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Abstract. The spatial resolution, detection rate, accuracy and reliability of a particle 
image velocimeter depend critically upon the careful selection of a number of 
parameters of the PIV system and the fluid motion. An analytical model and a 
Monte Carlo computer simulation have been developed to analyse the effects of 
experimental parameters and to optimize the system parameters. A set of six non- 
dimensional parameters that are the most significant in optimizing PIV performance 
are identified. They are the data validation criterion, the particle image density, the 
relative in-plane image displacement, the relative out-of-plane displacement, a 
velocity gradient parameter and the ratio of the mean image diameter to the 
interrogation spot diamater. 

These parameters are studied for the case of interrogation by autocorrelation 
analysis. By a single transformation, these results can be applied to interrogation 
by two-dimensional Fourier transform analysis of the Young's fringes. 

It is shown that double pulsed systems operate best when the image density 
exceeds 10-20 and the maximum relative in-plane and out-of-plane displacements 
do not exceed 30%. Velocity gradients reduce the valid data rate, and they 
introduce a small statistical bias. Corrections for the statistical bias are developed, 
with recommendations for minimizing bias effects and loss of signal strength. 

1. Introduction 

Particle image velocimetry (PIV) is a quantitative method 
of measuring velocity fields instantaneously in exper- 
imental fluid mechanics (Simpkins and Dudderar 1978, 
Barker and Fourney 1977, Adrian 1986, Meynart 1983, 
Grousson and Mallick 1977, Dudderar et al 1988, Hessel- 
ink 1988, Lauterborn and Vogell984). In a double pulsed 
planar PIV system, two light pulses of intensity Z o l  (x) and 
Zoz(x) separated by a time interval At, illuminate a light 
sheet of thickness Azo (as shown in figure 1) to produce 
a double exposed single photographic frame having pairs 
of particle images from which simultaneous in-plane vel- 
ocity measurements result. 

The position in the image plane X =  ( X ,  Y) for 
erected images is related to the position in the fluid x = 
(x, Y ,  4 by 

X=-  di ( x i  + y?). 
d o - z  

Thus, the local in-plane image displacement between pul- 
ses, dX,  is related to the velocity U = ( U ,  U ,  w) by 

X 
d X =  ( d X ,  dY) = M(uP + ~ 3 ) A t  + M - iWAt). (2) do - Z  

In paraxial recording this reduces to 

d X =  M(dxP + d y p )  where iXl/do << 1. ( 3 )  

The interrogation procedure for measuring the dis- 
placement, dX,  is carried out by illuminating a small 
interrogation spot, centred on X I  and with diameter d,, 
with an interrogation beam of intensity ZI(X).  The dis- 
placement of particle image pairs, A X ( X l ) ,  is determined 
and scanning X I  over the entire photograph produces 
displacements over the entire image plane. The measured 
in-plane velocity is determined by 

u,(xI) = A X ( X , ) / M A t  (4) 
where xI is the location in the fluid corresponding to the 
interrogation spot location on the photograph X I .  

The Young's fringe method and the direct imaging 
method are utilized to obtain the mean displacement of 
particle images for each interrogation spot. In the direct 
imaging method, the physical image plane is digitized 
and analysed completely within the computer. When the 
image density, NI, defined to be the mean number of 
particles per interrogation spot, is too high to allow indi- 
vidual image pairs to be identified, a statistical method 
of analysis such as correlation is used (Adrian 1986). The 
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PLANE 

Figure 1. Light sheet and image recording system for planar pulsed laser 
velocimetry. 

autocorrelation of particle image intensities over the in- 
terrogation spot is analysed to determine mean image 
displacements from peak values in the autocorrelation 
function. 

In the Young’s fringe method of interrogation, the 
image field of the interrogation spot is Fourier transfor- 
med by a lens so that each pair of particle images prod- 
uces a system of interference fringes whose spacing is 
inversely proportional to the image spacing and whose 
orientation is perpendicular to the image displacement 
vector (Burch and Tokarski 1968, Meynart 1983). The 
displacement and orientation of the Young’s fringe pat- 
tern are found by taking a two-dimensional (2-D) Fourier 
transform of the digitized Young’s fringe data. 

The full 2-D correlation and the full 2-D Fourier 
transform of Young’s fringe methods each use all of the 
digitized data and concentrate the signal energy into 
peaks that are almost optimally narrow, so it is reason- 
able to expect that the results obtained from them consti- 
tute upper bounds on the performance of less complete 
methods of analysis, which involve multiple one-dimen- 
sional Fourier transforms of the digitized data and are 
reviewed elsewhere (cf Yao and Adrian 1984, for exam- 
ple). In general, all of these methods achieve enhanced 
computational rates by sacrificing some of the image in- 
formation, either through using only a subset of the 
image data or through reducing the number of image 
data by averaging or spatial filtering. Likewise, photo- 
graphic parameters and marker particle characteristics 
are not expected to affect the details of the interrogation 
method. Hence, conclusions derived from PIV perform- 
ance based on full 2-D correlation or on full 2-D Fourier 
transformation of the fringes will be useful and relatively 
universal guidelines to the optimization of PIV perform- 
ance when other types of analysis are used. 

The performance of PIV is determined by the spatial 
resolution, the detection rate and the accuracy of the 
velocity measurements. The spatial resolution is defined 
by the size of the measurement volume relative to the 

length scales of the flow field. The detection rate is 
defined as the number of interrogation spots per unit 
area of image plane that produce velocity measurements 
which satisfy certain interrogation criteria. The accuracy 
of the velocity data is determined by the interrogation 
method, the optics and the nature of the velocity field. 
The accuracy of all detections that satisfy the interrog- 
ation criteria, whether they are valid or not, measures 
the ability of the interrogation criteria to produce valid 
measurements which agree with a known velocity field. 
These three parameters are affected by the experimental 
configuration, the interrogation procedure and its cri- 
teria and in turn depend upon: the mean concentration 
of seeding particles, C, the character of the flow field, u ( x )  
as determined by the local velocity at the centre of the 
measurement volume and the velocity variations within 
the measurement volume, the thickness of the light sheet, 
Azo, the time interval between exposures, A t ,  and the 
size, d,, and shape of the interrogation spot. The fore- 
going variables depend upon the lens magnification, M ,  
the wavelength of the pulsed light, 2, and thef-number of 
the camera lens, f’, which determine the particle image 
diameters, d,, from known particle diameters, d,. To 
optimize the performance of PIV it is necessary to under- 
stand the influence of all of these parameters. 

In the present paper, an analytical model is developed 
and used with a Monte Carlo simulation of a double 
pulsed planar PIV system to optimize the performance of 
PIV for a full 2-D interrogation by either spatial corre- 
lation or Young’s fringes. Paraxial image recording is 
assumed for simplicity. The marker particles have a con- 
stant diameter so that the particle images have equal 
diameters. The recording film properties are linear and 
there is assumed to be no noise background in the image 
field and the NI is sufficiently low to discount the prob- 
ability of images overlapping. Locally linear, three- 
dimensional velocity fields are considered. 

The experimental and interrogation parameters can 
be reduced to a smaller set of dimensionless parameters. 
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The particle image density, NI, is defined for a circular 
interrogation spot to be 

The dimensionless mean displacement of particle images 
in an interrogation spot relative to the spot diameter is 
lAXl/d,. The appropriate dimensionless out-of-plane mo- 
tion of the particles in the light sheet is Az/Azo where 
Az = w A t  is the out-of-plane displacement. The extent of 
image displacement variation within an interrogation 
spot caused by velocity gradients can be expressed in 
terms of d, and d,. The optimal value and acceptable 
range for NI, lAX\/dl, wAt/Azo, velocity variations and a 
non-dimensional detectability criterion D o ,  to be defined 
later, will be determined in terms of given experimental 
parameters. 

The above non-dimensional parameters are import- 
ant for both methods of interrogation whose similarity 
is demonstrated in the next section, while differences 
between the optimal parameters for each method are 
explained where appropriate. 

2. Interrogation methods 

2.1. Spatial correlation 
When a photograph is interrogated by a light beam of 
intensity ZI(X- XI) centred at XI, the transmitted light 
intensity immediately after the photograph is 

I(x) = z~(x- xl)T(X) (6) 
where z ( X ) ,  the intensity transmissivity of the photo- 
graph is 

+ Zo2(~i)zo(X- Mxi(t +At))] (7) 
given the model assumptions stated above and where 
xi(t) is the location of the ith particle at time t. The value 
to(X - Mx) represents the transmissivity of an individual 
particle image per unit of illuminating intensity in the 
light sheet and is the same for every particle. 

The spatial autocorrelation of Z(X)  with separation s 
is approximated by the following spatial average esti- 
mator over an interrogation spot 

R(s) = Z(X)Z(X+ s) dX. (8) c 
Using notation of Adrian (1988a), it can be shown that 
the estimator consists of five components 

R(s) = R,(s) + R ~ ( s )  + RD+ (8) + RD- (s) + RF(s) (9) 
Figure 2(a) illustrates the components of the correlation 
function for a single interrogation spot in which a vel- 
ocity field across the spot is constant and it contains 
NI = 15 randomly located particles. Z I ( X )  is a constant 
intensity over the interrogation spot and the particle 
image transmissivity, zo is modelled as a Gaussian func- 
tion with diameter d,. The light sheets are identical with 

constant intensity Zol = ZO2 = I o  inside the sheet and zero 
intensity outside. Then 

z(X) I o  [zo(X- Xi(t)) + ZO(X- Xi(t + At))] (10) 
i 

where i is summed over all particles within the sheet, and 
Xi(t) is the location of the ith particle image at time t .  

The mean image displacement across the interro- 
gation spot is determined by locating the centroid of 
RD + 

where pD+ is an estimate of the mean translation AX that 
appears in equation (5) .  

The mean velocity is then estimated by FD+ lMAt. 
With no a priori knowledge of RD+(s), ,ED+ can be esti- 
mated by locating sD+ , the position of the peak value of 
RD+ (s), by a search over the s-plane, taking into account 
the self-correlation peak RP at the origin. This assumes 
that the tallest peak is the RD+ peak although the random 
noise peaks from (R, + RF) can sometimes exceed the 
peak of RD+ . The centroid of RD+ is then approximated 
by integration over a region around the peak value 
s D + ,  the details of which will be discussed later in section 
4, where algorithms are described. 

2.2. Young’s fringe method 

The amplitude transmissivity of the image recorded on 
the film, t(X), is related to the intensity transmissivity, 
W), by 

t(X) = z(X)l’ze’s(~ (12) 

where O(X) is the phase of the amplitude transmissivity. 
The scalar light field from the interrogation spot is 

given by 

E(X) = Z1(X- X1)”2t(X). (13) 

The Young’s fringes are obtained by taking the Four- 
ier transform of the scalar light field. The scalar field at 
xt in the Young’s fringe plane can then be written as 

wherefis the focal length of the Fourier transform lens 
and ,i is the wavelength of the interrogation beam. The 
intensity of the fringe pattern is 

Zf(Xf) = IB(Xf)(2 = B ( X f ) B * ( X f ) .  (1 5 )  
It can be digitized by an electronic camera and analysed 
by two-dimensional Fourier transformation, e.g. 

G ( s ) = -  exp -ss.xf  Zf(xf)dx, (16) 
4:2 j ( y  ) 

where s is the variable in the numerically computed 
Fourier transform plane. By the convolution theorem, 
G(s) is equal to the convolution of the Fourier 
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Figure 2. ( a )  Correlation function R for constant velocity within the measurement volume. NI = 15 and mean image 
displacement, AMd, = (0.25, 0.25). ( b )  Correlation function G for image transmissivity amplitude E(X). (c) (FFT of particle 
image intensity /(miz. ( d )  IFFT of particle image amplitude E(X)J2. 

transforms: 

G(s)  = - s2i2 { E(X)E*(X- s) dX. (17) 4rc2 

This convolution is very similar to the direct imaging 
correlation function defined in equation (8), with the 
transmitted light amplitude, E(X), replacing the trans- 
mitted light intensity, I(X). While the direct imaging me- 
thod uses the erected image, the Fourier transform of the 
Young's fringe pattern does not, having no effect on G(s) 
due to its reflectional symmetry. 

The Fourier transform of the Young's fringe pattern 
can be decomposed into five components in a manner 
similar to equation (9), namely 

G(s) = G,(s) + Gp(s) + G,+(s) + G,-(s) + GF(s). (18) 

Once again, the mean image displacement across the 

interrogation spot is determined by locating the centroid 
of GD+ in a manner similar to equation (1 1). 

To illustrate the relationship between the two me- 
thods of calculating displacement, consider the example 
of figure 2 wherein the particle image transmissivities 
were modelled as Gaussian functions of constant diam- 
eter d,, in equation (24) and the interrogation intensity, 
ZI(x), was constant over the interrogation spot. As no 
images overlap, the particle image amplitude transmi- 
ssivities are additive, giving 

t(X) = c to(X - Xi) (19) 
where 

to(x- xi) = Jz,(x- xi) exp [ie(X- xi)]. (20) 

As the diameter of to is , ,hdr ,  the diameter of GD+ is 
wider than that of RD+ by a factor of &. However, the 
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location of the peak in GD+ (s) is identical to the location 
of RD+ , in the mean (figure 2(b)). Figure 2(dj illustrates 
the Young's fringe pattern obtained for the parameters 
cited above, and figure 2(b) illustrates the full two-dimen- 
sional Fourier transform of the fringes. 

3. Mean autocorrelation and mean Fourier transform 
of Young's fringes 

3.1. General velocity fields 

To determine the statistical properties of R, we consider 
an ensemble of photographs of identical velocity fields in 
which each realization contains different sets of ran- 
domly located particles. For a known velocity field, ~ ( x ) ,  
the conditional average ( R ( s )  I U) calculated over random 
particle locations measures the mean behaviour of R 
given the flow field, U. 

The conditional average of R is determined by con- 
ditionally averaging equation (9): 

( R ( s ) / u )  = (Rc(s)lu) + (RP(S)Iu) 

+ (RD+(s)Iu) + (RD-( s ) lu )  (21) 

where it can be shown that (RF(s)Ju) = 0. 
To study the behaviour of (R(s) lu)  parametrically 

for a variety of velocity fields, specific models of the trans- 
missivity functions and light intensities are employed. 
The intensities of the light pulses, I,, and I o 2 ,  are as- 
sumed to be top hat functions equal to I o  within the light 
sheet and zero outside of it, while the interrogation beam 
intensity is modelled for computational simplicity as a 
Gaussian function centred at XI with diameter d, meas- 
ured at the eC2 points. The particle images are assumed 
to be identical with the image transmissivity being a 
Gaussian curve centred at the image centre with diam- 
eter, d, where d, is, again an e -2  diameter. This is a good 
approximation to a real particle image less its diffraction 
rings which are normally weak. Thus we have 

I ,(X-X,)=Ilo exp(-&/X-XIJ2/df)  (23) 

and 

(24) 
8700 

7cd r 
zo(X) = 7 exp (- 8iX12/df). 

Here, zoo = z,dX, is determined by the photographic 
process and the development process. 

The components of equation (21) for a general dis- 
placement field Ax(x, t) become 

x jdXI:, exp(-81XI2/d:)exp (-&IX+s('/d:) 

x (3)' exp (- 8IX- Mx12/df) 

x exp (-SIX- M x  + s - MAxj2/df). (27) 
These results are valid for arbitrary U through the dis- 
placement Ax. If the velocity field does not evolve sig- 
nificantly between pulses, the simple relationship is 

(28) Ax(x, t )  = U ( X ,  t)At. 

Both (R, (s ) lu)  and {RP(s)(u) are independent of the 
velocity field in the interrogation volume. (Rc(s)) ,  ap- 
proximately the convolution of the mean interrogation 
intensity with itself, is a broad function of s with di- 
ameter $dl and an amplitude proportional to N : .  
(Rp(s)), the mean of the correlation of each particle 
image with itself, is a narrow function of s with diameter 
-$d7. Its amplitude is proportional to the number of 
image pairs present, N I .  (RD + (s) I U), the 'displacement' 
component of the correlation, depends upon the velocity 
field in the interrogation volume and it can be deter- 
mined analytically for special cases of ~ ( x ,  t).  

The statistical properties of G(s) ,  the Fourier trans- 
form of the Young's fringes are determined similarly by 
taking the conditional average of each term in equation 
(18). To compare the behaviour of (G(s)lu) with that of 
(R(s ) lu ) ,  the specific model above is used. 

Assuming that the image intensity transmissivity is 
given in equation (24), equation (20) gives the image 
amplitude transmissivity as 

" 

x exp (-41X- X1l2/d,2) exp [iO(X- XI)]. (29) 
All image transmissivity phases are assumed to be equal 
to zero. 

With the interrogation beam intensity, I , ,  modelled 
as before in equation (23), equation (13) becomes 

EI(X-Xl)=&exp(-41X-X,21/d:) (30) 

Thus, the components of ( G ( s )  1 U) are 

dxZ,(z)Z,(z + Az) 

x ]dXIIo exp (-41XI2/d:) 

8700  x exp(-41X-s/2/d:) y e x p ( - 4 1 X -  MxJ2/d,") 
nd7 

(33) x exp (-4/X- M x  - M A X  - sl2/d?). 
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G,(s) is a broad Gaussian function of s with diameter 2dI 
while G,(s) is a narrow function of s with diameter - 2d, 
when it is assumed d, << d,. 

3.2. Weak velocity gradients 

When the velocity field varies slowly within the interro- 
gation spot, it can be approximated by a locally constant 
velocity field evaluated at the centre of the measurement 
volume. 

u ( x )  = U, = u(x, ) .  (34) 

Criteria to determine the validity of this approxi- 
mation will be developed in the next section on strongly 
varying velocity fields. The present constant velocity 
analysis contains most of the important phenomena that 
affect the autocorrelation so that flow non-uniformity 
can often be neglected with good accuracy. 

Given a constant velocity, the equations for the mean 
background component R, and the mean pedestal com- 
ponent R, remain as in equations (25) and (26). The mean 
displacement component simplifies to 

x exp (-41s - MulAt/2/d,2) (35) 
where 

L 

I P  

F,(s) E dXI,(X)I,(X+ s ) / j  dXI?(X) i (374 

= exp (-4lsI2/d,2). (374 

Equations (36) and (37a) are identical to those in 
Adrian (1988a). Equation (37b) follows from the assumed 
Gaussian form for I ,@) in equation (23). If Iol(z) were 
assumed to be a Gaussian function with an eC2 width, 
Azo, then Fo would be a Gaussian function with width 
f i  Azo. In the present case, where we take I o  to be a top 
hat function of width Azo,  F ,  is a triangle function whose 
base is 2A2, wide. FI is the normalized correlation of the 
interrogation intensity across the interrogation spot 
while Fo(Az) is the normalized correlation of the intensi- 
ties of the two light pulses in terms of the particle dis- 
placements, Az, = w, At in the out-of-plane direction. 

If the interrogation volume contains a random num- 
ber N of randomly located particles at the instant of the 
first exposure, the maximum possible number of pairs of 
images that could contribute to RD+ would be N .  How- 
ever, particle motion between exposures causes certain 
particles to leave the interrogation volume, so that the 
maximum number of true image pairs is less than N ,  and 
the amplitude of RD+ is thereby reduced. We call this the 
loss of pairs effect. It is a consequence of out-of-plane 
motion, represented by F , ,  and in-plane motion, rep- 
resented by F, .  If I,, Iol and I O 2  were uniform within 
the interrogation volume and zero outside it, then 
Fo(w,At)F,(MuIAt)NI would represent the mean number 

of particles whose second images remained in the in- 
terrogation volume to produce a pair of images, where 
NI is the mean value of N .  

The effect of loss of pairs is seen most clearly by 
evaluating the displacement autocorrelation at s = 
MulAt, where uI in this context is the vector formed by 
the two in-plane components of velocity. From equation 
(35) the maximum value of RD+ occurs very near this 
location when the image diameter is small. The mean 
value is 

(RD+ ] U )  = I ~ I : o z ~ o F o ( ~ ' . I h t ) F I ( M ~ I A t ) N 1 / 7 1 d t .  (38) 

The strength of RD+ is proportional to the mean number 
of displacement pairs times the square of the interrog- 
ation intensity for one image times the area of an image. 
The amplitude of RD+ decreases in direct proportion to 
the number of displaced image pairs left in the interro- 
gation volume. If I,, Zol  and Z O 2  are not top-hat dis- 
tributions, then F o F , N I  should be interpreted as the 
mean number of pairs weighted by the light intensity 
distribution. 

Two important operating criteria are derived from 
the simple requirement that the loss of pairs effect should 
not be too large. Since F o  decreases in proportion to the 
relative out-of-plane motion, this dimensionless par- 
ameter w,At/Azo must be limited to a maximum value. 
Likewise, since F ,  decreases in proportion to  MJuIJAt/d,, 
(cf equation (37b)), the maximum in-plane displacement 
must be limited to a small fraction of d,. The values 
recommended previously in Adrian (1988a), max (wIAt/ 
z o )  = 0.5 and max (M1uIIAt/dl) = 0.5, yield min ( F , )  = e-'  
and min ( F , )  = 0.5. Recently, more conservative values, 
max (wIAt/Az0) = 0.25 and max(M1ulIAt/dl) = 0.25, have 
been recommended on the basis of practical experience 
with PIV interrogation (Adrian (1988b)). 

Ideally, the maximum of (RD+ / U )  is located at 
Mu,At, but according to equation (35) the maximum is 
pulled toward s = 0 by the factor F,(s) and located at 

sD+ = MulAt/(l + d:/dt) (39) 
Hence, simple detection of the peak of RD+ (or its cen- 
troid) leads to an error of order d?/d:. In experiments 
where care has been taken to  minimize the image diam- 
eter, the error is negligible. For example, if d, = 20 pm 
and d, = 1 mm, the error is 0.04%, which is negligible 
compared with the 0.5-1'4 error typically achieved in 
PIV measurements (Landreth et al 1988). If d,/dl is 
allowed to exceed 0.1, the error exceeds 1%, and explicit 
correction should be made, assuming that adequate 
information about d, is available experimentally. 

The ratio of the amplitude of the displacement corre- 
lation to the amplitude of the self-correlation provides a 
useful dimensionless measure of the signal quality. It is 

(RD+ (sD+ )lu)lRP(O) = t F O ( w I A t )  

x exp [-41MulAt12/(d? + d?)]. (40) 
The ratio approaches one-half as the displacement ap- 
proaches zero because the signal energy is split equally 
between RD+ and RD- , It is always less than or equal to 
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one-half by virtue of the pair loss effect. The visibility of 
the fringe system obtained by Fourier transforming the 
autocorrelation function is equal to this ratio. 

The analysis of the mean Fourier transform of the 
Young’s fringes proceeds similarly, so that equation (33) 
becomes 

x exp (-21s + MulAtl2/d,2) (41) 
where 

HI(s) = dXZ:’2(X)I:’2 ( X +  s),/ [ dXZ,(X) (42a) 

(424 

s 
= exp (- 2is12/df). 

The peak of (GD+ I u )  lies at that same point given for 
the autocorrelation in equation (39), although the Gaus- 
sian diameters are all broadened by a factor of $. HI 
measures the loss of pairs effect caused by in-plane 
motion, in a similar manner to F,. 

The ratios of amplitudes of ( G , + ( s ) ~ u )  and 
(GD-(s)(u) to that of Gp(s) are identical to those of R 
after allowing for peak broadening, namely 

(43) 

3.3. Strong velocity gradients 

In many experimental applications the effects of pair loss 
due to translation are small. However, the interrogation 
spot diameter, dI, and the light sheet thickness, Azo, are 
frequently not small enough to warrant neglect of the 
velocity variations in the interrogation volume due to 
strong gradients, as in turbulent flow. Gradients distrib- 
ute the image displacements over finite regions in the 
correlation plane which affects measurement in two 
ways. 

The first effect is to necessitate careful interpretation 
of the relationship between the location of the displace- 
ment correlation and the mean fluid motion. It has been 
shown (Adrian 1988a) that the centroid of the expected 
value of RD+ corresponds to a volume averaged velocity 

,Eo+ = [ s( RD+ I U) ds/[( RD+ ]U) ds (444 

= 1 W ( X ,  X, U)@, t)dx W ( X ,  X, u)dx 

(44W 
is 

wherein the weight function is given by 

W = 1 0 1  ( X ) Z O ~ ( X  + uAt)I,(Mx - X,)Z,(Mx + MUAt - XI) 

(45) 
(The centroid of (RD+ lu) is not necessarily equal to the 
conditional mean of the centroid defined in equation (1 1) 
by virtue of random fluctuations in [RD+ ds. We shall, 

however ignore this difference on the grounds that fluc- 
tuations in the denominator of (1 1) are larger than fluc- 
tuations in the numerator). Since W decreases with 
increasing jut, the measurement is statistically biased to- 
ward the lower speed particles. This bias can be made 
negligible. Firstly, its magnitude is bounded by the total 
variation of the velocity within the interrogation volume, 
so it is small if the gradients are weak. Secondly, limiting 
the displacements to constrain the loss of pairs effect on 
the amplitude of RD+, as recommended in section 3.2, 
also limits the variation of W with U. To a first approxi- 
mation, 

w = ~ 0 1 ( 4 1 0 2 ( 4 m M X  - XI) (46) 

and the weight function depends only upon the light 
intensity distribution in the intersection of the interro- 
gation spot with the illuminating beams. 

The second, often more important, effect is that gradi- 
ents diminish the amplitude of the correlation peak and 
broaden its width. When the amplitude becomes too 
small, the peak of the correlation function may not be 
detectable, resulting in failed measurements for regions 
of high velocity gradient. 

Equation (46) provides a useful working definition of 
the measurement volume of a PIV. We shall refer to it as 
the small displacement .measurement volume. Its e -2  di- 
ameter in the X-Y plane is d,/& if the interrogation 
spot is a Gaussian with e-’ diameter d,. Its thickness in 
the z-direction is Azo if the light sheet has a top-hat 
intensity profile. 

The behaviour of (RD+ lu) is analysed by expanding 
the velocity field within the measurement volume in a 
Taylor series about xI and truncating at the first-order 
linear term: 

U i ( X )  = Ui(X1) + (dui/axj),,(xj - Xlj). (47) 
The results depend in general upon the deformation ten- 
sor dij = dui/dxj,  but for simplicity we shall consider two 
special cases: simply shear and pure rotation. 

In the case of simple shear with du/dy # 0, v, w con- 
stant it can be shown by direct calculation that 

x [l + ( M A U A ~ / ~ , ) ~ ] ~ / ~  

x exp (-41Mu1AtlZ/d:) exp [-4(s, - M ~ , A t ) ~ / d f ]  

x exp [-4[1 +(MAuAt/d,)2]-1 

x {sX - [MuIAt - Mu,At(MAuAt/dl)]}2/d,2 1. (48) 
Here Au is the maximum variation in U across d, 

Au = ( & (49) 

Furthermore it is assumed that d, << dl and second order 
effects of velocity variation are ignored. 

The amplitude of RD+ is diminished by the factor 
[l + ( M A U A ~ / ~ , ) ~ ] ~ ’ ~  in the presence of this velocity 
variation, decreasing the likelihood of detecting the dis- 
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placement peak. In addition, the diameter of the peak is 
broadened by the same factor in the direction of shear. 
The peak of RD+ and its centroid are both located at 

sD+ = [MuIAt - MvIAt (T) ,  MAuAt  MuIAt].  (50) 

The second case we consider is a local rotational 
motion about the z-axis at xI defined by ( d ~ / d y ) ~ ~ =  
- (8y/ax),, and all other components of the deformation 
tensor are equal to zero. We obtain 

x [ l  + ( M A U A L / ~ ~ ) ~ ] - '  exp (-41MuIAtI2/d:) 

x exp 1-4(1 +(MAuAt /dJ2)- '  

x {[s, - (MuIAt - M U ~ A ~ ( M A U A ~ / ~ I ) ] ~  

+ [s, - (MvIAt -  M U , A ~ ( M A V A ~ / ~ ~ ) ) ] ~ } / ~ ~  1 . 
The amplitude of RD+ has been reduced by the factor 
(1 + ( b f A ~ A t / d , ) ~ )  due to velocity variations in the u- 
and u-components of velocity and the Gaussian peak is 
broadened in each direction by the same factor as before. 
The peak and the centroid are now located at 

(51) 

sD+ = j i D +  = ((MuIAt - Mt+At(MAUAt/dI)), 

(MvIAt - MuIAt(M AvAtldI))) (52) 
where AV = - Au for a local rotation in the velocity field. 

In each case above, the peak and the centroid of the 
mean of RD+ are statistically biased towards velocities 
lower than U]. We call this gradient bias. It occurs because 
the correlation is biased against the faster moving par- 
ticle within the measurement volume. The extent of this 
gradient bias cannot exceed the maximum variation of 
velocity within the measurement volume and is deter- 
mined by the dimensionless parameter (MAuAt/d, ,  
M AV Atld,). 

A second type of bias occurs because the peak ampli- 
tude of RD+ is diminished, in the presence of a velocity 
gradient, by a factor which depends upon MAuAt/d,. 
This consequence of the variation of particle image dis- 
placements from randomly located particles in the vel- 
ocity field within the interrogation volume, lowers the 
probability of detecting the correlation peak among the 
noise peaks. We call this detection bias. When 
MI Aul At = d ,  the reduction factors in equations (48) and 
(51) are 4 and 2 respectively, illustrating the need to 
minimize the variation in velocity within an interrog- 
ation volume by a judicious selection of At. In addition 
to biasing the estimate of the mean, the broadening 
of the displacement component, RD+ , leads to increased 
uncertainty in estimating velocity from individual 
realizations. 

In analysing the mean Fourier transform of the 
Young's fringes, ( G D +  (s ) /u )  the peak location s D + ,  and 
the extent of gradient bias are not affected by peak 
broadening factors and are identical to those in 
(RD+ (s)lu). However, peak broadening and peak splin- 

tering increase the likelihood of detection bias in this 
method of analysis. 

The close similarity between the spatial correlation 
and the 2-D Fourier transform of the Young's fringes is 
evident and the results for one form of analysis can be 
transferred directly into results for the other form. Conse- 
quently, the following sections will consider only the 
autocorrelation method, that being the most simply 
understood approach. 

4. Autocorrelation fluctuations and performance 

4.1. Validation 
Interrogation performance is gauged in terms of the spa- 
tial resolution, the data yield, the valid data yield, and the 
accuracy of the measurements of data that are deemed 
to be valid. The data yield, or detection probability, is 
the probability that a single interrogation spot produces 
a velocity measurement that is acceptable according to 
certain validation criteria. The valid data yield, or valid 
detection probability, is the probability that a measure- 
ment judged to be valid is actually valid. All aspects of 
the performance are affected by random fluctuations of 
the autocorrelation function, and these in turn, are affec- 
ted by the dimensionless parameters presented in the 
introduction, and by the specific details of the interrog- 
ation procedure. 

The interrogation procedure locates the highest peak 
in R(s), excluding the self-correlation peak R,, and as- 
sumes that this peak corresponds to RD+. However, there 
is a non-negligible probability that the tallest peak is a 
noise peak, if the peak of the displacement correlation is 
comparable to the noise correlation level. To discrimi- 
nate against this possibility, the tallest peak is required 
to be significantly stronger than the second tallest peak. 
This detectability criterion eliminates interrogations in 
which the displacement correlation is barely distinguish- 
able from the noise, but it is not guaranteed to eliminate 
interrogations in which there is a very strong noise cor- 
relation peak. 

The detectability is defined to be the ratio of the first 
tallest peak to the second tallest peak, located at s1 and 
s2 ,  respectively (Adrian 1985): 

W I )  = R(s,)/R(s,). (53) 

Because of the symmetry of R(s), only one half of the 
plane needs to be searched. To validate the assumption 
that the tallest peak does indeed correspond to the dis- 
placement peak RD+ , the detectability is compared to a 
threshold level Do which is a preset constant. The 
interrogation is accepted if D > D o ;  the interrogation is 
rejected if D < D o ,  i.e. if the correlation peak fails to 
exceed a certain signal-to-noise ratio. 

The location s1 estimates the mean displacement, 
namely s1 = A X I .  Then, the centroid of the correlation 
peak can be calculated by defining a small area A ,  
around the peak, and integrating according to 

,E1 = jA, sRds/ jA1 Rds. (54) 
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The centroidal calculation offers accuracy greater than 
the resolution of the computational grid used in the s- 
plane. Since the grid spacing is defined by the pixel 
spacing of the device used to record the interrogation spot 
image field, this implies the possibility of locating the 
particle displacement to within an accuracy of a fraction 
of a pixel. The area A ,  should be defined in such a way 
that it contains only the displacement correlation peak, 
RD+ and A ,  is defined here to be the area around s1 in 
which R(s) is greater than 1% of R(s,). Since R is the 
sum of RD+, R,, and the random fluctuations R F ,  the 
centroidal estimate is always contaminated, and it ran- 
domly fluctuates around a mean value that approximates 
to the mean displacement. The centroidal location be- 
comes less accurate as velocity gradients broaden R,- 
and diminish its peak value, as discussed in section 3. 

Invalid data are allowed by this criterion when the 
correlation of randomly located particle images, given by 
R,(s) + RF(s), has a maximum larger than RD+ (s). The 
probability of such invalid data decreases as the detect- 
ability criterion, D o ,  increases, as, however, does the 
probability of a successful interrogation. In order to de- 
termine an optimum value for D,, which minimizes the 
occurrence of invalid data while maintaining a satisfac- 
tory probability of successful interrogations, a range of 
values for Do has been considered. 

4.2. Monte Carlo simulation 

The analysis of the mean correlation function, offers 
some insights into the performance of this interrogation 
procedure, but it cannot directly address questions con- 
cerning the probabilities of measurement and validation. 
Hence, a numerical simulation of the PIV image field and 
interrogation analysis has been constructed so that stat- 
istics of the detection probabilities can be found by 
Monte Carlo simulation. 

An ensemble of 1200 realizations is generated for each 
velocity field in which particles are scattered randomly 
with an average NI, governed by Poisson statistics. The 
seeded volume is sufficiently large to ensure no loss of 
particle images by restrictive boundaries from each 
interrogation volume. Both light sheet pulses have inten- 
sity as in equation (22) and the interrogation intensity, I ,  
is also constant across the square interrogation spots 
following experimental procedure unlike the analytical 
model in section 3, where I ,  was defined as a Gaussian 
curve. The image transmissivity of the monodisperse par- 
ticles image is given above in equation (24). The re- 
cording film properties are linear, the images interfere 
incoherently, i.e. N I  is sufficiently low to avoid image 
overlap and there is no background light noise level in 
the recording. Velocity gradients are assumed to be linear 
across the interrogation spot centred at x,, as in equation 

Figure 3 shows a simulated region of the interrog- 
ation plane in which a constant in-plane velocity causes 
the image displacement, AX/dI = (0.25, 0.25). Although 
N I  = 15, random fluctuations for individual interrogation 
spots are obvious. 

(47). 

X/d I 

Figure 3. Simulated region of the interrogation plane. The 
velocity is constant within the measurement volume, 
N, = 15 and the mean image displacement, 
AXld, = (0.25, 0.25). The smaller square denotes an 
interrogation spot. 

The autocorrelation is computed using 2-D fast Four- 
ier transforms of I ( X )  digitized on a 256 x 256 array from 
each interrogation spot, Without padding the region ar- 
ound each spot with zeroes, the intensity I is effectively 
periodically extended, and a convolution of the periodic 
extension results. Figure 4 illustrates the mean corre- 
lation for 1200 realizations in which no zero padding of 
the intensity array was performed, resulting in a constant 
value for (R,(s)) when I,,, I , ,  and I,, were constant 
intensities. Zero padding of the intensity array could be 
achieved by embedding the 128 x 128 intensity array 
within a 256 x 256 array containing zeroes otherwise. As 
I would no longer be periodically extended, this would 

Figure 4. Expected value of correlation function R for 
constant velocity within the measurement volume. 
(Conditions as in figure 2.) 
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result in fewer noise peaks and a pyramidal form of 
(R,-(s)) ,  thus improving the signal-to-noise ratio. How- 
ever, as the spatial resolution is reduced and the valid 
detection probability is not significantly improved for the 
optimum parameters considered below, the use of no 
padding improves spatial resolution. The maximum 
image displacement is limited to lAXl/dl < 0.5 since it will 
be shown that larger displacements are undesirable. After 
determining D and U,, a comparison is made between 
U, and uI to ascertain whether the measurement is valid 
or invalid, yielding both the detection probability and 
valid detection probability. 

4.3. Performance: weak velocity gradients 

The effect of variation of NI is illustrated in figure 5 for 
a range of image displacements, IAX//d, using a detect- 
ability criterion of D o  = 1.5 and constant in-plane velocit- 
ies. Increasing NI generally increases the detection 
probability and the valid detection probability because, 
from equation ( 3 9 ,  the amplitude of RD+ is proportional 
to NI. The minimum detection probability occurs when 
NI z 2-3 because this low density does not give enough 
pairs to unambiguously define the correct pairing of im- 
ages nor satisfy the detectability criterion, D o  = 1.5. For 
lower values of NI, the correct pairing of images does 
occur, but the total detection probability is low. This is 

or  I 

"1 50% 
v 40 

100 

80 

h 

v 
R 60 

0 
0 40 c 

- 
.w 

20 

o f  I 

N I  
0 10 20 30 

Figure 5. Total, false and valid detection probabilities as a 
function of relative image displacement lAX1/dl and image 
density, NI for Do = 1.5. The velocity within the 
interrogation spot is constant. 

the operating range studied by Landreth et a1 (1988). The 
estimate of NI > 4 given by Lourenco and Krothapalli 
(1987) applies to a multiple pulsed PIV system and lies 
significantly below the optimal range for a double pulsed 
system. Recent analysis of multiple systems shows it is 
applicable when five or more pulses are employed. 

As IAXl/dI increases, fewer particle pairs remain in 
the interrogation spot as the first or second images move 
out of the spot. Because II is constant in the interrogation 
spot and zero elsewhere, FI as defined in equation (37a) 
measures the ratio of the area that is common to both 
shifted and unshifted images to the total spot area. Thus, 
NIFI is the mean number of image pairs in this region 
and is the effective number of image pairs in the spot. 

To achieve a valid detection probability of at least 
90%, the image density, NI must be greater than 15 with 
IAXl/dI < 0.3. The valid detection rate is a decreasing 
function of relative displacement which declines sharply 
when IAXJ/dl exceeds 20-30% (figure6). To achieve a 
high detection rate, the maximum value for lAXl/dI is 
suggested to be 0.25. The choice of the time interval be- 
tween light pulses, At, must then satisfy (cf Adrian 1988b). 

At < 0.25d,/M Max IuI. (55 )  

The detectability threshold, D o ,  is designed to mini- 
mize the false detection probability while ensuring an 
acceptable detection rate. There is an abrupt decrease in 
both the detection probability and the valid detection 
probability when Do > 1.3-1.5 for a wide range of NI 
when a relative image displacement is IAXl/dl = 0.30 
(figure 7). Relatively few peaks in R are stronger than 
1.5 R(s , ) .  Thus, a reasonable value for Do is in the range 

In the limit of small NI, the probability of detection 
is equal to the probability of finding precisely one pair 
of images belonging to the same particle within the 
interrogation spot. This probability is given by the prob- 

1.2- 1.5. 

01 
10 20 30 40 50 

Relative Displacement, lAXl/dI (%) 

Figure 6. Valid detection probability versus relative image 
displacement IAXlld, for Do = 1.5 and variable particle 
image density, NI. 
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0.50 

Figure 7. Valid detection probability as a function of 
detectability for variable particle image density N, and 
IAXl/dl = 0.3. 

- 5 0 -  

' 4 0 -  

8 

e n 

v 

ability of finding one particle in that portion of the 
interrogation volume from which the particle could be 
displaced and still remain within the interrogation vol- 
ume at the time of the second exposure. The average 
number of particles within this region is N I F o F I ,  and 
therefore from the Poisson distribution it follows that 

Prob {exactly one pair of images} 

= N,FoF,  exp ( - N I F o F , )  exp [-2N,Fo(l  - F,)] .  
(56) 

This result shows that the effects of in-plane displace- 
ment, out-of-plane displacement and particle concen- 
tration can be correlated in terms of the single parameter 
N I F o F ,  when the image density is small. Figure 8 con- 
firms this correlation, and shows that equation (56) is 
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Figure 8. Valid detection probability for low image density; 
N, in terms of the effective image density, N l f , ,  for 
detectability Do = 1.5. Full curves illustrate equation (56) 
with fO= 1 and F; as tabulated. 

valid for N,F,  less than about 0.3. These results are inde- 
pendent of Do due to the lack of noise peaks in R(s). In 
low image density cases, the correlation procedure can 
be replaced by simpler methods such as orthogonal 
image compression (Yao and Adrian 1984), and the de- 
tection probability depends principally upon the prob- 
ability of finding a true pair of images. 

When the velocity includes a component perpendicu- 
lar to the light sheet, the number of image pairs per 
interrogation spot is reduced, decreasing the peak ampli- 
tude of R,+ and increasing the contribution of R, + R,. 
Thus the valid detection probability decreases as the rela- 
tive out-of-plane motion, wAt/Azo increases (figure 9). In 
the extreme case, where wAt/Azo 2 1, the detection rate 
becomes zero, as no image pairs remain in the interrog- 
ation spot. 

The detection probability for various values of N, can 
be correlated in terms of N,FO(Az), which represents the 
mean number of particles that reside in the light sheet 
for both light pulses. Figure 10 correlates this probability 
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Figure 9. Valid detection probability as a function of the 
relative out-of-plane motion for N, = 15 and Do = 1.5. 
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Figure 10. Correlation of the valid detection probability for 
out-of-plane displacements in terms of the effective image 
density, N , f o .  Detectability Do = 1.0 and lAX//dl = 0.2. 
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with NIFo for a range of NI using Do = 1.0 and /AXl/dl = 
0.2. Both figures 9 and 10 illustrate the need to select Azo 
to minimize loss of detection rate without losing spatial 
resolution in the out-of-plane direction. 

4.4. Performance: strong velocity gradients 

As outlined in section 3, the effects of velocity gradients 
are to diminish the mean correlation peak while broaden- 
ing its diameter, and to statistically bias the centroid of 
(RD+ lu) against high velocities. Figure 11 shows the cor- 
relation function of a single interrogation spot for con- 
ditions identical to those in figure 2, except that a simple 
shear, au/ay = 0.24U1/d1 has been added to the uniform 
translation. The decreased amplitude of RD+ is apparent. 

Figure 12 shows the detection probability as a func- 
tion of the dimensionless velocity variation M Au At/d, 
for various displacements lAXl/d,. The parameter 
MAuAt/d,  is suggested by the theory for (RD+Iu) in 
which the amplitude is proportional to [l + (MAuAt/ 
d,)'] - ' I 2 .  The detection probability is proportional to this 
amplitude with only a weak dependence upon lAXl/dl. 
Figure 12 indicates that high detection probabilities can 
be achieved if the velocity variation is such that MAuAt/  
d ,  < 1, and JAXl/dl < 0.25, as indicated by the shaded 
area. The worst-case detection probability for operation 
within this area is 92%, and over much of the region the 
detection probability exceeds 98%. These values are con- 
sistent with experience derived from interrogation of 
experimental PIV photographs of turbulent flows (Reuss 
et al 1989, Landreth and Adrian 1989). 

The constraints MAuAtld,  < 1 and IAXl/dI < 0.25 
imply that 

Aulu, < 4d,/dl (57) 
which can be used to estimate the maximum velocity 

t R  

Figure 11. Correlation function R for a plane shearing 
velocity within the measurement volume. NI = 15, 
AX/d, = (0.25, 0.25), (a~lay) , ,  = 0.24 Mu,/dI .  
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Figure 12. Total detection probability for a simple shear in 
terms of the relative image displacement variation, 
MAuANd,, for variable image displacements, lAXl/dl, 
NI = 15, Do = 1.2. -----,  amplitude of ( RD+ I U )  from theory. 

difference that can be comfortably treated by the corre- 
lation technique for a given interrogation spot diameter, 
or to define the diameter needed for a given maximum 
velocity variation. For example, if the total velocity vari- 
ation across dl is 40% (Aulu, = 0.2), and if the image 
diameter is 25 pm then the maximum interrogation spot 
size should be less than 0.5 mm. The requirement that NI 
should exceed 15-20 places a lower bound on the size of 
the interrogation spot. Hence, velocity gradients ulti- 
mately place a fundamental limit on the measurements 
that can be made with double pulsed autocorrelation PIV. 
While other techniques such as multiple pulse recording 
or individual particle tracking may (or may not) offer 
some alleviation of these limits, it is clear that the smallest 
scales of motion that can be measured will also ultimately 
be limited by the diameter of the images. Thus, an 
inequality like equation (57) is expected to pertain to any 
type of PIV system, with the constant depending upon the 
system operation. 

Velocity variation affects the accuracy of valid data 
measurements by statistically biasing measurements 
based on the centroid R,+(s). For the simple shear vel- 
ocity field, figures 13 and 14 relate the relative bias in the 
velocity component, U ,  to the variation of U .  In figure 13, 
the bias is measured in terms of MAuAtld,  for a range 
of mean image displacements with N ,  = 15 and Do = 1.2. 
The relative bias is independent of the mean image dis- 
placement, IAXJ/d,, and varies linearly with MAuAtld,, 
in agreement with equation (50), which is based on ana- 
lytical models with parameters similar to the parameters 
of the simulation. 

The only way to reduce this bias is to reduce the time 
interval between pulses, but these measures also decrease 
the accuracy as / A X [  decreases. In principle, the bias can 
be eliminated by using measurements of the velocity field 
to estimate gradients and then using a simple formula 
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Figure 13. Relative measured mean velocity for a plane 
shearing velocity in terms of MAuAfld, .  Conditions as in 
figure 12. 

70 
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Figure 14. Variation in measured velocity for 1200 
realizations where N, = 15, /AXl/d, = 0.30, MAuAf /d ,  = 0.02 
for detectability Do = 1.2, 

like that in figure 13 to correct the measurements. 
Further work is needed to develop the equation for arbi- 
trary gradients. 

Finally, velocity variation causes random errors in 
valid measurements because the random particle lo- 
cations within the varying velocity field cause RD+ to 
spread out over a discrete range of displacements which 
vary for each realization. A typical distribution of sample 
displacements from 1200 realizations is illustrated in 
figure 14 with N I  = 15, D o  = 1.2, jAXl/dI = 0.3. The mean 
and standard deviation of the distribution are (u,)/uI = 
0.97 and gU,/uI = 0.024. The 2.4% standard deviation 
compares with results by Landreth et al(1988). Figure 15 
relates the rms of the random variation in U ,  to the 

1 ' I  
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Figure 15. Variation in measured velocity in terms of the 
relative image displacement variation MAuAtld ,  for 
variable image displacements IAXl/d, ,  N, = 15, Do = 1.2. 

velocity variation due to gradients for N I  = 15 and Do = 
1.2. To restrict the variation in U ,  about its mean, which 
is already biased (equation (50)), the previous criterion 
for acceptable detection probability applies, ensuring 
M A u  Atld, < 1. This produces an RMS variation in image 
displacement less than 0.8% of the spot size, dl. The 
selection of At ensures an acceptable detection prob- 
ability, degree of bias and variation in individual meas- 
ured velocities about the measured mean. 

5. Summary and conclusions 

The two-pulse PIV method has been studied to optimize 
its performance for a range of velocity fields. Analyses by 
full 2-D spatial correlation of direct images and by 2-D 
Fourier transform of Young's fringes are shown to be 
equivalent with minor differences when analytical models 
based on experimental results are used for each ap- 
proach. Theoretical analyses of both methods and a 
Monte Carlo simulation of the correlation method reveal 
the critical parameters of the mean autocorrelation and 
its fluctuations. The important dimensionless par- 
ameters, have been defined and investigated in the Monte 
Carlo simulation to determine their effect upon the per- 
formance of PIV. They are 

NI, DO, IAXIPI, IAuIilsl, MlAul At/&, d,/dl and wAt/Azo. 
To optimize this performance, the following broad cri- 
teria are recommended; (a) NI 2 15, (b) IAXl/dl < 0.25, 
(c) /w/At/Azo < 0.25, ( d )  MIAulAt/dl < 0.05, (e) 1.2 < 
Do < 1.5. While these optimal criteria are a good general 
combination, modified values can be used for particular 
flow fields by reference to the appropriate figures. 

In order to achieve these optimal parameters the fol- 
lowing PIV experimental design procedure can be 
adopted. To maintain spatial resolution and restrict 
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effects of out-of-plane motion, choose dl and Azo, based 
on a priori knowledge of the flow field. The  seeding den- 
sity C should be determined such that NI > 15, although 
this can  be reduced if other parametric restrictions are 
small, so that NI - 10-20. Then, choose At t o  minimize 
bias due to  velocity gradients, minimize pair losses due 
to  out-of-plane motion and  give adequate image dis- 
placements as in criteria (b), (c) and (d) above. 

The  above recommendations and conclusions pertain 
to  two pulse, planar PIV with analysis by full 2-D spatial 
correlation or  equivalently by 2-D Fourier transform of 
Young’s fringes. Analysis of a multipulse system with 
three o r  more pulses is continuing and will be considered 
separately. 
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