (C.14}), so

b — 30 sin(kn/V/3) — (kn/V/3) cos(kn/\/g))
? (kn/V3)

where ®, is the primordial value of ®. The factor of 3 in front here arises because
the n — 0 limit of the expression in parentheses is 1/3.

Equation (7.46) tells us that, as soon as a mode enters the horizon during the
radiation-dominated era, its potential starts to decay. After decaying, the poten-
tial oscillates, as depicted in Figure 7.8. Qualitatively, we could have anticipated
as much. From the qualitative discussion surrounding Eq. (7.1), we expected that
when the pressure is large, as it is when radiation dominates, perturbations will
oscillate in time. If perturbations to the dominant component (here radiation) do
not grow, then the potential in an expanding universe will begin to decay simply
due to the dilution of the zero-order density. This is evident in Eq. (7.40) which
(neglecting the dipole well within the horizon) says that ® ~ ©g/n?. Since ©q
oscillates with fixed amplitude, the potential also ocillates, but with an amplitude
decreasing as 7~ 2. Indeed, this is precisely the large kn limit of Eq. (7.46). The
decay and oscillation of the potential is shown in Figure 7.8, with both the analytic

(7.46)
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Figure 7.8. Evolution of the potential in the radiation-dominated era. For two small scale
modes which enter the horizon well before equality, the exact (solid curve) solution is shown
along with the approximate analytic solution (dashed curve) of Eq. (7.46).

expression of Eq. (7.46) and the numerical solution including matter perturba-
tions. Note that the approximate description —in which the effect of matter on the
potential is neglected —is valid only deep in the radiation era. The analytic solu-
tion for the k = 1 h Mpc™! mode already begins to depart from the exact solution
at a =~ 3 x 107>, well before equality (here, in the sSCDM model T have taken for
illustrative purposes, at a ~ 2 x 1074).

Armed with knowledge of the potential in the radiation dominated era, we can
now determine the evolution of the matter perturbations, the second half of Figure
7.7. To do this, we turn the two matter evolution equations — (7.13) and (7.14) —
into one second-order equation with the potentials serving as an external source.
Differentiate Eq. (7.13) and use Eq. (7.14) to eliminate ¥:

o+ ik <-gv + ik(b) = —30. (7.47)
Now we can use Eq. (7.13) to eliminate v, leading to

8+ %5 = S(k,n) (7.48)
where the source term is

S(k,n) = —3d + k2® — %«b. (7.49)
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The two solutions to the homogeneous equation (S = 0) associated with
Eq. (7.48) are § = constant and § = In(a) {or, equivalently in the radiation-
dominated era, In[n]). In general, the solution to a second-order equation is a
linear combination of the two homogeneous solutions and a particular solution.
In the absence of a revelation about the particular solution, one can construct it
from scratch from the two homogeneous solutions (call them s; and s2) and the
source terms. It is the integral of the source term weighted by the Green’s function

[s1(n)s2(n") — s1(n')s2(M]/[81(n")s2(n’) — s1(n")32(n)]. So here, we have

n
8(k,m) = C+ Catnto) — [ dnSChor! i (infi) = nlkr)). (750
0

At very early times the integral is small, so our initial conditions (4 constant) dictate
that the coefficient of In(n), Cs, vanishes and C; = 6(k,n = 0) = 3®,/2. Now let us
consider the integral in Eq. (7.50). The source function decays to zero along with
the potential as the mode enters the horizon. Thus, the dominant contribution to
the integral comes from the epochs during which k7 is of order 1. The integral
over S(n')In(kn’) therefore will just asymptote to some constant, while the integral
over S(n')In(kn) will lead to a term proportional to In(krn) with the constant of
proportionality being just that, a constant. Thus, we expect that after the mode
has entered into the horizon,

d(k,n) = A®, In(Bkn), (7.51)

i.e., a constant (A®, In[B]) plus a logarithmic growing mode (A®, Infkn)]).

We can determine the constants A and B in Eq. (7.51) by referring to the
relevant parts of Eq. (7.50). The constant term, A®, In(B), is equal to C; plus the
integral over In(n'), or

Ad,In(B) = gép —/ dn'S(k,n")n' In(kn'), (7.52)
0

while the coefficient of the In(kn) term is set by the remaining integral

A®, = / dn'S(k,n')n'. (7.53)
0

Note that in both integrals here, I have set the upper limit to infinity in accord
with our expectation that the integrals asymptote to some constant value at large
7. Using the expression for the source term, Eq. (7.49), and our analytic approxima-
tions to the potential, Eq. (7.46), we can evaluate the integrals here and determine
Aand B.Ifind A = 9.0 and B = 0.62. Hu and Sugiyama (1996}, who introduced
this method for following the dark matter evolution at early times, found that inte-
grating the exact potentials (instead of the approximate ones of Eq. (7.46)) leads
to slightly different values, A = 9.6 and B = 0.44.

Figure 7.9 shows the exact solution for ¢ in the radiation era along with the
approximation of Eq. (7.51). Setting aside the details for a moment, we see that
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Figure 7.9. Matter perturbations in the radiation-dominated era. The two scales shown here
both enter the horizon in the radiation era and lock onto the logarithmically growing mode
after some oscillations. Heavy solid curves are the exact solutions, light dashed curves the
logarithmic mode of Eq. (7.51). The perturbations have been artificially normalized by their
values at early times: inflation actually predicts a larger initial amplitude (by a factor of 103/2)
for the larger scale mode.

matter perturbations do indeed grow even during the radiation era. The growth is
not as prominent as during the matter era (when the constant potentials derived
in Section 7.2 imply §  a) due to the pressure of the radiation, but it still exists.
For both scales shown in Figure 7.9 the perturbations do indeed settle into the
logarithmic growing mode once they enter the horizon. As the universe gets closer
to matter domination, though, the pressure of the radiation becomes less important,
and the perturbations begin to grow faster. Indeed, you might be worried that our
approximation for the £ = 1 A~ Mpc™! mode is not very useful. Fortunately, we will
be using these solutions only to set the initial conditions for growth in the sub-
horizon epoch (next subsection), so the approximation need be valid only for a very
limited range of times. As long as we choose the matching epoch appropriately, the
logarithmic approximation will be extremely good.

7.3.2 Sub-horizon Evolution
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We saw in the last subsection that ... S
radiation pressure causes the gravita- i ’ I G
tional potentials to decay as modes gq L- P & 0.01
enter the horizon during the radia- :
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N 01 =
the radiation perturbations themselves . 5 &
(we will do this in the next chapter), { r I N 1 *;":
you might expect that the pressure Neglect 8, B A
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is correct, and it is in sharp contrast
to the matter perturbations which, we
just saw, grow logarithmically. Although initially the potential is determined by
the radiation (since the universe is radiation dominated), eventually the growth in
the matter perturbations more than offsets the fact that there is more radiation
than matter. That is, eventually pgmd becomes larger than p,.0,¢ even if pgm is
smaller than p,. Once this happens, the gravitational potential and the dark matter
perturbations evolve together and do not care what happens to the radiation. In
this subsection, we want to solve the set of equations governing the matter pertur-
bations and the potential and then match on to the logarithmic solution (7.51) set
up during the epoch in which the potential decays.

Once again our starting point is the set of equations governing dark matter evo-
lution, (7.13) and (7.14), and the algebraic equation for the gravitational potential
(7.16). And, once again, we want to reduce this set of three equations (two of which
are first-order differential equations) to one second-order equation. We will want to
follow the sub-horizon dark matter perturbations through the epoch of equality, so
it proves convenient again to use y (Eq. (7.21)) —the ratio of the scale factor to
its value at equality — as the evolution variable. In terms of y, the three equations
become '

g g% = 3¢’ (7.54)
, v ikd
v_ 7.55
v+ " oy (7.55)
K26 = — Y g2[%, (7.56)
2y +1) -

Several comments are in order about this version of our fundamental equations.
First, notice that the time derivatives in the first two equations have been replaced
by derivatives with respect to y (indicated by primes), and this transformation
leads to the factors of § = aHy in the denominators of the unprimed terms. Sec-
ond, the gravitational potential is now expressed solely in terms of ¢: there is no
dependence on radiation perturbations because of our arguments above that these
are subdominant, and there is no aHv/k dependence because the perturbations are
well within the horizon and aH/k < 1. Finally, the coefficient of the § source term
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is 4rGpama® — (3/2)a’H?y/(y + 1) since we are interested in times early enough
that any curvature or dark energy is negligible.

We now go through the familiar routine of turning Eqgs. (7.54) and (7.55) into
a second-order equation for 4: differentiate the first of these to get

" ik(2+3y)v " k2®

A Y — _ 7.57
2aHy%(1 4+ y) 38T+ a?H?y? (7.57)

where v’ has been eliminated using the velocity equation. Also I have used the fact
that d(1/aHy)/dy = —(1 + y)~*(2aHy)~!. The first term on the right is much
smaller than the second, since the latter is multiplied by (k/aH)?, and we are
focusing on sub-horizon modes. Using Eq. (7.56), we recognize this second term
as 36/[2y(y + 1)]. We can rewrite the velocity on the left using Eq. (7.54) but
neglecting the potential which on sub-horizon scales is much smaller than 4. Thus,
the combination tkv/(aHy) can be simply replaced by —4’ leaving

11 2+3y 3

0"+ RO 1)6 O 1)5 0. (7.58)
This is the Meszaros equation governing the evolution of sub-horizon cold, dark
matter perturbations once radiation perturbations have become negligible.

To understand the growth of dark matter perturbations, we need to obtain the
two independent sclutions to the Meszaros equations and then match on to the
logarithmic mode established in the previous subsection. To solve this differential
equation, we can use our knowledge of the solution deep in the matter era. We
know that sub-horizon perturbations in the matter era grow with the scale factor,
so one of the solutions to Eq. (7.58) is a polynomial in y of order 1. Therefore, for
one mode at least, §” vanishes. Therefore, the equation governing this first mode,
the growing mode,® is D]/D; = 3/(2 + 3y), the solution to which is

Di(y) =y +2/3. (7.59)

To find the second solution, notice that the Meszaros equation tells us that v =
d/D; satisfies

’

1" u
(1+3y/2)0u" + m

[(21/4)y% +3y +1] = 0. (7.60)
Since there is no term proportional to u, Eq. (7.60) is actually a first-order equation*
for u’. We can therefore integrate to obtain a solution for u’ and then integrate again
to get the second Meszaros solution. The first integral gives

3D, is the growth function mentioned in Section 7.1. Note though that in this section we are
assuming that only matter, and not curvature or dark energy, dominates the landscape. Therefore,
our expression for the growth function will be valid only when a < 0.1. For the generalization to
later times, see Section 7.5.

4Indeed this is a general trick for obtaining the second solution to a differential equation once
the first is known. We will use it again later on to obtain the growth factor.
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u o (y +2/3) 7Py y + 1) (7.61)
Integrating again leads to the second Meszaros solution

Vi+y+1
Vi+y-—1

At late times (y >> 1), the growing solution D; scales as y while the decaying mode
D, falls off as y=3/2.

Dy(y) = Dy(y) In { } —-2y/1+y. (7.62)
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Figure 7.10. Evolution of small-scale, sub-horizon, dark matter perturbations. Solid curves
are exact solutions; dashed curves (almost imperceptible because the goodness of fit in the
10h Mpc™" case) the Meszaros solution with coefficients given by the matching condition,
Eq. (7-64). The dashed straight lines at a > 1072 are the asymptotic solution of Eq. (7.67).

The general solution to the Meszaros equation is therefore
8(k,y) = C1Di(y) + C2D2(y)  y>yn (7.63)

where yy is the scale factor when the mode enters the horizon divided by the
scale factor at equality (Exercise 6). To determine the constants C; and Cy we can
match on to the logarithmic solution of Eq. (7.51). That solution is valid within the
horizon but before equality: yy <« y < 1. So we can hope to arrive at a reasonable
approximation for the evolution of dark matter perturbations only for those modes
that enter the horizon before equality. For those modes, we match the two solutions
and their first derivatives

A®,In(Bym/yn) = C1D1(ym) + CoD2(ym)
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%"i‘l = CyD(ym) + Co Dl (m) (7.64)
where the matching epoch y,,, must satisfy yy < ym,m, < 1. Note that I have replaced
the argument of the log in Eq. (7.51) — kn— with y/y, valid as long as the match-
ing epoch is deep in the radiation era. Figure 7.10 shows the evolution of two modes
along with the analytic solutions to the Meszaros equation with coefficients set by
the matching conditions laid out in Eq. (7.64). Not suprisingly, for larger scale
modes than the ones shown the approximation breaks down.

7.4 NUMERICAL RESULTS AND FITS

In Section 7.2 and Section 7.3, we derived analytic solutions following the dark
matter perturbations deep into the matter era. Here, we assimilate these results
and spline them together to form the transfer function. Also, I will present a well-
known fitting function for the transfer function.

First, we need to transform our expression ((7.63) along with Egs. (7.64)) for the
small-scale matter density into an expression for the transfer function. The transfer
function is determined by the behavior of § well after equality when the decaying
mode has long since vanished. We can extract an even simpler form for ¢ in this
@ > Geq limit. The key constant in that case is C, the coeflicient of the growing
mode. Multiplying the first matching condition in Eq. (7.64) by D} and the second
by D, and then subtracting leads to

Dy (ym) A (Bym /yr) — D2(ym)(A/Ym)
D1 (ym) D3 (ym) — D1 (Ym) D2 (ym)

The denominator Dy D) — D] Dy = —(4/9)y;} (ym + 1) }/2, which is approximately
equal to —4/9y,, since y,, < 1. Similarly for small y,,, D2 — (2/3)In(4/y) — 2 and
Dy — —2/3y. Therefore,

~9A®,
1

C, = ®,. (7.65)

Cl—>

| (B ) — (/) 0l 42 (06)

which fortuitously does not depend on y,,. Therefore, at late times we have an
approximate solution for the small-scale dark matter perturbations

. i -3
(5(k7a) = 3A¢2p(k) ln [436 aeq

] Dy (a) a > Geq. (7.67)
ay

On very small scales, the argument of the log simplifies because aeq/am = v/2k/keq
(Exercise 6). To turn Eq. (7.67) into a transfer function, we need to remember
how ¢ is related to ®,. Comparing Eq. (7.8) with Eq. (7.67) leads to an analytic
expression for the transfer function on small scales:

_ SAQHE 4Be‘3\/§k]

T(k) = 2k2aeq

k> keq. (7.68)
keq
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Recall that the wavenumber entering the horizon at equality is defined as keq =

GoqH (Geq) = \/éHgae_qlﬂ, so the prefactor is also a function of k/keq only. Then,
plugging in numbers leads to

T(k) = Hea )y [ >k (7.69)
TR "Bk > e '

Figure 7.11 shows the power spectrum for a standard CDM model (n = 1;
h = 0.5; but no baryons) matching the large-scale transfer function (T" = 1) with
the small-scale transfer function of Eq. (7.69). Also shown is the exact solution
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Figure 7.11. The power spectrum in a standard CDM model with a Harri-
son—Zel'dovich—Peebles spectrum. The thick solid curve uses the BBKS transfer function;
the dashed curve interpolates between the analytic transfer function on large scales (equal to
1) and small scales (Eq. (7.68)). The data points are a compilation (and interpretation) by
Peacock and Dodds (1994).

{(again in the no-baryon limit), or equivalently, the fitting form of Bardeen, Bond,
Kaiser, and Szalay (1986, BBKS),

In[1 4+ 0.171x]

T(x =k/keq) = (0.171x)

[1 +0.284z + (1.182)? + (0.399z)3

+(0.490x)4] . (7.70)

Note that the BBKS form agrees very well with the analytic solution on small scales;
i.e., both aymptote to In(k)/k? with the same coefficients. Since wavenumbers are
measured in units of h Mpc™!, the ratio k/ke, depends on Q,h. So defining I' =
Q.. h, the BBKS transfer function can also be written as
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_Inf1 + 2.34¢]

—0.25
T (g = k/ThMpc™') = 3 ]

[1+3.89q+(16.2q)2+(5.47q)3+(6.71q)4
(7.71)
Several final comments are in order. First, our analytic work has enabled us to
understand the origin of the asymptotic, small-scale behavior of the power spec-
trum. Had there been no logarithmic growth in the radiation era, the modes which
entered very early on would have experienced no growth from horizon entry until
the epoch of equality. Their amplitude relative to large-scale modes would then have
been suppressed by a factor of order (keq/k)?. The logarithmic growing mode in the
radiation era somewhat ameliorates this suppression. Second, although our analytic
expression and its BBKS counterpart are good approximations, it is important to be
aware of some small effects which affect the transfer function in the real world. We
have assumed no anisotropic stresses (& = —W¥). Dropping this assumption changes
the factor of 9/10 by which the potential drops for large-scale modes to 0.86, result-
ing in a corresponding rise in the small-scale transfer function. Including a realistic
amount of baryons leads to even more severe small-scale changes. We will address
these in Section 7.6. Third, all of our work in this section has been on the transfer
function, i.e., on the evolution of perturbations early on when the only components
of the universe were matter and radiation. At very late times, the growth function
depends on other hypothetical components, the most likely of which is dark energy.
Finally, the theoretical power spectrum in Figure 7.11 has been normalized by fixing
dy in Eq. (7.9) using the observations of CMB anisotropies on large scales (more on
this in Chapter 8). We see that (i) the large-scale normalization is roughly correct
and that (ii) the shape of the standard CDM power spectrum is wrong. The sCDM
power spectrum turns over on relatively small scales, in distinct disagreement with
the data. The universe as we observe it appears to have a smaller keq than sCDM.
This observation motivates consideration of variations of sCDM; we will consider
these in Section 7.6.

7.5 GROWTH FUNCTION

At late times (z < 10) all modes of interest have entered the horizon. You might
think then, that the y > 1 limit of the Meszaros equation, which describes sub-
horizon modes in the matter era, would apply. This is true if Q,, = 1. If the energy
budget of the universe has another item at late times— either dark energy or cur-
vature — then we must retrace the steps which led to the Meszaros equation. Before
doing this, I want to point out that, no matter what constitutes the energy budget
today, all modes will experience the same growth factor. We saw this in the previous
section, where the Meszaros equation was independent of k. And we will soon see
it again, when we generalize the Meszaros equation to account for other forms of
energy. This uniform growth is a direct result of the fact that cold, dark matter
has zero pressure. Therefore, once a mode enters the horizon, there is no way for
pressure to smooth out the inhomogeneities and all modes evolve identically.
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We want to derive an evolution equation analagous to the Meszaros equation,
but allowing for the possibility of energy other than matter or radiation. We can
take the y > 1 limit of Eqgs. (7.54)-(7.56), but we must rethink the coeflicient
of the source term in the Poisson equation. Since radiation can be ignored, the
coefficient multiplying & in Eq. (7.56) is now 47Gpam = (3/2) H3Qma 3. Also when
differentiating Eq. (7.54) previously, we set (1/aHy) = —(1 +y)~(2aHy)™!; here
we need to account for other contributions to H’ so Eq. (7.57) becomes

5+ ik (d(aHy)'1 1 > 3Q,,H?

— = . 7.72
dy aHy? 2y3a2H?qeq (772)

Replacing the velocity term using the continuity equation as before leads to

d%s <dln(H) §> d5 30, H2

§=0. (7.73)

da? da a)da 2a5H?2

Here 1 have divided by agq and we will now use a as the variable instead of y. In
this large y limit, all factors of aeq disappear.

There are two solutions to Eq. (7.73). One solution is é & H. It is easy to check
this if all the energy is nonrelativistic matter, so that the solution is proportional
to a~3/2. Then all three terms scale as a~7/2; the coefficient of the first is 15/4, the
second —9/4, and the last 3/2. The sum of these does indeed vanish. In Exercise 7,
you will be asked to show that § x H is a solution if there are other components of
energy in the universe. This solution is pretty, but it is not the one we want since
almost all current models of the universe have a nonincreasing Hubble rate. The
modes we are interested in — those that remain long after horizon crossing — are
the growing modes. So we are interested in the other solution of Eq. (7.73).

To obtain the growing mode, we try a solution of the form v = ¢/H. The
evolution equation for u then becomes

hailihed —— =0Q. 74
da? da 0 (7.74)

d*u 5 [dln(H) N l] du
da a

This first-order equation for 4’ can be integrated to obtain

Z—Z x (aH)™2. (7.75)

Integrating again and remembering that the second solution, the growth factor, is
uH leads to an expression for the growth factor

D1(a) x H(a) / @%. (7.76)

I have glossed over the proportionality constant. This is fixed by the definition of
Eq. (7.4), which says that, early on when matter still dominates (say at z ~ 10),
D1 should be equal to a. At those times, H = HoQ% 2a=3/2 so the growth factor is
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50, H() (¢ dd
Difa) = 52 /0 T (7.77)

The growth factor in an open universe without dark energy can be computed ana-
lytically {see Exercise 8).
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Figure 7.12. The growth factor in three cosmologies. Top two curves are for flat universes
without and with a cosmological constant. Bottom curve is for an open universe.

Figure 7.12 shows the growth factor for three different cosmologies. As men-
tioned above, if the universe is flat and matter dominated, the growth factor is
simply equal to the scale factor. In both open and dark energy cosmologies, though,
growth is suppressed at late times. This leads to an important qualitative conclu-
sion: structure in an open or dark energy universe developed much earlier than
in a flat, matter-dominated universe. There has been relatively little evolution at
recent times if the universe is open or dark energy-dominated. Therefore, whatever
structure is observed today was likely in place at much earlier times. We will see
some quantitative implications of this in Section 9.5.

7.6 BEYOND COLD DARK MATTER

There is more to the universe than just cold dark matter. Although CDM is the
main component in most cosmological models, so that the transfer function we
derived earlier is a good approximation to reality, there are trace amounts of other
stuff. To be completely accurate we need to account for this other stuff. Here 1
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Figure 7.13. The ratio of the transfer function to the BBKS transfer function (Eq. (7.70))
which describes dark-matter-only (no baryons) perturbations. Top curve (and all other curves
as well) has 5% baryons. Two middle curves show different values for a massive neutrino.
Bottom curve has a cosmological constant Qx = 0.7.

focus on three additional components. First, we consider the effect of the baryons,
which constitute roughly 10% of the total matter in most models, on the transfer
function. Then, we entertain the possibility that neutrinos have mass and examine
the resultant effect on the transfer function. Finally, dark energy —one model for
which is the cosmological constant — is considered.

Figure 7.13 shows the transfer functions accounting for these components. A
realistic baryon fraction suppresses the transfer function on small scales. A massive
neutrino does the same, with the nature and amplitude of the suppression depending
on the neutrino mass. Dark energy, here in the form of a cosmological constant,
moves the epoch of equality to later times, thereby reducing keq. The break in the
transfer function therefore comes on much larger scales than in the standard CDM
model, in apparent agreement with the data exhibited in Figure 7.11.

7.6.1 Baryons

Baryons account for about 4% of the total energy density in the universe. As such,
their effect on the matter power spectrum is small. A careful examination of Figure
7.13 reveals two signatures of a nonzero baryon density. The first is that the power
spectrum is suppressed on small scales. This is not surprising: at early times, before
decoupling, baryons are tightly coupled to photons. Therefore, just as radiation
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perturbations decay when entering the horizon, so too do baryon overdensities.
After decoupling, baryons are released from the relatively smooth radiation field
and fall into the gravitational potentials set up by the dark matter. The depth
of these wells is smaller than we estimated in Section 7.3, though, because only a
fraction Qeqm/Qm of the total matter was involved in the collapse.

The second effect of baryons is less noticable in Figure 7.13 and indeed may
never get measured in real life either. Nonetheless, it is extremely important if only
because it hints at a fundamental feature of the radiation field. In all the curves in
Figure 7.13, except the 2, = 0.3 case, you can see small oscillations in the transfer
function centered around k ~ 0.1h Mpc~!. These are not numerical artifacts.
Rather, they are manifestations of the oscillations that the combined baryon/photon
fluid experience before decoupling. We got a glimpse of these in Section 7.3.2 (e.g.,
Figure 7.8) when we considered the potential in the radiation-dominated era. Just
as the potential oscillates in this era, the baryon/photon fluid also oscillates. It is
the traces of these oscillations that are imprinted on the matter transfer function.
They are barely (if at all) detectable because baryons are such a small fraction of the
total matter. In the baryon-only model plotted in Figure 1.13, the oscillations were
much more noticeable.® And these oscillations are also prominent in the spectrum
of the radiation perturbations, as we will see in the next chapter.

7.6.2 Massive Neutrinos

Neutrinos are known to exist, and the standard Big Bang model gives a definite
prediction for how many there are in the universe (Eq. (2.77)). Massive neutrinos
may play an important role in structure formation. Conversely, an accurate mea-
surement of the power spectrum may enable us to infer neutrino masses. For orien-
tation, recall the difference between massless (Eq. (2.78)) and massive (Eq. (2.80))
neutrino energy densities. The best bet from experiments is that the most massive
neutrino has a mass of order 0.05 eV, therefore contributing 2, ~ 10~3. Even this
trace amount might eventually be detectable if the power spectrum can be mea-
sured accurately enough. There is also the possibility that one or more neutrinos
has a larger mass (see the footnote on Page 46). Current upper limits from structure
formation hover around 2 eV (Elgaroy et al., 2002).

The reason why even a small admixture of massive neutrinos affects the power
spectrum is that, especially if they are light, neutrinos can move fast (they are not
cold dark matter) and stream out of high-density regions. Perturbations on scales
smaller than the free-streaming scale are therefore suppressed. Indeed, a long time
ago, cosmologists considered the possibility that all the dark matter in the universe
was in the form of neutrinos. If this were so, then there would be no power on small
scales and structure would have to form from the “top down.”

We can estimate the scale on which perturbations are damped by computing the
comoving distance a massive neutrino can travel in one Hubble time at equality.

5Incidentally, we now also understand why the power in Figure 1.13 is so low in the baryon-only
universe: there is no dark matter which can cluster before recombination.
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This calculation is trivial, however, if the neutrino mass is in the eV range. For
then, the average velocity, T, /m,, is of order unity at equality. So neutrinos can
freestream out of horizon-scale perturbations at equality. This leads to a suppression
in power on all scales smaller than keq.

Figure 7.13 shows this suppression. Note, though, that the effect is a little subtle.
A lighter neutrino can free-stream out of larger scales, so the suppression begins
at lower k for the , = 0.1 mass than for the 2, = 0.3 case. On the other hand,
the more massive neutrino constitutes more of the total density so it suppresses
small-scale power more than does the lighter neutrino.

7.6.3 Dark Energy

Cosmologists have recently accumulated tantalizing evidence for dark energy in the
universe above and beyond the dark matter that we have spent so much time on in
this chapter. If dark energy exists, how does it affect the matter perturbations?

The first effect of dark energy is indirect. Since theoretical prejudice and evi-
dence both indicate that the universe is flat, g ~ 0.6-0.7 implies that the matter
density, £2,,, is less than 1. This has a huge impact on the power spectrum, because
we have seen that the power spectrum turns over at keq, which is proportional to
Q. So dark energy leads to a turnover in the power spectrum on a scale much
larger than predicted in standard CDM. In fact, as we saw in Figure 7.11, this is
one of the pieces of evidence for dark energy. The turnover in the power spectrum
does not appear on the scale predicted by standard CDM.

The second effect is again related to the smaller matter density in most models
of dark energy. As a result of the Poisson equation (7.7), overdensities are inversely
proportional to €1, for a fixed potential. Therefore, the amplitude of the power
spectrum increases as the matter decreases, or equivalently in a flat universe as
the dark energy content goes up. With a few caveats to be discussed in Chapter 8,
large-angle CMB anisotropies fix the potential on large scales. When normalizing
to these large-angle results, therefore, the power spectrum for a model with dark
energy is normalized higher than one without.

The third effect of the dark energy on the density inhomogeneities is more
direct and more model dependent. At late times, amplification of perturbations is
controlled by the growth factor of Eq. (7.77). The evolution of the Hubble rate
depends on the model of dark energy, so different models of dark energy predict
different growth factors. If we parameterize the dark energy by its equation of state
(2.84), then the Hubble rate in a flat universe evolves as

1/2
H(z) _ [Q Qe } (7.78)

H, a3 g3litw]

at late times. Using this time dependence, it is straightforward to perform the
integral in Eq. (7.77) and find the growth factor for a given equation of state (see
Exercise 11).
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To sum up, dark energy affects the power spectrum by changing keq and the
normalization (this depends only on Q4.) and by changing the growth factor at late
times (depends on both 4e and w). Careful observations of the matter spectrum
therefore may enable us to learn about dark energy.
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SUGGESTED READING

Once again The Large Scale Structure of the Universe (Peebles) is a useful reference.
Since it was written before the implications of cold dark matter and inflation were
explored, though, it does not contain a transfer function or power spectrum such as
the ones we have derived (although Peebles himself was instrumental in computing
these things several years after the book was published). A more up-to-date book,
which is particularly strong on large-scale structure is Structure Formation in the
Universe (Padmanabhan).

The first papers to work out the CDM transfer function are particularly instruc-
tive to read, not least because they also focus on some of the physical implica-
tions of the hierarchical theories. See Blumenthal et al. (1984) and Peebles (1982).
The most important recent paper is Seljak and Zaldarriaga (1996), not so much
because it contains a concise description of the set of coupled equations to be solved
(although it does that), but because it makes available CMBFAST, a code which
computes transfer functions and CMB anisotropy spectra. It is currently avail-
able at http://physics.nyu.edu/matiasz/CMBFAST/cmbfast.html. The treat-
ment in this chapter follows most closely the small scale analytic solution of Hu
and Sugiyama (1996), a paper which is extremely rich and well worth reading. A
more recent paper by Eisenstein and Hu (1998) employs the analytic small-scale
solution to derive accurate fitting formulae that move beyond those presented by
Bardeen, Bond, Kaiser, and Szalay (1986, BBKS).

EXERCISES

Exercise 1. Derive Egs. (7.11) and (7.12).

(a) First neglect the scattering term in Eq. (4.100), the one proportional to 7.
Then the photon evolution equation is identical to the neutrino evolution equa-
tion (4.107). Show that this collisionless equation reduces to the two equations for
the monopole and dipole. To get the monopole equation, multiply Eq. (4.107) by
(dit/2)Po(p) = dp/2 and integrate from p = —1 to 1. To get the dipole, multiply
by (du/2)P1(p) and integrate.

(b) Show that, in the limit of small baryon density, the scattering term in
Eq. (4.100) can indeed be neglected. Neglect II, since the quadrupole and polariza-
tion are very small. Then show that the scattering term is proportional to R, 3/4
times the baryon-to-photon ratio. You will want to use Eq. (4.106). It cannot be
emphasized enough that this series of approximations is valid only for the purposes
of this chapter, wherein we are interested in the matter distribution.

Exercise 2. Solve the set of five equations ((7.11)-(7.14) and (7.15)) numerically
to obtain the transfer function for dark matter. Use the initial conditions derived in
Chapter 6. The one numerical problem you may encounter using Eq. (7.15) occurs
on small scales when you try to evolve all the way to the present. The photon
moments then become difficult to track, and even a good differential equation solver



Exercises 213

will balk at late times. However, there are several simple solutions to this: (i) by the
late times in question, the potential is constant so there is no need to evolve all the
way to the present or (ii) stop following the photon moments after a certain time;
they don’t have any effect on the matter distribution at late times anyway. Plot
the transfer function for sCDM (with Hubble constant A = 0.5) and ACDM (with
Q4 = 0.7 and h = 0.7). Compare with the BBKS transfer function of Eq. (7.70).

Exercise 3. The four subsections in Sections 7.2 and 7.3 correspond to four differ-
ent approximations to the full set of Einstein—Boltzmann equations. In the following
table, fill in the regime of validity for each approximation:

Q4 K Qeq | A~ Qeq | @ 2 Geq

kn<«1
kn~1
kn>1

For example, the super-horizon solution of Section 7.2.1 is valid along the whole
top row, since it sets kny — 0. Note that time evolves from upper left to bottom
right, so the fact that none of the approximations work in the center square means
that only those scales that enter the horizon well before or well after equality will
be subject to analytic techniques.

Exercise 4. Fill in some of the algebraic detail left out of Section 7.2.1.

(a) Show that Eq. (7.24) leads to Eq. (7.25) by carrying out the differentiation.
(b) Show that Eq. (7.25) is equivalent to Eq. (7.27) when the definition of u from
Eq. (7.26) is used.

(c) Show that the integral in Eq. (7.31) can be done analytically with the result
given in Eq. (7.32). One way to do the integral is to define a dummy variable
z=+1+y.

Exercise 5. Find the wavenumber of the mode which equals the inverse comoving
Hubble radius at equality. That is, define keq to be equal to aeqH(aeq). Show that

this definition implies
[2Q,, H?
ko = 1| ——2. (7.79)
Geq

Then use Eq. (2.87) to show that k. is given by Eq. (7.39). Show that if you define
keq by setting it to 1/7eq, you get a number 17% lower.

Exercise 6. Define ay, the scale factor at which wavelength k equals the comoving
Hubble radius, via ag H(an) = k. Express ag/aeq in terms of k and keq. Show that
in the limit k > koq, this expression reduces to
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ay keq
m — = .
k> keq Qeq \/ék'

(7.80)

Exercise 7. Show that 6 o< H is a solution to the evolution equation (7.73) if the
universe is flat with a cosmological constant. You will need to use Eq. (1.2). Show
also that the solution is valid if the universe has zero cosmological constant, but is
open with Q,, < 1.

Exercise 8. Derive the growth factor for an open universe with 2, < 1:

58, v1+z

Dila ) = 5003 [3 2372

3
In <\/1 o \/i) +14 E] (7.81)
where z = (1 — Q,,)a/,. There may be easier ways to do this (e.g., you might
want to check The Large Scale Structure of the Universe, Section 11), but I found
it easiest to define a dummy variable y = Q,, /a; write the integral of Eq. (7.77) as

/°° dy _o|d4d /°° W . (7.82)
O/ Y2(Y + 1= Q)32 dedX Jo,ja (y+Vy+X] o

and then use 2.246 from Gradshteyn and Ryzhik.

Exercise 9. One popular way to characterize power on a particular scale is to
compute the expected RMS overdensity in a sphere of radius R,

ok = (0% (2)). (7.83)

Here
Sr(%) = / d2'§(FYWgr(Z - ) (7.84)

where Wg(z) is the tophat window function, equal to 1 for x < R and 0 otherwise;
the angular brackets denote the average over all space.

(a) By Fourier transforming, express og in terms of an integral over the power
spectrum.

(b) Use the BBKS transfer function to compute og (R = 8 A~ Mpc) for a standard
CDM model (h = 0.5,n = 1,9,, = 1). We will see in Chapter 8 that COBE
normalization for this model is )

Sy =1.9x107°. (7.85)

The value of o5 you find is yet another sign of the sickness of the model. For galaxies,
og is known to be unity (or less, depending on galaxy type). A model with og > 1
then requires galaxies to be less clustered than the dark matter. Present models of
galaxy formation suggest that this is unlikely. There are even direct measures of oy
of the mass (e.g., Section 9.5); these too constrain og to be less than one.
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(c) In the same model, plot ox as a function of R. Since og monotically increases,
small scales tend to go nonlinear before large scales, the signature of a hierarchical
model.

Exercise 10. Rewrite ¢ from Exercise 9 as

2 dk o2
UR:/O ?A (kYW5(k), (7.86)
where Wpg is the Fourier tranform of the tophat window function and A? =
do?/dIn(k) is the contribution to the variance per In(k). A useful transition point
is the value of k at which A exceeds 1. Scales larger than this are linear, while
smaller scales have gone nonlinear. Find &, defined in this way for the sCDM
model described in Exercise 9.

Exercise 11. Compute the growth factors in a universe with Q4. = 0.7,Q,,, = 0.3,
and w = —0.5. Plot as a function of a. Compare with the cosmological constant
model (w = —1) with the same Qge, Q)
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ANISOTROPIES

The primordial perturbations set up during inflation manifest themselves in the
radiation as well as in the matter distribution. By understanding the evolution of
the photon perturbations, we can make predictions about the expected anisotropy
spectrum today. This evolution is again completely determined by the Einstein-
Boltzmann equation we derived in Chapters 4 and 5, and one way to go would be
to simply stick all the relevant equations in those chapters on a computer and solve
them numerically. Historically, this is a pretty good caricature of what happened.
Long before we developed deep insight into the physics of anisotropies, various
groups had codes which determined the expected spectra from different models.
Only much later did we come to understand both qualitatively and quantitatively
why the spectra look like they do.* In this chapter, I will mangle the history and
simply explain what we have learned about the physics of anisotropies.

Perturbations to the photons evolved completely differently before and after
the epoch of recombination at z ~ 1100. Before recombination, the photons were
tightly coupled to the electrons and protons; all together they can be described as
a single fluid (dubbed the “baryon-photon” fluid). After recombination, photons
free-streamed from the “surface of last scattering” to us today. After an overview
which qualitatively explains the anisotropy spectrum, Sections 8.2-8.4 work through
the physics of the baryon-photon fluild before recombination. Then Sections 8.5
8.6 treat the post-recombination era, culminating in the predicted spectrum of
anisotropies today. Finally Section 8.7 discusses how these spectra vary when the
cosmological parameters change.

1 Understanding the anisotropies actually helped make the codes much more efficient. The prime
example of this is the popular code CMBFAST (Seljak and Zaldarriaga, 1996) which is based in
part on the analytic solution presented in this chapter.

216
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8.1 OVERVIEW

Let’s begin as we did in the last chapter, by cheating and looking at the answers
first. Figure 8.1 shows the evolution of the perturbations to the photons. Four
Fourier modes corresponding to perturbations on four different scales are shown.
Qualitatively, the most important feature of Figure 8.1 is that perturbations to the
photons do not grow appreciably with time. This stands in stark contrast to the
matter perturbations, which do grow. And this contrast is something we should
have expected: the pressure of the photons is so large that it can withstand the
tendency toward collapse. This means that the small perturbations set up during
inflation stay small; they remain linear all the way up to the present.

Before going further and examining the evolution of the different modes in more
detail, a technical note: I have plotted not simply the perturbation to the photons
but rather the combination k%/2(@q 4 ¥). The k3/2 factor balances the fact that
the amplitude of the perturbations (in a simple inflationary model) scales as k=3/2.
I have added the gravitational potential ¥ because the photons we see today had
to travel out of the potentials they were in at the time of recombination. As they
emerged from these potential wells, their wavelengths were stretched (if the region
was overdense and U < 0), thereby decreasing their energy. Thus, the temperature
we see today is actually Gy at recombination plus V.

The large-scale mode in Figure 8.1 evolves hardly at all. This is not surprising:
no causal physics can affect perturbations with wavelengths larger than the horizon,
so a super-horizon mode should exhibit little evolution. This means that when we
observe large-scale anisotropies — which are sensitive to modes with wavelengths
larger than the horizon at recombination — we are observing perturbations in their
most pristine form, as they were set down at very early times, presumably during
inflation.

Figure 8.1 shows that the smaller scale modes evolve in a more complicated way
than the super-horizon modes. Consider the curve labeled “First Peak.” As the
mode enters the horizon, the perturbation begins to grow until it reaches an appar-
ent maximum at the time of recombination. If we observe anisotropies on scales
corresponding to this mode, we would expect to see large fluctuations. Hence the
label: the anisotropy spectrum will have a peak at the angular scales corresponding
to the mode which has just reached its peak at recombination.

The mode in Figure 8.1 which enters the horizon slightly earlier peaks earlier and
then turns over so that its amplitude at recombination is zero. By recombination,
it has undergone half of an oscillation; so we see our first clear signal of the acoustic
oscillations due to the pressure of the relativistic photons. The phase of this mode
is such that, at recombination its amplitude is zero. Therefore, when we observe
anistropies today corresponding to these scales, we expect very small fluctuations.
There will be a trough in the anisotropy spectrum on these angular scales.

And on it goes. The curve labeled “Second Peak” entered the horizon even earlier
and has gone through one full oscillation by recombination. As such, this mode will
have large fluctuations and lead to a second peak in the anisotropy spectrum. You
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Figure 8.1. Evolution of photon perturbations of four different modes before recombination
at .. Normalization is arbitrary, but the relative normalization of the 4 curves is appropriate
for perturbations with a Harrison—Zel'dovich—Peebles (n = 1) spectrum. Model is standard
CDM with h = 0.5, Q2,, = 1, and €, = 0.06. Starting from the bottom left and moving
upward, the wavenumbers for the modes are k = (7 x 107*,0.022,0.034, 0.045) Mpc™! or
(8,260,400, 540) /7.

might expect that there will be a never-ending series of peaks and troughs in the
anisotropy spectrum corresponding to modes that entered the horizon earlier and
earlier. And you would be right: this is exactly what happens.

We can see this more clearly by looking at the spectrum of perturbations at one
time, the time of recombination. Figure 8.2 shows this spectrum for two different
models, one with a very low baryon content. We do indeed see this pattern of peaks
and troughs. There are two more quantitative features of these oscillations that
are important. First, note that — at least in the higher baryon model — the heights
of the peaks seem to alternate: the odd peaks seem higher than the even peaks.
Second, and this is clearest in the low baryon model, perturbations on small scales
kno 2 500 are damped.

To understand the first of these features, we can write down a cartoon version
of the equation governing perturbations. Very roughly, this equation is

Qo + k¥?Qy=F (8.1)

where F'is a driving force due to gravity and c, is the sound speed of the combined
baryon-photon fluid. This is the equation of a forced harmonic oscillator (see box on
page 220). Qualitatively, it predicts the oscillations we have seen above. But it also
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Figure 8.2. Perturbations to the photon distribution at recombination in two models. The
larger damping length of the low-£2; model is clearly evident in the suppression of perturbations
for modes with k > 500/n5.

explains something about the heights of the peaks. As we add more baryons to the
universe, the sound speed goes down (baryons are heavy so they reduce the speed).
Thus the frequency of the oscillations goes down. The peaks at nw/w are shifted
to larger k (you really should read that box!), and the spacing between peaks gets
correspondingly larger. Further, as the frequency goes down, the disparity between
the heights of the odd and even peaks gets larger. We clearly see both of these
features in Figure 8.2. Another way of understanding the alternating peak heights
is to note that the perturbations for the first peak mode have been growing since
they entered the horizon. By decreasing the pressure (or equivalently increasing the
importance of gravity) these modes will grow even more. The second peak mode on
the other hand, corresponds to an underdensity of photons in the potential wells.
Decreasing the pressure makes it harder for photons to escape the well and therefore
reduces the magnitude of the perturbation (makes it less underdense).
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Consider a simple harmonic oscillator with mass m and force constant k. In addition
to the restoring force, the oscillator is acted on by an external force Fy. Thus the full
force is Fy — kz where x is the oscillator’s position. The equation of motion is

PRI ') (8.2)
m m

The term on the right-hand side —representing the external force —is driving the
oscillator to large values of x. The restoring force on the other hand tries to keep
the oscillator as close to the origin as possible. The solution therefore will be that
oscillations will be set up around a new zero point, at positive z.

The solution to Eq. (8.2) is the Forced Harmonic Oscillator
sumofthegeneralsolutiontothe LI B B L B S B D AN B BN L I ) BN AR

homogeneous equation (with the
right-hand side set to zero) and
a particular solution. The gen-
eral solution has two modes, best
expressed as a sine and cosine
with arguments wt, with the fre-
quency w defined as w = \/g
A particular solution to Eq. (8.2)
is constant * = Fp/mw?, so
the full solution is the sum of
the sine and cosine modes plus
this constant. Let us assume that
the oscillator is initially at rest.
Then, since &(0) is proportional
to the coefficient of the sine
mode, this coefficient must van-
ish, leaving

-~ Low w -~
N\

Fo
mw?’

z = Acos(wt) + (8.3)

This solution is shown in the
figure at right. The solid line
is the unforced solution: oscil-
lations about the origin. The
dashed curves are the forced solutions for two different choices of frequencies. In
both cases, the oscillations are not around z = 0 as they would be if the system
was unforced. Once an external force is introduced, the zero point of the oscillations
shifts in the direction of the force. Two curves are drawn to show that this shift is
more dramatic for lower frequencies. The bottom panel shows the square of the oscil-
lator position as a function of time. All three oscillators experience a series of peaks
at t = nw/w corresponding to the minima/maxima of the cosine mode. (Note that
if only the sine mode was present these peaks would be at t = (2n + 1)w/w.) The
heights of these peaks are identical in the case of the unforced oscillator and equal to
the height at ¢ = 0. In the forced case, though, the height of the odd peaks — those at
t = (2n+ 1)7/w—1s greater than that of the even peaks. The effect is most dramatic
for low frequencies. If the frequency is low, the force has a greater effect, producing
the greater zero-point offset, and hence the greater odd/even disparity. The other
feature of this example is that the even peaks correspond to negative positions of the
oscillator: points at which it is farthest from where the force wants it to go.
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Photon Diffusion

Figure 8.3. Photon diffusion through the electron gas. Electrons are denoted as points. Shown
is a typical photon path as it scatters off electrons. The mean free path is Amrp. After a Hubble
time, the photon has scattered many times, so that it has moved a distance of order Ap.

To understand the damping evident in Figure 8.2, we need to remember that
the approximation of the photons and electrons and baryons moving together as
a single fluid is just that, an approximation. It is valid only if the scattering rate
of photons off of electrons is infinite. Of course this condition is not met: photons
travel a finite distance in between scatters. Consider Figure 8.3, which depicts the
path of a single photon as it scatters off a sea of electrons. It travels a mean distance
AMFP in between each scatter. In our case this distance is (n.or) ™. If the density
of electrons is very large, then the mean free path is correspondingly small. In the
course of a Hubble time, H~!, a photon scatters of order n.orH~! times (simply
the product of the rate and the time). As depicted in Figure 8.3, each scatter
contributes to the random walk of the photon. We know that the total distance
traveled in the course of a random walk is the mean free path times the square
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root of the total number of steps. Therefore, a cosmological photon moves a mean
distance

Ap ~ AmrpV neorH !

-1 (8.4)
\/TleO'TH

in a Hubble time. Any perturbation on scales smaller than Ap can be expected
to be washed out. In Fourier space this will correspond to damping of all high &-
modes. Note that this crude estimate gets the €, dependence right. Models with
small baryon density have a larger Ap (since n. is proportional to (2 when the
universe is ionized). Therefore, the damping sets in at larger scales, or smaller .
This is precisely what we saw in Figure 8.2.

The final step is to relate the perturbations at recombination, as depicted in
Figure 8.2, to the anisotropies we observe today. The math of this is a little com-
plicated, but the physics is perfectly straightforward. Consider one Fourier mode, a
plane-wave perturbation. Figure 8.4 shows the temperature variations for one mode
at recombination. Photons from hot and cold spots separated by a typical (comov-
ing) distance k! travel to us coming from an angular separation 6 ~ k~!/(ng —n.)
where ng — 7. is the (comoving) distance between us and the surface of last scat-
tering.? If we decompose the temperature field into multipole moments, then an
angular scale § roughly corresponds to 1/l. So, using the fact that n. < n, we
project inhomogeneities on scales k onto anisotropies on angular scales [ ~ kng.

There is one final caveat to this picture of free-streaming. We have been implic-
itly assuming that nothing happens to the photons on their journey from the last
scattering surface to Earth. In fact, if the universe was flat and matter dominated
through this whole time, then gravitational potentials remain constant, and this
assumption is correct. However, recombination takes places not too much later than
the epoch of equality, so the remnant radiation density means potentials are not
exactly constant right after recombination. Also, at late times, dark energy does not
behave like matter and leads to potential decay. You can imagine other disruptions
to matter domination. All of these so-called integrated Sachs—Wolfe effects produce
new perturbations to the photons, leading to changes typically of order 10%.

And that’s it; we now understand how primordial perturbations are processed
to form the present-day anisotropy spectrum. Let’s work through it again quanti-
tatively.

8.2 LARGE-SCALE ANISOTROPIES

To find the large-scale solution for the photon perturbation, we make use of the
super-horizon equation, (7.17). This immediately tells us that 89 = —® plus a

2This is true only in a flat universe. In an open universe, the distance to the last scattering
surface is larger, so the same physical scale is projected onto a smaller angular scale.
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Perturbatlon with wovenumber k

1/

Figure 8.4. Free-streaming. Perturbations in the temperature at recombination from one plave
wave with wavenumber k. Hot and cold spots are shaded light and dark. After recombination,
photons from the hot and cold spots travel freely to us, here denoted by the star at the center.
This mode contributes anisotropy on a scale § ~ k™' /(Distance to last scattering surface).

constant. The initial conditions are such that ©g = ®/2, so the constant is 3®,/2,
where @, is the primordial potential set up during inflation. We have an exact
expression for the large-scale evolution of ®, Eq. (7.32). If recombination takes place
long after the epoch of equality, then we can take the y > 1 limit of this expression,
® — 9®,/10. Therefore, at recombination, large-scale photon perturbations satisfy

GO(kan*) = —(I)(k’ 7)*) + 3_@#
_ __2‘1’(’;’ m). (85)

The observed anisotropy is ¢ + ¥, which to a good approximation is Qg — ®
since ¥ ~ —®. Therefore,

(@ + ¥)(k.n.) = 2 U(k,n.). (8.6)

Another useful way of expressing the large-scale perturbations at recombination is
in terms of the density field. The initial conditions derived in Chapter 6 were that
d = 39/2. Integrating the large-scale evolution equation, § = —3®, leads to

5(0) = 505 — 3(2(n.) — &)
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= 2%(n.). (8.7)

So the observed anisotropy expressed in terms of the dark matter overdensity is
1
(@0 +W)(k,71.) = ~5(n.). (53)

Equations (8.6) and (8.8) will be useful to us when we compute the large-
scale anisotropy spectrum. However, even now, they contain a fascinating piece of
information. From the Fourier transform of Eq. (8.8), we see that the observed
anisotropy of an overdense region will be negative. This is such a surprising result
that it is worth repeating. For large-scale perturbations, overdense regions do indeed
contain hotter photons at recombination than do underdense regions: i.e., ©p >
0 when ¥ < 0. However, to get to us today, these photons must travel out of
their potential wells. In so doing they lose energy, and this energy loss more than
compensates for the fact that the photons were initially hotter than average: i.e.,
Op + ¥ is negative when ¥ < 0. To sum up, when we observe large-scale hot spots
on the sky today, we are actually observing regions that were underdense at the
time of recombination.

The other important feature of Eq. (8.8) is the coefficient 1/6. It enables us to
relate “67/T” (the left-hand side) to “dp/p” (the right). Very roughly speaking,
an anisotropy of order 10> corresponds to an overdensity of 6 x 107>, One of
the important questions which must be addressed by the picture of gravitational
instability is whether the observed anisotropy is consistent with the overdensities
needed to form structure by today. This factor of 6 is a huge help. In almost all
models of structure formation other than inflation, this factor of 6 is replaced by
a number much closer to unity (see Exercise 1 for a specific example). Therefore,
they struggle with the fact that the observed level of anisotropy is too small to
account for the clustering of matter in the universe. Equivalently, when normalized
to large-angle anisotropies, the matter power spectrum is too small.?

8.3 ACOUSTIC OSCILLATIONS
8.3.1 Tightly Coupled Limit of the Boltzmann Equations

When all electrons were ionized, before 7., the mean free path for a photon was
much smaller than the horizon of the universe. Compton scattering caused the
electron-proton fluid to be tightly coupled with the photons. We now proceed to
explore this regime quantitatively using the Boltzmann equations.

The tightly coupled limit corresponds to the scattering rate being much larger
than the expansion rate: 7 > 1, where 7 is the optical depth defined in Eq. (4.61). 1

3This realization has been most important in theories in which structure is generated by cosmic
strings. Several papers which pointed out the problem in the aftermath of the COBE detection
include: Albrecht and Stebbins (1992), Perivolaropoulos and Vachaspati (1994), and Pen and
Spergel (1995).
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want to argue that in the 7 > 1 limit, the only nonnegligible moments, ©,, are the
monopole (I = 0) and the dipole (I = 1). All others are suppressed. In this sense,
photons behave just like a fluid, which can be described with only two variables: the
density p and the velocity ¥. In order to show this, let’s go back to the Boltzmann
equation (4.100) for photons. We want to turn this differential equation for ©(n, 1)
into an infinite set of coupled equations for ©,(n). The advantage is that —as we
will see —the higher moments are small and so can be neglected. The strategy is
to multiply by P;(u) and then integrate over u. Using Eq. (4.99), the Boltzmann
equation for [ > 2 becomes

. k Ydu
O+ —— — O(p) =76, 8.9
o | SR e) = 76, (39)
Note that all other terms (e.g., —d)) have simple p dependence (scale as u° or u!)
so all I > 2 moments vanish for them. To do the integral, we make use of the
recurrence relation for Legendre polynomials, Eq. (C.3), to get

kl E(l+1 .
BT R + 2(1T1)91+1 =70, (8.10)

o

Let us consider the order of magnitude of the terms in Eq. (8.10). The first term

on the left is of order ©;/7 which is much smaller than the term on the right which
is of order 70;/n. Neglecting the ©;;1 term for the moment, this tells us that in

the tightly coupled regime i
o~ g, ;. (8.11)
2T

For horizon size modes kn ~ 1, this means that ©; < ©;_;. (By the way, this is
justification for throwing out the ©,,; term in making our estimate.) This estimate
is valid for all modes higher than the dipole, so all such modes are very small
compared to the monopole and dipole.

Before making use of this fact and deriving the tightly coupled equations in the
limit in which only the monopole and dipole are nonzero (the fluid approximation),
I want to explain why higher moments are damped in a tightly coupled environ-
ment. Indeed this observation is extremely important not only in cosmology but
in all settings in which the fluid approximation is used. To understand the fluid
approximation, consider one plane-wave perturbation as depicted in Figure 8.5.
An observer sitting at the center of the perturbation sees photons arriving from
a distance of order the mean free path, /7. A wavelength of order the horizon 7
is much larger than this distance, so the photons arriving at the observer all have
the same temperature. There is very little anisotropy. You might think that a per-
turbation with a very small wavelength (with kn ~ 7) would lead to anisotropy.
In fact, though, such a mode has a wavelength much smaller than the damping
scale. So all perturbations on such small scales are smoothed out, again leading
to no anisotropy. The bottom line is there is essentially no anisotropy beyond the
monopole and the dipole in the tightly coupled regime.
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Tightly Coupled Limit

Figure 8.5. Anisotropies in the tightly coupled era. Perturbations on the scale of the horizon
cannot be observed by an observer [denoted by the star here], for the photons observed come
from the last scattering surface a distance n/7 away. This last scattering surface is so close
that photons arriving from all angles have virtually identical temperatures.

Armed with this knowledge, we can now turn to the equations for the first two
moments, which — after disposing of @, — read:

60 + kO = -d (8.12)

. k©¢y k¥ vy
20 FE o 2. 8.13
0, 3 3 + T [@1 3 ] ( )
These follow by mutiplying Eq. (4.100) by Po(x) and P; (1) and integrating over p.
They are supplemented by the equations for the electron—baryon fluid, Eqgs. (4.105)

and (4.106). Let us first rewrite the velocity equation, (4.106), as
R .
vy = —3i0; + = [@b + 2+ ik\IJ] . (8.14)
7 a
The second term on the right here is much smaller than the first since it is suppressed
by a relative factor of order 7~ 1. Thus, to lowest order, v, = —3i0;. A systematic

way to expand, then, is to use this lowest order expression everywhere in the second
term, leading to

vp ~ —3i0; + g [—3161 - 31'%@1 + ikq/] . (8.15)

Now let us insert this expression into Eq. (8.13), eliminating v,. After rearranging
terms, we find
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a R k kW
- 0; — Oy = —.
al+R ' 31+R ° 3
We now have two first-order coupled equations for the first two photon moments,

Egs. (8.12) and (8.16). We can turn these into one second-order equation by differ-
entiating Eq. (8.12) and using Eq. (8.16) to eliminate ©;:

0, + (8.16)

" KV a R k
O +k|— 61+3[1+R]

-2 Q| = - ®. 8.17
3 altR 0 (8.17)

Finally, we use Eq. (8.12) to eliminate ©, here. This leaves

6 + k*c*6 Z—Ew-éié—c’sz(k n) (8.18)
0 e S =5 '

R
1+R

- a
O + —
a

where I have defined the forcing function on the right as F' and the sound speed of
the fluid as
1

cs = RESaR (8.19)
The sound speed depends on the baryon density in the universe. In the absence of
baryons, it has the standard value for a relativistic fluid, ¢, = 1/ V3. The presence
of baryons, though, makes the fluid heavier, thereby lowering the sound speed. We
will see shortly that the fluid oscillates in both space and time, with a period which
is determined by the sound speed, and hence by the baryon density. Note that
Eq. (8.18) is the “grown-up” version of Eq. (8.1); it differs only through the ©q
damping?* term (see Exercise 2). The presence of this term does not change any of
the qualitiative conlcusions we reached in Section 8.1. Finally, note that ® enters
on the right in a very similar way as ©g does on the left. An alternate version of
Eq. (8.18) takes adavantage of this:

d? R d ,, K271
Y T H Pl=— |—=-V|. 8.20
{d172+1+Rd77+AcS [©0 + 2] 3 |1+R } (8.20)

8.3.2 Tightly Coupled Solutions

The equation we have derived governing acoustic oscillations of the photon-baryon
fluid, (8.20), is a second-order ordinary differential equation. To solve it, we will
again (as in Section 7.3.1) use Green’s method to find the full solution. First we
find the two solutions to the homogeneous equation. Then we use these to construct
the particular solution.

In prnciple, to obtain the homogeneous solutions, we must solve the damped,
harmonic oscillator equation, (8.20) with the right-hand side equal to zero. In prac-
tice, the damping term is of order R(©q + ®)/n? while the pressure term is much

4This “damping” term is not to be confused with the damping of perturbations on small scales
treated in the next section. They are completely different effects.
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larger, of order k%c2(©g + @) (at least it’s larger when modes are within the horizon
or when R is small). Physically we expect pressure to induce oscillations in the
photon temperature; the time scale for these oscillations is much shorter than the
damping introduced by the expansion of the universe. To a first approximation,
then, let us neglect the damping term and simply obtain the oscillating solutions.®
In this limit, the two homogeneous solutions are

Silk,) =sinkry(n)] 5 Sa(k.m) = cos[kry(n)] (8.21)

where I have defined the sound horizon as
n
rs(n) = / dn'cs(n'). (8.22)
0

Since ¢, is the sound speed, the sound horizon is the comoving distance traveled by
a sound wave by time 7.

The tightly coupled solution for the photon temperature can be constructed
from the homogeneous solutions of Eq. (8.21):

BO0(n) + @(n) = C151(n) + C252(n)

S1(n')S2(n) — S1(n)S2(n')
S1(n")S2(n') = S1(n')S2(n’)
Here again, I have dropped all occurences of R except in the arguments of the
rapidly varying sines and cosines. That is, the argument of S1, for example, is still
taken to be kr, with its nonzero value of R. We can fix the constants C7 and Cy in
Eq. (8.23) by appealing to the initial conditions, when both 8¢ and ® are constants.
The coefficient of the sine term therefore, C, must vanish, and Cy = ©¢(0) + $(0).
The denominator in the integrand reduces to —kc,(n') — —k/+/3 in the limit in
which we are working. Finally, the difference of the products in the numerator of
the integrand is simply — sin[k(rs — )], so

2
5 [ at o) - wory (8.23)

Oo(n) + ®(n) = [B0(0) + (0)] cos(krs)

+ % /O” dn' [®(n') — W(n)]sin [k(rs(n) —rs(n'))] . (8.24)

Equation (8.24) is an expression for the anisotropy in the tightly coupled limit,
first derived by Hu and Sugiyama in 1995. If you are not impressed with this solution
since it still involves an integral over the gravitational potentials, I urge you to
reconsider. First, look at Figure 8.6, which compares the solution of Eq. (8.24) with
exact results obtained by integrating the full set of coupled Einstein-Boltzmann
equations. The approximate solution gets the peak locations dead on, and it does
fairly well with the heights as well. The later peaks—those at kny > 500 — are

5You can rectify this by applying the WKB approximation in Exercise 5.
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Figure 8.6. The monopole at recombination in a standard CDM model. The exact solution is
the heavily weighted solid line. The light dashed line is the undamped solution of Section 8.3,
Eq. (8.24); the heavier curve in the middle accounts for damping using the treatment of
Section 8.4.

clearly overestimated by our solution, but we will shortly rectify this when we
include damping due to diffusion in the next section. A second reason to respect the
approximate solution is that it divides the problem neatly into first (i) a calculation
of the external gravitional potentials generated by the dark matter and then (ii) the
effect of these potentials on the anisotropies. Third, the solution clearly illustrates
that the cosine mode is the one excited by inflationary models. This is important,
because it is very hard to imagine this mode excited by any other mechanism. If
causality is respected, then there should be no perturbations with k7 <« 1 early on.
We know that inflation evades this constraint by changing the true horizon; it is
tempting to say that if this mode is observed, we are seeing evidence for inflation.
Fourth, we now have a more accurate expression for the frequency of oscillations
and therefore for the locations of the acoustic peaks. In the limit that the first term

in Eq. (8.24) dominates, the peaks should appear at the extrema of cos(kr;), e.g.,
at

kp =mnm/r; n=12... . (8.25)

And the final reason Eq. (8.24) is impressive is that the full set of Einstein—
Boltzmann equations involve literally thousands of coupled variables (e.g., the ©;’s).
Reducing those thousands of differential equations to just one is a huge leap in
knowledge.
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In addition to the monopole, the photon distribution has a nonnegligible dipole
at recombination. Using Eq. (8.12), we can obtain an analytic solution for the dipole
by differentiating Eq. (8.24):

0:(n) = i

7 [©0(0) + ®(0)] sin(krs)

- § / ’ dn' [®(n') — W (11')] cos [k(rs(n) — ro(n))] . (8.26)
]

The first term is completely out of phase with the monopole (sin(krs) versus
cos(krs)). Figure 8.7 shows that this feature remains even after accounting for
the integral term. This mismatch of phase will have important implications for the
final anisotropy spectrum.
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Figure 8.7. The monopole and dipole at recombination in a standard CDM model. The dipole
vanishes for the longest wavelength modes that have not entered the horizon by recombination.
It is completely out of phase with the monopole.

8.4 DIFFUSION DAMPING

Figure 8.6 makes it clear that we must account for diffusion to get accurate CMB
spectra. To analyze diffusion quantitatively, we must return to the equations for
the moments of the photon distribution, Eqgs. (8.12), (8.13) and (8.10). Until now,
we have neglected ©; and all higher moments. Diffusion is characterized by a small
but nonnegligible quadrupole.
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We must therefore supplement the set of equations we wrote down in the last
section with an equation for the quadrupole, ©,. Our task is somewhat simplified
by the fact that we will be interested in phenomena occurring onty on small scales.
On these scales, recall from Chapter 7 (e.g., Figure 7.8) that the potentials are very
small because of radiation pressure, so we can drop ® and ¥ everywhere. Also, we
will see that diffusion manifests itself in the moments by making each successive
moment proportional to a higher power of 1/7. Thus we will need to keep only the
[ = 2 mode; all higher ones can be neglected. With these approximations, we have

O +kOy =0 (8.27)
: 2 1 ) v
@1 +k (g@z - 5@0) =T <@1 - ~“3£> (828)
. 2k 9 .
@2 - ?91 = -1—6’7'@2. (829)

These three equations need to be supplemented by an equation for vy,. This is best
expressed as a slight rewriting of Eq. (8.14):

R a
3i0; +vp = — |:1')b + —-Ub] R (8.30)
7 a
where again I have dropped the gravitational potential.
To solve this set of equations, we appeal to the high-frequency nature of damp-
ing. Let us write the time dependence of the velocity as
Vp X ¢ f ot (8.31)
and similarly for all other variables. We already know that w ~ kc, in the tightly

coupled limit. Now we are searching for damping, an imaginary part to w. Since
damping occurs on small scales, or high frequencies,

by = fwop > -va; (8.32)

a/a is of order n~! while w is of order k. So we can drop the second term on the
right in Eq. (8.30) and the velocity equation then becomes

. -1
v = —3i0; [1 - l—“;—R]
) 2
~ ~3i0, [1 + Zi:i - (@) ] (8.33)

where I have expanded out to 72 because v, + 310, is multiplied by 7 in Eq. (8.28).



232 ANISOTROPIES

The equation for the second moment of the photon field, (8.29), can be reduced
similarly. First we can drop the @, term since it is much smaller than 702. This
leaves simply

O, = —ﬂ@l (8.34)
97

which shows that our approximation scheme is controlled: higher moments are sup-
pressed by additional powers of k/7. The equation for the zeroth moment becomes

iweo = —k@l. (835)

Inserting all of these into Eq. (8.28) gives the dispersion relation

8k? 9 iwR whR\?
2w—-27—+(k /3iw) = 7’<1— [1+T_(—%) ]) (8.36)
Collecting terms we get
k2 iw 8k?
1 - = 2R? + : 8.37
w?(1+ R) Tt [ R + o } 0 (8.37)

The first two terms on the left, the leading ones in the expansion of 1/7, recover
the result of the previous section, that the frequency is the wavenumber times the
speed of sound. We can write the frequency as this zero-order piece plus a first-
order correction, dw. Then, inserting the zero-order part into the terms inversely
proportional to 7 leads to
ik? 2p2 8
W= S TR [ R 27] (8:38)

Therefore, the time dependence of the perturbations is

2
©p,0; ~ exp {ik/dncs} exp {—52-} (8.39)
D

where the damping wavenumber is defined via

n / 2
21 = / dn [ L §] : (8.40)
k() Jo 6(1+ R)neora(n’) [(1+R) 9
Putting aside factors of order unity, this equation says that 1/kp ~ [n/n.ora]'/?,
which agrees with our heuristic estimate at the beginning of this chapter.

As a first estimate of the damping scale, we can work in the prerecombination
limit, in which all electrons (except those in helium) are free. In Chapter 3 we
estimated the optical depth in this limit, but ignored helium. The mass fraction
of helium is usually denoted as Y, and is approximately 0.24. Since each helium
nucleus contains four nucleons, the ratio of helium to the total number of nuclei is
Y, /4. Each of these absorbs two electrons {one for each proton), so when counting
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the number of free electrons before hydrogen recombination, we must multiply our
estimate of Eq. (3.46) by 1 — Y, /2. Using the fact that Hy = 3.33 x 107* h Mpc™!,
we have, in the prerecombination limit,

Y,
neora = 2.3 x 107Mpc™ ' Q,h%a 2 (1 - 7”) . (8.41)

Using this, you can show (Exercise 8) that an approximation for the damping scale
is

_ Y,\ 7' -
K = 3.1 x 10° Mpca®2 fp(a/acq) (Uh?) 1<1_7p> (Qmh?) ™" (8.42)

where fp, defined in Eq. (8.88), goes to 1 as a/aeq gets large.
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Figure 8.8. Damping scale as a function of the scale factor for two different values of €2,
{(with h = 0.5). Heavy curves (exact) numerically integrate over the standard recombination
history, while light curves use the approximation of Eq. (8.42) which assumes electrons remain
ionized. Right axis shows the equivalent kpo; damping occurs on angular scales | > kpmno.

Figure 8.8 shows the evolution of the damping scale before recombination.
Neglecting recombination is a good approximation at early times but, as expected,
leads to quantitative errors right near 7)., when using Eq. (8.41) for the free electron
density does not accurately account for the electrons swept up into neutral hydro-
gen. In the absence of recombination, kp scales as Q;/ 2. Note from the late time
behavior in Figure 8.8 that the messy details of recombination change this simple
scaling: kp for the Q, = 0.06 case is less than 2°° as big as the Q, = 0.03 case.

Figure 8.8 requires one final comment. The damping of anisotropies due to pho-
ton diffusion is sometimes referred to as being caused by the “finite thickness of
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the last scattering surface.” That is, it is argued that if recombination took place
instantaneously at 7., then there would be no damping. Figure 8.8 shows that
this is patently false. Even if recombination had occurred in this way, the universe
before recombination would not have been inifinitely optically thick. Photons would
still stream a reasonable distance and hence damp anisotropies. In the examples
shown, the damping scale would have been smaller (larger ) by less than a factor
of 2 if recombination had occurred instantaneously. On the other hand, we will
see in the next section that the anisotropies today are determined by integrating
over the wisibility function, essentially a filter centered at the epoch of recombina-
tion but broadened due to the finite thickness of the last scattering surface. When
incorporating the effects of damping (Seljak, 1994; Hu and Sugiyama, 1995), one
must account for this finite thickness by integrating the damping function e~k /¥
weighted by the visibility function. Thus the finite thickness of the last scatter-
ing surface has both qualitative and quantitative effects on the final anisotropy
spectrum.

8.5 INHOMOGENEITIES TO ANISOTROPIES

We now have a good handle on the perturbations to the photons at recombination. It
is time to transform this understanding into predictions for the anisotropy spectrum
today. First, we will solve for the moments @, today in the next subsection. Then
we will spend a bit of time relating these moments to the observables. Thus the
main purpose of the following subsections is to derive Eq. (8.56), which relates the
moments today to the monopole and dipole at recombination, and Eq. (8.68), which
expresses the CMB power spectrum in terms of the Fourier moments today.

8.5.1 Free Streaming

We want to derive a formal solution for the photon moments today ©;(7) in terms
of the monopole and dipole at recombination. A formal solution can be obtained
by returning to Eq. (4.100). Subtracting 7© from both sides leads to

d

O + (tkp — 7)0 = e"'kl"f”d—n [@e™kun=T] = § (8.43)
where the source function is defined as
- . 1
S=-9—iku¥ —7 [@0 + pop — 5732(/1)1]] . (8.44)

Hold your curiosity about the”in the definition. Multplying both sides of Eq. (8.43)
by the exponential and then integrating over n leads directly to
. 7o ~ )
O(10) = O(inie e FH(memie =m0l g =7 (minie) +/ dnS(n)eZk”("_”O)_T(") (8.45)
Minit
where I have used the fact that 7(n = 79) = 0 since 7 is defined as the scattering
rate integrated from 1 up to 1. We also know that, if the initial time 7ini¢ is early
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enough, then the optical depth 7(nin;1) will be extremely large. Therefore, the first
term on the right side of Eq. (8.45) vanishes. This corresponds to the fact that
any initial anisotropy is completely erased by Compton scattering. By the same
reasoning, we can set the lower limit on the integral to zero: any contribution to
the integrand from 7 < mg; is completely negligible. Thus, the solution for the
perturbations is

o
O(k, p,m0) = / dnS (k, p,m)etrn=m)=T(0), (8.46)
0

Equation (8.46) looks simple, but of course all of the complication is hidden in
the source function S. Notice that S depends somewhat on the angle p. If it did
not depend on p, we could immediately turn Eq. (8.46) into an equation for each
of the ©;’s. For, we could multiply each side by the Legendre polynomial P;(u) and
then integrate over all u. By Eq. (4.99), the left side would give (—i)!©; and the
right would contain the integral

/_1 %Pl(u)eik#(n—ﬂo) —_ (——12)1.71 {k(n _ nO)] (847)

where j; is the spherical Bessel function. This approach looks so promising that we
should pursue it to its end, again forgetting for the moment that S really does have
some p dependence. The expression for ©; would be

Ou(k, ) = (~1)' /0 " dn$(k,m)e M, [k — ). (8.48)

What about the x dependence in S? We can account for this by noting that S
multiplies the exponential en(1=m0) in Eq. (8.46). Thus, everywhere we encounter
a factor of y in § we can replace it with a time derivative:

1d

L1a 8.49
=%k dn (8.49)

Let me demonstrate this explicitly with the —ikuW¥ term in S. The integral is

o . 7o d .
—ik/ dn plettrn—mo)=r(n) — _/ dnle~ (M — gtku(n=mo)
0 0 d’l]

Mo . d
- / dretrtn=m) = [gemr®] - (8.50)
0 dn
where the last line follows by integration by parts. Note that the surface terms can
be dropped: at 1 = 0 they are damped by the e~ 7(®) factor. The terms at n = ng
are not small, but they are irrelevant since they have no angular dependence. They
alter the monopole, an alteration which we cannot detect. Thus, accounting for the
integration by parts changes the substitution rule of Eq. (8.49) by a minus sign,
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with the understanding that the derivative does not act on the oscillating part of
the exponential, e***("=0)_ The solution in Eq. (8.48) therefore becomes

Ok, 1) = /O " dnS(k.m)ji k(o — ) (8.51)

with the source function now defined as
. 1
Sk,n)=e " {—@ —7(0g + ZH)}

dl_. fonF 3 42 __.

In Eq. (8.51), I have also used the property of spherical Bessel functions: j;(z) =
(=1l (~=).
At this stage, it is useful to introduce the wvisibility function

g(n) = —1e 7. (8.53)

The visibility function has some interesting properties. The integral fono dng(n) = 1,
so we can think of it as a probability density. It is the probability that a photon
last scattered at 7. In the standard recombination, since 7 is so large early on,
this probability is essentially zero for 7 earlier than the time of recombination. It
also declines rapidly after recombination, because the prefactor —7, which is the
scattering rate, is quite small. Figure 8.9 shows the visibility function for two values
of the baryon density.

The source function in Eq. {8.52) can now be expressed in terms of the visibility
function. If we drop the polarization tensor II in the source since it is very small,
then the source function becomes

S(k,n) ~ g(n) [©o(k,n) + ¥(k,n)]

N d% <ivb(k,:)g(n)>

+e " [\i/(k, n) — d(k, n)} . (8.54)
We can take our analytic solution one step further by performing the time integral

in Eq. (8.51). The source term proportional to vy, is best treated by integrating by
parts. Then,

Ok, m) = / " dn a(n) ok, m) + W(k,m)] i [K(mo — )]

- /Ono dn g(n) @b_(:,_ﬂl %jl [k(n0 — )]
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Figure 8.9. The visibility function. Most electrons last scatter at around z ~ 1100 with little
dependence on the baryon density. Note that the integral of g over conformal time is 1. Here
h =0.5.

w Mg e [ - b)) dkon ). (559

There are two types of terms in Eq. (8.55). First, there are those wherein the
integral is weighted by e~7. These contribute as long as 7 < 1, that is, at all times
after recombination. Note that these are also proportional to derivatives of the
potentials. If the potentials are constant after recombination, these terms vanish. In
marny theories, as we saw in Chapter 7, this is precisely what happens: the universe
is purely matter dominated after recombination and in such an environment, the
potentials generally remain constant. The corrections due to changing potentials
are therefore important to get things right quantitatively, but do not affect the
qualitative structure of the anisotropy spectrum. Rather, the dominant terms in
Eq. (8.55) are the second types of terms, the ones with integrals weighted by the
visibility function.

Since the visibility function is so sharply peaked, the integrals in the first two
terms become very simple. To see why, consider Figure 8.10 which shows the three
parts of the integrand of the first term (the monopole) in Eq. (8.55). Since the
visibility function changes rapidly compared with the other two functions, we can
evaluate those other functions at the peak of the visibility function, i.e., at n = 7.,
and remove them from the integral. But then, the integral is simply [ dng(n) = 1.
Thus, we are left with
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Figure 8.10. The three components of the integrand in the monopole term of Eq. (8.55). The

visibility function is sharply peaked, so it changes rapidly compared with the monopole ©g + ¥
and the Bessel function j;(k[n — no)). Figure is for [ = 100,k = 0.013h Mpc™".

@l(kvnO) =~ [GO(kvn*) + \P(k,n*)] jl [k(ﬁo - 77*)]

+301(k, ) (jl_l e(ro — )] (I + 1k) (Jrlz O[k_(ns)— 77*)]>

s [Man e fiten) - bk) Ak —n]. (356)
0

Here I have used the spherical Bessel function identity of Eq. (C.18) to rewrite the
Bessel function derivative in the velocity term and also the fact that v, ~ —3i0; at
7«. On scales much smaller than the one shown in Figure 8.10, ©¢+ ¥ changes more
rapidly because of the rapid change in the damping scale around recombination.
However, this effect can be incorporated by modifying the damping function from

e~k /kp(m)? _, /dng(n)e‘kz/k‘?(")2. (8.57)

Equation (8.56) is the basis for semianalytic calculations (Seljak, 1994; Hu and
Sugiyama, 1995) of C; spectra which agree with the exact {numerical) solutions to
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within 10%. From Eq. (8.56), we see that, to solve for the anisotropies today, we
must know the monopole (©p), dipole (©), and potential (¥) at the time of recom-
bination. Further, there will be small but noticable corrections if the potentials are
time dependent. These corrections, encoded in the last line of Eq. (8.56), are often
called integrated Sachs—Wolfe (ISW) terms.

The monopole term—the first in Eq. (8.56) —is precisely what we expected
from the rough arguments of Section 8.1. In particular, the spherical Bessel function,
Ji[k(no—n4)], determines how much anisotropy on an angular scale [~! is contributed
by a plane wave with wavenumber k. On very small angular scales,

lim ji(z) = ~ (5)1 2 (8.58)

l—o00 l {
That is, ji(x) is extremely small for large ! when 2 < I. In our case, this means that
©;(k,mp) is very close to zero for | > kng. This makes sense physically. Returning
to Figure 8.4, we see that very small angular scales will see little anisotropy from
a perturbation with a large wavelength. The converse is also true: angular scales
larger than 1/(kng) get little contribution from such a perturbation. To sum up,
a perturbation with wavenumber k contributes predominantly on angular scales of
order [ ~ kmng. One last comment about the monopole term: the final anisotropy
today depends on not just ©g, but rather ©g + ¥, again something we anticipated
since photons must climb out of their potential wells to reach us today.

8.5.2 The C;’s

How is the observed anisotropy pattern today related to the rather abstract
©,(k,n9)? To answer this question, we must first describe the way in which the
temperature field is characterized today and then relate this characterization to
0.

Recall that in Eq. (4.34), we wrote the temperature field in the universe as

T(Z,p,n) =T(n)[1 + O(Z,p,n)]. (8.59)

Although this field is defined at every point in space and time, we can observe
it only here (at Zp) and now (at 719). Our only handle on the anisotropies is
their dependence on the direction of the incoming photons, p. So all the richness
we observe comes from the changes in the temperature as the direction vector p
changes. Observers typically makes maps, wherein the temperature is reported at a
number of incoming directions, or “spots on the sky.” These spots are labeled not
by the p., By, p. components of p, but rather by polar coordinates ¢, ¢. However, it

6We do make small excursions from this point in space-time. For example, satellites are not
located on Earth and anisotropy measurements have been made over the past 30 years. These are
completely insignificant on scales over which the temperature is varying, which are of order the
Hubble time (or distance).
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is a simple matter to move back and forth between the 3D unit vector p and polar
coordinates.” I'll stick with p in the ensuing derivation.
We now expand the field in terms of spherical harmonics. That is, we write

o0 l
OFpm) =D Y am(&n)Yim(p). (8.60)
m=—I

=1 —

The subscripts [, m are conjugate to the real space unit vector p, just as the variable
k is conjugate to the Fourier transform variable . We are all familiar with Fourier
transforms, so it is useful to think of the expansion in terms of spherical harmonics
as a kind of generalized Fourier transform. Whereas the complete set of eigenfunc-
tions for the Fourier transform are '*%| here the complete set of eigenfunctions for
expansion on the surface of a sphere are Y,,,(p). All of the information contained in
the temperature field T is also contained in the space-time dependent amplitudes
aim- As an example of this, consider an experiment which maps the full sky with an
angular resolution of 7°. The full sky has 47 radians? ~ 41, 000 degrees2, so there
are 840 pixels with area of (7°)2. Thus, such an experiment would have 840 inde-
pendent pieces of information. Were we to characterize this information with a;,’s
instead of temperatures in pixels, there would be some l;;,,x above which there is no
information. One way to determine this [, 18 to set the total number of recover-
able ;s as Zf:")"(Zl +1) = (Imax +1)? = 840. So the information could be equally
well characterized by specifying all the a;,,’s up to lmax = 28. Incidentally, this is
a fairly good caricature of the COBE experiment (Smoot et al., 1992; Bennett et
al.,, 1996). They presented temperature data over many more pixels, but many of
these pixels were overlapping. So, the independent information was contained in
multipoles up to I ~ 30. Experiments currently under way or well along in the
planning stage are capable of measuring the moments all the way up to [ ~ 10%.

We want to relate the observables, the a;n’s, to the ©; we have been dealing
with. To do this, we can use the orthogonality property of the spherical harmonics.
The Y;,,’s are normalized via Eq. (C.11),

[ Ao (5)Yi0 ) = b8 (3.61)

where  is the solid angle spanned by p. Therefore the expansion of © in terms
of spherical harmonics, Eq. (8.60), can be inverted by multiplying both sides by
Y, (p) and integrating:

3L -
aum(E,7) = / % / aQYy, (5)O(F, 5. 1). (8.62)

Here I have written the right-hand side in terms of the Fourier transform (G(E)
instead of ©(Z)), since that is the quantity for which we obtained solutions.

7P, = cos b, pr = sinfcos$, and Py = sinfsin ¢.
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Figure 8.11. The distribution from which the a;..'s are drawn. The distribution has expecta-
tion equal to zero and a width of 011/2.

As with the density perturbations, we cannot make predictions about any par-
ticular a;,,, just about the distribution from which they are drawn, a distribution
which traces its origin to the quantum fluctuations first laid down during inflation.
Figure 8.11 illustrates this distribution. The mean value of all the a;.,,’s is zero, but
they will have some nonzero variance. The variance of the a;,,.’s is called C;. Thus,

(am) =0 3 {@m@m) = 6w mm Cl. (8.63)

It is very important to note that, for a given [, each a;,, has the same variance.
For | = 100, say, all 201 ajgo,m’s are drawn from the same distribution. When
we measure these 201 coefficients, we are sampling the distribution. This much
information will give us a good handle on the underlying variance of the distribution.
On the other hand, if we measure the five components of the quadrupole (I = 2},
we do not get very much information about the underlying variance, Cs. Thus,
there is a fundamental uncertainty in the knowledge we may get about the C;’s.
This uncertainty, which is most pronounced at low I, is called cosmic variance.
Quantitatively, the uncertainty scales simply as the inverse of the square root of
the number of possible samples, or

AC, 5
“Vour1 8.64
< Cl >cosmic variance 2l +1 ( )
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We can now obtain an expression for C; in terms of ©;(k). First we square ajm,
in Eq. (8.62) and take the expectation value of the distribution. For this we need
(© (k,p)O* (K, 7)), where from now on we will keep the 1 dependence implicit. This
expectation value is complicated because it depends on two separate phenomena:
(i) the initial amplitude and phase of the perturbation is chosen during inflation
from a Gaussian distribution and (ii) the evolution we have studied in this chapter
turns this initial perturbation into anisotropies, i.e. produces the dependence on p.
To simplify then, it makes sense to separate these two phenomena and write the
photon distribution as § x (©/4), where the dark matter overdensity ¢ does not
depend on any direction vector. The ratio ©/4 is precisely what we have solved for
in the last two chapters: given the initial amplitude of a mode, we have learned how
to evolve forward in time. The ratio does not depend on the initial amplitude, so
it can be removed from the averaging over the distribution. Therefore,

o(k,p) ©*(¥,p)
§(k) & (k")

(O(k,p)O(K',5)) = (8(k)5™ (k"))

O(k, k- p) ©*(k, k- p')
(k) 5 (k)

where the second equality uses the definition of the matter power spectrum P{k),
but also contains a subtlety in the ratio ©/4. This ratio, which is determmed solely
by the evolution of both § and ©, depends only on the magnitude of k and the dot
product k - -p. Two modes with the same k and k - p evolve identically even though
their initial amplitudes and phases are different.

After squaring Eq. (8.62), we see that the anisotropy spectrum is

_ [ &% Okk-9) [ v (O (kk F)
C _/W (k)/dQ m(P )_W /dQ Yzm(P)—W- (8.66)

Now we can expand O(k,k - p') and ©(k, k - §') in spherical harmonics using the
inverse of Eq. (4.99), ©(k, k- p) = S (=) 20+ 1)Py(k - p)Ou(k). This leaves

_ [ &k NN v 1y Ou(k)6) (k)
q_/wmmm;()m(m+mm+m 5B

= (2m)38%(k — k') P(k) (8.65)

< [ 4Pl 5)Yi ) [ AP )i (5. (8.67)

The two angular integrals here (Exercise 9) are identical. They are nonzero only
if I’ =1 and I” = [, in which case they are equal to 47Y},,(k)/(2l + 1) (or the
complex conjugate). The angular part of the d°k integral then becomes an integral
over |Yy,,|?, which is just equal to 1, leaving

Q:%Aw%ﬁpww%g

(8.68)
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For a given [, then, the variance of a;,,, Ci, is an integral over all Fourier modes of
the variance of ©,(k). We can now use Eqgs. (8.56) and (8.68) to plot the anisotropy
spectrum today.

8.6 THE ANISOTROPY SPECTRUM TODAY
8.6.1 Sachs—Wolfe Effect

Large-angle anisotropies are not affected by any microphysics: at the time of recom-
bination, the perturbations responsible for these anisotropies were on scales far
larger than could be connected via causal processes. On these largest of scales, only
the monopole contributes to the anisotropy; this is the first term in Eq. (8.56). So
the large-angle anisotropy is determined by ©g + ¥ evaluated at recombination.
The large-scale solution we found in Eq. (8.6) was that this combination is equal
to ¥(n.)/3. In most cosmological models, recombination occurs far enough after
matter/radiation equality that we can approximate the potential back then to be
equal to the potential today modulo the growth factor, so

Ou(ne) + ¥(1.) = g5 ¥lm) = ~gp gy Blm)  (869)

- 3D1 (a =1
The last equality holds here because at very late times, there are no appreciable
anisotropic stresses, and ¢ = -0,
We may use Eq. (7.7) to express the potential ® today in terms of the dark
matter distribution, so that

Q,, H2

Oo(ns) + T (na) ~ T2%2Di(a=1)

5(m0). (8.70)
This gives us what we need: an expression for the sum of ©g + ¥ at recombination
that we can plug into the monopole term in Eq. (8.56). To get the anisotropy
spectrum today, we then integrate as in Eq. (8.68), leaving

02 HE > dk
CSW:—’"O—/ — 32 [k(no — n)] P(k 8.71

l 27TD%((1:1) 0 k2jl [ (770 77)] ( ) ( )
where the superscript denotes Sachs-Wolfe, in honor of the first people to compute
the large-angle anisotropy (Sachs and Wolfe, 1967). The power spectrum is given
by Eq. (7.9) with the transfer function set to 1 (since we're considering very large
scales). Therefore,

SN L L 2 & [ ﬂg—jz [k(no — n.)] (8.72)
LT A\ Dila=1)) H )y k2t o '

The large-scale anisotropies in Eq. (8.72) can be computed analytically. First,
we will use the fact that 7, < 79 and define the dummy variable £ = kng. Then
the spectrum can be rewritten as
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. O \° < dr
CPW ~ m(noHp)! (51(0—:1_)> 5?,/0 ﬁ—_n]f(m) (8.73)

The integral over the spherical Bessel functions can be analytically expressed

(Eq. (C.17) from Gradshteyn and Ryzhik, 6.574.2) in terms of gamma functions,
leaving

Q PLT(l+2-3) r3-m
CSW ~ 2n—4ﬂ_2 H, 1-n ( m > 62 2 2 .
’ i\ i1 M oY)
If the spectrum is Harrison-Zel’dovich-Peebles, n = 1, then the first ratio of the

gamma functions I'(1) /T'(1+2) is equal to [I({+1)] ! using Eq. (C.24). The remaining
ratio of gamma functions I'(2)/T?(3/2) = 4/ using Eq. (C.25), so

(8.74)

sw _ T Qm ’ 2
I+ 1Y = 5 (Dl(a:1)> 8%s (8.75)
a constant. Indeed, this is the reason why workers in the field typically plot {({+1)C}:
at low [, where the Sachs—Wolfe approximation is a good one, we expect a plateau.

Figure 8.12 shows the COBE measurements of the large-angular-scale
anisotropies along with the Boltzmann solutions of three CDM models. Note that,
even for n = 1, the true spectrum is not completely flat as suggested by Eq. (8.75).
The dipole at recombination (neglected in Eq. (8.74)) contributes slightly. The
integrated Sachs-Wolfe effect also is not completely negligible, especially in the
A model, wherein the potential starts to decay once the universe becomes A-
dominated at late times. For an n = 1 spectrum, the best fit values of éy from

COBE are
g =19x%x107° Q=1

0 =46 x107° 0, =03: Q4 =0.7. (8.76)

Also shown in Figure 8.12 is a tilted model, one in which the primordial spec-
tral index n is not equal to 1. In such models, the anisotropy should scale as [*~!
compared with the Harrison—Zel’dovich-Peebles n = 1 spectrum. You can see this
scaling from Eq. (8.74) or more directly from the integral in Eq. (8.73). The inte-
grand peaks at x ~ [, so very roughly every appearence of x there can be replaced
by I. The generalization of the integrand from z~! to 2”72 therefore leads to a
change in the spectrum that scales as [*~!. As indicated in Figure 8.12, the COBE
data have the greatest weight at | ~ 10, but cover a range of [ spanning an order of
magnitude. Extreme values of tilt are therefore ruled out by COBE. To get much
better constraints on the tilt, though, measurements spanning a larger range of !
are necessary.

8.6.2 Small Scales

The small-scale anisotropy spectrum depends not only on the monopole, but also
on the dipole and the integrated Sachs—Wolfe effect. Figure 8.13 shows all these
contributions to the spectrum. Let’s consider each in turn.



THE ANISOTROPY SPECTRUM TODAY 245

4O_TIIIIIIII|7171III‘I

/// /W//// Wrsse =
///-(111 - errrss )%

20 % sCDM //// Tilted

10

1111

l

1

lllJllllI

QV\V\\\‘\\

[10+1)C,/27] /2 (uK)

OIIIIIIIIIIIJIIII
5 10 15

4Y)
o

Figure 8.12. Large-scale anisotropies. Hatched boxes show measurements by COBE satellite
(Bennett et al., 1996). Curves show the spectra for standard CDM and ACDM (both with
n = 1). The tilted model is identical to standard CDM, except n = 0.5. The late time
integrated Sachs—-Wolfe effect enhances anisotropy on the largest scales in ACDM. Note that
here, and in subsequent C; figures, the root mean square anisotropy is plotted, proportional to
01/2 C is dimensionless so the units of uK come from muitiplying by the present background
temperature, T = 2.73K.

The monopole at recombination (09 + ¥)(k,7.) free-streams to us today, cre-
ating anisotropies on angular scales [ ~ kng. This is what we expected back in
Figure 8.4, showed to be true in Eq. (8.56), and can now see directly in the top
panel of Figure 8.13. There are two interesting features of the quantitative aspect
of the free-streaming process. First, note that the “zeroes” in the monopole spec-
trum, here at 400, 650, and 970, are smoothed out because many modes contribute
to anisotropy on a given angular scale. If only the k& = 400/79 modes contributed
to the anisotropy at [ = 400, then Cyp9 would really be zero. But many nonzero
modes, with wavenumber greater than 400/79, contribute. These change the zero
to a trough in the C; spectrum.

The second feature of free-streaming worth noticing is that our initial estimate
tof the peak positions is not exactly right. Inhomogeneity on scale k does not show
up as anisotropy precisely on angular scale | = kng. Rather, There is a notica-
ble shift in the top panel, suggesting that a given k-mode contributes to slightly
smaller [ than we anticipated. This shift arises from the spherical Bessel function
in Eq. (8.56). As indicated in Figure 8.14, the peak in the Bessel function comes
not when ! = kng, but rather at slightly smaller values of [. In addition, our initial
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Figure 8.13. Small-scale anisotropy. Top panel: The monopole at recombination
(©0 + ¥)(k = l/no,m«) contains most of the structure of the final anisotropy spectrum.
When free-streamed via the integral in Eq. (8.56), the spectrum shifts slightly to lower .
Middle panel: Accounting for the dipole raises the anisotropy spectrum. Since the dipole
is out of phase with the monopole, the troughs become less pronounced. Bottom panel:
The integrated Sachs—Wolfe effect enhances the anisotropy on scales comparable to the hori-
zon. In this case, the potential changes near recombination since the universe is not purely
matter dominated then. Thus the first peak gets most of the excess power. Throughout,
h=10.5,Q =0.06,Q, = 1.

estimate for the location of the peaks in k-space, Eq. (8.25), is also slightly high. For
example, the expected position of the first peak, wng/rs, for the model depicted in
Figure 8.13 is a little over 280. The first peak in the monopole in k-space, however,
appears at kng ~ 260. These two effects — fixed k projects to slightly smaller [ and
peaks on slightly larger scales than expected from Eq. (8.25) —serve to move the
predicted positions of the peaks to lower [. A better approximation for the first
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Figure 8.14. The spherical Bessel function, 5;(100). Note that the peak occurs at I ~ 90,
slightly smalier than the argument.

peak position is I, >~ 0.757ny /rs.

The dipole at recombination is smaller than the monopole and out of phase
with it. The middle panel in Figure 8.13 shows that adding in the dipole raises the
overall anisotropy level, but particularly fills in the troughs. Without the dipole (in
this model) the ratio of the height of the first peak (at [ ~ 200) to the height of
the first trough (at ! ~ 400) is about 2.5:1; the dipole lowers this ratio to 1.5:1.
This is a direct manifestation of the dipole and monopole being out of phase with
one another. That is, at the places where the monopole contributes least to the
anisotropies, at its troughs, the dipole contributes the most. One other comment
about the relation between the monopole and the dipole: they add incoherently. By
incoherently, I mean that the cross term of ©; from the monopole multiplied by ©;
from the dipole vanishes when integrating over all k-modes to get the C)’s. This
can be seen mathematically from the properties of the spherical Bessel function
(Exercise 12). Incoherence implies that the dipole is not as important in the power
spectrum as one might naively think. If the amplitude of the dipole is 30% of that
of the monopole at recombination, the dipole’s contribution to the C;’s is only
10% (12 +0.3% = 1.1).

The integrated Sachs—Wolfe effect is also important if the potential changes
after recombination. To see which scales are affected by the ISW effect, consider
the integral in Eq. (8.56). Suppose the potential changes at time 7., with all sub-
horizon scales (k7. > 1) being affected. The Bessel function peaks at [ ~ k(19 —7.);
so all angular scales I > (9 — n.)/n. are affected. The largest effect is typically at
the horizon.

The best, and most prevalent, example of the ISW effect is that due to residual
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radiation at recombination. If the universe were purely matter dominated, there
would be no such effect. But, the transition to pure matter domination is not
abrupt, and even for aeq ~ 107%, an ISW effect occurs right after recombination.
This early ISW effect is particularly important because it adds coherently with the
monopole. To see this, integrate the last term in Eq. (8.56) by parts. Then, the
dominant contribution comes from 5 =~ 7,, so the Bessel function can be evaluated
there, leaving the trivial integral which gives

©1(k, mo)*™ W = [U(k,n0) — U(k,n.) — ®(k,m0) + (K, 7)) it [k (10 — 7)) -

(8.77)
This adds exactly in phase with the monopole (which is proportional to the same
Bessel function) so even though the magnitude of the effect on ©; is much smaller
than is the dipole, the effect on the anisotropy spectrum is disproportionate. A 30%
dipole leads to a 10% shift in the C)’s, while a 5% ISW effect leads to the same
10% shift in the C)’s. The bottom panel shows that the large scales, those with
I ~ 1o/, get a big boost from this early ISW effect.

8.7 COSMOLOGICAL PARAMETERS

The anisotropy spectrum depends on cosmological parameters. This fundamental
realization initially caused great consternation (“We will never be able to measure
any one parameter because there is too much degeneracy”). As more quantitative
studies were carried out, the pendulum swung to the other side (“We will be able
to disentangle the degeneracies and measure cosmological parameters to percent
accuracy” ). More recently, the community has settled into a state of cautious opti-
mism. Indeed, just a decade after the initial discovery of large scale anisotropies by
COBE, there were a host of experiments which together seemed to pin down one
parameter (the total energy density) by measuring the location of the first peak.
Several of these had measured the subsequent two peaks, allowing an inference of
the baryon density, the parameter which most affects the heights and locations of
these peaks.

We now have developed the theoretical tools needed to participate in the param-
eter determination discussion. In this section, we apply these tools to understand
how the anisotropy spectrum varies as cosmological parameters vary.

One very important decision that must be made is which parameters will be
allowed to vary. I will consider eight parameters:

Curvature density, Qx =1 — Q,, — Qa

Normalization, Cig

Primordial tilt, n

Tensor modes,  (for a precise definition, see Exercise 18)
Reionization, parametrized by 7 back to recombination
Baryon density, Q,h?

Matter density, Q. h?

Cosmological constant energy density, 25
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There are two aspects of this list worth stressing. The first is that obviously it
does not include all possible cosmological parameters. Some favorites missing are a
neutrino mass (I will set all masses to zero in the following), the equation of state for
dark energy w (will be fixed at —1 corresponding to a cosmological constant), and
tensor tilt ny (fixed at zero). The second important point is that I have deliberately
chosen very specific combinations of these parameters, e.g., Q,h?, not , and h
separately. While there is good reason for this (e.g., the alternating peaks effect
depends on Q,h?), it also is a source of confusion. A common complaint is that,
within the context of a flat universe (the first parameter, the curvature density,
equal to zero), why should both the cosmological constant and the matter density
be allowed to vary? Mustn’t their sum equal 17 It is true that §2,, + Q4 must equal
1 in a flat universe. But that does not preclude us from varying both €2,,h? and
Q4, since h can change while the sum of the two densities is 1.

To harp on this point, consider two analysts. Analyst A works in the context of
a flat universe and uses Q,,h% and 4 as her two free parameters. Analyst B also
assumes the universe is flat, but takes h and Q24 as his two parameters. When A
raises (24, the matter density (€,,h?) is kept fixed, so the epoch of equality is kept
fixed. However, when analyst B raises his Q4, to keep the universe flat, he must
lower Q,,. He is therefore also lowering the matter density (since h is kept fixed),
thereby moving aeq closer to today. That change in a.q will lead to an enhanced
ISW effect, and therefore a larger first peak. Analyst A, who had the foresight to
separate out this effect by choosing Q,,h? as one of her parameters, sees no such
enhancement. And, indeed the enhancement is caused only indirectly by 24: rather
it is the direct result of a smaller ,,h2.

Let’s now consider the effect of each parameter in turn.

8.7.1 Curvature

If the universe is not flat, then the simple picture of Figure 8.4 is no longer accu-
rate since the geodesics of massless particles are such that photons starting out
parallel to each other slowly diverge. Consider the implication of this divergence
for anisotropies. Suppose the identical pattern of inhomogeneities was in place at
recombination in both a flat and open universe. As shown in Figure 8.15, the phys-
ical scale with maximal anisotropy (the first peak) gets projected onto a much
smaller angular scale in an open universe. The peaks should therefore be shifted to
higher I. As shown in Figure 8.16, this is precisely what happens.

The magnitude of this effect is determined by the comoving angular diameter
distance to the last scattering surface, in a flat universe simply equal to 79 — 7., and
in a universe with curvature given by Eq. (2.46) out to z,. Figure 8.17 shows this
distance as a function of the curvature density with all other parameters held fixed.
The angular diameter distance scales as (1 — ;) 7945, so that it is a factor of 1.7
larger in an open € = 0.7 universe than in a flat universe. Notice from Figure 8.16
that this is precisely the factor by which the first peak shifts from one model to
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Figure 8.15. Photon trajectories in an open universe diverge. Perturbations at last scattering
turn up on smaller scales in an open universe than they do in a flat universe.

the other. Of all the parameters under consideration, curvature by far causes the
largest shift in the location of the peaks.

Figure 8.16 also shows data circa 2002. There is a clear rise up to a first peak
at [ ~ 200 and an equally clear fall past this first peak. When the data first started
coming in (around 1998), a skeptic could plausibly claim that no one data set
spanned the whole peak, and it is difficult to combine data sets. Within a year or
two, though, this objection vanished as larger data sets such as TOCO (Miller et al.,
1999), Boomerang (de Bernardis et al., 2000), and Maxima (Hanany et al., 2000)
all contained enough information by themselves to rule out an open universe. The
DASI detection (Halverson et al., 2002), together with the reanalyzed Boomerang
and Maxima data, cemented the case for a flat universe.

Of course, a truly flat universe is only one point in parameter space, the point
at which the sum of the energy densities exactly equals the critical density, and no
data will ever rule out all values except for this one point. Rather, the data now
suggest that the total density is equal to the critical density with an error of about
5%. The classic open universe once favored by astronomers had 30% of the critical
density, and so is ruled out with very high confidence.

8.7.2 Degenerate Parameters

Figure 8.18 shows the results of varying four parameters. Before considering each
in turn, it is important to state the obvious. All of these parameters change the
spectrum in very similar ways. The shape of the spectrum varies hardly at all;
rather, these parameters simply move the spectrum up and down.
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Figure 8.16. The anisotropy spectrum in flat versus open universe. Also shown are data from
three small-scale experimients: DASI (darkest; Halverson et al., 2002), Boomerang (medium;
Netterfield et al., 2002), and Maxima (lightest; Lee et al., 2001). The pattern of peaks and
troughs persists in the open universe but is shifted to smaller scales. The data clearly favor
the flat case. Both curves have identical parameters n = 1,Q,,h? = 0.15, k% = 0.02 with
no reionization, tensors, or cosmological constant. Open curve has ; = 1 — Q,, = 0.7; flat
has the same parameters except Q0 = 0.
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Figure 8.17. Comoving angular diameter distance back to the last scattering surface at
zx =~ 1100 as a function of curvature. The distance is larger in an open universe than in
a closed universe.
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Figure 8.18. Changes in the anisotropy spectrum as Cio, 7,7, and n vary. The base model
(thick curve) is a flat universe with no reionization or tensors, n = 1, Q,h%* = 0.186,
QA% = 0.021, and 24 = 0.7. The thin curves vary one parameter each. Reionization cor-
responds to letting the optical depth back to the last scattering surface equal 0.2 instead of
zero; tilt has a primordial spectum with n = 0.8; r = 1 has an equal contribution of scalars
and tensors to the quadrupole; and normalization has Cip 10% higher than the base model.
The curve labeled tensors is the contribution to the anisotropy from tensors only. Only the
r = 1 curve includes this contribution; all others assume no anisotropy from tensors.

Normalization. The parameter Ciq trivially moves the spectrum up or down. Note
that, of the four parameters varied in Figure 8.18, it is the only one which can raise
the amplitude of the spectrum.

Tilt. We have already considered the large-angle effects of a tilted (n # 1) spectrum.
If n < 1, then the small-scale anisotropies are smaller than in the n = 1 model.
Figure 8.18 shows that, as smaller and smaller scales are probed, the effect becomes
more pronounced. So of the four parameters considered here, tilt has the most
distinctive shape —it is not a simple up-down shift —and perhaps will be most
easily extracted. Quantitatively, the spectrum scales as

CI(C;(Z)U = ( lpfyﬁ)"'l (8.78)
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where here l;ivor = 10 since we are fixing Cjo. Accounting for the fact that Vi is
plotted in Figure 8.18, we see from the point at [ = 1000 that this scaling works
extremely well.

Reionization. The universe was almost certainly reionized at late times. We see
this in the absorption spectra of high-redshift quasars, where no evidence is seen
of a uniform background of neutral hydrogen until we go back as least as far as
z ~ 6 (Becker et al., 2001; Fan et al., 2002). Reionization brings the CMB back in
contact with electrons. If enough scattering takes place, that is, if the optical depth
back to the last scattering surface is high enough, isotropy is restored; equivalently,
primordial anisotropies are washed out.

There are several ways to see the effect of reionization quantitatively. One is to
imagine a photon traveling in our direction with temperature T[1 + 0], where T is
the background temperature and © is the perturbation for which we have solved.
If these photons hit a region with optical depth 7, only a fraction e™" will escape
and continue on their way to us. In addition to these, we will also get a fraction
1 — €77 from the ionized region. All of these have the equilibrated temperature, T.
So the temperature we see today is

T1+0le " +T(1-e7)=T[1+06e7]. (8.79)

Subtracting from this the mean temperature T tells us that the fractional anisotropy
will be O, the primordial one set up at z ~ 1100, multiplied by e~". Of course this
argument can affect only those scales within the horizon at the time of reionization,
so multipoles [ larger than 79/Mreion Will be suppressed by e™7; small [ will be
unaffected. This is seen in Figure 8.18, where the reionization curve falls on top of
the base model on large scales but is uniformly suppressed on small scales.

Tensors. We saw in Chapter 5 that once they enter the horizon, the amplitude
of gravitational waves dies away. Therefore, gravity waves affect the anisotropy
spectrum only on scales larger than the horizon at recombination. Typically, this
translates into angular scales [ < 100. Indeed the tensors curve in Figure 8.18 shows
that tensors die out after [ > 100. We can observe only the sum of anisotropies due
to tensors and scalars. So if tensor perturbations were produced during inflation,
and if the total (scalar plus tensor) anisotropy spectrum is fit to the large-scale
(COBE) data, then the small-scale scalar amplitude is smaller than it would oth-
erwise be. Therefore, on scales | > 100 where only scalars remain, the anisotropy
spectrum is identical to the base model in Figure 8.18, but with a lower amplitude.

8.7.3 Distinct Imprints

The final variations we will consider are changes in the baryon density ;h2, the
matter density ,,h?, and the cosmological constant. As can be seen from Figure
8.19, these changes lead to richer variations in the anisotropy spectrum; as such
they are somewhat harder to understand (but easier to extract from the datal)
than the parameters in the previous subsection.
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Figure 8.19. Changes in the anisotropy spectrum as baryon density, matter density, and cos-
mological constant vary. Same base model as Figure 8.18.

Each of these parameters induces a small shift in the locations of the peaks and
troughs in the spectrum. To understand these shifts, it is important to recall that
since inhomogenities on scales k show up at | = kg in a flat universe, the peaks
in a flat universe will show up at I, ~ kpno ~ nwng/rs(n.) (Eq. (8.25), but also
see the discussion on page 247 that argues that the actual value of I, is ~ 25%
lower). Figure 8.20 shows this ratio as a function of matter and baryon density. It
is more sensitive to the matter density, so the peak spacing increases as the matter
density goes down. But there is also a little sensitivity to the baryon density. With
the densities fixed, introducing a cosmological constant does not change the sound
horizon, but it does slightly affect 7, so the peaks shift in that cases as well.
Baryon density. In addition to the lateral shift in the spectrum due to the change
in the sound horizon, changes in the baryon density affect the heights of the peaks
as well. We have already touched on the ways in which the anisotropy spectrum
depends on the baryon density. The foremost, clearly visible in Figure 8.19, is that
odd peaks (first and third in the figure) are higher than the even peaks when
the baryon density is large. This is a direct ramification of the lower frequency of
oscillations due to the massive baryons. This change is virtually unique, making the
baryon density one of the easiest parameters to extract from the CMB. Observations
as of 2001 (e.g., Pryke et al., 2001) pin down £,h? = 0.0224-0.04, and this constraint
will undoubtedly get tighter with data from the Map and Planck satellites. The
second change due to {2,h? is that an increased baryon density reduces the diffusion
length. Therefore, a larger baryon density means damping moves to smaller angular
scales, so the anisotropy spectrum on scales ! > 1000 is larger in a high-Q,h? model.
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Figure 8.20. The inverse sound horizon at recombination. In a flat universe, the spacing
between the acoustic peaks in the CMB is equal to w70 /7s(1)4).

Cosmological constant. The cosmological constant is a late-time phenomenon. It was
not around at recombination, and therefore could not have affected perturbations
then. Therefore, the only possible effects of a cosmological constant are on free-
streaming and on the largest angular scales just entering the horizon at recent
times. The change due to free-streaming is evident in Figure 8.19. The spectrum
is shifted to smaller angular scales if there is no cosmological constant. You will
show in Exercise 13 that this small shift can be readily explained by comparing
the conformal times in a A universe and a matter-dominated universe. Figure 8.19
also shows that the anisotropy spectrum is slightly lower on small scales in a A
universe. This is a direct result of the large-angle normalization. In a A universe,
there is a late-time ISW effect, which enhances the anisotropies on large angles. If
we normalize on these scales, then the small-scale anisotropy gets correspondingly
smaller.

Matter density. If the matter density is low, the epoch of equality occurred closer to
recombination, so that the radiation density must be accounted for in computing
the inhomogeneities at recombination. In particular, the decaying potential due
to the inability of the radiation to cluster provides a strong driving force for the
oscillations. Therefore, ©4(7.) is larger than in a purely matter-dominated universe.
Further, after recombination, since the potential is not constant, the ISW effect also
contributes significantly to the final anisotropy spectrum. Therefore, the small-scale
anisotropies increase if the matter density is low. This effect too has apparently been
detected, with measurements (Pryke et al., 2001) implying Q,,,h% = 0.16 & 0.04.
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SUGGESTED READING

The large-scale Sachs—Wolfe effect was first predicted by Sachs and Wolfe (1967),
just several years after the discovery of the CMB. Several groups initiated the
study of anisotropies in the tightly coupled limit: Doroshkevich, Zel’dovich, and
Sunyaev (1978), Atrio-Barandela and Doroshkevich (1994), and Jorgenson et al.
(1995). The approach was perfected by Seljak (1994) and Hu and Sugiyama (1995),
the latter of which is the basis for the semianalytic treatment of this chapter.
Again, CMBFAST described in Seljak and Zaldarriaga (1996) is a crucial tool for
fast, accurate numerical work. Diffusion damping is sometimes called Silk damping
because of the Silk (1968) paper recognizing its importance. Two other papers of
interest are Zaldarriaga and Harari (1995) which discusses the effect of polarization
on the damping scale (see Exercise 7) and Hu and White (1997a) which, among
other things, gives fits to the damping scale valid for a wide range of parameters.

The question of how the anisotropy spectrum depends on cosmological param-
eters has been explored in literally hundreds of papers over the past decade. 1
remember Dick Bond, one of the pioneers in the field, giving a talk in 1992 at
a conference about the early COBE data waving his hands through an invisible
multidimensional parameter space, explaining that our goal now was to navigate
through this space. Among the most important realizations were the dependence
on curvature (Kamionkowski, Spergel, and Sugiyama 1994), the degeneracy of the
height of the first peak (Bond et al., 1994), and breaking of this degeneracy by
smaller scale information (Jungman et al., 1995). More recently, Hu et al. (2000) is
a good reference.

I have given short shrift (or no shrift) to some important parameters. The effect
of dark energy on the CMB has now been well studied: first by Coble, Dodelson,
and Frieman (1997) and then more generally by Caldwell, Dave, and Steinhardt
(1998). Massive neutrinos affect the anisotropy spectrum at the 5-10% level (Ma
and Bertschinger, 1995 and Dodelson, Gates and Stebbins, 1996). The anisotropies
due to tensors became a hot topic after the COBE discovery. For a semianalytic
treatment and references to the dozens of papers relating the tensor anisotropy to
parameters in the potential, see Turner, White and Lidsey (1993). Although the
effect of reionization on the primary anisotropies generated before recombination
is well understood, a hot topic now is secondary anisotropies, those generated after
reionization. These will likely be probed by the next generation of experiments.

3K: The Cosmic Microwave Background (Partridge) is a good introduction to
some of the experimental issues I have neglected in this book. The COBE dis-
covery paper is Smoot et al. (1992) with the 4-year observations presented in
Bennett et al. (1996). There were many good analyses papers written on the
COBE data; I've relied on Bunn and White (1997), which is especially good for
using COBE to normalize the matter power spectrum, and Tegmark (1997), from
which the points in Figure 8.12 are taken. The two satellite experiments are Map
(http://map.gsfc.nasa.gov) and Planck (http://sci.esa.int/planck/). Map
was launched in 2001, and Planck is scheduled to be launched in 2007.
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EXERCISES

Exercise 1. Most of this book is devoted to understanding adiabatic perturbations
with the initial conditions derived in Chapter 6. Another class of perturbations are
isocurvature perturbations with initial conditions ©g = ¥ = ® = 0. Show that
these initial conditions imply that

Oo(n+) + ¥ (n) = 29 (1.). (8.80)

Exercise 2. The equation for a damped harmonic oscillator is
mi + bt + kx = 0. (3.81)

Find the solutions to this equation if k/m > (b/2m)?. What is the frequency of
oscillations? How does this differ from the undamped (b = 0) solution? What is the
other effect of nonzero b besides the change in frequency?

Exercise 3. Determine R(n.) when Q,h? = 0.01,0.02. Plot the sound speed as a
function of the scale factor for these two values of Q,h2.

Exercise 4. Show that the sound horizon can be expressed in terms of the confor-
mal time as

) = 2 6 1n{\/1+R+ \/R+R(neq)}7 (3.8
3keq \| R(neq) 1+ \/m
where keq is given in Eq. (7.39).
Exercise 5. Obtain the WKB solution to Eq. (8.18). Write
0y = Ae'P (8.83)

with A and B real. Show that the homogeneous part of Eq. (8.18) breaks up into
two equations, coming from the real and imaginary part:

: A R A
B2yl 2 k22 = 84
Real (B)+A+1+RA+/€CS 0 (8.84)
Imaginary : 2B§ + B+ ﬂR—RB =0. (8.85)

Find B using the real part and the fact that B changes much more rapidly than A.
Then, use the imaginary equation to determine A. Show that the homogeneous solu-
tions obtained in this way differ from the simple oscillatory solutions of Eq. (8.21)
by a factor of (1 + R)/4,
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Exercise 6. Obtain a semianalytic solution for ©y + ¥ and ©; at recombination
by carrying out the integrals in Egs. (8.24) and (8.26). To do this you will need
expressions for the gravitational potentials. Hu and Sugiyama (1995) provided the
following convenient fits:

®(k,y) = O(k,y) {[1 — T(k)] exp[—0.11(ky/keq)" ®] + T(k)}
U(k,y) = Uk, y) {1 — T(k)] exp[—0.097 (ky/keq) ] + T(k)}

where y = a/aeq, T'(k) is the BBKS transfer function and the large-scale potentials
are

B(k,y) = ° (keq>2 y—?ﬁr(y)

4\ k Y
Uky) = - (’“;‘*)2 L arw) + 08N/ 0+ u). (850
Finally the two functions Ny and Ar are
No(y) = —0.13%%113;121 s — gsnyr 1+ gln[By/4 +1]
Ar = {1.16 - 9@/—‘_‘%’} @,sy‘fl. (8.87)

Here ®;, is the large-scale solution of Eq. (7.32).

Exercise 7. Our treatment of diffusion damping neglected the effect of polariza-
tion. Go through the same expansion in 7~! that we carried out in Section 8.4
this time accounting for polarization. Show that this changes the factor of 8/9 in
Eq. (8.40) to 16/15. This beautiful result was obtained by Zaldarriaga and Harari
(1996) when the first author was an undergraduate!

Exercise 8. Assume that all electrons associated with hydrogen stay ionized and
set B = 0. Evaluate the damping scale, kp, defined in Eq. (8.40). Show that in this
limit, the damping scale is given by Eq. (8.42), where

foy) =51+ 1/y— ? (1+1/y)% + 8

: {(1 + 1/y)5/2 - 1/y5/2] . (8.88)

Exercise 9. Show that

47

ST (8.89)

/ 42 Vi (F)PU(D - k) =
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Exercise 10. There is a different way to go from the inhomogeneous temperature
field at recombination, ©¢ (&, n.) or GO(E, 7. ), to the anisotropy pattern today, aim,
than that given in the text.

(a) Assume that the photons we see today from direction p come from the surface
of last scattering: ©(Zo,p,m0) = (O¢ + U)(& = x«P,7+) where x is our position.
Fourier transform the right-hand side and expand the left in terms of spherical
harmonics to get

Zalelm - / (gﬂ’;g R (& 1 B)(E, ). (8.90)
Now expand the exponentlal using Eq. (C.16) and then expand the resulting Leg-
endre polynomial using Eq. (C.12). Equate the coefficients of Y, (p) to get an
expression for a;,,.

(b) Square the a;,, you got in (a) and take the expectation value to get an expres-
sion for C). You should recapture the expression in Eq. (8.68) with ©, given by the
first term in Eq. (8.56).

Exercise 11. A simple way to estimate the COBE normalization of § i is to fix C1g.
From Figure 8.12, estimate C1g. Use this and the Sachs—Wolfe formula, Eq. (8.75),
to estimate &y for a flat, matter-dominated universe. Compare with the number
given in Eq. (8.76).

Exercise 12. Show that the cross-terms from the monopole and dipole vanish when
summing over all modes. The monpole is proportional to j7;(k7g) while the dipole
is proportional to j;(kny). Compute the three possible integrals

/ dzxjj ; / dzjij| ; / dxjij;. (8.91)
0 0 0

Show that the integrals of the squares (jZ and (jj)?) are much larger than the
integral of the cross-term j,j;. Do the integrals for { = 10 up to ! = 50.

Exercise 13. Determine the shift in the locations of the peaks and troughs in
the CMB anisotropy spectrum if the universe is flat with a cosmological constant
as opposed to flat and matter dominated. Keep the sound horizon fixed in this
calculation by fixing ,,h% = 0.15. The peak positions then depend only on the
distance to the last scattering surface, ng — 7.. Consider two flat models: (i) Q4 =0
(so that @, = 1) and (ii) 24 = 0.7 (so that Q, = 0.3). What value of & is
needed in the two cases to keep ,,h? fixed? Determine g ~ 7. in each case (in
the the cosmological constant case, you will have to do the integral numerically).
Compare your result with the fitting formula: 7y o 1+ In(Q%.%85) and with the shift
in Figure 8.19.

Exercise 14. Compute the conformal time today in a flat model with dark energy
Q4e = 0.7 today with w = —0.5. Compare the expected shift in the anisotropy
spectrum with the cosmological constant model of the previous problem.
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Exercise 15. Determine the effects of reionization using the Boltzmann equation.
Neglect the gravitational potentials, the velocity, and ©g in the Boltzmann equation
for photons. Start with a spectrum ©;(n) and evolve till today. Show that the
moments are indeed suppressed by e~ 7.

Exercise 16. Assume that recombination took place instantaneously. Show that
the solution for the /th moment due to tensor perturbations (Eq. (4.116)) is

1 o .
of =~ [ dn i ifvim — ). (5.92)

Exercise 17. Using the decomposition for tensor modes given in Eq. (4.115),
find the contribution to the C;’s from ©7 (k). That is, show that the analogue
of Eq. (8.68) for tensors is

ClTi =D+ +2) /0°° e k2

n
oT . oT oT . 2
« -2 + 9 L1 + 1+2.4 ,(893)
(20 - 121+ 1) (20 - 1)(21 + 3) (20 4+ 1)(20 + 3)

where 7 denotes the two different components + and x.

Exercise 18. Determine the spectrum of anisotropies due to gravity waves pro-
duced during inflation.

(a) Combine the results of the previous two problems, your solution to Exer-
cise 5.12, and the primordial amplitude of gravity waves in Eq. (6.100) to find
the large-angle C;’s due to inflation-produced gravity waves.

(b) Tensor anisotropies are often parametrized by

r= % (8.94)

where C7 is the variance of the quadrupole due to tensors and C¥ is the same due
to scalars.® We already derived an expression for the scalar Cy in Eq. (8.75). Find
CT and compute r to first order in the slow roll parameter e.

(c¢) The results of part (b) and Eq. (6.104) imply a consistency relation — a robust
prediction of inflation — between the two observables ny and r. What is the consis-
tency relation?

8Note that this convention is not universal; r is sometimes defined to the (more precisely
constrained) ratio at [ ~ 10.
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PROBES OF INHOMOGENEITIES

The power spectra we have explored in the previous two chapters— P(k) of the
density field and C) of the anisotropies — are the most obvious first tests of any
cosmological model. The most direct way of measuring P(k) is to do a redshift
survey, wherein the angular positions and the redshifts (which are a measure of
radial distance) of galaxies are recorded. There are, however, a number of problems
with redshift surveys and their interpretation. The first is the simple fact that taking
redshifts is time consuming: it is much easier to get the angular positions of galaxies
than it is to also measure redshifts. In the same time that a 10,000 galaxy redshift
survey, say, could be completed, a million angular positions of galaxies could be
obtained. With the much greater statistics, angular surveys often compensate for
the lack of radial information. Indeed, some claim that the best information we
have on large-scale clustering comes from angular surveys. Clearly, then, one skill
we must acquire is the ability to make predictions about the angular correlation
function w(#). In Section 9.1 we will see that the angular correlation function is an
integral over the 3D power spectrum. .

Redshift surveys suffer from another, more profound problem than the fact
that they are time consuming. While is true that the redshift gives a reasonable
estimate of radial distance (by radial distance I simply mean distance from us), it is
not true that this estimate is completely accurate. Recall that a galaxy’s velocity is
determined solely by the Hubble expansion (and hence redshift is a perfect indicator
of distance) only if the galaxy is stationary on the comoving grid. Most galaxies have
nonnegligible peculiar velocities; that is, they are moving on this grid. A galaxy’s
total velocity, which is measurable, is

’l—)‘ = Upec + :iUH (91)

where the Hubble velocity vy = xda/dt = xaH. Recall that x is the comoving
distance between us and a distant galaxy, so its physical distance from us is ax.
In the absence of peculiar velocities, # - v/H is a perfect distance indicator. In
the real world, though, where peculiar velocities do not vanish, even an accurate
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measurement of a galaxy’s recession velocity does not translate into an unambiguous
measurement of its radial distance away from us.

The ambiguity introduced by peculiar velocities offers an opportunity. In linear
theory, peculiar velocities are determined by the surrounding density field, so we
can correct for the distortions induced by working with redshifts. Indeed, we can go
even further and use these distortions to learn about the growth of perturbations,
for the precise way in which velocities are related to the density field is determined
by the rate at which perturbations grow. Since this rate is determined in cosmology
by Q,,, studying the distribution of galaxies in redshift space is one of the more
promising ways to measure .

Finally, another way of gleaning information about the underlying mass den-
sity is by studying clusters of galaxies. Although strictly speaking, this topic falls
in the realm of nonlinear evolution of the density field, and therefore beyond the
boundary of this book, the Press-Schechter method of approximating cluster abun-
dances is only a very small step away from linear theory and has been shown to
be quite accurate in its predictions. Further, the study of clusters is advancing
at an extraordinarily rapid rate, since clusters can now be probed with many dif-
ferent astronomical techniques. Section 9.5 introduces the basic predictions of the
Press—Schechter theory and the implications for cold dark matter models.

9.1 ANGULAR CORRELATIONS

Figure 9.1 shows the angular positions of over a million galaxies from the Automated
Plate Measuring (APM) Survey. In an angular survey such as this, what statistic
can be computed that can be compared with theory? The simplest statistic is
the two-point function: in real space it is w(f) the angular correlation function.
In Fourier space, the relevant function is the Fourier transform of w, Py({), the
two-dimensional power spectrum. In this section we compute both of these very
important functions, relating them to the three-dimensional power spectrum.
First let me introduce some notation. Figure 9.2 shows the geometry: a given
galaxy is at comoving distance x(z) (Eq. (2.42)) away from us. The z-axis is
typically chosen so that it points to the center of the distribution of galaxies. In
the plane perpendicular to this axis, a galaxy’s position is determined by the two-
dimensional vector § = (6, 82). Therefore, the three-dimensional position vector &
has components

Z(x(z),0) = x(2)(61,02,1). (9.2)
The assumption that all galaxies are located near the z-axis clearly breaks down if
the survey measures structure on very large angular scales. As an example the APM
survey in Figure 9.1 covers roughly 50 by 100 square degrees. From this data, one
can measure the correlation function accurately out to about 10° or 0.17 radians,
safely smaller than unity.

We measure all galaxies along the line of sight, effectively integrating over x(z).
Therefore an overdensity at angular position 6 is
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Figure 9.1. The distribution of galaxies in the APM survey. Blacked-out regions were not
observed during the survey.

—

20 = [ w08 (200.) (93

where the subscript ¢ denotes the fact that § on the left is the angular—or two-
dimensional —overdensity, while § on the right is the full three-dimensional over-
density. (And I will stick with this convention: for example P, is the 2D power
spectrum while P denotes the 3D spectrum.) The upper limit on the x integral
corresponds to z — o0, equal to Yoo = 2/Hp in a flat, matter-dominated universe.
In practice, the magnitude-limited surveys that have yielded the most cosmological
information to date have probed z < 0.5. The selection function W(x) encodes
this information: it is the probability of observing a galaxy a comoving distance
x from us. Galaxies at large distances are too faint to be included in a survey,
whereas there are relatively few galaxies at very low redshift simply because the
volume is small. Since it is a probability, the selection function is normalized so
that [ dxW(x) = 1.

The 2D vector conjugate to § will be [, so that the Fourier transform of 8,(8) is

8y(y = / d%0e=95,(8). (9.4)
The two-dimensional power spectrum is defined just as was the 3D:
< 5(DF3(7) >= 2m)263(T - )P, (9.5)

here 62() is the 2D Dirac delta function, not to be confused with the overdensities

-

d2(8). Integrating, we can therefore write the 2D power spectrum as

PalD) = Gy [ € (5ai83)
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Figure 9.2. A distant galaxy is located at position T with respect to us at the origin today.
This position can also be expressed in terms of x(z), the comoving distance out to the redshift
of the galaxy. The z1 — z2 plane is perpendicular to a suitably chosen z3-axis. In this plane,
a galaxy's position is given by the two-dimensional vector X§, so £ ~ x(z)(61,62,1).
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The integral over I’ gives (27)2 times a Dirac delta function in 6 and the brackets
give the 3D correlation function,

§F-7) =

/|
—~
>
=
8y
N
<
=
8y
—
=

3 -4
= /%P(k)e““(’_z). (9.7)

The average here (...) is over all realizations of the density field. At very small
distance, we expect galaxies to be clustered strongly as a result of gravity, so &
is positive. As the distance gets larger, correlations die off and £ gets smaller and
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eventually goes negative. The second line follows since the correlation function is
the Fourier transform of the power spectrum (Exercise 1).
Performing the integral over ¢’ in Eq. (9.6) then leads to

A Xoc X e 3 T re N mrLt
Pty = [ 07 [ v [T avwi) | (;’ﬂ’;gpw)ezkwuw—ru o,
0 0
(9.8)

The argument of the exponential at the end here is i[k1x0; + kax82 + ks(x — X')], so
the integral over angles égives Dirac delta functions setting [; = xk; and ls = xks.
We can use these delta functions to do the k; and k, parts of the d*k integration,
remembering to divide by the derivative of the argument, in this case putting a
factor of x? in the denominator. We are thus left with

X< W Xe o Jk , )
Py = [T a0 [Tacwee) [T SR (i rpe ) et
0 X 0 —oo (2m)
(9.9)
Until now, we have been doing math; to complete the calculation of the power
spectrum we need to introduce some physics. I claim that the only 3D Fourier modes
that contribute to the integral are those with k3 very small, much smaller than {/x.
To see why, we first need to estimate [, the variable conjugate to §. Roughly, 7! is
of order the angular scales probed by the survey!. Since we are working in the small

angle approximation, I/x ~ 1/(x8) > 1/x. Now let’s consider Figure 9.3. There

Figure 9.3. Two plane-wave perturbations and their contributions to the 2D power spectrum.
Left panel shows a perturbation with longitudinal wavenumber k3 > x™* (the 2 direction is
vertical). Right panel shows a mode with ks ~ x~!. Angular correlations due to the large k3
mode (left panel) are negligible since there are many cancellations along the line of sight.

!In this sense, [ is very similar to the degree of the Legendre polynomials introduced in Chapter
8 to study anisotropies. In the same sense, Ps(l) is very similar to Cy; indeed in Exercise 5 you
will show that they are identical on small scales.
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we see that modes with longitudinal wavenumber k3 much greater than x~! do
not give rise to angular correlations hecause of cancellations along the line of sight.
Only modes with k3 smaller than x~! lead to angular correlations. Therefore, the
relevant transverse wavenumbers [/x are much larger than the relevant longitudinal
wavenumbers, and we can safely set the argument of the 3D power spectrum to l/x
(see Exercise 2 for a more systematic justification). With this approximation, the
k3 integral gives a Dirac delta function in x — x’ so

X 2
Py(l) = /0 dx WXEX) P(/x). (9.10)

This is an expression for the 2D power spectrum as an integral over the line of
sight. We can change dummy variables from x — k = [/x to rewrite the integral as

Py(l) = _}/Ox dk P(kYW?2(1/k). (9.11)

The angular correlation function is the Fourier transform of the 2D power spec-
trum, so
w(f) = / &L o) (9.12)
] (2n)? 2w '
Since P, depends only on the magnitude of I, the angular part of the integration

over ! is fo de €959 which is proportional to Jo(1), the Bessel function of order
zero (Eq. (C.21)). Therefore,

w(8) = / O

/dkkP F(k,0), (9.13)

where the second line follows from changing the order of integration. Here the kernel
for the angular correlation function is

F(k,0) = 71; /0 ~ %Jo(w)wz(z/k). (9.14)

The kernel is plotted in Figure 9.4 for two surveys. Note that it is a function of
k6 (see Exercise 3). The kernel is constant at small k6 and then begins damped
oscillations. The contribution from small k though is suppressed because the integral
in Eq. (9.13) is over the kernel weighted by kP(k), and the latter goes to zero as
k — 0. Therefore, the modes that contribute most to w() are typically those with
wavenumbers of order the first turnover in the kernel, k8 ~ 0.2 h Mpc~! degrees
for APM and a factor of 3 smaller for the deeper Sloan Digital Sky Survey (SDSS).
This means that the angular correlation function at 5° in APM is most sensitive
to power at k = 0.04 h Mpc~!. The wavenumbers contributing to w(#) in a deeper
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Figure 9.4. The kernel relating the angular correlation function to the 3D power spectrum in
two surveys. Kernel is negative when line is dashed, positive otherwise. APM Survey probes
galaxies brighter than apparent magnitude m = 20, while the Sloan Digital Sky Survey (SDSS)
will go much deeper, potentially sensitive to galaxies brighter than m = 23.

angular survey are smaller. This makes sense: the same angle probes larger physical
scales in a deeper survey.

Figure 9.5 shows the measurements of the angular correlation function from the
APM survey. The most important conclusion from the data is that standard Cold
Dark Matter — with ,,, = 1 and h = 0.5—is a bad fit. To quote from the abstract
of the Maddox et al. (1990) paper which measured the correlation function, “more
large-scale clustering than predicted by popular versions of the Cold Dark Matter
cosmogony is implied.” Although sCDM has died many deaths since its inception
in the early 1980s, the death from APM was perhaps its most celebrated. Despite
long, hard work by many people trying to find systematic problems with this and
other surveys, nothing significant has changed over the past decade to alter the
conclusion that the standard Cold Dark Matter model of structure formation fails
to predict accurately the observed pattern of large-scale clustering. Having said
that, I want to emphasize that the situation is not quite as severe as you might
imagine from a cursory examination of Figure 9.5. Consider the prediction from a
ACDM model, also shown in Figure 9.5. Although the agreement is much better
than with sCDM, there are clear discrepancies on both large and small scales. The
small-scale discrepancies are completely illusory, though, because 1 have used the
linear power spectrum to compute w(#). Nonlinearites become important on scales
of order k ~ 0.2h Mpc™! as we saw in Chapter 7 (Exercise 10). These scales
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Figure 9.5. Angular correlation function in the APM survey and two theoretical models. Stan-
dard CDM (solid curve) is a bad fit to the data, while a model with a cosmological constant
(here Q4 = 0.7) fits well. The apparent disagreements between the data and ACDM on small
and large scales are illusory; see text.

contribute to w(f) in APM when 6 is of order 1°. So to compare to the data fairly,
we really need to account for nonlinearities; I have not done this, so we cannot take
the small-angle discrepancy seriously. On large angles, people have begun to realize
that the data have been overinterpreted. The basic problem is that the points on
large angles are highly correlated. So the slight discrepancy between the data and
ACDM on large angles looks worse than it really is.

The angular correlation function can be inverted to obtain the 3D power spec-
trum: the results from the APM Survey are shown in the top panel of Figure 9.6.
We will discuss inversion techniques in Chapter 11, but you should be aware that
the points in Figure 9.6 are the result of a long process (i.e., many papers), in the
midst of which error bars were often vastly underestimated. Using only the results
on large scales (where nonlinear effects are irrelevant and the relation between mass
overdensity and galaxy overdensity is expected to be simple), Efstathiou and Moody
(2001) placed constraints on CDM models, shown in the bottom panel of Figure
9.6. We found in Chapter 7 that the CDM transfer function depends only on k/keq.
Since keq scales as ,,h? and since surveys measure the wavenumber k in units of
hMpc~!, the combination €,,h determines the shape of the power spectrum. For
this reason, fits to large-scale structure data are often given in terms of the shape
parameter I' = Q,,,h (sometimes modified to account for baryons: see Exercise 8).
Standard CDM with A = 0.5 and Q,, = 1 corresponds to I' = 0.5; if the index of
the primordial spectrum is n = 1, then the bottom right panel of Figure 9.6 shows
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Figure 9.6. Results from the APM Survey (Efstathiou and Moody 2001). Top panel. The 3D
power spectrum inferred from the angular correlation function. The curve is a CDM model
with I'(~ Q.. h) = 0.2, normalized to fit the data. Bottorn Panel. Constraints on CDM models
from the power spectrum. Three parameters — the shape parameter I, the amplitude g, and
the index of the primordial power spectrum n— were varied. Contours delineate one-, two-,
and three-sigma regions. Left panel shows constraints after integrating over n; right after
integrating over the amplitude. Standard CDM has n = 1; T = 0.5; and (COBE-normalized)
og = 1.15.
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that sCDM is ruled out at the 2-sigma level. ACDM has T’ ~ 0.2 and is indeed a
better fit to the data if n is close to 1.

9.2 PECULIAR VELOCITIES

In linear theory, velocities are related in a simple way to nearby overdensities. We
first derive this relation in this section and then consider some of its ramifications.
In particular, we will see that by measuring both the peculiar velocity field and the
density field, one can infer the present value of the matter density, Q,,.

In linear theory, we have already derived the equation which determines the
velocity field. On scales well within the horizon, the continuity equation (4.103)
reduces to

6 +ikv = 0. (9.15)

At late times, though, we have solved for the evolution of ¢: we know that it scales
as the growth factor Dy, so

id [ d ] _ W0(k.n) dDy (9.16)

vk =2 a0 | B P kD, dn

A function commonly employed to relate the velocity to the density is the dimen-
sionless linear growth rate,

a le
= —— 9.17
f D da (9.17)
Since d/dn = a®? Hd/da, the velocity is related to the density via
v(k,a) = Lfa_H_:.(_’“_a) (9.18)

The linear growth rate can be computed from Eq. (7.77). Most probes of the
velocity field to date have been limited to relatively nearby objects, z < 0.1, so it
is a reasonable approximation to evaluate f today and neglect its evolution. Figure
9.7 shows the linear growth rate today as a function of the matter density. For small
Q,, there is less growth: mass collapsing into overdense regions has lower velocity
than if there was a critical density of matter. This makes sense since an overdensity
in a lower density universe has less mass and therefore exerts a weaker gravitational
pull on infalling matter. Figure 9.7 shows that, for all practical purposes, the growth
rate depends only on the matter density and not, say, on the cosmological constant.
Also, the approximation

f=0% (9.19)

is seen to work extremely well (see Exercise 7 for a slightly better fit to a flat
universe).

There are two important points about the relation between the density and the
velocity in Eq. (9.18) that should be emphasized. First, we need to remember that
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Figure 9.7. The linear growth rate as a function of matter density. There are three curves here,
nearly indistinguishable. One (solid) is for an open universe with {24 = 0; another (dot-dashed)
for a flat universe with 25 = 1 — Q,,,; and the last (dashed) is o8,

the velocity is of course a vector and v in Eq. (9.18) is the Fourier component of
the velocity parallel to k. Explicitly, at low redshift we have

k

EE.
The second point about the relation between the velocity and the density is that
it holds only in linear theory. This has turned out to be a big problem for those

who have tried to extract information from velocity studies. Velocities are easiest
to obtain on small scales, but easiest to compare with theory on large scales.

F(k) = if Hod (k) (9.20)

9.3 DIRECT MEASUREMENTS OF PECULIAR VELOCITIES

A number of surveys have directly measured peculiar velocities. Measuring radial
velocities is relatively easy: one just looks for shifted features in the spectrum of
the galaxy. The hard part is breaking the radial velocity into the part due to the
Hubble expansion and the remainder, the peculiar velocity. Subtracting off the
Hubble expansion requires independent (i.e., other than the redshift) knowledge of
the galaxy’s distance from us. How accurate must a distance indicator be to be
useful? Very roughly, typical peculiar velocities are of order 500 km sec™!, while
the Hubble velocity is Hox = 100km sec™*h (x/Mpc) for a galaxy a distance x
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away. So a galaxy 50 Mpc away has a Hubble velocity roughly 10 tiines as large as
its peculiar velocity. To be useful, therefore, a distance indicator for such galaxies
much have an accuracy of order 10%. Indeed this is roughly the best one can hope
for, so 50 Mpc is roughly the farthest one can hope to go in a velocity survey.

There are a number of ways of extracting cosmologically useful information from
a velocity survey, but I will focus on just one of these: the two point function. With
enough velocities, a survey can hope to measure the correlation function

fv(flﬁi‘é)

where the radial components ¥ - Z appear because these are all that can be mea-
sured using redshifts. Let us compute this correlation function using linear theory.
We will see that it is an integral over the power spectrum, so — just like the angular
correlation function of galaxies we considered in Section 9.1 —the radial velocity
correlation function is a probe of the power spectrum. The observational obsta-
cles involved in obtaining accurate peculiar velocities are daunting. However, the
promise of measuring the matter power spectrum (the velocities are due to the mat-
ter, which may or may not be aligned with the galaxies) as opposed to the galazy
power spectrum sampled by w(6) is so alluring that it is likely that peculiar velocity
surveys will continue to play an important role in cosmology.
To evaluate the velocity correlation function, we can Fourier transform the veloc-
ities appearing in Eq. (9.21) so that
riy) = [ Lk R N 0 9.2
GFud) = [ et [ Ele PR R a ) s). (022)

fit

(U(Fy) - &) U(T2) - T2), (9.21)

Using linear theory for # (9.20) and the fact that (5(k)6*(K')) = (2m)363(k—k') P(k)
leads to

dk i};-(fl—fz)]g.i‘lg'i?

0o 2
€,(1, T2) =f2Hg/O (27:)“3 P(k)/koe —— (9.23)

One way to do the angular integral here is to write the occurrences of k in the
integrand as

ket = ¢ (9.24)
where
I =T — To. (9.25)

Then taking the derivatives outside leads to an angular integral over the exponen-
tial, which has no azimuthal dependence. The integral of e?*™* over p is is 47 jo(kz)
(Eq. (C.15)). So we have

> dk 0?
2m2k2 P(k) Oz;0x;

6 (F1, ) = — f2H21 180, / jolkz).  (9.26)
0

The first partial derivative here is
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Bjolkx)y  Olkr) , T,
= kr) = k-3, (k: 9.27
ox, a.rj Jo(kx) I]o( T) ( )

where the prime here is derivative with respect to the argument kx. The second
derivative then gives

5‘% [k%jg(kx)] ~ k2 [{57, - :z-i.f«,}JO(kT) +i',-:frjj(’)’(k;r)} . (9.28)

Then, the velocity correlation function is

> dk
272

{

L (ka
£(F1,T) = —f2H3E 1 8 / P(k) [{51,» - :mj}“( o)y fl.f-,-js'<kr>}
0]

= il.iiz.j{éu - -’f?z-f"j}fu.L + 21,832,228, (9.29)

The definitions here reflect the fact that the first term is sensitive to the compo-
nent of velocity perpendicular to the line connecting two galaxies, while the second
probes the velocity parallel to this line. Finally let’s define the angles

C0591 = i‘l - T ) cos 02 = 5272 - I (930)

With the aid of Figure 9.8 we see that 7, - 3 is equal to cos(f; — 62), so performing
the sums over 7, j leads to

£o(T1, T2) = sin By sin 06, 1 + cos B cos 628, . (9.31)

Both components of &, are integrals over the power spectrum. We can write

&(z) =k k?jo(kz)
6r(o) | = [ oo P | ~PHEG G/ | o)
£o. () 0 ~f2Hgkjg (kx)

The weighted kernels are shown in Figure 9.9 and compared with the correlation
function of the density. The key feature of Figure 9.9 is that, at fixed distance
z, the density correlation function probes power on smaller scales than do the
velocity correlation functions. Put another way, velocity surveys may be limited in
how far out they go, but they pack an extra punch since they are sensitive to long
wavelength modes. This is a direct result of the fact that v o< §/k. The extra factor
of 1/k gives additional weight to large scales.

Before going further and locking at some results from a velocity survey, I must
digress to make note of an important feature in Figure 9.9. The density correlation
function, as oppossed to the velocity correlation functions, gets its contribution at
a fixed distance from many Fourier modes. The figure shows the contributions to
€(50 h=! Mpc). Naively, we would expect the main contribution to &(50 h~! Mpc)
to come from Fourier modes with k ~ z=! = 0.02h Mpc™'. Since overdensities
are small, i.e., still in the linear regime, on these scales, the naive expectation is
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Figure 9.8. The vectors and angles of the the velocity correlation function. £ is the difference
vector; since the angle complementary to 8, is w —6;, and since the three angles in the triangle
must sum to 7, the angle between the two galaxies is 6; — 05.

that £(50 h~! Mpc) probes the linear power spectrum. Figure 9.9 shows that this
expectation is incorrect. Modes with k as small as 0.02hMpc™! do contribute to
the correlation function, but contributions extend out to k ~ 0.3hMpc~! and
beyond. This means that even on scales you would think would be safely linear,
the correlation function depends on the small-scale power. Ultimately we want to
compare theory with observations, and we are most confident doing so for modes
that are still linear. The correlation function mixes up linear and nonlinear modes,
so makes it difficult to compare theory with observations. For this reason, the power
spectrum has gained preeminence as the statistic of choice for large-scale structure.

Returning to the velocity correlations, let’s consider Figure 9.10. It shows one
attempt (Freudling et al.1999) to extract cosmological information from a velocity
survey, using 1300 velocities in the all-sky SFI catalogue (Haynes et al.1999), which
goes out to 70 h~! Mpc. The power spectrum was parameterized by an amplitude
A and the I' parameter in the BBKS transfer function. For the analysis shown
in Figure 9.10, the primordial spectral index was set to 1. The standard COBE-
normalized CDM model, with critical matter density and h = 0.5, has an amplitude
of A =0.2940 (Eq. (7.9)) and shape parameter I' = 0.5, so the SFI survey rules
out this model at many sigma.
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Figure 9.9. Contribution to various correlation functions from wavenumber k. Note that the
velocity correlation functions get most of their contribution from smaller k than does the
ordinary density correlation function.
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9.4 REDSHIFT SPACE DISTORTIONS

Redshift surveys supplement the angular information about galaxies with an esti-
mator for the radial position, the redshift. The simplest guess about the radial
position of a galaxy with redshift z is that it lies a distance

z

Xs(z) = FO (933)

away from us, where the subscript s denotes redshift space. Redshift space then
corresponds to assigning Cartesian coordinates to a galaxy equal to

1

s = Hi (sin @ cos ¢, sin Psin ¢, cos ) . (9.34)
0

This assignment neglects several unpleasant realities. First, the comoving distance
out to a galaxy at redshift z is equal to z/Hp only at relatively low redshifts. A
glance back at Figure 2.3 should convince you that this approximation is off by as
much as 50% at z = 1. Fortunately, this first problem has not yet been much of a
problem since most redshift surveys to date have probed z < 0.1.

A second, more pernicious, problem with redshift space is that the estimate for
the distance in Eq. (9.33) neglects peculiar velocities. Figure 9.11 illustrates the
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Figure 9.10. Likelihood contours on the amplitude A of the power spectrum and the shape
parameter ' = Q,,h from the SFI peculiar velocity survey. The amplitude is given in units
of Ap = 2 x 10°(h™! Mpc)?*, and the contours indicate shifts in the likelihood function by
successive factors of 1/e. The allowed region — delineated by banana-shaped contour in the
center—is consistent with ACDM, but strongly disfavors standard CDM, which has ' = 0.5
and A = 0.29A4¢. From Freudling et al. (1999).

distortions that appear in redshift space. A slightly overdense region which is just
beginning to collapse appears squashed in redshift space: the galaxies closest to
us are moving toward the center of the overdense region and hence away from us,
so they appear farther from us (and closer to the center of the overdense region)
than they actually are. Similarly, galaxies on the “other side” of the perturbation
are moving toward us, so they appear closer to us than they actually are. The
overall effect is to induce an apparent quadrupole moment in an otherwise circular
overdensity.

As a region becomes more overdense, the nature of the redshift space distortion
changes. The bottom part of Figure 9.11 shows that a more collapsed object gets
distorted in a much different way. It is elongated along the line of sight. More quan-
titatively, its quadrupole moment has the opposite sign as does a linear overdensity.
It is clear then that accounting for redshift space distortions will be a tricky busi-



REDSHIFT SPACE DISTORTIONS 277

Real Space Redshift Space

-
$

Linear:

Nonlinear
Collapse:

Figure 9.11. Redshift space distortions. In each case, a contour of constant density (circular
in real space) is distorted in redshift space so that it looks asymmetric. Arrows denote direction
and magnitude of velocity. In the case of nonlinear collapse, the velocities are so large that a
point on “our side” (the bottom) of the center is mapped onto a point on the opposite side
(compare the position of the solid dot on the bottom left and right).

Observer

ness, requiring careful treatment not only of linear overdensities, but also of the
much more complicated effects of nonlinearities. We will content ourselves with a
quantitative treatment of linear distortions, since this applies on large scales and is
the starting point for all further work.

Suppose we measure the power spectrum in redshift space. How is this distorted
power spectrum related to the underlying true spectrum in real space? Kaiser (1987)
first solved this problem, working within the context of linear theory. The starting
point is the realization that the number of galaxies in a particular region is the
same, whether we use redshift-space or real-space coordinates. Therefore,

ng(Zs)d*zs = n(Z)dz (9.35)

where n is the density of galaxies at 7 in real space, and n, is the density
in redshift space. The infinitesimal volume around a point in redshift space is
d3z, = dz,x?sin#dfdé, while the volume around a point in real space is d*z =
drz? sin dfdé. The angular volume elements are identical, so

(&) = n()J (9.36)
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where the Jacobian J is given by

dr 12

dr, 12

43z
d3z,

(9.37)

To compute the Jacobian, we use the fact that the observed redshift is the sum
of two terms:

z=Hoz+7- 4. (9.38)

The first term is the standard Hubble law, which says that redshift is proportional
to distance; the second is the velocity along the line of sight. Recalling that redshift
space corresponds to equating a galaxy’s redshift with its distance from us, we see
that, after dividing by Hy, this equation becomes
OR
Ts =T+ ——. 9.39
$ HO ( )

The Jacobian can be now be read off as

Jo 1+ Z[EEN T (1 TEYT 9.40

-(zlw) (i) (940
Kaiser realized that the correction term due to the derivative of the velocity is
much more important than the ¢'- Z/Hyz term. The argument goes as follows. For
a plane wave perturbation, the term with the derivative of the velocity is of order
v'/Hy ~ kv/Hy, while the other correction is of order v/Hozx. That is, the first
correction term is larger than the second by a factor of order kz. Why do I say it’s
larger? That is, why is kz larger than unity? Kaiser’s argument is that z is of order
the size of the survey, while k is of order the Fourier modes we can hope to measure
in the survey. Perturbations on the largest scale probed by the survey k& ~ z71
are very poorly determined, since there are only a handful of Fourier modes with
wavelength of order the survey size. Modes with smaller wavelength are much easier
to measure since there are many such modes, and we effectively average over all of
them to get an estimate of the power spectrum. Therefore, we are really interested
only in modes with kz >> 1. Expanding the remaining denominator about v = 0,

we see that B 5.
-z
~ (1= 2T, 9.41

The number densities in real and redshift space are n = A(1l + §) and n, =
A{1l + d,), respectively, with 7 the average number density. In light of Eq. (9.36),
the overdensity in redshift space is

148, = [1+0] (1—8%[%]). (9.42)

Expanding to first order, we see that the overdensity in redshift space is actually a
sum of the overdensity in real space and a correction due to peculiar velocity,
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b,(7) = 8(7) — = {”(I) &) (9.43)
Hy
Now I want to introduce the distant observer approximation. The idea is that, in
most cases of interest, the direction vector T is fixed, varying little from galaxy
to galaxy. To see this, go back to Figure 9.2: T is mostly radial, with only small
components in the transverse direction (proportional to the #; and ). As long as
the galaxies are relatively close to each other in this plane, we can approximate
.U — 2.7, where Z is a radial vector pointing to the center of the galaxies of
interest.

In the distant observer approximation, we can compute the Fourier transform
of the redshift space overdensity (here denoting the Fourier-transformed density by
d to avoid confusion),

= §(k) _if/d% e—i’?-f%[/%ef’?-f&é’)ﬁ : 2], (9.44)

the first equality following from our Fourier convention and Eq. (9.43) and the
second from Eq. (9.20) for linear velocities. The derivative with respect to the
length  acts on the exponential, bringing down a factor of ik’ - Z, which we again
set to ik’ - 2, so

2 3k’

3:(K) :S(E)+/W (k) [f (1;'-2)2] /deei@’-’?)-f. (9.45)

The 7 integral gives a Dirac delta function, equating k' with k. Therefore, in the
distant observer approximation,

8o(k) = [1+ fup] 6(k). (9.46)

Here py is defined to be 2 - k, the cosine of the angle between the line of sight
and the wavevector k. Equation (9.46) quantifies what we should have anticipated
about (linear) redshift space distortions. First of all, since fu? > 0, the apparent
overdensity in redshift space is larger than in real space. This is clear from Figure
9.12. The central region of the galaxies is clearly more overdense in redshift space
than in real space, the enhancement due to the illusion that infalling galaxies are
located close to the center. The second feature of Eq. (9.46) worth noting is that the
enhancement is for waves with wavevector parallel to the line of sight. A plane wave
perturbation with k£ perpendicular to the line of sight —one in which the density
along the line of sight is constant — experiences no redshift space distortion. .

The power spectrum in redshift space depends not only on the magnitude of &
but also on its direction, which we are parameterizing with p. It follows immediately
from Eq. (9.46) that



280 PROBES OF INHOMOGENEITIES
Real Space Redshift Space

' :,;':.', Ay
” .‘ -’.3 oi.-s 3 "-""N' #'::";'
. i‘ ". * o’

Figure 9.12. A hundred galaxies in real space squashed in redshift space due to linear velocities.
The apparent overdensity in redshift space is much larger near the center than it is in real space.
We, the observers, are sitting at the bottom of the page.

Py(Ry = P(k) [1 + Bt)” . (9.47)
Here I have introduced the parameter 3, which you might think is simply equal to
f, the linear growth rate. There is an additional factor in 3, though, due to the fact
that the mass overdensity é is not necessarily equal to the overdensity in galaxies,
dg. The velocity field samples the mass overdensity. So if we define the bias

b=-2 (9.48)

then ¥ o« & x d4/b. Therefore, the correction due to redshift space distortions in
Eq. (9.47) is proportional to
f QO.G
=~ 9.49
p=1~ (949)
The redshift space distortion in the power spectrum, encoded in Eq. (9.47), is
both good news and bad news. The good news is that by measuring the distortion
in the redshift space power spectrum, we can hope to measure 3, a combination of
the density and bias. A quantitative way to do this is to measure the ratio of the
quadrupole to the monopole of the power spectrum:
1 -
PPy 5[~ %=Py(ug) Pi(k) (9.50)
= 1 = . .
PO(K) — JZ, % Polu) Pu(k)
Recall that P; is the Legendre polynomial of order I, while P; is the redshift-space
power spectrum. Since (Exercise 11)

2 8
(40020 = (14 56+ 0%] Potind +[38-+ 26| Pain) + 2 0#Putin. (051)

the orthogonality of the Legendre polynomials (Eq. (C.2)) implies that the ratio of
the quadrupole to the monopole in linear theory is
PO(k) 36+ 36° (952)
POy  1+38+36%
Figure 9.13 shows Hamilton’s efforts to measure the quadrupole-to-monopole ratio
in two different redshift surveys. In both cases, nonlinearities are very important
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Figure 9.13. The quadrupole-to-monopole ratio for two redshift surveys (Hamilton, 1998).
Left panel shows data from two redshift surveys which selected galaxies from the Infrared
Astronomical Satellite (IRAS): QDOT (Lawrence et al., 1999) picked one out of six galaxies
brighter than 0.6 Jansky and the 1.2Jy survey (Strauss et al., 1992) picked all galaxies above
that brightness limit. Stromlo-APM survey (Loveday et al., 1996) in right panel contains
redshifts for 1 in 20 galaxies seen in APM (Figure 9.1).

and must be handled carefully. In the infrared-selected surveys depicted at left in
the figure, Hamilton modeled the nonlinearities with a parameter measuring the
small-scale velocity dispersion, o. Only on scales of order k ~ 0.1 h Mpc~! does the
ratio begin to asymptote to ~ 0.75, implying a value of 3 ~ 0.7. The right panel
shows a survey of optically selected galaxies. For these, the ratio does not seem
to asymptote at all (lower curve) unless nonlinear structures are removed by hand
(upper curve). In that case, Hamilton finds a quadrupole-to-monopole ratio closer
to 0.4, implying 8 = 0.3. Figure 9.14 gives a broader view of the spread in measures
of B from redshift and peculiar velocity surveys.

That was the good news. The bad news is that, even if we were to give up
hope of measuring 8 from redshift surveys, we still need to account for redshift
space distortions if we want to measure the power spectrum. Blindly measuring the
power spectrum by averaging over all directions py is actually a measure of

PO (k) = [1 “254 %52} P(k), (9.53)

the equality holding only in linear theory. That is, P overestimates the power
spectrum by as much as a factor of 2. On even moderate scales, as suggested by
Figure 9.13, nonlinear effects must be taken into account. The Peacock and Dodds
compilation in Figure 7.11 uses a model of the small-scale velocities to do this.
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Figure 9.14. Compilation of the likelihood of 3 from redshift and peculiar velocity surveys
(Strauss and Willick, 1995).

9.5 GALAXY CLUSTERS

Uutil now, we have focused solely on the two-point function: the angular correla-
tion function, the velocity covariance, and the power spectrum. You might have
wondered why little has been said about one-point functions, the number density
of galaxies for example. To answer this question, first consider an extreme example.
How many people are there in the universe? This clearly is an impossible question
to answer with the tools we have developed. Putting aside the thorny question of
the definition of a “person,” we still would have to develop theories of star formation
out of the gas in galaxies, then planet formation around stars, then the evolution
of life via various biological processes. A prediction of the “person density” in the
universe is beyond the scope of ... this book, to say the least.

In a similar, but less extreme, way, a prediction of the galaxy density of the uni-
verse from what we have learned about the distribution of matter in the universe
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involves complicated issues we do not have the tools to address. What fraction of
the matter has collapsed into nonlinear structures? How do these nonlinear struc-
tures evolve? Do galactic-size nonlinear structures merge? If so, how often? Upon
collapse, how do stars form? How are stars distributed? In spiral patterns? Ellipti-
cal? One of the exciting developments of the 1990s was the evolution of a number
of techniques to answer these questions. In addition to the brute-force approach
of numerical simulations, several groups (e.g., Kauffman et al., 1999; Somerville
and Primack, 1999:; Colberg et al., 2000; Benson et al., 2001; Cooray and Sheth,
2002) developed semianalytic techniques which have been remarkably successful at
predicting properties and abundances of different galaxy types. Although we will
not study these techniques directly here, the one technique we will encounter — the
Press—Schechter formalism — forms the basis for much of this work.

Perhaps the fundamental difficulty encountered by one attempting to make pre-
dictions about the number density of galaxies is that the galactic scale has already
gone nonlinear. Recall from Exercise 7.9 that scales smaller than ~ 10h Mpc™!
have gone non-linear. What scale in the unperturbed universe encloses the mass of
a typical galaxy, M = 10'2M? The density in a spherical region of radius R is

M
S 9.54
Pm = 17 R3)3 (0.54)
Since pn = QO per, Wwe can invert this to find
Mh 13
= 0. -1 - 9.55
R=0.951h Mpc(1012 o ]V[@> (9.55)

So a galaxy comes from matter within a radius of about 1 Mpe, corresponding to
fluctuations on scales of order k ~ 1 A Mpc~!, well into the nonlinear regime.

This answers a question (“Why not try to predict the number density of galax-
ies?”) but begs another: Are there objects, corresponding to scales closer to the
linear regime, for which one might be able to make reliable predictions about abun-

dances? If we invert Eq. (9.55) to get the mass enclosed within a sphere of radius
R,

- 15 -1 R :
then we see that clusters of galaxies— with masses up to 10%Af; —arise from
perturbations on just the right scales.

How, then, to predict the abundance of galaxy clusters? The basic insight
comes from a paper by Press and Schechter (1974), and the resulting framework
is called Press—Schechter theory. To understand their argument, consider the one-
dimensional density field in Figure 9.15. The average inhomogeneity is zero, of
course. There are regions with relatively large excursions in both the positive and
negative direction. Underdensities cannot get smaller than —1 (when the density
is zero), but there are some regions in the figure with densities more than three
times the average density. It is these rare regions of large overdensity that we are
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interested in: they collapse, accumulate so much excess matter that local grav-
ity becomes more important than the Hubble flow. Particles in this region stop
expanding away from each other and are trapped in the local gravitational field.

Collapsed objects

Position

Figure 9.15. Inhomogeneities as a function of 1D position. Dark curve is the same field
smoothed on larger scales. Several small-scale fluctuations have collapsed, while the large scale
density field does not have any overdensities greater than &., the critical value for collapse.

The Press-Schechter theory predicts the fraction of the volume that has col-
lapsed,

2 oo 2 2
oll(M(R),2) = ———— dé e /207 (R.2), 9.57
feonlM(R),2) = s /5 ’ (9.57)

Here R is the radius over which the density field has been smoothed. This radius
is used to compute o(R, z), the rms of the smoothed density field (Exercise 7.9).
As you can see from Figure 9.15, the smoothing scale matters. Typically, inhomo-
geneities on large scales are smaller in magnitude than those on small scales, so
small scales collapse first. As time evolves, overdensities grow (proportional to the
growth function), so eventually some large-scale inhomogeneities will also collapse.
The right-hand side of Eq. (9.57) counts all parts of the Gaussian distribution for
which the overdensity is greater than some critical density d.. There are several
pieces of magic in this formula. First, it assumes that the distribution of inhomo-
geneities is Gaussian. This is impossible since &, by definition, never gets smaller
than —1. And indeed, it is possible to show that gravity skews an initially Gaussian
distribution, producing more underdense regions and a nonnegligible tail of highly
overdense regions. Second, the normalization is a bit of a cheat: one would naively
not include the factor of 2. Finally, the rms ¢ in the formula is the linear rms, specif-
ically ignoring nonlinear effects. On small scales, there is a huge difference between
o calculated with the linear power spectrum and that with the true nonlinear spec-
trum. Press—Schechter tells us that the collapsed fraction can be obtained using the
linear ¢. These peculiarities of the Press-Schechter formalism do not detract from
its effectiveness. Numerical simulations (e.g., White, Efstathiou and Frenk, 1993)
have shown that it works extremely well. Further, a number of groups (Peacock and
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Heavens, 1990; Bond et al., 1991) have justified theoretically some of the aspects
of the formula that initially appeared ad-hoc.

To get the collapsed fraction into a form more comparable with observations,
first differentiate f.,) with respect to M and multiply by a small interval dM{. This
gives the fraction of the volume collapsed into objects with mass between M and
M +dM. Multiply this by the average number density of such objects p;,, /M to get
the the number density of collapsed objects with mass between M and M + dM,

_p_m dfcoll(]\/I(R), Z)

dn(M, 2) = =37 dM

dM. (9.58)

The minus sign appears here since f., is a decreasing function of the mass M.
Carry out the derivative using the fact that dM/dR = 3M/E. Then,

dn(M, z) 2 pmbe _52/20? R do
ERE) S e a2t | 22T 59
dM T 3M%o" o dR (9-59)

The term in brackets here, the logarithmic derivative, is close to 1 for most models
of interest. The dominant factor in Eq. (9.59), at least for large masses, is the
exponential. If ¢ on a given scale is small, then the number density of collapsed
objects on that scale is exponentially suppressed.

Until now, I have sidestepped the question of the numerical value of §., the criti-
cal overdensity above which objects collapse. There are two approaches to obtaining
d.; fortunately, both appear to agree. The first is to rely on a simple model of col-
lapse, a model in which the overdensity is perfectly spherical. One can show that
collapse occurs in such a model when é§ = 1.686 (for py, = per). The other way is
simply to treat §. as a free parameter and calibrate it with numerical simulations
(e.g., Eke, Cole and Frenk, 1996). The 4, obtained this way is close enough to the
spherical value that typically one simply adopts . = 1.686.

Measuring the cluster abundance, and therefore testing theories with Eq. (9.59),
is a subtle business. One class of difficulties is identifying a cluster. Sophisticated
algorthims have been developed to find clusters in a galaxy survey. The second set
of difficulties revolves around determining the mass of the cluster. There are several
methods of mass determination:

e X-Ray Temperatures Hot ionized gas in a cluster emit radiation with a cutoff
frequency which is determined by the temperature of the gas. This temperature
can be related to the mass of the cluster under certain assumptions.

¢ Sunyaev—Zeldovich Distortion Photons from the CMB pasing through clus-
ters get scattered by the hot gas. This scattering distorts the CMB spectrum
as a function of frequency, inducing a decrement at low frequency and excess
at high frequency (low-energy photons gain energy from the hot electrons). The
shape of the distortion is fixed; the amplitude is another measure of the temper-
ature of the gas, which, again under certain assumptions, can be translated into
a measurement of the mass.
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e Weak Lensing Images of background galaxies are distorted by a foreground
cluster. The larger the mass of the cluster, the larger the distortions. Weak lensing
is therefore becoming a fabulous tool for measuring masses of clusters without
using the temperature.

At least in the first two techniques, the direct measurement is of the cluster
temperature. So let’s work through a relation between the mass and temperature
of a cluster under a simple set of assumptions. Suppose a cluster has virialized
so that its kinetic energy is equal to minus half its potential energy. Suppose also
that the cluster is spherical with radius R,;; with potential (gravitational) energy
is equal to ~3GM?/5R,;;. Then,

_3oM?
- 10 Rvir '

%Mvz (9.60)

The overdensity of the cluster A, = pe/pm then allows us to eliminate the radius,
since M

*= AT R pm /3

The temperature is equally apportioned among three directions, so the average
velocity squared is v? = 3T/m,, where m,, is the proton mass. The temperature
can now be expressed in terms of the total mass of the system,

A (9.61)

X 2/3
T =22 |GMH, 7] (9.62)
when ,,, = 1. Invert to get
T \** [178
= 8. 13p-1 S . 9.
M =82 x 1013h~ 1M, (keV> A (9.63)

Here 1 have normalized A by its value in the spherical collapse model (with p, =
Per), although again simulations have verified the numerical value.

Figure 9.16 shows the cluster density as a function of temperature for the stan-
dard CDM model with §,,, = 1. One of the most important points made immedi-
ately after the COBE detections of anisotropies in 1992 was that this plain-vanilla
model predicts too many clusters. Indeed, the abundance of clusters today is often
used as an excellent way of normalizing a power spectrum. A typical value for os
from cluster abundances (e.g., Wang and Steinhardt, 1998) is

og = 0.5Q7-33--350m (9.64)

with error estimates ranging from just a few percent up to 20%, the latter probably
more accurately reflecting uncertainties in the mass determinations.

Another exciting application of the Press—Schechter prediction for cluster abun-
dances is the evolution with redshift. The basic point stems from the exponential .
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Figure 9.16. The cluster density as a function of temperature. Data from Henry and Arnaud
(1991). The two theoretical curves are the Press—Schechter estimates (Eq. (9.59)) of models
with 2,, = 1,h = 0.5,Q, = .05. The only difference between the two is the normalization.

dependence in Eq. (9.59). At high redshift, (R, z) is necessarily smaller, but how
much smaller depends on the underlying cosmology. The growth is fastest in a
model with ,,, =1 (see Figure 7.12), so for a fixed abundance today, one expects
many fewer clusters in such a model. Figure 9.17 illustrates this effect. An ,,, =1
model predicts a factor of 700 fewer clusters with masses greater than 3.5 x 101 M,
at redshift 0.5 than at redshift zero. By contrast, ACDM predicts just a factor of 4
decline. With the observational assault on clusters just getting off the ground, we
can expect strong constraints on cosmology to emerge in the coming decade.

SUGGESTED READING

The Large Scale Structure of the Universe (Peebles) has a good description and
derivation of the angular correlation function, using Limber’s (1953) original deriva-
tion. The derivation given in Section 9.1 is based on the Appendix of Kaiser’s (1992)
work on weak lensing. This derivation has the advantage of being physically intu-
itive and also generally applicable. It will allow us to easily compute the weak
lensing correlation functions we encounter in Chapter 10.

The data discussed in Section 9.1 come from the APM Survey (Maddox et
al,, 1990). Other recent angular results of note include the Edinburgh/Durham
Southern Galaxy Catalogue (EDSGC, Collins, Nichol, and Lumsden, 1992) and
the Sloan Digital Sky Survey (York et al., 2000), the first analysis of which is
presented in Scranton et al. (2002). As I hinted in the text, analysis of these data
sets has gotten progressively more sophisticated over time. Baugh and Efstathiou
(1993) first inverted the APM angular correlation function and extracted the 3D
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Figure 9.17. The number density of clusters with mass greater than M at different redshifts.
Left panel: CDM model with Q,, = 1,h = 0.5, = 0.05 but normalized to give the correct
abundance at 2 = 0 (os = 0.5). Curves give the abundances in redshift increments of 6z = 0.1
starting from z = 0 going out to z = 0.5. Right panel: ACDM model which fits CMB and
other data (€lm = 0.35,h = 0.7, k% = 0.02). Note the relatively slow evolution of clusters
with mass ~ 3 x 101 Mg, as compared with the critical density model.

power spectrum, confirming that it was quite different from the standard CDM
power spectrum on large scales. Dodelson and Gaztanaga (2000) pointed out that
the resultant errors on the power spectrum are correlated and that an accurate
treatment would also account for the fact that the errors in w(#) are also correlated.
Eisenstein and Zaldarriaga (2001) and then Efstathiou and Moody (2001) accounted
for these correlations leading to the softened conclusions summarized in Figure 9.6.
The Eisenstein and Zaldarriaga paper also contains a clear discussion of the relation
between w(8) and the 2D power spectrum, or the C’s. They observed that errors on
the C}’s are much less correlated, which leads me to believe that C)’s will ultimtely
replace w(@) as the statistic of choice for angular surveys. Indeed, Huterer, Knox,
and Nichol (2001) have analyzed the EDSGC survey with C)’s, and Tegmark et
al. (2002) obtained C}’s from early SDSS data.

Cosmological Physics (Peacock) is a good resource for peculiar velocities and
their effect on redshift surveys. Two important and informative review articles
are Strauss and Willick (1995) and Hamilton (1998), the former particularly good
for experimental issues involved in determining peculiar velocities and the latter
for analyzing galaxy surveys in the presence of redshift space distortions. Another
leader in the field, Dekel (1997), has written a good review of the cosmological
implications of the peculiar velocity field.

The seminal work on redshift space distortions is by Kaiser (1987), who solved
the problem working in Fourier space for linear distortions in the distant-observer,
low redshift approximation. Hamilton (1992) found the analogue of this solution
in real space. Recently, with large-area, relatively deep surveys coming on line, the
generalization for cosmological corrections (i.e., distance is not equal to c¢z/Hy as
z gets large) and all-sky analysis has been carried out by a number of authors. As
examples of the work currently going on in the field, Szalay, Matsubara, and Landy
(1998) generalized Kaiser’s work to large angles while Magira, Ying, and Suto (2000)
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accounted for cosmological distortions and also nonlinearities and evolution. Pea-
cock and Dodds (1994) analyzed a variety of surveys, arguing that — accounting for
redshift space distortions, nonlinearities, and bias properly —the power spectrum
has heen well measured. Undoubtedly, with the upcoming Sloan Digital Sky Survey,
Two Degree Field, and others, more will be learned about the power spectrum in
coming years. The semianalytic work referred to on Page 283 is based on the sem-
inal papers of White and Rees (1978) and White and Frenk (1991). Related, but
separate form these semianalytic models, is the halo model (reviewed by Cooray
and Sheth, 2002) which postulates that all the dark matter is in halos, thereby
reducing the clustering problem to (i) the clustering of the halos and (ii) the distri-
bution of matter and galaxies within the halo. Good descriptions of what the halo
model is and how it can be used to compare theories with redshift surveys can be
found in White (2001); Seljak (2000); and Berlind and Weinberg (2001).

The prediction of the cluster abundance is treated nicely in Cosmological Physics
{Peacock) and Cosmological Inflation and Large Scale Structure (Liddle and Lyth).
Structure Formation in the Universe (Padmanabhan) has a detailed section on
the spherical collapse model, which is the source of the numbers 1.686 and 178 in
Section 9.5. In addition to the papers cited in the text, some important cluster
normalization papers are Viana and Liddle (1996, 1999) and Pierpaoli, Scott, and
White (2001).

EXERCISES

Exercise 1. Suppose the correlation function is defined as

§(7) = (5(@)5(F + 7). (0.65)

By Fourier expanding each of the §’s and using Eq. (C.20), show that this definition
implies that the correlation function is the Fourier transform of the power spectrum.

Exercise 2. Expand the 3D power spectrum in the integral of Eq. (9.9) about
k3 = 0. The leading term is the one we considered. Show that the next term is of
order (1/1)%, compared with the leading term.

Exercise 3. Rewrite the kernel in Eq. (9.14) as an integral over x. Show that F'is
a function of k@ only.

Exercise 4. Give an order-of-magnitude estimate for the kernel of the angular
correlation function.

(a) Consider a shell in Fourier space with radius k and width dk. What fraction of
the volume of this shell has |k3| < x~!?

(b) Argue that only Fourier modes with |k3] < x~! contribute to the angular
correlation function with a weight A%(k) = k3P(k)/2n%. Combine this argument

1
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with the fraction computed in part (a) to estimate the kernel relating w(8) to P(k).
Compare this estimate with Eq. (9.13).

Exercise 5. Decompose the angular correlation function into a sum over spherical

harmonics, ,
2l+1
0 — ___Crmatter 9 , 966
w(6) = 30 5 PP (cos) (9.66)
where the superscript ™a%¢" distinguishes these C;’s from the ones characterizing
anisotropies in the CMB, and P, here are the Legendre polynomials. Express Cnatter
as an integral over the 3D power spectrum. Show that on small scales C"****" =
Py(l), where P; is the 2D power spectrum introduced in Section 9.1.

Exercise 6. In Section 9.1 we implicitly neglected the evolution of the power spec-
trum. That is, we assumed that P(k) remains constant with time. Allow P(k) to
scale as (1 4 z)%. What is 3 for linear modes in a flat, matter-dominated universe?
Rewrite the kernel in terms of an integral over z, accounting for this evolution.

Exercise 7. Compute (numerically) the linear growth rate f today in an open
universe and compare with the approximation Q2:%. What is the fractional error
between the approximation and the exact result? Now assume that the universe is
flat, with Q,, + Qs = 1. Again compare the exact linear growth rate with Q%6
Show that

Q Q
0.6 A m
f=200 2 (1 + =" ) (9.67)

is a better approximation, with no worse than 4% accuracy for €, > 0.025.

Exercise 8. Using CMBFAST, compute the transfer function for standard CDM
(Qn = 1;h = 0.5) with Q, = 0.01,0.05, and 0.1. Show that the BBKS transfer
function is still a reasonable fit as long as

I =Qnh — Qnhe™ %%, (9.68)

Exercise 9. Using CMBFAST or the BBKS transfer function, compute COBE-
normalized og for ACDM with A = 0.7, Q, = 0.7, ©,, = 0.26, and 2, = 0.04.
Locate the model on the bottom left panel of Figure 9.6. What does this imply
about the relation between og (of the mass, which you have just computed) and
(08)q (of the galaxies, which APM is sensitive to)?

Exercise 10. Assume that the universe is flat with matter and a cosmological
constant. Expand the comoving distance out to a galaxy at redshift z (neglecting
peculiar velocities) about z = 0. The first-order term in the expansion should
give back the redshift space answer. What is the second-order term, the leading
correction to redshift space? Express your answer in terms of Q.
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Exercise 11. Derive (9.51), using the fact that P,(x) = 35z%/8 — 1522/4 +
3/8.IShow that the definition of the moments in Eq. (9.50)~Ps([)(k) = (2l +
1) J_, (dpi/2)Pi(pui) Py (K, i) — means that

Py(k, ) = > Pi(ue) PO (k). (9.69)
1

Exercise 12. In the text we showed how redshift space distortions affect the power
spectrum. Show how the redshift space distortions affect the correlation function.
Assume linear theory. You will probably need to consult Hamilton (1992}, which
transforms Kaiser’s result to the correlation function in a single (dense) paragraph.



10
WEAK LENSING AND POLARIZATION

The traditional methods of measuring clustering — angular and redshift surveys —
are powerful probes of the power spectrum but share a common deficiency. They are
measures of the distribution of galaxies, not the distribution of mass. Theories of the
early universe can make very accurate predictions about the latter, but not about
the former. A very exciting new technology which probes the mass —not the light —
distribution is introduced in this chapter. We will see that the inhomogeneities of
the matter induce distortions in the observed shapes of distant galaxies due to
gravitational lensing. Further, the statistics of these distortions are directly related
to the matter power spectrum.

The anisotropies in the CMB are subject to none of the uncertainties or ambi-
guities which plague the density field.

o We know exactly where the CMB comes from (the surface of last scattering) so
there is no analogue of peculiar velocity distortions.

e There is nothing like the mass vs light problem which afflicts the interpretation
of galaxy surveys.

e In addition, the mass distribution has gone nonlinear, so a simple comparison
of the linear power spectrum derived in Chapter 7 with the data is dangerous.
Anisotropies in the CMB are still at the part-in-a-hundred-thousand level, so
nonlinearities are for the most part irrelevant.

The C)’s then are easy to interpret and extract information from. Nonetheless,
here too we can go beyond what we have already done. Until now we have focused
on anisotropies in the temperature field. Compton scattering before decoupling
also induced polarization anisotropies. Polarization opens up a new dimension in
the study of the CMB. At the very least, it doubles the amount of information
contained in the CMB. As we will see in this chapter, the promise of polarization
goes well beyond this doubling. Gravity waves — tensor perturbations — produce a
particular pattern of polarization that cannot be mimicked by scalar perturbations.
Therefore, polarization offers a unique way of searching for gravity waves produced
during inflation.

292
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Gravitational lensing and polarization belong in the same chapter primarily
because the mathematics describing them is so similar. Both effects can be quanti-
fied with a two-by-two symmetric matrix. In lensing, this matrix is the distortion
tensor encoding information about image distortion. The polarization tensor has
a longer history with more famous components @ and U. It is identical mathe-
matically, though. So, the technologies used to study both of these effects are very
similar.

10.1 GRAVITATIONAL DISTORTION OF IMAGES

The cosmological gravitational field distorts the paths traveled by light from dis-
tant sources to us. This fundamental fact carries with it an enormous amount of
cosmological promise. Most important is the idea that light paths respond to mass.
If we can measure distortions, then, we might be able to infer something about the
distribution of mass in the universe. The importance of this inference cannot be
overstated: most of what we think we know about this distribution comes from our
observations of the galaxy distribution. We hope that, on large scales at least, the
two —the mass and the galaxy distribution —are not too different. If we observe
the mass distribution directly via distortion of light rays, though, then we need not
rely on this hope. We can then directly compare observations with theoretical pre-
dictions. For cosmology, therefore, we expect the most important aspect of light ray
distortion to be weak lensing, wherein the shapes of distant galaxies are distorted
(slightly) by intervening foreground mass overdensities. We begin with an overview
of image distortion along with a brief discussion of some other applications.

The idea that gravitational fields might distort distant images is as old as general
relativity. Indeed, even before Einstein finalized general relativity, he understood the
importance of measuring this distortion. Early notebooks of his contain calculations
of the magnification of images and of the possibility of a double image of a single
source (Renn, Sauer, and Stachel, 1997). And it was detection of gravitational
distortion that led to the acceptance of general relativity. In 1919, Eddington led a
voyage to the Southern Hemisphere to observe the deflection of starlight during a
solar eclipse. The magnitude of this effect (Dyson, Eddington, and Davidson, 1920)
was in good agreement with Einstein’s new theory.

One of the most spectacular manifestations of gravity bending light paths is
strong gravitational lensing. In 1979, Walsh, Carswell, and Weymann observed a
multiply imaged quasar, thereby confirming Einstein’s early speculations. Light
rays leaving the quasar in different directions are focused on the same point (us)
by an intervening galaxy. Since then, dozens of multiply imaged quasars have been
observed, and we are on the verge of discovering many hundred more in the near
future. Exactly what fraction of quasars is lensed is a question that may depend on
the background cosmology. In particular, it has been argued that there should be
more multiply imaged quasars in a universe with a cosmological constant than in
one without (see Exercise 1 and Kochanek, 1996).
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There are other examples of gravitational lensing that have an impact on cos-
mology. Light rays that take different routes to the same endpoint typically arrive
at that endpoint at different times. Therefore, two light rays emitted from the same
source at the same time which we detect from different directions due to lensing typ-
ically arrive at different times. We can measure this time delay by studying sources
with variable emission. The delay turns out generally to depend on the Hubble
constant, so astronomers have made very accurate measures of Hy looking for time
delays (e.g., Kundic et al., 1997). Another example is microlensing, wherein a lens
moves into the line connecting a source to us. When it does, the image is magnified,
so that we observe a characteristic variability in the distant source. Microlensing
has been used in recent years to find massive compact halo objects (MACHOs) in
our galaxy (Alcock et al., 1993). It now appears that MACHOs do not make up
all, or even most, of the dark matter in our galaxy. Nonetheless, exactly what and
where they are is still a mystery of cosmic significance.

Gravitational Lens in Abell 2218 HST - WFPC2

PF95-14 - ST Scl OPO - April 5, 1995 - W. Couch (UNSW), NASA

Figure 10.1. Foreground galaxies in the cluster Abell 2218 distort the images of background
galaxies. Elliptical arcs surround the central region of the cluster at right.

Yet another spectacular manifestation of gravitational lensing is shown in Figure
10.1. The large cluster in the foreground, Abell 2218, distorts the shapes of the
background galaxies. This leads to a distinctive pattern of elliptical arcs surrounding
the central region of the cluster. Why do the background galaxies appear stretched
out elliptically in Figure 10.17 Consider a circular galaxy sitting behind a large
mass density with an observer out of the page as in Figure 10.2a. Since the light
rays are distorted, we do not expect to see a circular image. Rather, light rays
coming from the “bottom” of this source — the ones that pass closer to the central
mass region — are bent more than those that do not come as close to the mass. The
light rays are bent such that objects at the bottom appear to be farther away from
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Figure 10.2. (a) Circular galaxy, the source, sits behind a foreground mass distribution rep-
resented by points at bottom. The observer is out of the page so that the foreground mass is
between the observer and the source. (b) Light rays from source are deflected as they pass by
mass distribution. Rays traveling closest to mass get deflected the most. (c) Resulting image
is an arc.

the mass. (This is the only subtle part of the argument: rays are bent toward the
mass distribution, so that as you extrapolate backward, the source appears farther
away. See Figure 10.4.) Images will therefore be distorted as in Figure 10.2b. The
net effect, therefore, is to turn a circular galaxy into the arc shown in panel c.

A very active field of research uses background galaxies to try to infer the mass
distribution of clusters (e.g., Clowe et al., 1998). Most times, the images are not
as dramatic as those shown in Figure 10.1. The lack of drama is offset by the huge
numbers of background galaxies. By adding up many small distortions, observers
have succeeded in obtaining mass estimates for a number of clusters. This idea
of statistically averaging small distortions is the hailmark of weak lensing. The
mass estimates are important information for cosmologists: several cosmological
constraints are based on cluster masses and abundances (e.g., Section 9.5, Carlberg
et al., 1997; Bahcall et al., 2000).

We will be interested in weak lensing not by a single identifiable lens such as a
cluster, but rather by the generic large-scale structure in the universe. Inferring the
distribution of the dark matter —i.e., pointing to a spot on the sky and identifying
it as an overdense region — is not necessarily the goal. Rather, we should be satisfied
if we can measure some simple statistics, for example the correlation function or
its Fourier transform, the power spectrum. Indeed, these are the quantities we, as
cosmologists, are most interested in anyway. We don’t care where the overdense
and underdense regions are; we simply want to compare theory with observations.
So our main goal here is to relate the observations (which have already begun) of
distortions of galaxy images to the underlying mass power spectrum.
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S

(a) (b) (c)

Figure 10.3. Different lensing patterns. Panels (a) and (b) could be produced by a mass
distribution (a) above or below the distorted images and (b) in between or on either side of
the images. But the alignment in panel (c) could not be produced by lensing.

One final note concerning the correlations of distortions expected from gravi-
tational lensing. We might expect to find the images of two (circular) galaxies to
be distorted so that they look like Figure 10.3a if, for example, there is a large
overdensity above or beneath this galaxy pair. We might also expect images similar
to those in Figure 10.3b if an overdensity exists between them or to either side.
However, lensing cannot produce the alignment sketched in panel (c). This fact,
which we will shortly prove, is often used as a check against systematic problems
afflicting an observation.

10.2 GEODESICS AND SHEAR

We want to solve for the path of a light ray as it leaves a distant source and
travels through the inhomogeneous universe. Figure 10.4 shows the geometry and
notation, which will be similar to that set up in our discussion of the angular
correlation function. The position of the photon at any time is given by &, with the
23 component equal to the radial distance x and the transverse components equal
to xé’. The intensity we observe from a source is

Iobs(g) = Itrue(55)§ (101)

a source whose image appears at g is actually at fs.

To solve for the path of a light ray, we need to use the machinery of general
relativity. Recall that in Chapter 4, we used the time component of the geodesic
equation to find dp/dt, the rate of change of the magnitude of the momentum. Here
we are interested in deflections, so we will need the spatial component,

2.1 a
o _ —riﬁd—x—@”—ﬁ; (10.2)
d\? *dX dA
in particular, we will need the transverse part. Let’s first consider the left side of
this equation. We can express the derivatives with respect to affine parameter A in
terms of derivatives with respect to x using the fact that

dy _dy dt
dx  dt dx
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Source at X;s

{

Image at x0

Lensing Plane

Us, today

Figure 10.4. A light ray leaving a distance source is distorted as it passes by an intervening
overdense region. At all times, the position of the light ray can be characterized by a 2D vector
sBecifying its angular distance from the center of the lens. The ray starts with angular vector
05, but appears to us to be coming from 6.

=l pa- ). (10.3)

The first part of this equality (dy/dt = —1/a) follows from Eq. (2.42), while the
second part comes from Eq. (4.14). The transverse part of Z* is equal to x#?, so the
left-hand side of the geodesic equation is

Pzt 1 d[p d ,
i Ml [l Y. 104
d\?2  a de [a dy (X0 )] (10.4)

Here I have dropped the (small) gravitational potential because it multiplies the
(small) angle §*. We can reduce further by remembering that (at zero order) the
momentum p times a remains constant, so removing pa outside the derivative leads

ro d?z? d[1 d
T _ 20| L _< 9i) 10.5
dA? pdx[anXX ] (10.5)
Now let’s consider the right side of the geodesic equation. Again, changing the
derivatives with respect to A to those with respect to x leads to
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) (- v, (10.6)
There are three types of terms in the sum over a and §: those with a = 3 = 0,
those with one index spatial and the other temporal, and finally those in which
both « and 3 are spatial. We have already derived the relevant Christoffel symbols,
given in Eq. (5.7). Let’s work through the terms one by one:

a

e When o = 3 =0, we have

C(dt\?
Lo (a) =V, =-9; (10.7)

where the second equality holds since in the late universe there are no anisotropic
stresses so ¢ = — .

o When one of the indices is spatial, Ff)j is nonzero only when i = j. Therefore,
the spatial index j must be transverse with z7 = x6?. Since ¢’ is small, we can
drop the potential in the Christoffel symbol leading to

. dt dx? d ;
Iy, ——=—aH— |x0° 10.8
with of course an identical term coming from I’;-O.

e When both indices are spatial, the Christoffel symbol is proportional to the
(small) gravitational potential. When multiplied by the small transverse dis-
tance, these terms will be negligible, so we need consider only the term
I‘;-k(dzj/dx)(dxk/dx) in which j = k = 3 along the radial direction. In that
case z° = ¥, the derivative is trivial, and we have

. dz) dzF
y——-——=-9,. 10.9
jk dX dX s ( )

Collecting these terms leads to the geodesic equation for transverse motion,

d 1 d/ ] 2 d

The derivative on the left acting on a=2 exactly cancels the term proportional to
aH on the right, so our final equation for the transverse displacement is

ad_; (x0) = 20. (10.11)

This geodesic equation tells us that in a uniform potential, the angular direction
(x8)' remains constant, whereas a changing potential perturbs it. The sign is cor-
rect: An overdensity centered at x = y = 0 has ® > 0 there, and therefore the
derivative of ® with respect to x (®; with ¢ = 1) is negative for z > 0. As such,
the force on a light ray passing the overdensity on the positive z-axis is negative,
i.e., inward toward the overdensity, as we expect.
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Equation (10.11) can be integrated to find the image angle as a function of the
source angle. Integrating once gives

d 1 X / !
_ ) = (T 5 10.12
I (XG ) 2/0 dx'® ; (£(x')) + constant; ( )

we’ll fix the constant momentarily. Integrating again leads to

. 2 X X//
6 = ;/ dx”/ dx'®; (£(x")) + constant (10.13)
0 0

since 6*(x) = 0%, the value of g at the source. We now see that the constant is equal
to 6 —the observed angle — since the angle retains its initial value if there is no
perturbation. The integral in the X/, x” plane is restricted to the shaded region in
Figure 10.5 so we can change orders of integration with the x” integral ranging

Figure 10.5. Range of integration in the double integral of Eq. (10.13). The shaded region
can be expressed as 0 < ¥ < x,0 < x' < x" oras ¥ < x”’ < x,0 < x' < x. The latter is
more convenient here, since the x” integral is then trivial.

from x’ to x. The x” integral is then trivial (since ® ; depends only on x’) so
X ’
=0+ 2/ dx'® ; (£(x')) (1 - &> . (10.14)
0 X
To describe the shift in the angle experienced by a light ray, it is conventional
to define the 2 X 2 symmetric transformation matrix,
_ 905

A = G0
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l-k-m -2 )
. 10.15
< 7 l—-k4+m ( )

The parameter & is called the convergence; it describes how an image is magnified.
Although this magnification has many important ramifications (e.g., microlensing
and multiple images) it is not what is important for the distortions studied in weak
lensing. Rather, these distortions are governed by the two components of the shear,

Ay — Ao

M= 5

Y2 = —A12. (10.16)

Equation (10.15) says that the components of shear involve derivatives of
Eq. (10.14) with respect to angle 6.1 The only dependence on g is in the argument
of the potential, where Z(x') = x'f (for the transverse components). Therefore, the
derivative with respect to #7 can be written as a derivative with respect to z7 (in
our notation ;) times x’. Therefore,

X !
—Kk—=M -2 ’ 1 ’ X
A =65 = =2 dx'® ;; 1—-=]. (10.17
s=oy= (T ) =2 [Caves ey (1-X). goan
So v; and 9 are well-defined functions of the potential. The next section shows
how they influence the shapes of galaxy images.

10.3 ELLIPTICITY AS AN ESTIMATOR OF SHEAR

We expect lensing to turn circular images into elliptical ones. To describe this effect,
then, we need to come up with quantitative measures of ellipticity, and then see how
these are related to the components of shear defined above. The simplest measure
of ellipticity starts with the definition of the quadrupole moments of an image.
Imagine centering an image at the 6, — 6, origin such that it has no dipole moment
({(6z) = (By) = 0 where angular brackets are averages over the intensity). Then the
quadrupole moments are defined as

i 5/d2910b5(9)9i9j- (10.18)

A circular image has gz, = qyy and gz, = 0. Therefore, two good measures of
ellipticity are
_ Gzz — Qyy
€6 = ——2

9zzr + Qyy

1The derivative is formally with respect to the observed angle 6, while the right-hand side
of Eq. (10.14) depends on the potential at the true position of the light ray. In principle, then,
the derivatives which go into the definition of A;; are quite complicated. In practice, though,
deflections are sufficiently small that we can ignore the distinction between the final angle 6 and
the actual angle everywhere along the trajectory. Therefore, on the right-hand side of Eq. (10.14)
we evaluate the potential along the undistorted path parameterized by 6.
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= — v (10.19)
Qzz + Qyy

Figure 10.6 shows different orientations of elliptical images and the associated

€, >0¢=0 €, <0¢=0

€, =0¢>0 €, =0¢,<0

Figure 10.6. Definition of ellipticities €; and e2. Circular images have both ellipticities equal
to zero.

values of the ¢; and e;. With these definitions, we can make more precise the
statement at the end of Section 10.1 about correlations of ellipticities. Panel (a) in
Figure 10.3 has two galaxies at §; and 5, each with €, positive; in panel (b) both
galaxies have €; negative. In both possible cases, then, the product 61(51)61(52) is
positive if the z-axis is chosen along the direction connecting the two galaxies. The
impossible case is depicted in panel (c) wherein the product is negative. Therefore,
we do not expect lensing to produce €; (61 )e1(62) < 0.

How are the ellipticities defined in Eq. (10.19) related to the shear defined in
Eq. (10.16)? Let’s assume that the source is spherical and compute the ellipticity
of the image. Focusing on €1, we have

2 q —
_Jd omue(l;s) (026 — 0,6, (10.20)
S

€1 =
L 20140e(05) 026, + 6,0,]

where I have used the equality of Eq. (10.1). The integrals here are over the observed
angles 6, while the integrands depend in part on the angle from which the photon
started at the source, 6s. For small angles, these are related via ; = (A_l)i]ﬂgj.
To do the integrals, then, change dummy variables in the integral to 55, and write
all occurences of 6; as (A~'6s);. This leads to
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3 (AT 2e(A Ny — (A1) (A7 1)y [ d2051irue(F5)0s:8s;
Yoi; (A 2i( A V)i + (A1) yi(AV)y5] [ 205 Tirae(05)05:0s;
Now the integral over the (true) circular image vanishes unless ¢ = j and so is

proportional to &;;. The proportionality constant is irrelevant since it appears in
both the numerator and denominator, so

(Ahl)zi(A¥l)xi - (A_l)yi(A_l)yi

€1 =

(10.21)

€] —

A=1)2 _ (4-1)2
= (2 ”) (2 yy) 5 (10.22)
(Azz)" + (Agy)” +2(Azy)
It is easy to compute the inverse of the 2 x 2 matrix A:

_ 1 l1-6+m Y2 )
Al = , 10.23
(l—n)z—ﬁ—’y%( Y2 I—x-—m ( )

so we see that the ellipticity ¢; can be expressed in terms of the shear as

(L= Kt ) (L
Q-r+m)?2+(1-r—m)?+27%
47 (1 - %)

= . 10.24
21— )2+ 292 + 2742 ( )

€1 =

If all the distortions are small, then
€~ 2’)/1, (1025)

the desired result. A similar equality holds for e;. By measuring ellipticities of
distant galaxies, therefore, we can get an estimate of the shear field, a field which
depends manifestly on the underlying gravitational potential via Eq. (10.17).

10.4 WEAK LENSING POWER SPECTRUM

We can now compute the simplest statistics of the shear field, which can be esti-
mated by measuring background galaxy ellipticities. Let’s remove the identity from
the transformation matrix A,

wij = Aij — 521 (1026)

In the absence of inhomogeneities, the apparent angle 8 is equal to the source angle
fs,s0 A = I. Therefore, by removing the identity matrix from A, we have extracted
the part describing the distortion of the light ray path due to inhomogeneities. As
such, we will refer to v as the distortion tensor. The last term in {10.17) is 1);; for
a background galaxy (or galaxies) at distance x(z) from us. In general, a survey
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contains a distribution of redshifts. Let’s call this distribution W (), just as we did
when studying angular correlations in Chapter 9. Again, let’s normalize W so that
[ dxW(x) = 1. Then, the distortion tensor is

vy =2 [ aav(o [ aves GO (1 - X;) S (02

We can simplify here by changing orders of integration (almost exactly as depicted
in Figure 10.5). Then

Py B) = /  d®.; (700) 90) (10.28)

where 1 have dropped the prime and defined
X< X )
s =2 [ a1 ) wi) (10.29)
X

On average, each of the components of the distortion tensor is zero: (1;;) = 0.
To make our money, therefore, we need to do just what we did for the CMB and
galaxy distributions, compute the two-point function, either the angular correlation
functions of the different components of ,; or their Fourier transforms, the power
spectra. To compute these two-point functions, we will be able to essentially copy
the results from Section 9.1 as long as we are careful to account for the indices on
Yij- .

To compute the power spectrum of the distortion tensor, P;Jp.kl(l), let’s recall the

steps we took when we analyzed the angular correlation function of galaxies (see
Table 10.1).

o The distortion tensor in Eq. (10.28) is a function of the 2D vector § since the
argument of the potential is & ~ (61, 02, 1). As in the case of the galaxy density
field, we can Fourier transform 1);; so that it depends on the 2D vector conjugate
to 5, L

¢ In the case of the angular galaxy overdensity, we expressed the 2D overdensity
as an integral over the 3D overdensity with some weighting function (Eq. (9.3)).
Here the situation is identical: g in Eq. (10.29) plays the role of the selection
function W there while the 3D field here is not the overdensity 6, but rather & ;;.

e Next we found that —in the small-angle limit — the 2D power spectrum is given
by an integral over the 3D power spectrum, Eq. (9.10). Here, too, the 2D power
spectrum of 1;; can be expressed as an integral over the 3D power spectrum of
the gravitational potential ®. The only slightly tricky part is computing the 3D
power spectrum of @ ;;. The Fourier transform of @ ;; is —kikj‘i) with a variance

kiki Kkl (D(R)®* (K)) = (27)3kik;kiknn 8% (k — k') Py (k). (10.30)

So the 3D power spectrum we need — the one associated with the Fourier trans-
form of q),ij —is klk]klkaq)(k)



304 WEAK LENSING AND POLARIZATION
Table 10.1. Similarity between Agular Correlations of Galaxies and Weak Lensing.

I | Angular galaxy distribution | Weak lensing |

2D observation 52(6) Distortion tensor wij(g)
Weighting function | W(x) g9(x)

3D field ) (I)’ij

3D power spectrum | (66*) ~ P(k) <<I> ,]q)* ) ~ kikjkiky, Po(k)
2D power spectrum | Py (1) ”lm )

I will keep things in terms of Py, but if you are more comfortable with the density
power spectrum, you can see from Eq. (7.7) that you need only multiply Ps by
902 HE(1 + 2)?/(4k*). Applying Eq. (9.10) then leads to

(i (D (D)) = (2m)262(T = )P}, (1) (10.31)

with the 2D power spectrum

. Xoo
P (D) —/ dx (2 X) Ll Pa(l/x). (10.32)
0 X x*

Equation (10.32) is an expression for the power spectrum of the different com-
ponents of the distortion tensor. We can turn these into power spectra for the
convergence « and two different components of shear by using Eq. (10.16). Let’s
work this out for one of the shear components explicitly; the other two are rele-
gated to a problem Since v1 = (Y22 — ¥11)/2, the power spectrum of v is 1/4
times Pyoy + Ph1; — 2P%, .. If we decompose the 2D vector ['into a radial part [
and an angle ¢;, then [; = lcos¢; and I, = Isin ¢y, so

4 s 5 2y [ ()
P, (I, ¢1) = (sin* ¢ + cos® ¢, — 2sin® ¢; cos® ) [Z/ dX?P{)(l/X) .
0 (10.33)
Since sin® ¢; + cos* ¢; +2 cos? ¢; sin ¢, = 1, the term in parentheses here is equal to
1~ 4sin? ¢ cos? ¢; = 1 —sin?(2¢;) or cos?(2¢;). You will show in Exercise 6 that the
expression in square brackets is equal to the power spectrum of the convergence,

l4
PK:_/ i &0 p Ps(1/)- (10.34)
4 Jo x°
Therefore, the power spectrum of 7 is

P, (I, ¢1) = cos?(2¢;) Pe(1). (10.35)
You will show in Exercise 6 that the power spectrum of <, is also proportional to
P,

P, (1, d;) = sin®(2¢;) P.(1). (10.36)
Thus, the power spectra of the two components of shear depend not only on the
magnitude of [ but also on its direction. Figure 10.7 shows the convergence power
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Figure 10.7. The power spectrum of the convergence for two CDM models (Hu and Tegmark,
1999). The models are indistinguishable using CMB data alone, so future weak lensing data
(depicted by the error boxes) add invaluable information. The projected error boxes assume a
3° survey down to 25th magnitude.

spectrum for two models. Note that, unlike the CMB or even the matter power
spectrum, it is essentially featureless.

The power spectra of both shear components are proportional to P, with a
prefactor depending on the angle between [ and a fixed z-axis. You might expect
then that a linear combination of the two components depends only on P, (l) with
no dependence on the angle ¢;. This is correct. Even more interesting, though, is
the possibility that a different linear combination would have a vanishing power
spectrum. This also turns out to be correct, and extremely useful. Such a mode
has no expected cosmological signal, so any nonzero value is a measure of some
systematic effect. By focusing on this “zero” mode, one can identify and eliminate
contaminating effects in an experiment. I want to spend some time on this decom-
position into two modes—one with signal and one without —not only because of
its importance in this case of weak lensing, but also because an exact analogy exists
in the case of polarization of the CMB, which we will take up in the next sections.
To get ahead of myself, in the case of polarization, the “zero” mode is zero only for
scalar perturbations, whereas tensor perturbations do contribute to it. Therefore,
we will see in Section 10.9 that this decomposition is a powerful tool with which to
detect primordial gravity waves.

Consider then the following two linear combinations of the shear:
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= -

E(l) = cos(2¢1)m1 (1) + sin(2¢1)72(])

B(l) = ~ sin(2¢:)m () + cos(2¢1)72(1). (10.37)

The power spectrum of each of these modes is easily obtainable in terms of the
spectra of v; and ;. First the E-mode:

Pg = cos®(2¢1) Py, + sin®(2¢y) P, + 25sin(26;) cos(2¢;) Py, - (10.38)

This expression involves the power spectrum corresponding to {y1y2), which is equal
to cos(2¢;) sin(2¢;) times the ubiquitous convergence power spectrum. Therefore,
P is proportional to P, with proportionality constant cos*(2¢;) + sin(2¢;) +
2 cos?(2¢;) sin®(2¢;) = (cos®(2¢y) + sin(24;))2 = 1, or

Pg = P, (10.39)
independent of the angle ¢;. The calculation for the B-mode is similar:
Pg = sin®(2¢) P, + cos?(2¢;) P,, — 2sin(2¢;) cos(2¢1) Py, -,

=0. (10.40)

You can also check that the cross power spectrum (EB) vanishes.

The field of weak lensing due to large-scale structure is its infancy. The year
2000 saw the first detections by four independent groups (Van Waerbecke et al.,
2000; Bacon, Refregier, and Ellis, 2000; Wittman et al., 2000; Kaiser, Wilson, and
Luppino, 2000). They presented the shear correlation function, one example of
which is shown in Figure 10.10. We can easily translate the power spectra derived
above into angular correlation functions that can be compared with data.

Let’s focus on the angular correlation function of 71, the Fourier transform of
P.

Y10

5 Pl s o ropee g (x)
wy, (0) = / We cos®(2¢y) Z/o dy NG Ps(l/x)1 - (10.41)
The variable ¢; we are integrating over is the angle between the 2D vector [ and
an arbitrary external z-axis. If we do the angular integral over ¢;, then —as you
can see from Figure 10.8 —the argument of the exponential is quite complicated:

il6 cos(¢; — ¢). Instead, let’s integrate over the angle between ! and é: call it ¢'.
Then,

- *odl IS (X< g2 . /
wy, (6) = / e 1 / dxg_(sx_)Rb(l/X) / dg'e"? <> ¥ [cos(2(¢' + ¢))]*.
o (2m)2 4 Jy X 0
(10.42)
The cosine squared in the integrand is equal to

[cos(?qb’) cos(2¢) — sin(2¢) sin(2¢)] ’
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Figure 10.8. Angles made by 6 and I with respect to an external fixed z-y coordinate system.
The angle between 8 and [ is ¢'.

= cos?(2¢) cos®(2¢)) — sin(4¢’) sin(4¢)/2 + sin®(2¢') sin®(2¢).  (10.43)
Thus there are three terms to be integrated over. To do the integral over cos?(2¢'),
first rewrite it as (1+cos(4¢’))/2; then recall that the integral of cos(ng’)e?* %" is
equal to 2mi"J,(z) (Eq. (C.21)). Therefore, the integral of cos?(2¢’) gives a factor
of m times Jo(10) + J4(10). Using exactly the same arguments, you can see that the
integral of sin®(24') gives 7 times Jo(16) — J4(1). Less obvious is the fact that the
integral of sin(4¢’) vanishes (change integration variable to ¢” = ¢’ — 7 and argue
that the integrand is antisymmetric). Therefore

w.y, (6) = 16”/ dl 15/ PQ(Z/ )

x { c0s2(20) [Jo(16) + Ja(16)] + sin®(2¢) [Jo (1) — J4(16)] } (10.44)

There are many angles floating around, so let me reiterate that 6= (8 cos ¢, 0sin ¢);
that is, ¢ is the angle that ¢ makes with the z-axis. By changing the [ integral into
one over 3D wavenumber k = [/x, we can rewrite this angular correlation function
in terms of kernels,

w., (0) = /0 b dk k° Py (k) [Fy (k8) cos®(2¢) + F_(k8)sin®(2¢)] . (10.45)

Note that here I have assumed that the potential remains constant with time, an
assumption which breaks down at late times because of nonlinearities or non-matter



308 WEAK LENSING AND POLARIZATION

domination. The kernels are integrals over radial distance x modulated by the Bessel
functions,

1 [Xee
R O CORACO)] (10.46)
0
Figure 10.9 shows these two kernels for background galaxies at redshift z = 0.9.
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Figure 10.9. The kernels for the shear correlation function assuming all background galaxies
are at z = 0.9. Dashed region corresponds to negative kernel. If the z-axis is chosen along the
line connecting pairs of galaxies, then the + kernel is for (y;1) and the — for (y27v2). Note
that the former is always positive.

If we choose the z-axis to be along the line connecting pairs of galaxies, then
we are evaluating the correlation function at 6 = (6,0), that is, with ¢ = 0. In
that case, Figure 10.9 shows that w., is always positive, a result we anticipated
pictorially in Section 10.1. The correlation function for ~5, on the other hand, is
identical to that in Eq. (10.45) except that Fi are interchanged. Therefore, ws,
can, and indeed does, go negative, usually on large angular scales. The final point
to take away from the kernels in Figures 10.9 is the rough sense that the shear on
a scale of a tenth of degree probes the power spectrum at k ~ 1 Mpc~! since this
is where the kernel breaks.

Consider then Figure 10.10, which shows results from a survey of three “blank”
(i-e., no known clusters of galaxies present) fields over a period of several years.
There is a clear detection of ellipticity, presumably due to cosmic shear. The root
mean square amplitude of the shear is the square root of the typical numbers on
the y-axis, around 0.01. Thus, shear due to large-scale structure has been detected
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Figure 10.10. Measurement of the shear correlation functions using 145,000 background
galaxies (Wittman et al., 2000). Also shown are a variety of CDM models; topmost in top
panel is standard CDM, ruled out here at many sigma. Note that w,, = (e1e;) remains positive
on all angular scales. See color Plate 10.10.
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with an amplitudeof order 10~2 on angular scales ranging from 1’ out to about
1°. Observations planned in the coming years will go far beyond these preliminary
results; from these observations we will learn much about the mass distribution of
the universe.

10.5 POLARIZATION: THE QUADRUPOLE AND THE Q/U
DECOMPOSITION

The radiation in the CMB is expected to be polarized because of Compton scat-
tering at the time of decoupling. A polarization pattern shares a number of math-
ematical features with the shear induced by gravitational lensing that we have
just studied. In addition to these mathematical similarities, they also share sim-
ilar experimental histories. Whereas anisotropies in the temperature of the CMB
and inhomogeneities in the density field were discovered back in the 20th century,
weak lensing by large scale structure and polarization of the CMB have just been
detected. They are true 21st century phenomena. Therefore, they are both fields
rich for study: We are just beginning our observations of them, and they both
promise to deliver much cosmological information.

Light traveling in the z-direction corresponds to electric and magnetic fields
oscillating in the y-z plane, i.e., transverse to the direction of propagation. If the
intensity along the two transverse directions is equal, then the light is unpolarized.
Until now, when we have considered the CMB, we have been implicitly studying
this case. Now we must account for the possibility that the intensities in the two
transverse directions are unequal: that the radiation is polarized.

At first glance, Compton scattering is a perfect mechanism for producing polar-
ized radiation. It allows all transverse radiation to pass through unimpeded, while
completely stopping any radiation parallel to the outgoing direction. To see this,
consider Figure 10.11 which shows a ray incident from the +2 direction. This (unpo-
larized) ray has equal intensity in the § and # directions. It scatters off an electron at
the origin and gets deflected into the +% direction.? Since the outgoing direction is
along the z-axis, none of the (incoming) intensity along the z-axis gets transmitted.
By contrast, all of the intensity along the y-axis (which is perpendicular to both
the incoming and outgoing directions) is transmitted. The net result is outgoing
polarization in the § direction.

Obviously, we cannot content ourselves with studying one incoming ray; we
must generalize to radiation incident on an electron from all directions. When we
do so, we begin to realize that producing polarization will not be quite as easy as
it appears from Figure 10.11. Consider first Figure 10.12, which shows a caricature
of a much more relevant case: isotropic radiation incident on the electron from all
directions. I say “caricature” because I have shown incoming rays from only two
directions, the +&- and +§-directions. The intensity of the outgoing ray along the

20f course radiation gets scattered into all directions with varying probability. Here we consider
just one outgoing direction for simplicity. In the next section we account for this probability.
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Figure 10.11. Unpolarized radiation moving toward the origin along the z-axis is scattered
by an electron into the +Z direction. Only the § component of the radiation remains after
scattering. Since there was no incoming & polarization, the outgoing radiation is polarized in
the § direction. (This and the next three figures are adapted from Hu and White, 1997b).

x-axis comes from the radiation incident from the  direction, while the outgoing
y-intensity comes from the radiation incident from the Z-axis. Since the radiation
from both directions has equal intensity (isotropic radiation), though, the outgoing
wave is has equal intensity along the - and §-axes: it is unpolarized.

Can anisotropic radiation produce polarization? The simplest example of
anisotropy is a dipole pattern, a caricature of which is shown in Figure 10.13.
Now the outgoing intensity along the z-axis comes from the +g-incident radiation,
which has the average temperature. The outgoing intensity along the y-axis is also
neither hot nor cold because it comes from a cold spot (the —Z-direction) and a hot
spot (the +Z-direction). The dipole pattern leads therefore only to cancellations
and unpolarized outgoing radiation.

To produce polarized radiation, the incoming radiation must have a nonzero
quadrupole. Figure 10.14 illustrates the polarization produced by an incoming
quadrupole. The hotter (colder) radiation incident from the Z- (§-) direction pro-
duces higher (lower) intensity along the y- (z-) axis for the outgoing wave. There-
fore, the intensity of the outgoing wave is greater along the y-axis than along the
z-axis: the outgoing radiation is polarized.

The fact that Compton scattering produces polarization only when the incident
field has a quadrupole moment has important ramifications for cosmology. We need
Compton scattering to produce the polarization, so we need to focus on the epoch
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Figure 10.12. Incoming isotropic radiation produces no polarization. Here, since the incoming
amplitudes from the Z- and g-directions are equal, the outgoing intensities along both of these
directions are equal, leading to unpolarized radiation.

before electrons and photons have completely decoupled from each other. However,
in this epoch electrons and photons are tightly coupled, which we have seen leads
to a very small quadrupole. Therefore, we expect polarization from the standard
decoupling epoch to be smaller than the anisotropies. Late reionization enhances
the polarization at large scales, but does not modify the qualitative conclusion that
the polarization signal is expected to be small.

Figure 10.14 depicts polarization in the z-y plane, preferentially in the §-
direction. Alternatively, had the incoming rays been rotated by 45° in the z-y
plane, the outgoing polarization would have been along the axis 45° from the z-
and y-axes. Polarization therefore can be depicted as a headless vector, with a
length corresponding to its magnitude and the orientation of the line describing
the axis along which the intensity is greatest. In the 2D plane perpendicular to the
direction of propagation, we therefore decompose the intensity into

_(T+Q U
11-]-_< U T_Q>. (10.47)

The diagonal elements T are the temperature we studied in Chapter 8 (with a
uniform part and a perturbation ©); the two new variables @ and U describe
polarization. The pattern in Figure 10.14 has Q < 0 and U = 0. Note that these
definitions of @ and U are identical to the definitions of shear and ellipticity in
Section 10.2. Especially relevant is Figure 10.6 where we simply replace €; with @



POLARIZATION FROM A SINGLE PLANE WAVE 313
z

T
A,

X

Figure 10.13. Incoming dipole radiation also produces no polarization. (See also color
Plate 10.13.) Heavy (thin) lines denote hot (cold) spots. Here the incoming radiation is
hotter than average (average is medium thickness) from the +i-direction, and colder than
average from the —i-direction. The two rays from the +g-directions therefore produce the
average intensity for the outgoing ray along the g-direction. The outgoing intensity along the
Z-direction is produced by the ray incident from the +g-directions. Since these have the aver-
age intensity, the outgoing intensity is also the average along the Z-direction. The net result
is outgoing unpolarized light.

and e; with U. A final note: students of electricity and magnetism will no doubt
recognize T,Q, and U as three of the four Stokes parameters used to describe
polarization. The fourth, V', is nonzero only if polarization is circularly polarized, a
phenomenon we do not expect in the early universe, so I have implicitly set V =0
here.

10.6 POLARIZATION FROM A SINGLE PLANE WAVE

The pictures of the previous subsection are important to gain a qualitative under-
standing of how Compton scattering produces polarization, but they are inefficient
tools with which to study the phenomenon quantitatively. The proper tool is the
Boltzmann equation. We could proceed now by simply writing down the Boltzmann
equation for the @) and U polarization states. In doing so, however, we would lose
some of the intuition just gained, so I will take an intermediate tack. We will gen-
eralize the discussion of the previous section by summing o er all incident rays, not
just a handful. This will enable us to make the connection with the distribution ©
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Figure 10.14. Incoming quadrupole radiation produces outgoing polarized light. See also
color Plate 10.14.) The outgoing radiation has greater intensity along the y-axis than in the
Z-direction. This is a direct result of the hotter radiation incident from the Z-direction.

we have used until now to characterize the photons.

We first need to define the polarization axes in the most general case when
the incoming photon arrives from direction n’. When that direction was Z, as in
the previous section, it was clear that polarization was defined as the difference in
the intensity along the two perpendicular directions, ¢ and 2. In the general case,
depicted in Figure 10.15, the direction of the incoming photon is depicted by 7/,
and we must integrate over all incoming directions. The two axes perpendicular
to this direction are most conveniently taken to be ¢ and ¢, the standard unit
vectors perpendicular to the position vector. These are called €| and é5. We still
are interested in the polarization of outgoing photons in the 2-direction, so we can
choose the two outgoing polarization axes as €¢; = & and é; = ¢. In short, the
incoming polarization vectors are ¢, the outgoing are é€;.

The idea that Compton scattering allows the fields transverse to the outgoing
direction to pass through unimpeded, while stopping those parallel to the outgoing
direction, can be encapsulated by saying that the cross-section for outgoing photons
polarized in the €, direction is proportional to

2

>

=1

(n) - &()|°

(10.48)

The @ polarization is the difference between this cross-section for i = 1 and ¢ = 2,
i.e., the difference between the field strength in Z- and g-directions:
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Figure 10.15. Incoming photon from direction 2’ Compton scatters off an electron at the
origin producing outgoing photon in direction n = 2. The plane perpendicular to the incoming
direction is spanned by the two polarization vectors, €, = ¢’ and é; = ¢’. The outgoing photon
is in the Z direction, so the polarization vectors are é; = # and é; = g.

2
j=1

Integrating over all incoming #’ directions leads to

NE

SORAC

(l&- & @) -

g.é}(ﬁ’)[z).
(10.49)

2
a) - &) -3
j=1

j=1

Q%) = A/dﬂn/f(ﬁ’)z ((:i- e - ’z}~€;(ﬁ')|2>. (10.50)

j=1

Here A is a normalization constant which will not concern us for now, and f(7') is
the intensity of the radiation incoming from the n/-direction, and we integrate over
all such directions. Note that f depends only on 7/, but not on e;: this corresponds
to the assumption that the incident radiation is unpolarized.

To take the dot products in Eq. (10.50), we will find it useful to express &
and €, in terms of their Cartesian coordinates. Since they are equal to 6 and ¢/,
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respectively, we have
€1(8',¢") = (cos§ cos ¢, cos 8’ sin ¢, — sin §’)
e (0, 8") = (—sing¢’,cos ¢’,0). (10.51)

Now, the dot products become trivial, and we find
Q) =A / dd, f(R') [0052 6’ cos® ¢’ + sin® ¢’ — cos? @' sin® ¢’ — cos? ¢']

= —A/danf(ﬁ')sin2 6 cos 2¢'. (10.52)

You might recognize the combination of angles here as being propotional to the sum
of the spherical harmonics Y32 + Y5, 2 (Eq. (C.10)). Since the spherical harmonics
are orthogonal, the integral will pick out the [ = 2,m = +2 components of the
distribution f. That is, nonzero @ will be produced only if the incident radiation has
a quadrupole moment. This verifies the argument-by-pictures given in the previous
subsection. It is straightforward to derive the corresponding expression for the U-
component of polarization (Exercise 10),

U(2)=-A / dQ, f(7') sin? @' sin(2¢'). (10.53)

The combination of sines here is proportional to Y2 o — Y, _o. Again, only an incident
quadrupole produces U polarization.

We can now relate the outgoing @@ and U to the moments of the incident unpo-
larized distribution. We’ll do this in four steps, in increasing generality.

o First, we’ll consider the polariztion induced by a wavevector k in the Z-direction.

e Next, we allow k to lie anywhere in the -2 plane.

e Then, we consider the most general possible wavevector.

o The first three steps will give us @ and U of the outgoing radiation along the
z-axis. We need to generalize this to arbitrary outgoing directions.

The reason that we need to move so slowly is that the photon distribution, f(#'),
takes its cue from the direction of the wavevector. Recall that, in Chapter 4, we
wrote the photon distribution as the sum of a zero-order piece — the uniform Planck
distribution —and a perturbation, characterized by ©(k, i) (e.g., Eq. (4.35)). There
u was the dot product of the wave vector k and the direction of propagation. Here we
have labeled the direction of propagation of the incident photon as 7/, so u = k- 7.
Thus, f(7#’') in Eq. (10.52) will be an expansion in Legendre polynomials with
argument k-#7'. This argument is not equal to the cosine of §', since ¢’ is the angle
between the external z-axis and 7’. Relating p to 6" and ¢’ therefore is not trivial,
and we will proceed slowly.
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Let’s first consider the wave vector k to lie in the Z-direction. Then,

E’;I n' = (ﬁ’)
= siné cos ¢’ (10.54)

Recall that we decomposed the perturbation © into a sum over Legendre polyno-
mials, so

Ok, k-n') = 3 (=0)(2l + 1)Ou k)P, (fc : ﬁ')

!
— —509(k)P2 (sin ' cos ¢'), (10.55)

where the last line follows by substituting our expression for y (Eq. (10.54)) and
considering only the relevant quadrupole part of the sum.
A plane wave with wavevector k pointing in the #-direction therefore has

™ 2
Q2 k| )= 5A®2(k)/ df’ sin 0'/ d¢'Ps (sin @ cos ¢') sin? @' cos 2¢'.
° ° (10.56)

Recall that Pa(u) = (3u2 — 1)/2. The —1/2 part of this gives no contribution to
the integral since the ¢’ integral over cos(2¢’) vanishes. Therefore, we are left with

. 154 k T 2n
QG k|| &) = %2() / d6’ sin® ¢’ / d¢' cos® ¢/ cos 2. (10.57)
0 0
The ¢’ integral is w/2, while the §’ integral — easily done by defining p' = cos @’ —is
16/15. So )
Q(2,k || ) = 4m AO4 (k). (10.58)

We’ve now made part of the connection between polarization —represented by
here — and the formalism of anisotropies — described by © in general and ©3 specif-
ically for the quadrupole. This expression though applies only in the very simple
case that the wavevector points along the z-axis, perpendicular to the line of sight.
Let’s generalize this expression to wavevectors pointing in an arbitrary direction
in the -2 plane k = (sm Hk,O cos6y). In this case, the factor of (k n) coming
from P, is sin? 6y, sin® @’ cos? ¢’ + cos? O cos2 §'. The first term is identical to the
k || & case just derived, multiplied by sin® ). The second term introduces no new
¢’ dependence; since the integral over cos(2¢’) vanishes, it does not contribute.
Therefore
Q(3,k L §) = Ar Asin® 6,0, (k). (10.59)

In Exercise 10 you will show that there is no U-polarization from this type (E in
the #-Z plane): the polarization is all Q.

For any single plane wave, we can always rotate our coordinate system around
the z-axis to ensure that the plane wave lies in the #-% plane, so that Eq. (10.59)
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applies. When we come to consider the real universe, however, with its super-
position of many plane-wave perturbations, we won’t have this luxury. Instead,
we will need to account for the most general wavevector with orientation k=
(sin By cos Py, sin Oy, sin ¢y, cos B ). For this more general perturbation, you can go
through (Exercise 9) exactly the same types of calculations as went into Eq. (10.59)
to show that

Q(Z, k) = Ar Asin? 8, cos(2¢1)O2 (k)

U(Z, k) = 4w Asin® 0y, sin(2¢;,) Oz (k). (10.60)

Il

We must make one final generalization. Until now, we have focused solely on the
outgoing radiation along the z-axis. Of course, not all outgoing rays will be along
the z-axis. (This is what we are looking for: difference in polarization as a function
of angle.) To account for arbitrary directions, we need to allow the polar angle
fx in Eq. (10.60) to be the angle between the observation direction n and k. So
cos B, — 7 -k, and of course sin? 6, becomes 1 — (7- k)2. Therefore, for observations
near the z-axis, the outgoing polarization induced by incoming unpolarized incident
radiation is

Qi k) = 47rA[1 - (n : /;)2} cos(2¢1 )02 (k)

U, k) = dn A [1 - (n : 1;)2] sin(2¢x)Oa (k). (10.61)

These expressions are valid only for directions 72 near the z-axis. This restriction is
due to the dependence on the azimuthal angle, ¢. Far from the z-axis, cos(2¢y)
and sin(2¢y) give way to much more complicated expressions depending on both 7
and k. Near the z-axis, though, the relatively simple sine and cosine describe the
dependence on azimuthal angle. Thus, we will work in the small angle limit, where
all observation directions are close to one another, clustered around the z-axis.

Equations (10.61) allow us to draw polarization patterns around the z-axis for
arbitrary k modes. Consider the four patterns in Figure 10.16. In each case, the
z-axis is out of the page in the center of the panel. For k in the #-7 plane (8; = 90°),
Eq. (10.61) says that the strength of the polarization as a function of i, and 7,
varies as

1= (A k)% =1 — (Aghky + Ayk,)?. (10.62)

That is, deviations from the maximum at 7, = 7, = 0 are small, quadratic in
iy, iy. The orientation of the polarization in these cases can be either @ (top left
panel, ¢ = 0) or U (bottom left panel, ¢ = 45°). For k out of the 2- plane,
we begin to observe changes in the polarization strength. The two right panels in
Figure 10.16 illustrate these changes. Again there can be either Q or U polarization.
The most important feature of these patterns is that the polarization strength
is always changing in the direction parallel or perpendicular to the sense of the
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Figure 10.16. Polarization patterns near the z-axis arising from four plane wave perturbations
with different k. E.g., upper left arises from k along the z-axis (6x = 90°,¢x = 0). For k in
the -y plane (two left panels with 6, = 90°), polarization is at a maximum at 2, so little
variation is seen. Arrows in right panel show direction in which polarization strength increases.
This direction (or the direction perpendicular to it along which polarization remains constant)
is aligned with the polarization pattern. This alignment is the hallmark of an E-mode.

polarization. In the top right panel, polarization is aligned with the z-axis, and this
is the direction in which the polarization strength is changing. In the bottom right
panel, polarization is aligned along & + ¢, and the change is along the perpendicular
direction & — . We will soon decompose polarization into E and B modes, just as
we did the shear pattern in weak lensing. The patterns observed here are all pure
E. Indeed, scalar perturbations generate only E modes.

We can also begin to understand the E/B decomposition. The polarization
generated by scalar perturbations, the F mode, varies in strength in the same
direction as its orientation. This conjures images of an electric field. An electric
field from a point source, E = g7 /72, varies in strength as one moves away from
the point source. The electric field is pointed in the same direction: radially away
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from the source. As one moves in the direction of the field, the strength of the
field decreases. In Section 10.9, we will encounter the B mode, and see that — just
like a magnetic field —the B mode of polarization varies in strength in a different
direction from that in which it is pointing.

10.7 BOLTZMANN SOLUTION

To make quantitative predictions for the polarization expected in the CMB, we must
go beyond the treatment of the previous section. There, we sat a single electron at
the origin and considered the polarization emerging from incoming radiation with
a given distribution. The real problem has lots of electrons coupled to an evolving
photon distribution. For this, we need the Boltzmann equation. We wrote down
the relevant equations in Chapter 4, although it will take a little bit of work to
relate the variable we used there, ©p, to @ and U introduced above. The relevant
equations ((4.101) and (4.102)) from Chapter 4 are

: 1
Op + tkpOp = —7 |:—@p + B (1 - 'Pz(p,))ni‘ (10.63)
II=02+0p2+Opp (10.64)

where p = k- 71, and @ pg and ©py are the monopole and quadrupole, respectively,
of the polarization field.

We are left with the question of the relationship between ©p and @,U. Op is
the strength of the polarization, while @} and U together describe both the strength
and the orientation. In Chapter 4, we implicitly chose k to to lie in the Z-2 plane
in Chapter 4. In that case, we have just seen that the polarization is all @), so

U(3,k) =0 kLlg. (10.65)
More generally, for arbitrary 1_5, at least for directions 7 cloée to 2, we have
Q(k,n) = ©p(k - 1) cos(2¢x)
U(k,n) = ©p(k - ) sin(26%). (10.66)

Equation (10.66) is a crucial connection between the polarization pattern
Q(n),U(#) we are interested in and ©p(u = k - #) for which we have Boltzmann
equations. Now all we need to do is solve the Boltzmann equations for ©p, and
then use Eq. (10.66) to construct power spectra for @ and U. We attack the first
task in this section and the second in the next.

First, though, to solidify this connection between © p and @, U, it is instructive
to rederive the result of the previous section for an incoming unpolarized wave
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using the Boltzmann equation. We found there (Eq. (10.59)) that the outgoing
polarization (for k in the #-2 plane) was proportional to (1 — u2)©, where p is the
cosine of the angle between k and 2. Can we get this from the Boltzmann equation?
In the absence of any prior polarization, Eq. (10.63) reduces to

op = -+ 12 P2
2
3,
= =T (1- 18 (10.67)

Integrating over n, we find that the polarization induced by Compton scattering
from incident unpolarized radiation is
3T 9
Op = 7(1 — 1%)6s, (10.68)

i.e. the optical depth times the quadrupole modulated by the geometric factor
1 — u?, in agreement with the less formal derivation advanced above. We also see
that the strength of the polarization generated is proportional to the optical depth,
7, the integral along the line of sight of the free electron density times the Thomson
cross-section.

Now let’s solve the Boltzmann equation for the polarization. In analogy to
Eq. (8.46), the formal solution to Eq. (10.63) for ©p is

= o g
@P(ﬁv k) = / dnezk.n(n—UO)_—T(n)SP(ka s 77)7 (1069)
0
where the source term is
Sp(k,pu,m) = —% 7 (1- ) IL (10.70)

Remember that the visibility function is defined as —7e™", so

3

Op (i, k) = 7 (1- 1) /0 " dnetEA-) g ()1 (k, ). (10.71)

1)

A reasonable approximation is to assume that we can evaluate the integrand —
except for the rapidly changing visibility function —at the time of decoupling (for
standard recombination). Then, since the visibility function integrates to unity,

3I1(k,n.)

Op(h, k) ~ 1

(1 = p2) eF A=), (10.72)

Neglecting 7. compared with 79 and rewriting the factors of u as derivatives leads

to

3M(k, n.)
4

2
Op(k,p) ~ (1 + 6(6 >e_“”’°“. (10.73)

kno)?
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To get the moments O p;, we must multiply Eq. (10.73) by P;(¢) and integrate
over all p as in Eq. (4.99). This gives (Eq. (C.15))

2
Op(k) ~ 21E1:) (1 N 5(%)‘) ilkmo). (10.74)

The sum of the spherical Bessel function and its second derivative can be rewritten
using the spherical Bessel equation (C.13) as

251 N 2(1 + 12)jz N I+ 12)],1.

kno — (kno) (kno)

Of the three terms on the right, the last one dominates on small scales. To see this,
remember that the spherical Bessel function peaks roughly at kng ~ [. Physically,
this means that anisotropy on an angular scale | is determined by perturbations
with wavelength k=1 ~ 1y /l. For our order-of-magnitude estimate, this means that
we can take kng to be of order { in the three terms on the right-hand side. The first
is then of order /™!, the second of order !, and the last of order 12/(kng)? ~ 1:
the last term dominates. Therefore,

G+l = (10.75)

3M(k,n.) I*

Opi(k) ~ 1 Wﬁ(kﬂo)‘

(10.76)

In the tight coupling limit, we can express II in terms of the quadrupole, which
in turn is related to the dipole. As you can show in Exercise 12, Il = 503/2.
Therefore, the polarization moments today are

_150y(k,n.) I

Op(k) ~ 3 (kno)le(kﬂo)- (10.77)

We can go one step further by noting that —in the tightly coupled limit— the
quadrupole is proportional to the dipole (Eq. (8.34)). Therefore,

2

Equation (10.78) is a final expression for the polarization moments today assum-
ing the tightly coupled limit. Three features are worthy of note. First, and most
important, the polarization spectrum is seen to be smaller than the anisotropy
spectrum by a factor of order k/7 at the time of decoupling. We will quantify this
in the next section, but we now understand that it is a direct result of the twin
facts that polarization is generated by a quadrupole moment and the quadrupole
is suppressed in the early universe due to Compton scattering. Second, we expect
there to be oscillations in the polarization power spectrum because Op; x Oy,
which undergoes acoustic oscillations. More quantitatively, we expect the polar-
ization oscillations, just like the dipole, to be out of phase with the monopole.
The peaks and troughs in the temperature anisotropy spectrum, arising primarily

Opi(k) ~
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from oscillations in the monopole, should then be out of phase with the peaks and
troughs in the polarization power spectrum. Finally, there is no analogue here to the
integrated Sachs—Wolfe effect which impacts the temperature anisotropy spectrum.
Polarization cannot be induced by photons moving through changing gravitational
potentials. Therefore, the polarization spectrum today is in some senses a more
pristine view of the early universe, uncontaminated by later developments.

10.8 POLARIZATION POWER SPECTRA

Equation (10.78) is an expression for the polarization moments from a single plane
wave. In the real universe, we have not just one _plane wave, but a superposition of
many waves, all with differing amplitudes © p(k, 7). The angular power spectrum
from a superposition of plane waves follows from the identical calculation on the
temperature anisotropies (Eq. (8.68)):

x>
Cp, = %/ dk k2|0 p(K)[. (10.79)
0

For quite a while, cosmologists computed this power spectrum without reference to
@ or U. In 1997, a flurry of papers appeared which derived the power spectra for
@ and U. These exploited Eq. (10.66) or large-angle generalizations of it.

Based on our solution for the power spectra of the different components of shear
in Section 10.4, we have a sense of what to expect for the power spectra of @ and
U. Consider first Figure 10.17. In the small angle limit, @ for example is a function
of the 2D vector 6, the projection of # onto the plane perpendicular to the 2 axis.
Thus, we can Fourier transform @ just as we Fourier transformed the shear fields
above; its transform will depend on l the vector conjugate to g. Based on our
experience with weak lensing, we expect the power spectrum of Q to depend not
only on the magnitude of ['but also on its orientation. Looking back at Eq. (10.66),
we will not be surprised to find that this power spectrum, CQQ(Z) is proportlonal
to Cp,;. The proportionality constant is cos?(2¢;), where ¢, is the angle I makes
with the z-axis. Thus, the factor of cos(2¢%) in Eq. (10.66) becomes cos(2¢;) when
we sum over all k. Similarly, the power spectrum of U is sin (2¢l)Cpl

Let’s derive this connection between the power spectra of @ and U and that of
Op explicitly. We can write the @ polarization as a sum over all plane waves:

— 3 —
o ):/%e (6.7 cos(26n) (10.80)

The modulating factor e*¥* is set to 1 here, since we observe from only one position,

and we are calling that posmon Z = 0. To deal with the cos(2¢y) factor, first note
that it is equal to cos? ¢, — sin® ¢, or in terms of the Cartesian components of k:

2 _
r

2
v, 10.81
k2 +k ( )

2
Yy

cos(2¢y) =
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Figure 10.17. Different vectors in polarization. We observe radiation with incoming direction
7, also parameterized by 2D angle #. Wavevector k has an azimuthal angle ¢.

Since ©p has the exponential factor e~ ¥ (e.g. Eq. (10.69)), and since f, = 6,
and 7, = 6,, we can rewrite these Cartesian coordinates as derivatives with respect
to the 6. For example, k, — [—ing]~10/86,. The full cos(2¢;) factor therefore can
be written solely as derivatives with respect to g:

. 82 82 -1 82 82
COS(Qd)k) = DQ( ) = [8—92 + 8—912/] (5*9—2 - ’875) . (10.82)

This expression looks formidable, but it is extremely useful for summing up many
different k-modes. We can replace Eq. (10.80) with

- - 3 - =
Q) = Do(h) / 57’;_3@,3<e,k)

= Dg(9)0p(6). (10.83)
Both Q(6) and ©p(0) can be written in terms of their Fourier transforms, so
that Eq. (10.83) becomes

2 .. . 2
—(jﬂizeu'(’Q(l)=DQ() (jﬂi,}e”“)@p,. (10.84)
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Now Dgq, which is so very complicated in f-space, becomes very simple, for we
know exactly what it looks like when it acts on the exponential e, In that case,
it simply becomes cos(2¢;), where ¢, is the angle that the 2D vector [ makes with

-

the z-axis. Therefore, the Fourier transform of Q(#) is

Q1) = Op; cos(24y). (10.85)

-

An identical argument says that U(l) = © p; sin(2¢;). Therefore, the power spectra
of @ and U are

Coo(l) = Cpycos®(241)
Cyu (1) = Cp,sin?(2¢y). (10.86)

Recall that in the case of weak lensing, we noticed that one could take linear
combinations of y; and -2 such that the power spectrum of one of the linear com-
binations vanishes (Eq. (10.40)), while the other is equal to the convergence power
spectrum (Eq. (10.39)). Here we can do exactly the same thing. If we define

—

E(l) = Q) cos(2¢1) + U (1) sin(2¢1)

—Q(1) sin(2¢1) + U (1) cos(24y) (10.87)

—

B

then

—

Cgg(l) = 0. (10.88)

In the small-scale limit, the power in the F-mode is precisely equal to Cp:

-

}1;1} Cge(l) = Cpy- (10.89)
Figure 10.18 shows the resultant power spectrum, both the exact numerical result
and the approximation of Eq. (10.78) integated over all modes as dictated by
Eq. (10.79). Also shown is the spectrum of temperature anisotropies from Chap-
ter 8. As expected it is higher in amplitude, since polarization is suppressed in
the tightly coupled limit. Also as anticipated, the oscillations in the polarization
spectrum are out of phase with those in the temperature spectrum. In 2002, the
DASI experiment announced the first detection of polarization, a detection shown
in Figure 10.18. This is akin to the first detection of shear by large scale structure,
the beginning of our journey down promising new paths in cosmology.

The spectrum in Figure 10.18 is shown only on small scales; on larger scales,
the treatment of this section needs to be modified (Kamionkowski, Kosowsky, and
Stebbins, 1997a; Seljak and Zaldarriaga, 1997). The resultant spectrum has no sur-
prises: it falls off very rapidly on large scales. Since the polarization is proportional
to the dipole, which vanishes for large-scale modes, we could have anticipated this
result as well. Although I won’t go into the technical details of this large-angle
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Figure 10.18. Power spectra of temperature and E-mode polarization for the standard CDM
model. Thick curves show exact results; thin curve is the tight coupling approximation of
Eq. (10.78). Only scalar perturbations have been assumed, so there is no power in the B-mode.
Straight line at 10uK is an upper limit from Hedman et al., 2002, while the hatched boxes are
the first detection by the DAS} experiment (Kovac et al., 2002).

result, the basic idea is that instead of expanding polarization in terms of Legen-
dre polynomials, or ordinary spherical harmonics, one must use tensor spherical
harmonics.

One final comment: we have been implicitly assuming until now that the per-
turbations of interest are scalar. We inserted this assumption early on by writing
the plane-wave perturbation as Eq. (10.55). If the perturbations were tensor, the
decomposition would have included an azimuthal dependence; recall Eq. (4.115).

10.9 DETECTING GRAVITY WAVES

There is a fundamental difference between the scalar perturbations we have consid-
ered in the previous sections and tensor perturbations. A scalar plane-wave pertur-
bation has one direction associated with it: the direction of the wavevector k. Once
this direction is specified, all photon moments depend only on the angle between
the incoming photon and the wavevector. Once this angle is specified, there is an
azimuthal symmetry about the k direction. This rotational symmetry is the reason
that only the E mode is produced by scalar perturbations. There are two directions
in a polarization field: (i) the direction in which the polarization strength is chang-
ing and (ii) the orientation of the polarization. For scalar perturbations, we saw in
Figure 10.16 that these directions must be aligned (or perpendicular to each other).
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Intuitively, each direction looks to the only vector it knows — k— for guidance, and
they each arrive at the same end. This alignment is the salient characteristic of the
E mode.

The photon distribution from tensor perturbations is not rotationally symmetric
about the k-direction. Gravity waves are pulsations in the metric; these induce an
azimuthal dependence to the photon distribution. Recall from Eq. (4.115) that the
resultant distribution varies as sin(2¢) or cos(2¢), where ¢ is the azimuthal angle
about the k-axis. This dependence on ¢ means that there is an additional direction
to choose from when the polarization field gets induced. We might expect then that
the orientation of the polarization will not necessarily be aligned with the direction
of changing polarization strength. That is, we might expect that gravity waves will
produce B-mode polarization. This is exactly what we will show in this section.

Before working through the algebra, we need to pause to understand the impor-
tance of the B-mode generated by tensor perturbations. Let’s start with the diffi-
culty of detecting tensors through the E-mode. Both scalars and tensors contribute
to the E-mode, so the only way to disentangle them is to take advantage of dif-
ferences in their spectra as a function of !. We saw in the case of temperature
anisotropies that this is a tricky game, though, for other parameters can change
spectra in ways similar to tensors. So even if we had perfect knowledge of the
Cg, spectrum (no noise), we would still not necessarily know whether tensors were
present. The B-mode is different. There is no contamination from scalar perturba-
tions, so if we observe a B-mode in polarization, we know that it comes from gravity
waves. In principle, this realization has unlimited power: no matter how small the
tensor signal from inflation (no matter how small H/mp), we can ultimately detect
this signal by searching for a B-mode. In practice, there are contaminants due to
nonlinearities, but these are quite small. Estimates (Knox and Song, 2002; Kesden,
Cooray, and Kamionkowski, 2002) suggest that the lowest obtainable limit on r,
the tensor-to-scalar ratio, is of order 107%.

Let’s compute the polarization pattern from a single plane wave generated by
tensor perturbations. This problem is identical to that treated in Section 10.6.
To find the outgoing polarization near the z-axis, we need to integrate over the
incoming photon distribution. As in Egs. (10.52) and (10.53), we want

(2) - [averaymto (50))

_ ' n o Yeo(¥) + Yz _o(S)
= /dQ o7 (%[32’;2(9') - }2’2,—22(9/)]> ’ (10.90)

where I have inserted the photon distribution due to tensor perturbations, ©7;
recognized the combination of sin® # and the azimuthal dependence as Y2 2 £ Y5 _o;
and neglected the absolute normalization of the polarization.

To complete the calculation, we need to find the angular dependence of 7. This
is a bit more difficult than one might expect. Although we know that this angular
dependence is sin? 0/ cos(2¢') (for hy) or sin? @’ sin(2¢') (hy) for k lying along the
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z-axis, we need the dependence for a general wavevector k. One way of finding this
dependence is to rotate the coordinate system so that a unit vector pointing in the
2-direction gets rotated so that it points in the k-direction. The relevant rotation
matrix is

cosfcosgr —singg sinby cos
R=1 cosfsing, cos¢y sinfysingy | . (10.91)
—sin 0 cos 6y,

You should verify that R really does take 2 — k and work through a simple deriva-
tion of R (Exercise 13). We want to know what R does to ©7. To be concrete,
let’s focus on hy, so that ©T o sin? @’ sin(2¢'). First, we can reexpress this angular
dependence in terms of the unit vector 7’ describing the direction of the incident
photon:

sin? #’ sin(2¢') = 2sin® @' sin ¢’ cos ¢’

= 20,1, (10.92)

Now let’s rotate the coordinate system so that the z-axis points in the dlrectlon of

k. The anisotropies due to the hy-mode used to be proportional to 7,7, . In the
new coordinate system, they become

07T « (R'%),(R'd), (10.93)

where ¢ denotes transpose.
Now we work through the matrix multiplication and find

07  (cos Oy cos di sin b’ cos ¢’ + cos O sin ¢ sin 8’ sin ¢’ — sin Oy, cos §')
X (—sin @’ sin ¢y, cos ¢’ + cos ¢y, sin 6’ sin @)

= sin@’ sin(¢’ — ¢x) (cos O sin ' cos(¢’ — ¢x) — sin by, cos ')

1
= 5 cos O sin’ @' sin [2(¢ — ¢1,)] — sin#' cos @’ sin Gy sin(¢’ — ¢x).  (10.94)

This last combination can be reexpressed in terms of spherical harmonics: it is a
linear combination of Y2, +2,Y5 41, and Y, . That is, the anisotropy pattern about
the wavevector k due to gravity waves (the hyx mode) has a Y5 2 — Y, _2 dependence
when k is along the z-axis. When £ is general, this dependence gets mixed up among
all the Y5 ,,,’s. We are interested in the polarization pattern generated by ©7; from
Eq. (10.90) and the orthogonality property of the spherical harmonics, this means
we are interested only in the Y5 15 components of ©T. We can now extract these
from Eq. (10.94). The last term on the right has a factor of sin(¢’ — ¢x), so it is
proportional to Y 41, and we can neglect it. The first term is

1 / ) .
5 cos 0k: Sin2 6/ sin [2(¢/ _ ¢k)] — 312;1' CO; Bk [ —2z¢k Y;_2(Q/) _ 621¢kY2*2(QI)] )
i s )
(10.95)
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To find @ and U, we dot this into Y 5 & Y5 _3, so that the integral in Eq. (10.90)

leads t
eads to <Q(2) ) O cost (— sin(2d)k)) (10.96)
U(s) 0 k\ cos(2¢r) /- .

If we move small angles away fromAthe 2-direction, then the azimuthal dependence
does not change, and cos 8, — 7 - k, so that

(Q(M) « OTh -k (7:2:(1%1;)) _ (10.97)

The polarization pattern described by Eq. (10.97) has a nonzero B-mode. To
see this, first consider the definition of B in Eq. (10.87). This definition is in Fourier
space, but we remember that using the operator Dg y, we can replace | with k, the
wavevector. Therefore, for k in the -2 plane (¢x = 0), the B-mode corresponds to
only U polarization. Indeed this is precisely what Eq. (10.97) says is produced by
the hy mode of gravity waves. So the anisotropies due to gravity waves do produce
the B-mode of polarization.

_ Figure 10.19 shows the polarization patterns due to a single plane wave hyx o
g““'f for four different wavevectors k. For example, the top left panel considers
k lying along the z-axis. In that case, since ¢ = 0, Eq. (10.97) says that the
polarization is all U and that the strength scales as

Ak =g (10.98)

The strength of the polarization therefore increases as one moves away from the
y-axis. The important feature of this pattern, which characterizes the B-mode, is
that the strength of the polarization varies in the Z-direction, while the orientation
is in the & £ § direction. These two directions (varying strength and polarization
orientation) are not aligned or perpendicular to each other. The other panels show
the same feature.

Figure 10.20 shows the anisotropy spectrum in a standard CDM model with an
equal amount of tensors and scalars. The T and E spectra are similar to the tensor-
less case depicted in Figure 10.18. With tensors, the B spectrum is now nonzero,
albeit small. Studies suggest that polarization searches will help significantly in the
quest to detect small 7.

SUGGESTED READING

Gravitational lensing is described in exquisite detail in Gravitational Lenses (Schnei-
der, Ehlers, and Falco). An excellent, comprehensive review of weak lensing is in
Bartelmann and Schneider (2001). Electromagnetic polarization is a textbook sub-
ject, covered in, for example, Classical Electrodynamics (Jackson) and Radiative
Processes in Astrophysics (Rybicki and Lightman). Initial papers on gravitational
lensing by large scale structure include Blandford et al. (1991), Miralda-Escude
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Figure 10.19. Polarization patterns from a single plane wave hx(E) in a plane perpendicular
to the z-axis (3 out of the paper). Patterns from four different k are shown. Arrows depict

direction of increasing polarization strength. This direction is not aligned with the orientation
of the polarization.

(1991), and Kaiser (1992). Recent theoretical work connecting lensing observa-
tions to cosmological parameters includes Jain and Seljak (1997); Bernardeau,
van Waerbecke, and Mellier (1997); and Hu and Tegmark (1999). The onset of
the new millenium saw the first detections of lensing by large scale structure
in van Waerbecke et al. (2000); Wittman et al. (2000); Bacon, Refrgier, and
Ellis (2000); Kaiser, Wilson and Luppino (2000); and Maoli et al. (2001). Active
work continues. The future will undoubtedly bring observations of weak lensing
on large fields. Two proposal for such observations are the SuperNova Accel-
eration Probe (SNAP; http://snap.1bl.gov), which presently plans to devote
~ 20% of its time to weak lensing, and the Large Scale Synaptic Telescope (LSST;
http://www.dmtelescope.org).

Polarization of the CMB was studied in the seminal papers of the 1980s by
Bond and Efstathiou (1984) and Polnarev (1985). Kosowsky’s thesis (1996) is
a lucid Boltzmann-esque discussion of this work. The first papers to recognize
the importance of the E/B decomposition were Stebbins (1996); Seljak (1997};
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Figure 10.20. Anisotropy spectrum from a standard CDM model with equal amounts of scalar
and tensor perturbations (r = 1). The T and E spectra come from both scalars and tensors,
whereas the B-mode is due solely to tensors.

Kamionkowski, Kosowsky, and Stebbins (1997a,b), and Zaldarriaga and Seljak
(1997). I've followed the treatment of Seljak who worked in the small angle limit
because the algebra is simpler. The review article of Hu and White (1997b) is per-
haps the most accessible introduction into the recent literature on polarization of
the CMB, but it is a difficult subject. Even this lucid review with its illuminating
pictures requires a lot of effort to understand.

DASI (Kovac et al., 2002) detected polarization at the 5-sigma level. Previous
stringent upper limits, which are still valuable on large scales, were obtained by
Hedman et al. (2000) and Keating et al. (2001).

EXERCISES

Exercise 1. The probability that there will be a galaxy massive enough to act as
a lens between a quasar at redshift z and us is roughly proportional to the volume
between us. Compute

V(z) = / d3z. (10.99)
r<x(z)

The integral is trivial, but the dependence on z is not. Numerically compute V()
in a flat universe with cosmological constant. Plot V{(z) vs Q4 for z = 2,3, 4. If the
galaxy density does not depend on cosmology, then the expected number of lenses
scales simply as this volume. For z = 3, what is the ratio of lenses expected in a
flat universe with Q4 = 0.7 as compared with a flat, matter-dominated universe?
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Be warned that Keeton (2002), among others, has made a strong case that the
expected lensing frequency does not vary this dramatically with cosmology because
of differences in the galaxy densities in the different models.

Exercise 2. Compute the magnification of an image in terms of the convergence
# and shear 7, and 7,. Show that, in the limit of weak fields, the magnification
is related to the convergence via

p~142k. (10.100)

Exercise 3. It is often useful to write observable properties of lenses—such as
deflection angles and shear —in terms of a projected potential ¢.

(a) Using Eq. (10.14), determine the ¢ such that g = § + V¢ where V is the
gradient with respect to the 2D angular variable 6.

(b) Express the transformation matrix defined in Eq. (10.15) in terms of the pro-
jected potential.

Exercise 4. When the lens is at a fixed redshift {e.g., a single galaxy or a cluster as
opposed to large-scale structure in general) z; corresponding to comoving distance
xr from us, show that the projected potential ¢ from the previous problem reduces
to

$(0: z,) = 4GXE XL /dZRZ(}%) In |R - XLé] . (10.101)
XSXL

Here xs is the comoving distance out to the source; R is the radius in the plane

perpendicular to the line of sight; and £(R) is the projected surface density in this
plane.

Exercise 5. Compute the observed component of ellipticity €2 from an intrinsically
circular source; express it in terms of the components of the transformation matrix,
K,71, and, most importantly, vs.

Exercise 6. (a) Show that the power spectrum of the convergence is given by
Eq. (10.35). Show that the power spectrum of 2 is given by Eq. (10.36).

(b) Using CMBFAST or the BBKS transfer function, compute numerically P, for
standard CDM with Q,, = 1,h = 0.5,n = 1. Assume all background galaxies are
at redshift z = 1. At what [ do you expect your result — based on the linear power
spectrum — to lose validity due to nonlinear effects?

Exercise 7. Equation (10.34) gives the power spectrum of the convergence in the
small angle limit (I > 1). The more general expression is (Stebbins, 1996, the extra
factor of (27)° here due to differing power spectrum conventions)

3

(2m)?

Cry = 4ml?(1 +1)? / K212 (kx) Py (k) (10.102)
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when all background galaxies are at comoving distance x and

L) = /0 V1~ iay). (10.103)

(a) Verify, either analytically or numerically, that in the small-angle limit
Eq. (10.102) reduces to the expression for P.(l) in Eq. (10.34).

(b) Redo the calculation of the convergence power spectrum for the sCDM model
of Exercise 6, this time using the general expression in Eq. (10.102).

Exercise 8. In the text, we computed the angular correlations of galaxies (Chap-
ter 9) and the weak lensing correlation function (this chapter). One can also com-
pute the cross-correlation, which measures how correlated the galaxies are with
the mass. One way to measure this is to separate a galaxy sample into foreground
and background galaxies and measure the cross-correlation between the two sam-
ples. Since they are separated by such large distances, the only possible correlation
arises because the background galaxies have been magnified by the foreground mass.
This problem allows you to work out the background/foreground correlation func-
tion (e.g., Moessner and Jain, 1998). Incidentally, this cross-correlation function
can also be measured by the QSO/galaxy correlation function. Suppose the 2D
overdensity of foreground galaxies is due solely to intrinsic inhomogenities, so that
it is given by Eq. (9.3). Assume that the 2D overdensity of background galaxies
arises only from magnification. That is, galaxies that should not be included in the
survey because they are intrinsically fainter than the magnitude limit are magnified
and so appear brighter, thereby making the cut. If the magnification is u, then the
number of background galaxies in an angular patch is

np = Apu?SsTL (10.104)

Here 7, is the average number of background galaxies, and s is defined as
dlog N(m)/dm where N{m) is the number of galaxies at the magnitude limit m.
For the present problem, don’t worry about where this relation comes from (see
Broadhurst, Taylor, and Peacock, 1995, for an explanation).

(a) Express 6y, the background overdensity, in terms of x and s using Eq. (10.100).
(b) Find an expression for the convergence n(é) in terms of the mass overdensity.
First express it in terms of the relevant components of transformation matrix A of
Eq. (10.17), but then eliminate the potential there in favor of the density field é.
(c) Using these two expressions — Eq. (9.3) and your answer in (b) — for the fore-
ground and background overdensities, compute the angular cross-correlation func-

tion wye(6) = (55(8)8,(0)).

Exercise 9. As the wavevector k moves out of the #-3 plane, show that the Q-
polarization (for outgoing radiation in the 2- dlI‘eCthIl) changes as cos(2¢y). To do
this, first compute k n/, and then integrate Po(k - n') over solid angle, with the
weighting factor sin? ¢’ cos(2¢’) derived in Eq. (10.52).
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Exercise 10. This problem focuses on the U-component of polarization.

(a) We showed that the Q-component of polarization from unpolarized incident
radiation is given by Eq. (10.52), which stems from Eq. (10.50). The Q-component
thus depends on the difference between [¢; - 2|2 and |é; - §|2. For the U-component, &
and § must be replaced by unit vectors rotated 45°, i.e., (Z+%)/v/2 and (Z—4)/v/2.
With this replacement, derive Eq. (10.53).

{(b) Show that a plane-wave perturbation with wavevector k lying in the &-# plane
does not produce any U-polarization in the outgoing 2-direction.

(c) For the most general orientation of the wavevector, k= (sin f cos ¢, sin fsin ¢, cos 6),
show that U-polarization is given by Eq. (10.60).

Exercise 11. Draw the polarization patterns near the z-axis arising from a plane-
wave scalar perturbation with (a) 0, = 7/8,¢r = 7/8; (b) Oy = 37/4,¢x = 7/4;
(c) 6 = 37/4,¢, = 0; and (d) 6x = 37/2,¢x = 0. In each case, show that the
sense of polarization is aligned with (or perpendicular to) the direction in which
the polarization strength is changing.

Exercise 12. In the tight coupling limit, find an expression for I1 = @3 + Ops +
O pg.

(a) When 7 is very large, the terms multiplying it on the right hand side of
Eq. (10.63) must cancel. Write down this equality for ©p(u) in terms of the
moments, Oy, Opy, and G pg.

(b) Expand ©p(p) in terms of Legendre polynomials, keeping only the monopole
and the quadupole. Then equate the coefficients of Py and Ps.

(c) This leads to two equations for three unknowns. Show that solving for the two
polarization moments in terms of the temperature quadrupole gives © pg = 502 /4
and Opy = B3/4.

(d) Use the results of (¢) to determine II in terms of Og.

Exercise 13. This problem concerns the rotation matrix R given in Eq. (10.91).
(a) Act with R on the unit vector (0,0, 1) and show that it gets transformed into
k.

(b) Derive R. One way to do this is to first rotate the z-y-z frame about the z-axis
by an angle ¢'. Then, rotate about the y-axis by an angle —8’. The product of these
two rotations is R.

Exercise 14. In the text we considered polarization patterns from a single plane-
wave perturbation due to gravity waves. There are actually two such orientations.
We considered only A . In this problem, consider polarization from h,. In a frame
in which k is along the z-axis the anisotropies have a sin® § cos(2¢) dependence.
(a) Find the dependence of ©7 on angle in the more general frame in which k does
not lie along the z-axis.

(b) Determine @ and U from this incoming distribution.
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(c) Plot the anisotropy pattern near the outgoing z-direction for the four sets of
0k, ¢ shown in Figure 10.19.

Exercise 15. Find expressions for the cross-correlation spectra between the tem-
perature anisotropy and polarization anisotropy Cro(l) and Cry (1) in terms of ©,
and © p;. Assume scalar perturbations only. Express Crg; in terms of these.



11
ANALYSIS

Increasingly, theorists and even busy experimentalists are turning their attention
to the fundamental question of how best to analyze a set of data. The main reason
for this focus is that the quality and quantity of data have improved dramatically
over the past decade. There is every reason to believe that this trend will continue.
Anisotropies in the temperature of the CMB have been measured by dozens of
experiments already. The satellites MAP and Planck will take these measurements
to the next stage, but there is no reason to think this will be the last stage. There
are still polarization and very small scale anisotropies to be measured. The power
spectrum of matter is probed in a variety of ways; activity here, too, shows no
sign of letting up. After the completion of the Sloan Digital Sky Survey and 2DF,
the two largest redshift surveys to date, surveyors have begun planning large weak
lensing missions and even deeper galaxy surveys. These larger data sets create new
challenges in analysis.

A wonderful /disturbing example of these challenges was given recently by Julian
Borrill. He used scaling arguments to show that a brute-force algorithm for making
a map from the raw data of the Boomerang CMB anisotropy experiment would
take 12 years to run on current computers! Already, data sets are far too large for
brute-force calculations. And things are rapidly getting more dire. Since typically
the number of arithmetic operations scales as the number of pixels cubed, and since
MAP and Planck will have of order 10 to 100 times more data than Boomerang,
the situation cries out for creative solutions.

Another reason for the recent focus on analysis is one I hope to convey in
this chapter: analysis is exciting. The techniques that have been proposed to deal
with the complexity of forthcoming data sets are beautiful. The elegance of these
techniques is of course enhanced by their importance. But the elegance is there; for
this reason alone, it is well worth working through some of these recent advances.

336
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11.1 THE LIKELIHOOD FUNCTION

The basic building block of contemporary analysis is the likelihood function. This is
defined as the probability that a given experiment would get the data it did given a
theory. This seemingly simple definition is exceedingly powerful. Once we have the
likelihood function, with a caveat or two, we can determine the parameters of the
theory (best estimate is the place in parameter space where the likelihood function
is largest) along with errors (determined by the width of the likelihood function).
We start with a simple example and move on to the likelihood function for the
CMB and then a galaxy survey.

11.1.1 Simple Example

Suppose you want to weigh somebody. Since you are a scientist, you know that,
in addition to the measurement, you should also report an uncertainty. So you set
up 100 different scales and record the person’s weight on each of these different
scales. Given these 100 numbers, what value should you report for the weight and
the uncertainty in the weight? We all know the answer to this question, so let’s
introduce the formalism of the likelihood function in this simple context.

The likelihood function is the probability of getting the hundred numbers given
a theory. Our theory will be that each measurement is the sum of a constant signal
(the person’s weight) w and noise, with the noise drawn from a Gaussian distribu-
tion with mean zero and variance 2. Thus our “theory” has two free parameters,
w and o,,. If only one data point d was taken, the probability of getting d given
the theory would be

202

— w)?
Pldlw,0,) = L{d;w,0,,) = #exp {——(—d—-——)} . (11.1)

Here and throughout, P[z|y] denotes the probability of = given y. Equation (11.1)
simply restates the assumptions that d — w is equal to noise and that the noise is
drawn from a Gaussian distribution with standard deviation o,,. In the limit that
0w becomes very small, this function becomes sharply peaked at d = w. Since we
are making N;, = 100 independent measurements, the likelihood function is the
product of all the individual likelihood functions. That is,

N
EZ;GXP{_M}. (11.2)

(2mo2 )Nm/2 202

Notice that, although the data are distributed as a Gaussian, the likelihood function
is not Gaussian in all the theoretical parameters (it is in w but is not in o,,).

We are interested in the value of the theoretical parameters w and o,. Thus,
we don’t want P[{d,}|w,o,]. which is the likelihood function we have computed.
Rather, we want Plw.o,|{d;}]. To obtain the latter from the former we can use a
simple relation from elementary probability theory,

P[B N A] = P[B|A]P[A]
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= P[A|B|P|B]. (11.3)

In this context A = {d;} and B = {w, 0,1}, so the equality between the two lines
of Eq. (11.3) means that
P [{di}w, 0] Plw,ou]
P[{d:}] '
The denominator can be rewritten by realizing that when we integrate the prob-
ability Plw, o, |d] over all values of the parameters w,o,,, we must get 1. So the
denominator is equal to the integral of the numerator over w, c,,. As a result, the
denominator does not depend on the parameters w and o, so it does not affect
the place in parameter space where the likelihood function peaks or the width of
the likelihood function. For the most part, then, we are free to ignore it.

To get the probability we want we need the likelihood function — the first term
in the numerator —and also the prior probability Plw,o,]. If we possess prior
information about these quantities, we might use this information here. If we want to
be conservative, and assume nothing, we put in a uniform prior for the parameters.

Then,

Plw,ow|{di}] =

(11.4)

Plw,0,[{d:}] x L, (11.5)

the proportionality constant being independent of the parameters and therefore
of little interest. Many people find this idea of using prior information disturbing.
Indeed, even the conservative choice of a uniform prior is not as innocent as it
sounds. If we had taken the parameter to be g2 instead of o,, and we had assumed
a prior uniform in ¢2, (i.e., that equal intervals of o2 are equally likely), we would
get a different answer for the final probability (try it!). Nonetheless, the dependence
on the prior is a problem only in cases where the data are not very discriminatory. If
the data do have discriminatory power, then the likelihood function P [{d;}|w, 0]
will be sharply peaked and any reasonable prior will not affect the final results.

We can now find best-fit values for our parameters w and o,,. Simply find the
place in parameter space where the likelihood function is largest. In this simple
example, we can proceed analytically by differentiating £ with respect to each of
the parameters. First consider the derivative with respect to w.

or _ T —w) {_zﬁi";(di —w)Q}.

R e AR 11.6
Ow 02 (2mol)Nw/2 202 (116)

For this derivative to be zero, we set the prefactor

Nm

> (di—w) =0 (11.7)

i=1
or equivalently, the likelihood is a maximum when

Nu
d;. (11.8)

i=1

1
‘?Vm

w=w =
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the expected answer. Similarly, we can find what the most probable value of o2 is
by computing
oL Np  SMm(d; — w)?

_— = SRRALLS 11.9
002, 202 203 (11.9)

2

w?

and setting it equal to zero. Solving for the variance o
value of

we find a most probable

(11.10)

again the expected result.

We have found the best-fit values of our theoretical parameters. What is the
error in these best-fit values? The error is just proportional to the width of the
likelihood function. A simple way to approximate the width is to assume that L is
Gaussian in the parameters, or equivalently that In £ is quadratic in the parameters.
We know in general that the variance of a Gaussian distribution is twice the inverse
of the coefficient of the quadratic term, so we can simply identify the variance (the
square of the error) by computing this coefficient. Let’s work this out explicitly for
w:

. 18*IncC ~
ln E('LU) = 1 L:(’LU) 5—-%-2‘— w—_w(w - )2
= In L(w) — -2—]\-;12(10 —w)2. (11.11)

Thus the width of the likelihood function at its maximum is o, /ern/ ?. This is the
one-sigma error in our determination of w. This too is familiar: as more measure-
ments are taken, the noise gets beaten down by a factor of 1 over the square root
of the number of independent measurements. It is important to reiterate that the
uncertainty on our estimate of the weight is not equal to oy,.

Two numbers then sum up all N, measurements: our best guess for the person’s
weight -— in this case @ given by Eq. (11.8) —and the error on this estimate, here
equal to o, /N,i,/ 2 Therefore, we can compress all 100 measurements into just two
by rewriting the likelihood function as

L= ﬁexp{ﬂ} (11.12)

where the variance due to noise is now
Cn = . (11.13)
This form of the likelihood has precisely the same maximum and width as does the

form with all NV, data points. Thus it has compressed all the information in the
likelihood function into two numbers, w and Cy.
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Moving away from the weight metaphor, we can apply the ahove to the CMB.
Instead of a true weight, the signal s is the true CMB temperature at a given point
on the sky. The many measurements of the signal correspond to many measurements
of the temperature at that point. The signal at that spot is a constant, and the
data are the sum of the constant signal plus noise (atmospheric, instrumental, or
both). The compression of all the different measurements into one data point with
an associated error as in Eq. (11.12) is called map-making. We will take this up in
more detail in Section 11.5. Now, though, we must move beyond the likelihood of
Eq. (11.12). For we know that no theory predicts a value for the temperature at a
particular position on the sky; i.e., no theory predicts s. Rather all theories predict
a distribution of temperatures, from which s at a given pixel is drawn. We must
now incorporate this distribution into the likelihood function.

11.1.2 CMB Likelihood

Let’s convert the notation of the previous subsection to the CMB. The true tem-
perature anisotropy in a given spot on the sky s replaces w, while the data point
w (really the average of many measurements) becomes the estimated value of this
temperature anisotropy, call it A.! The variance of this estimator Cp, which rep-
resents the spread of the measurements, is also given. How can this set of data
(A, Cn) be compared with theory? The simplest theories, such as inflation, predict
that the signal in a given spot on the sky is drawn from a Gaussian distribution.
So the probability that the sky temperature falls in a range between s and s+ds is

1 —s2
= . 1.
P(s)ds TTeR exp { 2Cs } ds (11.14)

Here Cg is the variance expected due to the signal alone, independent of any noise.
This variance is directly related to the C)’s in a manner we will explore in Sec-
tion 11.2.

In order to get the likelihood function, we have to convolve the probability
distribution of Eq. (11.14) with the likelihood function of Eq. (11.12). Schematically

P[A|Cs] =) _ P[A|s] P[s|Cs]. (11.15)

More concretely, the likelihood function is an integral over all possible values of the
true anisotropy:

*  ds —s? 1 —(A ~5)?
L= / exp s exp ( ) . (11.16)
oo V21C5 2Cs } V2nCx 2Cn
The argument of the exponential here is quadratic in s so it is straightforward to
carry out the integration over s. Let us rewrite the argument of the exponential as

In Section 11.5 we explore ways to go from the raw data, the timestream, to the pixelized
map represented by A. For now, we assume that this step has already been taken.
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s2C A2 C CsA1?  CsA? A2
— As/Cn — = — — — 11.17
2Cs0n T ASION 56 = T3c.en [s C ] 2ocy 2oy (M
where the full covariance matrix is defined as
C=Cs+Cy. (11.18)

Changing variables in the integral over s to z = s — CgA/C leads to

o1 [Csar A /°° dr_ _012}
= VorCy P\2CCy 208 ) V2rCs P17 2CsCw

[ 1 —A?

This is our final expression for the likelihood function for a one pixel experiment.
This form is exactly what one expects: the measured temperature should be dis-
tributed like a Gaussian with a variance given by the sum of the variances due to
noise and signal.

We can easily generalize Eq. (11.19) to the more realistic case with a measure-
ment of NV, pixels. Then the likelihood function is

— 1 1 -1
L= (3m) N+ 72(det C)1 72 exp{—iAC' A} (11.20)

where now A is the data vector consisting of all N, measurements and C is the
full covariance matrix. In general, the noise covariance matrix can often be close to
diagonal, but the theoretical covariance matrix is not diagonal. Thus, the hard com-
putational part of evaluating the likelihood function is taking the determinant and
the inverse of the N, x N, matrix C. The passage from one theoretical parameter
(Cs) to a full matrix of parameters creates complications besides the computa-
tional. If there was only parameter, observers could quote results in the form of
one number. Now that all correlations need to be included, one needs to allow for
many different theoretical parameters, in principle all N,(N, + 1)/2 elements of
the (symmetric) covariance matrix Cs. In practice of course this is not done. First
of all, the covariance in all theories depends on the angular distance between two
points, so elements of the matrix corresponding to two sets of points separated by
the same distance are identical. Equivalently, a given theory is associated with a
full set of C)’s; as we will see shortly, these can be used to construct all the elements
of Cs. The second simplification is that most experiments have not been sensitive
to individual Cy’s but rather to the average power over a range of [, i.e., in a given
band. So, analysts typically fit for bandpowers, a fitting which requires even fewer
parameters to be determined.

As mentioned the matrix C = Cg + Cy is typically not diagonal. However, we
can get some nice insight into the likelihood function by considering the special case
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when C is diagonal and proportional to the identity matrix (all diagonal elements
the same). In that case,

N
1 1 Y5 A
“ (e 7] S | —

We can easily find the value of C's which maximizes the likelihood function in this
case. Differentiating with respect to Cs leads to

- No A2
6£ _ (Np/2) + l Zz‘:l Al . (11'22)
oCs (Cs+Cn) 2 (Cs+Cp)?
If we set this to zero, we find that the likelihood function is maximized at
N
1 <.
- 2 _ Cn. 11.23
CS Np ; Al CN ( )

Thus a useful rule of thumb for estimating the signal in a CMB experiment is to
calculate the variance of the data points (the first term on the right in Eq. (11.23))
and compare it with the average noise per pixel (the second term on the right).
If the data has larger variance than the noise, the theoretical signal is simply the
difference between the two.

We can also calculate the error on this determination of Cg. As we saw in
Section 11.1.1, the error is related to the second derivative of the log of the likelihood

function: 12
—821n£>_
0cs = | ——5— . (11.24)
= ("

In this case, it is easy to calculate the derivative. Differentiating Eq. (11.22) once
more leads to

PIL _ (Ny/2) S A
0Cs?  (Cs+Cn)2  (Cs+Cpn)¥
At the peak of the likelihood we can replace the vaz”l A2 by N,[Cs + Cy], so

[ 2
p

Equation (11.26) is a simplified version of a very handy, useful formula which can
be used to assess how accurately a given experiment will determine parameters.
This simplified version gives the errors on our one theoretical parameter, Cs. The
more general formula gives the corresponding errors when the free parameters are
the C;’s themselves. In that case,

(11.25)

oc, = (Cl -+—CN_[). (11.27)

2
@2+,

The only change moving from Eq. (11.26) to Eq. (11.27) is that the number of pixels
- or equivalently the number of independent measurements — has been replaced by
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(20+1)fs, where fs is the fraction of the sky covered. This makes perfect sense, for
in the full sky limit, one can measure at best 2/ + 1 a;,;,’s; that is, one can sample
the distribution characterized by C; only 2! +1 times. In fact, this is a fundamental
limit on the accuracy with which we can measure the C)’s. Even if there is no noise
(Cny = 0), there remains a fundamental uncertainty in the theoretical parameters
(either Cs or C}) due to the fact that we only have one sky on which to take
measurements. This limit, which we have already encountered in Chapter 8§, is
called sample variance, or in the limit of an all-sky survey cosmic variance.

11.1.3 Galaxy Surveys

At first, one might think that analysis of galaxy surveys would be completely differ-
ent from CMB analysis. There are a number of differences. The galaxy distribution
is fundamentally 3D, while the CMB anisotropies are a function of angular position
only. Also, CMB experiments measure a continuous field, the temperature field,
a function of position. Galaxy surveys count discrete objects (galaxies). A survey
is simply a list of positions of these objects. Another difference is that the CMB
temperatures are drawn from a Gaussian distribution, whereas the galaxies suppos-
edly trace the underlying mass distribution, which— at least on small scales— has
already “gone nonlinear.” Nonlinearities inevitably produce non-Gaussianity, even
if the primordial distribution is Gaussian.

Despite these, and other, differences, analysts have in recent years come to
realize that many of the same techniques can be applied to data from both the
CMB and galaxy surveys. To solidify the CMB-galaxy survey connection, we need
to formalize the concept of a pixel. In the case of the CMB, the notion of a pixel is
so natural that I didn’t even bother to define it above. For galaxy surveys, following
the treatment of Tegmark et al. (1998), we can define the data in pixel i as

A= /d% ¥i(T) [M] . (11.28)

Here n(7) is the galaxy density at £ and 7 is the expected number of galaxies at
Z, i.e., the number there would be if the distribution was uniform. The weighting
function ;, which determines the pixelization, will be discussed shortly, but first
let’s understand operationally how to determine n and 7 from a survey. A simple
way is to divide the volume into small sub-volumes, each of which is much smaller
than the total survey, but large enough to contain many (e.g., greater than 10)
galaxies. The density of a given sub-volume is then the number of galaxies in it
divided by its volume. For a uniform survey, the average density 7 would just be
the total number of galaxies divided by the total volume.?

There are two popular choices for v;, choices which determine the pixelization.
First is “counts-in-cells,” wherein

2A caveat: if the pixels as defined by 1; are overlapping, more care must be taken in computing
7 for then the same galaxy could appear in more than one pixel.
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$CIC(7) = {r‘z(f) if 7 is ip the ith sub-volume (11.29)
0 otherwise

In this case, the sub-volumes themselves are the pixels, and A; is the over(under)-

density in the ith sub-volume. Another useful pixelization scheme is a set of Fourier

pixels, which emerge from choosing

ik;-# .
Qlffourier(f) _€ { 1 Z inside the survey volume (11.30)

|4 0 7 outside survey volume

Here V is the volume of the survey. In this case, the pixels are not spatial, but rather
live in the Fourier domain. Still, even in this case, A; is the fractional overdensity
in the pixel.

No matter which pixelization is chosen, one cannot hope to write down a sim-
ple expression for the likelihood function, the probability of getting a set of {A;}
given a theory. The theory of galaxy formation is simply too complicated. Indeed,
even if one assumes that the galaxy density perfectly traces the mass overdensity,
the complications from gravity alone make the likelihood function non-Gaussian.
Nonetheless, progress can still be made by noting that the expectation value of A;
is zero by construction, with a covariance matrix®

(A;A%) = (Cs)i; + (Cn)ij (11.31)

exactly like the CMB case. We will discuss the signal covariance matrix in detail in
Section 11.2. The noise covariance matrix is actually easier than the corresponding
CMB matrix, which depends on the atmosphere, pointing, instrumental noise, scan
strategy, and other experimental details. In a galaxy survey, even if there was no
signal, the expected value of the square of the density, (n?(Z)), would still differ
from 72 simply because there are only a finite number of galaxies in a given sub-
volume. Thus, even in the absence of any intrinsic clustering of the galaxies (A;A;)
would be nonzero because of Poisson noise. You can show in Exercise 3 that the
covariance matrix due to Poisson noise is

/ B wz(f)z/)*(z). (11.32)

CN 1,_1 =
Armed with this noise covariance matrix and the signal covariance matrix we

explore next, galaxy survey analysts can use many of the same techniques as the
CMB analysts.

11.2 SIGNAL COVARIANCE MATRIX

Until now, we have sidestepped the question of how the expected variance in a given
experiment is related to the underlying power spectrum. That is, we have learned
that the predictions of a given theory are a set of C;’s and P(k). If we want to
relate theory to experiment —and we do! — we need to know how to turn this set
of predictions into a covariance matrix Cyg.

3The angular brackets here denote an average over the distribution from which A; is drawn.
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11.2.1 CMB Window Functions

For simplicity, let us first consider the diagonal element of the covariance matrix:
Cgii = (si8:) (no sum over 1) (11.33)

where the average (...) is over many realizations of the theoretical distribution and
the subscript i labels the pixel. The temperature difference reported in each pixel
can be expressed as

where B; is the beam pattern at the ith pixel and © is the underlying tempera-
ture. As an example, the beam pattern from the MSAM experiment is shown in
Figure 11.1. It is typical of the patterns produced by many CMB experiments: the
difference of the temperature in two (or more) regions of the sky, and in each region
the temperature is sampled by a beam which is roughly Gaussian.

Figure 11.1. The beam pattern for the MSAM experiment (see Wilson et al., 2000, for a
summary). The anisotropy reported at a given pixel is roughly the difference between the
temperature at +0.5 degrees from the center of the pixel. The beamwidth is also on the order
of half a degree.

To find Cs we square Eq. (11.34) after expressing the temperature field as an
expansion over spherical harmonics as in Eq. (8.60):

C; W11 ~ ~7 ~ N ~ * ~ 1 *
T2 = /dn/dn B;(7)B;(n )ZY“" () Z Yy (A Y apmay ) (11.35)
Um’

Im
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Using Eq. (8.63), we find that the sums over I'm’ collapse to give
CS” = /dn/dﬁ’B ZC,ZY,m )Y (7). (11.36)
But " Y, (A)Y: (7)) = 2L+ 1)P(n- )/47r,so

o !
Csa 3 ?_—;lclwl.“ (11.37)
1

T2
where the window function is defined as
W= /dn/d VP - R). (11.38)

Until now, we have been thinking of 7,7’ as three-dimensional unit vectors.
If 7' and A are sufficiently close to each other, though, we can use the flat space
approximation. The three-dimensional unit vectors can be safely approximated as
two-dimensional vectors Z, Z’ in the transverse directions. The distance between T
and 7’ (measured in radians) is then equal to the angle between 7 and #’. In this
limit, the argument of the Legendre polynomial in Eq. (11.38) becomes

-7 =cos(|T—T)). (11.39)

The diagonal window function is therefore

Wi = /d2x/dzr’Bi(j’)Bi(f’)B<cos(|f—i”|)). (11.40)

A useful property of Legendre polynomials is that they become equal to the zero-
order Bessel function in the limit of large ! (the small-angle limit we are working
under here). So,

Pi((cos (17— 1)) = Jo (117 — 7')

l 27
T o

where the last line is an integral representation of the Bessel function (Eq. (C.21)).
We can simplify further by promoting ! to a 2D vector with direction chosen so that
the angle betwegn l and 7 —Z' is equal to ¢. Then, the argument of the exponential
simplifies to —il - (£ — &’). This form is so useful because the ¥ integral for example
is now

d¢ —iljr-7 |cos¢ (1141)

/dszi(:r) -itF = B, (11.42)

where B; is the Fourier transform of the beam pattern. The Z’ integral is the
complex conjugate of this, so the window function simplifies to

W, .~ 1 /2nd¢‘1§-(f)|2 (11.43)
l.n_g o i . -

Thus calculating the window function reduces to a two-step process:
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e Calculate the 2D Fourier transform of the beam pattern.
e Find the angular average of the square of this transforni.

The window function is a function of the experiment only and indeed contains
information about the beam size and chopping angle of the experiment. However,
it is not the whole story. A complete evaluation of the likelihood function entails
calculating all of the elements of the covariance matrix Cg. A given off-diagonal
element of the matrix is given by Egs. (11.37) and (11.38), with one of the indices
¢ changed to j. The matrix is symmetric, so it is characterized by N,(N, + 1)/2
elements where NV, is the number of pixels. Thus, for an N,-pixel experiment there
are really N,(N, + 1)/2 window functions!

11.2.2 Examples of CMB Window Functions

Gaussian Beam. Let us take a break from formalism and calculate a simple (diago-
nal) window function. Consider a Gaussian beam; this is a good approximation to
many CMB experiments. The beam pattern for the ith pixel is

exp(—%}j#)z). (11.44)

We may choose &; to be zero for the window function computation. The Fourier
transform of the beam is also a Gaussian,

B,(7) =

2no?

5 L 2 —ilF z?
B.() = 2mwo? /d e exp( 202>

=e1'77/2, (11.45)

In this simple case, B does not depend on the direction of [ so there is no need
to take the angular average. The window function is then simply the square of the
Fourier transform,

I’V['ii = 6_1202. (1146)

The window function falls off sharply at large [. Large [ corresponds to small angular
scales. Structure on scales smaller than the beam size is inevitably washed away
and undetectable. Figure 11.2 illustrates the series of steps, from beam function to
Fourier transform to window function.

There are two subtleties associated with the Gaussian window function. First,
one must avoid the temptation to set o equal to the number which is often quoted
in papers, the full width half maximum (FWHDM). The latter is twice the value
of z for which B(Z) drops to half of its maximum. So ¢ = FWHM/(,/81In(2)) =
0.4245 FWHM. The second subtlety has to do with normalization. It is crucial to
determine how observers have normalized their output. The prefactor in Eq. (11.44)
ensures that if the temperature field was uniform, the reported temperture would
be equal to the underlying one. In this simple case, the choice is obvious; in general
factors of 2 can easily be lost.
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Figure 11.2. A one-degree Gaussian beam is shown in the upper left panel and its Fourier
transform, also a Gaussian, in the upper right. The resulting window function is shown in the
bottom panel.

Differencing a Gaussian Beam. As another straightforward example, let us consider
an experiment which takes the difference between the temperatures at two adjacent
points on the sky. For simplicity, let us first assume that the Gaussian beam is
infinitely small, so it can be approximated as a Dirac delta function. Then,

B(z.y) = 6(y) [(z — x0) = 6(z + z0)], (11.47)

where the chopping angle, or the distance between the plus and minus position, is
2x9. The Fourier transform of this is straightforward:

—

B(l) = 2isin(l,xo). (11.48)

The window function is the angular average over all [ directions. Choosing the angle
between [ and the x— axis to be ¢, we have

4 2
W, = — d¢ sin’ [lzo cos @)
2 Jy

1

2w
= l/ do (1 — cos [2lxg cos ¢])
0

s
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=2(1 — Pi[cos(2z0)]), (11.49)

where the last line follows from Eq. (11.41).
Until now, we have neglected the finite width of the beam. However, this turns

out to be very simple to rectify. A realistic heam will be the convolution of the chop
described by Eq. (11.47) with a finite beam size:

1 , .1‘—2:' 2+ __yl2
B(z,y) = 503 /dr dy’exp{— ( S+l ) }

202

x 6(y") [6(z" — xo) — 6(a’ + z0)]- (11.50)

Recall, though, that the Fourier transform of the convolution of two functions is
simply equal to the product of the two Fourier transforms. The angular averaging
over this product is unaffected since the Gaussian has no angular dependence.
Therefore, the final window function is

W, = e~ (1 — P cos(2x0)]) . (11.51)

This window function is shown in Figs. 11.3 and 11.4 along with the beam pattern

One Dagrae Beom; Thrae Degrees Throw
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Figure 11.3. Differencing a Gaussian beam. Upper left panel shows the beam pattern and the
upper right its Fourier transform. The circle in the upper right corresponds to [ = 50. The
bottom panel shows the window function.
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One Dagrae Beom; One Degrae Throw

Beom Pattern Fourler Transfarm

2.0
1.5
1.0

0.5
0.0

vebe e donetene by

T O T T

g

30 100 180 200 250

o

Figure 11.4. Same as Figure 11.3 except the chopping angle is now much smaller. Note the
lack of support at large scales due to the reduced chopping angle. This can also be seen in the
Fourier transform which vanishes near the center of the circle.

for two different chopping angles. Note that for { much smaller than 1/xzg, the
Fourier transform vanishes. So, unlike the undifferenced beam, there is no support
for small [. That is, chopping removes information about structure on large scales.
As the chopping angle gets larger, more and more information is obtained about
large scales.

11.2.3 Window Functions for Galaxy Surveys

We now consider the signal covariance matrix for galaxy surveys. By setting the
term in square brackets in Eq. (11.28) to d(F), we see that the signal covariance
matrix is equal to

(Cs)ij = (A:4;)

= /d% >z’ ()Y (T)E(F - 7). (11.52)
no noise

The correlation function £ appears here because it is equal to the expectation value
of the product of two overdensities, Eq. (9.7). Since £ is the Fourier transform of
the power spectrum, we see that the signal covariance matrix for a galaxy survey is

dSk dBkl dSk// SN Tt / i" n F—i ooy 7
(Cs)y = [z ds [ S G TRy @) Pk e o
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3 ~ P d —
~ [ G PR (). (11.53)

The second equality follows simply after integrating over ¥ and Z’ to get 3D Dirac
delta functions and using these to perform the integrals over k&’ and k”. It is con-
venient to define the window function as the angular part of this integral

Witk = [ TR0 E (11.54)
so that gk TE3P(k
(Cs)ijz/o - [ 271'(2 )]Wij(k). (11.55)

Notice that the window function for galaxy surveys has the identical form as that
for CMB experiments. In both cases, it is the angular average of the square of
the Fourier transform of the weighting function (either B or ). Also, you should
recognize the quantity in square brackets in Eq. (11.55) as A%(k), the contribution
to the variance per In(k). Let’s turn to some examples of window functions of galaxy
surveys.

Volume-Limited Survey. Consider a survey which observes all galaxies within a
radius R from us. If we use Fourier pixelization (Eq. (11.30})), then the Fourier
transform of the weighting function is

Ui (k) = / Sl emikEgik E (11.56)
|Fl<R |4

We will shortly carry out this integral, square, and then average over all angles to
get the diagonal window function of Eq. (11.54). First, though, let’s ask what we
expect quahtatlvely Equatlon (11.56) is the Fourier transform of the survey volume
as a function of k — k;. The survey volume is a sphere of radius R. In general, when
a function is confined to a region r < R, the Fourier transform is confined to
k < 1/R. Here then, 9 will be nonzero only when |k — k; is less than 1/R. The
window function therefore should peak at k = k; and have a width of order 1/R.
More quantitatively, the integral in Eq. (11.56) is

~

47 R . - -
’l/)l(k) = m/o dr T Ssin ('k — klll')

- |~ IF — K| Reos (1k = Ki|R) +sin (JF - k| R)| (11.57)

v (1k-&l)

The diagonal window function is the angular average of the square of this. Defining
Y= Ik k; |R, this angular average is

3 2n
Wi (k) = 47TR / / dab (siny — zcos y)
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872RS ' d
= %u/ ——/61— (siny—ycosy)2 (11.58)
1Y

where 4 is the cosine of the angle between k and k;. Integrating over y instead of
u leads to

9 (k+k,)R dy
Wi(k) = ——— - 42 11.59
) = 5 /w_k,m 2 j3) (11.59)

since the volume of the survey V = 47 R3/3. This window function is shown in
Figure 11.5 for several different values of k; R. Notice that modes with wavelength
much smaller than the size of the survey k; R > 1 do indeed have window functions
sharply peaked at k = k;, with a width of order 1/R. The largest wavelength
modes, however, pick up contributions from all scales (e.g.. the k;R = 3 curve in
Figure 11.5). Not surprisingly, surveys do not do a good job measuring the power
on wavelengths comparable to their sizes.

Volume Limited Survey
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Figure 11.5. The window function for a volume-limited survey. Narrow window functions
enable one to determine the power spectrum at the wavenumber of interest more accurately.
Modes with wavelengths comparable to the size of the survey (e.g., here k; R = 3) have broad
window functions.

The height of the window function is also important, for it determines the ampli-
tude of the signal covariance matrix. When considering modes with wavelengths k- !
much smaller than R, you will show in Exercise 7 that

P(k;)
o

(Cs)ii =~ (11.60)
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[t is instructive to compare this to the corresponding element of the noise matrix,
as given in Eq. (11.32). For the diagonal elements. |1;]? in the integrand is 1/v?
as long as T is in the survey volume. Thus,

1
AV’
equal to the inverse of the total number of galaxies in the survey. The ratio of the
diagonal elements of the signal and noise covariance matrices is therefore

(Cs)i _
(Cn)is

Harking back to Eq. (11.27), we identify this ratio as the ratio of cosmic variance
to Poisson noise. A rough estimate is that i ~ 1h*Mpc™>, so cosmic variance
dominates as long as the power spectrum is larger than 1 h=3 Mpc®. Looking back
to Figure 7.11, we see that on large scales, this is always satisfied. On small scales,
eventually the power spectrum does drop beneath lh_?’Mpcg, the linear power
spectrum of standard CDM at k ~ 10hMpc™!. On very small scales, therefore,
Poisson noise becomes important.

Pencil-Beam Survey. Now consider a survey which is very deep, but also very nar-
row, with the general shape of a pencil (Figure 11.6). The Fourier transform of the

T T T R

(Cn)ii (11.61)

Pk;)h. (11.62)

P ) - 03 hd

- L -

Figure 11.6. A pencil-beam survey with depth L much larger than the typical size of the
narrow dimensions, R. The z-axis in the text is taken to be aligned with the long dimension.

weighting function in this case is

3 -~ o
Pi(k) = / é—ziei<kft-’“>‘fe(z + L/2)O(L/2 — 2)O(R? —2? —y?)  (11.63)

where © is a step function, equal to 1 if its argument is positive and zero otherwise.

It is easiest to carry out this integral in cylindrical coordinates, wherein 24y =r2
If we define ¢ = k; — k, then
- = 1 L/2 ) R 27 . g
Yi(k) = —= / dze'l=? / drr/ dfet? T e, (11.64)
TR*L —L/2 0 0

The azimuthal integral can be done using Eq. (C.17), the integral over z using
Eq. (C.15), so that

. . R
Du(F) = griola-L/2) [ drrio(aer). (11.65)
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Finally the integral over r is RJ,(q-R)/q,, which you can see by differentiating
the integral with respect to ¢.R and then using Eq. (C.22). Therefore, the Fourier
transform of the weighting function is

BB) = s la: L/ 4R (11.66)

Equation (11.66) indicates that the Fourier transform of the weighting function
is anisotropic. Indeed, even before deriving the various flavors of Bessel functions, we
should have expected this Fourier transform to be compact along the g, direction
and broad in the transverse plane, i.e., shaped like a disk. This flows from our
intuition that the Fourier transform of a function localized within a radius R should
be localized within a region 1/R. Indeed, in the z direction, jo{q,L/2) falls off once
q. gets larger than 2/L. The same holds for J; (g, R): it becomes small for ¢, > 1/R.
The ringing associated with these Bessel functions is a manifestation of the fact that
the Fourier transform of a top-hat function oscillates for large wavenumbers (e.g.,
Exercise 6).

To get the window function for a pencil-beam survey, we need to_average
Eq. (11.66) over all directions k. This average will differ for different k;. Let’s
choose k; to point in the Z-direction as one concrete example. The averaging will
pick up contributions only when ¢ = k; — k has z-component smaller than L~} and
transverse component smaller than R~!. Since the transverse component of k; is
zero in this example, many k will contribute, as long as their transverse component
is smaller than R~!. Therefore, we expect the window function to get contributions
from many wavenumbers, not to be sharply peaked around |l;1| A similar argument
holds for other directions k;. Figure 11.7 shows the window function for a pencil-
beam survey. As expected, it is broader than that for a symmetric, volume-limited
survey: a given scale k; picks up contributions from smaller scales k > k;.

11.2.4 Summary

We have determined the signal covariance matrix for CMB experiments which mea-
sure a filtered version of the temperature in a given set of pixels and for galaxy
surveys which measure the overdensity in a given set of pixels. Not surprisingly,
the fundamental relation between the covariance matrix and and the underlying
power spectrum is very similar in both cases: the connection is provided by a
window function determined by the experimental/observational specifications. It
is interesting to point out that we have encountered natural window functions in
Chapters 9 and 10. The angular correlation function of Section 9.1 is simply the
signal covariance matrix of measurements of the 2D galaxy distribution. Recall from
Eq. (9.13) that this too is an integral of the 3D power spectrum convolved with a
window function (we called it a kernel back then). The same is true for the peculiar
velocity (Eq. (9.29)) and the shear field that can be measured with weak lensing
(Eq. (10.32)). In all of those cases, the window function is determined partly by the
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Figure 11.7. The window function for a pencil-beam survey with length 10 times larger than
width. These window functions are for k, pointing in the z-direction, along the long dimension
of the survey.

observational strategy (e.g.., how deep one goes), but also by the intrinsic nature
of the measurement itself. For example, the 2D galaxy distribution intrinsically is
a projection of the 3D distribution. So it is seductive to think of CMB anisotropy
experiments and 3D galaxy surveys as more pristine measurements of the power
spectrum. Analysts are hard to seduce, though. They recognize that, mathemati-
cally, the different sets of measurements can all be analyzed in the same fashion.
So the likelihood function can be used on virtually all cosmological observations. It
is a very powerful tool.

It is also simple. Were it not for the size of modern cosmological data sets, we
would be done. At least in the Gaussian case (CMB or even galaxy surveys on
large scales), the likelihood function is given hy Eq. (11.20). The data points are
simply the pixelized temperatures or overdensities, while the covariance matrix is
the sum of the noise and signal covariances. The noise covariance matrix is usually
estimated from the data itself. while the signal covariance matrix is computed
by convolving the theory (i.e., the C)’s or the power spectrum) with the window
function. In principle. then, one could compute this likelihood function at many
points in parameter space, find its maximum (this constitutes the set of best-fit
parameters), and the contour delineating the region in which. say, 95% of the volume
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lies. This contour would then be the 95% confidence region of the parameters.
Many experiments of the previous decade, especially CNIB experiments, have been
analyzed in this brute-force fashion. Times are changing, though, and the brute-
force approach has already become impractical.

11.3 ESTIMATING THE LIKELIHOOD FUNCTION

To illustrate the need for new techniques of likelihood computation, let us consider
a concrete example: the data set from the Boomerang anisotropy experiment {Net-
terfield et al., 2001). There are 57,000 pixels on the sky covered in this set. The the-
ory and noise covariance matrices are both nondiagonal and both 57,000 x 57,000
dimensional matrices. Inverting these beasts with present computers is possible,
although slow.* If we needed to invert only once, this might be acceptable. But,
we need to evaluate the likelihood function at many points in parameter space to
find its maximum and the region at which it falls to, say, 5% of its maximum. This
would be barely manageable if the parameter space was one-dimensional. A one-
dimensional fit, though, would lose most of the information contained in the map.
The data are actually sensitive to the power on many different scales. Therefore,
the parameter space — the amplitude of the power on these many different scales —
is multidimensional, “multi-” here of order 20. The likelihood function should in
principle be computed about 10 times in each dimension, for a total of 1020 com-
putations. Since each inversion takes several hours, this is not feasible. All of these
estimates are for the Boomerang experiment. The MAP satellite will have 10 times
as many pixels and be sensitive to a wider range of scales. Planck will be more sen-
sitive still. Thus, we need new techniques, shortcuts, for evaluating the likelihood
function and finding its maximum and its width.

11.3.1 Karhunen—Loéve Techniques

The first technique was discovered many years ago and reinvented by a number of
people over the past few years to deal with both CMB data (Bunn, 1995; Bond,
1995) and with data from galaxy surveys (Vogeley and Szalay, 1996). It is a method
for speeding up the computation of the likelihood function. The fundamental idea
is simple: any experiment, no matter how good, will have many modes which are
useless, fundamentally contaminated by noise.® If it was obvious which modes were
most noisy, then we could greatly simplify the likelihood calculation by not using
those modes. If only 10% of the modes carried useful information — and this figure is
roughly what is found in many present-day experiments — then the data set would
be reduced by a factor of 10. The covariance matrices would now be (N/10) x (N/10)
and the inversion (which scales as N*) would speed up by a factor of 1000. It is a
nice, simple idea. The only problem is finding the modes which are useful.

4Note that the problems outlined here assume that we are handed the map of 57.000 pixels.
Mapmaking is actually the most difficult computational part of the analysis!

5 . . L .
2 A mode here is defined as a linear combination of the data points.
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If the signal and noise covariance matrices were diagonal, then it would be
simple to ascertain which modes had high signal-to-noise. The pixels with diagonal
elements Cs > Cn would have signal-to-noise greater than 1; the others would be
low-signal modes. The problem is to identify the low modes in the more realistic case
where the covariance matrices are not diagonal. This is precisely what Karhunen-
Loéve does. To illustrate the technique, let us first write it down formally and then
work out a simple example explicitly.

We assume there are N, data points, A,. Each data point is presumed to be the
sum of both signal s; and noise n;. Each of these are assumed to be uncorrelated
(the noise knows nothing about the signal and vice versa). Thus the full covariance
matrix is

(AiA]-> ECU’ :CS.ij‘+'CN.ij- (11.67)

The Karhunen-Loeve method takes advantage of the fact that instead of computing
the likelihood function using A; and its covariance matrix C, we could instead use
rotated data

where R is a real matrix. The covariance matrix associated with A’ will be
Ci; = ((RA)i(RA);)
= RiwR;;Ciryr (11.69)
In matrix notation this is simply
C' = RCRT (11.70)

where RT is the transpose of R.
The Karhunen-Loéve method consists of three such rotations.

1. R, : Diagonalize Cy
2. Ry:Set C\y, =1
3. Rj3: Diagonalize Cyg

The first step is always possible since Cy is a real, symmetric matrix. Once
C'y has been diagonalized, it is trivial to perform step 2: simply choose R; to be
diagonal with elements equal to 1 over the square root of the diagonal elements
that emerge from step 1. Finally, step 3 is straightforward since again Cs is a real
symmetric matrix. Let’s evaluate the new theory and noise covariance matrices.
The theory matrix is

C% = R3RaR,CsRY RyRY. (11.71)

Note that, since Ry is diagonal it is equal to its transpose. The matrix C% is a
diagonal matrix. Now consider C},. After step 2, it was simply the identity matrix.
So we need consider only the effect of step 3. In fact, since Rj is unitary, it has
no effect (R3IR} = I). Thus, CYy is still equal to the identity matrix. This has
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profound implications. It means that the elements of (the diagonal matrix) C% are
a measure of the signal-to-noise squared of the modes! The data points

A} = (RsRoR))A, (11.72)
then have diagonal covariance matrix
N 1+ Cév 1= ]
ALY = it . 7
(AJAY) {0 P4 (11.73)

These modes can be ordered according to their signal-to-noise values. Modes with
large C'y can be kept; those with C¥ significantly smaller than 1 can be eliminated
from the analysis.

Let us work through a simple example to see how Karhunen-Loeve picks out
the highest signal-to-noise modes. The example is a simple two-pixel experiment

with diagonal noise:
o2 0

On

The signal covariance matrix does have correlations between the two pixels so

2 1 €
Cs = o2 (6 1) (11.75)

where o is the expected rms in the pixel and —1 < € < 1 measures how correlated
the signal is between the two pixels. Steps 1 and 2 of the Karhunen-Loéve method
are particularly simple since Cy is diagonal. Thus,

Ri=I : BRy=-1I (11.76)

On

To complete step 3, we need to diagonalize

2
R,R\CsRTR, = Z_2 (1 6) . (11.77)

To diagonalize the matrix in Eq. (11.77), we must solve

]

o; [ cosf  siné 1 €\ [cosb —sinf\ _ (Cs,; O (11.78)
o2 \ —sinf cosf e 1 sin® cosf ) 0 Cso ’

for the rotation angle 8. Carrying out the multiplication on the left side leads to

0 (1+esin(20)  ecos(20) \ _ (Cty O (11.79)
02 ecos(20) 1-—esin(20) ) — 0 Csqa/ .

Equality in the off-diagonal elements holds if & = 7 /4, so the new theory covariance

matrix is ) 0
¢ _ g 1+e
=2 (e ,0). w50

)
Un
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The rotation matrix which diagonalized the theory matrix is the first one on the
left in Eq. (11.78) with 6§ = /4, so

Ry = \/Li (_11 i) . (11.81)

The new modes are A’ = Rz Ry A; explicitly, they are

A (B1+29)
L Vo,
r_ (_Al +A2)

= (11.82)

The new modes (Eq. (11.82)) and their covariance matrix (Eq. (11.80)) are easy
to understand if we consider the special cases of ¢ = 0 and € = +1. If € = 0 the two
modes have the same signal-to-noise, o,/0,. If the expected signal is large, these
modes both carry information; if not, the noise swamps the signal. In either case,
each mode — the sum and the difference — is equally {un)important. If ¢ = +1 then
the theory predicts the same signal in each pixel. In that case, the difference mode
(A%L) is worthless, since only noise contributes to it. We see this from the fact that
(C%)22 goes to zero as € — 1. Its signal-to-noise is zero. The other mode — the sum
of the two pixels — has signal-to-noise of V20, /o n since the two measurements beat
down the noise by a factor of v/2. This would of course have emerged from the full
2 x 2 likelihood analysis. But, using both modes in the analysis is a waste of time,
a waste which is detected and obliterated by the Karhunen-Loéve method.

Bunn (1995) and Bond (1995) independently analyzed the COBE data by look-
ing at Karhunen-Loéve modes. Figure 11.8 shows several such modes: clearly the
ones with the highest signal-to-noise are the large-scale modes, indicating that
COBE was sensitive to large-angle anisotropy. The smallest signal-to-noise modes
are the small-scale modes which COBE did not have the resolution to measure.

Vogeley and Szalay (1996) first applied this technique to galaxy surveys. In this
context, the Karhunen-Loéve method has another useful feature. Recall from Sec-
tion 11.2.3 that on large scales, the signal covariance matrix is larger than Poisson
noise, while on small scales the reverse is true. When we order the modes, then,
large-scale modes will have the largest ratio of signal-to-noise. Thus the Karhunen-
Loeve basis will preferentially pick out large-scale modes. This is extremely use-
ful because we are often most interested in eliminating small-scale modes — which
are afflicted by nonlinearities and bias— from an analysis. The Karhunen-Loeve
method does this automatically! An example is shown in Figure 11.9. For example,
the first eigenmode roughly weights pixels only on the basis of their distance from
us. It essentially takes the difference between the number of galaxies close to us and
the number at moderate distances. The second mode takes a different component
of the dipole, the difference between the number of galaxies on the left and the
number on the right. Modes with lower weight take successively higher moments of
the galaxy distribution.
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Figure 11.8. Modes of the COBE anisotropy experiment (from Bunn, 1995) ordered according
to their signal-to-noise. The mode with the largest signal-to-noise (upper left) is sensitive
predominantly to the quadrupole, while the mode with the smallest signal (bottom right) is
sensitive to much smaller scale structure.

There are several drawbacks to the Karhunen-Loéve method. First, we need
to assume a Cs to begin with, in order to identify the modes that are worthless.
Although this might seem like a big problem-—the modes that are thrown out
for one choice of C's could conceivably be important for another — people who have
studied the issue assure us that it is not. They claim that the choice of the important
modes is relatively insensitive to the input, assumed Cg. Another drawback is
computatjonal. Once the important modes are chosen, Cg needs to be recalculated
at many points in parameter space. In most of parameter space it will not be
diagonal at all (it is only diagonal at the special point, the Cs that was chosen
as the input spectrum initially). Thus at every point in parameter space, we still
need to invert nondiagonal covariance matrices. This drawback is of course partially
offset by the fact that — by virtue of the much smaller size of the matrices— the
computation is now much faster. Nonetheless in many instances this is not enough
to make the full computation managable. We must find still other ways of reducing
the computational burden.

Before turning to one such way, let me mention one more use of the Karhunen-
Loeve method. It is an extremely useful consistency check. This is perhaps best
illustrated with an example. The Python experiment (Coble et al., 1999) measured
anisotropy over a large (for that time) area, with very low signal-to-noise. In prin-
ciple, this is a good idea because the large area beats down cosmic variance. In
practice, though, it presents challenges because it is difficult to check the consis-
tency of the data. One typically wants to break up the data into several subsets and
make sure that each subset sees the same signal. With Python, this was very diffi-
cult because noise dominated each subset. One way to check for consistency then
is to work with Karhunen-Loéve modes. In this basis, each data point d should be
drawn from a Gaussian distribution with variance equal to 1+ C% ;. The histogram
of d/(1+ C%,;,)}/? should then look Gaussian. Figure 11.10 shows this histogram
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10 11 12

Figure 11.9. The 12 modes with highest signal-to-noise for the CFA2 survey (from Vogeley
and Szalay, 1996). Modes pick out the large-scale structure of the galaxy distribution. In each
case, we are at the bottom of the slice, and the top region is farthest from us.

using a preliminary noise matrix. There were 650 measurements, but about 70 of
these were eliminated for reasons that needn’t concern us, so ignore the central
spike at d = 0. If the remaining 580 data points were distributed as a Gaussian we
would expect about two of them (0.3%) to have absolute value greater than 3, and
none of them to have absolute value greater than 4. In fact, Figure 11.10 shows that
nine modes are more than 4-sigma away from zero. The distribution is definitely
not Gaussian with this noise model.

This analysis led the Python team to question the model they had constructed
for the noise covariance. (Adjacent points were more correlated than they had
allowed for.) Redoing the analysis with a new noise matrix led to the results in
Figure 11.11. This technique for testing data quality has been used in a number of
other venues, often identifying signs of trouble.
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Figure 11.10. Histogram of data from one modulation of the Python CMB anisotropy mea-
surement with a preliminary noise matrix. The data are in Karhunen—Loéve basis in which the
covariance matrix is diagonal, so C~124 should be distributed as a Gaussian with variance
equal to unity. The central spike should be ignored as 70 of the modes have been set to zero.
The best fit Gaussian is the solid line. The counts are lower than the best-fit Gaussian in the
central region, but above it in the tails.

11.3.2 Optimal Quadratic Estimator

One simple way of speeding up the likelihood calculation is to employ one of many
successful root-finding algorithms. We are searching for the place where the likeli-
hood function is a maximum, so we want to find

=0 (11.83)

A=)
where for simplicity I’ve assumed that the likelihood function depends on only one
parameter A (we’ll generalize this shortly) and X is its value at the maximum of the
likelihood.

An efficient way to find the root is to consider the derivative of the likelithood
function evaluated at some trial point A = A%, Expand this derivative around A(%
in a Taylor expansion:

L) = LAA®) 4 £, (M) (X - /\(0)) +... (11.84)

where I have introduced the notation of writing partial derivatives as subscripted
cominas:
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Figure 11.11. Same as Figure 11.10, but this time with an improved noise matrix. Note that
there are no data points with absolute value greater than 3C*/2. The counts are consistent
with a Gaussian distribution.
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Since £ is maximized at X, its derivative vanishes there; hence the right-hand side

of Eq. (11.84) must also vanish. Setting it to zero leads to a simple expression for
A

(11.85)

gy/\()\(O))

where the ~ sign acknowledges that we have neglected higher order terms in the
Taylor expansion in Eq. (11.84).

The solution in Eq. (11.86) assumes that the likelihood function is a quadratic
function of the parameter A. In fact, it is nothing of the sort: even in the simplest
cases the likelihood function is not a quadratic function. For example, far from its
maximum, £ typically becomes exponentially small. A much better approximation
therefore is that £ is a Gaussian function, so that In(L£) is quadratic in A. We can
repeat the derivation above since the place where £ is maximized is also the place
where In £ is a maximum. The estimator for A is now

(In L) A (A®)
(In £) (A

A= A0 — (11.86)

A=2O0_ (11.87)

Figure 11.12 illustrates the first iteration of this algorithm, called the Newton-
Raphson method.
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Figure 11.12. A sample likelihood function and its derivatives. The root finding alogrithm
starts from the point A(®) (open circle) and moves to A (open square) which is quite close to
the true maximum of the likelihood, ) (filled square). The Newton—Raphson technique does
this by evaluating the first and second derivatives of In(L) at the trial point A(®). The method
would not work as well if the derivatives of L were used, because L is not even approximately
quadratic away from X.

To find an estimate for the best-fit value of A, we need to calculate the derivatives
in Eq. (11.87). In the case of the CMB, L is given explicitly by Eq. (11.20). Thus
we need to differentiate the log of Eq. (11.20):

(InL)y = 2 lln(detC’)—%AC"lA : (11.88)

| 2
The covariance matrix here C depends on the theoretical parameter, A. We can use
the identity Indet(C) = TrIn(C) and the fact that C:\l =-C~1C,C~! to get
[ “1p _ Ypvieet
(Inl) ) = §AC C\C7rA- ETr[C C.l- (11.89)

Here, the trace of C~1C y is the sum of (C~1);;0C;;/OX over all pixels i and j.
Getting the second derivative requires more of the same types of steps. We find

(InL) = —AC_ICM\C—ICV,\C_IA + -;—T&‘[C_lc.,\C-IC_)\]

+%(AC—IC,MC—IA~TY[C—IC,M]). (11.90)
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Equation (11.90) gives the second derivative of In £ with respect to the parameter
A. By definition, this is minus the curvature of the likelihood function:

L

The curvature is particularly important when evaluated at the maximum of the
likelihood function, for there it measures how rapidly the likelihood falls away from
the maximum (since the first derivative vanishes). If the curvature is small, then
the likelihood changes slowly and the data are not very constraining: the resulting
uncertainities on the parameter will be large. Conversely, large curvature translates
into small uncertainties.®

We could take the ratio of Eqgs. (11.89) and (11.90) to get an estimate for the
maximum of the likelihood. This is not what is usually done. Rather, one typically
sets AA — (AA) = C in the second derivative. Upon doing this, the last line of
Eq. (11.90) vanishes, and we are left with

A=20 4 7 AC_lC'AC_Ié —Tr(C7Ca (11.92)
where F' is defined as
Fa = (F)
= %T&-[C_AC‘IC,AC‘I]. (11.93)

That is, F is the average of the curvature over many realizations of signal and noise,
both of which in this case are assumed to be drawn from Gaussian distributions.
Here C and its derivatives are evaluated at the input point, C(A(®).

There are several important features about Eq. (11.92), our estimator for the
value of A which maximizes the likelihood function. As the title of this subsection
promised, it is a quadratic estimator: it is of the general form AA? + B. The only
hard part was determining the coefficients which lead to the best algorithm for
finding the root. In the spirit of the Newton-Raphson method, Eq. (11.92) is best
used iteratively. One assumes an input spectrum, uses it to determine a new input
parameter (A in Eq. (11.92)), then uses the new input parameter to find a new
best-fit value, and so on until the process converges. In practice, analysts have
found that very few iterations are needed until convergence. Nonetheless, we must
be somewhat wary of quadratic estimators. It is possible that they will lead us to
local maxima in parameter space. Finally, the foregoing discussion assumes there

5The correspondence between the curvature matrix and parameter uncertainties is often more
quantitative than this. See Numerical Recipes (Press et al., 1992), Chapter 15, for a detailed
discussion. The bottom line, though, is that, in many cases, the inverse of the curvature matrix
is a very good approximation to the error matrix on the parameters. E.g., in the one parameter
case we are presently considering, the 1-o, 68% confidence level on A is approximately equal to
the inverse square root of the curvature matrix.
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is only one free parameter, but Eqgs. (11.92) and (11.93) are easily generalizable to
the more relevant case when many parameters are allowed to vary. If we have many

parameters A, = A1, Ag, ..., then the quadratic estimator for each is
“ A0 4 Fo) 1ACT1C,C" 13 Tr{C™ Cp] (11.94)
where the Fisher matriz is defined as
e 5053
- %mc,ac*cﬁc-l]. (11.95)

Putting aside the details which led to Eq. (11.94), we can appreciate that the
result is remarkable. We can now hope to find the values of the parameters which
maximize the likelihood function without blindly covering the whole parameter
space. A very small number of matrix manipulations suffice to determine these best-
fit values. This is a huge advantage, too good to pass up considering the alternative.

We still need to find a way to evaluate the errors on the parameters. Had
we evaluated £ everywhere, we could easily identify the region in parameter space
ruled out at, say, the 95% level. How do we identify such regions using the quadratic
estimator? To answer this question we need to remove ourselves from the derivation
above and simply notice that Eq. (11.94) is an estimator for the true best-fit values
of the parameters. If we think of it in this way — rather than as the result of a root-
finding algorithm — we can study its distribution. Since the distributions for both
signal and noise are known (they are assumed Gaussian with covariance matrices
Cs and C, respectively), we can calculate the estimator’s expectation value and
variance.

First, let’s consider its expectation value:

AC-1C4C-1A) — Tr[C~1C g

(o) =20 + F 1 1 >

(11.96)

Here the covariance matrix, its derivatives, and the Fisher matrix have all been
evaluated at the trial point A, = A9 The expectation value (AA) on the other
hand is equal to the true covariance matrix, C(Ay). We can expand C(A,) about

/\SXO):
C(Ae) = C+Cu (?\af —/\f,o,)). (11.97)

Therefore the expectation value of the quadratic estimator is

(Aa) = 20 QFQB {"ﬁ[c—lcﬂc—lc}
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+Tr [C-lc,gc—lcya,] (XQ, - Aﬁf)) - I&[c—lcﬂ]}. (11.98)

The first term in brackets cancels the third. The remaining trace is twice the Fisher
matrix, so upon multiplying by F~!, we are left with

(Aa) = Aa. (11.99)

So the quadratic estimator we have been considering is unbiased: the expectation
values of the set of ;\a are equal to the true parameters Ao, no matter what set of
parameters are assumed at the outset.

We are also interested in the variance of the estimator:

(R = 2a)(Ag = Ag)) = (F71) - (11.100)

This equality, which I will leave as an exercise, holds if we are truly at the maximum
of the likelihood function and if the data points really are distributed as a Gaussian.
If these conditions hold, then the expected errors on the parameters are equal to
the square root of the diagonal elements of F~!. This is a magic limit, for there
is a theorem, the Cramer-Rao inequality, that states that no method can measure
the parameters with errors smaller than this (e.g., Kendall and Stuart, 1969). This
makes sense since the errors from a full likelihood computation could not possibly
be smaller than the width of the likelihood. This width in turn is determined by the
curvature, and the Fisher matrix is simply the ensemble average of the curvature.
Equation (11.100) tells us that on average, the quadratic estimator of Eq. (11.94)
will reach this optimal limit.

Given any point in parameter space, we can calculate the associated Fisher
matrix. Thus a simple way to assign error bars to the parameters determined via
the quadratic estimator is to use the Fisher matrix evaluated at that point in
parameter space. Bond, Jaffe, and Knox (1998), among others, have shown that
this prescription works well: i.e., it agrees with a more complete tracing out of the
likelihood contours.

Equation (11.100) is useful for other reasons as well. As is apparent from
Eq. (11.95), the Fisher matrix — and hence the expected errors on any set of param-
eters—can be evaluated without any data. It will serve us well in Section 11.4.3
when we set out to determine how well upcoming experiments will be able to deter-
mine parameters.

We have derived the quadratic estimator in a way which might lead you to
believe that it is restricted to the CMB. Namely, our derivation assumed that the
likelihood function is Gaussian, true for the CMB but not for galaxy surveys. Even
without the assumption of a Gaussian likelihood function, though, the quadratic
estimator of Eq. (11.94) can be applied to galaxy surveys. Like any quadratic esti-
mator, it has a mean and a variance. We have just seen that, for Gaussian dis-
tributions, it has the lowest variance possible. On large scales, where the galaxy
distribution is Gaussian, therefore, it is extremely relevant. Even on small scales,
where nonlinearities add to the variance, it is often competitive with other, more
traditional estimators.
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11.4 THE FISHER MATRIX: LIMITS AND APPLICATIONS

The Fisher matrix plays a key role in describing the ability of a given experiment to
constrain parameters. It is difficult to gain much insight, though, from the definition
in Eq. (11.95). Fortunately, in the case of full sky coverage, the Fisher matrix can
be computed analytically. This analytic computation can then be extended — via
a plausibility argument —to the more realistic case of partial sky coverage. This
calculation is presented next for both the CMB and galaxy surveys. The most
popular use of the Fisher matrix is as a tool for forecasting. How well do we expect a
given experiment (even a hypothetical one) to determine cosmological parameters?
The Fisher matrix is ideally suited for this task, and we will see some startling
expectations from upcoming experiments.

11.4.1 CMB

The trace in Eq. (11.95) is a sum of the diagonal elements of the matrix
[C oC~1C sC~1];; where i, index the pixels used in the map. There are two deci-
sions that need to be made before the Fisher matrix can be computed. First, what
pixelization scheme should we use, and second what parameters A, are we interested
in? For a full-sky CMB experiment, we choose as our parameters the C;’s them-
selves. That is, we take each individual C) as a free parameter and ask how well an
experiment can determine it. To avoid confusion (both the covariance matrix and
the C)’s are C’s), let’s call each parameter )\; instead of Cj, at least while working
through the algebra. This answers the second question. The best way to deal with
the first question — how to pixelize —in the case of the CMB is to use the a;n,’s.
That is, instead of using the pixelized temperatures ©(n), use

U = /dQ * (R)O(R) (11.101)

as the data values. Each pizel then is labeled by [ and m, so a given row (or column)
in the covariance matrix corresponds to a fixed valued of [ and m. Explicitly, since
we start with the quadrupole,

Ci—om=—2=2,m'=—2 C2_22-1 ... Ca_292 Cz_23_3
Cy —1,2.—2 Co—io—1 ... Co_122 Co_13,-3

C = :
C3 _3.9,2 Cy_32-1 ... Cs_3290 C3_33_3

(11.102)

As usual the covariance matrix is the sum of the signal and noise covariance
matrices. From Eq. (8.63), the signal covariance matrix would be 6;p 8,0 A; (remem-
ber that we’re using A; instead of C;) if the window function were unity. Let’s assume
that the experiment measures the anisotropy with a beam size o. Then the signal
covariance matrix must be multiplied by e~"o" The noise covariance matrix is a
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little trickier. You will show in Exercise 11 that, in the case of uncorrelated, uniform
noise, it is 81/ Gmmew L. Here w is the weight defined as

1

w = [(AQ)o2]” (11.103)

where AQ is the size in radians of the real space pixels and o,, is the noise per pixel.
Putting these two together, we have

Clm;l’m’ - (511’677”71' l:/\le-IQGQ + w_l} . (11104)

With these simple assumptions, we can take the inverse of the covariance matrix
C and also find its derivative with respect to the parameters, the A;’s. The inverse
of the covariance matrix is

-1

(o) = 611 Oy [)\16_12"2 + w“l} (11.105)

Im:l'm’

while the derivative of the covariance matrix with respect to the parameter A, is

2.2

Clm;l’m’,a = 61[’6mm’6lae—l . (11106)

We can now construct the Fisher matrix; the only difficult task will be keeping
track of indices. Very explicitly,

—1 —1
Foor = _Clm;l'm’.a l’m’:l”m“Cl”m”?l/”mm'a/Cl'”mm:Im

1 22 6/ //(5 ton !t "2 _2

1 " Om’'m —1

5 (6”/67”.”1/6[(,6 7 ) m (61"1“'(5n1"m'”6l”a’e g )
’

5 it 6mlllm
x (—”——) (11.107)

Ae—Pe? 41

N | —

with the implicit sum over [I'l"l""'mm’m" m'". Consider first the Kronecker deltas
with subscripts m, m’, m”, and m/”. There are four of these; summing over all the
subscripts besides m contracts these four to

Z 5mm’6771’m”6m”m’”5m"’m = 6mm~ (11108)

m'm''m’’

Then, summing over all m leads to a factor of 2! + 1. The remaining sums over !
and its cousins leads to a simple factor of §,4 . Therefore in the all-sky limit, the
Fisher matrix for a CMB experiment is

] . -2
Fy = 3%15,,,6—21202 [c,e—”f’z + w*l] (11.109)

where | have gone back to C; here since the covariance matrix does not appear.
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In an all-sky survey, therefore, the Fisher matrix for the C;’s is diagonal. There
are no correlations between adjacent C;'s. The errors on a given C; expected from
an all-sky experiment can be read off from Eq. (11.109). The errors are equal to

vVE-1 so
2
8C) = ‘/m i:C, + w_lelzaz] . (11.110)

As anticipated in Eq. (11.26), there are thus two sources of error: (i) cosmic variance,
proportional to the signal itself C; and (ii) noise — atmospheric or instrumental —
as encoded in the weight w and the smoothing determined by the beam width o.
The factor of 21 + 1 in the denominator also traces back to Eq. (11.26); it is the
number of independent samples used to estimate a given C,.

No experiment will ever cover the entire sky, since the CMB cannot be observed
in the plane of our galaxy. Even MAP and Planck, two satellites designed to map
CMB anisotropy from space, will therefore cover a fraction of the sky fou, < 1.
Recalling that the factor of 2/ + 1 in the denominator of Eq. (11.26) counts the
number of samples, we could guess that this factor must be multipled by fac,. This
leads to

2 22
8C = | ——o—— |C, “leltet ] 11.111
) (21+1)fsky[ ' +w e J ( )

This formula enables one to project the errors obtainable for any given experiment.
The three characteristics of the experiment which determine the error on C; are the
sky coverage; the weight; and the beam width.

11.4.2 Galaxy Surveys

The analogue of the all-sky CMB experiment is a volume-limited galaxy survey as
the volume gets arbitrarily large. This limit applies to all modes with wavelengths
k~! much smaller than the typical size of the survey. We have already computed
the signal and noise covariance matrices in this limit, Eqs. (11.60) and (11.61), so
the covariance matrix for Fourier pixels is

8i; 1
Crk, = VJ (P(ki) + 5) . (11.112)

To compute the Fisher matrix, we will need the inverse of this and its derivative
with respect to whatever parameters we choose. The inverse is simple,
8,V

crlo = 2 11.113
Rk, Pk;) + ( )

3=

For our parameters, we will choose the amplitude of the power spectrum in a set of
narrow k-bins, each with width Ak. The power in the bin with k, < k < ko + Ak
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will be denoted P,. The derivative of the covariance matrix with respect to P, is
therefore

Cr k0
i = = D, 11.114
Cira = =g = T (11.114)
with .
dm;{l ka <lkil <ka+ Ak (11.115)
0 otherwise
The Fisher matrix is now
1 -1 -1
Faa’ = Q'Cij,acjj/ Cj’i’,n’cifi
1 840 83

= =0;idiq— 6 dyr oy —————. 11.116
2 Pk + 1 P(k)+ 1 ( )

The sums over j, 7,1 are straightforward, leaving

1 Z, diadia’
2(Pa+3) (Par+3)

F.. = (11.117)
As long as the k-bins do not overlap, k; cannot be in two differgnt bins so the
product d;,d; requires @ = o’. The sum then is over all vectors k; in a spherical
shell with radius k, and width Ak. This sum is 4wk?AkV. Therefore, the Fisher
matrix is diagonal, with elements

Faa’ :6aa’_a_- (11118)

The error on the power spectrum in this limit is the inverse square root,

|2 1
OPa = \| v ARV (Pa + 5) : (11.119)

This is identical in form to the errors on the C)’s. The denominator in the prefactor
counts the number of modes in a given estimate; the first term is cosmic variance;
and the last is the noise, in this case Poisson noise.

11.4.3 Forecasting

One of the great promises of upcoming cosmological experiments is that they will
determine many of the presently unknown cosmological parameters. How does one
predict the expected uncertainties in cosmological parameters from future experi-
ments? The answer is surprisingly simple. Let’s consider a CMB experiment as an
example. Start with the following:

e A set of C;’s that are assumed to describe the true universe



372 ANALYSIS

e The uncertainty on C; from a given experiment, §C;, assumed to be given by
Eq. (11.111)
o The set of cosmological parameters, {A,}, for which we want to forecast errors

The observed C;’s in this universe will be close to the true C)’s; indeed, if we
form

_ (obs 2
e =) (Cl({Az'é}él)QCl N (11.120)
l

then we expect this x? to reach a minimum at the point in parameter space where
Aa = Aa, the actual values of the parameters. Of course, we do not now know
what those values are, but even without that information, we can ask how quickly

x? {/\a}) changes as A, moves away from A,. If it increases rapidly, then the errors

on the parameters will be very small; if the x? changes little, then there will be
large errors on the parameters.

To quantify this, we can expand x? about its minimum at A,. Let’s first do
this in the case of one parameter; the generalization to many parameters will be
straightforward. In the one-parameter case,

XA = X320 + FO = N2 (11.121)

The linear term in Eq. (11.121) vanishes since x? is a minimum at A. The coefficient
of the quadratic term is
1 a2x2
F=yme| (11.122)
A=X
The curvature here, F, measures how rapidly the x? changes away from its min-
imum. As such, the error on A is simply 1/\/— So all we need to do in order to
determine the expected errors on a parameter is calculate F. Note that F is the
curvature of the likelihood function only if the likelihood function is equal to e™X /2
that is, if the errors on the C;’s are Gaussian distributed. In fact, they are not, so
F as given by Eq. (11.122) is not really the curvature, —9%1n £/9A2. Nonetheless,
the distribution is close enough to Gaussian that the error estimates that arise are
expected to be quite accurate.
The second derivative of x? contains two terms:

o) e
F= Zac, [( ) +(C- 57| (11.123)

The second term in the sum over [ is traditionally neglected. The idea (as elucidated
in Numerical Recipes) is that the difference C; — CP®® will sometimes be negative,
sometimes positive. On average, there will be much cancellation, so the first term
will dominate. Thus, the general practice is to take

1 9C, oC,
11.124
F= Z (6C))? OA OA ( )
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Equivalently, you can think of the dropping of the second term as taking an average
over the whole distribution, thereby replacing the curvature matrix with the Fisher
matrix (although again keeping in mind that this is not the true curvature or Fisher
matrix since the C;’s are not distributed as Gaussians). The generalization of this
to many parameters is simply

1 6C, 8¢

Fos =3 GG v 035

(11.125)

In order to predict how accurately parameters will be known, then, we simply need
to know the experiment’s specifications (to determine 8C;) and the derivatives of
the C;’s around their (assumed) true values.

2V(F-1),,

2/VF,,

A

Figure 11.13. Error ellipse in a 2D parameter space. If no prior information is known about
Az, then the error on A1 is \/(F~1)1,. If, however, Az is fixed, the error on Ay, (F'u)_l/2 is
smaller.

Assuming a Gaussian distribution, the one-sigma uncertainty on a one parame-
ter fit is 1/v/F. How about if more than one parameter is allowed to vary? Figure
11.13 illustrates the situation in a two-dimensional setting. If the parameter A, is
assumed known, then the error on \; is still 1/\/F;;. However, if )y is allowed to
vary, the error on A; is now /(F~1)(;. It is instructive to prove this explicitly by
noting that we are assuming that the joint probability for the two parameters is
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1
P()\l,/\g) o<exp{——2-)\,-F,~j/\j} (11126)
where I have assumed that the distribution peaks at A; = 0 for simplicity. Allowing

Az to vary is equivalent to integrating this probability distribution over all possible
values of As. This is referred to as marginalizing over Ag. Then,

P(\) = / DoP(Ar, M)

2 —
o(exp{_%(FanszFmFm)} (11.127)

where the second line comes from carrying out the Ay integration explicitly. The

term in parentheses in the exponential — [Fy1Fyy — Fi2F2]/ Fhy —is simply equal
to 1/(F~1)11. So the one-sigma error is indeed given by \/(F~1)1;

T T LB S s |

model LSS
T

Figure 11.14. Expected 95% uncertainty on the inflationary parameters n and r from MAP
and Planck (from Dodelson, Kinney, and Kolb, 1997). (See color Plate 11.14.) Three other
parameters (normalization, 2, and h) have been marginalized over. Every inflationary model
gives a unique prediction somewhere in this plane; many such predictions are plotted.

Figure 11.14 shows the expected uncertainties from MAP and Planck for two
inflationary parameters, those which determine the primordial spectrum. Note that
I have fixed the “true” model to be one in which the spectral index n = 0.9 and the
tensor-to-scalar ratio 7 = 0.7. Different fiducial models often lead to quite different
error bars. The ellipse in Figure 11.14 has heen drawn after marginalizing over
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Table 11.1. Marginalized Errors for ACDM for various experiments.

[ | Map | Planck | Map+SDSS | Planck+SDSS |
h 0.22 | 0.13 0.029 0.022

Qm 024 1 0.14 0.036 0.027

Qa 0.19 | 0.11 0.042 0.024
Tn(C%A2) | 0.060 ] 0.010 | 0.050 0.010

m, (eV) | 0.58 | 0.26 0.33 0.21

Yp 0.020| 0.013 0.020 0.013

n 0.048 | 0.008 0.040 0.008

r 0.18 | 0.012 0.16 0.012

T 0.022 | 0.004 0.021 0.004

three other cosmological parameters: normalization, baryon density, and Hubble
constant. To do this, one starts with the five-dimensional Fisher matrix, inverts,
and then considers only the 2 x 2 part of the inverse. This 2 x 2 part defines the
ellipses drawn in the figure.

Also plotted in Figure 11.14 are the predictions from a wide variety of inflation-
ary models. The figure argues persuasively that we will indeed be able to distinguish
among different inflationary models with upcoming CMB experiments. This is a
remarkable finding: we will learn about physics at 10! GeV or higher using CMB
data. If more parameters are allowed to vary, then the errors on any one parameter
naturally get larger. However, this can be offset by using other observations, most
notably those from large-scale structure. Table 11.1 presents the marginalized errors
on a number of parameters expected from the MAP, Planck, and Sloan Digital Sky
Survey experiments (Eisenstein, Hu, and Tegmark, 1999). Here the errors include
the measurement of polarization in MAP and more importantly Planck.

11.5 MAPMAKING AND INVERSION

Until now, we have discussed ways of analyzing a map, a collection of pixels with
data A and noise covariance matrix C. How does one make such a map? How do
we go from the timestream of data to a pixelized set of spatial A’s? Most work on
this issue has focused on the temperature maps in the CMB, so I'll use this as an
example. We will see that mapmaking is essentially an inversion problem. So the
mapmaking techniques discussed here are applicable to a broad range of problems
in physics and astronomy.

Let’s first state the problem. An experiment amounts to a timestream of data,
d;. Each number in the timestream corresponds to data taken at a given point on
the sky. The data are assumed to be composed of signal plus noise:

dt = Ptisi + M- (11128)
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Here subscript t denotes a given element in the timestream; : denotes spatial pixel,
P is the pointing matrix; s is the underlying temporally constant, but spatially
varying signal; and 7 is the temporal noise. The pointing matrix encodes information
about where the receiver is pointing. That is, it associates with each temporal
measurement ¢ a given pixel ¢. It is an NV; x N, matrix where N, is the number of
temporal measurements and IV, is the number of spatial pixels. The pointing matrix
has a special form: every row has only one nonzero entry equal to 1, corresponding
to the pixel on the sky being observed at the time denoted by the row. Each column,
however, typically has many nonzero entries corresponding to all the times a given
spot has been observed. The noise n is assumed to be Gaussian with a covariance
matrix N. There are techniques to determine N directly from the data, but to
simplify the discussion, we will assume that N is known.
What is the best way to make a map from this timestream? One forms a X2,

x> = (de = Pusi) N (dv = Pujs;). (11.129)
tt'ig

and minimizes with respect to the signal s. Indeed, if the noise is Gaussian, then the
likelihood function is proportional to e* /2 and minimizing the x? is equivalent to
maximizing £. Taking the derivative with respect to s; leads to

Ix?

5 = 2 > PuNG (dv — Pujs;). (11.130)
S tt'j
Set the derivative equal to zero:
> PuN'Puys; = PuNg'de. (11.131)
tt’j tt';

The terms multiplying s; on the left are an N, x N, matrix,
(C;’l)ij = letiNt;llpt’j- (11132)
tt

Multiply both sides by the inverse of this (Cy itself) to find that the x? is minimized
when s is equal to

A; = Cnij PN dy . (11.133)

In matrix notation,

A=CyPTN"Ud (11.134)
where T denotes transpose. The noise matrix of this map is equal to

Cy = (PTN-1P)™, (11.135)

a fact which you can verify by taking (AA).
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A simple limit of Eq. (11.134) emerges when the timestream noise is diagonal
and uniform (this is unrealistic). In that case, the elements of Cy become

-1
Cnij— N (ZP,{P”) (11.136)
t

where now N is simply a number, the diagonal element of the timestream noise.
Recall that for a given t, P,; is nonzero for only one pixel i. So the product PI P,;
vanishes unless ¢ = j and the receiver at time ¢ was pointing at pixel ¢. Thus the sum
over t counts the number of times the receiver sampled pixel ¢; call this number 7,.
In this artificial case of uniform, uncorrelated noise, therefore, the noise covariance
matrix for the map is diagonal with elements N/7;. This makes sense: as a given
pixel is sampled more times, the standard deviation goes down as 71;1/2. The map
now becomes ]

A LS Pla, (11.137)

w; n

That is, one simply averages all the data points corresponding to the given pixel
(exactly like Eq. (11.8)).

Figure 11.15 shows a more realistic implementation of Eq. (11.134), from the
long-duration balloon flight of Boomerang (Netterfield et al., 2001), launched on
December 29, 1998. The map covers a region a region of about 700 square degrees
with 7-arcminute pixels. Therefore, the map required N, =~ 50,000, while the
timestream contained of order 2 x 10® data points. Some tricks were needed to
avoid direct inversion and multiplication of the large matrices P and N. Nonethe-
less, the basis for the Boomerang map, indeed for all CMB maps, is Eq. (11.134).

The raw data from which the map is made need not be the timestream. Instead,
the raw data could consist of a series of modulations, e.g., the difference hetween
the temperature at two points. Reconstructing a map from a set of modulations
sounds like a much different problem than doing the same from the timestream. In
fact, it is mathematically identical: the data d is the sum of a signal and noise. The
signal can be thought of as a matrix acting on the underlying temperature field.
This matrix does not have the exact form as the pointing matrix (i.e., only one
nonzero element in each row), but it is a matrix nonetheless, and all the operations
in Eqs. (11.134) and (11.135) can be carried out. There is a big advantage in using
a map constructed in this fashion as opposed to the modulated data themselves.
Ultimately, the main use of the data will be to estimate parameters in a likelihood
analysis. As we have seen, one must construct the signal covariance matrix in order
to carry out such an analysis. The signal covariance matrix for a map is extremely
simple — the window function is simply P;(cos6,;) —whereas that for modulated
data is quite difficult to obtain (recall Section 11.2).

Equation (11.134) and the corresponding noise matrix in Eq. (11.135) are even
more general than this. They apply to any problem in which the data are a sum of
some processed signal and noise, i.e., to an extraordinarily wide range of problems
in physics and astronomy. Consider just two examples. First, the angular correlation
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Figure 11.15. A map of the CMB temperature from observations by Boomerang {Netterfield
et al., 2001}, a long-duration balloon flight at the South Pole. (See also color Plate 11.15.)
Hot and cold spots have amplitudes as large as 500uK. Circles shows quasars identified in these
radio observations. The large elliptical region delineates data analyzed to obtain bandpowers.
The rectangular region is an earlier data set.

function is a sum of the 3D power spectrum processed by a kernel plus noise. One
can apply Eq. (11.134) directly to obtain the 3D power spectrum, simply replacing
the pointing matrix with the kernel. In the next section, we will see another example,
the extraction of the CMB signal from data contaminated by foregrounds.

11.6 SYSTEMATICS

A systematic error is one which remains even after averaging over many data sam-
ples. Systematic errors are the most worrisome aspect of most cosmological obser-
vations. Knowing this, observers typically take many precautions against them,
submitting raw data to a wide variety of consistency checks. Many of these tests
are the result of common sense and intuition. Nothing much formal can be said
about them. Here I want to focus on several ... systematic ways of dealing with
such effects.

11.6.1 Foregrounds

One of the biggest obstacles to observing the anisotropies in the CMB are fore-
grounds, other sources of radiation which also emit at microwave frequencies. The
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list of foregrounds is long and includes anything in space that might come between
us and the radiation left over from the Big Bang. There is dust, synchrotron radia-
tion, and free-free or bremsstrahlung emission, all emanating from our galaxy (but
extending to regions of the sky far from the galactic plane). There are also extra-
galactic sources of radiation, point sources and clusters of galaxies. All of these have
the potential to contaminate an experiment searching only for a cosmic signal. The
magnitude of this problem is hinted at in the nomenclature. Usually in science,
a possible source of systematic error is called a background. In CMB physics, we
cannot call these things backgrounds: the “B” in CMB precludes that possibility.
We must acknowledge that the cosmic signal is coming from farther away than any
possible contaminant and we must deal with the real possibility that the cosmic
signal will be smaller than some of these contaminants.

The problem of foregrounds has in the past few years been demonstrated to
be manageable. There are a number of reasons for this good fortune (it is good
fortune: if we were living deeper in the galaxy foreground amplitudes would be
considerably larger). First observers have been very successful at finding the coolest
portions of the sky and using only these regions. Second, foreground amplitudes
have proven to be smaller than the cosmic signal in a fairly wide part of frequency
space. Figure 11.16 shows the intensity of several galactic foregrounds and the CMB.
The amplitudes of each of these components varies across the sky, but the relative
amplitudes shown in Figure 11.16 are fairly typical. At very high frequencies, dust
dominates, and at very low frequencies synchrotron and bremsstrahlung become
important. But, in the range from 30 to 200 GHz, the CMB anisotropies often have
the largest intensities.

The final reason foregrounds can be managed —and the one I want to focus
on here—can also be gleaned from Figure 11.16. The spectral shapes of the fore-
grounds are all different, different from one another and from the blackbody shape
of the CMB anisotropy. This raises the possibility that detections at different fre-
quencies can be used to extract the CMB signal from the foregrounds. As analysts,
we must find the optimal way to perform this extraction. Given measurements
at several different frequencies, what is the best algorithm for finding the cosmic
signal? How effective do we expect this extraction to be?

First we need to set up some notation. Instead of intensity (or brightness) B,
which has units of ergs cm~2 sec~! Hz~! | it is convenient to introduce the bright-
ness temperature or antenna temperature, defined as

B
22

2rvf, (11.138)

Tant =

which has dimensions of kelvins (recall that we are working in units with kg = h =
¢ = 1). The frequency v is related to the momentum we used in earlier chapters via
p = 27mv and f is the familiar phase space density.
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Figure 11.16. Spectral shapes of the dominant galactic foregrounds and the CMB blackbody
temperature anisotropy.

For the CMB we know that f is given by Eq. (4.35), so the antenna temperature
is

Tcrrllgb T 1261
ant_ - O 11.139
ARt 1) ( )
where 5
D TV
=== —. .140
T T T (11.140)

The first term in Eq. (11.139) is the monopole, which does not interest us. The sec-
ond contains information about the shape of the spectrum of the CMB anisotropies.
It is useful then to neglect the first term and write

cmb

amT(V) — O™ (271/T) (11.141)

where W will be the shape vector for different components. That for the CMB is
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x2e”®

Wcmb — )
(ex —1)°

(11.142)

Every component can be written in this fashion: the product of an amplitude (in
this case ©), which is frequency independent, and the shape vector, which carries no
information about the amplitude. For a blackbody distribution like the CMB, the
amplitude has a name: © is called the thermodynamic temperature. Note that the
CMB shape vector goes to 1 in the limit of small frequencies, the Rayleigh-Jeans
limit. At high frequencies, it falls off exponentially.

I have called W a shape vector implying that it has a number of components.
These components are the different frequency channels at which a given experiment
takes data. We will label these with a subscript ¢ while allowing for many possible
foreground components:

-,

wWe = Wca Cc = 17~~,Nch ) 6 :07-~7Nf0regrounds- (11.143)

Here the CMB component is associated with index o = 0. Thus, the data from a
given experiment in a given pixel (we focus on only one spatial pixel) on the sky
is in the form of a set of antenna temperatures, d., at all the different frequency
channels. Our model is that this data set is the sum of the contributions from the
CMB, foregrounds, and Gaussian noise:

N(orcgrounds
de= > WO +n. (11.144)

a=0

We assume that we know the covariance matrix of the noise N and all the spectral
shapes” W<, The question is, how do we best determine the CMB anisotropy?

This problem has the exact same form as does the general inversion problem of
Section 11.5. We want to obtain estimates of the amplitude ©*. We can immediately
write down the minimum variance estimator for ©°:

A% = (Cn)agWPN 1 dy (11.145)
with covariance matrix

(CRY) g = WEN ) ecaWy. (11.146)

c

Let’s work out a simple example to bring these formulae, which are so ubiquitous,
to life.

"This assumption is true for the CMB, and very nearly true for synchrotron and bremsstrahlung
which have shapes which are fairly constant over the sky. The assumption is worst for dust. A
number of groups have explored the consequences of incorrect assumptions about the shapes or
allowed for some freedom in the shapes.
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Consider an experiment taking measurements at two frequencies, both in the
Rayleigh—Jeans regime. The shape vector for the CMB then has two components,
both equal to 1:

WO =(1,1). (11.147)

Let’s also assume that the noise is uncorrelated from one frequency channel to the
next and is uniform with diagonal element, ¢2. First let’s consider the case of zero
foregrounds. In that case, the covariance matrix is just a single number, the inverse

of
WN-'W = (1 1)(1/5"21 1/?,3) G)

2
= (11.148)

The inverse square root of this is the noise, o,/ V2. The two channels reduce the
noise by a factor of the square root of 2 (if there were three channels in our exam-
ple, the factor would be /3, etc.). The mimimum variance estimator is given by

Eq. (11.145),
O'ZL 1/0’721 0 d1
s (1) ()

_dy+dp
——
We simply average the two data points.

Now suppose there is one foreground to worry about, say synchrotron emission,
with shape vector

(11.149)

w!=(1,1/2). (11.150)

Typically, the intensity of synchrotron emission scales as v~! (see, e.g., Rybicki and

Lightman, 1979), so its antenna temperature falls off as »~3. Thus a shape vector
(1,1/2) follows from observing at, e.g., v = 20 GHz and v» = 25 GHz.

Now the covariance matrix Cy is a two by two matrix. Then Eq. (11.146)
becomes

Cyt = WHNY) WP = (i 1}2) (1/(373 1/(373) (i 1}2)

1 /(2 32
:}_;{<3/2 5/4>. (11.151)

Already at this stage, we can glean some important information about the exper-
iment. Recall from the discussion in Section 11.4 that the inverses of the diagonal
elements of C,T,l are the unmarginalized variances, the errors if all other parameters
are known. In this case, there is one parameter besides the amplitude of the CMB,
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the amplitude of the foreground. If we assume that is known, then the error on the
CMB temperature will be the inverse square root of the gy component of the matrix
in Eq. (11.151). This is 0,/v/2, in agreement with the calculation above. To find
the errors if we know nothing about the foreground amplitudes, take the inverse of
this to find the covariance matrix,

Cn =402 (_5:?;12 _2/2) . (11.152)

The oo component of this gives the marginalized variance, 502. The ratio of the
marginalized error to the unmarginalized error is a measure of how severely the
unknown foregrounds degrade our ability to determine the CMB temperature. It is
called the foreground degradation factor, or simply the FDF. In this case, the FDF
is equal to V10.

In this example, we can now determine the minimum variance estimator for the
CMB temperature. Following Eq. (11.145), we write

A% = 402 (5/4,-3/2) G 1}2> <1/673' 1/(13) (2)

— —dy + 2. (11.153)

This should be no surprise. The best estimator for the CMB temperature is com-
pletely insensitive to the amplitude of the foreground component. For, if the fore-
ground really does have shape vector (1,1/2), the linear combination —d; + 2d;
from the foreground is equal to zero.

In real life, one must find the minimum variance estimators at many different
spatial pixels. The formula of Eq. (11.145) remains identical in this more general
case: one simply adds an index for spatial pixel. It is often most convenient to work
with the a;,,’s instead of the temperature as a function of angular coordinates.
Then, the minimum variance estimator for a;,, often weights the different frequency
channels differently depending upon how the noise in each channels scales with .
An example is shown in Figure 11.17, based on the five frequencies of the MAP
experiment. The figure shows how the best estimator for a;,, weighs the five different
frequencies in the absence of foregrounds. At low [, all the channels have similar
noise, so the best estimator is just the average of the five. The beam size is frequency
dependent, however, largest at the lowest frequencies. Therefore, at high [, the
lowest channels have no signal. Only the highest frequency channel can be used.
Indeed, one sees that the minimum variance estimator gradually drops a channel
at a time as [ gets larger.

Often prior information on the foregrounds exists, in the form of an estimate of
the power spectrum of each foreground component, i.e., its Cy. This prior informa-
tion can be incorporated into the minimum variance estimate; see, e.g., Exercise 15.
Figure 11.18 shows the results of accounting for foregrounds in the MAP experi-
ment. The difference between the weighting scheme in this figure and that in Figure
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Figure 11.17. The minimum variance linear combination of the frequency channels of MAP
in the absence of foregrounds (from Tegmark et al., 2000). The noise at low [ is identical in
all channels, so the minimum variance estimator weights them equally. At high [, the highest
frequency channel has the lowest noise, so the best estimator uses only that channel.

11.17 is striking, especially at low [. No longer does one weight all the different chan-
nels identically. Rather, a complicated set of weights must be used to project out
the foreground contamination.

Note that foregrounds do indeed fit the definition of a systematic effect. If one
neglected synchrotron emission in the previous example, the naive estimate of the
CMB temperature (d, + d2) would be wrong no matter how small the noise. You
might argue that, over the whole sky, the average “wrongness” would cancel out,
since there are an equal number of hot and cold spots of foregrounds. The power
spectrum, though, the key quantity of interest, would be contaminated: it would be
the sum of CEMB and C;Y"", again even if there was no noise.

11.6.2 Mode Subtraction

A common problem in cosmological observations is that a particular mode is con-
taminated by some external source. An example might be a region of space very
close to our galaxy, where foregrounds are particularly important. In a galaxy sur-
vey, it might be a dusty region. Dust tends to absorb high-frequency light, and so
redden an object’s image. This leads to less flux in blue bands, often pushing a
galaxy outside the flux limits of a survey. This push can be crucial, because typ-
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Weight w,

Figure 11.18. The minimum variance linear combination of the frequency channels of MAP
in the presence of foregrounds (from Tegmark et al., 2000). Compare with Figure 11.17 to
see that, especially at low [, foreground contamination dictates a more complicated linear
combination of the channels.

ically most of a survey’s galaxies lie close to the flux limits. Yet another example
is a CMB experiment which has no sensitivity to the average temperature over a
given set of pixels because of atmospheric contamination. Another is a galaxy sur-
vey in which a given stripe is contaminated because a CCD went bad at the time
of observation. And there are many more examples.

One way of dealing with such contamination is to subtract it off. This is com-
monly done in galaxy surveys by applying the reddening correction due to dust
from an external dust map (the best one at present is by Schlegel, Finkbeiner, and
Davis, 1998).

There is another way of dealing with mode contamination, one which is rapidly
growing in importance, as precision cosmology becomes a reality. This technique
is based on the twin observations that (i) often there is quite a bit of uncertainty
in the amplitude of the contamination and (ii) a given experiment often measures
many, many modes. Since the second fact is true, we can often do without the
offending mode entirely without losing too much information. Since the first fact
is true, we often should do without the offending mode, for it may lead us to an
incorrect place in parameter space.

How can we eliminate a contaminated mode from an experiment? Let’s start
with the case where the contaminated mode is a single spatial pixel. In that case,
one simple way to ensure that the pixel carries no weight in the likelihood analysis
is to add to the covariance matrix a huge number in the diagonal element corre-
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sponding to the offending pixel. Then, no matter the value observed in this pixel,
the likelihood function will not be affected. This simple idea— adding large noise
to a contaminated mode — can be extended to more complicated modes, those not
localized to one spatial pixel.

As an example, consider a two-pixel CMB experiment, in which the atmosphere
contributes identically to both pixels. Thus, the average temperature of the CMB
cannot be determined. The contaminant is assumed to be 100% correlated in the
two pixels, so we add to the noise covariance matrix

11
Ccon-/-c<1 1), (11.154)

where x is a very large number. Suppose the noise—in the absence of this con-
straint — is uniform and uncorrelated. Then the new noise covariance matrix is

Cn =02 (é (1))+n<i 1) (11.155)

In the likelihood function, we add the noise covariance matrix to the signal
covariance matrix. Again, for simplicity assume that the pixels are far enough away
from each other so that the signal is uncorrelated. Then, the likelihood function
depends on the full covariance matrix

2 2
_fonto i+ K K
C= ( « 03 +03 +/~:) . (11.156)

In particular, the likelihood function depends on the determinant and inverse of
this matrix (recall Eq. (11.20)). In the limit that s is very large, the determinant
becomes 2x(02 + o) and the inverse is

1 1 -1
[ N — . 11.157
(o 1) (157
Therefore, in this limit, the likelihood function becomes,
1 (A1 = Ay)? }
L — XpS ————%5— ¢ - 11.158
27r\/2n(03+0'§)e p{ 2(03 +03) ( :

That is, apart from an irrelevant normalization constant, the likelihood function
is a Gaussian in A; — Ag (the difference between the observed temperatures in
the two pixels) with variance equal to o2 + o2. Thus adding the constraint matrix
of Eq. (11.154) is our way of telling the likelihood function to ignore the average
temperature.

In this simple example, we could have written down Eq. (11.158) from the outset,
but with more complicated modes, the constraint formalism is extremely powerful.
What is the generalization of Eq. (11.154) for an arbitrary contamination? Suppose
the contaminated mode is of the form m,; where index i labels the pixels. Thus, in
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the average example, m; would be equal to (1,1). One adds to the noise covariance
matrix the outer product of this vector times a large number «:

(Ccon)ij = Km;m;. (11.159)

This is precisely what we did ahbove for the average, but this expression is now
completely general and allows for elimination of any contaminated mode. These
matrices, often called constraint matrices, have been used extensively in recent
CMB analyses, most notably in the interferometric experiment, DASIL



388 ANALYSIS

SUGGESTED READING

I am not a professional statistician and this chapter no doubt glosses over some
important concepts in statistics. Nonetheless, I believe this chapter does do jus-
tice to the recent flurry of activity in cosmological analysis. Readers interested in
more general statistics treatments might consult The Advanced Theory of Statistics
(Kendall and Stuart). An essential reference is Numerical Recipes (Press et al.) for
all numerical work, and Chapter 15 especially for some of the analysis issues dis-
cussed here. A couple of nice early papers on the CMB are Readhead et al. (1989)
and Bond et al. (1991). The former takes the likelihood function further than we did
here. For example, it deals with frequentist tests and defines such terms as signifi-
cance and power, which are extremely important in statistics. The Bond et al. paper
is a concise introduction to Bayesian analysis of a CMB experiment. Among the
ideas explained clearly there are CMB window functions; the likelihood function;
dealing with an unknown average; and, to top it off, the idea that CMB experiments
will probe the baryon density.

The discussion in Section 11.1.3 is based on a similar treatment in Tegmark
et al. (1998), which cemented the connection between CMB analyses and galaxy
surveys. It also deals with pixelization schemes other than just the two in Sec-
tion 11.1.3. Window functions for the CMB are discussed in many places. A nice
recent treatment is given by Souradeep and Ratra (2001).

Karhunen and Loéve decompositions were introduced to the cosmology commu-
nity by Bunn (1995) and Bond (1995), who used them to analyze COBE, and by
Vogeley and Szalay (1996) in the context of galaxy surveys. The optimal quadratic
estimator was introduced by Tegmark (1997) and Bond, Jaffe, and Knox (1998),
the latter using the Newton-Raphson motivation I stressed in the text. The former
focused on the minimum variance aspect, which you can prove in Exercise 10. Ear-
lier, Feldman, Kaiser, and Peacock (1994) had computed an optimal estimator for
galaxy surveys which turns out to be the small-scale limit of the optimal quadratic
estimator. The Fisher matrix was introduced by Fisher (1935). Knox (1995) com-
puted the Fisher matrix in the all-sky CMB case, Tegmark et al. (1998) for galaxy
surveys. Jungman et al. (1996) used the Fisher matrix (although they didn’t call it
that) to give the first forecast of parameter determination. There have been many
follow-up papers improving and tweaking various parts of the forecast. Some of the
improvements are discussed by Eisenstein, Hu, and Tegmark (1999). The curvature
matrix and the covariance matrix of errors on parameters are covered in detail in
Numerical Recipes.

Mapmaking and indeed many of the issues in CMB analysis are reviewed by
Bond et al. (1999). Foregrounds have been discussed by many authors. The text
borrows most heavily from Dodelson (1997) and Tegmark et al. (2000). Other works
of note include Tegmark and Efstathiou (1996) and Bouchet and Gispert (1999).
Mode subtraction along the lines discussed in Section 11.6.2 was introduced by
Bond, Jaffe, and Knox (1998). A nice example of its use is in Halverson et al.
(2002).
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EXERCISES

Exercise 1. In the simple example of Section 11.1.1, show that a prior uniform in
o2 gives a final probability distribution in o, different from the one in Eq. (11.5).

Exercise 2. In the simple example of Section 11.1.1, we found the error on the
signal s. What is the error on the other theoretical parameter of the model ¢,,7

Exercise 3. Derive the expression for the covariance matrix due to Poisson sam-
pling, Eq. (11.32).

(a) Divide the survey region into small sub-volumes. Assume that the number of
galaxies in a given sub-volume is drawn from a Poisson distribution with mean 7@
(assume 7 is constant in all sub-volumes for simplicity),

p(ny = 2" (11.160)
n!
Determine the expectation values (n) and (n?) for this distribution.
(b) Rewrite Eq. (11.28) as
L n(Za) —n
i = 1 o — 11161
Aj=v E Vi(Ta) [ - ] ( )

where « indexes each sub-volume of size v. Using the results of (a), and assuming
that there is no intrinsic clustering, determine (A;Aj). Show that it is given by
Eq. (11.32). You’ll have to change the sums back into integrals.

Exercise 4. Determine the noise covariance matrix in a galaxy survey using counts-
in-cells. Assume the cells are spherical with radius R, and find (Cn):; as a function
of the separation between two cell centers; call it 7;;. Assume that the survey is
volume limited, that is, that 7 is constant everywhere within a volume V.

Exercise 5. Do a full likelihood analysis of the University of California at Santa
Barbara's 1990-1 CMB experiment carried out at the South Pole (Gaier et al.,
1992).

(a) Determine the window function. The chopping angle was 2.1° and the beam
width (FWHM) 1.35°. The anisotropy was measured at nine positions, each sepa-
rated by 2.1° on the sky. Neglect off-diagonal elements.

(b) Fit a flat band power (i.e., take C = I(l + 1)C;/27 constant) to the following
data:
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Position 6T (uK) o,(uK)

1 -30.5 25.9
2 -3.2 26.5
3 29.2 26.1
4 -10.8 26.3
5 -8.7 28.8
6 23.1 26.4
7 4.7 26.5
8 -24.7 26.6
9 20.3 25.8

Assume that the noise and the signal are both uncorrelated from pixel to pixel.
(c) The likelihood function you obtain should peak at band power equal to zero.
Find the 95% CL upper limit on the band power, defined by the point for which

CU o
/ dCL(C) = 0.95 / dCL(C). (11.162)
0 0

This upper limit was reported around the same time as the COBE detection of
anisotropies. Compare the two results.

Exercise 6. Find the Fourier transform of the top-hat function f(z) = ©(z +
R)O(R — z) where © is the step function, equal to 1 when its argument is positive
and zero otherwise.

Exercise 7. Find the diagonal elements of the covariance matrix Cs for a volume
limited survey for modes k; > R™!. Show that they are given by Eq. (11.60).

Exercise 8. Compute the off-diagonal window function for the two types of galaxy
surveys mentioned in Section 11.2.3, a volume-limited survey and a pencil-beam
survey. Take both k; and Ej parallel to the z-axis (which in the pencil beam survey
is aligned with the long distance L). Plot the window function at k = k; as a
function of k;. At the point k; = k;, you should recapture the corresponding points
in Figures 11.5 and 11.7.

Exercise 9. Prove Eq. (11.100). Assume there is only one parameter A and that
the likelihood function is Gaussian in the overdensities A. Further assume that you
have iterated enough times so that the input parameter A(?) is equal to the true
value X.

Exercise 10. Derive the optimal quadratic estimator of Eq. (11.92) by minimiz-
ing the variance of a general quadratic estimator subject to the constraint that
its expectation value is unbiased. Hint: Use a Lagrange multiplier to enforce the
constraint.

Exercise 11. Consider an all-sky CMB experiment with spatial pixels of area AQQ.
Assume that the experiment measures the temperature in each pixel with Gaussian
noise ¢,. The noise is thus assumed to be uniform (the same everywhere on the
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sky) and uncorrelated (from one pixel to the next). Determine the noise covariance
matrix for a;,. If the pixel size is cut in half (for the same experiment), each pixel
will get less observing time by a factor of 2. The noise will then go up for each
pixel by a factor of /2. Show that these two changes (smaller pixels; more noise
per pixel) leave the noise covariance matrix for a;,,, unchanged.

Exercise 12. Estimate the expected errors on C; for the following experiments: (i)
COBE, (ii) Boomerang, and (iii) MAP, and (iv) Planck.

Exercise 13. The full-sky limits for the Fisher matrix derived in Section 11.4 can
be used to find the optimal quadratic estimator. The results should not surprise
you.

(a) Given a set of aj, from a full-sky CMB experiment with uniform weight w,
find the optimal quadratic estimator for Cj.

(b) Given a set of pixelized Fourier overdensities from a 3D galaxy survey, find the
optimal quadratic estimator for P(k).

(c) From your answers to (a) and (b), discuss qualitatively the effectiveness of the
optimal quadratic estimator. When do you expect it to perform differently from
the naive quadratic estimator, 3 |aim|2/(20 + 1) for C; and Y |6z|%/(47k*Ak)
for P(k) (where Ak is the width of the k-bin)?

Exercise 14. Show that the noise covariance matrix of a map using the estimator
in Eq. (11.134) is Cy, as given in Eq. (11.135)

Exercise 15. Suppose one had prior information about a foreground, in the form
of an assumed power spectrum, C}*, where « labels the foreground component.
(a) Find the miminum variance estimator for the temperature and the associated
covariance matrix.

(b) Consider the example of Section 11.6.1 with two frequencies in the Rayleigh-
Jeans regime and one foreground with shape vector Wt = (1,1/2). What is the
best estimator of the CMB temperature if the foreground has assumed mean equal
to zero and variance equal to that of the noise (¢2)? What is the new error on the
determination of the CMB temperature? Compare both of these to the case treated
in the text when no information about the foreground amplitude was assumed.
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SOLUTIONS TO SELECTED PROBLEMS

The problems at the end of each chapter have a broad range of difficulty. Some
are simply repeating calculations in the text in a slightly different context; others
are fairly elementary applications of basic formulae; while some are quite diffi-
cult, culled from recent papers. Here are some selected solutions. The solutions are
heavily weighted to the first several chapters, especially Chapter 2, because it is
important to be comfortable with the background cosmology before proceeding to
tackle perturbations.

CHAPTER 1

Exercise 1 The ratio

PA _ Hy\*
3H?/(8rC) (pa/pco (FO) (A1)

where subscript 0 means evaluate today, where it is assumed to be 0.7. Again, by
assumption, the universe is forever radiation dominated (clearly not true today, but
a good approximation early on), so H/Hy = a~2. The temperature also scales as
a"!, so H/Hy = (T/Tp)? with Ty = 2.7K = 2.3 x 10~% eV. So,

P, _qgq(D N (A.2)
3H?/(87G) T
At the Planck scale, Ty/T = 2.3 x 107%/1.22 x 10?8, so

PA —-128

——— =0x10 . A3
3HZ/(87C) (4.3)
This is the so-called fine-tuning problem: for the cosmological constant to be impor-
tant today, it had to have been fine-tuned to an absurdly small value at early times.
It’s a deep problem.

392
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Exercise 2 We need to do the integral

1 ['da 1-017 2
to = — — |2 A4
0 H, /0 a [ A+ e } (A4)
for 24 = 0.7 and 0. The latter case can be done analytically:
1
/ d—aa3/2 = g (A.5)
0o @ 3

So to = 2/3Hy = 0.67 x 10'°A~! yrs. When Qj is not zero, the integral needs to be
done numerically. I find

Ld 31712
/ = [0.7 + @] = 0.96. (A.6)
0 Q a

So for fixed Hubble constant, a cosmological constant universe is older than a
matter-dominated one, older by a factor of 0.96/0.67 = 1.43. For h = 0.7, a cos-
mological constant universe has an age of 14 billion years, in accord with other
observations of the age of the universe.

Exercise 4 An inverse wavelength is v//c, so replacing v everywhere in Eq. (1.8)

by ¢/A leads to
_4rmhe 1

I, = .
X3 exp{2nhc/AkgT} -1
1

(A7)

This is energy per Hz; we want energy per cm™', so we need to multiply by c,

leaving .
drkhc 1
I\ = ) A8
1/ A3 exp{2mhe/MkgT} — 1 (A.8)
Plugging in numbers leads to
3 1

Iy =12x 107 1 emlsr? (@) . A9
L/ X erg sec - cm st A/ exp{0.53cm/A\} ~1 (4.9)

A quick check verifies that this agrees with Figure 1.10.
To find the peak, differentiate I with respect to 1/A and set equal to zero. This

1
caves N (2nhe/kpT)

1
T 31- exp {—2rhe/MkpT}
So 1/Apeax is 3/ .53cm~!. The exact coefficient, accounting for the exponential is
2.82, 50 1/Apeak = 5.3cm™!, exactly where it occurs in Figure 1.10.

(A.10)

CHAPTER 2

Exercise 1
(a) To get from kelvin to eV, use kg = eV /(11605K). So 2.725K — kp2.725K =
(2.725/11605) eV. Or 2.348 x 10~ eV.
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(b) Since Ty = 2.348 x 107 eV,

2774

Py = "1? =2.000 x 107 %eV4, (A.11)
To get this in g cm™3, first divide by (hc)® = (1.973 x 107%eV em)?® to get
0.2604eV ecm™. Then to change from eV to grams, remember that the mass of
the proton is either 1.673 x 1072% g or 0.9383 x 10? eV, 50 1 eV = 1.783 x 10733 g.
Therefore, p, = 4.643 x 10734 g cm 3.

(c) We have parametrized Hy = 100 hkm sec™! Mpc~!, or using the fact that
one Mpc is equal to 3.1 x 10'° km, Hy = 3.23 hx 10718 sec™!. To get this into inverse
cm, divide by the speed of light, ¢ = 3 x 101° cm sec ~'; then Hy = 1.1~ x 10728
cm. Or Hy' =9.3h71 x 10 cm.

(d) To get the Planck mass (1.2 x 102® eV) into kelvins, multiply by k3' =
11605K /eV; then mp; = 1.4 x 1032 K. To get it into inverse cm, divide by hc =
1.97 x 1075 eV cm to get mp; = 6.1 x 1032 ecm~!. To get this is units of time,
multiply by the speed of light to get mp; = 6.1 x 1032 x 3 x 10'° cm sec™?, or
mp; = 1.8 x 10%3 sec™!.

Exercise 7

Start with

Ocx
Fgu — g_ [aga;t agau _ ag;w:l (Al?)

2 | Oz~ Oz# O™
where y, v range from 0 t0 2, 0 being the time index, 1 corresponding to ¢, and 2
to ¢. Since the metric is diagonal, g°* is nonzero only when o = 0 in which case it

is —1. So

;1 ago;t + agOV _ 69;11;

2 | 0xv  OzH ot |’
All of these terms vanish: the first two since ggp is a constant, and the last because

none of the metric elements depend on z° = ¢. So I'),,, = 0 for all p, v.
Next consider

0 _
L =

(A.13)

fo
6 __ g_ 69&# agau _ ag;u/ A.14
P = 2 [&r” T Br e | (A.14)

Again since the metric is diagonal, and g% = 1/r2, this reduces to

1 [0Jge 09 Oguv
A —— K — el A.15
w92 {axv T en T o0 (&.15)

Only the gss component depends on one of our variables, so only it is nonzero
when differentiated. Therefore, the first two terms vanish and the last is nonzero
only when ;1 = v = ¢, in which case it is

.2
0 1 [_T28sm ()]

rf, ==
o0 o2 a0

= —sinfcosb. (A.16)

Finally, when the upper index is ¢, we have
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1 09¢p | 0940  Oguu
re = # — ey A.17
K 9r2gin? | Oz * OxH 0¢ ( )

The last term vanishes since none of the metric elements depend on ¢; the first two
are nonzero only if one of the indices p, v is equal to ¢ and the other is 8, so

¢ o _ cosd
Fd)e = F«%) =S (A.18)

The geodesic equation is

2z

T = S (A.19)
with gk
P = %. (A.20)

Let’s apply this to the ;1 = 6 component. The left-hand side is

d?0 ddt . 25

A ey A21

dX2 X d/\e E% ( )
since E = dt/d) is constant. The Christoffel symbol on the right-hand side Fgﬁ is
nonzero only when o = 3 = ¢ in which case it is —sin8cos . So,

6 — sinfcos b (¢)% = 0. (A.22)
For the second equation, consider the ¢ component of the geodesic equation,
d%¢ )

Dz —I%,P*PP. (A.23)

Again the left-hand side is simply E2¢. The right-hand side gets nonzero contribu-
tions when o = 0, 8 = ¢ or an identical term when a = ¢, 3 = 6. Therefore,

51+29%%4 0. (A.24)
sin 6
Incidentally this is equivalent to
4 (4sin*6) =0 (A.25)
dt

and the conserved quantity in parentheses is the angular momentum.
The Ricci scalar is

1 1
R=g"R,, = —Roo+ < Reg + ————=Fss. A.26
g r? r2sin2 ( )
The time-time component vanishes since all I'’s with time components are zero. We
need to compute the two spatial components. First, consider
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araf)g araga

dre 98
The first and third terms vanish since the Christoffel symbol with two lower 8’s
vanishes. For the same reason, the index o in the second term must be equal to ¢,
and both 8 and « in the last term must equal ¢:

Rgg = + TP g9 — T5eT P g (A.27)

O(cos b/ sinf) cosf\”
- _ - ) A28
Ros 06 sin @ ( )
Carrying out the derivative then gives
cos? 6 cosf\ >
Fioo [ * sin20] (sin@) ( )
The other spatial component is

or« O 4o

Rgp = ——22 - %2 L poy TP, —T%5,0% 4. (A.30)

dz® ¢
The Christoffel symbol in the first term is nonzero only if @ = 6, while the one in
the second term is always zero. In the third term 3 must be equal to 6 to make the

second Christoffe]l symbol be nonzero, and then o = ¢. In the last term 5 can be §
and a = ¢ or vice versa, so

1'*9
Ry = =55 + D051 05 = 09T g = T 40T 4o, (A.31)
The middle two terms cancel leaving
i 6 8
Carrying out the derivative gives
Ry = —cos? 0 + sin® 6 + cos® § = sin® 4. (A.33)
Summing up, we get .
R = —. A.34
2r? ( )
The Ricci scalar is therefore a measure of the curvature of the space.
Exercise 9 Accumulating the various I'’s leads to
d?x? a dt dz’
—_— =2 —. A.35
dX? adX d\ ( )

Change to differentiation with respect to 7 using the facts that dt/d\ = E and
dn/dX\ = E/a. Then the geodesic equation becomes

d ) ; 2 1
Ed (Eds"\  ab dz' (A.36)
adn \ a dn
Since E/a o a™?, when the derivative on the left acts on E/a, the resulting term

(proportional to dz'/dn) exactly cancels the term on the right, leaving the result
of Eq. (2.99).
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Exercise 10 The age integral is

a dal

Since we are assuming only matter and radiation, we can take

H(a) = Hov/pfee = | 75 + o (A.38)

where the 1/a® term is from matter with density equal to the critical density. When
the density in matter is equal to critical, , = @eq = 4.15 x 10~%h~2. Therefore,
the age integral is

1 f* ddd

~ Ho Jo NCET ™

t (A.39)

Integrate by parts to get

Hot = 2a\/a + Geq — 2/ da'\/a' + Geq. (A.40)
0

Carrying out the last integral leads to

4
Hot = 2a\/a + aeq — 3 {[a 4 aeq)?/? ~ ag’ég} . (A.41)

At very early times, such as when the temperature was 0.1 MeV, a is much smaller
than aeq, so

(12

2H0, /Qeq
This limit is easiest to see directly in the integral of Eq. (A.39), but you can also
get it by Taylor expanding Eq. (A.41). When the temperature is 0.1 MeV, the scale
factor is 2.35 x 1074eV /0.1 MeV = 2.35 x 1079, the temperature today divided by
0.1 MeV. Plugging in numbers leads to

t ; 0 K Qeq- (A.42)

t(0.1MeV) = 4.28 x 10716 x 9.78 x 10° yr = 130sec. (A .43)

At T =1/4 eV, a = 9.4 x 107%, significantly larger than a.q, = 8.5 x 107° with
h = 0.7, so Hot — (2/3)a®/2. So,

t(1/4eV) = 270,000 yr. (A.44)

Exercise 12 The angle subtended is the physical distance divided by the angu-

lar diameter distance
_ 5kpe(l + 2)

0(z
=) x(z)
In a flat, matter-dominated universe, x is given by Eq. (2.43). When z = 0.1 (1),

the term in brackets in Eq. (2.43) is equal to 0.0465 (0.293). The comoving distance
out to z is, therefore,

(A.45)
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_ [280n""Mpc  z=0.1
XT 11760 Mpe z=1

Carrying out the division and converting radians to arcsec (1 radian equals 2.06x 10°

arcsec) leads to
1.2R" 2=1

In a universe with 24 = 0.7,Q,,, = 0.3, x must be computed numerically. At z =1,
I find x to be larger than in the flat, matter-dominated case by a factor of 1.3,
so the angular size will be smaller by this factor, down to 0.92”. At z = 0.1 the
difference in comoving distances is only 5%, so the angular size goes down to 3.8h"
in the cosmological constant case.

Exercise 13 Rewriting Eq. (1.8) in terms of momentum p = hv/c = 2whv/c
and recognizing the denominator there as 1/f leads to

(A.46)

4rp?
(2m)?
with A = ¢ = 1. So the energy density is the integral of this over all frequencies,
with a factor of 47 to count photons from all directions (i.e., I, is per steradian):

Iu:f

(A.48)

oo}
py = 47r/ dvi,. (A.49)
0
This can be converted into an integral over momentum, with dv = dp/(27):
o
Py = 2/ dpl,. (A.50)
0

Exercise 15 We want to compute p = —7. Setting u = v = 0 leads to

o dPydP>d Py
T =—¢i | — -

(2m)°
The matrix g, is diagonal, so the determinant is simply the product of the diagonal
elements, —a®. By definition, p? = g P,P; = a7 28;; P,P;. So p; = p;p = P,/a with
P; a unit vector pointing in the direction of the momentum. Therefore, d*P = a3d®p
and the factors of a precisely cancel those coming from the determinant. We’re left

with P
T = —g; P pog. A52
0 g /(27’(’)3 f ( )

The four vector P, squared is equal to —m?, the mass of the particle, so goo(P?)* =
—m? — g;;P'P) = —m? — p%. Since goo = —1, P® = /p? + m?, in accord with
Eq. (2.59).

Exercise 17 The energy density of a massless boson is gn?7T*/30, while that
of a fermion is 7/8 times this. So,

272 s 7 3
=15 Z giTi+§ Z g:.T; (A.53)

i=bosons i=fermions

(- det[g,,]) /2PO £ (A.51)

accounting for the possibility that different species have different temperatures.
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CHAPTER 3

Exercise 1 The number density of a species with degeneracy g = 2 is

n= 2/ —=f(p). (A.54)

For the distributions we will consider, the phase space density f depends only on the
magnitude of the momentum, so the angular part of the integral can be performed
leading to the a factor of 47; therefore,

n= %/0 dp p* f(p). (A.55)

First let’s consider the high m/T limit. In this case, the limit of the Boltzmann
distribution is exp[—(m + p?/2m)/T). 1 claim, though, that this is precisely the
limit of both the Fermi-Dirac and Bose-Einstein distributions:

1 —-E/T

since E >~ m > T so that the exponential in the denominator dwarfs the 1. There-
fore the low-temperature limit of all three distributions is

low T e—m/T > 2 _—p?/2mT
n = dp p°e . (A.57)
0

To do the integral, define a dimensionless parameter z = p/v2mT. In terms of the
variable dpp? = [2mT]3/?dz2?, so

low T e—m/T 3/2 oo 2 —z?
n = ——7—r—2——[2mT] dr z%e™" . (A.58)
0

But the integral is equal to \/7/2, so we have

3/2
nlov T = 9e=m/T (m—T) . (A.59)
2n

The high-temperature Boltzmann limit is
. 1 [
pHi T, Boltz _ _2/ dp p2e—P/T. (A.60)
™ Jo
Defining the dummy variable z = p/T leads to

. 1 o
pHi T, Boltz _ ——2T3/ dz z%e". (A.61)
0

s

The x integral is equal to 2. So,
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, 273
nHl T. Boltz _ ? (A62)
The Bose-Einstein and Fermi-Dirac integrals similarly are
3 poc 2
o Hi T, BE/FD __ T_/ dz x _ (A.63)
7T2 0 et :F 1

The integrals can be written in terms of the Riemann zeta function, via Eq. (C.27).
So the integral in Eq. (A.63) with the minus sign —the Bose-Einstein distribu-
tion—is ¢(3)T'(3) = 2¢(3). The integral with the plus sign — the Fermi-Dirac dis-
tribution —is 3¢(3)I'(3)/4 = 3¢(3)/2, so

mr_ CB)T? (2 Bose-Einstein
" 3/2 Fermi-Dirac

)
By the way, ((3) =~ 1.202, so there are more bosons than fermions for the same
temperature, and these bracket the Boltzman amount. All of course are proportional
to T3.
Exercise 6 The photon number density is 411 cm ™3, while the baryon number
density is ny = py/mp = perfl/myp. Plugging in numbers gives

1.879h2 x 10~2% cm
1.673 x 10~24g

So n, the ratio of the baryon to the photon number density, is indeed given by
Eq. (3.11).

Exercise 11 To find this ratio, we compute the entropy density (P + p)/T at
the two times. In both cases, only relativistic particles contribute to the entropy
density significantly so that Eq. (A.53) holds. At high temperatures, the following
particles contribute to the energy density: quarks (g. = 5 x 3 x 2 for the five
least massive types—up, down, strange, charm, bottom —each with three colors
and two spin states); anti-quarks (g, = 30 again); leptons (g. = 6 x 2 for the six
types —e, Ve, b, Uy, T, Vr — each with two spin states); anti-leptons (g. = 12 again);
photons (2); and gluons (g. = 8 x 2 for eight possible colors each with two spin
states). This totals up to

ny = =1.12 x 1073Qh% em ™3, (A.64)

7
g =2+16+ (30 +30 +12 +12) = 91.5. (A.65)

The sixth quark, the top quark, does not contribute because it is too heavy to
be around at these temperatures m; ~ 175 GeV. Today entropy comes only from
photons and neutrinos. The former contribute 2 to g.; the latter contribute (7/8) x
3x2x(4/11)4/3 = 1.36, so today g, = 3.36. Since the product sa® remains constant,

we have
[9+(aT)?] ‘

= [g.(aT)?] (A.66)

T=10 Gev T().

Thel‘efore,
a ! 3‘
( ) T=10 Gev 3.36 ].

= = A67
(aoTy)? 91.5 27 (A.67)
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CHAPTER 4

Exercise 1 First integrate Eq. (4.6) over all momentum. This gives

on  O(nv)

— +

ot ox
the df/0p term vanishing after integrating by parts and noticing that f = 0 at
p = too (there are no particles with infinite momentum). This is the continuity

equation. To get the Euler equation, first multiply by p/m and then integrate over
all momentum. This gives

o(nv) +g/ dp p? kx

=0, (A.68)

—+—n=0 A.69
ot Ox 27 m2 * m" ( )
where the last term follows from an integration by parts. The integral over p? yields
two terms, one a bulk velocity term, v?, and the second a pressure term, P. Using
the continuity equation reduces this to
. dv 10P kx
vtvg-+ -7+ -— =0 (A.70)
dr  ndr  m
Exercise 4 From Eq. (3.3), the electron distribution function peaks at zero
momentum, with a maximum value of e(*~™)/T_ To relate the chemical potential
to the density, recall that n = e*/Tn(® so in the low-temperature limit (Eq. (3.6)):

u/T Ne 2m i me /T
€ = ? T e’ . (A?l)

So the maximum value of f. is (n./2)(27/m.T)%/?. Divide Eq. (3.44) by the Thom-
son cross-section to get n, = 1.12 x 107°Qgh%cm 2 today including both ionized
and captured electrons. Taking the electron temperature to be equal to the photon
temperature today gives 27 /m.T = 2.04 x 10~ cm?. Putting back in the factors
of a leads to

fMAX = 1072 Qph%a~ (A.72)

This expression holds only up to T < m,, corresponding to a ~ 4.6 x 1071, So, as
long as the temperature is well below the electron mass, f. is very small.

Exercise 7 The difference between the amplitude we used in the derivation in
Section 4.3 and the more accurate one given in the problem is 2rorm?2[3cos(p -
7') — 1]. The combination is square brackets is twice the second Legendre polyno-
mial. Rewrite using the addition formula of spherical harmonics; then the difference
becomes

2
8 N E A
27“7ng? ) " Yo (D) Yo (B)- (A.73)
m=—2

This is the quantity we need to insert into the multiple integral in Eq. (4.49) in
place of M2. When we do this, only the m = 0 term will contribute since all other
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Yom (#') have an azimuthal dependence which integrates to zero. Therefore, the new
collision term due to anisotropic Compton scattering is

mn.o 3 .
5@ = o) / (—;%Pgw-k)

x {5<p—p'> G- 7 @(’;;—”)} UG - @Y. (AT4)

where T have used the fact that Yyy = —v/5P3/v4n. The only term which survives
the angular integral is the one proportional to é(p — p') f(p"), leaving

Ne0T > 11 ! /af(o)
oC = — -
) = =P | 'w'sto - S
1
d
< [ EPawe). (A.75)
-1
The angular integral gives —©,. Then integrating over the Dirac §-function yields
Af9 n.o
U] = +p7 =" Po(u)n (A.76)

This adds a factor of —P;02/2 inside the square brackets of Eq. (4.54) and explains
the corresponding factor in Eq. (4.100).

CHAPTER 5

Exercise 4 In Fourier space,

eijklkiki — 0r/3)GE = —k ey lbnk; — kjki/3)G*

= —2k2/3€ijkkji€kGL =0 (A77)

since €;;; is antisymmetric under interchange of j and k while lchlAck is symmetric.
The combination is also traceless since d;;(k;k; — 6;;/3) = 0.
Exercise 7 (a) By definition,
) gii’
k= 5 9i 5k + 91k — Gjrar] - (A.78)
All derivatives here are spatial, and the only spatially varying part of the metric is
the first-order piece H. Therefore, we can again use the zero-order g* = §;;/a?,
leaving Eq. (5.43).

(b) The product ngl“iﬁa vanishes when both indices o and 3 are zero (because
I3, = 0) and when both indices are spatial (because then each Christoffel symbol
is first order). Therefore, this product is

%'F@ = F?»jrﬁ) + ngr?k

7l
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=TT + (i = ). (A.79)
But
1 1
ngffo = § (QHQJ]C + a2ij.O) (H(Sik + iHik’())
2 da
=(H) gi; + aEHij,& (A.80)

We must remember to add back in the same set of terms with ¢ and j interchanged.
This just introduces a factor of 2, so

da

5T = 2(H) 95 + 20 7

Hij0- (A.81)

CHAPTER 6

Exercise 5 There are 411 photons per ecm™2 today; the Hubble volume is
(47/3)[3000 A~ Mpc)® = 3.3 x 103 h=3cm?. So the total number of photons is
1.4 x 1087 h=3. This number remains roughly constant throughout the matter and
radiation eras since the number density scales as 7%, the physical volume as a3, and
the temperature as a~!. So another problem of the classical cosmology is: Why is
the entropy of the universe so large?

Inflation solves this problem. At first the solution seems obvious: inflation makes
the scale factor grow exponentially fast, thereby increasing the product a7' and
hence the entropy. In fact, the solution is not quite that simple because during
inflation, the exponential expansion is adiabatic: the temperature still falls as a=!.
So near the end of inflation the temperature has dropped rapidly enough so that if
the entropy was initially of order unity, it remained of order unity.

The production of entropy actually takes place at the end of inflation during the
reheating process. Even though the temperature at the end of inflation is extremely
small, the energy density (which is almost completely in the scalar field) is not.
When the energy in the scalar field transforms into radiation, the temperature
of the radiation shoots up from its very low value of T to p'/* > T. Thus, the
reheating process is responsible for the large entropy we see today. Another way to
say this is to point out that inflation is a very ordered state: the universe supercools
while the field is trapped in a false vacuum. The transition to the true vacuum is a
transition to the very disordered state of equilibrium.

Exercise 11 (a) With this substitution, the equation becomes
d*o | 2dv 2
— - —+ K-S0 A.82
a iy ( ) ’ (452

Defining o = k7, we see that 0 satisfies the spherical Bessel equation of order 1
(Eq. (C.13)).
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(b) The two general solutions are j; (z) and y; (x). The general solution is there-
fore Aj; + Byi. Writing these out explicitly leads to

. sinxz — rcosz cosx + xsinx
v:nv:n(A . - B 2 )
1
2k

<eik’7 [-iA — Akn — B + iBkn)]
e~k ;A — Akn — B — iBkn] ) (A.83)

When k7 is very large and negative, we want v — e~ **7/v/2k, so the coefficient
of et in this limit, proportional to —A + B, must vanish. Thus, A = iB. The
coefficient of e~ is

[— 2Akn] 4 (A.84)

1
2k%n k

This must equal (2k)~1/2, so A = —(k/2)'/2. Therefore the correct solution is

v = \/QL;M (e_“”’ [z - kn]) (A.85)

in agreement with Eq. (6.57).

Exercise 13 The two components of Einstein’s equations are
k*W + 3aH (lIl + aH\Il) = 47 Ga?5TY
ik (¥ + aHY) = —47GadT?. (A.86)

Here I have simply copied the results from Chapter 5, replacing ® with —%. Multiply
the second of these by 3iaHk;/k?, and then add the two equations to get

(A.87)

Hk;0T?
k?¥ = 47Ga® {51}? — L———]

k2

On large scales, the left-hand side is negligible, so the terms in brackets on the right
must sum to zero, giving Eq. (6.85).

CHAPTER 7

Exercise 4
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(c) To do the integral, introduce a new dummy variable x = /1+y. Then
Eq. (7.31) becomes

o - 320 VIity /VHy e (% - 1)%(32% + 1)
T2 y3 1 x?

‘ (A.88)

Now integrate by parts using the fact that the integral of 1/x? is equal to —1/x.
The surface term is proportional to the numerator and so vanishes at the lower
limit, when x = 1. Therefore,

P 1 2 Vity
g 20 VIty ) y (4+3y)+/ da (182" — 2022 + 2)
1

2 y? vVi+y
30(0) vI+y [ v?(4+3 18 20 ATy
_ (0) :’y _y( + y)+(#$5__x3+2x)'11+y ' (A.89)
2 y V1ity 3 3
Evaluating the terms in parentheses at the upper and lower limits leads to

Eq. (7.32).
Exercise 9

3 L - 2
- <[ k a(k)W;z(k)] ) (A.90)

where ~ denotes Fourier transform, and I have used the fact that since Wg(x) is
real, Wr(k) = Wé(—l_c’) Also I have evaluated §r at the origin; and the angular
brackets denote the average, now over all realizations of S(E) Squaring and using
the fact that

(8(R)8(K")) = (27)*8%(k + k') P(k) (A.91)

leads to

oR = / djrk P(k) |Wr(k) ’ (A.92)

R
= —/ drz? due™+, (A.93)
0 -1

Note that I have normalized the window function so that the integral over it is
unity; hence the factor of Vg = 47R3/3. Carrying out the remaining angular and
radial integrals leads to

. 3 R
Wa(k) = 2 /0 dza sin(kz)
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3
= 5 [—kRcos(kR) + sin(kR)]. (A.94)
By way of solving Exercise 10, note that
2 dm 3
= P(k). A.95
A k) = 5k (k) (4.95)

CHAPTER 8

Exercise 2 Assume a solution of the form z = e**. The damping equation then
becomes a quadratic equation for w:

w? ~ Qw _k =0. (A.96)
m m

Solving with k/m > % = (b/2m)? leads to

The frequency is now w; = [k/m —~%]'/2, smaller than in the undamped case. The
amplitude is also damped by e~ 7.
Exercise 9 Use the addition theorem of spherical harmonics (C.12) to write

Pu(3 -k

21+1ZYI’ (3 Yirme (). (A.98)

Then the angular integral becomes an integral over the product of two spherical
harmonics, which — because of orthogonality —is equal to 1 if I’ =1 and m' = m
and zero otherwise. This leads directly to the desired reult.

Exercise 12 I get the result show in Figure A.1. The integral of the cross-term
is significantly smaller than that of either of the squares, so there is no interefence
between the monopole and dipole.

Exercise 17 The generalization of Eq. (8.67) to tensors gives

T _ U+ g0 " &k T,* *
CF = S (- 21+ (@t +1) [ - OF (0O (k) o () (8) (1.99)

v (2 )

where I have defined

L (K \/57\’ / APy (k - 3) Vi () [Ya2 () + Ya_a(9)] . (A.100)

The factor of [87/15]'/2[Yay 4+ Ya_p] is the combination sin? § cos(2¢) which appears
in Eq. (4.115), so this expression is valid only for the + mode. However, the x mode
gives exactly the same result.

The integral I, is not trivial. By rewriting the Legendre polynomial as
[47/(2l' 4+ 1)]*/2Y} /it , we can turn I into an integral over the product of three
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l T T T I T T T T I‘I*I T v I T T T 1

Ji

0.1
10-#
10-3
10-4
10-°
10-¢

Ji, dr

Figure A.1. The integrals of products of spherical Bessel functions.

spherical harmonics. Such integrals are intensively studied in quantum mechan-
ics and can be expressed in terms of the Wigner 3-j symbols. By the way, my
favorite reference for these things— especially useful for this integral —is Quan-
tum Mechanics (Landau and Lifshitz), like all the other texts in their Course of
Theoretical Physics a wonderful investment. The integral is then

Iy = 32m? (lm|Y +Ya_o|l'0) (A.101)
Iml! = B+ 1) 22 2-2 .
which vanishes unless m = 2 or m = —2. When m takes on one of these two values,
the matrix element is

/2 '
’ v flo20 5(2l/ + 1)(21 + 1) ! l 2
(121722 + Yool 0) = <0 0 0 4z -2 2 0)°

(A.102)
The first 3-j symbol here, the one with the bottom row all zero, vanishes unless the
sum of the elements in the top row [ + 1’ + 2 is even. And of course !’ cannot differ
from [ by more than 2 since the combination of Yao Yyrg leads to angular momenta
ranging from I’ — 2 to I’ 4+ 2. So the only time the matrix element is nonzero is when

I'=1-2,1,1+2. Using Table 9 in Section 106 of Quantum Mechanics leads to the
final result:

/8
Iy = ?ﬂ- V2041 it (5m,2 + (5m7_2) [6_251/,[_2 + 0051/,1 + 0251',l+2] (A.103)

where here §,, 2 (and all other §’s) is the Kronecker delta, equal to 1 if m = 2 and
zero otherwise. The coefficients are
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V6 (1= DI+ 1)(1 +2))"/?
4 2-3HA-D2+1)

C_o2 =

—2v6 [(1 - DI+ 1)1 +2)"?
4 @-DET102+3)

Co =

_ 1/2
6 — VB [ = DI+ 1)1 +2)] . (A.104)
4 20+ 1)21+3)(2+5)
The result in Eq. (8.93) then follows.
Exercise 18

(a) On large scales, we can take the matter-dominated solution for h, so

-1 . d [3j5.(kn)| 172
= oL pLe, A.105
O, 7 ), dn Jilk(no —n)] a { o h ( )

Here I have used the fact that the initial amplitude of the gravity waves is P;/ 2
with the time dependence given in the square brackets. Plug this into Eq. (8.93) to

get
L DI+ +2) [ "0 J2(kn)
cl =2 o /0 dk k? Py (k) /0 d(/my)W
gia(kfno —n)) o gkl —m) . ekl —m) 7|
{(zz ey T e D@ T D@ +3)H »(A.106)

where I have set the lower limit on the time integral to zero since 7. < 9. Also,
I have used the identity (j1/z)’ = —j2/z. The factor of 2 out in front comes from
the sum over the + and x components. Using Eq. (6.100) for P, (in the slow-roll
approximation € = 0 and v = 3/2) and defining new integration variables y = kng

and z = kn leads to
cff =36 (H‘"f> -+ e+ [ 2] [l
0 x
[ Ji—2(y — ) Jly —z) iialy — ) H2.(A.107)
(

mpl o ¥
+ 2

A-1)2+1)  C@-1)2+3)  (2+1)(2+3)

Here Hi,s denotes the Hubble rate during inflation, or more precisely the Hubble
rate when the modes in question crossed the horizon (when kn = —1 early on).
This expression does well on the low multipoles. To get even better results stick in
the transfer function of Eq. (5.88).

{b) For the | = 2 mode, the double integral in Eq. (A.107) is equal to 2.139 x
1074, s0 CT = 0.185(H/mp1)%. The scalar Cy is equal to 76%/12. Using Eq. (6.100)
for 6y leads to

7 = 13.86¢. (A.108)
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(c) Combining with Eq. (6.104), we expect

r = —6.93nr. (A.109)
For many models, the inflationary parameter § = —e, so
n—1=-np. (A.110)

CHAPTER 9

Exercise 2 Expand the power spectrum about ks = 0:

P ( k3 + (H()I{/X)2> = P(Hor/x) + %%“3:0@ +.... (A.111)
For a smooth power spectrum dP/dk is of order P/k, so the coefficient of k3 is
of order P/k?. For us, k = Hyr/x, so this coefficient is of order Px2/(Hok)?. We
can write k2 as —HZ20?/0x? acting on the exponential of Eq. (9.9). Assuming the
selection function is relatively smooth, this is of order HZ/x?. So the first correction
to the leading term is of order 1/x2, which is small as long as the angular scales
probed are not too large.

Exercise 3 Define the dummy variable x = Hok/k. Then
_ dx 2
F =Hy RJO(]CHX/HO)W (x): (A112)

an expression which clearly depends only on the combination k6.
Exercise 5 To express C[**"**" in terms of w, multiply both sides of Eq. (9.66)
by Py (cos ) and integrate over y = cos 6. This gives

1
Cpratter — 27r/ d cos 8P;(cos B)w(h). (A.113)

1

Express w as an integral over the 2D power spectrum as in the first line of Eq. (9.13).
Then,

o0 1
Cppatter _ /0 dI' I'Py(I') / dcos8Pi(cos0)Io16). (A.114)

Note the difference in P’s: the first P, here is the 2D power spectrum, the second P;
is the Legendre polynomial. In the limit that [’ is large, the Bessel function becomes

Jo(I'8) — Py (cos8). (A.115)

Therefore, the integral over 6 vanishes unless [ = I, in which case it is equal to
2/(2l +1). The integral over I’ is identical to a sum over I’ at large I’ since dl’ — 1.
The factor of 2/(2{+ 1) in the denominator cancels the factor of I’ in the numerator,
leaving the desired equality between the 2D power spectrum and Cratter.



410 SOLUTIONS TO SELECTED PROBLEMS

CHAPTER 10

Exercise 2 The total intensity received at the detector is the angular integral of
Iobs(0) over 0. The total intensity emitted is the angular integral of I ,.(fs) over
fs. The magnification g is the ratio of the two:

[ d201,05(6)
=< 7 A.116
b T 2051 (05) (A.116)

Change variables in the denominator to 8, leading to a factor of det(A) where A
is defined in Eq. (10.15). Recall now that I ue(fs) = Ibs(6), so except for the
determinant, the numerator and denominator cancel. This leaves

1 1
det(4)  (1-k)2— (V¥ +3)

If all the perturbations are small, then the magnification depends only on «:

= (A.117)

p~ 1+ 2k (A.118)
Exercise 3 (a) Reading off from Eq. (10.14), we see immediately that
Xxs _ .
o=2 [ 6 Xand), (A.119)
0 XsX

where I have let x — xs in Eq. (10.14) and replaced the dummy variable y’
there with x. The only subtlety here is the extra factor of x in the denominator.
This comes from changing the derivative with respect to position (the comma in
Eq. (10.14)) to an angular derivative.

Exercise 4 Recall that, in the Newtonian limit, the gravitational potential can
be written in terms of the mass density:

d*a’

We will do this integral in cylindrical coordinates, so that &’ = (ﬁ x'). Thus,

e 2GX>S(X /d2 /dprX /XS (A.121)
Sk \/R x£0)? + (x = X')?

where 1 have set x = x in the slowly varying factors out front. The innermost
integral can be done analytically: it is equal to

o

2In |z + \/(ﬁ—xL§)2+m2)

0

where I have set the upper limit to infinity because there is no contribution to the
relevant part of the projected potential from large x. In fact, the only part which
depends on 7 (and hence is relevant when derivatives are taken) comes from the
lower limit: —21n |R XL9|- The integral over x’ then becomes the surface density
leaving the desired result.
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CHAPTER 11

Exercise 4 The noise matrix is
1 o "
Cn)y =1 / B ()0, (7) (A.122)
in this case of constant fi. Let’s consider first the diagonal elements of the matrix.

For these, both 1; and 1; require x to be within a radius R of the center of the ith
cell, so

= R3
(Cn)y;; = ﬁ/ Bz = 47"53 (A.123)
<R

(no sum over ¢ intended). For cells separated by more than 2R, the integral vanishes
since & cannot be within a distance R of both cell centers. For distances less than
2R there is some overlap and the integral becomes

R 1
ﬁ/ 320 (R - ‘f— FD = 27rﬁ/ dacac2/ du® (R -zt +r?— 23:1",u)
z<R 0 -1
(A.124)
where 7 is the difference between the positions of the two cell centers and © is the
step function equal to 1 if its argument is positive and zero otherwise. The p integral
therefore goes runs from (z? + r? — R?)/2zr up to 1. If this lower limit is greater
than 1, then the p integral vanishes; otherwise it is unity. The only contribution
then comes when the lower limit is less than 1, which happens when z lies between
r &+ R. The integral is therefore

R 24,2 _ p2 R
/ dxz? [1 - u] -1 / drx [2zr — (% + 1% — R2)] . (A.125)
r—R 2zr 2r J._gr

The z integral here is then tedious but completely straightforward since the inte-
grand is simply powers of z. I find that

(Cn)y; = F?SS (2- %)2 (a+22). (A.126)

Exercise 7 We need to compute the integral of Eq. (11.55). Since the window
function is sharply peaked for small scale modes, we can set k everywhere to k;.
Then inserting our explicit expression for the window function in a volume-limited
survey (Eq. (11.59)), we are left with

(k+ki)R dy
Cs) / / . A.127
(Cs)i = L) L (a127)

The best way to do the integrals here is to switch orders of integration. Consider the
Figure A.2, which shows the region of integration. The region below the horizontal
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k.R

k

Figure A.2. Region of integration for the double integral in Eq. (A.128). The region below
the horizontal line constitutes the first term, above the second term.

line corresponds to y < k;R and k; — y/R < k < k; +y/R. In the region above k is
bounded by y/R + k;. Therefore,

(k+k:) ‘2 kiR dy ki+y/R © dy ki+y/R
/ dk/ V= [ e [ s [ Liw [
—ki|R y 0 Y ki—y/R kR Y y/R—k;

= f_?/o dy Jf(y)+2ki/ Y i2). (A.128)

kR Y

In the limit k,R >> 1, the first term here is much larger than the second (since
72(y) goes as 1/y? for large y). In the first integral, we may replace the upper
limit by infinity, again since k;R is large. The resulting integral is (Eq. (C.17))
n['(3/2)/4(5/2) = /6. Multiplying this by 2/R and then by 9/47%R? leads to a
factor of 1/V.

Exercise 9 We want to compute the variance

<(J\—X)2>:<<F—1AC 'CACT'A — Tx[C™ 1CA]> > (A.129)

2

where the estimator X is given by Eq. (11.92), and I have assumed that A(®) = ),
i.e., we are at the true maximum of the likelihood function. Upon squaring there
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are terms with no A; those with two A’s; and those with four. The ones with two
A’s can be simply evaluated by using

(Ail;) = Cy; (A.130)

where the indices label the pixels. Since the distribution is assumed Gaussian, the
expectation value of four A’s is

(DA ALA) = Ci5Ch + CikCjt + CuClik. (A.131)

Putting in these expectation values leads to

2

<(5\ - X)2> - F%{ [c-lc,kc—l] [c*c,Ac—l] CiiCrt + CitCy1 + CitClik)

kl(

)

_ (Tr[C_lQ,\])Z}. (A.132)

The C;;Cy terms lead to (Tr[C~1C ,])2, cancelling the similar term on the last
line, so

. N2 F2
(()\ - /\) )= % [C_IC,Ac'-l] B [C_IC,,\C”]M (CirCii + CuCji) . (A133)
1
Both terms here contribute identically (giving one factor of 2). The matrix multi-
plication simplifies since all matrices are symmetric. For example,

[C—lc,/\c_l] - [C_lC’,,\C_l}le,-ijl ="Tr [C“lc,AC‘IC,,\] (A.134)
ij
and we recognize the right-hand side as 2F) (another factor of 2). Therefore,
N2
<()\ - /\) ) = FoL. (A.135)

It is important to keep in mind that this equality holds only if the overdensities are
distributed as Gaussians and if we truly have reached the point in parameter space
which is the true maximum.

Exercise 15 (a) Use a likelihood approach. The likelihood function for the
par%meters, here the amplitudes of the different components ©, is proportional to
e™X/2 with

Nroregrounds

X=(d-WO)N(d-We)+ > (8%)?*/C, (A.136)

a=1

The first term is identical to that generated by Eq. (11.144). The second accounts
for the prior, that ©* has mean zero and variance C®. Maximizing the likelihood
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corresponds to minimizing the x?, with respect to the parameters ©. Since the

x? is quadratic, the minimization leads to a linear equation for A®, the minimum

variance estimator of ©%:
A= (WN'W+C') " WNd. (A.137)
The new covariance matrix is the first term on the right,
Cyv=(WN'W+Cc ). (A.138)

Here the matrix C is diagonal with o element equal to zero, and the other diagonal
elements equal to the assumed power spectra of the foregrounds.

(b) If there is only one foreground with shape vector W' = (1,1/2), and if this
foreground has assumed power equal to the noise, then the new inverse covariance
matrix goes from that in Eq. (11.151) to the same matrix with 1/02 added to the

11 component. Thus,
11 2 3/2
Cy = —U% 3/2 9/4 )" (A.139)

Note that the oo component of this is unchanged, as it must be since it is the inverse
covariance if all foregrounds are known. The inverse of this gives the new covariance

matrix, )
Oy = 1on < 9/4 "3/2), (A.140)

9 \ —-3/2 2

Immediately, we see that the noise in the presence of foregrounds is o,. This is a
factor of /5 smaller than if we had no prior knowledge of the foreground amplitude.
It is only a factor of /2 larger than the case without foregrounds; thus the new
FDF in this case is v/2. The minimum variance estimator is

a0 =2 o (1) (0 ) ()

di + 2ds
3 .

ff

(A.141)



APPENDIX B

NUMBERS

Numbers in parentheses denote one standard deviation uncertainties in last dig-
its (e.g., the Rydberg ey = 13.60569172 + 5.3 x 10~7eV). The vast majority of
these numbers, at least the physical constants, come from the Particle Data Group
(Groom et al., 2001).

B.1 PHYSICAL CONSTANTS

Fine structure constant a = 1/137.03599976(50)

Rydberg € = mecia?/2

= 13.60569172(53) eV

Thomson cross-section or = 8ma?h?/3m2c?

= 0.665245854(15) x 10~2% cm?

Neutron lifetime Th = 885.7(0.8) sec
Speed of light c = 2.99792458 x 1010 cm sec™!
Fermi constant Gr = 1.16639(1) x 107° GeV~2(hc)®

415
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Newton’s constant G = 6.673(10) x 10 8 cm3g~'sec™2
= hcdmp?

Reduced Planck’s constant h = 6.58211889(26) x 1076 eV sec

Boltzmann constant

Electron mass

Neutron mass

Proton mass

Planck mass

Neutron-proton mass difference

kp

Me

mn

mpy

Q

B.2 COSMOLOGICAL CONSTANTS

Cosmic microwave background

energy density

Critical density

Py

Per

1.973269602(77) x 1075 eV cm/c

8.617342(15) x 107%],eV K™

0.510998902(21) MeV /c?
939.565330(38) MeV /2

1.67262158(13) x 10~ ¢

938.271998(38) MeV /c?

1.221 x 101 GeV/c?

1.094 x 10738 M

1.2933 MeV /c?

n2kHT*/15(he)?
2.47 x 107°h~2(T/Ty)* per
1.879 h2 x 1072? g cm™3

2.775 k% x 10" MyMpc ™2

8.098 h? x 10~ eV*/(hc)?



COSMOLOGICAL CONSTANTS

417

Massive neutrino density

Massless neutrino density

(N generations)

Scale factor at equality

Wavenumber at equality

Hubble constant

Solar mass

Parsec

Cosmic microwave background

temperature today

Q,h?

Q,h2

Hy

M,

pc

(m,/94eV)

1.68 x 10-5(N/3)

4.15 x 107%(Q,,h%) 1
0.073 Q0 h2 Mpe ™!

100k km sec™! Mpc™?
2.133h x 10*2 GeV /R

1.023h x 10719 year—!

1.989 x 10%3 g

1.116 x 10°7 GeV/c?
3.0856 x 10'® cm

2.725(2) K

2.348 x 1074 eV /kg



APPENDIX C

SPECIAL FUNCTIONS

Here is a very brief summary of special functions, focusing primarily on properties
relevant to the calcuations in the text. For a more complete treatment, see, e.g.,
Handbook of Mathematical Functions (Abramowitz and Stegun).

C.1 LEGENDRE POLYNOMIALS

The Legendre polynomial P;(u) is an [th-order polynomial of p. For —1 < p <1,
P; has [ zeroes in this interval. Some special values are

3u? -1
Po(p) =1 ; Prp) = p ; Pou) = %_

The property observed in these first few, that P; is an even function of y for [ even
and an odd function for ! odd, holds for all [. They are orthogonal so that

(C.1)

1
2
duPi(p)Pr (1) = i . C.2
[ PP = b g (€2

To generate the higher order ones starting from the low ones, one can use the
recurrence relation

(L4 1P () = (2 + DuPi(p) — P (). (C3)

This relation is useful for expressing the Boltzmann equations in terms of moments.

C.2 SPHERICAL HARMONICS

Spherical harmonics are eigenfunctions of the angular part of the Laplacian,
1 0 19} 1 92
smo a6 "5 ) T snZeoe? = - . C4
Lin& 6 (S‘“939> Ry 3¢2}Yzm(9,¢) 11+ 1)Yim (6, ) (C.4)

In the text, we decomposed the CMB temperature into spherical harmonics
(Eq. (8.60)); this decomposition is the analogue of a Fourier decomposition in flat

418
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space. The CMB temperature is defined on the sphere, i.e., is a function of 6, ¢,
while the 3D galaxy density, for example, is a function of all three spatial coordi-
nates so is expanded in Fourier coeflicients. Some special values are

Yoo(6,¢) = \/% (C.5)
Yio(0,6) = i %cos(@) (C.6)
Y1,41(0,9) = \/835111(6) i (C.7)
Yao(6, ) = \/7 (1 = 3cos?6) (C.8)
Ya.41(6,0) = 15 0 0sin getie (C.9)

Y2 10(0 —1/ 37 sin? fe2¢, (C.10)

These functions are orthogonal, with normalization
/dQYl:n(Q)Ypm/(Q) = 811 by - (C.11)

Another useful expression is the Legendre polynomial in terms of a sum of products
of the spherical harmonics:

Py(d - &) 2l+IZYlm Y (&) (C.12)

C.3 SPHERICAL BESSEL FUNCTIONS

Spherical Bessel functions are crucial in the study of the CMB and large-scale
structure in part because they project the inhomogeneities at last scattering onto
the sky today. They satisfy the differential equation

d2jl 2 d_]l i + 1)
— 1- = C.13
d? T Tde [ ] =0 (C.13)
The lowest several are
. sin(x . sinx —rcoszx
oy =TI gy - MREmTOT (€14)

The key integral relating Legendre polynomials to spherical Bessel functions is



420 SPECIAL FUNCTIONS

1 1 . (2
: / duP ) = {lf()—)l (C.15)

The inverted version of this leads to a useful expansion for Fourier basis functions:
ot -~
F =i (20+ (k) Pk - 2). (C.16)
1=0

Another important integral for the Sachs-Wolfe effect is

% r{g+2-Lr@-
/ dr ™ 2]12( ) 2n—4ﬂ_ ( +52 n2) 2( n;L) ) (017)
0 P+3-3)r(2-3)
Another important relation which eliminates derivatives is
dj [+1
2 i - (C.18)
T
C.4 FOURIER TRANSFORMS
Our Fourier convention is
Bk gz sz
7y — kT k
1@ = [ e iH)
f(k) = / dBreFE f(3). (C.19)

The power spectrum is then the Fourier transform of the correlation function, with

(B(R)S(K')) = (27m)%8%(k — k') P(k). (C.20)

C.5 MISCELLANEOUS

We just need a couple of relations involving ordinary Bessel functions,
Ju(z) = —/ df € °°® cos(nd) (C.21)
0

and

The I' function for integers is simply related to factorials:
I'in+1) =nl (C.23)

More generally
Iz +1) =zl (z) (C.24)
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even if z is not an integer. The Sachs-Wolfe integral (Eq. (C.17)) for a Harrison—
Zel’dovich-Peebles spectrum (n = 1) depends on

I(3/2) = ‘/7’7 (C.25)

The Riemann zeta function is useful for evaluating integrals in statistical
mechanics. In particular,

1 oo xs—l 1 o0 ms—l
= d = d . C.26
¢(s) F(s)/o T —1 (1—21—s)r(s)/0 et 1 (C.26)
Some low integer Riemann zeta functions are
2 m
@="" 5 (@)=1202 ; (4= (c.27)



APPENDIX D

SYMBOLS

| Symbol [ Explanation

ﬁ‘irst page listecu

Derivative with respect to time (before Chapter 4)
or conformal time (afterwards)
al? Recombination rate of hydrogen 71
Jé] Ionization rate of hydrogen 71
s Christoffel symbol 30
W) Two components of shear 300
r Parameter determining the power spectrum 205
Oy Baryon overdensity 106
test; Estimated anisotropy in pixel ¢ 340
A%(k) Dimensionless power on scale k 185
1) Dark matter overdensity 104
] Slow-roll parameter (Chapter 6 only) 155
6P(k — k') | Dirac delta function in D dimensions 16
10 Perturbation to the scalar field driving inflation 152
oTH Perturbation to energy-momentum tensor 163
Ji; Kronecker delta = 0(i # 7) or 1(i = j) 27
oy Amplitude of primordial perturbations at horizon 171
€ Slow-roll parameter 155
€ Polarization unit vector 97
€12 Two components of ellipticity 301
€0 Ionization energy of hydrogen, 13.6 eV 70
n Conformal time 34
M Conformal time at recombination 218
Neq Conformal time at matter-radiation equality 213
i Baryon-to-entropy ratio 62
Tlprim Conformal time at the end of inflation 149
un Minkowski metric 26

422




SYMBOLS 423
l Symbol I Explanation l First page listed ]

(e] Perturbation to photon distribution 93
O, Legendre moment of photon perturbation 110
Op Polarization perturbation 111
O, Perturbation to radiation = p,© + p, N 135
oT Photon perturbation due to tensor perturbations 116
K Convergence 300
A Cosmological constant 10
I Cosine of the angle between k and p 101
&(r) 3D correlation function 264
€0 ¢ Generators of coordinate transformations 133
Pb Baryon energy density 41
Per Critical energy density 3
Pde Dark energy density 30
Pdm Dark matter energy density 123
Pm Matter energy density 38
P~ Energy density of photons 40
[ Energy density of neutrinos 46
Or Energy density of all radiation 38
or Thomson cross-section 72
7(n) Optical depth of photons back to conformal time 7 101
T Scattering rate 101
Tn Neutron lifetime 67
d Scalar perturbation to metric 87
o, Primordial value of ® set during inflation 183
o Zero-order value of the field driving inflation 152
x(z) Comoving distance out to redshift = 34
Xoo Comoving distance to redshift infinity 263
Y Scalar perturbation to metric 87

i 2 x 2 distortion tensor 302
Q; Energy density in ith species over p, 10
Qi Ratio of curvature density to critical density 35
A;j 2 x 2 transformation matrix 300
a Scale factor of the universe 2
s Scale factor at recombination 186
Geq Scale factor at matter-radiation equality 51
Qlate Scale factor after which perturbations evolve as D, 183
B B-mode of polarization or weak lensing 306
Bp Binding energy of deuterium 65
C Full covariance matrix 341
C Band power 389
Cpratter Angular power spectrum for matter 290
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SYMBOLS

| Symbol ‘ Explanation ] First page listed ]
Cs Sound speed 82
Cn Covariance matrix due to the noise 339
Cs Covariance matrix due to the signal 340
Dy Growth function 183
da Angular diameter distance 35
dr Luminosity distance 36
E E-mode of polarization or weak lensing 306
Fas Fisher matrix 366
F Curvature matrix 365
f Distribution function, often referring to photons 38
fam Distribution function of dark matter 102
fe Distribution function of electrons 95
f© Zero-order distribution function of photons 93
g(n) Visibility function 236
G~ Effective relativistic degrees of freedom 67
v Metric 25
gi Number of spin states of species i 38
G Newton’s constant 3
Gy Einstein tensor 32
h Parameter for Hubble constant )
h Variable tracing tensor perturbations 158
hy,hs Tensor perturbations to metric 116
H 3D matrix describing tensor perturbations 126
H Hubble rate of expansion 3
Hy Hubble rate today 3
k Wavenumber 101
ki =kt Wavevector 101
keq Wavenumber crossing horizon at aeq 194
knt Wavenumber of nonlinearity 185
ko Location of acoustic peaks 229
L Likelihood function 337
M Particle physics amplitude for a process 59
Me Electron mass 70
My, Neutron mass 64
my Neutrino mass 46
mp| Planck mass 53
My Proton mass 64
Ny Number of pixels in an experiment 341
N, Baryon number density 62
Tdm Dark matter number density 103
_ngi“r Zero-order dark matter number density 104
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| Symbol [ Explanation | First page listed |

n© Equilibrium number density 61
N Perturbation to neutrino distribution function 111
Py Legendre polynomial of order | 112
P Pressure 37
pa 4D comoving energy-momentum vector 31
P Proper momentum 56
P(k) Power spectrum of matter 16
Py (k) Gravitational potential power spectrum 167
P =P; Unit direction vector 90
Q Proton-neutron mass difference 65
Q Stokes parameter 312
T Tensor/scalar ratio 248
T Sound horizon 228
R, Ricci tensor 32
R Ricci scalar = "R, 32
R Baryon-to-photon ratio, 3ps/4p- 82
s Entropy density 40
t Age of the universe 2

Tant Antenna temperature 379
T Zero-order photon temperature 4

T Stress—energy tensor 32
U Stokes parameter 312
Up = kvy, | Velocity of baryons 96
7= kv Velocity of dark matter 103
vy Velocity due to Hubble expansion 261
Upec Peculiar velocity 261
w Pressure to energy-density ratio 50
w() Angular correlation function 266
X, Free electron fraction 70
X Neutron abundance 66
XnEQ Equilibrium neutron abundance 66
Y, Mass fraction of “He 69
Y Scale factor normalized to 1 at acq 190
YH y when mode crosses horizon 202
Yeq Equilibrium abundance of dark matter particles T4
z Redshift 7

Zx Redshift at recombination 51
Zeq Redshift at matter-radiation equality 51
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likelihood function, 337-344, 356-367
mapmaking and inversion, 375-378
signal covariance matrix, 344-356
systematics, 378-387
Angular correlation function, 261, 262-270
Angular diameter distance, 35
Anisotropic stress, 124
Anisotropies, 14
acoustic oscillations, 224-230
anisotropy spectrum, current, 242-248
cosmic variance, 239-242
cosmological parameters, 248-255
diffusion damping, 230-233
free streaming, 234-239
inhomogeneities to, 234242
integrated Sachs-Wolfe (ISW), 238, 244,
245-248
large scale, 223-224, 242-245
overview, 217-223
Sachs-Wolfe (SW) effect, 242-245
small scale, 245-248
Annihilation, Boltzmann equation for,
59-62
Antenna temperature, 379
Atomic number, 63
Automated Plate Measuring (APM)
Survey, 43, 262, 267-269

Backgrounds, 379
Bandpowers, 341
Baryon density, 10, 41-42, 253-254
Baryons, 62
Boltzmann equation for, 106-109
-photon fluid, 216, 223-233
transfer function and, 208-209
BBKS (Bardeen, Bond, Kaiser, and Szalay)
transfer function, 204-205, 274
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Bessel function/equation, 196, 235,
237-238, 243, 346
spherical, 419-420
Big Bang Nucleosynthesis (BBN), 9-12, 62
binding energy, 63-65
light element abundances, 68-70
neutron abundance, 65-68
Big Bang versus Steady State universe, 14
Binding energy, 63-65
Boltzmann equations
for annihilation, 59-62
for baryons, 106-109
for cold dark matter, 102-106
collisionless, for photons, 87-95
for harmonic oscillator, 85-87
initial conditions, 139-140
for photons, 100-101
polarization and, 320-323
tightly coupled limit of, 224-227
unintegrated, 84
Borrill, Julian, 336
Bose-Einstein distributions, 38, 41, 89
Bose enhancement, 59

Cartesian coordinate system, 28
Christoffel symbol, 29-30
metric for, 24

CDM. See Cold dark matter

Cepheid variables, 9

Chemical equilibrium, 62

Chopping angle, 348

Christoffel symbols, 29-30, 32, 298
for scalar perturbations, 118-119
for tensor perturbations, 125-126
for Friedman-Robertson-Walker metric,

130

Closed universe, 2

CMB. See Cosmic microwave background

CMBFAST, 216

Cold dark matter (CDM), 18
beyond, 207-211
Boltzmann equation for, 102-106
evolution equations, 185-189
gravitational instability, 180-182
growth function, 205-207
horizon crossing, 192-199
large scales, 189-194
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Cold dark matter (CDM) ( Continued) Damping
numerical results and fits, 203-205 diffusion/of perturbations of small scales,
small scales, 194-203 230-233
stages of evolution, 182-185 term, 227

standard versus Lambda, 185
sub-horizon evolution, 199-203
super-horizon solution, 189-192
transfer function, 183, 203-205, 268
Collapse fraction, 284-285
Collisionless Boltzmann equation for
photons, 87-95
Comoving distance, 2, 34
Comoving horizon, 34, 143, 146-150
Comoving Hubble radius, 146-150
Compton scattering, 70, 95-100, 234,
310-311
Conformal Newtonian gauge, 88, 132,
134-135, 170
Conformal time, 34, 100, 123, 143
Conservation law, 37-38
Continuity equation, 37
Convergence, 300
Cosmic microwave background (CMB), 4,
13-14
See also Anisotropies
Fisher matrix, 368-370
foregrounds, 378-384
likelihood function, 340-343
mode subtraction/contamination,
384-387
window functions, 345-350
Cosmic time, evolution of scale factor with,
2-4
Cosmic variance, 239-242
Cosmic velocity field, 44, 270-274
Cosmological constant, 4, 47
power spectrum and, 210-211
anisotropies and, 254-255
Cosmological parameters, 248
baryon density, 253-254
cosmological constant, 254-255
curvature density, 249-251
matter density, 255
normalization, 251
reionization, 253
tensor modes, 253
tilt, primordial, 252
Coulomb scattering, 70
Covariant derivative, 37
Cramer-Rao inequality, 367
Critical density, 3
numerical value for, 6
Curvature density, 249-251
Curvature of likelihood function, 365
Curvature perturbations, 170

Dark energy, 4, 47-50, 122, 210-211
Dark matter, 14, 73-78

See also Cold dark matter (CDM)
Decomposition theorem, 131-132
Decoupling of photons, 72
Density correlation function, 273-274
Deuterium measurements, 10-12
Diffusion damping, 230-233
Dirac delta function, 16, 59, 263-266
Distant observer approximation, 279
Distances, 33-37
Distortion of images, gravitational, 293-296
Distortion tensor, 293, 302-303
Distribution function, 38-39
Divergenceless tensor, 125
Doppler formula, standard, 7, 9

Einstein, A., 1, 4, 293
Einstein equations, 32-33
components of, 121-124
decomposition theorem, 131-132
initial conditions, 140-142
perturbed Ricci tensor and scalar,
117-120
tensor perturbations, 129-131
transforming from one gauge to another,
132-135
Einstein tensor, 32
Ellipticity as an estimator of shear, 300-302
Energy, evolution of, 37-40
Energy density, 2-3
baryons, 10, 41-42
dark energy, 47-50
matter, 42-44
matter-radiation equality, 50-51
neutrinos, 44-47
photons, 40-41
radiation, 4, 38
Energy-momentum tensor, 32, 37-40, 121
energy density, 152
homogeneous part, 152
pressure, 152
Entropy density, 40
Euler equation, 37
Expanding universe, 1-7
See also Smooth expanding universe
Expansion rate, 4-5

False vacuum, 152-154
Fermi-Dirac distributions, 38-39
Feynman rules, 97
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First-order perturbation equation, 94-95,
104
Fisher matrix, 366
CMB, 368-370
forecasting, 371-375
galaxy surveys, 370-371
Flat universe, 2, 4
age of, 5
evidence for, 249-251
Flux, measuring, 35-36
Forecasting, 371-375
Foreground degradation factor (FDF), 383
Foregrounds, 378-384
Fourier transform, 15, 100-101, 262-263,
420
Free electron fraction, 70-71
Free streaming, 234-239
Freeze-out, 74-75
Friedmann equation, 3, 33
Friedmann-Robertson-Walker (FRW)
metric, 24, 26, 30, 89

Galaxy clusters, 282-287
Galaxy power spectrum, 272
Galaxy surveys, 43, 261-263
Fisher matrix, 370-371
likelihood function, 343-344
window functions, 350-354
Gauges, 88
invariant variables, 134, 162, 169-170
transforming from one to another,
132-135
Gaussian beam, 347-350
Gaussianity, 161
General relativity, 23
Einstein equations, 32-33
geodesic equation, 28-31
metric, 24-27
Geodesic equation, 28-31
shear and, 296-300
Geometry, 2
Grand Unified Theories, 145
Gravitational distortion of images, 293-296
Gravitational instability, 180-182
Gravity, metrics and, 25
Gravity waves, 130-131
detecting, 326-329
production, 155-162
Green’s function, 198, 227
Growth function, 171-172, 183, 205-207

Harmonic oscillator
Boltzmann equation for, 85-87
quantizing, 156-157
Harmonics, spherical, 418-419

Harrison-Zel’dovich-Peebles spectrum, 171,
185, 244-245, 421
Heisenberg’s principle, 38
Higgs field, 152
Horizon crossing
large scales, 192-194
small scales, 195-199
Hubble constant, 8
Hubble diagram, 7-9
Hubble rate, defined, 3, 5
Hubble radius, 123
comoving, 146-150
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Inflation, theory of, 18, 144
negative pressure, 151
origin of term, 147
scalar field and, 145
scalar field implementation, 151-155
solution to horizon problem, 146-150
Inhomogeneities
to anisotropies, 234-242
beyond cold dark matter, 207-211
cosmic variance, 239-242
evolution equations, 185-189
free streaming, 234-239
gravitational instability, 180-182
growth function, 205-207
horizon crossing, 192-199
large scales, 189-194
numerical results and fits, 203-205
small scales, 194-203
stages of evolution, 182-185
sub-horizon evolution, 199-203
super-horizon solution, 189-192
transfer function, 183, 203-205
Inhomogeneities, probes of
angular correlations, 261-270
galaxy clusters, 282-287
peculiar velocities, 261-262, 270-271
peculiar velocities, direct measurements
of, 271-275
redshift space distortions, 275-282
Initial conditions
comoving horizon, 143-144
determining causes, 142-144
Einstein-Boltzmann equations, 139-142
gravity wave production, 155-162
inflation, 144-155
scalar perturbations, 162-170
Integrated Sachs-Wolfe (ISW), 238,
244-248
Invariant distance, 24
Isocurvature perturbations, 142
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Jacobian, 278

Karhunen-Loéve method, 356-362

Kernel, of the angular correlation function,
266

Kinetic equilibrium, 60

Kronecker delta, 27

Lambda Cold Dark Matter (ACDM), 185
Large-scale anisotropies, 223-224, 242-245
Large scales, inhomogeneities, 189-194
Legendre polynomials, 110, 225, 234-235,
265, 280, 346, 418
Light element abundances, 9-10, 68-70
Lightest supersymmetric partner (LSP),
77-78
Likelihood function
CMB, 340-343
curvature of, 365
galaxy surveys, 343-344
simple example, 337-340
Likelihood function, estimating the
Karhunen-Loéve method, 356-362
quadratic estimator, 362-367
Linear growth rate dimensionless, 270
Luminosity distance, 9, 36-37

Mapmaking and inversion, 375-378
Marginalizing, 374-375
Mass

determination for clusters, 285-286

gravitational distortion of images,

293-296
Massive compact halo objects (MACHOs),
294

Massless particle, geodesic equation and, 31
Mass-to-light ratios, 42
Matrices, writing of, 27
Matter density, 42-44, 255
Matter power spectrum, 272
Matter-radiation equality, 50-51
Maxwell-Boltzmann distribution, 87
Meszaros equation, 201-203
Metric, 24-27, 87, 151
Microlensing, 294
Minkowski space-time, 25-26
Mode subtraction/contamination, 384-387
MSAM experiment, beam pattern for, 345

Negative pressure, 151
Neumann function, 196
Neutrinos, 44-47, 62

transfer function and massive, 209-210
Neutron abundance, 65-68
Newton-Raphson method, 363-365

Newton'’s constant, 3, 6, 32
Newton's equation, for oscillator motion, 86
Newton’s law, generalization of, 28
Nonrelativistic Compton scattering, 96
Nonrelativistic matter, 3

energy density of, 4, 42-44
Nonrelativistic particles, 62
Normalization, anisotropy spectrum, 251
Nuclear statistical equilibrium (NSE), 62

One-point function, 282
Open universe, 2, 249-251
Overdots, use of, 30, 100

Pauli blocking, 59, 95
Peculiar velocities, 261-262, 270-271
direct measurements of, 271-275
Pencil beam survey, 353-354
Phase space elements, number of, 38
Photons, 40-41, 62
See also Anisotropies
Boltzmann equation for, 100-101
collisionless Boltzmann equation for,
87-95
decoupling of, 72
effects of Compton scattering, 95-100
Physical constants, 415416
Physical distance, 34
Plane wave, polarization from a single,
313-320
Poisson’s equation, 184
Polar coordinates, 24, 28
Polarization
Boltzmann equation, 320-323
power spectra, 323-326
quadrupole and the Q/U decomposition,
310-313
from a single plane wave, 313-320
Positive curvature, 2
Positrons, 62
Power spectrum, 16, 159, 183-185
matter versus galaxy, 272
polarization, 323-326
weak lensing, 302-310
Press-Schechter formalism, 283-287
Projection operator, 123, 131
Proper time, 25
Python experiment, 360-362

Quadratic estimator, 362-367
Quadrupole moments, 300

Q/U decomposition, 310-313
Quintessence, 47

Radiation, 2
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Rayleigh-Jeans limit, 381-382
Recombination, 70-73
Reddening correction, 385
Redshift space distortions, 275-282
Redshift surveys, problems with, 261
Redshift z, 7-9
Reionization, 253
Relativistic particles
decoupled, 62
in equilibrium, 62
Relativity, theory of, 1
Riccati equation, 75
Ricci scalar, 32-33, 117
finding, 120
Ricci tensor, 32, 117
for scalar perturbations, 119-120
for tensor perturbations, 127-129
Riemann zeta function, 421

Sachs-Wolfe (SW) effect, 242-245, 421
integrated (ISW), 238, 244-248
Saha equation, 62, 71
Scalar field, inflation and, 145, 151-155
Scalar perturbations, 88
Christoffel symbols for, 118-119
decomposition theorem, 131-132
gauges, 132-135
inflation, 162-170
Ricci tensor for, 119-120
around smooth background, 162-164
spatially flat slicing, 132, 162, 169-170
super-horizon, 164-168
Scale factor
defined, 2
evolution of, with cosmic time, 2-4
rates as a function of, 6-7
Scale-free spectrum, 171
Scale-invariant spectrum, 171
Semianalytic techniques, 283
Shear
ellipticity as an estimator of, 300-302
geodesic equation and, 296-300
Signal covariance matrix, 344
CMB window functions, 345-350
galaxy survey window functions, 350-354
summary, 354-356
Sloan Digital Sky Survey (SDSS), 14, 43,
266, 336
Slow roll models, 154-155, 172
Small scale anisotropies, 245-248
Small scale inhomogeneities, 194-203
Smooth expanding universe
cosmic inventory, 40-51
distances, 33-37
evolution of energy, 37-40

general relativity, 23-33
Sound horizon, 228
Space-time dimensions, 25-26
Spatially flat slicing, 132, 162, 169-170
Species-dependent equilibrium number

density, 61
Spherical Bessel functions, 419-420
Spherical harmonics, 239-240, 418-419
Standard candle, 8-9, 48
Standard Cold Dark Matter (sCDM), 185,
197, 267

Standard Model, going beyond the, 14-19
Steady State universe, Big Bang versus, 14
Stimulated emission, 95
Sub-horizon evolution, 199-203
Sunyaev-Zeldovich distortion, 285
Super-horizon perturbations, 164-168
Super-horizon solution, 189-192, 223
Supersymmetry, 77
Symbols, list of, 422-425
Synchronous gauge, 88, 132
Systematic errors

foregrounds, 378-384

mode subtraction, 384-387

Temperature, 4
antenna, 379
thermodynamic, 381
Tensor modes, 253
Tensor perturbations, 88, 124
Christoffel symbols for, 125-126
decomposition theorem, 131-132
Einstein equations for, 129-131
gauges, 132-135
inflation, 157-162
quantizing the harmonic oscillator,
158-162
Ricci tensor for, 127-129
Thermodynamic temperature, 381
Tightly coupled limit of Boltzmann
equations, 224-227
Tightly coupled solutions, 227-230
Tilt, primordial, 252
Tracelessness, 125
Transfer function, 183, 203-205, 268
baryons and, 208-209
cosmological constant and, 210-211
massive neutrinos and, 209-210
Transformation matrix, 28-29
Two Degree Field Galaxy Redshift Survey,
14, 43-44, 336
Two-point function, 16, 272, 303

Underdensity, 219
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Variable cosmological constant, 47
Variable Lambda, 47

Vector perturbations, 88, 125
Vectors, 24

Velocity correlation function, 272-273
Visibility function, 72, 233, 236-237
Volume limited survey, 351-353

Weak lensing, 286
ellipticity as an estimator of shear,
300-302
gravitational distortion of images,
293-296
power spectrum, 302-310

Weakly interacting massive particle
(WIMP), 73-74
Window functions
CMB, 345-350
galaxy survey, 350-354
WKB approximation, 227

X-ray temperatures, 285

Zero-order distribution function, 89, 103
Zero-order equation, 93-94
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Plate 1.12. Distribution of galaxies in the Two Degree Field Galaxy Redshift Survey (2dF) (Colless
et al., 2001). By the end of the survey, redshifts for 250,000 galaxies will have been obtained. As
shown here, they probe structure in the universe out to z = 0.3, corresponding to distances up to 1000
! Mpc away from us (we are located at the center).
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Plate 1.14. Anisotropies in the CMB predicted by the theory of inflation compared with observa-
tions. x-axis is multipole moment (e.g., 1 = 1 is the dipole, 1 = 2 the quadrupole) so that large angu-
lar scales correspond to low 1; y-axis is the root mean square anisotropy (the square root of the two-
point function) as a function of scale. The characteristic signature of inflation is the series of peaks
and troughs, a signature which has been verified by experiment.
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Plate 10.10. Measurement of the shear correlation functions using 145,000 background galaxies
(Wittman et al., 2000). Also shown are a variety of CDM models; topmost in top panel is standard
CDM, ruled out here at many sigma. Note that wy, = <eje;> remains positive on all angular scales.
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Plate 10.13. Incoming dipole radiation also produces no polarization. Heavy (thin) lines denote hot
(cold) spots. Here the incoming radiation is hotter than average (average is medium thickness) from
the +&-direction, and colder than average from the —&-direction. The two rays from the +%-directions
therefore produce the average intensity for the outgoing ray along the y-direction. The outgoing
intensity along the X-direction is produced by the ray incident from the +y-directions. Since these
have the average intensity, the outgoing intensity is also the average along the -direction. The net
result is outgoing unpolarized light.
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Plate 10.14. Incoming quadrupole radiation produces outgoing polarized light. The outgoing radia-
tion has greater intensity along the y-axis than in the *-direction. This is a direct result of the hotter
radiation incident from the 2-direction.



Plate 11.14. Expected 95% uncertainty on the inflationary parameters n and r from MAP and
Planck (from Dodelson, Kinney, and Kolb, 1997). Three other parameters (normalization, Qp, and
h) have been marginalized over. Every inflationary model gives a unique prediction somewhere in
this plane; many such predictions are plotted.
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Plate 11.15. A map of the CMB temperature from observations by Boomerang (Netterfield et al.,
2001), a long-duration balloon flight at the South Pole. Hot and cold spots have amplitudes as large
as 500uK. Circles shows quasars identified in these radio observations. The large elliptical region
delineates data analyzed to obtain bandpowers. The rectangular region is an earlier data set.
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