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INTRODUCTION

1.1 MOTIVATION

Today, most companies—especially in the service industry—produce their prod-
ucts or services by carrying out a set of core business processes (e. g., a process for
a loan application in a bank or a process for an insurance claim in an insurance
company). These “processes generate most of the costs of any business” and “also
strongly influence the quality of the product and the satisfaction of the customer”
[121, p. 64].

Caused by the high competition in globalized markets which demands fast
innovation cycles, companies have realized in recent years that looking at their
processes and optimizing them is an important key for economic success in these
days.

As a result, Business Process Management (BPM) as a process-oriented manage-
ment discipline and Workflow Management (WfM) as its IT-based technological
basis have emerged in the previous decades. BPM deals with the standardization
of processes into process models, the subsequent implementation and execution
using IT systems as well as the permanent analysis and—when indicated—
optimization of these process models.

Prerequisite for this analysis and optimization is the measurement of interesting
external process model attributes like, for example, costs, duration or error
probability. It would be desirable to have a prediction possibility for these values
before a process model has been implemented and executed.

Process measurement—a rather young research discipline—deals with this
problem. It was strongly motivated and inspired by the area of software measure-
ment (see, for example, [43] for an overview). There, external attributes like, for
example, costs, implementation duration and number of errors are predicted for a
piece of source code based on the values of different software metrics measuring
(structural) internal attributes of the source code.

1.2 OBJECTIVE AND CONTRIBUTION

Looking at the process measurement literature, numerous proposed process
model metrics can be found (see [136] and [99, pp. 114-117] for literature reviews).
Most of them are inspired and adapted from software metrics. The authors claim
that these metrics measure process complexity, quality and/or performance. At
the same time, missing definitions of process model complexity and quality can
be noticed.

Thus, this thesis first examines possible definitions and differentiations of these
terms. It can be shown that there does not exist a single formal definition of
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complexity. Instead, numerous aspects of complexity were identified and are
analyzed in different research communities. Consequently, it is problematic to
say that a process model metric measures the complexity of a process model.

One main contribution of this thesis is a theoretical framework for process
measurement in which the existing work can be integrated and which can help
to identify open research questions. Some of them are further examined in this
thesis.

The framework adapts well-established concepts from software measurement.
The result is a prediction system measurement approach, which is based on
measurement and prediction systems [43, p. 104]. The measurement approach
consists of process model metrics measuring (structural) internal attributes and
process model quality measures measuring external process model attributes.
Through this, a concrete definition of process model complexity can be avoided.

Prerequisite for the application of a prediction system is its proper validation.
For that, the reliability and validity [5, pp. 141, 143] of the involved metrics and
measures have to be shown. Yet, both constructs have not received the necessary
attention in process measurement literature so far.

A proper validation would require controlled experiments, which are very
time and cost intensive. This fact—together with the possibility of a negative
outcome of the experimental validation—could explain the small number of
existing validated prediction systems.

The thesis suggests an approach which shall help to ease this problem by
reducing the experimental effort for unsuccessful validations or validations of
useless prediction systems. In order to reach this goal, the approach adds an
additional analysis step before the prediction system which shall be validated is
selected. In this preceding step, the behavior as well as important properties of
process model metrics which are part of the potential prediction systems which
shall be validated are analyzed first.

Through this, unfavorable properties of process model metrics (e. g., insufficient
dispersion of metric values or strong correlations with other process model
metrics) can be identified before high effort for an experimental validation of the
corresponding prediction system occurs.

The approach is successfully applied to 33 process model metrics and 515
process models.

As most humans are visually thinking beings—preferring pictures to large
tables of numbers—, a visualization of large process model collections based on
process model metric values would be interesting. Yet, the resulting process model
metric data would be very high-dimensional making visualization problematic. A
second interesting question is whether there are clusters of (structurally) similar
process models among a process model collection.

This thesis proposes an approach for these two goals. It comprises heatmaps
[177], a compact visualization technique for high-dimensional data originally
used in genetics, and scatter plots for dimensionally reduced data using Principal
Component Analysis (PCA) [66] for visualizing the process model metric data.
Additionally, clustering [12] [169, pp. 586—588] is used for analyzing the correla-
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tions between different process model metrics and finding (structurally) similar
process models among a process model collection.

The approach is again applied to the same 33 process model metrics and 515
process models in order to make the findings comparable.

Next, the thesis deals with the measurement of structural process model under-
standability as an example of a very important external process model attribute.
Understandability influences other quality aspects of process models like error-
proneness and maintainability. Even though the importance of understandability
is undoubted, Mendling et al. state that “we know surprisingly little about the act
of modeling and which factors contribute to a ‘good” process model in terms of
human understandability” [101, p. 48].

Some published studies try to examine the dependencies between some influ-
encing factors and process model understandability: In [138, 139], Sarshar et al.
compare the understandability of different process modeling languages. Recker
and Dreiling examine whether somebody’s experience with one process modeling
language can be helpful for understanding process models based on another
modeling language he/she is not familiar with [125]. Mendling et al. search for
dependencies between personal and process model specific (structural) properties
and process model understandability [101]. In [102], Mendling and Strembeck
also examine the influence of content related factors on process model under-
standability. Reijers and Mendling test the effect of process model modularization
on process model understandability [126].

For examining structural process model understandability and validating ap-
propriate prediction systems (as done in the above mentioned studies), one first
has to quantify structural process model understandability. Thus, a proper mea-
sure for structural process model understandability which fulfills the reliability
and validity requirements has to be found. Looking at the few proposed measures
for structural process model understandability [101, 102, 126], serious doubts
about this necessary validation arise.

In this thesis, concrete and detailed definitions for measuring structural process
model understandability are given which exceed those in existing publications.
Using these definitions, hypotheses about effects of measuring structural process
model understandability are formulated which have to be considered in the
measuring process.

Finally, an experimental evaluation comprising two experiments is conducted to
examine these hypotheses. The first experiment involves 18 students, the second
178 students. The results show the applicability and the behavior of the proposed
measures. Furthermore, they support most of the postulated hypotheses.

The last part of the thesis deals with the experimental evaluation of a postulated—
yet not validated—prediction system.

During the design phase of a process model, choosing the adequate size of
process activities (process model granularity) is a well-known problem. Vander-
feesten et al. have proposed a heuristic for this problem which is inspired by the
concepts of coupling and cohesion in software engineering [129, 168].
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In this field of study, the influence of coupling and cohesion on structural
software complexity has been examined for some decades (see, for example, [34,
pp- 984-985] for a short literature review). The first ideas about coupling and
cohesion for the procedural programming paradigm were published in the 1970s
under the name “structured design” [149, 179]. Basic coupling and cohesion
metrics for the object-oriented paradigm can be found, for example, in the classic
Chidamber and Kemerer metrics suite [26]. Empirical evaluations showed the
influence of coupling and cohesion metrics on structural software complexity
(e.g., [34, 151]).

Motivated by these results from software engineering, Vanderfeesten et al. intro-
duced a process model granularity metric. This metric measures the ratio between
process model coupling and cohesion. Based on this metric, they suggested a
heuristic for selecting between different process model alternatives. It prefers
models with high cohesion and low coupling. Vanderfeesten et al. also postulated
the hypothesis that those process models are less error-prone during process
instance execution. As they do not give an empirical validation of their heuristic
and hypothesis, it is still no valid prediction system.

The thesis presents an experimentation system for analyzing the hypothesis
and the results of a conducted experiment with 165 students using this experi-
mentation system. The results do not support the heuristic of Vanderfeesten et al.
Instead, an alternative error probability model is suggested which can explain
the results of the experiment.

1.3 OUTLINE

The outline of the thesis is as follows:

Chapter 2 explains the basics of BPM, which are necessary for the remainder
of the thesis.

An overview of the existing process measurement literature, a subsequent
discussion as well as the introduction of the theoretical framework for process
measurement which is used in this thesis are presented in Chapter 3.

In Chapter 4, an approach for reducing the experimental effort for validating
prediction systems is suggested. It is based on analyzing the behavior as well as
important properties of process model metrics.

An approach for visualizing and clustering large process model collections
based on their process model metric values is proposed in Chapter 5.

Chapter 6 deals with measuring structural process model understandability as
an example of an external process model attribute.

A process model granularity heuristic as an example of a prediction system is
experimentally examined in Chapter 7.

Finally, some appendices explain necessary basics which are used within the
thesis: measurement fundamentals (Chapter A), basics of empirical research
(Chapter B) and measuring correlations (Chapter C).

The thesis structure is visually depicted in Figure 1.1.



1.4 PREVIOUS PUBLICATIONS

Chapter 1: Introduction

Chapter 2: Basics of Business Process Management

Chapter 3: Process Measurement

Chapter 4: Analysis of Process Model Metric Properties

Chapter 5: Visualization and Clustering of Process Model Collections

Chapter 6: Measuring Structural Process Model Understandability

Chapter 7: Effects of Process Model Granularity

Chapter 8: Conclusion and Outlook

Appendix

Chapter A: Measurement Fundamentals

Chapter B: Basics of Empirical Research

Chapter C: Measuring Correlations

Figure 1.1: Thesis structure.

1.4 PREVIOUS PUBLICATIONS

This thesis summarizes the results of several years of research. During this time,
several papers were published which present parts of the results. Some of the
chapters of this thesis partially base upon these previously published papers.
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The main ideas of Chapter 3 (process measurement) were already published in
[89].

The visualization and clustering approach for large process model collections
based on their process model metric values (Chapter 5) was already presented in
[92, 93]

The own measures for structural process model understandability, the pos-
tulated hypotheses concerning measurement effects and the results of the first
experiment of Chapter 6 were already described in [90, 91]. The second and larger
experiment, which was conducted as a cooperation with Jan Mendling (Humboldt-
Universitit zu Berlin) and Hajo A. Reijers (Technische Universiteit Eindhoven), was
already presented in [87, 88].

The experimental evaluation of the process model granularity heuristic (Chap-
ter 7) was already published in [94, 95].



BASICS OF BUSINESS PROCESS MANAGEMENT

Caused by the high competition in globalized markets which demands fast
innovation cycles, companies have realized in recent years that looking at their
processes and optimizing them is an important key for economic success in these
days. Powell et al. summarize: “[...] business processes generate most of the costs
of any business, so improving efficiency generally requires improving processes.
Business processes also strongly influence the quality of the product and the
satisfaction of the customer, both of which are of fundamental importance in the
marketplace.” [121, p. 64] As a result, BPM as a process-oriented management
discipline and WM as its IT-based technological basis have emerged in the
previous decades.

This chapter presents the necessary basics of this development. In Section 2.1,
BPM as a management discipline is introduced. The IT-based technological
support of this approach—known as WfM—is explained in Section 2.2. Finally,
Section 2.3 gives an overview of different process modeling languages.

2.1 BUSINESS PROCESS MANAGEMENT
2.1.1 Business Processes
Definition
Weske states [175, p. 4]: “Business process management is based on the observa-
tion that each product that a company provides to the market is the outcome of
a number of activities performed. Business processes are the key instrument to
organizing these activities and to improving the understanding of their interrela-
tionships.”

Thus, one has to clarify what one means with “business process” before one
can think about BPM in detail.

Ko gives an overview of different definitions of this term [72, p. 12]. According

to him, most existing definitions can be traced back to a definition given by
Hammer and Champy in their seminal book about Business Process Reengineer-

ing (BPR) [56, p. 35]-

“We define a business process as a collection of activities that takes
one or more kinds of input and creates an output that is of value to
the customer.”

The next definition which is cited by Ko was proposed by Davenport in his
seminal book about using information technology for process innovation [35, p. 5].
In this definition, an additional emphasis on the performed activities” structure
and how work is done can be found.



8

BASICS OF BUSINESS PROCESS MANAGEMENT

“[...] a process is simply a structured, measured set of activities
designed to produce a specified output for a particular customer or
market. It implies a strong emphasis on how work is done within an
organization, in contrast to a product focus’s emphasis on what.”

Finally, Ko quotes a definition by Ould [116, p. 26] which adds two important
elements still missing in the other definitions—the actors which perform the
activities and the collaboration between them.

“[...] key features of the thing that we call “process’:
* it contains purposeful activity (ie things are done for a reason)

e it is carried out collaboratively by a group (ie we are concerned
with more than the work of the individual)

* it often crosses functional boundaries (ie the organisation is not
the process)

e it is invariably driven by the outside world (ie our processes
generally have ‘customers’ in some shape or form)”

Summarizing these proposed definitions, the following definition is used in
this thesis.

Definition 2.1 (Business process) A business process consists of a structured set of
activities, which are performed by (potentially several) actors (humans, computers and/or
machines) in an organization in order to collaboratively achieve a common business
goal—the provision of a service or the production of a product for an internal or external
customer.

Classification

In the literature, one can find several classification schemes for business processes.

VAN DER AALST AND VAN HEE Van der Aalst and van Hee [162, pp. 9—10]
use the role of a process within a company for classification. They distinguish
production, support and managerial processes. Production processes produce a
company’s products or services and, thus, generate income for the company. Sup-
port processes support the production processes. This class comprises maintenance
processes for the production systems as well as personnel management processes
such as recruitment and selection, training and payment. The last class, the man-
agerial processes, directs and coordinates the production and support processes.
Here, the objectives and preconditions for the managers of the other processes are
formulated, required resources are allocated and contact is held with financiers
and other stakeholders.
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high
collaborative production
business
value
ad hoc administrative
low
low repetition high

Figure 2.1: Business process classification scheme by Leymann and Roller [77, p. 10].

LEYMANN AND ROLLER The classification scheme by Leymann and Roller
[77, pp. 10-12]" classifies processes based on the dimensions business value and
repetition. Business value defines the importance of a process for a company. A
business process with high business value is a core competence of its company
such as a loan granting process for a bank or a car manufacturing process
for a car manufacturer. Repetition measures how often a process is executed
in the same manner. A process with high repetition is an ideal candidate for
modeling and execution with IT support. Both dimensions are divided into
two value ranges—low and high—resulting in four process types: production,
administrative, collaborative and ad hoc processes (see Figure 2.1).

Production processes have a high business value and repetition. They constitute a
company’s core business such as the loan granting process of a bank. The efficient
execution of these processes is a competitive advantage. Administrative processes
are also highly repetitive, yet they have a lower business value. Typical examples
are travel expense reports and purchase approvals. Collaborative processes are char-
acterized by a high business value but a low repetition. They comprise processes
such as writing technical documentation or creating software. The underlying
process is rather complex and specifically created for the particular task—often
by customizing a more general project plan. Changes to the initial process plan
are also quite common. Finally, ad hoc processes have both low business value
and low repetition. Often, they have no predefined structure but are constructed
individually each time a series of actions shall be performed. Examples are
for-your-information routing as well as review and approval processes.

As a third dimension, Leymann and Roller propose the degree of automation.
It measures the independence of a process execution from human actions.

WESKE In [175, pp. 17-21], Weske proposes a further classification scheme for
business processes. It consists of the three dimensions degree of automation,
degree of repetition and degree of structuring. The degree of automation measures
the rate of human interaction within a process. The degree of repetition—as in the
classification scheme by Leymann and Roller—declares how often a process is

1 The classification scheme was originally proposed by GIGA Information Group.

9
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executed in the same manner. Finally, the degree of structuring indicates whether
a process with all its execution rules (e.g., decision rules for a loan granting
process) can be fully described.

CONCLUSION Independent from the chosen classification scheme, one can state
that the higher a process’s repetition rate, degree of structuring and business
value, the more applicable and useful is the modeling and execution with IT
support of this process.

2.1.2  What Is Business Process Management?

Motivation, Development and Definition of Business Process Management

Weske summarizes the problems and challenges which companies have to face
today as follows:

“[...]1in today’s dynamic markets, companies are constantly forced to provide
better and more specific products to their customers. Products that are successful
today might not be successful tomorrow. If a competitor provides a cheaper,
better designed, or more conveniently usable product, the market share of the
first product will most likely diminish.” [175, p. 4]

“Internet-based communication facilities spread news of new products at
lightning speed, so traditional product cycles are not suitable for coping with
today’s dynamic markets. The abilities to create a new product and to bring it
to the market rapidly, and to adapt an existing product at low cost have become
competitive advantages of successful companies.” [175, p. 4]

As a consequence, the optimization and flexibility of business processes got
into the companies’ focus and finally led into the development of BPM.

This trend towards process orientation can be traced back into the 1990s. In
the seminal book Reengineering the Corporation by Hammer and Champy [56], the
authors introduced the central idea of BPR—the radical redesign of a company’s
business processes. [175, p. 4] Davenport published a book [35] which describes
how this process innovation can be supported by information technology.

Although radical changes in a company’s processes—as suggested by BPR—
can be useful in special cases, one soon recognized also the flaws of this approach
such as a lack of commitment of the involved employees and operational risks
caused by these drastic changes.

Thus, the wish for a more evolutionary approach arose which changes business
processes in—possibly several iterative and incremental—smaller steps [72, p. 14].
This idea is realized in the BPM approach.

Definition 2.2 (Business Process Management) Business Process Management
(BPM) is a process-oriented management discipline (as quoted in [72, p. 14]). It in-
cludes methods, techniques and tools to support the design, enactment, management and
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Evaluation:
business activity monitoring
business process mining

Design:
business process
Enactment: identification and modeling
operation
monitoring Analysis:
maintenance validation
simulation
verification

Configuration:
system selection
implementation
test and deployment

Figure 2.2: BPM lifecycle [175, p. 12].

analysis of operational® business processes involving humans, organizations, applications,
documents and other sources of information [163, pp. 1, 4].

Business Process Management Lifecycle

To understand the exact meaning of the BPM approach, one has to look at the
BPM lifecycle. According to Ko [72, p. 14], there are several different views on
this lifecycle—one of the most relevant by van der Aalst et al. [163, p. 5]. In this
thesis, the BPM lifecycle view by Weske [175, pp. 11—-17] is presented. It is a
slightly modified and expanded version of the view by van der Aalst et al.

The BPM lifecycle—as seen by Weske—consists of the four phases design
& analysis, configuration, enactment and evaluation, which are arranged in a
cyclic structure (see Figure 2.2). This structure represents the evolutionary and
incremental BPM approach.

DESIGN AND ANALYSIS The first phase of the BPM lifecycle consists of two
steps—design and analysis.

There are two possible initial situations: (1) The business process is totally new
in the company and has not yet been executed or (2) it is already performed
manually without explicit BPM support. Depending on the situation, there either

2 This definition restricts BPM to operational processes, i.e., processes at the strategic level or
processes that cannot be made explicit are excluded [163, pp. 4-5].
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exists only a vague expectation of the process—possibly in text form—or it
even only exists in the personal know how of the employees involved in the
process so far. In both cases, the goal of the design step is an explicit business
process model (see Definition 2.4) as a formalized representation of the business
process of interest. This model is represented in a process modeling language
(see Section 2.3).

In the subsequent analysis step, the process model has to be validated. For that
purpose, all stakeholders check whether it contains the execution sequences of
all valid process instances (see Definition 2.7). Furthermore, the model can be
simulated in order to collect information about the number of required resources.
The analysis step can also comprise an automatic verification which checks
whether the model is free of deadlocks.

CONFIGURATION In the configuration phase, the process model which was
created during the first phase has to be implemented. This can be done in two
different ways: (1) It can be implemented without any software support by a set
of policies and procedures which the employees need to comply with or (2) it
can be realized using a dedicated software system.

In the latter case, an implementation platform is chosen and the process model
is enhanced with technical information in order to facilitate the enactment of
the process by the BPM system. This often comprises the integration of existing
software systems (legacy software systems) with the BPM system.

The phase finishes with a test of the implementation. For that purpose, the
normal test approaches from software engineering are used.

ENACTMENT In the enactment phase—which is normally the longest phase of
the BPM lifecycle—, the different process instances (Definition 2.7) of the business
process are executed.

In case of the application of a BPM system, it controls this execution according
to the constraints and business rules defined in the process model.

The BPM system’s monitoring component can provide information about the
execution status of a process instance.

During the whole enactment phase, execution data is collected and stored in
some form of a log file. This data is the basis for the evaluation in the next phase
of the lifecylce.

EVALUATION In the evaluation phase, the available log data is used to evaluate
and improve the process model and its implementation. For these purposes,
business activity monitoring and business process mining techniques are used.
Business activity monitoring can help to identify, for example, bottlenecks of
process model implementations caused by a shortage of required resources.
Business process mining—a rather recently developing field of research [160]—
can be used as a starting point for the development of process models from
log files created by traditional information systems (instead of dedicated BPM
systems). These traditional systems support the execution of processes even
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without the prior explicit definition of a process model. Furthermore, business
process mining is helpful for discovering control, data, organizational and social
structures of the process execution [160, p. 713].

Goals of Business Process Management

Companies hope to reach several goals when using the BPM approach. Weske
[175, pp. 21—22] as well as Becker and Kahn [10, pp. 5—9] give an overview of
such goals, which BPM is able to fulfill.

Better understanding

The explicit representation of business processes can help a company to get
a better understanding of the operations it performs and the dependencies
(possible “side effects”) between the different processes [175, p. 21] [10,

p- 71
Standardization of business process execution

The explicit representation and the IT supported process execution help to
narrow the gap between how a process is planned to be executed in theory
and the way it is actually executed in practice [175, pp. 21—22]. Thus, a more
standardized process execution is reached.

Improved communication

The explicit representation of business processes as well as using BPM
terminology can improve the communication between the different stake-
holders by making it more efficient and effective. Through this, also the
collaborative analysis and identification of potential improvements becomes
easier. [175, p. 21]

More flexibility

BPM can improve the flexibility of business processes for a faster adaptation
to changing market situations and customer requirements. The explicit
modeling of the process and their IT support are important factors to reach

this goal. [175, p. 21] [10, p. 9]

Continuous process improvement

The evolutionary approach of BPM allows a continuous improvement of the
business processes. The explicit modeling and IT-based execution enable
the analysis and identification of potential for improvements. [175, p. 21]

Repository of business processes

A company can construct a repository with all its (modeled) business
processes. This is an important asset as it captures the company’s knowledge
about what and how it performs its operations. [175, p. 21]

13
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Table 2.1: BPM market size (in million U.S. $) [114, p. 10].

2005 2006 2011 (projected)
Gartner 1,000 (estimate) | 1,700 (estimate) 5,100
Forrester - 1,600 (actual) 6,300
IDC 495 (actual) 890 (actual) 5,500

¢ Benchmarking

The explicit representation and the IT support enable to collect performance
measures at specific points of a process. That way, internal and external
benchmarking becomes possible. [10, p. 6]

¢ Enabling cooperation/outsourcing

When a process is modeled with all its performed operations and dependen-
cies, it also becomes easier to virtually span processes over the borders of
companies (cooperation) or to outsource parts of or whole processes which
are not the core competency of that company [10, p. 8].

2.1.3 Business Process Management in Practice

After the definition of BPM and the presentation of the BPM lifecycle earlier in this
section, this subsection gives an overview of the BPM market with information
about its size and offered software tools as well as the actual usage of the BPM
approach in companies.

Business Process Management Market

Table 2.1 shows the actual and estimated BPM (software) market size figures
published in studies by Gartner, Forrester and IDC. The different figures—even
for the present—are caused by different definitions of the BPM market used by
the analysts.

All three market research companies predict a rapid market growth in the next
years. Nevertheless, the BPM market is just a relatively small niche of the overall
global software market as can be seen when comparing the figures with the 2009
revenue figures of, for example, Microsoft (58,437 mil. U.S. $ [103, p. 40]) and
SAP (10,672 mil. € [137, p. 154]).

The BPM market is on the move. Recently, large vendors such as Oracle and
IBM have entered the market by acquisition of smaller BPM vendors. Furthermore,
the market is consolidating. In 2007, Gartner predicted that from more than 150
BPM vendors in 2006 only the leading 25 will be evident at the end of 2008. [114,
p- 10]

The study [146] gives an overview of the BPM software market (with a German
perspective). It also presents the results of a systematic evaluation of the offered
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software products by means of a list of criteria. Furthermore, references to other—
also more global—studies are given.

Usage of Business Process Management

In this paragraph, information is given about the current usage of BPM in practice
as well as the customers” opinions and beliefs.

AIIM SURVEY A survey including 812 participants (with focus on the U.S.
market) conducted by the Association for Information and Image Management
(AIIM) in 2007 [1] revealed data on the actual usage of BPM and the expected
payback time for the BPM investment.

According to this survey, 54% have BPM experience in their company—yet,
32% of all participants only on department level. 25% plan to introduce BPM
within the next six months, and the remaining 20% have no experience at all. [1,
p. 8]

The question concerning the expected payback time for the investment was
answered as follows: 15% expect less than one year of payback time. Half of the
participants estimate an amortization time of one to three years. Another 14%
expect their investment to pay off within four to five years. The remaining 21%
have no calculation. [1, p. 14]

ORACLE SURVEY In 2007, an Oracle survey of more than 200 Oracle Business
Process Management Suite customers was conducted worldwide. It revealed the
following areas where customers expect the greatest return on investment from
their investment in BPM (multiple responses possible) [114, p. 8]:

¢ automating or accelerating highly manual processes (26%)
* increasing visibility into processes (21%)

* improving operational excellence (20%)

* improving control over processes (20%)

* simplifying cumbersome processes (18%)

* promoting better business and IT alignment (14%)

¢ improving delivery of new products or services (13%)

¢ establishing greater governance and compliance (13%)

* improving predictability of processes (10%)

* improving customer intimacy or service (10%)

¢ improving support for mergers and acquisitions (7%)
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BPM-ALLIANZ SURVEY A 2007 survey by the BPM-Allianz among 769 potential
BPM users in German companies showed a quite heterogeneous interest in BPM:
While in the logistics, chemistry, mechanical engineering, automotive and financial
industry only between 10% and 20% of the respondents have no interest in BPM,
this rate increases between 40% and 50% in the health, energy, Information and
Communication Technology (ICT) and food sector. [140]

PENTADOC AND TROVARIT SURVEY Another German survey with 157 partici-
pants conducted in 2010 by Pentadoc and Trovarit [28, 119] revealed the following
results:

Only 23% of the asked companies use special BPM software [119, p. 5]. Another
23% plan its introduction—yet, around half of them not within the next two years
[119, p. 8].

Both groups have similar goals for a BPM usage—more process control and
transparency, reduction of workload, process speedup, increase of competitiveness
and reduction of costs [119, pp. 4, 9]. Respondents using BPM could reduce lead
times by 37% and costs by 31% on average [119, pp. 4-5].

Participants which do not use BPM name as reasons: lack of available competent
resources (almost 50%), unclear or too small benefit (around 45%), expectation of
too much effort (43%) and expectation of too much costs (30%) [119, pp. 5-6].

GARTNER: AMORTIZATION According to Gartner, the usage of BPM can re-
duce costs up to 20%. Thus, its introduction can pay off within one year. [29, 30]

IDS SCHEER: BUSINESS INTELLIGENCE During the current financial crisis,
IDS Scheer sees a trend towards Business Intelligence. That way, business process
performance measures (e. g., lead time and costs) can be permanently collected
during execution. They can be used as early indicators by the management in
order to take actions long before the final financial figures are available. [29, 30]

2.2 WORKFLOW MANAGEMENT

Besides BPM, the term “Workflow Management (WfM)” can be found quite often
in literature. WM as a concept is older than BPM (see [52] for a—meanwhile
“historic”—overview of WfM). While BPM is a process-oriented management
discipline (see Definition 2.2), WfM is a technological approach for the automation
of business processes.

According to van der Aalst et al. [163, p. 5], WM can be seen as today’s tech-
nological basis of BPM and can be integrated into the BPM lifecycle—comprising
all phases except the evaluation phase.

2.2.1  Workflow Management and Terminology

In this subsection, the important terminology of WM is introduced. Thereby, the
definitions of the Workflow Management Coalition (WfMC) [176] are used.
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Definition 2.3 (Workflow Management) Workflow Management deals with the au-
tomation of business processes, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set of procedural
rules [176, p. 8].

Today, WEM constitutes the technological basis of BPM.

Definition 2.4 (Process model) A process model is a representation of a business
process in a form which supports automated manipulation or enactment by a software
system [176, p. 113

It consists of a network of activities, their relationships (possible activity ex-
ecution sequences) and a set of rules that determine which alternative activity
execution sequence has to be chosen at a branching.

Normally, it is possible to find several alternative process models for one busi-
ness process which differ—amongst others—in their activity network structure.
This fact can be compared with the following analogy: For the problem how
to sort a collection of numbers (e. g., in increasing order), one can find differ-
ent sorting algorithms. They differ in the details of their basic operations and
their order—possibly resulting in different runtime and/or storage consumption.
Nevertheless, the same input data produces the same output.

Definition 2.5 (Activity/task) An activity (also called “task”) is a description of a
piece of work which forms one logical step within a process (model) [176, p. 13].

There are manual activities, which require the execution by humans, and
automated activities, which can be done fully automatically by machines and/or
computers.

Each activity needs a resource (human or machine/computer) with specific
“skills” to be executed. The requirements for that resource are summarized within
a role.

Definition 2.6 (Role) A role comprises attributes as skills, location and authority
within an organizational structure which are either required by a resource to execute a
special activity or which a resource provides [176, pp. 54—55].

A business process (e.g., an insurance claim process) can be initiated and
executed indefinitely often—normally with different data each time.

Definition 2.7 (Process instance) A process instance is the representation of a single
enactment of a business process [176, p. 16].

It is executed according to a process model of the business process. Each
process instance has its own data and can be executed independently from other
process instances of the same process.

In [176, p. 11], the term “process definition” is used instead of “process model”. Yet, “process
model” is used in newer publications about BPM as, for example, [99, 163].

17
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2.2.2  Workflow Management Systems

The main goal of WM is the software-supported execution of processes. For that
purpose, Workflow Management Systems (WfMSs) are used.

Definition 2.8 (Workflow Management System) A Workflow Management System
is a software system for defining process models as well as for creating and managing
the execution of the corresponding process instances. It runs on one or more workflow
engines which are able to interpret the process model, interact with workflow participants
and—uwhere required—invoke the use of IT tools and applications. [176, p. 9]

A workflow engine—the most important part of a WIMS—is defined by the
WIEMC as follows [176, p. 57].

Definition 2.9 (Workflow engine) A workflow engine is a software service or “engine”
which provides the run time execution environment for process instances. For that purpose,
it provides the following features:

interpretation of the corresponding process model
* creation of process instances and management of their execution

* “navigation” and “routing” between the activities (Which activity is executed next
and which branch is taken at branchings?)

* allocation of activities to resources according to required/offered role

The WEMC has created the Workflow Reference Model (see Figure 2.3) as a
generic architectural representation of a WEMS including its generic components
and most important system interfaces (using a workflow Application Program-
ming Interface (API) and standardized interchange formats) [58, pp. 20—27] [176,

p- 23]
e import and export of process models,
e interaction with client applications,
* invocation of software tools or applications,
* interoperability between different WfMSs and

¢ administration and monitoring functions.

2.3 PROCESS MODELING LANGUAGES

In the area of BPM, numerous standards have emerged which are used to create
process models of business processes and to interchange and/or execute these
models.
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Figure 2.3: Workflow Reference Model [58, p. 20].

Ko et al. give an overview of these standards [73]. Furthermore, they propose
a classification scheme which classifies the standards into graphical, execution,
interchange and diagnosis standards [73, pp. 751-754].

In [175, pp. 125-226], Weske gives another good overview of process modeling
languages with detailed explanations of the languages

* Business Process Modeling Notation (BPMN) [175, pp. 205—225],
¢ event-driven process chains (EPCs) [175, pp. 158-169],

¢ Petri nets [175, pp. 149-158],

¢ workflow nets [175, pp. 169-182] and

* Yet Another Workflow Language (YAWL) [175, pp. 182—200].

All these listed process modeling languages are activity-based, i. e., process
models modeled with these languages consist of the activities to be executed
and a network of arcs between them modeling the possible sequences of activity
execution. Independently from the chosen language, several so-called control
flow patterns [175, pp. 126-149] can be expressed in these languages—(linear)
sequence, parallel (AND) and alternative (XOR or OR) execution being the most
frequently used.

In the following two subsections, two process modeling languages which are
used in this thesis are presented in more detail—EPCs (Chapter 4 and 5) and
Product Data Models (Chapter 7).
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2.3.1 Event-Driven Process Chains

Event-driven process chains (EPCs) are a development by the Institut fiir Wirt-
schaftsinformatik (Institute for Information Systems) at Universitit Saarbriicken. In
the 1990s, there was a project together with SAP to define a suitable business
process modeling language to document the processes of the SAP R/3 enterprise
resource planning system. This project produced two major results: the definition
of EPCs [70] and the documentation of the SAP system in the SAP Reference
Model [33, 71]. [99, p. 17]

The following formal definition is based on [175, p. 162]. Yet, it partially uses
some terminology from [99, pp. 22—23] instead.

Definition 2.10 (Event-driven process chain) An event-driven process chain is a
5-tuple (E, F, C, m, A) for which holds:

* E is a nonempty set of events.

* T is a nonempty set of functions.

C is a set of connectors.

m : C — {AND, OR, XOR} is a mapping which assigns to each connector a
connector type, representing AND, OR or XOR (exclusive or) semantics.

Let N := EUFU C be the set of nodes. A C N x N is a set of arcs connecting
events, functions and connectors such that the following conditions hold:

- G := (N, A) is a connected graph.
— Each function has exactly one incoming and exactly one outgoing arc.

— There is at least one start event and at least one end event. Each start event
has exactly one outgoing and no incoming arc. Each end event has exactly one
incoming and no outgoing arc. All other events have exactly one incoming
and one outgoing arc (intermediate event).

— Each event can only be followed—possibly via connectors—by functions, and
each function can only be followed—possibly via connectors—by events.

— There is no cycle in an EPC which consists of connectors only.

— No event is followed by a decision node, i.e., an OR split connector or an
XOR split connector.

Functions (see Figure 2.4b for the graphical notation) represent the activities
of the modeled process—events (Figure 2.4a) represent their pre- and post-
conditions. Connectors are the third node type of an EPC. They are used for
modeling non-sequential control flows. Connectors can be divided into split (one
incoming and several outgoing arcs) and join (several incoming and one outgoing
arcs) connectors. Besides, each connector node has one of the three types AND
(Figure 2.4¢c), OR (Figure 2.4d) or XOR (Figure 2.4e). At AND split connectors, all
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event function
name name

(a) Event. (b) Function.  (c) AND connec- (d) OR connec- (e) XOR connec-
tor. tor. tor.

Figure 2.4: Graphical notation of the different EPC components.

subsequent branches are executed in parallel. At XOR split connectors, exactly
one branch is taken. OR split connectors are in between—here, at least one
(possibly several ones or even all) of the subsequent branches is executed.

The execution of an EPC starts when a start event (from possibly several ones)
occurs. Afterwards, the arcs between the nodes together with “decisions” at split
connectors define the path of the control flow through the process model. The
execution finishes when an end event (from possibly several ones) is reached.

Figure 2.5 shows an example of a small and simple process model modeled
as an EPC. The process starts as soon as start event “event A” occurs. Then,
“function B” is executed first. Based on the outcome of this execution, the following
XOR split connector “decides” which of the two subsequent branches is taken.
Depending on this “decision”, the corresponding branch is executed. The control
flow passes the XOR join connector as soon as this branch has been completed.
When the final end event “event G” is reached, the process execution is finished.

2.3.2 Product Data Models

Product data models are the process modeling language used in Product-Based
Workflow Design (PBWD)—a modeling methodology proposed by van der Aalst,
Reijers and Limam in [128, 159]. It is based on former work by van der Aalst
[157, 158] and is further examined by Reijers in [127].

The motivation of the PBWD methodology is the area of manufacturing where
the interaction between the design of a product and the process to manufacture
this product is studied in detail [128, p. 229] [18, pp. 469—471].

There, a so-called bill of materials (BOM) [115] [18, pp. 138-146] is used to
define the design of the product. A BOM has a tree structure with the final end
product as its root and raw materials and purchased products as leaves. The nodes
correspond to products (end products, raw materials, subassemblies). The edges
represent an is-part-of relation and have a cardinality to indicate the number of
products needed. The simplified BOM of a car is depicted in Figure 2.6. According
to that, a car is composed of an engine and a subassembly. The subassembly
consists of four wheels and one chassis. [128, p. 234]

In [157, pp. 397—398], van der Aalst et al. emphasize that there is also this kind of
dualism between product and process model in the information-intensive service
industry—even though, it is seldom made explicit. They give the example of
processing an insurance claim. There, the product is basically a decision: either the
claim is accepted (followed by a payment) or it is rejected. Different data elements
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XOR
-/

function E

function F

Figure 2.5: An example of an EPC.

may play a role in making this decision. One can think of these data elements
as raw materials or subassemblies. The process model should manufacture the
decision.

Reijers et al. criticize that “[iJn contrast to manufacturing, the product and
the process have often diverged in actual workflows. Workflows found in banks
and insurance companies for products like credit, savings and mortgages, dam-
age and life insurance, and so on may well exist for decades. Since their first
release, those processes have undergone an organic evolution. [...] Aside from the
evolutionary changes of the processes, the state of technology of some decades
ago has considerably influenced the structure of these workflows permanently.
[...] So, the structure of an actual workflow may not be related to the product
characteristics any more.” [128, p. 230]

The PBWD methodology tries to reverse this divergence of product structure
and process model for information-intensive processes of the service industry
(e.g., bank, insurance and telecommunications companies). Instead of defining a
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car

engine subassembly

wheel chassis

Figure 2.6: The simplified BOM of a car [128, p. 235].

process model at once, it is derived from the product structure. So, the PBWD
methodology provides the following steps [128, pp. 231-232]:

1. definition of the product structure using a formalization similar to the BOM
in manufacturing,

2. construction of one or several alternative process models derived from this
product structure and

3. selection of the most promising process model alternative according to their
estimated performance measures.

For the first step, a formalization for the product structure is necessary. Com-
pared to manufacturing, information-intensive processes have differences which
make the BOM not very useful [128, p. 234]:

* Making copies of information in electronic form is easy and cheap. There-
fore, cardinalities make no sense.

* The same piece of information may be used to manufacture various kinds
of new information. Therefore, also non-tree structures are possible.

¢ Typically, multiple ways (variants) to derive a piece of information exist.

As a consequence of these differences, Reijers et al. introduce a modified
formalization—the Product Data Model (PDM) [128, pp. 234—236]*.

Definition 2.11 (Product Data Model) A Product Data Model is a tuple (D, C, pre,
constr, cst, flow) for which holds:

* D isa set of data elements with a special top element top € D.

4 The function prob of the original definition is omitted in this thesis as it is irrelevant here.
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o Cisaset of constraints which can be any boolean function (including the boolean
value true).

* pre: D — P(P(D)) is a function which gives for each data element the various
ways of determining a value for it based on the values of different sets of other data
elements so that holds:

- R:={(p,c) € D x Dlc € Uesepre(p) €8} is connected and acyclic, i.e., there
are no “dangling” data elements and a value of a data element does not depend
on itself.

— The top element cannot be used for determining the value of any other data
element:

V(p,c) € R:c # top

— If there is a data element which does not require any other data element, one
denotes for ease of analysis the set of required data elements as the empty set:

Vd e D: o € pre(d) = pre(d) ={g}

* F:={(p,cs) € DxP(D)lcs € pre(p)}is a set of production rules, based on the
definition of pre. F consists of all ordered pairs of data elements between which a
dependency may exist.

e constr : F — C is a function which associates a constraint to each production
rule so that there are no constraining conditions on the production of data element
values which does not require the values of other data elements:

Vd € D : pre(d) ={@} = constr((d,{2})) = true

* cst: F— IN is a function which gives the cost of using a production rule.

* flow: F — IN is a function which gives the time it takes to use a production rule.

A PDM is an acyclic graph. Its nodes are data elements which all have a value.
There is one special data element, the top data element, which represents the
final decision of the corresponding process. The edges of the graph represent
the relations between the data elements which are given by the pre function. It
yields for each data element d zero or more variants to determine a value for
d. If one supposes for the data elements d, e, f € D that {e, f} € pre(d), then the
value of d can be determined using the values of e and f—one says that (d, {e, f})
is a production rule of d. Each production rule has a corresponding constraint
(a boolean function) and can only be executed if its constraint evaluates to true.
Furthermore, the execution of each production rule causes a specific amount of
costs and needs a specific time. There are special data elements whose values do
not depend on those of others. They are called leaves.

An example of a PDM is depicted in Figure 2.7. The corresponding process
checks whether a person is suitable as a helicopter pilot. On the one hand, there
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Figure 2.7: Example of a PDM for a process checking the suitability as a helicopter pilot
[159, p- 399]

are production rules (e. g., from quality of reflexes and quality of eye-sight to
physical fitness) which need more than one data element to compute the value
of another one. On the other hand, there are other production rules (e. g., latest
suitability result to suitability as helicopter pilot) which only need exactly one
data element to compute the value of another one. Furthermore, there exist three
variants how to compute the final decision (suitability as helicopter pilot). Based
on the evaluation of their constraints, one of them can be selected: If the quality
of eye-sight is too bad, the final decision can immediately be made: the examinee
is not suitable. If the latest suitability result is not older than two years, its result
is adopted. Only otherwise, a more complicated check has to be performed. The
quality of eye-sight is an example of a data element whose value can be used for
several production rules.

In the next step of the PBWD methodology, one or several alternative process
models have to be derived from the PDM. For that, each production rule is
transformed into an adequate activity which performs the corresponding produc-
tion rule. The control flow between these activities has to preserve the relation
induced by the pre function of the PDM. So, the values of the data elements can
be computed in a correct sequence.

For the last step of the PBWD methodology, Reijers et al. propose some heuris-
tics how to select the optimal alternative process model based on the PDM’s cst
or flow function. As the details are unimportant for this thesis, the interested
reader is referred to [128, pp. 240-244].






PROCESS MEASUREMENT

3.1 INTRODUCTION

As already mentioned in Chapter 2, companies have identified their processes
and the optimization of them as critical success factors for their businesses in
recent years. Therefore, the measurement of interesting process model attributes
as, for example, costs, duration and error probability is a prerequisite for the as-
sessment and—where applicable—improvement of process models. A possibility
for predicting these attributes before the actual implementation and execution of
the process models would be desirable. Process measurement—a rather young
research discipline—is concerned with these questions. This thesis deals with
some aspects of process measurement which so far have only been examined
inadequately.

In this chapter, an overview of the literature in the field of process measurement
is given and it is tried to arrange it into an overall context in order to identify
open research questions.

This overview of the published literature shows that many process model
metrics adapted from software metrics were suggested. For many of them, the
authors claim that they measure process model complexity, quality and/or per-
formance. At the same time, missing definitions of process model complexity and
quality can be noticed.

Thus, possible definitions and differentiations of these terms are examined
resulting in the process measurement approach used in this thesis—a prediction
system measurement approach adapted from software measurement which avoids
concrete definitions of process model complexity and quality. Based on internal
process model attributes (e. g., structural process model metrics), it tries to predict
external process model attributes (e.g., duration and error probability). The
approach is completed by a discussion of a proper validation of the prediction
system.

Furthermore, the Goal Question Metric approach for selecting process model
metrics and process model quality measures as well as different purposes of
process measurement (understand, control and improve) are discussed and the
existing process measurement work is assessed according to the measurement
framework introduced in this chapter. As a result, a lack of necessary validation
work (compared to the number of proposed metrics) can be noticed.

The remainder of this chapter is organized as follows: In Section 3.2, related
work on process measurement is presented. It is followed by a discussion of
how to define and/or measure process complexity, quality and performance in
Section 3.3. In Section 3.4, measurement and prediction systems are explained,
the process measurement approach used in this thesis is introduced and the



28

PROCESS MEASUREMENT

necessary validation steps are presented. The different application possibilities of
metrics are shown in Section 3.5. Afterwards, the existing process measurement
work is assessed according to the measurement framework introduced in this
chapter (Section 3.6). Finally, Section 3.7 closes the chapter with a conclusion and
an outlook on identified open research questions which are dealt with in the
remainder of this thesis.

3.2 RELATED WORK

In this section, an overview of the published literature about process measurement
is given. In addition to own literature research, it is based on other literature
reviews by Sdnchez Gonzélez et al. [136] and Mendling [99, pp. 114-117].

Looking at the literature, one can separate two types of measurement purposes
for process models [136, pp. 119-120]: measuring the process model design (a
“static” property) and measuring results of a process model execution (a “dynamic”
property).

The latter purpose has been studied in depth in other sciences for years [136,
p. 116]—often under the name process performance. In [63, 64], Jansen-Vullers et
al. give an overview of different performance measurement systems. Based on
them, they suggest their own framework for process performance measures with
the dimensions time, cost, quality and flexibility. For each of these dimensions,
they propose a set of measures.

The really new aspect of the process measurement discipline developing during
the previous years are metrics for the other measurement purpose—for measuring
the process model design. Thus, the remainder of this section only presents
publications about this measurement purpose.

In [75], Lee and Yoon introduce 15 complexity metrics for Petri nets. They
distinguish between structural (e. g., number of places and transitions, cyclomatic
number) and dynamic (including number of markings and tokens as well as degree
of parallel firing) complexity metrics. Furthermore, they analyze the correlations
between these metrics for 75 practical Petri nets which were randomly selected
from the literature.

Nissen presents the knowledge-based system KOPeR, which helps during the
reengineering of a process model [112]. For that purpose, KOPeR uses a set of
metrics measuring the process model and reengineering heuristics.

Morasca deals with measuring internal attributes of Petri nets for concurrent
software specifications [108]. He identifies size, length, complexity and coupling
as interesting attributes. For each of them, he defines a set of axiomatic properties
which corresponding metrics have to fulfill. Afterwards, he suggests several
metrics for these four attributes and validates them against the properties.

Latva-Koivisto’s research report [74] is probably the first publication dealing
with measuring the complexity of business process models. He makes some
interesting remarks on how to define complexity (which are presented in more
detail in Subsection 3.3.1). Then, he introduces several metrics for structural
complexity based on graph-theory.
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Inspired by McCabe’s cyclomatic number for control-flow graphs of software
[86], Cardoso recommends the control-flow complexity metric (CFC) for process
models [21]. The metric sums up the number of states a process model can reach
after a split connector depending on its type. In [22], Cardoso tests the metric for
correlation with received complexity. In [24], he offers a specialization of the CFC
metric for Business Process Execution Language (BPEL) process models.

In [20], Cardoso discusses data-flow complexity metrics for web processes
in BPEL. He differentiates between data, interface and interface integration
complexity. Yet, only for interface complexity, he advices a concrete metric.

In [23], Cardoso proposes another metric for measuring the log-based complex-
ity (LBC) of process models in BPMN. This metric is based on the number of
different log traces which can be generated from the execution of a process model.
The metric is iteratively defined with basic numbers for the different workflow
patterns [161].

Jung presents a metric which measures the entropy of process models [67].
Thereby, the entropy of a process model is defined as the uncertainty or variability
of the control flow caused by XOR and OR splits as well as loops.

Gruhn and Laue suggest complexity metrics for business process models
analogous to software complexity metrics [54]. In [53], they adapt the cognitive
weights metric from software engineering to business process models.

Rol6n et al. recommend several metrics for business process models in BPMN
[132]. Their metrics are an adaptation and extension of the Framework for the
Modeling and Evaluation of Software Processes (FMESP) [49].

In their survey paper [19], Cardoso et al. propose new metrics analogous to
existing metrics for software as lines of code (LOC), the Halstead complexity met-
rics [55] and the information flow metric by Henry and Kafura [57]. Additionally,
they present already published metrics like CFC [21] and the metrics proposed
by Latva-Koivisto in [74].

In [129, 168], Vanderfeesten et al. introduce a heuristic for the proper size of
individual activities in process models (process model granularity). Activities can
consist of (several) basic operations. The operations of one activity should “belong”
together (highly cohesive)—while different activities should be independent from
each other (loosely coupled). For that purpose, they introduce a process model
cohesion and a process model coupling metric, a coupling/cohesion ratio and a
design heuristic based on this ratio.

Vanderfeesten et al. suggest a weighted coupling metric for process models
with different weights for the different connector types [166].

Analyzing the SAP Reference Model process models with an automatic verifica-
tion tool, Mendling et al. detect faulty EPC process models [96]. In a second step,
they try to find possible predictors (based on 15 metrics) for these errors using
logistic regression. In [97], Mendling proposes a density metric and repeats the
regression test. Mendling and Neumann suggest and test additional six metrics
as error predictors in [100]. In his PhD thesis [98], which was also published in
book version [99], Mendling gives 28 metrics for EPC process models (some of
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them taken from [96] and [100], but also new ones). Once again, he uses logistic
regression in order to identify possible predictors for faulty process models.

In [101], Mendling et al. present an experiment for identifying influencing
personal (theoretical knowledge and practical experience) and structural factors
on process model understandability. They use the SCORE measure—the sum of
correct answers to eight closed and one open question on a process model—to
measure understandability.

In [167], Vanderfeesten et al. introduce the cross-connectivity metric. It measures
the average strength of connection between all pairs of process model nodes.
They empirically evaluate the metric using data of [101].

Mendling and Strembeck present a second experiment for identifying influ-
encing factors on process model understandability [102]. This time, also content
related factors (task labels) are analyzed.

In [135], Sanchez et al. emphasize the importance of process measurement
for the determination of the maturity level according to the Business Process
Maturity Model (BPMM) [113].

3.3 DISCUSSION OF RELATED WORK

The literature review of process measurement in the previous section is followed
by a discussion about details of this related work in this section.

The first thing one can notice is the fact that authors define their proposed
metrics using different process modeling languages (e.g., BPEL, BPMN, EPCs
and Petri nets). Often, these definitions could also be adapted to other modeling
languages—but in some cases, this is not possible.

The second notable fact is that the authors state that their metrics measure
different concepts: So, several publications exist which try to measure process
model complexity using complexity metrics (e.g., [21, 74]). Yet, one also finds
articles dealing with process model quality and quality metrics (e. g., [165]) as well
as process model performance (e. g., [63, 64]). Nevertheless, proper definitions of
these terms are missing.

Also Sanchez Gonzalez et al. criticize in their literature review that “the authors
describe measures according to what they believe their measures quantify, and
the majority of them do not follow any standard, or have previously performed a
theoretical validation of the measures, which may lead to confusion” [136, p. 121].
Furthermore, they observe complexity as the most measured concept according
to the corresponding authors’ classification [136, pp. 120-121].

Thus, the remainder of this section deals with finding proper definitions for the
terms “process model complexity” (Subsection 3.3.1) as well as “process model
quality” and “process model performance” (Subsection 3.3.2).

3.3.1 Process Model Complexity

Today, the term “complexity” is used in many domains—not only in process
measurement. Yet, only for very particular fields (e. g., computational complexity
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theory and Kolmogorov complexity, which are presented in the remainder of this
subsection), mathematical definitions are available. Generally, only “philosophical
definitions” exist. The Merriam-Webster’s Collegiate Dictionary, for example,
defines the adjective “complex” as “hard to separate, analyze, or solve” [106,
p- 235] (as quoted in [74, p. 4]).

The remainder of this subsection is structured as follows: First, statements on
process model complexity found during the literature review are reproduced.
Afterwards, several aspects of complexity which are research objects in different
research disciplines are presented. Next, some thoughts on the meaningfulness
of measuring complexity are given. Finally, consequences regarding measuring
process model complexity are drawn.

Complexity of Process Models

To the author’s knowledge, Latva-Koivisto published the first paper [74] which
deals with finding a complexity measure especially for process models. He cites
[74, pp- 4-5] some interesting ideas about complexity by Edmonds:

“This means that it [complexity] is a highly abstract construct relative to the
language of representation and the type of difficulty that concerns one.” [41,
p- 379] “The relevant type of ‘difficulty” depends somewhat upon your goals
in modelling. Different kinds of difficulty will result in different measures of
complexity [...].” [41, p. 381]

Latva-Koivisto states that a measure of complexity is related to [74, p. 5]:

¢ the use of the measure,
¢ the kind of difficulty associated with the use,
¢ the objective of the analysis and

¢ the language of representation of the problem.

Cardoso defines process model complexity as “the degree to which a process” is
difficult to analyze, understand or explain. It may be characterized by the number
and intricacy of activity interfaces, transitions, conditional and parallel branches,
the existence of loops, roles, activity categories, the types of data structures, and
other process characteristics.” [21, p. 202]

In [24, p. 36], he writes about the relation of complexity to other attributes
according to his opinion: “A process® can be measured according to different
attributes. The attribute that we will target and study is the complexity associated
with BPEL processes3. Attributes such as time, cost, and reliability have already
received some attention from researchers [...].”

1 “Process model” in the nomenclature of this thesis.
2 “Process model” in the nomenclature of this thesis.
3 “Process models” in the nomenclature of this thesis.
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Aspects of Complexity

In several fields of research, different aspects of complexity are examined. For
some of them, formal definitions exist—yet, for most of them, only informal
textual descriptions of the concept are available.

Here, a short overview of some important aspects of complexity is given.

COMPUTATIONAL COMPLEXITY THEORY Computational complexity theory
deals with the computability of problems and the runtime and/or space require-
ments of algorithms for solving computable problems.

Computability The definition of computability is based on the theoretical con-
cept of a Turing machine which was introduced by Alan M. Turing in [155].

A Turing machine consists of an infinite tape used as memory, a read-write head
for reading or writing symbols from/to the tape, a finite set of states (including
a start state), a subset of accepting states and a so-called transition function.
Depending on the symbol read from the tape and the current state, the transition
function tells the “next step” of the Turing machine, i. e., the subsequent state, the
symbol to write to the tape (by replacing the symbol read before) and whether
the read-write head should move one symbol to the left or right on the tape after
writing. When the Turing machine gets into an accepting state, it stops processing.
[59, pp- 318-319]

For the definition of computability, one also needs the concept of computable
functions. A function f is a computable function if some Turing machine computes
the function, i. e., on every input x on its tape, the Turing machine halts with f(x)
on its tape [143, p. 210].

According to the Church-Turing thesis, the intuitive notion of algorithms and
the Turing machine algorithms are equivalent, i.e., everything computable is
computable by a Turing machine [143, p. 157].

Time and Space Complexity If one knows that a problem is computable, the
next interesting step is to look at its runtime and space (memory) requirements.
In doing so, one has to notice for some computable problems that they are
intractable in practice.

Before time and space complexity are defined, three asymptotic notations [32,
pp- 41—-50] are introduced which are used later.

Definition 3.1 (Q-notation) For a given function g(n), one denotes by Q(g(n)) the
set of functions

Q(gn)) :=={f(n)|Fc,ng >0vn > ny:0 < cg(n) < f(n)}
The O-notation is used to indicate an asymptotic lower bound of a function.

Definition 3.2 (©-notation) For a given function g(n), one denotes by ©(g(n)) the
set of functions

O(g(n)) :={f(n)[Fe1,c2,ng > 0Vn > np: 0 < c1g(n) < f(n) < cg(n)}
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Figure 3.1: Graphical examples of the (a) Q-, (b) ©- and (c) O-notations. In each subfigure,
the shown value of ng is the minimum possible value. [32, p. 43]

The ©-notation states that a function lies between an asymptotic lower and
upper bound.

Definition 3.3 (O-notation) For a given function g(n), one denotes by O(g(n)) the
set of functions

O(gn)) :={f(n)|Fc,np >0Vn > np: 0 < f(n) < cg(n)}

The O-notation is used to indicate an asymptotic upper bound of a function.

Graphical examples of these three notations are depicted in Figure 3.1.

The time complexity of an algorithm is the number of computation steps f(n)
depending on the input size n. Often, a so-called worst-case analysis is performed,
i.e., the longest possible runtime for each input size n is considered. As one is
normally interested in the asymptotic runtime of an algorithm for large inputs,
one uses one of the three asymptotic notations above to indicate lower or upper
bounds for the runtime. [143, pp. 252—253]

Space complexity is correspondingly defined as the required memory size f(n)
of an algorithm depending on the input size n. Here again, one normally uses
one of the asymptotic notations as one is mainly interested in the behavior for
large inputs. [143, pp. 307-308]

The runtime depending on input size n for several “algorithms” which need dif-
ferent numbers of computation steps are listed in Table 3.1 under the assumption
that 1,000,000 computation steps can be executed per second.

As one can see, the required runtime increases with very differing speed for the
different time complexity classes. The last case with time complexity 2™ stands
out extremely, as the runtime already reaches astronomic values for small input
sizes. It grows exponentially—making such problems intractable in practice.

Thus, it is desirable to “find” and use algorithms with at least polynomial
runtime. In computational complexity theory, the class P of problems with de-
terministic algorithm with polynomial runtime is defined for this purpose [143,
pp- 260—267].

Unfortunately, many real world problems are not element of this class. They
have a higher, for example, exponential runtime.
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Table 3.1: Runtime depending on input size n for several “algorithms” with different
number of computation steps (under assumption: 1,000,000 computation steps
per second).

runtime for following number of computation steps
input size n || log, n n nlog,n |n? 2"

10! 0.000003 s | 0.00001 s | 0.00003 s | 0.0001s | 0.001s

102 0.000007 s | 0.0001s | 0.0007s | 0.01s 410" years
103 0.000010's | 0.001 s 0.010s s astronomic
104 0.000013 s | 0.01's 0.13s 1.7 min | astronomic
10° 0.000017s | 0.1 s 1.66 s 28h astronomic
100 0.000020s | 1s 19.9 s 11.6 days | astronomic

For many of these problems, the class NP of problems with nondeterministic
algorithm with polynomial runtime is defined [143, pp. 268—274]. The theoretical
background for a nondeterministic algorithm is a nondeterministic Turing ma-
chine which is a Turing machine with a nondeterministic transition function. Such
a nondeterministic Turing machine can be emulated by a “normal” deterministic
one. Yet, it needs exponential instead of polynomial runtime.

An important subset of NP is the set of NP-complete problems. A problem is
NP-complete if it is in NP and every problem in NP is polynomial time reducible
to it. [143, pp. 275—287]

This class of problems contains many problems which are important in the real
world. A large collection of such NP-complete problems can be found in [50].

KOLMOGOROV COMPLEXITY Kolomogorov complexity is a concept from algo-
rithmic information theory. Informally, the Kolmogorov complexity of an object is
the length of the shortest description of this object using a universal description
language. An object whose shortest description is longer than that of another one
is seen as more “complex” according to this concept. [78, pp. 1-3].

More details and possible applications of Kolmogorov complexity can be found,
for example, in [78].

PRODUCT COMPLEXITY Product complexity is a more structural property of
companies’ products/services or product/service portfolios. It originates not only
in the structure of one single product/service, but also in the number of different
types (variants) of one product/service and their possible interdependencies.

In the automotive industry, for example, there is a huge number of possible
variants of one single car model caused by the combinatoric explosion between the
variants of car components as engine, color, seat covers, entertainment/navigation
system, etc.
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The communication industry—as a second example—has to deal with many
different tariffs—either due to different customer groups (e. g., private and busi-
ness customers) or due to old contracts, which continue to exist with a tariff
which is no longer offered to new customers.

Beside product complexity in the narrow sense as explained above, the concept
can also be transfered to similar problems as, for example, the number and types
of

¢ different processes being executed in a company*,
¢ supply chains for production and

¢ different running IT systems in a company.

Product complexity cannot be reduced without looking at the company’s busi-
ness environment as product complexity is linked with many different individual
customer needs and wishes in a globalized market with high competitive pressure.
Marti gives a good explanation of this dilemma [82, p. xxv]:

“In the field of complexity management, the two dimensions of exter-
nal and internal complexity receive special attention from theorists
and practitioners alike. The two complexity dimensions pose a ma-
jor challenge to enterprises because they require different and often
conflicting treatment. External complexity (customer requirements,
competitive forces, technological changes, etc.) pushes companies to
broaden their product portfolios and introduce product variety, which
in turn increases the enterprise-internal complexity (such as product
complexity, organizational complexity, production complexity, etc.).
Efforts to reduce internal complexity and slash the corresponding
complexity costs typically require compromising the customization of
products. This in turn complicates the task of differentiating oneself
from competitors.”

More details about the definition of the problem itself and possible approaches
to deal with it can be found, for example, in [79] (structural complexity manage-
ment, product complexity) and [13] (complexity management in supply chains).

NETWORKS

Introduction Networks consist of a set of nodes which are (partially) linked
with each other. They can be used to model connected objects in the real world.
Examples are social networks (people knowing and/or communicating with each
other), infrastructure networks (e. g., water, electricity and telecommunication
networks) and biological networks (e.g., biochemical, neural and ecological
networks).

4 This has to be distinguished from the process complexity of these processes.
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Besides modeling, important research questions in this area are network re-
silience (against random or intentional failures of parts of a network), epidemics
on networks (spread of diseases or computer viruses) and dynamical systems on
networks.

A good introduction into networks is the textbook by Newman [111].

Even though no real complexity measure is defined in this area, networks—and
especially their dynamics—are an important aspect of complexity in the real
world.

Network Models Over the years, several (theoretical) network models were
proposed and analyzed in order to get better insights into the creation process
and the properties of real world networks.

Random graphs (see [65] for details) are probably the oldest of these models.
There are two main “construction methods” for getting such a graph with n
nodes: (1) randomly choosing one of all graphs with n nodes and (2) starting with
n nodes and no edges and than adding each possible edge between the nodes
with a predefined probability. In recent years, it was discovered that random
graphs do not show and explain some important characteristics which one can
tind in real world networks. Thus, other network models were suggested.

The development of the next network model, small world networks, was triggered
by a meanwhile famous experiment conducted by Milgram [104, 154]. He asked
296 randomly chosen persons in the USA to send a letter to a target person in
Massachusetts who they did not know. Yet, they were not allowed to send it
directly to the target person but were told to send the letters only to a person
they personally knew and ask him/her to proceed accordingly with the final goal
to reach the target person. 64 letters (21.6%) finally reached the target person
with an average of 5.2 intermediaries.

The reason for this small world phenomenon is a special network structure
with many local clusters (almost everybody in a cluster knows each other as,
e.g., relatives, friends or colleagues) and some so-called weak links between
these clusters (one member of one cluster knows somebody of another one). This
structure is depicted in Figure 3.2a.

Random graphs do not show—and thus—explain these properties. In [172],
Watts and Strogatz propose an algorithm which produces networks with these
small world properties.

Yet, also small world networks do not perfectly represent the entire character-
istics of real work networks. Most node degree distributions of real networks
follow a so-called power law, i. e., these networks have many nodes with few con-
nected “neighbors” and only few nodes (so-called “hubs”) with a large number
of “neighbors”. One can take, for example, airports and the flight connections
between them as an example. There are many small airports which only offer
flights to a few larger airports. On the other hand, there is a relative small number
of large airports (hubs as, e. g., London Heathrow) which are connected by flights
to many other hubs worldwide. This situation is depicted in Figure 3.2b. The
resulting networks are called scale-free networks.
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Figure 3.2: [llustrations of properties of (a) small world and (b) scale-free networks.

In [7, 8], Barabasi et al. suggest and analyze an algorithm which is able to
produce such free-scale networks. The main principle of this algorithm is that a
new edge is inserted between a new node and and an already existing node by a
probability proportional to the current node degree of the existing node.

DYNAMICAL SYSTEMS A dynamical system is a system whose state changes
over time. The system’s state can be seen as a point in the so-called phase space—
the space of possible states of the system.

Deterministic Chaos An important and interesting property of some dynamical
systems is the so-called deterministic chaos. This effect was first observed by
Lorenz [80] when he conducted computer experiments in the area of weather
forecasting. The effect has become known as the “butterfly effect”. It means that
small changes of the initial conditions of a dynamical system (e. g., the flap of a
butterfly) may cause large differences in its long-term behavior.

The effect is further explained with another example: population dynamics [83]
[118, pp. 467-604].

Here, the Verhulst equation

Xne1 = a(l —xn)xn ,n € Ny, x9 €[0,1],a € [0,4] (3.1)

models the size of a population over time. This population size is a number
between 0 and 1. Parameter a is a growth factor.

For small values of parameter a (e.g., a = 2), the population size converges
to one value independently from the start value x, (see Figure 3.3a). For larger
values of a (e.g., a = 3.3), the long-term population size alternates between two
values (see Figure 3.3c). If one further increases a, instead of alternation between
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two values, an alternation between four, then eight, etc. different values occurs.
For a =4, finally, a non-periodic behavior of the population size can be observed.
Furthermore, the time series becomes totally different in the long term even for
very small differences of the start value x( (see Figure 3.3b and 3.3d).

This effect is the reason for the term “deterministic chaos”. Even though the
underlying equation of the iteration is known and all iteration steps can be
deterministically computed if one knows the start value, the long-term behavior
of the iteration is “chaotic” as one cannot determine the start value without any
small error in practice.

The long-term behavior of the Verhulst equation for the different values of a
can be visualized using the Feigenbaum diagram (see Figure 3.4). Here, only the
long-term values of the iteration are displayed depending on the value of a. One
can observe the behavior described above: First one fix point, then two, four,
eight, etc. alternating values and finally the chaotic behavior for large values of a.

Control Theory Control theory deals with the question whether it is possible
to bring a dynamical system into a certain state. If it is possible, the identification
of the necessary control inputs is the second issue. An overview of control theory
can be found in [14]. An analysis of the computational complexity of different
control problems is given in [145].

Consequences for economic processes Also economic processes can be seen—
and consequently analyzed—as dynamical systems. Examples are nonlinear
dynamics in production [124], the “bullwhip effect” in supply chains [76] and
the beer distribution game [147].

COMPLEX PROBLEM SOLVING This field of research examines the behavior
of humans while solving complex problems. Funke lists several properties of
complex problems [47, pp. 186-187]:

* intransparency: Only some variables are directly observable. The state of
the underlaying system has to be inferred only from this observations.

* multiple goals: Multiple—partially contradictory—goals exist.

* connectivity of variables: Changing one variable has a big influence on the
states of other variables.

* dynamic development: The state of the underlying system changes over
time—even without active interventions.

¢ time-delayed effects: The effects of interventions occur only with a time
delay.

Using different experimentation systems (see, for example, [47, pp. 188—204] for
an overview), several influencing factors (e. g., [45, pp. 20—21] [47, pp. 204—206]
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iteration iteration

(a) Time series for a = 2 and xg = 0.11 (b) Time series for a = 4 and xo = 0.11
(squares) or xo = 0.79 (triangles) respec- (squares) or xo = 0.11001 (triangles) respec-
tively. tively.
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(c) Time series for a = 3.3 and x9 = 0.11 (d) Absolute value of difference between iter-
(squares) or xo = 0.79 (triangles) respec- ation steps of the two start values x¢ of
tively. Subfigure (b).

Figure 3.3: Different time series of the Verhulst equation.

[48, pp. 250—251]) were examined in studies (see [48, pp. 251—260] for a review of
studies according to the examined factor).

There are two main types of conducted studies: studies using computer-
simulated mircoworlds [15] as well as studies using finite state automata or
linear equation systems [17, pp. 42—53]. For the first type, a system (e. g., a city)
is modeled in the computer. The test subject (e. g., acting as the city mayor) can
influence some variables of the simulated system (e. g., the tax rate) in order to
achieve a certain goal.
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Figure 3.4: Feigenbaum diagram of the Verhulst equation.

Dorner and Wearing propose a systematic approach for problem solving [40,
pp- 67—70]: First, a concrete and measurable goal has to be formulated. Then, a
mental representation of the system has to be gained. Based on a prediction of
the system’s future development, own actions have to be planned. After these
actions are conducted, their effects have to be assessed in relation to the planned
goal. Depending on the outcome of this assessment, some of the previous steps
have to be redone in a modified manner.

Some important empirical results for real behavior of humans are presented by
Dorner and Wearing in [40, pp. 72-83]. It can be noticed that humans in general
have big problems when solving complex problems and that they make some
typical mistakes.

Dorner gives a rather informal overview of this field of research in [39].

Is Measuring Complexity Meaningful?

The variety of different aspects of complexity shown above suggests that it is
at best possible to measure one of these complexity aspects and not complexity
in total. Subsequently, the question concerning the informative value of such a
metric arises. Which information does an absolute value of such a metric give us
without any further context information?

Ashby states regarding this question [4, p. 1]:

“The word ‘complex’, as it may be applied to systems, has many
possible meanings, and I must first make my use of it clear. There is
no obvious or pre-eminent meaning, for although all would agree that
the brain is complex and a bicycle simple, one has also to remember
that to a butcher the brain of a sheep is simple while a bicycle, if
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Figure 3.5: Complexity between problem/situation and agent [141, p. 30]. “Complexity
is in the eye of the beholder.”

studied exhaustively (as the only clue to a crime) may present a very
great quantity of significant detail.

Without further justification, I shall follow, in this paper, an interpre-
tation of ‘complexity” that I have used and found suitable for about
ten years. I shall measure the degree of ‘Complexity’ by the quantity of
information required to describe the vital system. To the neurophysiologist
the brain, as a feltwork of fibers and a soup of enzymes, is certainly
complex; and equally the transmission of a detailed description of it
would require much time. To a butcher the brain is simple, for he has
to distinguish it from only about thirty other ‘meats’, so not more than
log;30, i. e. about 5 bits, are involved. This method admittedly makes
a system’s complexity purely relative to a given observer; it rejects tha
[sic] attempt to measure an absolute, or intrinsic, complexity; but this
acceptance of complexity as something in the eye of the beholder is,
in my opinion, the only workable way of measuring complexity.”

Thus, he emphasizes that complexity “originates” through the connection
between a problem and its observer—instead of being an absolute or intrinsic
property.

Seese concretizes this statement in a more detailed model [141, pp. 11, 29-30]
(see Figure 3.5). Also here, complexity “originates” between a problem or a
situation on the one hand and an observer (e. g., a person, a group of persons, a
machine or a (software) agent) on the other hand.

The problem /situation has a set of—initially unknown—internal parameters
which can dynamically change over time. These parameters can be observable by
the observer or not as well as influenceable or not.
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The observer on the other hand has a set of resources (e. g., time, tools, skills,
knowledge, organization, experience) and of possible actions. The observer can
gather information about the problem/situation. This information can be correct
or incorrect, fuzzy or simply coming too late.

Based on the observer’s developing mental image of the situation, he/she can
try to reach his/her goal by conducting adequate actions.

According to this model, complexity is a somewhat “subjective” property of a
problem or situation—mainly influenced by the observer’s resources.

In his blog entry Complexity is in the Eye of the Beholder [173], Weber explicates
this thought that complexity depends on the observer’s resources:

“The question is, where is the boundary between complex and simple?
I think that this border only exists in the human mind. In fact the
border is movable and depends on the individual mind.

Nothing is complicated to Nature (the universe). Everything just is.
Confusion and complication only arise in the human mind while
trying to understand the universe.

Complexity is a function of our capacity to assimilate, store and
process data. If we were suddenly twice as smart, some complicated
problems would seemingly become simple problems. The problems
themselves did not change, only we changed.”

Consequences

Already some authors of process measurement literature stated that there are
different aspects of process model complexity. This statement was supported
by the presentation of different aspects of general complexity. These complexity
aspects can also be analyzed for process models:

¢ Computational complexity theory
time complexity of algorithms for process models (e. g., for execution, anal-
ysis, optimization)

* Product complexity

process portfolio of a company, interacting IT infrastructure

* Networks
process models seen as networks, communication network of persons in-
volved in a process

* Dynamical systems

changing state during process model execution

¢ Complex problem solving

problems concerning human interaction with process models
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This fact suggests that it is at best possible to measure one of these complexity
aspects and not process model complexity in total.

Furthermore, it was shown that complexity can be seen as something which
“originates” through the connection between the problem and its observer instead
of an intrinsic property of the problem itself. Because of this, it is even hardly
possible to find a complexity metric for a special complexity aspect. The reason
that this works so well in computational complexity theory is the fact that here,
the “observer” with its “resources” can be mathematically defined by using
Turing machines. For most of the other presented complexity aspects—especially
those with human interaction involved—, such a stringent formal definition is
impossible—resulting in a rather vague complexity concept.

3.3.2 Process Model Quality and Performance

Process Model Quality

According to Kan, quality can be defined as “conformance to requirements” or
“fitness to use” [69, pp. 2]. He mentions two views of quality: the costumer’s
view on quality and the company’s view on quality. For a costumer, quality is
the “perceived value of the product he or she purchased, based on a variety of
variables such as price, performance, reliability, and satisfaction” [69, pp. 3]. For a
company, quality means that the customer’s requirements on the product quality
are fulfilled and that its own production costs are lower than the price for selling
the product.
Adapted to process model quality, one can give the following definition.

Definition 3.4 (Process model quality) For a customer, process model quality means
that the process model’s outcome (a product, a piece of information or a decision) is correct,
arrives within adequate time and to an adequate price.

For a company, all these factors also belong to quality—but additionally, the price
for the process model execution must be lower than the price which the customer is
willing to pay and, furthermore, the process model should be easily adaptable to changed
circumstances.

Process Model Performance

Besides process model complexity and quality, process model performance is a
third concept which can be found in process measurement literature. In [63, 64],
Jansen-Vullers et al. suggest a performance measurement framework consisting
of the four dimensions time, cost, quality and flexibility. Quality is separated
into internal and external quality in their framework. As their quality concept
is practically equivalent to Kan’s quality concept, and Kan’s quality concept can
include time, cost and flexibility, it is proposed here to only use the term “process
model quality”—but therefore, in the extensive meaning by Kan described above.
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3.4 PROCESS MEASUREMENT APPROACH

In this section, the measurement approach used throughout this thesis is intro-
duced.

The foundation of this approach is the observation made in the previous section
that it is impossible to find a stringent definition of process model complexity.
The reason is that this term has so many different aspects as has been shown in
Subsection 3.3.1.

Instead, a prediction system measurement approach which avoids concrete
definitions of process model complexity and quality is used. It is adapted from
software measurement where a similar problem (definition of software complex-
ity) exists.

Before this measurement approach can be presented, measurement and pre-
diction systems have to be explained in Subsection 3.4.1. Afterwards, the actual
measurement approach is introduced (Subsection 3.4.2). Finally, the necessary
validation steps for such a prediction system are shown in Subsection 3.4.3.

3.4.1 Measurement and Prediction Systems

According to Fenton and Pfleeger, the usual meaning of measurement is “that we
wish to assess some entity that already exists. This measurement for assessment
is very helpful in understanding what exists now or what has happened in the

past.” [43, p. 42]
Based on this statement, they define measurement systems as followed [43,

p- 104]:

Definition 3.5 (Measurement system) A measurement system is used to assess an
existing entity by numerically characterizing one or more of its attributes.

“However, in many circumstances, we would like to predict an attribute of
some entity that does not yet exist.” [43, p. 42] For example, Balasubramanian
and Gupta mention that interesting process model performance measures “like
process cost, cycle time, process throughput and process reliability [...] can be
calculated only after process execution and are of limited use in predicting future
process performance>” [6, p. 680]. Consequently, they note the importance of
indicators for process model performance at the pre-implementation stage [6,
pp- 680-681]. Cardoso emphasizes the importance “to develop methods and
measurements to automatically identify complex processes® and complex areas
of processes”” [21, p. 202].

For that second purpose of measurement, Fenton and Pfleeger define prediction

systems [43, p. 104]:

5 “Process model performance” in the nomenclature of this thesis.
6 “Process models” in the nomenclature of this thesis.
7 “Process models” in the nomenclature of this thesis.
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Definition 3.6 (Prediction system) A prediction system is used to predict some at-
tribute of a future entity, involving a mathematical model with associated prediction
procedures.

Besides the use for future entities, as stated in the definition of Fenton and
Pfleeger, prediction systems can also be used to predict some attribute of an
existing entity which is measurable only in a very laborious manner.

3.4.2 Process Measurement Approach—An Adaptation from Software Measurement

As seen in Section 3.3, it is a major problem of the existing process measurement
literature to propose numerous metrics and measures for which it is claimed that
they measure process model complexity, quality and performance without giving
a proper definition of these terms . Thus, it is hardly possible to use such metrics
and measures in practice if one even cannot tell exactly what one is measuring
and which consequences theses values have.

In this subsection, the process measurement approach used throughout this
thesis is introduced. It tries to avoid the problems of the existing process mea-
surement literature by providing a theoretical framework in which the existing
works can be integrated.

All presented suggestions for a definition of process model complexity (Sub-
section 3.3.1) show that complexity is no such property like length or mass which
can be measured directly using meters or kilograms respectively. So, a more
“philosophical” discussion (cf. Cardoso’s definition in Subsection 3.3.1) starts
which does not solve the underlying problem.

All authors who propose a metric claiming it would measure process model
complexity—yet, owing a proper definition of the term—apply what Weinberg
and Weinberg call the “Humpty Dumpty Method” [174, p. 313]. The name is
based on the quote

“When I use a word,” Humpty Dumpty said in rather a scornful tone,
“it means just what I choose it to mean—neither more nor less.”

“The question is,” said Alice, “whether you can make words mean
different things.”

“The question is,” said Humpty Dumpty, “which is to be master—that’s
all.”

from Lewis Carroll’s novel Through the Looking-glass and What Alice Found There
[25, p. 114]. According to Weinberg and Weinberg, these authors simply define
“complexity in such a way that it does exactly what you want it to do” [174,
p- 313].

Therefore, an alternative measurement approach is suggested here. It is in-
spired from software measurement where a similar dilemma concerning the
definition of the term “software complexity” exists. There, a prediction system
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Figure 3.6: Prediction system measurement approach for process measurement.

measurement approach helped to overcome this problem (see, e.g., [43, pp. 74—
75]). The measurement approach can be adapted to process measurement as
described in the remainder of this subsection.

What is more important than process model complexity itself—especially for
economic reasons—are the implications of this complexity like costs, time, duration,
number of errors, changeability, flexibility, understandability, etc. (aspects of
process model quality according to Subsection 3.3.2). All these quantities have the
advantage to be quantifiable and measurable.® The disadvantage is that they can
only be measured after the process model has been implemented and executed.

To overcome this problem, the adaptation of the prediction system measure-
ment approach from software measurement comes into play. It is sketchily de-
picted in Figure 3.6.

A process model has internal and external attributes.

Internal attributes can be measured purely in terms of the process model, sepa-
rately from its behavior [43, p. 74]. These attributes (e. g., structural properties like
the number of activities/tasks) could contribute to the process model complex-
ity. Numerous internal attributes are imaginable and appropriate metrics have
already been proposed (especially for structural properties) or can be defined.
Using these metrics, one gets corresponding metric values of the process model.

External attributes can be measured only with respect to how the process
model relates to its environment [43, p. 74]. The external attributes like costs,
time, number of errors, etc. are possibly affected by the process model complexity
and are measurable. External attributes are aspects of process model quality (and
performance respectively).

The last step of the proposed approach is also the most important one: One
has to show a dependency between the metric values and the measure values
of the external attribute. If such a dependency exists, the metric can be used as
a predictor for the external attribute at a much earlier time. Thus, a prediction
system is formed.

For, e.g., costs, time, duration, number of errors, this is trivial to see. But also attributes like
changeability, flexibility and understandability are measurable if one looks at the costs, time,
number of errors, etc. it takes to change or understand a process model. Fenton and Pfleeger give
some ideas for measuring maintainability in [43, pp. 354-355].
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Because of the proposed measurement approach, the term “process model
metric” is recommended for the metrics measuring internal attributes instead
of “complexity metric” or “complexity measure” as complexity itself is not
measured. For the measures measuring external attributes, the term “process
model quality measure” is recommended. Also consider the discussion about the
terms “measure” and “metric” at the end of Section A.1 in this context.

As told above, the existing metrics and measures can be integrated into the
suggested measurement approach: Most metrics from Section 3.2—including
those which are told to measure process model complexity—measure structural
(i.e., internal) attributes. Thus, they are process model metrics in the nomen-
clature of this thesis. Measures which were developed for measuring process
performance in other sciences years ago are process model quality measures in
the nomenclature of this thesis.?

At this point, it is appropriate to take a look back to the ideas of Edmonds
and Latva-Koivisto (see Subsection 3.3.1). As they suggest, there is not one
single complexity metric which can measure every aspect of the process model
complexity in the proposed approach. Instead, several different pairs of metrics for
internal and measures for external attributes can exist forming a prediction system
and so representing one of the existing links between reasons and implications of
process model complexity.

In this context, Cardoso is believed here to be subject to a misconception
when he puts complexity at the same “level” as attributes such as time, cost and
reliability (see end of paragraph Complexity of Process Models in Subsection 3.3.1).
Instead, complexity can be the reason for these attributes.

3.4.3 Validation

Before the presented measurement approach can be applied in practice, the
corresponding two measurement systems and the prediction system have to be
validated. The respective steps are explained in this subsection.

Validation of Measurement Systems

The statements in this subsection apply both to process model metrics and process
model quality measures, unless otherwise stated.

OBJECTIVE/SUBJECTIVE MEASURES For the process model quality measures
measuring external process model attributes, there are two kinds of measures:
objective and subjective measures. Objective measures are performance-based
and measure, e.g., time, costs and number of errors. Subjective measures are
perception-based and measure, e. g., how difficult a subject rates a process model.
See Section A.3 for more details about the measurement of such non-physical
properties.

9 Note that some metrics from Section 3.2 which are called “process quality metric” by their authors
(e.g., in [23]) are process model metrics in the nomenclature of this thesis.
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REQUIREMENTS OF METRICS/MEASURES The following requirements reli-
ability and validity are relevant for the measurement of all (non-physical) prop-
erties and are not process measurement specific. For more details see Subsec-
tion A.3.2.

e reliability / consistency: Metric/measure values obtained by different ob-
servers of the same process model have to be consistent [74, p. 3] [21,
p. 202]. For mathematically defined process model metrics, this is automati-
cally fulfilled. But for process model quality measures measuring external
process model attributes like understandability, the exact measurement
conditions are important to fulfill this requirement. Kan gives a good ex-
ample [69, pp. 70-71]: If one wants to measure the height of a person, the
measurements should be taken at a special time of day (e.g., always in
the morning) and always barefooted. Otherwise, the measure values of the
same person could vary a lot.

* validity: According to Kan [69, pp. 71—72], validity can be classified into
construct validity and content validity. The first checks whether the met-
ric/measure really represents the theoretical concept to be measured (e. g.,
is church attendance a good measure for religiousness?). The second checks
whether the metric/measure covers the range of meanings included in the
concept (e.g., a test of mathematical ability for elementary pupils cannot
be limited to addition but should also include subtraction, multiplication,
division and so forth).

* computability /ease of implementation /automation: A computer program can
calculate the value of the process model metric in finite time—and preferably
quickly. The difficulty of the implementation of the method which computes
the process model metric is within reasonable limits. [74, p. 4] [21, p. 202]

This requirement, which was found in the process measurement litera-
ture, only applies to process model metrics (measuring internal process
model attributes) which are mathematically defined and can be computed
automatically.

These requirements are important as “good predictive theories follow only
when we have rigorous measures of specific, well-understood attributes” [43,
p- 108].

Validation of Prediction Systems

According to the adapted measuring approach (see Subsection 3.4.2), a proposed
process model metric has to be validated against a concrete external attribute
(process model quality measure). The goal of such a validation is to show a
dependency between the process model metric values and the corresponding
external attribute in question. As Fenton and Pfleeger state, “[r]ather than being
a mathematical proof, validation involves confirming or refuting a hypothesis”

[43, p- 104].
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The validation can be done either by using existing data (e. g., from log files) or
by conducting experiments (to get new data). Fenton and Pfleeger emphasize the
advantages of experiments as the level of control and the level of replication are
much higher [43, p. 120]. Basics about empirical investigations (e. g., experimental
design among other things) can be found in [43, pp. 117-152] and Section B.3.

As there can be different kinds of dependencies (e.g., positive linear, nega-
tive linear and many forms of non-linearity) [69, pp. 77-80] (see Figure 3.7 for
examples), scatter plots are a good method to visually search for any form of
dependency (also non-linear). The next step is to use a measure of correlation like
Spearman’s rank correlation coefficient (see Section C.2) or Pearson’s product-
moment correlation coefficient (see Section C.1). If a dependency is found, one
can also try to find an equation which mathematically describes the dependency
(e.g., using linear regression, multivariate regression, non-linear regression). [43,
pp- 199—200]

In the field of software measurement, IEEE Standard 1061 (IEEE Standard for a
Software Quality Metrics Methodology) gives a method for validating prediction
systems [60, pp. 10-13] which checks among correlation also additional properties
as tracking, consistency, predictability, discriminative power and reliability™°.

MEASUREMENT DIMENSIONS Prediction systems are only valid for very spe-
cial conditions. According to Fenton and Pfleeger, “validation must take into
account the measurement’s purpose; a measure may be valid for some uses but
not for others” [43, p. 107].

Consequently, the conditions during validation and the later use of the predic-
tion system must be consistent. The following four “measurement dimensions”
are generally important conditions. For special cases, additional conditions may
exist.

* Process model metric (internal process model attribute)
The process model metric defines the “measurement rule” for quantifying
the chosen internal process model attribute.

* Process model quality measure (external process model attribute)
The external process model attribute (probably affected by process model
complexity) whose value correlates with the process model metric value.

¢ Subjects
Which persons are involved in the measurement? Possible persons are, e. g.,
process designers, process analysts, programmers and end-users (i. e., the
employees working in the process). As these persons have different skills
and different views of the process, the values of the same external process
model attribute (e.g., time, costs and number of errors) can differ a lot
depending on the involved persons (subjects).

10 In [60], “reliability” has another meaning than the homonymous requirement for valid measure-

ment systems presented earlier in this subsection.
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Figure 3.7: Four possible types of dependencies between two variables [69, p. 79].

* Process phase
As in software engineering, a process life cycle consists of several process
phases: modeling, analysis, implementation, deployment, execution, main-
tenance and modification of the process model (cf. the BPM lifecycle in
Subsection 2.1.2).

In contrast to software engineering, process model execution is an addi-
tional phase in which problems can occur. After a software program is
implemented, no new errors are introduced by executing the program. But
as process models are executed (at least partially) by humans, additional
errors can occur while executing a process model.
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INTERPRETATION OF PROCESS MODEL METRIC VALUES After having vali-
dated a prediction system, one has to identify the range or threshold between
“good” and “problematic” metric values of the process model metric contained
in the prediction system. Only with this knowledge, one can detect problematic
process models and take countermeasures.

3.5 APPLICATION OF PROCESS MEASUREMENT

Having established valid measurement and prediction systems for process models,
the question arises what to do with these metrics.

In this section, several possible applications of process measurement are pre-
sented. It can be used both for process models that are newly implemented and
for finding and dealing with “those existing processes'" that are good candidates
for improvement and simplification, or even complete reengineering” [74, p. 3].

3.5.1 Selection of Metrics and Measures

As there exist numerous metrics for process models, first, one has to select proper
metrics for the considered “problem”. Using all available or accidentally selected
metrics would just generate numerous numerical values without any purpose for
the considered “problem”.

Basili et al. propose an approach for the selection of metrics for software
measurement—the Goal Question Metric (GQM) approach [9]. This approach is also
applicable for process measurement and can be used both for selecting process
model metrics and process model quality measures.

The approach has three levels: conceptual level (goal), operational level (ques-
tion) and quantitative level (metric). At the first level, a precise goal is defined. A
set of questions for assessing and achieving the goal is established at the second
level. At the third level, a set of metrics is assigned to each question in order to
quantitatively answer the questions. The resulting GOM model has a hierarchical
structure with possibly several goals, multiple questions per goal and several
metrics per question. A metric can be assigned to multiple questions. Figure 3.8
shows an example for such a hierarchical GOQM model structure.

Using this top-down approach, only useful metrics, measures and possibly
prediction systems for the current “problem” are selected and no unnecessary
metric/measure values are collected.

3.5.2 Different Measurement Purposes

For the field of software measurement, Fenton and Pfleeger mention three differ-
ent measurement purposes [43, pp. 13—14] which can also be adopted to process
measurement.

11 “Process models” in the nomenclature of this thesis.
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goal 1 goal 2
question 1 question 2 question 3 question 4 question 5
metric 1 metric 2 metric 3 metric 4 metric 5 metric 6

Figure 3.8: Hierarchical GQM model structure [9, p. 529].

Understand

For this first purpose, a process model is only measured using different selected
metrics and/or measures to get a better understanding about what happens
within this process model. Afterwards, no changes or concrete actions are con-
ducted. Through this, the process model can be compared while being modified
over time (modifications not caused by process measurement!) or it can be com-
pared with other process models within the same company.

For this purpose, only valid measurement systems are necessary.

Control

Here, a process model is also measured, but not with the general goal to change
it. Instead, the findings of the measurement are used to manage and control the
assignment of employees in testing and finding errors. Consequently, the limited
manpower can be deployed more intensively in “problematic” process models
or process model parts. Possible actions can comprise, for example, test cases or
inspections as in software engineering. A process model is only changed in order
to fix a found error.
For this purpose, valid prediction systems are necessary.

Improve

For the third purpose, a process model is measured. If a bad quality is measured
(for existing process models) or predicted (for new process models), the process
model will be changed in order to improve it. So, the goal is to reduce unnecessary
complexity within the process model. As complexity itself is not measured in
the process measurement approach used in this thesis (see Subsection 3.4.2),
reducing complexity means changing the process model’s internal attribute(s) in
such a way that the external attribute(s)—the process model quality—increases
according to the prediction system.

One has to consider that the complexity of a process model cannot be reduced
arbitrarily [19, p. 117]. Here, one must distinguish between the intrinsic complexity
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36 ASSESSMENT OF EXISTING WORK

of a process' and the complexity of a process model. The chosen process model is
not independent of the overall problem. So, it has a “natural” minimal complexity.
This fact was already referred to by Fenton and Pfleeger for software measurement
[43, p. 267].

One can compare this with an example of an analogous problem—runtime
complexity of algorithms: The general problem of sorting has a (mathematically
proven) minimal complexity of Q(nlogn) [32, pp. 165-167]. The Heapsort sorting
algorithm, for example, has complexity O(nlogn) [32, pp. 127-137]. But never-
theless, more inefficient sorting algorithms exist (e. g., Insertion Sort with O(n?),
see’3).

But even if a reduction of complexity is possible and would probably cause
higher quality, one should first compare the costs for the process model change
with the expected increase of incomes with this process in order to decide whether
to actually implement the changes.

As the quality for the changed process model is predicted within this purpose,
valid prediction systems are necessary.

36 ASSESSMENT OF EXISTING WORK

In this section, the existing process measurement work is assessed according to
the theoretical framework introduced in this chapter.

Most of the proposed process model metrics (measuring internal attributes)
are adapted from software metrics. As they all have a mathematical definition,
they fulfill the reliability /consistency and computability requirements of Subsec-
tion 3.4.3. So, they form valid measurement systems.

Only four works dealing with validating prediction systems could be found in
the literature:

¢ Cardoso: Validation of control-flow complexity metric (CFC) [22]

Cardoso conducted a laboratory experiment and computed Spearman’s
rank correlation coefficient between the CFC values of process models and
the subjective complexity values stated by the experiment’s subjects. He
could show a statistically significant correlation. But it is not clear how this
subjective complexity is connected to any external process model attribute
(process model quality). So, it is no practically relevant prediction system.

* Mendling et al.: Using process model metrics for predicting faulty EPCs
[96—100]

604 EPC process models of the SAP Reference Model were analyzed using
the verification tool Wof YAWL. Through this, 34 faulty process models were

The use of the term “intrinsic complexity” may be confusing here as in Subsection 3.3.1, it
was stated that complexity is no intrinsic property of a problem—yet, it “originates” between
the problem and its observer. Here, “intrinsic complexity” is meant as the “natural” minimal
complexity in this “subjective” meaning.

According to [32, pp. 23-27], Insertion Sort has worst-case running time of 8(n?). Using Theo-
rem 3.1 in [32, p. 46], running time O(n?) follows.
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identified. Multivariate logistic regression was used to predict faulty process
models. As all metrics fulfill the requirements and the correlation could
statistically be shown, it is a valid prediction system.

Cardoso, Mendling, Reijers, Strembeck, van der Aalst, Vanderfeesten:
Influencing factors on process model understandability [101, 102, 167]

In [101], Mendling et al. conducted a laboratory experiment and assessed
Pearson’s product-moment correlation coefficients between several process
model metrics and a measure called SCORE intended to measure under-
standability (process model quality) as well as a linear regression between
the process model metrics and SCORE. The SCORE measure is computed
as the sum of correct answers to just eight closed and one open question on
a process model.

Vanderfeesten et al. introduced the cross-connectivity metric (CC) [167]. It
was added to the process model metrics and into the data collected in [101].
No significant correlation between CC and SCORE could be found. But CC
is part of a better linear regression model between process model metrics
and SCORE.

In [102], Mendling and Strembeck did another experiment examining influ-
encing factors on process model understandability. Besides dependencies
between personal and structural (process model metrics) factors, also con-
tent related factors (task labels) were analyzed. Here, understandability is
measured with six yes/no questions on the process models. Again, a linear
regression model was found.

Because of its simple definition, the content validity and reliability of the
SCORE measure are questionable. It is not clear whether all aspects of
process model understandability are covered. The small number of asked
questions and the non-systematic selection of these questions could cause
that only especially easy or difficult process model parts are examined by
the questions. Consequently, SCORE is no valid measurement system. But
this makes the whole prediction system for process model understandability
invalid.

These points of criticism together with an experimental evaluation of the
hypotheses are explained in detail in Chapter 6.

Reijers, van der Aalst, Vanderfeesten: Process model granularity heuris-
tic [129, 168]

Vanderfeesten et al. introduce a heuristic for the proper size of individual ac-
tivities in process models (process model granularity) inspired by software
engineering. Activities can consist of (several) basic operations. The oper-
ations of one activity should “belong” together (highly cohesive)—while
different activities should be independent from each other (loosely coupled).
For that purpose, they introduce a process model cohesion and a process
model coupling metric as well as a coupling/cohesion ratio (process model
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granularity metric). Based on this metric, Vanderfeesten et al. have sug-
gested a heuristic for selecting between different process model alternatives.
It prefers models with high cohesion and low coupling. They have also
postulated the hypotheses that those process models are less error-prone
during process instance execution and better maintainable because they are
easier to understand.

They only give a motivation why this heuristic could be correct and present
an example project where this heuristic was applied in practice. Yet, as a
formal verification is missing, it is still no valid prediction system.

An experiment for evaluating the validity of the proposed heuristic is
presented in Chapter 7.

Thus, the assessment had the same result as Sdnchez Gonzalez et al. already
noticed [136, p. 124]: In the published literature, one can find a strong tendency to
create and propose new metrics and measures without any validation. In future
research, more attention should be paid on the empirical validation of existing
proposals instead of defining new ones.

3.7 CONCLUSION

In this chapter, the state of the art in process measurement was presented and
the theoretical framework for process measurement used in this thesis was
introduced.

For this purpose, an overview of publications on process measurement was
given. Many proposed process model metrics are adapted from software metrics
and are claimed to measure process model complexity, quality and/or perfor-
mance. It could be observed that there are no concrete definitions of process
model complexity and process model quality in the literature. Often, both terms
are even used as synonymes.

Thus, a discussion of these terms followed. It could be shown that there does
not exist a single formal definition of complexity. Instead, numerous aspects of
complexity were identified and are analyzed in different research communities.
Consequently, it is problematic to say that a process model metric measures the
complexity of a process model.

The main contribution of this chapter is a theoretical framework for process
measurement in which the existing work can be integrated and which can help
to identify open research questions leading to new research directions in process
measurement.

For this, the more well-established concepts from software measurement were
adopted for process measurement: The result was a prediction system mea-
surement approach, which is based on measurement and prediction systems.
The measurement approach consists of process model metrics measuring (struc-
tural) internal attributes and process model quality measures measuring external
process model attributes. Through this, a concrete definition of process model
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complexity can be avoided. Nevertheless, process model complexity, quality and
performance fit into this measurement approach.

Furthermore, the necessity for a proper validation of measurement and pre-
diction systems was emphasized. Reliability and validity were identified as
important requirements for metrics and measures. Yet, both constructs have not
received the necessary attention in process measurement literature so far.

The Goal Question Metric approach for the selection of process model metrics
and process model quality measures was recommended and different purposes
of process measurement (understand, control and improve) were presented.

A concluding assessment of the existing process measurement work showed
that there is still a lack of deeper comprehension of the behavior of the proposed
process model metrics as well as a missing proper validation of prediction
systems using the numerous proposed metrics. Also the creation of process
model quality measures for measuring external process model attributes which
tulfill the reliability and validity requirements is important.

Some of these points are addressed in the remainder of this thesis: In Chapter 4,
some important properties concerning the behavior of proposed process model
metrics are analyzed. A visualization technique for and a clustering approach
based on the process model metric values of process model collections are
suggested in Chapter 5. In Chapter 6, hypotheses concerning problems with
existing measures for measuring structural process model understandability (an
example of a measuring system) are presented, better measures are proposed
and both is empirically examined by conducting an experiment. Finally, the
recommended process model granularity heuristic by Vanderfeesten et al.—as
an example of an unvalidated prediction system—is empirically analyzed by an
experiment in Chapter 7.
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4.1 INTRODUCTION

Chapter 3 showed that numerous process model metrics have been proposed in
literature in the previous years. Nevertheless, it had to be noticed that only a
small minority of them are part of a validated prediction system.

A proper validation would require controlled experiments (see Appendix B),
which are very time and cost intensive. This fact—together with the possibility
of a negative outcome of the experimental validation—could explain the small
number of existing validated prediction systems.

In this chapter, an approach is proposed which shall help to ease this problem
by reducing the experimental effort for

¢ unsuccessful validations or
e validations of useless prediction systems.

The validation attempt for a prediction system is considered unsuccessful if
the assumed dependency between the prediction system’s process model metric
and the process model quality measure cannot be shown.

A prediction system A is considered useless if there already exists another
validated prediction system B which predicts the same process model quality
measure at least as good as A based on a process model metric which is highly
correlated with the process model metric belonging to A. Thus, this prediction
system would have no additional value compared to the already existing one.

In order to reach the goal, the approach adds an additional analysis step before
the prediction system which shall be validated is selected (see Figure 4.1 for a
visual location within the measurement approach of Subsection 3.4.2). In this
preceding step, the behavior as well as important properties of process model
metrics which are part of the potential prediction systems which shall be validated
are first analyzed. Through this, unfavorable properties of process model metrics
(e.g., insufficient dispersion of metric values or strong correlation with other
process model metrics) can be identified before the high effort for an experimental
validation of the corresponding prediction system occurs.

The remainder of this chapter is organized as follows: In Section 4.2, the ap-
proach for analyzing process model metric properties is introduced. The examined
properties are divided into general properties which only depend on a process
model metric’s definition (Subsection 4.2.1) and those properties which are spe-
cific for a selected and examined process model collection (Subsection 4.2.2).
Afterwards, the presented approach is applied to a set of process model met-
rics and a collection of process models (Section 4.3). The chapter closes with a
conclusion (Section 4.4).
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Figure 4.1: Analysis step visually located within the measurement approach of Subsec-
tion 3.4.2.
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4.2 APPROACH FOR THE ANALYSIS OF PROCESS MODEL METRIC PROPER-
TIES

In this section, the general approach for analyzing process model metric proper-
ties is introduced independently from specific process model metrics and process
model collections.

In doing so, one has to distinguish between general and process model collec-
tion specific properties. General properties (Subsection 4.2.1) hold independently
from the considered process models just because of the metric’s definition. Process
model collection specific properties (Subsection 4.2.2) are true for the examined pro-
cess models—but not implicitly generalizable to other process model collections.

4.2.1  General Properties

The approach comprises the analysis of the following general properties.

Theoretical Value Ranges

In the first step, the theoretical value ranges of the process model metrics are
examined. It is also checked to which set of numbers (natural numbers IN*,
rational numbers Q or real numbers R) the metric values belong.

If a process model metric has only values in the set of natural numbers and
a very small value range, this is equivalent to different categories. In this case,
one could check whether these few categories are really useful for characterizing
different process models.

Scale Types

Next, the scale type (see Section A.2) of each process model metric is identified.

1 In this thesis, N is defined as N :={0,1,2,3,...}.
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This information is important as some statistical operations are only meaningful
for specific scale types. An overview of different scale types and their meaningful
statistical operations can be found in Table A.22.

Behavior for Specific Process Models

The next property which is examined is the behavior of the process model metrics
depending on process model structure.

As one cannot test the metrics for every possible process model, one uses at
least some generic standard process models which often appear in real life or
form an important subprocess of real process models. Amongst these standard
process models are sequential and parallel process models.

Depending on the analyzed process model metric, other forms of behavioral
examinations are also imaginable.

Correlations Based on Process Model Metric Definitions

As the last general property, it is examined whether general correlations between
some of the process model metrics exist just because of their definitions and
independent of specific process models.

4.2.2  Process Model Collection Specific Properties

The following process model collection specific properties are examined by the
approach.

Descriptive Statistics

In this step, the value distributions of the different process model metrics are to
be analyzed.

In order to get a compact quantitative overview, the following descriptive
statistics are computed for each process model metric:

¢ minimum, 25% quantile [117, pp. 25-26], median [117, pp. 19—21], 75%
quantile [117, pp. 25—26] and maximum (for metrics on ordinal scale) as
well as mean [117, pp. 16—17] (for metrics on interval scale) as measures of
location,

¢ range (R) [117, p. 22], interquartile range (IQR)3 [156, p. 55], median absolute
deviation (MAD)# (for metrics on ordinal scale), standard deviation (sd)
[117, p. 22, 35—36] (for metrics on interval scale) as well as coefficient of
variation (CV) [117, pp. 33—34] (for metrics on ratio scale) as measures of
dispersion.

In Table A.2, only those statistical operations which are used in the approach for analyzing
process model metric properties are listed.

difference between 75% and 25% quantiles

median of the set of absolute values of the differences between the values and the median of
these values
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As can be seen in the brackets, some statistics require that the metric has a
special scale type. Otherwise, the resulting number would be meaningless. See
Section A.2 for details.

If one is interested in more than just some compact quantitative numbers,
the value distributions of the process model metrics can be visualized using
histograms. Through this, one gets more detailed information.

Correlations

In the next step, possible correlations (see Appendix C) between process model
metrics are examined.

For that purpose, Spearman’s rank correlation coefficient (Section C.2) can be
computed. It is a measure of correlation between two variables assessing how well
an arbitrary monotonic function could describe the relationship. The two variables
must be measured at least on an ordinal scale. Their random distribution is
unimportant.

The second statistic, empirical Pearson’s product-moment correlation coefficient
(see Section C.1), measures the linear relationship between two variables. These
variables must be measured at least on an interval scale and must be nearly
normally distributed.

In order to identify also non-linear dependencies between process model
metrics, the scatter plot matrix can be analyzed. Yet, the resulting n x n matrix for
a larger number n of analyzed process model metrics soon becomes unhandily
large.

Principal Component Analysis

The last analysis step is the conduction of a PCA.

According to Jolliffe, “[t]he central idea of principal component analysis is
to reduce the dimensionality of a data set in which there are a large number
of interrelated variables, while retaining as much as possible of the variation
present in the data set. This reduction is achieved by transforming to a new set
of variables, the principal components, which are uncorrelated, and which are
ordered so that the first few retain most of the variation present in all of the
original variables.” [66, p. ix]

So, a PCA searches for a linear transformation (change of basis) so that the new
basis vectors—the principal components—are ordered decreasingly according to
their proportion of total variance. If the first few components comprise a high
proportion of total variance, one can omit the remaining components (dimension
reduction) without loosing much of the original information of the data set. The
resulting dimensionally reduced data is normally easier to analyze and visualize.

For more technical details, the reader is referred to the textbook by Jolliffe [66].

In the context of this approach, a PCA can be helpful in order to identify the
possible redundancy between the different process model metrics.
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4.3 EXPERIMENTAL APPLICATION

In this section, the abstract approach presented in the previous Section 4.2 is
applied to a set of selected process model metrics and a process model collection.

4.3.1  Selected Process Model Metrics and Process Model Collection

In a first step, a set of process model metrics and a process model collection have
to be selected.

As every process model metric is only applicable to some specific process
modeling languages (see Section 2.3), the following two requirements have to be
fulfilled by this selection:

1. In order to compare the properties of the selected process model metrics,
they all have to be applicable to the same process modeling language(s).

2. To be able to analyze the selected process model metrics according to
the process models of the selected process model collection, these process
models have to be modeled using a process modeling language to which
the selected process model metrics are applicable.

So, one has to choose a process modeling language for which both numerous
process model metrics and a large process model collection exist. EPCs (see
Subsection 2.3.1) are such a language.

Selected Process Model Metrics

The choice of EPCs as process modeling language has the big advantage that
there are many process model metrics which have either been proposed directly
for EPCs or which can easily be adjusted to be applicable to EPCs.

So, 33 EPC process model metrics could be selected for the subsequent analysis.
They are listed in Table 4.1.

For each metric, a reference> and a short definition are given. For some metrics,
it is only referred to the original reference as the definition is too long for the
table.

For the metric definitions, the terminology and symbols of Definition 2.10 are
used. Furthermore, S denotes the set of split connectors and ] the set of join
connectors (C = SUF). Adding one of the labels AND, XOR or OR as an index,
both symbols can be used to denote a special subset (e. g., SAnD stands for the set
of all AND split connectors). In addition, each connector ¢ € C has an in-degree
din(c) = {(ny,n2) € Alny = ¢}, an out-degree dout(c) = [{(ny,n2) € Alng = ¢}
and a degree d(c) = din(c) + dout(c).

5 The references in [99] can be found on the pages 117-130.
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Table 4.1: Selected process model metrics for EPCs (Part 1 of 2).

‘ symbol ‘ reference ‘ definition

name

number start events Skes [96, 99]

number internal events SEine [96, 99]

number end events S [96, 99]

number events Se [99] Se(G) :=|E| = Sgs (G) + S, (G) + Sg, (G)

number functions Sr [96, 99] SF(G) :=F|

number AND splits Ssanp | [96,99]

number AND joins Sianp | [96,99]

number XOR splits Ssxor | [96,99]

number XOR joins Sixor [96, 99]

number OR splits Ssox [96, 99]

number OR joins Sior [96, 99]

number connectors Sc [99] Sc(G) :=|C| = Ss,np (G) +Syanp (G) +Ssy o (G) +
Sixor (G)+ Ssor (G) + Syor (G)

number nodes SN [99, 100] SN(G) :=|IN|=Se(G)+S(G)+Sc(G)

number arcs SA [96, 99] SA(G) :=|A]|

diameter diam | [99] length of the longest path (= number of arcs on this path) from
a start event to an end event

density (1) A [99] A(G) = \N\-(‘\%: number of arcs divided by the maximum
number of arcs for the same number of nodes

density (2) D [o7] D is a second and more complicated density metric with respect
to the EPC syntax constraints. See [97, pp. 3—4].

coefficient of connectivity CNC [74, 99] CNC(G) := %

coefficient of network | CNCg | [74] CNCk(G) := %

complexity

cyclomatic number CN [74] CN := |A| — [N]| + 1: number of linearly independent cycles
(arc directions are ignored)

Selected Process Model Collection

The SAP Reference Model [33, 71], which was part of SAP R/3 until version 4.6,
was selected as process model collection. This collection of EPC process models
has already been used for several experiments found in the literature [96—99].
The collection’s process models were validated according to the requirements
of Definition 2.10. Out of the 604 non-trivial EPCs of the SAP Reference Model,
89 had to be removed because of invalidity6.
Finally, 515 EPC process models remained for the experimental application of

the approach.

4.3.2 Results Concerning General Properties

In this subsection, the results concerning the general properties are presented.

6 no start event, no end event, a function with not exactly one predecessor and one successor node,
an event with more than one predecessor or successor node or several graph components
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Table 4.1: Selected process model metrics for EPCs (Part 2 of 2).

name ‘ symbol ‘ reference ‘ definition

avg. connector degree dc [99] dc(G) := ‘%‘ Y cec d(c) (see @)

max. connector degree HE [99] HE(G) :=max{d(c)|c € C} (see ¢)

separability T [99, 100] M(G) := HnENIHi‘S{\”CB;—VQrteXH : A cut-vertex is a node whose
deletion separates the process model into multiple compo-
nents.

sequentiality = [99, 100] Z(G) = w: number of arcs between non-
connector nodes divided by the number of arcs

depth A [99] Depth relates to the maximum nesting of structured blocks in
a process model. See [99, pp. 124-125].

mismatch MM [99] MM(G) :=

2_1€{AND,XOR,0R} (’Zcesl dout(c) — 2 cey, din(c)‘) (see
b): sum of mismatches for each connector type

heterogeneity CH [99] CH(G) == — X 1c;anD,x0R,0r) P (1) -log3 P(1) (see ): en-
tropy over the different connector types

cyclicity CYC [99, 100] CYCN(G) = “‘\‘Nﬁl : number of nodes N¢ on a cycle (arc
directions are not ignored) divided by the number of nodes

token splits TS [99] TS(G) := ZcéSANDUSoR (dout(c) — 1): number of newly
introduced tokens by split connectors

control flow complexity CFC [21,96,99] | CFC(G) = 2cesanp | T 2cesxor doutlc) +

2 ceSor (Zdoulm —1): sum over all split connectors
weighted by their number of possible states after the split

join complexity JjC [96] JC(G) = 2ceiann | T Zecexog dinle) +
2 ccior <2din () 1 ): sum over all join connectors weighted
by their number of possible states before the join

weighted coupling CP [166] CP measures the average coupling between all pairs of con-
nected events and functions—weighted according to the type
of connection. See [166, p. 42].

cross-connectivity CcC [167] CC measures the average strength of connection between all
pairs of nodes. See [167, pp. 483—484].

a Metric value is 0 for |[C| = 0 (source: personal communication with Jan Mendling).
b The original definition printed in [99, p. 125] is faulty (source: personal communication with Jan
Mendling).

Theoretical Value Ranges

The theoretical value ranges of the selected process model metrics and the set of
numbers to which their values belong are listed in the second column of Table 4.2.

Proof. The theoretical value ranges and the sets of numbers have to be proved.
As the determination of the set of numbers to which the process model metrics’
values belong is trivial when one looks at their mathematical definitions, no
detailed proof for this aspect is given here. Proofs are only presented for the value
ranges. In doing so, some results presented later in this subsection (paragraph
Behavior for Specific Process Models and Correlations Based on Process Model Metric
Definitions) are already used here.

Regarding “size metrics”: All “size metrics” (metric Sgg till Sp in Table 4.1)
measure the number of objects of a specific type in an EPC. So, the values cannot
be negative. There is no maximal limit for the metrics. Only some metrics have a
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Table 4.2: Theoretic value ranges and scale types of the selected process model metrics.

. || theoretic scale } theoretic scale
metric || alue range | type metric value range type
Sk [1,c0) NIN | ratio diam (2,00) NIN ratio
SEr [0,00) "IN | ratio A (0, %] NnQ ratio

SE; [1,00) NIN | ratio D 0,1)NQ ordinal
Se [2,00) "IN | ratio CNC [%, 2)NQ ratio
Sk [1,0c0)NIN | ratio CNCg (1 %,oo) NnQ ratio
SSsAnD [0,00)NIN | ratio CN [0,00) NIN ratio
Sy anD [0,00)NIN | ratio dc [0,00)NQ ratio
Ssyor [0,00)NIN | ratio aE [0,00) NIN ratio

Sivor [0,00)NIN | ratio T (0,11NQ ordinal
Ssor [0,00) NIN ratio = 0,11NnQ ratio
Sior [0,00) NIN ratio AN [0,00) NIN ratio
Sc [0,00)NIN | ratio MM [0,00) NIN ratio

SN [3,00)NIN ratio CH 0,1TNR ordinal
SA [2,00) NIN | ratio CYC 0,1)NQ ratio
TS [0,00) NIN ratio
CFC [0,00) NIN ratio
JC [0,00) NIN ratio

CP || (0,8 ~0.404]NQ | ordinal

CcC 0,1)NQ ordinal

higher minimal value than 0 because of some requirements of the definition of
EPCs (see Definition 2.10): An EPC must have at least one start event (Sg,(G) >
1), one end event (Sg.(G) > 1) and one function (Sg(G) > 1). Consequently,
Se(G) > 2 and Sn(G) > 3 hold. According to (4.17), SA(G) > Sn(G) —1 and so
SA(G) = 2 hold (SA(G) = 2 for sequential process models of type SEQ-1).

Regarding metric diam:

* lower bound: The smallest process model SEQ-1 has the minimal longest
path from a start to an end event with diam value 2.

¢ upper bound: According to Table 4.3, the diam value becomes arbitrarily
large for SEQ-n process models. So, there is no maximal value.

Regarding metric A:

* lower bound: Metric A measures a ratio between existing arcs and possible
arcs. As an EPC has at least two arcs, this ratio cannot be negative and
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cannot be 0. According to Table 4.3, the A values for the SEQ-n converge to
0. So, 0 (excluded) is the minimal possible value.

¢ upper bound: The A value of a SEQ-1 (with three nodes) is % An EPC with
2t _
four nodes is impossible. According to (4.25), A(G) < SN?E)(E]) < é_

6
3 =02
for SN(G) > 5. So, % is the maximal value.

Regarding metric D:

* lower bound: According to its definition, metric D has value 0 for EPCs G
with S¢(G) < 1 (this includes the sequential process models SEQ-n). For
the remaining EPCs, the original definition in [97] can be transformed into

. SA(G) —SN(G) +1
D) =SNG —25c(G) +1 (4.1)

The nominator equals metric CN with CN(G) > 0 (see equation (4.12)). For
the denominator (shortly written here as D'(G)),

Sc(G) 2
Scl6) | 1) +SN(G) —2Sc(G) +1 for Sn(C) even

D'(G) = ESC(§)1 Sc(G

2
+1) 4+ <G4
+SN(G) — 2S¢ (G) + 1

for SNn(C) odd

B 1(Sc(G))> —Sc(G) +Sn(G)+2  for SN(C) even (4.2)

"\ 1(Sc(G))2 = Sc(G) + Sn(G) + 175 forSn(C)odd

(4;0) JT(SC(G))Z_(%SN(G)—Z)-I-SN(G]-FZ for SN(C) even
1(S¢(G))2 = (35n(G) —2) + SN(G) +1.75 for Sn(C) odd

_ T(Sc(G))?+1Sn(G)+4  for SN(C) even
1(Sc(G))? + 1SN(G) +3.75 for SN(C) odd

> 0

holds. So, the D values cannot be negative and value 0 is the minimal one.

¢ upper bound: For EPCs G with S¢(G) < 1, the (maximal) D value is 0.
The following considerations are true for the remaining EPCs (S¢(G) > 2).
Replacing the denominator of (4.1) by (4.2) results in
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SA(G)—Sn(G)+]
D(G) = { %(SC(GS))Z(ES)CgG)EFGS)igGHZ for SN(C) even
Al9)7ON
1(Sc(G))2=Sc(G)+Sn(G)+1.75 for SN(C) odd

(2SN (G)—6)—SN(G)+1
(4.18) { 1(Sc(G))2—Sc(G)+SN(G)+2

(25N (G)—6)—SN(G)+1
1(5c(6))2=Sc(G)+SN(G)+1.75 for SN(C) odd

( Sn(G)—5
(Sc(G))? —Sc(G)+sn(G)+2

for Sn(C) even

B

for Sn(C) even

T Sn(G)S for Sn(C) odd
Z(SC(G))Z—SC(G)+SN(G)+1.7S
\ 270.75f8;sc(e)>3
o SN(G)—S_l_ 6 sN(G)—>oo1
= SNn(G) +1 N SNn(G) +1

The D metric values for the process models AND-n converge to 1 (see
Table 4.3). So, 1 (excluded) is the maximal value.

Regarding metric CNC:

¢ lower bound:

SA(G) (417) S\ (G) — 1 1 1 2

CNC(G) = SN =1 S1_1_2

(6) =5\ Sn(G) Sn(C) 373
Sn(G)=3

SEQ-1 has this CNC value (see Table 4.3).

¢ upper bound: The CNC value of the smallest process model SEQ-1 (three
nodes) is % An EPC with four nodes is impossible. For all remaining nodes,

SA(G) (08 25\(G)—6 . 6
CNCEI=50@ S “sve 2 5@ 2

holds. The CNC values of the process models AND-n converge to 2 (see
Table 4.3). So, 2 (excluded) is the maximal value.

Regarding metric CNCy:

¢ lower bound: According to the proof of (4.22), CNCx(G) > Sn(G) —2+
ﬁ holds. The minimal value of the right side of this inequality is reached

for SN(G) = 3. In that case, the inequality can be further transformed into
CNCk(G) > 3—2+ 1 = 13. SEQ-1 has this minimal CNC value.

* upper bound: According to Table 4.3, the CNCg value becomes arbitrarily
large for SEQ-n process models. So, there is no maximal value.
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Regarding metric CN:

¢ lower bound: According to Theorem 4.1, metric CN counts the number of
linearly independent cycles (see Definition 4.1) (arc directions are ignored)
of an EPC. So, this value cannot be negative. For sequential process models
SEQ-n, the value is 0 (see Table 4.3).

¢ upper bound: Following Table 4.3, the CN value becomes arbitrarily large
for AND-n process models. So, there is no maximal value.

Regarding metric dc and dc:

* lower bound: As a connector node cannot have a negative degree, also dc
and dc cannot be negative. For the sequential process models SEQ-n, both
metrics have a value of 0.

¢ upper bound: Following Table 4.3, the values of both metrics become arbi-
trarily large for AND-n process models. So, there is no maximal value.

Regarding metric IT:

¢ lower bound: The ratio cannot become negative. In every EPC, a start event
must be connected with a non-event node as its only neighbor. Consequently,
this node is a cut-vertex and the ratio cannot become 0. According to
Table 4.3, the TT values of the AND-n process models converge to 0. So, 0
(excluded) is the minimal value.

* upper bound: As an EPC has at least one start and one end event and both
cannot be a cut-vertex, the ratio cannot become larger than 1. The sequential
process models SEQ-n have a value of exactly 1 (see Table 4.3).

Regarding metric =:

* lower bound: As metric = measures the ratio between the arcs connecting
non-connector nodes and all arcs, the value cannot become negative. The
AND-n process models have a value of 0 (see Table 4.3).

* upper bound: The ratio cannot become larger than 1. The sequential process
models SEQ-n have a value of 1.

Regarding metric A and MM:

¢ lower bound: Because of their definitions, both metrics cannot have negative
values. The sequential process models SEQ-n have value 0 for both metrics.

¢ upper bound: As there are no maximal nesting depth and no maximal sum
of mismatches, the values of both metrics can become arbitrarily large.
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Regarding metric CH:

* lower bound: The single summands of the CH definition are p(l) - log; p(1)

with p(1) € [0, 1]. For this value range of p(1), log; p(1) < 0 and consequently
p(l) -log; p(1) < 0 hold. As the final sum is multiplied by —1, the CH values
cannot be negative. For process models with no connectors, the metric CH
is defined as 0.

upper bound: For the three probabilities p; := p(AND), p; := p(XOR) and
p3 := p(OR), the equation

p3=1-p1—p2 4-3)

holds. Consequently, metric CH can be interpreted as a function

f(p1,p2) == — [p1logz p1 +p2log; p2 + (1 —p1 —p2)log; (1 —p1 —p2)] .

(4-4)
In order to find extrema, one gets the two partial derivatives
of 111(1— 1— 2)—11’1 1
= . F (4-5)
op1 In3
of In(1—p1—p2)—Inpy
_ P1—P P2 (4.6)
op2 In3
For extrema,
of of !
-2 =0 .
op; ~ ops (4.7)

must hold. This is only true for p; = p) =p3 = % Here, the function f—and
consequently metric CH—has its maximal value 1.

Regarding metric CYC:

* lower bound: Metric CYC measures the ratio between nodes on a cycle (arc

directions are not ignored) and all nodes. Consequently, the value cannot be
negative. SEQ-n process models have a value of 0 (see Table 4.3).

upper bound: Imagine an EPC G with one start event followed by an XOR
join. The XOR join is following alternately by n functions and n events
until the XOR join is reached again (forming a cycle!). Between one of the
functions and events on the cycle, there is an XOR split inserted. The second
outgoing arc of this split is connected with an end event. So, there are 2n + 2
of the total 2n 4 4 nodes on the cycle. Consequently,

_ 42 n+l 1 o
C2n+4 n+2 n+2

CYC(G)

holds. As at least one start and one end node cannot lie on a cycle, value 1
is not reachable. The ratio cannot become larger than 1. So, 1 (excluded) is
the maximal value.
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Regarding metric TS, CFC and JC:

* lower bound: Because of their definitions, negative metric values are im-
possible. The sequential process models SEQ-n have value 0 for all three
metrics (see Table 4.3).

* upper bound: According to Table 4.3, the values of all three metrics become
arbitrarily large for OR-n process models. So, there is no maximal value.

Regarding metric CP:

¢ lower bound: As the arc weights cannot be negative, the CP metric values
can also not become negative. Each EPC has at least two arcs and their
weights are larger than 0. The metric values of the sequential process models
SEQ-n converge to 0 (see Table 4.3), So, 0 (excluded) is the minimal value.

¢ upper bound: The sequential process model SEQ-1 has CP value % This is
the smallest possible EPC. There is no EPC with four nodes. For Sn(G) > 5,
the following considerations are true. An EPC G has at most 25n(G) — 6 —
Sc(G) pairs of non-connector nodes (maximal number of arcs of G minus
number of connectors as there is one arc per connector more than pairs of
non-connector nodes next to the connector) which each can have a maximal
weight of 1. Consequently,

CP(G) <
(G) (5 (G) = 5¢(G))(5(G) — 5¢(G) 1)
1+ SNn(G)—5
__(SN(G) =Sc(G) =)+ (SN(G) =5) 1™ 5\(6)=Sc(G)—T
(SN(G) = Sc(G))(SN(G) = Sc(G) —1) SN(G) = Sc(G)
SN(G)-5 4S8N (G)—12
(420 B o R v ey
N SN(G) —Sc(G) ~ SN(G) —Sc(G)
4SN(G)—12 4SN(G)—12
(420) —SE(G]+3 B _S:(G)—B_
= _ (2 ~ 9y Sn(G)16
Sn(G)— (35n(G)—2)  SwISIEE
B 12Sn(G) — 36
N (SN(G))Z+9SN(G)+18

holds. This fraction has its maximal Value ~ 0.404 for SN(G) =107

Regarding metric CC:

¢ lower bound: The metric CC is defined as average strength of connection
between all pairs of nodes. The nominator (average strength of connection)
is always larger than 0, the denominator (number of pairs of nodes) cannot

7 Even after an intensive search, no EPC was found with this CP value. SEQ-1 and AND-2 with
both CP value % are the EPCs with the largest found CP value. Nevertheless, an EPC with a CP

value between % and % could exist.
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be negative. Consequently, the CC values are larger than 0. For the pro-
cess models AND-n, the metric values converge to 0 (see Table 4.3). So, 0
(excluded) is the minimal value.

* upper bound: The strength of a connection between two nodes cannot be
larger than 1. So, metric CC cannot have values larger than 1. As no path
from an end to a start event exists, the average strength between all node
pairs cannot be exactly 1. Imagine an EPC G with one start event followed
by an AND join. The AND join is following alternately by n functions and
n events until the AND join is reached again (forming a cycle!). Between
one of the functions and events on the cycle, there is an AND split inserted.
The second outgoing arc of this split is connected with an end event. So,
SN(G) = 2n +4 holds. There is a path from the start event to every other
node. The value of each of this 2n + 3 connections is 1. Furthermore, there is
a path from each of the 2n + 2 nodes on the cycle to every other node on the
cycle and to the end event. The value of these (2n + 2)(2n + 2) connections
is also 1. For G’s CC metric value

2n+3)+ (2n+2)(2n+2) dn+5

. 1 _n—o
cCle) = 2n+4)(2n +3) gz !

holds. So, 1 (excluded) is the maximal CC value.

Scale Types

The scale types of the selected process model metrics are listed in the third
column of Table 4.2.
Most metrics are ratio scales. But there are also some exceptions:

* The definition of separability (IT) (subtraction of 2 in the denominator) only
considers the case of exactly one start and one end event. But as there can
be several start and end events, value differences and ratios are meaningless.
So, the metric is an ordinal scale.

* For heterogeneity (CH), value differences and ratios are meaningless because
of taking the logarithm. So, the metric is an ordinal scale.

* For density (D), weighted coupling (CP) and cross-connectivity (CC), things are
a little unclear. To err on the side of conservatism, these metrics are listed to
be ordinal scales.

Behavior for Specific Process Models

As explained in Subsection 4.2.1, sequential and parallel process models are used
for examining the selected process model metrics” behavior for them.

For the subsequent analysis, four types of generic EPC process models are
defined:
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(start event H function 1 H event 1 H function 2 H event 2 )—b e oo 4.[ function n H end event )
¥ J
o~

n functions

(a) Sequential process model SEQ-n (n > 1).

ion 1

H

(b) Parallel process model AND-n (n > 2).

n functions

Figure 4.2: Sequential and parallel process models.

* SEQ-n (n > 1): sequential EPC with n functions (see Figure 4.2a),

¢ AND-n (n > 2): EPC with n parallel (AND connectors) functions (see
Figure 4.2b),

e XOR-n (n > 2): EPC with n alternative (XOR connectors) functions (AND-n
with XOR instead of AND connectors) and

¢ OR-n (n > 2): EPC with n alternative (OR connectors) functions (AND-n
with OR instead of AND connectors).

The metric values for these four process model types are listed in Table 4.3. As
one can see, some process model metric values are constant, while others increase
infinitely by increasing n or converge to a limit value.

Besides the behavior of the selected process model metrics for sequential and
parallel process models, the special behavior of the metric heterogeneity (CH) is
examined here.

For this metric, only the relative (not absolute) number of the three connector
types p(AND), p(XOR), p(OR) € [0, 1] is important. Consequently, all process
models can be represented as a point p := (p(AND), p(XOR),p(OR))" in the
3-dimensional space forming a triangular area on a 2-dimensional hyperplane
(as p(AND) + p(XOR) +p(OR) = 1,8 see Figure 4.3).

For the metric value, it is unimportant how the relative number of connector
types is actually mapped to the single connector types (e. g., a process model with
one AND and one XOR connector has the same CH metric value as a process
model with one OR and one XOR connector). This symmetry is represented by
the three dashed lines (axes of symmetry) in Figure 4.3.

The metric has its minimum value 0 for process models with only one connector
type (ratio 0 : 0 : 1, minimal connector type heterogeneity) or no connectors at all

The sole exception where this equation does not hold are process models with no connectors at
all.
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Table 4.3: Behavior of the selected process model metrics for sequential and parallel
process models (Part 1 of 2).

metric || SEQ-n | AND-n | XOR-n | OR-n
Sk 1 1

SEn n—1 0

SEe 1 1

Se n+1 2

Sk n n
SsanD 0 1 0 0
SJanD 0 1 0 0
Ssyor 0 0 1 0
Sixor 0 0 1 0
Ssor 0 0 0 1
Sior 0 0 0 1

Sc 0 2

SN 2n+1 n+4

Sa 2n 2n+2

as well as its maximum 1 for process models with the same number of all three

connector types (ratio % : % : %, maximal connector type heterogeneity).

Correlations Based on Process Model Metric Definitions

The last general property, which is examined here, are possible correlations
between process model metrics because of their definitions.

First, the statement in Table 4.1 that process model metric CN counts the
number of linearly independent cycles (arc directions are ignored) is proved.

If the edges in a graph G with e edges are numbered 1,2, ..., e, then a cycle is
defined by a vector

= (h1, K2, e ) (4-8)
with
0 if corresponding edge is not part of cycle
Hi o= 1 if cycle traverses corresp. edge in edge’s direction (4.9)

—1 if cycle traverses corresp. edge against its direction

If the graph is undirected, a “virtual direction” has to be assigned to each edge
in order to use the above notation. [11, p. 12]
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(1/2,0,1/2) (1/2,1/2,0)

0,0,1) T 04212 (0,1,0)

Figure 4.3: Values of the process model metric heterogeneity (CH) depending on the
probabilities of the three connector types AND, XOR or OR (2-dimensional
hyperplane in IR? transformed into IR?).

It has to be noticed that a cycle can traverse edges against its direction according
to this notation. For process model metric CN, this definition of a cycle is used
(the arc directions are ignored). In contrast, all arcs have to be traversed in
their directions in order to form a cycle for process model metric CYC (the arc
directions are not ignored).

Using the above notation, linearly independent cycles can be defined [11, p. 15].

Definition 4.1 (Linearly independent cycles) The cycles iy, i, ..., Hx are said to
be linearly independent if the equation

arf +axfly +...+agfix =0 (4.10)
is only true foray = a; = ... = aq =0.

The maximum number of linearly independent cycles of a graph (its cyclomatic
number) is a property of the graph. It can be computed using the following
Lemma 4.1 [152, p. 23].

Lemma 4.1 Let G be a graph, n the number of its nodes, e the number of its edges and
p the number of its components. Then,

CN(G)=e—mn+p (4.11)

is the number of linearly independent cycles of the graph.
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Proof. The proof works by induction over the number e of edges.

Basis Let G be a graph with n nodes and no edges (e = 0). Consequently, each
single node is a component (p = n) and the graph has no cycle (CN(G) = 0). So,
CN(G)=e—mn+p=0—m+n =0 holds.

Induction step When an additional edge is added to the graph, two possible
cases can occur:

1. The new edge connects two components. As a consequence, the number
of components is reduced by 1 (p’ = p — 1) and the number of linearly
independent cycles stays unchanged (CN’(G) = CN(G)). CN/(G) = e’ —
n+p'=(e+1)—m+(p—1) =e—n+p = CN(G) still holds.

2. The new edge connects two nodes of one component. As a consequence, the
number of components stays unchanged (p’ = p). As there was already a
path between the two nodes (they are in the same graph component), adding
the new edge between them results in a new cycle. As this new cycle contains
the new edge, which cannot be part of any already existing cycle, the new
cycle is linearly independent of all other cycles. Consequently, the number
of linearly independent cycles is increased by 1 (CN’(G) = CN(G) +1).
Also here, CN/(G) =e’—n/+p’=(e+1) —n+p = CN(G) + 1 holds.

[
With the help of Lemma 4.1, Theorem 4.1 can now be proved.

Theorem 4.1 The process model metric CN defined as CN(G) := |A| —[N|+ 1 for any
EPC G counts the number of linearly independent cycles (the arc directions are ignored).

Proof. According to Definition 2.10, G is a connected graph. So, it has only one
component (p = 1). Consequently, equation (4.11) becomes CN(G) = |A| — [N| 41
for the EPC. [

Because of the definition of metric CN, there is a strong mathematical connec-
tion between the involved metrics Sa, Sy and CN.

SA(Gi)
Theorem 4.2 The points p(Gi) := | Sn(Gi) | consisting of the corresponding pro-
CN(Gj)
cess model metric values of a set of EPCs G; lie on a 2-dimensional hyperplane of the
R,
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Proof. According to definition, CN(Gj) = SaA(Gi) — Sn(Gi) + 1 holds. Conse-
quently, the points

SA(Gi) Sa(Gi)

P(G) = | Sn(Gy) | = Sn(Gy)
CN(Gy) SA(Gi) —Sn(Gy) +1
0 1 0
= 0 [ +SA(G) | 0 | +SN(GY | 1

1 1 —1

form a 2-dimensional hyperplane of the R? which is spanned by two linearly
independent vectors. |

In the remainder of this paragraph, the correlations between different process
model metrics are examined. To start with, no strong correlations in means of
Spearman’s rank correlation coefficient (see Section C.2) or Pearson’s product-
moment correlation coefficient (see Section C.1) just based on the metrics” defi-
nitions could be proved. Yet, some inequalities between pairs of process model
metrics could be found which constrain the metric values in such a way that the
existence of strong (linear) correlations is highly possible.

Theorem 4.3 For every EPC G, the inequalities

0 < CN(G) (4.12)
and

CN(G) < SN(G)—5 ,SN(G) =5 (4.13)
hold.

Proof. The two inequalities are proved in separate steps.

Regarding (4.12): According to Theorem 4.1, CN(G) is the number of linearly
independent cycles—when the arc directions are ignored. This number cannot
be negative. For the sequential process models SEQ-n, this number is 0 (see
Table 4.3). So, CN(G) > 0 holds.

Regarding (4.13): In order to add an additional cycle (arc directions are ignored)
to an EPC, there have to be two connectors (one split and one join connector) in
the EPC. Between these two connectors, an additional path to the “sequential one”
must exist. The smallest example for this construct is an AND-2 (see Figure 4.2b).
At least one event or function node lies on each of these paths between two
connectors. So, the number of cycles of an EPC is limited by the number of
nodes (at least one node per cycle). Yet, not all nodes lie on the mentioned paths
between two connectors. At least five nodes (one start and one end event, one
split and one join connector as well as one function) are used at other places
(think of an AND-2 as in Figure 4.2b). Consequently, CN(G) < Sn(G) — 5 holds
for SN(G) > 5. |
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Theorem 4.4 For every EPC G, the inequalities

0 < CN(G) (4.14)
and

CN(G) < 5SA(G)—2 ,SA(G) =4 (4.15)
hold.

Proof. The two inequalities are proved in separate steps.
Regarding (4.14): Analogous to the proof of (4.12).

Regarding (4.15):

CN(G) = SA(G)—Sn(G)+1
< SNn(G) = SA(G)—CN(G) +1 (4.16)
Let SA(G) > 4. Then, SN(G) > 5 (as the only process model with three nodes is

the SEQ-1 with two arcs and an EPC with four nodes is impossible). According to
(4.13), CN(G) < SNn(G) — 5 holds. This inequality can be transformed as follows:

(4.16)

CN(G) < Sn(G)=5 (SA(G) =CN(G)+1)=5
= SA(G)—CN(G)—4 |+ CN(G)
& 2CN(G) < Sa(G)—4 -]
& CN(G) < 1Sa(6)-2
|

Theorem 4.5 For every EPC G, the inequalities

SN(G) =1 < SA(G) (4.17)
and

SA(G) <25n(G)—6 ,Sn(G) =5 (4.18)
hold.

Proof. The two inequalities are proved in separate steps.

Regarding (4.17): Analogous to the proof of Lemma 4.1, an EPC G with Sn(G)
nodes needs at least SN(G) — 1 arcs to be connected (SA(G) > Sn(G) — 1). For the
sequential process models SEQ-n, SA(G) = Sn(G) — 1 holds (see Table 4.3).
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Regarding (4.18):
CN(G) =SaA(G) =SN(G) +1 & SA(G) = CN(G) +Sn(G) —1
Let SN(G) > 5.

(4-13)
SA(G) =CN(G)+SN(G) =1 < (SNn(G)—=5)+SN(G) —1=25N(G) —6
|

Theorem 4.6 For every EPC G, the inequalities

0 < Sc(G) (4.19)
and

2

S5c(G) < 35n(6) =2 (4.20)

hold.

Proof. The two inequalities are proved in separate steps.

Regarding (4.19): An EPC must not have any connectors (e. g., sequential pro-
cess models SEQ-n). The number of connectors cannot be negative. So, Sc > 0.

Regarding (4.20): For every EPC G,

SN(G) = Sc(G) +Se(G) + S¢(G)
& Sc(G) = SnI(G) —Se(G) —Sr(G) (4.21)

holds. G has at least one start and one end event as well as one function (three
nodes). For each connector, there are two possible cases: (1) There is at least one
additional branch which does not re-join with the first one. On this branch, at
least one start or end event has to exist. (2) There is at least one additional branch
which re-joins with the first one. So, there is a second connector at the re-join
place. At least one node lies on the “produced” cycle between the two connectors.
So, there is at least half a non-connector node per connector in the second case.
Consequently, (4.21) can be transformed into the following inequality.

Sc(G) < Sn(G)— %SC(G) |+ 1Sc(G)
& 3S¢(G) < SN(G)— -2
& Sc(G) < %SN(G) 2
|

Theorem 4.7 For every EPC G, the inequalities

SN(G) —2 < CNCk(G) (4.22)
and

CNCk(G) <4Sn(G)—16 ,SN(G) =5 (4.23)

hold.
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Proof. The two inequalities are proved in separate steps.

Regarding (4.22):

_ (Sal6))?
CNCk(G) = 5\ (G)
(417)  (SN(G) =12 (SN(G))2—2SN(G) +1 1
> = =SNn(G)—2+
Sn(G) SN(G) A (E)
> SN(G)—Z
Regarding (4.23): Let SN(G) > 5.
(SA(G))?
CNCk(G =
k(G) S\ (G)
(4-<18) (2SN(G) —6)2  4(SN(G))? —24SN(G) + 36
h Sn(G) SNn(G)
= 4SN(G)—24+ 36
- Sn(G)
<72
< 4Sn(G)—16
|
Theorem 4.8 For every EPC G, the inequalities
1
SN[ < A(G) (4-24)
and
A(G) 2~ suigy Sn(G) =5 (4.25)
X SN(G)—1 79N = 4.25
hold.
Proof. The two inequalities are proved in separate steps.
Regarding (4.24):
SA(G) 417)  SN(G)—1 1
A(G) = > =
ST S@NG T 7 Sa(GISN(G) 1] Sx(G)
Regarding (4.25): Let SN(G) > 5.
MG - A6 @I®  asve) -6 25
SN(G)(Sn(G) —T) SN(G)(Sn(G)—=T1)  Sn(G) —T
|

As a consequence of Theorem 4.8, one can see that between the process model

metrics A and Sy there is a relation of the type A(G) =~ ﬁ
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4.3.3 Results Concerning Process Model Collection Specific Properties

In this subsection, the results concerning the process model collection specific
properties are presented.

Descriptive Statistics

The values of the descriptive statistics for the selected process model metrics
applied to the SAP Reference Model EPCs are listed in Table 4.4. Values which
are not meaningful because of the process model metric’s scale type are printed
in italics. Nevertheless, they are not totally skipped as they often lead to fruitful
results®.

The histograms of the selected process model metrics give more detailed
information than just some compact quantitative numbers. They are depicted in
Figure 4.4, 4.5 and 4.6.

Most process model metrics (including all “size metrics”) have a high frequency
for small values and almost continuously decreasing frequencies for increasing
metric values resulting in a long tail at the right side. The number of nodes metric
(Sn) (see Figure 4.5a) is a typical example for this behavior.

The metrics control flow complexity (CFC) (see Figure 4.6f) and join complexity
(JC) (see Figure 4.6g) have a similar behavior with some few extreme outliers
(see quartiles in Table 4.4). These are caused by contained OR splits with high
out-degree (for metric CFC) and OR joins with high in-degree (for metric JC)
respectively.

The metric coefficient of connectivity (CNC) (see Figure 4.5f), which is defined
as CNC(G) = %, has three different areas of values: (1) CNC < 1 for |A| <

IN| = [A] = [N|—=1 (as |A| > [N|—1): The smallest possible value is % for process

model SEQ-1 (see paragraph Theoretical Value Ranges in Subsection 4.3.2). The
Al _ N1

fraction 57 = =~ converges to 1 for [N| — co. The metric values of all sequential
processes SEQ-n form the sequence (an) = (%,‘5—‘, g,.,_) with a, = _21211 - and

are situated in the interval [%,1). (2) CNC =1 for |A| = IN| (3) CNC > 1 for
|A| > [N|: The upper bound of CNC is 2 (see paragraph Theoretical Value Ranges in
Subsection 4.3.2). Within the SAP Reference Model, 325 process models (63.1%)
have a metric value less than 1 (31 process models with value %, 40 process
models with 0.8, ...), 75 process models (14.6%) have value 1 and 115 process
models (22.3%) have a value greater than 1. The process model with the second
greatest value 1% is an AND-5; the process model with the greatest value 1%

(=~ 1.714) is an AND-17.

Stevens states regarding this problem [148, p. 679]: “In the strictest propriety the ordinary statistics
involving means and standard deviations ought not to be used with these scales, for these statistics
imply a knowledge of something more than the relative rank-order of data. On the other hand,
for this “illegal’ statisticizing there can be invoked a kind of pragmatic sanction: In numerous
instances it leads to fruitful results. While the outlawing of this procedure would probably serve
no good purpose, it is proper to point out that means and standard deviations computed on an
ordinal scale are in error to the extent that the successive intervals on the scale are unequal in
size.”
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Table 4.4: Descriptive statistics of the selected process model metrics for the EPCs of the SAP Reference Model (Part 2 of 2). Values which are not
meaningful because of the process model metric’s scale type are printed in italics.

metric || min | Q25 | median | Qy5 max R IQR | MAD || mean sd Cv
diam || 2 4 8 12 38 36 8 4.000 9.291 6.527 | 0.703
A 0.008 | 0.043 0.077 | 0.125 0.333 0.325 | 0.082 | 0.035 0.099 0.079 | 0.802
D 0.000 | 0.000 0.000 | 0.040 0.727 0.727 | 0.040 | 0.000 0.031 0.062 | 1.997
CNC || 0.667 | 0.889 0.947 | 1.000 1.714 1.048 | 0.111 | 0.058 0.946 0.124 | 0.131
CNCk || 1.333 | 6.562 | 13.067 | 25.037 166.631 165.297 | 18.475 | 7.924 || 20.588 23526 | 1.143
CN 0 0 0 1 26 26 1 0.000 1.309 2859 | 2.184
dc 0.000 | 3.000 3.333 | 3.800 18.000 18.000 | 0.800 | 0.333 3.332 1.510 | 0.453
mm 0 3 4 5 19 19 2 1.000 4.332 2731 | 0.630
T 0.105 | 0.467 0.600 | 0.714 1.000 0.895 | 0.248 | 0.114 0.599 0.201 | 0.336
= 0.000 | 0.086 0.200 | 0.400 1.000 1.000 | 0.314 | 0.133 0.281 0.282 | 1.003
A 0 0 0 1 4 4 1 0.000 0.569 0.722 | 1.270
MM || 0 2 4 8 40 40 6 3.000 5.876 6.137 | 1.044
CH 0.000 | 0.000 0.579 | 0.793 1.000 1.000 | 0.793 | 0.367 0.431 0.383 | 0.889
CYC || 0.000 | 0.000 0.000 | 0.000 0.722 0.722 | 0.000 | 0.000 0.017 0.083 | 4.808
TS 0 0 1 4 33 33 4 1.000 3.111 4.949 | 1.591
CFC || 0 1 3 9 262,143 262,143 8 3.000 || 881.596 | 12,999.475 | 14.745
JC 0 1 3 8 32,784 32,784 7 3.000 || 209.058 | 2,502.365 | 11.970
CP 0.003 | 0.029 0.056 | 0.119 0.333 0.330 | 0.090 | 0.037 0.091 0.088 | 0.970
CC 0.005 | 0.057 0.115 | 0.242 0.500 0.495 | 0.185 | 0.073 0.178 0.159 | 0.892
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Figure 4.4: Histograms of the selected process model metrics (Part 1 of 3).
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Figure 4.6: Histograms of the selected process model metrics (Part 3 of 3).

Looking at the metrics average (dc) (see Figure 4.51) and maximum connector

degree (c/lz) (see Figure 4.5j), one finds 45 process models (8.7%) with value 0.

These are exactly the sequential process models SEQ-n, which do not contain
any connectors at all. As a split connector has exactly one incoming and at least
two outgoing arcs (vice versa for join connectors), there is no process model
with values in the open interval (0, 3). Starting with value 3, the frequencies for
increasing metric values are decreasing. As a process model’s maximum connector
degree is at least as high as its average connector degree, there are larger metric
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values for @ than for dc. The value distribution for the maximum connector
degree metric is also shifted a little bit upwards compared to the distribution for
average connector degree.

210 of 515 process models (40.8%) have a heterogeneity metric (CH) (see Fig-
ure 4.6¢) value of 0 (45 sequential process models SEQ-n and 165 process models
with only one connector type) and nine have value 1 (same number of all three con-
nector types). There are 14 process models with value ~ 0.455 (ratio 0:0.2:0.8),
16 process models with value ~ 0.512 (ratio 0 : 0.25 : 0.75), 56 process models
with value ~ 0.579 (ratio 0 : % : %) and 56 process models with value ~ 0.631
(ratio 0: 0.5 : 0.5). Those process models with higher values up to 1 have an even
more equal ratio of connector types.

487 of the 515 process models (94.6%) have a cyclicity metric (CYC) value of
O0—meaning that they do not contain any (directed) cycles at all (see Figure 4.6d).
The remaining process models have values almost equally distributed up to
~ 0.722.

In contrast, only 325 process models (63.1%) have a cyclomatic number metric
(CN) value of 0—so, they do not even contain an undirected cycle (see Fig-
ure 4.5h).

Correlations

Spearman’s rank correlation coefficients (see Section C.2) and Pearson’s product-
moment correlation coefficients for the selected process model metrics applied to
the SAP Reference Model are listed in Table 4.5 and 4.6 respectively. Coefficients
which do not differ significantly from O (two-sided test, p = 0.05) are printed in
italics in both tables. Values which are not meaningful because of the process
model metric’s scale type are skipped. Table cells are colored according to their
absolute values—the higher the absolute value the darker the color.

Additional to the correlation coefficients, also the 33 x 33 scatter plot matrix was
looked at. That way, also non-monotonic and non-linear dependencies between
two process model metrics can be identified. Because of length restrictions, only
scatter plots with an “interesting” behavior are depicted.

The “size metrics” Sg, Sc, Sy and S are highly linear correlated with each
other (all correlation coefficients > 0.93). Two examples are given in Figure 4.7.
The boundaries according to Theorem 4.5 and 4.6 respectively are also drawn
within the figures. They indicate the possibility for the existence of a linear
correlation—what is now confirmed for the SAP Reference Model.

Metric CNCy is also highly linear correlated with the “size metrics” Sg, Sc,
Sn and Sa (all correlation coefficients > 0.94). At first glance, this may be a little

2
surprising because of the power of 2 in the definition (CNCk(G) = (Ss},\\, ((GG))) ). For
the correlation between the metrics CNCg and Sy, Theorem 4.7 indicates the
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Table 4.6: Pearson’s product-moment correlation coefficients of the selected process model metrics for the EPCs of the SAP Reference Model.

Values which are not meaningful because of the process model metric’s scale type are skipped. Coefficients which do not differ
significantly from 0 (two-sided test, & = 0.05) are printed in italics.

:wmri wmm S 7 S¢g Ss Sy me mﬁx Ss 7& Sc Sn 7 Sap diam A 7 D CNC OZOL CN dc m\w 7 I = A 7 MM CH CYC TS CFC JC CcpP CC
mmm 0.475 0.475/0.767(0.295 0.468 0.723(0.380 0.575 0.396(0.552 0.680 0.714|0.696 0.520 —0.476 0.349 0.674 | 0.433 0.308 0.593 —0.373 0.463 | 0.692 0.016 | 0.534 -0.016 0.343
mmH:n 0.5100.824|0.750 0.635 0.598|0.564 0.685 0.573(0.498 0.783 0.876(0.895 0.866 —0.522 0.595 I 0.831 0.129 0.400 —0.122 0.675 | 0.581 0.120 | 0.683 o0.044 -0.032
mmm 0.837(0.217/0.732 0.482|0.760 0.628 0.700(0.213 0.791 0.773(0.747 0.529 —0.469 0.349 | 0.716 | 0.422 0.261 0.530 —0.397 0.517 | 0.746 0.049 | 0.874 0.191 -0.050
S 0.522 0.767 0.726(0.718 0.778 0.701 o.mONII 0.791 —0.602 0.534 0.698 0.281 0.618 —0.362 0.684 | 0.828 0.079 | 0.874 0.100 o0.084
SE 0.485 0.489(0.274 0.410 0.268|0.326 0.503 0.669(0.678 0.741 —0.471 0.546 0.683 | 0.599 0.185 0.272 -0.013 0.446 | 0.288 0.049 | 0.417 o0.007 -0.041
Ss 0.624(0.622 0.640 0.462|0.281[0.829 0.804|0.798 0.695 —0.481 0.477 [ 0.784 | 0.589 0.142 0.363 —0.366 0.627 | 0.611 0.062 | 0.775 -0.029 -0.045
mH> 0.403 0.520 0.445(0.473 0.778 0.765|0.766 0.648 —0.426 0.452 | 0.759 | 0.609 0.156 0.399 —0.348 0.622 | 0.532 0.125 | 0.649 -0.040 0.021
mmx 0.685 0.548(0.152/0.779 0.716|0.707 0.559 —0.398 0.373 0.693 | 0.506 0.089 0.278 —0.320 0.564 | 0.573 0.123 | 0.602 -0.037 -0.040
Sy 0.640(0.2850.850 0.801(0.805 0.705 —0.474 0.495  0.800 | 0.659 0.125 0.372 —0.348 0.661 | 0.676 0.120 | 0.670 o0.002 -0.025
mm< 0.39010.748 0.694(0.695 0.566 —0.386 0412 0.689 | 0.556 0.143 0.383 —0.318 0.601 | 0.643 0.074 | 0.773 0.116 -0.033
mu< 0.510 0.517]0.529 0.453 —0.308 0.352  0.535 | 0.495 0.155 0.351 —0.208 0.451 | 0.403 0.037 | 0.407 o0.079 0.087
Sc 0.805 —0.549 0.565 0.751 0.174 0.466 —0.426 0.779 | 0.759 0.124 | 0.857  0.006 -0.014
SN 0.864 —0.616 0.600 0.763 0.253 0.556 —0.345 0.733 | 0.773 0.096 | 0.859  o0.059 0.033
SA 0.861 —0.598 0.627 0.818 0.263 0.561 —0.343 0.749 | 0.759 0.103 | 0.863 o0.057 o0.027
diam —0.675 0.648 | 0.850 | 0.665 0.148 0.351 —0.237 0.722 | 0.556 0.121 | 0.644 -0.027 -0.028
A —0.777 —0.573|—-0.352 —0.566 —0.600 0.613 —0.495|—0.569 —0.099(—0.462 -0.054 -0.062
D
CNC 0.649 | 0.676 0.599 0.606 —0.567 0.679 | 0.454 0.203 | 0.529 0.033 o0.019
CNCg 0.866 0.275 0.564 —0.338 0.756 | 0.740 0.107 | 0.862  o0.055 o0.021
CN 0.271 0476 —0.259 0.699 | 0.515 0.131 | 0.714  o0.033 -0.019
dc 0.812 —0.622 0.168 | 0.357 0.017 | 0.326 0.245 0.255
Mm —0.572 0.391 | 0.639 0.021 | 0.614 0.342 0.342
T
= —0.383|—0.463 —0.087|—0.380 -0.057 -0.063
A 0.491 0.211 | 0.653 -0.023 -0.045
MM o.070 | 0.743 0.163 0.197
CH
cycC 0.077 -0.014 -0.017
TS 0.217 -0.042
CFC -0.005
jC
CP
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Figure 4.7: SA/Sn and Sc/Sn plots as examples of strong linear correlations between
“size metrics”.

possibility for such a strong linear correlation. As seen above, the ratio between

Sa and Sy is almost a constant ¢ (gg—%g% ~ C), SO

(SA(G)?
CNCk(G) _ SN c-SaA(G) ~ o2
Sn(G) SNn(G) Sn(G)

(4.26)

holds. The correlation between the metrics CNCkx and Sy as an example is
depicted in Figure 4.8a.

For metric CNC, things are different. Here, the correlation coefficients for the
pairs of CNC and the “size metrics” are much lower. Also the CNC/Sy plot
(see Figure 4.8b) shows no linear or at least monotonic correlation. Yet, there are
points forming several curves. Having in mind that SA(G) = SN(G) +a ,a €
{=1,0,1,...,25n(G) — 6} (Theorem 4.5), these curves are easily explainable.

There are two proposed process model metrics supposed to measure “density”:
A and D. As D is on ordinal scale, only Spearman’s rank correlation coefficients
can be considered during the following analysis. The rank correlation coefficient
between both metrics is —0.409. When one looks at the corresponding A/D plot
(see Figure 4.9a), many points with a D value of 0 (325 of 515 process models—
this equates 63.1%) attract attention. The reason is the definition of D, which
assigns D(G) = 0 for EPCs G with Sc(G) < 1. If one removes these points from
the analysis, the rank correlation coefficient is still only 0.598—what is quite small.
So, as a result, one can state that both “density metrics” measure something quite
different.

In contrast, the metrics A and CP are highly correlated (rank correlation coeffi-
cient 0.924, see Figure 4.9b). This is only surprising at first glance as both metrics
measure a ratio between existing arcs and possible arcs—the number of arcs
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Figure 4.8: CNCk/Sn and CNC/Sy plots.

divided by the number of possible arcs between the nodes for metric A and the
weighted number of arcs between tasks and the possible number of arcs between
the tasks in the case of metric CP. This fact supports the assumption that metric
CP with its relatively complicated computation of weights has little additional
benefit compared to metric A.

Metric A has plots with the “size metrics” Sg, S¢, Sy and Sa very similar to
the J—( /x plot. This is also reflected in quite large absolute values of Spearman’s
rank correlation coefficients (all correlation coefficients < —0.9). For the metrics A
and Sy (see Figure 4.9¢), this was already “predicted” by Theorem 4.8.

Looking at the correlation coefficients of metric cycling (CYC), one gets the
impression that it is not correlated with any other metric. Yet, this indication
is only half the truth. Figure 4.10 depicts the CYC/Sy plot. The overwhelming
majority of points has a CYC value of 0 (487 of 515 process models—this equates
94.6%). If one only looks at the remaining points (only 28 points!), one gets
a Spearman’s rank correlation coefficient of —0.885 and a Pearson’s product-
moment correlation coefficient of —0.809. So, the result of this analysis is that
it does not depend on the number of nodes whether an EPC has a cycle (arc
directions are not ignored) or not—yet, if it has at least one, the CYC metric values
decrease for larger EPCs.

At the end of this paragraph, the CN /Sy (see Figure 4.11a) and CN/Sx (see
Figure 4.11b) plots are depicted in order to show how the points for the SAP
Reference Model lie between the boundaries of Theorem 4.3 and 4.4 respectively.
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Figure 4.9: A/D, A/CP and A/Sy plots.

Principal Component Analysis

The last step of the analysis is a PCA of the process model metric values. As the
metric values of metrics CFC and JC have some few but extreme outliers (see
Table 4.4), the values of these two metrics are logarithmized before the PCA.

The result of this PCA is a linear transformation of the 33-dimensional data (33
process model metric values per process model) into a new system of 33 basis
vectors (also called “components”) which are ordered decreasingly according to
their proportion of variance. The corresponding resulting numbers are listed in
Table 4.7.

In the previous analysis steps, large correlations between some process model
metrics were identified. The results of the PCA reflect this fact: The first compo-
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Table 4.7: Proportion of variance and cumulative proportion of the 33 components of the

PCA.
component || proportion of variance | cumulative proportion

1 54.402% 54.402%

2 10.290% 64.692%

3 6.761% 71.453%

4 4.756% 76.209%

5 4.166% 80.376%

6 3.530% 83.906%

7 2.629% 86.535%

8 2.379% 88.914%

9 1.975% 920.889%
10 1.312% 92.201%
11 1.163% 93.364%
12 1.125% 94.489%
13 0.875% 95.364%
14 0.783% 96.147%
15 0.677% 96.824%
16 0.598% 97.422%
17 0.462% 97.884%
18 0.437% 98.322%
19 0.415% 98.737%
20 0.278% 99.015%
21 0.255% 99.270%
22 0.221% 99.491%
23 0.172% 99.663%
24 0.126% 99.789%
25 0.119% 99.908%
26 0.052% 99.960%
27 0.035% 99.995%
28 0.005% 100.000%
29 0.000% 100.000%
30 0.000% 100.000%
31 0.000% 100.000%
32 0.000% 100.000%
33 0.000% 100.000%
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Figure 4.11: CN/Sy and CN/SA plots.

nent comprises more than half (54.402%) of the total data variance; the first nine
components (of 33) together more than 90%. So, there is a lot of “redundancy” in
the data of the 33 process model metrics.

Finally, the location of the original 33 process model metrics in the PCA’s
new system of basis vectors (called “loadings” in the PCA literature) is to be
examined. As the first three components comprise more than 71% of the total
data variance, a visualization which is restricted to these first three dimensions of
the 33-dimensional data is meaningful. The results are depicted in Figure 4.12. As
a 3D visualization is hard to interpret as long as it is not interactively rotatable,
three 2D plots are used instead.
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Figure 4.12: Selected process model metrics transformed by PCA (first three components).

Looking at these plots (especially Figure 4.12a), one can identify three clusters.
The first one consists of almost all “size metrics” (the metrics Sp, Sc, Sy and
CNCk have almost the same comp1 and comp2 values). The second cluster
comprises the metrics A, T1, =, CP and CC and is clearly separated from the first
one. The third cluster contains the remaining metrics. It is not as cohesive as the
other two and is located next to the first cluster with the “size metrics”.

4.4 CONCLUSION

In this chapter, an approach for reducing the experimental effort for the validation
of prediction systems was introduced.
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Its main idea is to add an additional analysis step before the selection of the
prediction system which shall be validated. In this preceding step, the behavior
as well as important properties of process model metrics which are part of
the potential prediction systems which shall be validated are first analyzed.
Through this, unfavorable properties of process model metrics (e. g., insufficient
dispersion of metric values or strong correlation with other process model metrics)
can be identified before the high effort for an experimental validation of the
corresponding prediction system occurs.

The approach distinguishes between general properties which hold for all
process models because of their definition and process model collection specific
properties which are only true for the examined process model collection.

The approach was tested with 33 EPC process model metrics and 515 pro-
cess models from the SAP Reference Model. During this test, some interesting
properties could be found.

As general properties, mathematical boundaries for the value pairs of some
“size metrics” could be identified. Furthermore, it could be shown, that A(G) ~
s<(g holds.

Even more process model collection specific properties could be discovered for
the SAP Reference Model:

* The metrics CFC and JC have some few extreme outliers. It is very unlikely
that there is a linear dependency between one of these metrics and a process
model quality measure. The existence of a threshold over which a process
model has some undesirable properties (e.g., high error probability) is
much more likely.

* 94.6% of all process models have a cyclicity metric (CYC) value of 0—
meaning that they do not contain any (directed) cycle.

* There are many linear or at least monotonic correlations between the ex-
amined process model metrics. This was also confirmed by the result of a
PCA. There are three major clusters for the metrics: The first one consists
of almost all “size metrics”. The second cluster comprises the metrics A,
IT, Z, CP and CC and is clearly separated from the first one. The third (not
so cohesive) cluster contains the remaining metrics. Consequently, some
metrics do not provide much additional information compared to others.

* The density metrics A and D have quite different behaviors. So, they do not
measure the same concept.

¢ On the other hand, the metrics A and CP, which both measure some sort of
ratio between existing arcs and possible arcs, are highly correlated. So, it
seems that metric CP, which has a much more complicated computation
rule, has little additional benefit compared to metric A.

As future work, it should be examined whether the identified process model
collection specific properties also hold for other collections of process models.
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Furthermore, the approach could also be applied to other process modeling
languages than EPC.

The results of this chapter may be helpful for planning future validation
experiments for prediction systems. Maybe, it can contribute to decrease the lack
of validation in this way.



VISUALIZATION AND CLUSTERING OF PROCESS MODEL
COLLECTIONS

5.1 INTRODUCTION

In Chapter 4, general properties of some EPC process model metrics and process
model collection specific properties of these metrics for the SAP Reference Model
were analyzed.

As most humans are visually thinking beings—preferring pictures to large
tables of numbers—, a visualization of large process model collections based on
process model metric values would be interesting. Yet, the resulting process model
metric data would be very high-dimensional making visualization problematic.

A second interesting question is whether there are clusters of (structurally)
similar process models among a process model collection.

In this chapter, an approach for these two goals is proposed. It comprises
heatmaps, a compact visualization technique for high-dimensional data originally
used in genetics, and scatter plots for dimensionally reduced data using PCA for
visualizing the process model metric data. Additionally, clustering is used for
analyzing

1. the correlations (see Chapter C) between different process model metrics
and

2. finding (structurally) similar process models' among a process model col-
lection.

Finally, the proposed approach is applied to the same process model metrics
and process model collection as in Chapter 4 to make the findings comparable.

The remainder of this chapter is organized as follows: In Section 5.2, several
visualization techniques are presented and assessed for their adequateness for
high-dimensional data. Basics of clustering are given in Section 5.3. The visualiza-
tion and clustering approach is introduced in Section 5.4. Afterwards, Section 5.5
shows the results of an experimental application of the approach. The chapter
closes with a conclusion (Section 5.6).

5.2 VISUALIZATION OF HIGH-DIMENSIONAL DATA

A set of n process model metric values of a process model can be represented as
a real-valued vector X € R™. So, the process model metric data of (large) process
model collections is high-dimensional data consisting of many data vectors.
Consequently, the problem arises how to visualize this data.

1 The clustering does not consider behavioral similarity as, for example, in [164].
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(a) 2-dimensional scatter plot.

(c) Parallel coordinates plot.
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(b) Radar chart.

(d) Andrews plot.

Figure 5.1: Examples of several visualization techniques. In (b)—(d), always the same three
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are displayed.

In this section, several different visualization techniques which were found
in a literature review are presented and assessed for their adequateness for this

purpose.

5.2.1

Inadequate Visualization Techniques

In this subsection, several potential visualization techniques which were identified
are presented. They all have in common that the subsequent assessment showed
their inadequateness because of some major disadvantages.



5.2 VISUALIZATION OF HIGH-DIMENSIONAL DATA

Scatter Plots

Scatter plots (see Figure 5.1a for an example) can display two or three dimen-
sions. In the 3-dimensional case, a projection of the third dimension onto the
2-dimensional plane is used. Each vector is represented as a point at the corre-
sponding place in the coordinate system.

Scatter plots are good for visualizing large amounts of vectors. But they are
only applicable for 2D or at most 3D data. Consequently, they are inadequate for
the high-dimensional process model metric data.

Radar Charts

The first ideas of radar charts were published a long time ago by Friedmann in
1862 [46] and by Mayr in 1877 [85, p. 78] respectively.

Radar charts® (see Figure 5.1b for an example) are drawn in two dimensions
and can display vectors with three or more dimensions and non-negative values.
For each dimension, there exists an axis. The axes start in one single center point
and are uniformly placed around the 360° of a circle. For depicting a vector, the
values of the vector components are marked as points on the corresponding axes.
These points are linked by (colored) lines forming a polygon for each vector.

If one wants to display several vectors, one can either draw them in one single
radar chart using different colors for each vector (as in Figure 5.1b) or one can
draw a radar chart for each single vector.

Radar charts soon become confusing when one increases the number of dimen-
sions and/or depicts many vectors. Consequently, they are inadequate for the
high-dimensional process model metric data.

Parallel Coordinates Plots

Parallel coordinates plots (see Figure 5.1c for an example) were proposed by
Inselberg in [61]. They can display vectors with two or more dimensions. For
each dimension, a parallel coordinate axis is drawn in the plane. For depicting a
vector, the values of its components are marked as points on the corresponding
axes. These points are linked by (colored) zig-zag lines.

Even though Inselberg states that the largest data set which he has effectively
worked with had about 800 dimensions and 10,000 vectors [62, p. 663], one needs
a lot of experience with this technique and the use of assisting software (e.g., an
automatic classifier [62, p. 664-668]) is advisable.

As for radar charts, parallel coordinates plots soon become confusing for a
normal observer when one increases the number of dimensions and/or depicts
many vectors. Consequently, they are inadequate for the high-dimensional process
model metric data.

2 Radar charts are also called spider charts or star charts.
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Figure 5.2: Color legend for heatmaps (blue for minimum and red for maximum values).

Andrews Plots

Andrews plots (see Figure 5.1d for an example) were proposed by Andrews in [2].
They can display vectors with an arbitrary number of dimensions. Each vector
X=(x1,...,xn)" € R"is mapped to a function

X1 . .
fe(t) = ﬁ +xpsint+x3cost+x4sin2t+x5cos2t+... ,—nm<t<m (5.1)
in the plot.

Andrews plots preserve the Euclidean distances between the vectors. That
means that vectors which lie close together in the n-dimensional space are
represented by lines (functions) which also lie close to each other. This property
can be used for identifying clusters or outliers among the vectors.

In Figure 5.1d, for example, the close blue and green lines (functions) indicate
that the corresponding vectors lie close to each other.

Nevertheless, Andrews plots soon become confusing when one increases the
number of dimensions and/or depicts many vectors. Consequently, they are
inadequate for the high-dimensional process model metric data.

5.2.2 Heatmaps

Heatmaps surmount the described problems of the inadequate visualization tech-
niques. Based on earlier developments in statistics, this visualization technique
originally became popular in genetics for depicting microarray data (see [177]
for a short overview of its historical development). Recently, this method was
adapted by Pryke et al. to visualize the individuals (i.e., possible solutions) of
population-based multi-objective algorithms (e. g., genetic algorithms) [123].

A heatmap displays the data as a matrix: one row per vector and one column
per dimension (see Figure 5.4 for an example). The values of the cells are color-
coded—blue for minimum values and red for maximum values (see Figure 5.2).
The different dimensions can be individually normalized into the interval [0, 1] if
their domains are too different.

Heatmaps have many advantages compared to other visualization techniques
for high-dimensional data: Large amounts of data can be clearly displayed on
one page. Correlations between different dimensions and the distribution of the
values of the different dimensions become visible.

5.2.3 Principal Component Analysis Visualization

As already described in Subsection 4.2.2, a PCA searches for a linear transforma-
tion (change of basis) so that the new basis vectors—the principal components—
are ordered decreasingly according to their proportion of total variance. If the
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Figure 5.3: Example of a clustering with three clusters.

first few components comprise a high proportion of total variance, one can omit
the remaining components (dimension reduction) without loosing much of the
original information of the data set.

If the resulting dimensionally reduced data has at least three dimensions,
scatter plots can be used for visualization.

Nevertheless, one has to keep in mind that this is a lossy visualization technique
and that the original data was transformed into a new coordinate system.

5.3 CLUSTERING

In this section, the foundations of clustering are presented. A good overview is
given by Berkhin in [12]. Vesanto and Alhoniemi present important facts in [169,

pp- 586—588].

5.3.1 Basics
The general goal of clustering is to partition a set X C IR™ of vectors into k disjoint
subsets (clusters) € = {Cy, ..., Cx} with

X=CGUCU---UC, CNGC=g, i#]j (5.2)
In a good clustering, vectors which fall in the same cluster are quite similar—
while those which fall in different clusters are quite dissimilar. Figure 5.3 gives an
example of a clustering with three clusters. The three different symbols represent
the membership of the vectors to one of these clusters.
There are several different clustering methods. Two often used methods in
practice are hierarchical and partitive clustering. These are explained in more

detail in the following two subsections.
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5.3.2 Hierarchical Clustering

Instead of determining a single set of clusters as in the example of Figure 5.3,
hierarchical clustering creates a hierarchy of clusters in form of a tree structure—
the so-called dendrogram (see the top of Figure 5.4 for an example). Each node of
this tree represents a cluster. The corresponding cluster of a node is the union
of all clusters belonging to this node’s child nodes. The root node represents the
cluster with all vectors, the leaf nodes the clusters which contain exactly one
single vector.

Hierarchical clustering can be divided into agglomerative (bottom-up) and
divisive (top-down) algorithms for constructing the dendrogram. In this thesis,
only agglomerative hierarchical clustering is used. The approach is described in
pseudo code in Algorithm 5.1.

Algorithm 5.1 Agglomerative hierarchical clustering.

Function AGGLOMERATIVEHIERARCHICALCLUSTERING(X)
Input:  set X of data vectors

Output: clustering tree (dendrogram) D

1. C+— O

2: fori=11to|X| do

3 {initialize: assign each vector to its own cluster}
4 Ci « {Xi}

5: C <+ CU{Cy}

6: end for

7. numberClusters « |X]

8: repeat

9 {compute distances between all clusters}

o

10: forall C; € Cdo

11: for all C; € C do

12 if C; # C; then

13: compute distance d(C;, C;) between clusters C; and C;
14: end if

15: end for

16: end for

17: {merge the two clusters C; and C; that are closest to each other}
18: Ci,j + CiU C]'

19: C + C\{C;y, Cj} U {Ci,j}

20: numberClusters < numberClusters —1
21: {store information about two sub-clusters}
22! Cyj.childl <~ G4

23: Cy;j.child2 - G

24: D« Ci,j

25: until numberClusters =1

26: return D

At the beginning, each vector is assigned to its own cluster. Then, the algorithm
works iteratively. In each step, those two clusters which are closest to each other
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are merged into a new cluster which is located at the next higher level in the
dendrogram.

For the inter-cluster distance d(C;, Cj) in line 13 of Algorithm 5.1, several
measures exist. Among these are

¢ single linkage

ds(Ci, Gj) == gnei(r}{d(%i, X}t (5.3)
s

¢ complete linkage

deo(Cy, Cj) := max{d(x,%;)} and (5-4)
%eC;

* average linkage

1
do(Cy, G) = —4——= d(¥X, %) . .

)‘C‘jec]'
In each of these measures, d(X;,X;) is a distance measure between the two

vectors X; and Xj. This could be, for example, the Euclidean distance ||X||> defined
as

(5.6)

5.3.3 Partitive Clustering: k-means

The k-means clustering algorithm is a randomized clustering approach that
generates a disjoint, non-hierarchical partitioning consisting of k clusters. The
algorithm is described in pseudo code in Algorithm 5.2.

It minimizes the error E(C) with

k
E@=) > I5-dl: . (57)

i=1 ey

As the k-means algorithm does not depend on previously found sub-clusters,
it often results in better clusterings than gained with hierarchical approaches.
Yet, as it is a randomized algorithm, its execution is nondeterministic—possibly
resulting in several different clusterings for the same data set X and value k. So,
the question arises how to choose the number k of clusters and how to choose
from the different clusterings potentially found for the same number of clusters.
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Algorithm 5.2 k-means clustering.

Function KMEeaNs(X, k)
Input:  set X of data vectors, number of clusters k

Output: clustering € with k clusters

1: C+ o
2: fori=1tokdo
3: Ci+o
4: C + CU{Cy}
5: randomly initialize cluster center (centroid) c;
6: end for
7. repeat
8:  {compute partitioning for data}
9: fori=1tokdo
10: Ci+o
11:  end for
122 forj=1to [X| do
13: add ¥; to that C; with shortest Euclidean distance between X; and ¢
14:  end for
15: {update cluster centers}
16: fori=1tokdo
17: Ci = ﬁ 2xec N

18:  end for
19: until partitioning stays unchanged or the algorithm has converged
20: return C

In [105], Milligan and Cooper present and assess 30 procedures for determining
the number of clusters of a data set. One possible solution to this problem is the
Davies-Bouldin index [36] defined as

K

1 Sc(ci)+sc(cj)

DB(C) :== — . .
(€)= Z S { 3 (Co O (5.8)
i=1 i#j
Thereby, S is defined as
] — —

Sc(Ci) === D_ II—cila (5.9)

Gl =

)

and acts as a dispersion measure quantifying the average centroid distance of the
cluster’s vectors. The measure d.. is defined as

dee(Cy, Cj) = ‘|6i_(33|’2 (5.10)

and quantifies the distance between two clusters (centroid linkage).

An optimal clustering consists of “compact” clusters with small dispersion and
large distances between the single clusters. Looking at (5.8), one can easily notice
that such an optimal clustering minimizes the value of the Davies-Bouldin index.
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5.4 APPROACH FOR VISUALIZATION AND CLUSTERING OF PROCESS MODEL
COLLECTIONS

Based on the results of the previous two sections, an approach for visualization
and clustering of the high-dimensional process model metric data of process
model collections is proposed in this section.

It is divided into three steps which are subsequently explained.

5.4.1 Heatmap Visualization

In the first step, a heatmap is used for depicting the process model metric values
of the process models.

The process model metric values of a process model are displayed in one
row. The different process model metrics form the columns of the matrix. Ex-
ternal attributes as duration, costs, number of errors or understandability (see
Subsection 3.4.2) can be added as additional columns of the heatmap if desired.

In order to get a better insight into the correlations between the different process
model metrics, the columns of the heatmap can be hierarchically clustered.

5.4.2 Principal Component Analysis Visualization

The second step requires the application of a PCA on the process model metric
data. If the resulting first three components comprise a sufficiently large pro-
portion of total variance, the dimensionally reduced 3-dimensional data can be
visualized using either a 3D scatter plot or three 2D scatter plots.

5.4.3 Clustering

In the third and last step, clusters of structurally similar process models within
the process model collection are searched for. For that purpose, a partitive
clustering algorithm is applied to the process model metric data. The results can
be visualized within a heatmap again.

5.5 EXPERIMENTAL APPLICATION

In this section, the abstract approach presented in the previous Section 5.4 is
applied to a set of selected process model metrics and a process model collection.

5.5.1 Selected Process Model Metrics and Process Model Collection

For the experimental application of the visualization and clustering approach,
the same 33 EPC process model metrics and 515 EPC process models of the SAP
Reference Model as in Subsection 4.3.1 were used in order to make the findings
comparable with those of Chapter 4.
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Figure 5.4: Heatmap displaying the values of the 33 selected process model metrics for the
515 selected process models. The rows (i. e., process models) are ordered by
the number of nodes metric (Sn). The columns (i. e., process model metrics) are
hierarchically clustered using (1 —Spearman’s rank correlation coefficient) as
distance measure.

5.5.2 Results Concerning Heatmap Visualization

The values of the 33 selected process model metrics for the 515 selected process
models are depicted in the heatmap of Figure 5.4.
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The values of each process model metric are normalized into the interval
[0, 1] as their domains are too different (see Table 4.4). The metrics control flow
complexity (CFC) and join complexity (JC) are logarithmically normalized as both
have some outliers with extremely high values compared to the large rest of the
values (see Table 4.4 as well as Figure 4.6f and 4.6g).

The rows (i.e., process models) are ordered by the number of nodes metric
(Sn)- The columns (i. e., process metrics) are hierarchically clustered using (1—
Spearman’s rank correlation coefficient) (see Section C.2) as distance between two
columns (i. e., process model metrics) within the complete linkage inter-cluster
distance measure of (5.4).

The data is clearly displayed in the heatmap on one page. So, the main goal
of the visualization is fulfilled. Furthermore, several observations can be made,
which are consistent with the findings of Chapter 4:

¢ There is a strong positive correlation between the “size metrics” number of
connectors (Sc), number of events (Sg), number of nodes (Sn) and number of arcs

(Sa)-

¢ There is a negative correlation between most metrics (e. g., the “size metrics”)
and the metrics separability (1), sequentiality (=), cross-connectivity (CC),
density (A) and weighted coupling (CP). The negative correlation is especially
strong between Sc, Sg, Sy and Sa on the one hand and A and CP on the
other.

* Most metrics have many small and only some large values. Metric heterogene-
ity (CH) shows about one third to one half very small values—the remaining
values are relatively large. For the metrics separability (IT) and coefficient of
connectivity (CNC), most process models have values in the middle of the
domain.

5.5.3 Results Concerning Principal Component Analysis Visualization

As shown in Table 4.7 of Subsection 4.3.3, the first three components of the PCA
of the selected process model collection comprise more than 71% of the total data
variance. So, a visualization of the scores which is restricted to these first three
dimensions of the 33-dimensional data is meaningful. The results are depicted in
the left column of Figure 5.5. As a 3D visualization is hard to interpret as long as
it is not interactively rotatable, three 2D plots are used instead.

Most process models are located at the origin of the PCA coordinate system.
Especially in Figure 5.5a, one can also note three branches which show to the
top left (in direction of process model Gp), to the bottom (G;) and to the top
right (G3). These findings correlate with the loadings of the 33 selected process
model metrics (see right column of Figure 5.5). Process model G is the EPC
with the most nodes (Sn(G7) = 130) and arcs (SA(G;) = 138) within the selected
process model collection. Consequently, it is located in the direction of the “size
metrics”. G, as an AND-17 has the largest average connector degree (dc) value. So,
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Figure 5.5: Scores and loadings plots of the PCA (first three components). The left column
shows the scores plots of the selected process models. The right column shows
the loadings plots of the selected process model metrics (as in Figure 4.12)
(Part 1 of 2).

it is located at the bottom. And, finally, G3 is a SEQ-1 whose A, =, TT, CP and CC
metric values are relatively large—resulting in a location in direction of these five
metrics at the top right.

5.5.4 Results Concerning Clustering

A clustered version of the heatmap of Subsection 5.5.2 is depicted in Figure 5.6.
The clustering was done using the k-means clustering algorithm for three clusters.
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Figure 5.5: Scores and loadings plots of the PCA (first three components). The left column
shows the scores plots of the selected process models. The right column shows
the loadings plots of the selected process model metrics (as in Figure 4.12)
(Part 2 of 2).

Before clustering, the input data (normalized metric values from the non-
clustered heatmap) was scaled to mean 0 and variance 1 for each dimension. The
selection of the optimal number of clusters and the optimal clustering with this
cluster number for the input data was done using the Davies-Bouldin index. The
depicted clustering has a Davies-Bouldin index of 1.001289 based on the scaled
values.

The three clusters are not that “spectacular”. They simply segregate the process
models into three sets with middle (top), large (center) and small (bottom) metric
values for the first five metrics. If one looks at the results of the PCA visualization
in Subsection 5.5.3, this observation is not that surprising. In the left column of
Figure 5.5, also no clear cluster structure of the scores is identifiable.

5.6 CONCLUSION

In this chapter, an approach for visualization and clustering of high-dimensional
process model metric data of process model collections was proposed.

First, different visualization techniques were examined for their suitability for
visualizing many high-dimensional data points. Next, basic clustering methods
were presented.

The approach comprises

1. a compact heatmap visualization of the metric data,

2. a 3D scatter plot visualization of the outcome of a PCA of the data and
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Figure 5.6: Clustered heatmap displaying the values of the 33 selected process model
metrics for the 515 selected process models. The rows (i. e., process models)
are separated into three clusters (see bar with gray scale values at the left).
The columns (i. e., process model metrics) are hierarchically clustered using
(1 —Spearman’s rank correlation coefficient) as distance measure.

3. a clustered heatmap visualization where the metric data is clustered for
(structurally) similar process models within a process model collection.

The approach was successfully applied to the same EPC process model metrics
and process models as in Chapter 4.



5.6 CONCLUSION

It could be demonstrated that the visualization of 33 process model metric
values for 515 process models using heatmaps is possible and still clear for a
human observer. Furthermore, the findings on the correlations between process
model metrics and on their value ranges which could be gained visually are also
consistent with the statistical results of Chapter 4.

Using the results of a PCA of the process model metric data, it was possible to
visualize the data within the three-dimensional coordinate system induced by
the first three components of the PCA (comprising more than 71% of the total
data variance).

In contrast, the three clusters of structurally similar process models which were
found were not that “spectacular”. It should be examined in future work whether
other process model collections have more interesting clusterings.
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MEASURING STRUCTURAL PROCESS MODEL
UNDERSTANDABILITY

6.1 INTRODUCTION

Following the process measurement approach of Subsection 3.4.2, the values of
external attributes of process models are predicted based on the values of internal
attributes.

One very important external attribute is process model understandability of
involved humans (e. g., process designers, process analysts, process implementers
or people executing a process). Understandability influences other quality aspects
of process models like error-proneness and maintainability. Even though the
importance of understandability is undoubted, Mendling et al. state that “we
know surprisingly little about the act of modeling and which factors contribute
to a ‘good” process model in terms of human understandability” [101, p. 48].

Some published studies try to examine the dependencies between some influ-
encing factors and process model understandability: In [138, 139], Sarshar et al.
compare the understandability of different process modeling languages. Recker
and Dreiling examine whether somebody’s experience with one process modeling
language can be helpful for understanding process models based on another
modeling language he/she is not familiar with [125]. Mendling et al. search for
dependencies between personal and process model specific (structural) properties
and process model understandability [101]. In [102], Mendling and Strembeck
also examine the influence of content related factors on process model under-
standability. Reijers and Mendling test the effect of process model modularization
on process model understandability [126].

One can distinguish at least two aspects of process model understandability—
structural and semantic process model understandability. Structural process model
understandability entirely abstracts from a process’s real goal (e. g., an insurance
claim process). Instead, only the understandability relating to its structure (i.e.,
the process model is only seen as a graph with nodes and edges) is considered.
Here, questions like order of activities, number of times an activity can be
executed, possible parallelism between activity execution, etc. are of interest.
Semantic process model understandability—on the other hand—also considers
what is actually done during the process model’s activities, how these activities
are interrelated and how they contribute to the process’s final goal.

Only the measurement of structural process model understandability is ex-
amined in this chapter (i.e., finding a valid measuring system as defined in
Subsection 3.4.1). The analysis of possible influencing factors on structural pro-
cess model understandability (i.e., possible prediction systems) is beyond the
scope of this thesis.
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Figure 6.1: Chapter visually located within the measurement approach of Subsec-
tion 3.4.2.

For examining structural process model understandability and validating ap-
propriate prediction systems (as done in the above mentioned studies), one first
has to quantify structural process model understandability. Thus, a proper mea-
sure for structural process model understandability which fulfills the reliability
and validity requirements for measuring systems (see Subsection 3.4.3) has to
be found. Looking at the few proposed measures for structural process model
understandability, serious doubts about this necessary validation arise.

In this chapter, concrete and detailed definitions for measuring structural
process model understandability are given which exceed those in existing publi-
cations. Using these definitions, hypotheses about effects of measuring structural
process model understandability are formulated which have to be considered
in the measuring process. Finally, an experimental evaluation is conducted to
examine these hypotheses.

Figure 6.1 shows where the chapter is visually located within the measurement
approach of Subsection 3.4.2.

The remainder of this chapter is organized as follows: In Section 6.2, existing
approaches for measuring structural process model understandability are pre-
sented and some major points of criticism on these approaches are introduced.
A general framework for the evaluation of modeling technique understanding,
which is used as a basis of an own measurement approach, is shown in Section 6.3.
This own measurement approach for measuring structural process model under-
standability and related hypotheses about some effects of measurement are given
in Section 6.4. Section 6.5 shows the results of an experimental evaluation of this
measurement approach and the related hypotheses. The chapter closes with a
conclusion (Section 6.6).

6.2 RELATED WORK

In this section, related work on measuring structural process model understand-
ability is presented and discussed. Subsection 6.2.1 shows existing measurement
approaches. Criticism on these approaches is given in Subsection 6.2.2.



6.2 RELATED WORK

6.2.1 Existing Approaches

Structural process model understandability is a non-physical property as de-
scribed in Section A.3. Thus, a concrete operationalization (see Definition A.13)
has to be found in order to measure this property. In the literature, one can find
some propositions for such an operationalization.

In [138, 139], Sarshar et al. examined the influence of different process modeling
languages (EPCs vs. Petri nets) on structural process model understandability.
They selected a process model which was depicted in an EPC as well as a Petri
net version (both with more than 8o nodes). For both versions, a questionnaire
with ten multiple-choice questions was created. 50 students participated in the
experiment. They were randomly assigned either to the EPC or the Petri net
group. The number of correct answers to the process model related questions
served as operationalization of structural process model understandability.

In [101], Mendling et al. searched for possible dependencies between personal
and process model specific (structural) properties and structural process model
understandability. They used a questionnaire which was answered by 73 students
who had followed courses on process modeling. For the questionnaire, they se-
lected 12 process models (each with 25 tasks). The process models were depicted
in a simplified EPC-like notation (without events) in a top-to-bottom-style. The
tasks were just labeled with capital letters. As operationalization of structural
process model understandability, Mendling et al. created the SCORE measure:
Each student had to answer eight closed questions on order, concurrency, exclu-
siveness or repetition of tasks as well as one open question on possible errors for
each process model. The sum of correct answers (at most nine) gives the SCORE
value.

In addition to the goals of [101], Mendling and Strembeck also examined the
influence of content related factors on structural process model understandability
in [102]. For that purpose, they designed an online questionnaire which was
answered by 42 students and practitioners. Six process models with an equal
number of tasks—each in two variants (one with tasks labeled with capital letters
and a second one with tasks labeled with normal descriptive text)—were selected.
The process models were depicted in the same notation as in [101]. For each
process model, six yes/no questions on process model structure and behavior
were chosen. The subjects of the experiment were randomly assigned to one of
two questionnaire variants (capital letter labels and text labels). The measure
PSCORE was calculated as the sum of correctly answered questions on the six
process models (at most 36) and served as an operationalization of structural
process model understandability related to a person. The measure MSCORE—on
the other hand—was calculated as the sum of correct answers from all participants
to one process model. It served as an operationalization of structural process
model understandability related to a process model.

In [126], Reijers and Mendling analyzed the influence of process model mod-
ularity on structural process model understandability. For that purpose, they
selected two large process models A and B (with 105 and 120 tasks respectively
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in the flattened version) and additionally constructed a modularized version for
both. A questionnaire with 12 questions for each of the four process models (A/B
and flattened /modularized) was used. The questionnaire was answered by 28
experienced consultants. The percentage of correctly answered questions given
by a subject was used as a measure for his/her level of structural process model
understandability.

6.2.2  Criticism on Existing Approaches

The proposed operationalizations for structural process model understandability
are intended to serve as measurement systems as defined in Subsection 3.4.1.
Consequently, they have to fulfill the validation requirements reliability and
validity of Subsection 3.4.3 and—with more details— Subsection A.3.2.

Looking at the proposed measures, large doubts arise whether these require-
ments are really fulfilled.

Content Validity

Content validity is concerned with whether a measure covers the range of mean-
ings included in the underlying concept (see Subsection 3.4.3 and A.3.2).

Sarshar et al. ask questions on the states before and after special events (EPC)
or transitions (Petri net) are reached [139, pp. 32-34, 39—41]. Mendling et al. name
four aspects of structural process model understandability: understanding of
order, concurrency, exclusiveness and repetition [101, p. 52]. In [102, p. 146],
Mendling and Strembeck ask questions on choices, concurrency, loops and dead-
locks. But these are not used to compute the MSCORE measure for process
models. For [126], the asked questions are not given. It is only stated [126, p. 26]
that the whole measurement approach is similar to that of [101].

Looking at these publications, some questions arise: Do other important aspects
of structural process model understandability exist? How different is the under-
standing based on the different aspects? How can “overall structural process
model understandability” be computed?

Reliability

Reliability requires that measure values obtained by different observers of the
same process model have to be consistent (see Subsection 3.4.3 and A.3.2).

In [138, 139], Sarshar et al. ask only ten questions per process model version
(EPC or Petri net)—even though these process models have more than 8o nodes. In
[101, 102], only eight and six questions per process model are asked, respectively.
And in [101], these questions are even distributed to four different aspects. Reijers
and Mendling ask 12 questions on process models with more than 100 tasks in
[126]. In all mentioned publications, it does not become clear how the nodes
(tasks, functions, events or transitions depending on the used process modeling
language) involved in the questions are selected.
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Figure 6.2: “Reading” a model as a form of knowledge construction [51, p. 82].

So, the question arises whether this selection is representative for the process
model. It is possible that complicated parts of the process model have been
omitted or only especially complex parts have been selected. This selection could
have a big influence on the measured values.

63 FRAMEWORK FOR EVALUATING MODELING TECHNIQUE UNDERSTAND-
ING

In this section, the framework for evaluating modeling technique understanding
by Gemino and Wand [51] is presented. As it is applicable to arbitrary modeling
techniques—including process modeling techniques, it can serve as a basis for
developing an own measurement system for structural process model under-
standability in this chapter.

According to Gemino and Wand, (graphical) modeling techniques are used
to communicate about the specification and the application domain of an in-
formation system in order to improve the common understanding among the
involved stakeholders. In their view, “requirements development can be viewed
as a process of accumulating valid information and communicating it clearly to
others. This makes the process of requirements development analogous to the
process of learning [...].” [51, p. 80]

Consequently, they use Mayer’s framework of learning [84] as one basis for
their own evaluation framework [51, p. 82].

Gemino and Wand distinguish two tasks when using modeling techniques:
“writing” a model (creating a model to represent parts of the real world) and
“reading” a model (creating a mental representation from a model) [51, p. 80]. In
this chapter, only the second task is of interest.

For evaluating the viewer’s understanding when “reading” a model, Gemino
and Wand suggest to see “reading” (i. e., interpreting and understanding) a model
as a form of knowledge construction (as depicted in Figure 6.2).

The starting points of this knowledge construction are

¢ the content (part of the real world represented in the model),

¢ the presentation method (used modeling technique) and
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¢ the model viewer characteristic (attributes of the viewer before looking at
the model, including knowledge of and experience with the domain and
the modeling technique).

They influence the knowledge construction and consequently the learning out-
come which—again—changes the model viewer characteristic. This cognitive
process is not directly observable, but has to be observed indirectly through
learning performance tasks. [51, pp. 82-83]

Gemino and Wand list two types of such tasks: comprehension and problem-
solving tasks. The former include questions regarding attributes of and relation-
ships between model items—while the latter include questions going beyond the
information given originally in the model. [51, p. 83]

For measuring semantic process model understandability, problem-solving tasks
could be a good way. One could conduct experiments in which process models
have to be modified /corrected—similar to the field of software engineering where
source code has to be modified or errors have to be found and corrected. Yet, as
mentioned in the introduction, measuring semantic process model understand-
ability is not topic of this thesis.

Comprehension tasks—on the other hand—seem to be useful for measuring
structural process model understandability in this chapter. The questions asked
in [101, 102, 126, 138, 139] fall into this category.

Finally, Gemino and Wand point out that one has to control some of the
influencing factors content, presentation method and model viewer characteristic
when studying the others [51, p. 83].

Thus, for measuring structural process model understandability in this chapter,
one has to decide which of the three influencing factors content (i. e., process
model), presentation method (i. e., process modeling language) and model viewer
characteristic (e. g., knowledge of process domain and process modeling language)
one is interest in.

64 APPROACH FOR MEASURING STRUCTURAL PROCESS MODEL UNDER-
STANDABILITY

In this section, an own approach for measuring structural process model under-
standability is introduced. It tries to overcome the existing measures’ potential
problems with reliability and validity which were identified in Subsection 6.2.2.
At the same time, it is as similar to the existing measurement approaches of
Subsection 6.2.1 as possible so that hypotheses about the existing approaches’
potential problems can be formulated and examined in subsequent experiments
(see Section 6.5).

The approach is based on Gemino and Wand's framework for evaluating mod-
eling technique understanding which was presented in the previous Section 6.3.
The understandability is measured using comprehension tasks—consistent with
the existing approaches. The major advantages of this approach are:

* The approach systematically creates the asked questions (“comprehension
tasks” in Gemino and Wand’s framework) for all possible process models
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without human interaction. So, the potential question selection problem is
avoided. Consequently, the retrieved numbers for different process models
should really be comparable.

In order to make this practicable, only process models using a special
process modeling language (“presentation method” in Gemino and Wand'’s
framework) are allowed. The same EPC-like notation without events as in
[101] is used.

¢ Furthermore, the approach tries to measure understandability, which is a
subjective property of a viewer (cf. “model viewer characteristic” in Gemino
and Wand'’s framework), as objective as possible.

In Subsection 6.4.1, different aspects of structural process model understand-
ability are given. Furthermore, the generic questions used as comprehension
tasks are defined. Subjective and objective measures for structural process model
understandability are introduced in Subsection 6.4.2. Subsection 6.4.3 and 6.4.4
propose two techniques for reducing the number of asked questions.

6.4.1 Aspects of Structural Process Model Understandability

As already discussed in Subsection 6.2.2, it is important to cover the different
aspects of structural process model understandability to fulfill the content validity
criteria for measures. In this chapter, the aspects concurrency, exclusiveness, order
and repetition identified by Mendling et al. in [101, p. 52] are used. In doing so,
the possible existence of other aspects is not denied. Unlike in [101], detailed
definitions of the questions for the different aspects are given.

First, the term “activity period”, which is later used in questions, is defined.

Definition 6.1 (Activity period) An activity period of task t is the period between a
point in time when t becomes executable and the next point in time when the actual
execution of t terminates (see Figure 6.3).

Now, relations for the four aspects of structural process model understandabil-
ity can be defined.
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Definition 6.2 (Concurrency) For the questions on task concurrency, the relations
cs,c3,¢y C T x T with the following meanings are used.

(t1,t2) € c4 & There is no process instance for which the activity periods of tasks t
and t; overlap.

(t1,t2) € c3 & There is a process instance for which the activity periods of tasks t
and t, overlap at least once (Several executions of t1 and t, per process instance are
possible!).—But there also exists a process instance for which this does not hold.

(t1,t2) € cy & For each process instance, the activity periods of tasks t; and t;
overlap at least once.

Definition 6.3 (Exclusiveness) For the questions on task exclusiveness, the relations
e#,e3,ey C T x T with the following meanings are used.

(t1,t2) € es & There is no process instance, for which tasks ty and t; are both
executed.

(t1,t2) € eg & There is a process instance, for which tasks t1 and t, are both
executed.—But there also exists a process instance for which this does not hold.

(t1,12) € ey & For each process instance, the tasks ti and t; are both executed.

Definition 6.4 (Order) For the questions on task order, the relations 04,03,0y C T x T
with the following meanings are used.

(t1,t2) € 03 & There is no process instance for which an activity period of task t
ends before an activity period of task t, starts.

(t1,t2) € 03 < There is a process instance for which an activity period of task t; ends
before an activity period of task t, starts.—But there also exists a process instance for
which this does not hold.

(t1,t2) € oy & For each process instance, an activity period of task t; ends before an
activity period of task t, starts.

Definition 6.5 (Repetition) For the questions on task repetition, the relations r—_y, 17,
T, T+ C T with the following meanings are used.

t € r—1 & For each process instance, task t is executed exactly once.

t € 1, & For each process instance, task t is executed not once or exactly once.
Both cases really occur.

t € 7. & For each process instance, task t is executed not once, exactly once or
more than once. There exists a process instance for which t is executed not once and
another one for which t is executed more than once.

t € v & For each process instance, task t is executed at least once. There exists a
process instance for which t is executed more than once.

At first glance, the definitions of the relations might look a little complicated.
But they are constructed in such a way that the properties of Theorem 6.1 hold,
which is beneficial for the measurement process.

Theorem 6.1 (Properties of relations) The relations have the following properties:
1. The relations c3, c3, cy and ey, e3, ey are symmetric.

2. For all possible task combinations, exactly one relation per aspect is true.
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Proof. The two prepositions are proved separately.

Regarding 1.) Within the definitions of the relations c3, c3, cy, e, e3 and ey, t;
and t; can be interchanged without changing the meaning.

Regarding 2.) Looking at the definitions, this can easily be seen. [

Because of property 2 of Theorem 6.1, the different relations for an aspect can
be grouped to questions on the process model: The question q.(t), for example,
asks which of the relations r—1, 17, 1, 74 holds for task t. Because of property 1 of
Theorem 6.1, q¢(t1,t2) = qc(ta, t1) and qe(ty, t2) = qe(ty, t1) hold.

Theorem 6.2 (Maximum number of questions) The maximum number |Qqmax(P)l
of possible different questions for aspect a € {c, e, 0,7} on a process model p with n tasks
is

|Qc,max(p)| = |Qe,max(p)| = TL(TLT_” (6.1)
|Qo,max(p)| = TL(TL —1 ) (6-2)
’Qr,max(p)’ = n . (6.3)

Proof. The three prepositions are proved separately.

Regarding (6.1): The questions on the aspects concurrency and exclusiveness each
depend on two tasks. As there are n tasks per process model p, n(n — 1) different
pairs of tasks exist. According to property 1 of Theorem 6.1, the relations for both
aspects are symmetric. So, for example, the questions with task order t; and t;
can be omitted if the questions with the reverse task order t; and t; are asked.

Consequently, ’Qc,max(p” = |Qe,max(p)’ = n(anl)

Regarding (6.2): The questions on aspect order each depend on two tasks. As
there are n tasks per process model p, n(n — 1) different pairs of tasks exist.
Consequently, |Qo max(P)l =n(n—1).

Regarding (6.3): The questions on aspect repetition each depend on one task. As
there are n tasks per process model p, [Qrmax(p)| =n. |

As one can see, the maximum number of questions for concurrency, exclusiveness
and order grows quadratically with the number of tasks, while the maximum
number of questions for repetition grows only linearly.

6.4.2  Structural Process Model Understandability

Based on the questions on the four aspects of understandability presented in
Subsection 6.4.1, measures for structural process model understandability can
now be defined.
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In a first step, the understanding of a single subject (personal structural process
model understandability) is measured by systematically asking him/her all
possible questions for one aspect of the process model in question.

Definition 6.6 (Personal structural process model understandability) The per-
sonal structural process model understandability Uy (p, s) for aspect a of process model p
by subject s is defined as the fraction of correct answers given by s to the |Qqmax(P)l
different questions for aspect a about p.

# correct answers t0 Qqmax(P)

|Qa,max(p)|

As persons differ in their knowledge, experience and capabilities, one can
expect to measure different values of personal structural process model under-
standability for different persons. As many human properties (e. g., body height,
weight and IQ value) are approximately normally distributed, a similar behavior
can be assumed here.

Uq(p,s) == ,a€{c,eo,r1} (6.4)

Hypothesis 6.1 The personal structural process model understandability measure values
Uq (p, si) of a process model p are normally distributed.

In a second step, one is interested in a less “subjective” but more “objective”
quantification of understandability. The different values of personal structural
process model understandability can be seen as outcomes of a random variable.
The expected value of this variable can be estimated according to Definition 6.7.
The resulting value can be used as the desired “objective” quantification.

Definition 6.7 (Estimated structural process model understandability) The esti-
mated structural process model understandability Uq(p, S ) for aspect a of process model
p and set S of subjects is defined as the average personal structural process model
understandability of p by the subjects of S.

a(p,S) = |S|ZU p.s) ,a€{ceo0,1} (6.5)

Additionally, confidence intervals for the true expected values of the random
variables for the different aspects of structural process model understandability
can be computed. The width of these intervals will decrease for higher numbers
of subjects—meanwhile, the certainty of the true expected value will increase.

It can be expected that the different aspects concurrency, exclusiveness, order and
repetition of structural process model understandability are of varying difficulty.
Consequently, it is important to measure all aspects to get “overall understand-
ability”.

Hypothesis 6.2 The different aspects of structural process model understandability
result in different values of the Uq(p, S) of a process model p.
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The measures proposed in this subsection require that all possible questions
on an aspect are asked to each subject. As Theorem 6.2 shows, this number
of questions grows quadratically for the aspects concurrency, exclusiveness and
order. Even for practically relevant process models with, for example, ten tasks,
each subject would have to answer 45 questions on concurrency and exclusiveness
respectively as well as 9o questions on order. In the following subsections 6.4.3
and 6.4.4, two possible solutions for this problem are suggested.

6.4.3 Partial Structural Process Model Understandability

A first possibility to reduce the effort for measuring structural process model
understandability is to select only a subset of all possible questions on the
different aspects for being answered by each subject. This approach was also used
in [101, 102].

Definition 6.8 (Personal partial structural process model understandability)
The personal partial structural process model understandability U (p, s, Qq) for aspect
a, process model p, subject s and questions Qq C Qq,max(p) is defined as the fraction of
correct answers given by s to the questions Qq for aspect a on p.

# correct answers to Qq

Qal

Here again, the different values of personal partial structural process under-
standability can be seen as outcomes of a random variable. The expected value of
this variable can be estimated according to Definition 6.9.

Uq(p,s, Qa) ==

,ac{c,eo,r} (6.6)

Definition 6.9 (Estimated partial structural process model understandability)
The estimated partial structural process model understandability Ua(p, S, Qa) for aspect
a, process model p, set S of subjects and questions Q is defined as the average personal
partial structural process model understandability of p and Qq by the subjects of S.

~ 1
ua(P/ S/ QCL) = E Z ua(p/ SI Qa] 7 a e {CI e/ O/ T} (67)
s€S

In order to measure the number of actually asked questions Q relative to the
number of possible questions Qg max(P) on a process model p, one can define the
term coverage rate.

Definition 6.10 (Coverage rate) The coverage rate of a set of questions Qq C Qa,max(P)
on aspect a of process model p is defined as

_1Qdl
' |Qa,max(p)|

There are several possibilities to select a certain number of questions (i. e., equal
coverage rate).

Ta(Qa p) ,ac{ceo0,1} . (6.8)
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Theorem 6.3 The number of different sets of questions Qq C Qq,max(p) with |Qql =m
questions is

(’Qa,max(p)’) o ’Qa,max(p)“
om!(

m |Qa,max (Pl —m)!

(6.9)

Proof. According to the rules of combinatorics, the number of ways of choosing
a set of m symbols from a set of n distinct symbols without repetition is (J*) =

—m!(:l‘im)! [150, p. 86]. Here, n := |Qqmax(P)I- m

One can assume that the different questions are not equally difficult to be
answered. This would have some important implications.

Hypothesis 6.3 The different questions of Qqmax(p) are not equally difficult. This has
two consequences:

1. For the same coverage rate, one gets different values for estimated partial structural
process model understandability depending on the selected questions Q.

2. The smaller the coverage rate, the bigger the standard deviation of the different
values of estimated partial structural process model understandability for that
coverage rate.

As a consequence, the coverage rate should not be selected too small. Fur-
thermore, the questions for the set Q, should be chosen randomly in order to
minimize the risk of intentionally or unintentionally selecting especially easy
or difficult questions when done by a human. The two recommendations shall
assure that the estimated partial structural process model understandability does
not differ much from the true value of structural process model understandability.

6.4.4 Virtual Subjects” Structural Process Model Understandability

Besides using partial structural process model understandability (Subsection 6.4.3),
there is a second possibility to reduce the number of asked questions per subject—
virtual subjects. This approach is based on the following hypothesis.

Hypothesis 6.4 Randomly dividing a set of questions answered by a group of subjects
into two subsets of approximately the same size results in a strong correlation between
the rates of correct answers given by the same subject to the questions of the two subsets.

Roughly speaking this means that a subject with good results for one subset of
questions will also be good for the second subset. This is used in inverse direction
in order to “construct” new virtual subject’s answers out of the answers given by
several real subjects.

The set of all possible questions for one aspect is divided into different subsets
which are each answered by different groups of subjects. Afterwards, in each
group the subjects are ordered by their personal partial structural process under-
standability values. Now, new virtual subjects are “created” by combining the



65 EXPERIMENTAL EVALUATION

answers of one subject from each group. For this step, the best subjects from each
group are combined to the best new virtual subject, the second best subjects to
the second best new virtual subject—and so on.

Using the answers of these so “constructed” virtual subjects, (virtual) personal
structural process model understandability and (virtual) estimated structural
process model understandability can be computed as defined in Definition 6.6
and 6.7 respectively.

65 EXPERIMENTAL EVALUATION

Besides an own approach for measuring structural process model understand-
ability, also some hypotheses about effects of measuring were formulated in the
previous Section 6.4. If they were really true, they would have to be considered
in the measuring process.

In this section, the approach’s applicability and the postulated hypotheses are
experimentally examined. For that purpose, two experiments were conducted.

1. Subsection 6.5.1 presents a rather small experiment. Here, the subjective
and objective measures for structural process model understandability
introduced in Subsection 6.4.2 as well as the partial structural process
model understandability approach of Subsection 6.4.3 are examined.

2. A larger experiment which was also conducted as a kind of re-test is
shown in Subsection 6.5.2. Here, also the virtual subjects approach of
Subsection 6.4.4 is studied.

Both subsections are equally structured: First, the experiment design is ex-
plained (see Subsection B.3.2 for an explanation of the used terminology). Then,
the experiment’s results are given and analyzed. Finally, a validity evaluation
(see paragraph Validity Evaluation in Subsection B.3.3) is carried out.

6.5.1 Experiment 1

Experiment Design

For a first experiment, Hypothesis 6.1 (normally distributed personal structural
process model understandability values), 6.2 (different estimated structural pro-
cess model understandability values for different aspects) and 6.3 (influences of
coverage rate on estimated partial structural process model understandability)
were selected for examination.

Consequently, a rather small process model had to be chosen in order to be
able to let one single person answer all possible questions (for one aspect). So,

* personal structural process model understandability values could be com-
puted from a subject’s answers,
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Figure 6.4: Process model used in experiment 1.

* estimated structural process model understandability values for the four
aspects could be calculated as averages of the corresponding personal values
and

* partial structural process model understandability values could be derived
by considering only parts of the given answers.

oBJECT Finally, the process model depicted in Figure 6.4 was selected. It was
presented to the subjects in the same top-to-bottom-style EPC-like notation as in
[101, 102].

As the process model has only five tasks, all |Q¢max(P)l = |Qe,max(P)l = 10,
|Qo,max(P)l = 20 and |Qr,max(p)| = 5 possible questions for the four aspects (cf.
Theorem 6.2) could be asked to single subjects.

MEASUREMENT INSTRUMENTATION A questionnaire for the two groups A
and B was created. The questionnaire for group A consisted of the 20 questions on
order and the five questions on repetition (25 questions in total)—that of group B
consisted of the ten questions on concurrency and the ten questions on exclusiveness
(20 questions in total).

SUBJECTS Students attending the “Workflow Management” lecture at the Uni-
versitit Karlsruhe (TH) were asked to participate in the experiment. Participation
was voluntary. Finally, 18 students took part in the experiment. They were ran-
domly assigned to one of the two questionnaire groups A and B—resulting in
nine subjects per group.
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Table 6.1: Questionnaire for experiment 1.

group A | group B || total
# questions concurrency — 10 10
# questions exclusiveness — 10 10
# questions order 20 — 10
# questions repetition 5 — 10
# asked questions 25 20 45
# subjects 9 9 18

Table 6.2: Answers given for aspect concurrency.

=[9[gl=[alalalal=]=

S o R O N R N RO R RS
subject = = = = |l oo oo = U, (P, s)
solution|| c3 |cz | c3 | ¢ | ¢y | ch | ch | cp | cp | c3
S2 Ch |Ch| Ch | Ch |Cch|Ch|Cch|cy|cy|cy 0.9
S4 Ch | cp | cp | ¢ |ch|ca|cp|cy|ch| e 1.0
S6 Ch | cp | ca | ¢ |Ch|ca|cp|cp|ch|c3 1.0
$34 Ch | cp | ca | ¢ |ch|ca|cp|cy|ch| e 1.0
S42 Ch | cp | ca | ¢ |Ch|ca|ch|Ccp|ch|cy 0.9
S50 Cy | c3 | c3 Ch |Cy | C3|c3|c3|ca|ch 0.3
$52 Ch | cp | ca | ¢ | c3| - | cp|cp|ch|c3 0.8
856 Ch | cp | ch | ch | cp|cp|cp|cp|cp|c 1.0
S60 C# | cp | ca | € |ch|ca|cp|cy|ch|cs 1.0
correct ||100%|89%|100%{100%|78%|78%|89%|89%|89%|67 %

An overview of the questionnaire’s structure and the involved subjects is given

in Table 6.1.

Results

The answers to the questionnaire are given in Table 6.2 (aspect concurrency),
Table 6.3 (aspect exclusiveness), Table 6.4 (aspect order) and Table 6.5 (aspect

repetition).

PERSONAL STRUCTURAL PROCESS MODEL UNDERSTANDABILITY
sonal structural process model understandability values of the subjects for the

The per-
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Table 6.3: Answers given for aspect exclusiveness.

ARBRRERERERERE

S N O I ORR RO Be)
subject ol oo o] = = = = T | o U, (p, s)
solution|| e3 | e3 | eg | e3|eg| ep | es | ep | ep | e
S2 €3 €3 €3 €3 €3 €4 €4 €4 €3 €3 1.0
S4 e; | eg|e3|e3|e3| ey e es | ep | e 1.0
S6 e; | eg|e3|e3 | e3| ep e es | ep | e3 1.0
S34 e; | eg|e3|e3|e3| ey e es | exp | e 1.0
S42 e3 | e3 | e3| ez | ex| ey e er | es | ey 0.9
S50 €y | €y | €3 | €3 | €3 €4 €4 €4 €3 | €3 0.8
$52 ep | ep | ep | ep | en | ep | en | ep | ey | e3 0.4
S56 €3 €3 €3 €3 €3 €4 €4 €4 €3 €3 1.0
S60 e; | eg|e3|e3|e3| ey e es | e | e 1.0
correct |[78%|78%|89%(89%|89%|100%|100% |100%|89%|89%

0.8
1
o

0.6

0.4

0.2
1

(a) Personal structural process model under-

aspect

standability values for the four aspects.

four aspects concurrency (c), exclusiveness (e), order (0) and repetition (r) are depicted

in Figure 6.5a.

In order to test the hypothesis that the personal structural process model un-
derstandability values are normally distributed for each aspect (Hypothesis 6.1),

0.6

0.4

aspect

(b) Estimated structural process model under-
standability values and 95% confidence in-

tervals for the four aspects.

Figure 6.5: Visualizations of values for experiment 1.
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Table 6.5: Answers given for aspect repetition.

subject ||qr(A)|q+(B)|qr(C)|qr(D)|gr(E)|[Us(p, s)
solution|| r_; Ty Ty T T

S1 T—1 Ty Ty T? ) 1.0
S3 T_1 T4 Ts T7 ) 1.0
S5 T—1 | T4 Ty T T 0.8
S11 T_1 Tk Tk T T 1.0
S35 T_1 Ty Ty T T 1.0
S51 T—1 Ty Ty T? ) 1.0
53 T=1 | T« T T? T? 1.0
S55 T_1 ) Ty T ) 0.8
S57 T—1 | T4 Ts T? ) 0.8
correct (|100%| 67% |100%|100% |100%

a Shapiro-Wilk test [142] was conducted for each of the four data sets. For concur-
rency, exclusiveness and repetition, the null-hypothesis that the data is normally
distributed had to be rejected (p < 0.05). Only for order, this null-hypothesis
could not be rejected on the & = 0.05 level.

Possible reasons for not finding a normal distribution for concurrency, exclusive-
ness and repetition are:

* The process model is too “easy”. So, most values are near 1.0. As the value
range ends there, there cannot exist any bigger values “symmetric” to the
values lower than 1.0.

* The process model is too “small”. Only five and ten questions were asked
respectively. Consequently, personal structural process model understand-
ability values have a “step size” of 0.2 and 0.1 respectively.

* The number of subjects is too low. Only data from nine participants per
aspect could be collected.

ESTIMATED STRUCTURAL PROCESS MODEL UNDERSTANDABILITY Basedon
the data on personal structural process model understandability, the estimated
structural process model understandability values (together with the standard de-
viations of the corresponding personal structural process model understandability
values) were computed (Table 6.6).

Additionally, also the 95% confidence intervals for the expected structural pro-
cess model understandability values of the four aspects were calculated. For order,
the method for estimating confidence intervals for means of normal distributions
[117, pp. 446—447] was used. For the other three aspects, the bootstrap approach
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Table 6.6: Estimated structural process model understandability values, standard devia-
tions and 95% confidence intervals for the four aspects.

concurrency | exclusiveness | order | repetition
Uq(p, ) 0.878 0.900 0478 | 0.933
standard deviation 0.228 0.200 0.240 | 0.100
lower conf. interval bound 0.722 0.755 0.293 | 0.866
upper conf. interval bound 0.989 1.000 0.663 | 0.979

[42], which does not require normally distributed data, was applied. The lower
and upper confidence interval bounds are also listed in Table 6.6.

Furthermore, the estimated structural process model understandability val-
ues and the 95% confidence intervals for the four aspects are also depicted in
Figure 6.5b.

For testing the hypothesis that the structural process model understandability
values for the four aspects are different (Hypothesis 6.2), Wilcoxon rank-sum tests
for independent values (aspects asked for in different questionnaire groups) [117,
pp- 590-597] and Wilcoxon signed-rank tests for paired values (aspects asked for
in one single questionnaire group) [117, pp. 599-603] were used. Both tests do not
require normally distributed data. Only for the combinations order-concurrency,
order-exclusiveness and order-repetition, the null-hypothesis (data belongs to the
same distribution) could be rejected on the & = 0.05 level.

Here again, a possible reason that the values for concurrency, exclusiveness and
repetition are so equal could be that the process model is too “small” and “easy”
so that no really difficult parts which are of varying difficulty for the different
aspects are included.

ESTIMATED PARTIAL STRUCTURAL PROCESS MODEL UNDERSTANDABILITY
In order to test the hypothesis about partial structural process model understand-
ability (Hypothesis 6.3), all estimated partial structural process model under-
standability values for the four aspects were computed.

The values depending on the coverage rate are depicted in Figure 6.6. The
dashed horizontal lines are the lower and upper 95% confidence interval bounds
for the estimated structural process model understandability values of the four
aspects.

In Table 6.7, the mean estimated partial structural process model understand-
ability, the standard deviation of the estimated partial structural process model
understandability values and the rate of values lower and higher than the con-
tidence interval bounds of the four aspects are listed for all different coverage
rates.

Table 6.7 and Figure 6.6 support the hypothesis—aspect order having the
strongest effect: For the same coverage rate, many different estimated partial
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Figure 6.6: Estimated partial structural process model understandability values of the
four aspects depending on coverage rate.

structural process model understandability values exist. The smaller the coverage
rate, the higher the standard deviation and the number of values outside the
confidence interval.

CONCLUSION EXPERIMENT 1 The results of this first, small experiment give
some interesting insights on the postulated hypotheses. While Hypothesis 6.3
(effects of asking only some of the possible questions) is fully supported, only
aspect order has been found to be normally distributed (Hypothesis 6.1) and only
some pairs of aspects (order-concurrency, order-exclusiveness and order-repetition)
are differently distributed (Hypothesis 6.2).
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Table 6.7: Data on estimated partial structural process model understandability values of
the four aspects (Part 1 of 2).

(a) Aspect concurrency.

# questions | cov. rate | mean | s.d. | rate lower | rate higher

1 0.1 0.878 | 0.110 10.0% 30.0%
2 0.2 0.878 | 0.071 0.0% 6.7%
3 0.3 0.878 | 0.054 0.0% 0.8%
4 0.4 0.878 | 0.043 0.0% 0.0%
5 0.5 0.878 | 0.035 0.0% 0.0%
6 0.6 0.878 | 0.029 0.0% 0.0%
7 0.7 0.878 | 0.023 0.0% 0.0%
8 0.8 0.878 | 0.018 0.0% 0.0%
9 0.9 0.878 | 0.012 0.0% 0.0%
10 1.0 0.878 | — 0.0% 0.0%

(b) Aspect exclusiveness.

# questions | cov. rate | mean | s.d. | rate lower | rate higher

1 0.1 0.900 | 0.082 0.0% 0.0%
2 0.2 0.900 | 0.052 0.0% 0.0%
3 0.3 0.900 | 0.040 0.0% 0.8%
4 0.4 0.900 | 0.032 0.0% 0.0%
5 0.5 0.900 | 0.026 0.0% 0.0%
6 0.6 0.900 | 0.021 0.0% 0.0%
7 0.7 0.900 | 0.017 0.0% 0.0%
8 0.8 0.900 | 0.013 0.0% 0.0%
9 0.9 0.900 | 0.009 0.0% 0.0%
10 1.0 0.900 | — 0.0% 0.0%

Consequently, a second—and larger (concerning both size of process model
and number of subjects)—experiment would be useful. In this second experiment,
the results of the first experiment should be retested in a larger setting with a
special focus on those hypotheses which were not supported by the outcome of
the first experiment. Furthermore, the virtual subjects approach (Subsection 6.4.4)
could be applied.

Validity Evaluation

Finally, the necessary validity evaluation (see paragraph Validity Evaluation in
Subsection B.3.3) of experiment 1 has to be carried out.
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Table 6.7: Data on estimated partial structural process model understandability values of
the four aspects (Part 2 of 2).

(c) Aspect order.

# questions | cov. rate | mean | s.d. | rate lower | rate higher
1 0.05 0478 | 0.333 25.0% 30.0%
2 0.10 0.478 | 0.224 28.4% 32.1%
3 0.15 0.478 | 0.177 9.3% 14.6%
4 0.20 0.478 | 0.149 10.6% 14.4%
5 0.25 0.478 | 0.129 10.5% 7.3%
6 0.30 0478 | 0.114 3.7% 6.5%
7 0.35 0.478 | 0.101 3.7% 3.1%
8 0.40 0.478 | 0.091 2.8% 2.5%
9 0.45 0.478 | 0.082 0.8% 1.0%

10 0.50 0.478 | 0.074 0.7% 0.7%
11 0.55 0.478 | 0.067 0.3% 0.1%
12 0.60 0.478 | 0.061 0.0% 0.0%
13 0.65 0.478 | 0.055 0.0% 0.0%
14 0.70 0.478 | 0.049 0.0% 0.0%
15 0.75 0.478 | 0.043 0.0% 0.0%
16 0.80 0.478 | 0.037 0.0% 0.0%
17 0.85 0.478 | 0.031 0.0% 0.0%
18 0.90 0.478 | 0.025 0.0% 0.0%
19 0.95 0.478 | 0.018 0.0% 0.0%
20 1.00 0478 | — 0.0% 0.0%
(d) Aspect repetition.

# questions | cov. rate | mean | s.d. | rate lower | rate higher
1 0.2 0.933 | 0.149 20.0% 80.0%
2 0.4 0.933 | 0.086 40.0% 60.0%
3 0.6 0.933 | 0.057 0.0% 40.8%
4 0.8 0.933 | 0.037 0.0% 20.0%
5 1.0 0.933 | — 0.0% 0.0%

INTERNAL VALIDITY

Internal validity refers to the fact that the effects observed
in the experiment are not caused by a factor which one has no control of or has
not measured (see Definition B.9).

Looking at the threats to internal validity mentioned in Subsection B.3.3, one
can make the following statements:
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¢ History: During the experiment which lasted less than one hour, no events
occurred which were able to strongly influence the subjects.

* Maturation: The experiment was so short that factors as, for example,
fatigue, boredom or hunger had no big influence.

¢ Instrumentation: There was no subjective influence of a human observer of
the experiment on the assessment whether a given answer was correct or
not.

* Mortality: As all subjects finished the experiment, this threat played no role.

¢ Selection: As the subjects were randomly assigned to one of the two ques-
tionnaire groups, possible personal differences should have been balanced.

EXTERNAL VALIDITY External validity refers to the extent to which the re-
sults of an experiment can be generalized out of the scope of the study (see
Definition B.10).

Looking at the threats to external validity mentioned in Subsection B.3.3, one
can make the following statements:

* Population validity: The subjects were students with knowledge in the
area of BPM. Nevertheless, the question remains whether professionals
would produce the same results. Here, it is believed to be most likely that
professionals have maybe a higher personal structural process model un-
derstandability than students as they have longer experience—yet resulting
in the same qualitative effects as the students (e. g., for partial structural
process model understandability). At least the results of an experiment
analyzing differences between students and professionals in software engi-
neering support this hypothesis [133].

¢ Ecological validity: The process model used in experiment 1 was only a very
small “toy problem”. Consequently, it is questionable whether the results
are generalizable to more realistic process models. This is one reason for
the conduction of the following second and larger experiment.

¢ Temporal validity: An influence of the time of the experiment (as long as
the subjects are not tired) is hardly imaginable.

6.5.2 Experiment 2

Experiment Design

The second experiment was conducted as a cooperation with Jan Mendling
(Humboldt-Universitit zu Berlin) and Hajo A. Reijers (Technische Universiteit Eind-
hoven). Its goal was to (re)test the hypotheses with a larger and more realistic
process model as well as with much more subjects.
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Figure 6.7: Process model used in experiment 2.

OBJECT For experiment 2, the process model depicted in Figure 6.7 was used.
It was presented to the subjects in the same notation as in experiment 1.
As the process model has 12 tasks, the number of possible questions for the four

aspects are |Qc,max(p)| = |Qe,max(p)| = 66, |Qo,max(p)| =132 and |Qr,max(p)| =12
(cf. Theorem 6.2).

MEASUREMENT INSTRUMENTATION As the number of possible questions
per aspect is too high (except for aspect repetition), not all could be asked to
one subject. Instead, the questions for concurrency, exclusiveness and order were
divided into different subsets. So, a questionnaire with nine groups (groups 1 to
4: questions on order [01—-04]; groups 5 to 8: questions on concurrency [c5—c8] and
exclusiveness [e5—e8]; group 9: questions on repetition [r9]) was created—resulting
in 13 data sets. In each group, 33 questions were asked (group 9 was filled
by 21 “dummy questions” in order to guarantee equal conditions between the
groups). The detailed assignment of the questions to the groups is shown in
Tables 6.9-6.17.

SUBJECTS Students attending courses on workflow management at the Humboldt-
Universitit zu Berlin, the Technische Universiteit Eindhoven and the Universitit
Karlsruhe (TH) were asked to participate in the experiment. Participation was
voluntary. Participating students from Berlin and Eindhoven got a bonus for their
tinal exam—students from Karlsruhe could use the questions as a training for
similar questions in their exam. Finally, 178 students answered the questionnaire.
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The participants were randomly assigned to one group of the questionnaire. As
this assignment was done for all students (potential participants) before knowing
who would actually participate, the final number of subjects per group is varying.

An overview of the questionnaire’s structure and the involved subjects is given
in Table 6.8.

Results

The answers to the questionnaire are given in Tables 6.9-6.17.

SINGLE QUESTIONS First, the rate of correctly answered questions on the four
aspects were analyzed. These values are given in Table 6.18 and as histograms in
Figure 6.8.

As one can see, the aspect order has a quite different behavior compared to the
other three aspects. While those have narrow peaks near the rate of 1.0, the values
for aspect order are more spread over the whole interval with the peak near 0.6.
So, most questions on the aspect order seem to be more difficult to answer by the
subjects than those on the other aspects.

Next, it was analyzed whether a connection between the rates of correct answers
to questions about concurrency and exclusiveness for the same pair of tasks exist.
As both aspects deal with the execution of task pairs during a process instance
execution, such a connection is imaginable. The single value pairs are depicted in
Figure 6.9a. As Spearman’s rank correlation coefficient (see Section C.2) is only
0.465, there is no strong connection.

Afterwards, the same analysis was done for the aspect order and order in reverse
ordering. The single value pairs are depicted in Figure 6.9b. Here, Spearman’s
rank correlation coefficient is —0.209. So, knowing the rate of correct answers to
question q,(t1,t2), no prediction for q,(ty,t1) can be given.

PERSONAL (PARTIAL) STRUCTURAL PROCESS MODEL UNDERSTANDABILITY
The personal (partial) structural process model understandability values of the
subjects of the nine groups are depicted in Figure 6.10 and 6.11.

In order to test the hypothesis that the personal structural process model
understandability values are normally distributed for each aspect (Hypothesis 6.1),
a Shapiro-Wilk test was done for each of the 13 data sets. Only for 01, 02 and oy,
the null-hypothesis that the data is normally distributed could not be rejected
on the « = 0.05 level. For the remaining data sets, the null-hypothesis had to be
rejected (03: p = 0.037; c5: p = 0.035; all others: p < 0.05).

ESTIMATED (PARTIAL) STRUCTURAL PROCESS MODEL UNDERSTANDABILITY
Based on the data on personal (partial) structural process model understand-
ability, the estimated (partial) structural process model understandability values
(together with the standard deviations of the corresponding personal (partial)
structural process model understandability values) were computed (Table 6.19).
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Table 6.8: Questionnaire for experiment 2.

group 1 | group 2 | group 3 | group 4 | group 5 | group 6 | group 7 | group 8 | group 9 || total
[o1] [02] [03] [o4] | [c5/e5] | [c6/eb] | [c7/e7] | [c8/e8] | [r9]
# questions concurrency — — — — 17 17 16 16 — 66
# questions exclusiveness — — — — 16 16 17 17 — 66
# questions order 33 33 33 33 — — — — — 132
# questions repetition — — — — — — — — 12 12
# “dummy questions” — — — — — — — — 21 21
# asked questions 33 33 33 33 33 33 33 33 33 297
# subjects 18 20 21 20 18 25 21 20 15 178
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Table 6.10: Answers given in group 2.
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Table 6.12: Answers given in group 4.
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et | 2| 2| 2|l el ||| e el |wmsan
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5062 03| 03|03 |03 | 03|03 |04 |04 |0z |0z |0s|0y| 04| 03|04|04|03|04 |04 |04|04|0z|0s|0s|03|0%|04|03|0% |0y |0s]|0z]|o03 0.61
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Table 6.14: Answers given in group 6.

MEASURING STRUCTURAL PROCESS MODEL UNDERSTANDABILITY
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S A S O R O O O R R N o A e I I | I B o O O e = - R R RO R =

abject || S| S| S| S| s|s|e|s|s|c|s|s|c|s|c|s||5|| ||| || ||| |||

solution C# C# nm Ow C# Cvy C3 C3 C3 C3 C3 Ow C3 C3 C3 C3 C# €3 e €3 €3 e €3 ey e ey €3 ey Nm Nw €3 e ey

S098 c3 | ca|ca|ca|ca|cv|ca|ca|ca|ca|ca|cp|c3g|cg|cg|ca|cya|[1.00]] e eg | eg e3 eg eg ey | es | ey e3 ey | ey | ey | e3 | e3 | ey [|1.00
S099 cs|c3a|cg|ca|leca|ley|ca|ca|eca|ca|cey|cy|lca|ca|cey|ca|cy [[0.53]] es eg | eg e3 eg eg eg | es | ey e3 ex | ep | es | es | es | ey [[0.81
$100 cs |ca|c3|ca|ca|cp|ca|c3|c3|c3|c3|cp|eca|ca|ca|ca|cy |[082] es |e3|e3 | e3 |e3 | e3 |ey |e3 |e3g | es |ey |ep | e3 | e3 | e | ey |0.88
S101 C3 C3 Cc3 C3 C3 Cvy C3 C3 C3 Cc3 C3 Cvy C3 Cc3 C3 C3 C3 0.59 €3 €3 €3 €3 €3 €3 ey (=] ey €3 ey [} €3 eg eg ey 1.00
S102 cz |ca|ca|ca|ca|cy|ca|ca|ca|c3|c3|cp|cea|cg|cg|ca|cya|[1.00]] e e3 | eg es e3 eg ey | es | ey es ey | ey | ep | e3 | e3 | ey [|1.00
$103 C3 C3 Ch Ch C3 Cvy C3 C3 Cc3 c3 C3 C3 Cc3 c3 C3 C3 C3 1.00 €3 e3 €3 €3 e3 €3 ey e3 ey €3 ey €3 €3 e3 e3 ey 1.00
S104 cz |ca|ca|ca|ca|cy|cv|ca|cey|c3|cey|ca|ceca|ca|cy|ca|cy ||[076]] es |e3|e3 | e3 |e3 | e3 |eyv |e3|eyv | e3 |ey |ex | ep | ex | e | ey |[1.00
S$105 C3 C3 (o] C3 [oF:] Cvy C3 C3 Cc3 c3 C3 C3 Cc3 c3 C3 Cc3 [oF:] 1.00 e3 e3 (=] €3 e3 (=] ey e3 ey €3 ey e} e3 €e3 e3 ey 1.00
S106 cy |c3|cg|cy|ca|cy|ca|ca|ca|ca|ca|cg|cg|cg|cg|ca|ca|l052] es eg | ey e3 €3 e3 ey | e3 | ey e3 ey [ eg | ey | e3 | eg | ey [|0.88
s107 c3 | ca|ca|ca|ca|ca|ca|ca|c3|c3|cg|cp|leca|cg|ca|ca|cy |[094]| es |e3|e3 | e3 |e3 | e3 |ev |e3|eyv | ez |eyv |ep | es | es | e | ey |[1.00
S108 cp | ca|ca|ca|ca|cy|ca|ca|ca|ca|ca|cp|ca|ca|ca|ca|ca|l082] es eg | eg e3 eg eg ey | es | ey e3 ey | ey | ep | e3 | e3 | ey [|1.00
S109 cz |ca|ca|cy|ca|ca|ca|ca|ca|cy|ca|ca|ca|cg|ch|cal|cy|l0.5?] es ey | eg es ey eg ey | ey | es es ey [ ey [ ex | ex | e3 | ey [|0.62
S110 cp |ca|ca|ca|ca|cv|ca|cp|ca|cp|ca|cp|cp|ca|ca|calcall07] e3 eg | eg e3 eg eg ey | es | e3 e3 ey | ey | ep | e3 | e3 | ey [|0.94
S111 cs|c3|cg|ca|ca|cy|ca|c3|c3|c3|ca|ca|ca|ca|ca|ca|cy |[076]] es |es|e3 | e3 |e3 | e3 |eyv |e3|eyv | es |ey |ex | es | e | e | ey |[1.00
S112 c3 |ca|ca|ca|ca|cy|ca|c3|c3|c3|cg|cp|ca|cg|ca|ca|cy [1.00]] es |e3|e3 | e3 |e3 | e3 |ey |e3 |ey | e3 |ey |ep | ep | es | e | ey |[1.00
$113 C# C# C3h Ch C# Cvy C3 C3 C3 C3 C3 Ch C3 C3 C3 C3 C# 1.00 €3 (=] €3 €3 (=] €3 ey (=] ey €3 ey €3 €7 €3 €3 ey 1.00
S114 c3 |ca|ca|ca|ca|cy|ca|c3|c3|c3|cg|cp|ca|cg|ca|ca|cy [1.00]] es |e3|e3 | e3 |e3 | e3 |e3 | e3 |e3g | eg |e3 |ep | ep | es | e | e3 |075
S115 cp | ca|ca|ca|ca|ca|ca|ca|ca|ca|cp|cp|c3g|cg|cg|ca|cy|l0.82]] e eg | eg e3 eg eg es | es | ey e3 ey [ ey | ep | e3 | e3 | ey [|0.94
S116 cz |ca|ca|ca|ca|cy|ca|cp|c3|cy|ca|cp|ca|ca|ca|cal|cy |[071]| ez |e3|e3 | e3 |e3 | e3 |eyv |e3 |eyv | ez |ey |ep | es | es | e | ey |[1.00
s$117 cg|ca|ca|ca|ca|cy|ca|cap|ca|ca|cp|cp|ca|ca|ca|cal|ca ||[052] ez |ea|e3 | e3 |e3 | e3 |ev |e3|ev | e3 |eyv |ep | ep | e3 | ep | ev |0.94
S118 C# C# C3 Ch C# Cvy C3 Cvy C3 C# C3 Ch C3 C3 C3 C3 C# 0.88 €3 (=] €3 €3 (=] €3 ey (=] ey €3 ey €3 €3 €3 (=] €3 0.94
$119 cp | ca|ca|ca|ca|cv|ca|ca|cey|ca ey |c3|c3|cg|cy|ca|cy |[076]] ez |e3|e3 | e3 |ev | e3 |ev |e3 |eyv | e3 |eyv |es | ep | e3 | e | ey |[0.94
S120 cz |calcp|ca|cep|evy|ca|ea|ca|e3|ca|cez|c3|cea|ca|ca|cz|[1.00 e e3 | ey eq e eq ey | es | ey eq ey | ep | ex | e3 | e3 | ey [|0.94
$121 c3 |ca|ca|ca|ca|cy|ca|c3|c3|c3|cg|cp|eca|cg|ca|ca|cy [1.00]] es |e3|e3 | e3 |ey | e3 |ey |e3 |ey | e3 |ey |es | ep | es | e | ey |[0.94
$122 cy |ca|cp|ca|cp|cey|ca|cg|ca|cecg|ca|cp|ca|c3|ca|ca|cy |([1.00| es |[e3g|eg| e3 |e3 | eg |ey|e3|ey | e3 | ey |ezx | ez |e3|e3 | ey |[1.00
correct :moa\o 84%|72%|76%|76%|84%|26%|84%|92%|84%|80%|84% |88%|88%|80%|88%|84% :_ooo\o 96%|92%|100%[88%[100%|88%|96%|84%[100%|92%|92%|92%|96%|96%|92%
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Table 6.16: Answers given in group 8.

"o B
- b I R S - 9
Bl ¥ s |s|alzle|% ]z 5|22 d]g|el%|lalg|a|z |2 |2|d|=s|g|g|l5|5|22]2
SO S O R O R O - e i e | = | B B e S e e s O RN =N IR I = A |
swhject | & | | S| s |S|s|s|s|s|s|]| s |c|c|s|s|S|c|c|c|s|s| || c|c|c|s|s|s| |||
solution Ch C3 Ch Ch C3 C3 Cvy Cc3 Cvy C3 C3 Ch Ch C3 Cc3 C3 e3 e3 e3 e3 e3 ey e3 eg e3 €e3 e3 e3 e3 e3 e3 €3 e3
S144 C# C3 C3 Ch C# (=] C3 C3 C3 C3 C3 C# C3 C3 C3 C# 0.81 €3 (=] (=] €3 €3 ey €3 (=] €3 €3 €3 ey €3 €3 (=] €3 €3 0.94
S145 c3 |ca|ca| cp |ca|ca|cev|ca|cy |c3|cev | ¢z [cy|c3|c3|cyp||0.94||es|es|e3|e3|e3| ey es es |eg|eg|es|e3g|e3 | e3 es | e3 | e3 |[1.00
S146 ch | ca | cp c# c3 | c3|cy|ca|cy|ca|ca c3 cy | c3 | c3|cp ||1.00|| es | e3|e3g|e3|e3 ey e3 e3 eg | e | e3g | eg | e3g e3 eg e3 | e3 [|1.00
S147 c3 |ca|cv| ca |ca|ca|ca|ca|ca|c3|c3| cz [cy|ca|ca|cy||08T|es|exn|exn|exn|ex| ev e3 es |e3|e3|e3|ep |e3 | ez e | e3 | ey [|0.59
S148 c# | c3 | c3 c# c3 | c3|cy|ca|cy|ca|eca c3 cy | c3 | c3|cp ||1.00|| es|e3|e3|e3|e3 ey e3 e3 eg | e | e3g | eg | e3g e3 eg e3 | e3 [|1.00
$149 cy |ca|cp| cp |ca|cea|cey|ca|cey|ca|cg| ca [ cx|c3|ca|cp |[1.00||ev|es|ev|e3|es| ey es es |eg|eg|es|e3g|e3 | e3 eg | eg | eg ||0.88
S150 c# | c3 | c3 c# c3 | c3|cy|ca|cy|ca|eca c3 cy | c3 | c3|cp ||1.00|| es|e3|e3|e3|e3 ey e3 e3 eg | e | e3 | eg | e3g es eg e3 | e3 [|1.00
$151 cp |ca|ca| cp |ca|cev|cev|cy |cy |cy |ca| ca ey |[ca|ca|ca||0.75|es|es|e3|ev|e3| ey es es |eg|eg|ex| ey | ey | e3 ey | eg | eg ||0.82
S152 c3 | ca|ca| cp |ca|ca|cev|ca|cy |c3|c3| cz [cy|c3|c3|cy||1.00||es|es|es|ea|es| ey es es |eg|eg|eg|e3g|e3 | e3 es | e3 | e3 |[1.00
$153 cp |ca|ca| cp |ca|ca|cev|ca|cy |ca|ca| cp [cp|ca|cp|cal||094||es|e3|e3|e3|e3| ey eq es | eg | e3s|e3 | e3 |e3 | e3 eg | eg | eg |[1.00
S154 c3 | c3 | cz c3 c#z | c3|cy|ca|cy|ca|ecs c# cy | c3 | c3|cy ||1.00|| es|e3s|ev|e3|es ey es es eg | es | es | eg| e3 es es es | es [|0.94
S$155 C3 C3 Ch C3 C3 C3 Cvy Cc3 Cvy C3 C3 C3 Ch C3 Cc3 C3 1.00 €3 e3 €3 €3 €3 ey €3 e3 €3 €3 €3 (=] €3 €3 e3 €3 €3 1.00
S156 c |ca|ca| cp |ca|cev|cv|cy |cy |cv |c3| cz |cy|c3|c3|cy||08T||es|es|es|ea|es| ey es es |eg|eg|eg|e3g|e3 | e3 eg | e3 | e3 |[1.00
S157 c3 |ca|ca| cp |ca|ca|cv|ca|ca|ca|cey | ¢z [cp|c3|c3|cp ||0.88||es|es|e3|exn|es| ev es e3 |e3|e3|e3|ep |e3 | e3 e3 | e3 | ey [|0.82
S158 cp | ca|ca| cp |ca|ca|cev|ca|cy |ca|ca| cp [c3|ca|cg|cp||0.88||es|es|esn|es|es| ey eq ez | e3 | e3 | e3 | ep | ez | e3 es | e3 | ez [[0.76
S159 c3|c3|ca| cp |ca|ca|ca|ca|ca|cy|c3| cz [cy|ca|c3|cy ||056|] - |es|ev|ezr|ev| ev e3 es | ey |ep | ey |e3|ep | e3 e3 | ey | ez [[0.41
$160 cp |ca|ca| cp |ca|ca|cev|ca|cy |ca ey | ¢z [cp|ca|ca|cp||094|es|es| - |e3|e3| ev e3 es |e3 |e3|e3|e3|e3| e3 eg |e3 | e3 [[0.94
S161 c3 | ca | c3 [£3 cz | c3|cy|ca|cy|ca|ey c# cy | c3 | c3|cp [|0.94|| es | e | e |e3 | e3 ey es es eg | es | es | eg| e3 es es es | es [|1.00
S162 cp |ca|ca| cp |ca|ca|cev|ca|cy |ca|cap| ca |cp|cp|cp|cal||0.75|es|es|e3|e3|e3| ev e3 es |e3 |e3|e3|e3|e3| e3 e3 | e3 | e3 |[1.00
S163 c3 | ca | ca [£3 c# | c3|cy|ca|cy Cy c# cy | c3 | c3 | cz [|0.94|| es | es e3 | es ey es es eg | es | es | eg| e3 es es es | es [|1.00
correct :@mc\o 90%[90%[100%|95%|90%|85%|90%|80%|80%|70%|100% |20%|25%|20% |25% :moa\o 95%(70%[80%|90%[100%|100%|100%|95%|95%|95%|75%|920%|100%|100%|25%|80%
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Table 6.17: Answers given in group 9.

SUbjeCt q-(A)|q+(B)|g+(C)|g+(D)|q+(E)|q+(F)|q+(G)|q+(H)|g+ ()| q+(]) | g+ (K)| g+ (L) ||U: (p, s)
solution|| 17 T T T_q T_q T T T T, T4 T4 T,

S164 T2 T2 T_1 T_1 T_1 T T2 T T Ty T4 T 1.00
$165 T2 T T_1 T T_1 Ty T T T T4 T4 T 1.00
S166 T2 T T_1 T_1 T_1 Ty T T T Ty T4 T 1.00
S167 T L) T T T_1 T L) L) L) T4 T4 Ty 1.00
S168 Ty L) T T T_1 T Ty L) L) T4 T4 Ts 0.83
S169 T2 T2 T_1 T_1 T_1 T T2 T T T4 T4 Ty 1.00
$170 T T T T_q T_q T T T T T4 Ty Ty 0.92
S171 T2 L T = T T L) 7 7 T Ty Ty 1.00
S$172 T L) T T T_1 T L) L) L) T T4 Ty 1.00
173 T2 T T_1 T T_1 T T T T Ty T4 T 1.00
S174 T L) Ty Ty Ty T T L) T_1 T T Ty 0.42
S175 T T T T_q T_q T T T T T4 Ty T 1.00
S176 T2 T T_1 T_1 T_1 T T2 T T T4 T4 T 1.00
S177 T2 T T_1 T_1 T_1 T T T T T4 T4 T 1.00
$178 T T T_q T T T T? T T Ty T4 T 1.00

correct H 93% | 100% | 923% | 93% | 93% | 93% | 87% | 100% | 93% |100%| 87% |[100%

Additionally, also the 95% confidence intervals for the estimated (partial) struc-
tural process model understandability values of the 13 data sets were computed.
For o1, 02 and o4, the method for estimating confidence intervals for means of
normal distributions (see experiment 1) was used. For the other ten data sets, the
bootstrap approach which does not require normally distributed data was applied.
The lower and upper confidence interval bounds are also listed in Table 6.19.

The estimated (partial) structural process model understandability values and
the 95% confidence intervals for the 13 data sets are also depicted graphically in
Figure 6.12.

Finally, it was analyzed whether the distributions of the personal partial struc-
tural process understandability values of the four data sets of each of the aspects
concurrency, exclusiveness and order are the same. For that purpose, a Kruskal-
Wallis rank sum test was conducted for each of these three aspects. The null-
hypothesis (same distribution) could not be rejected on the o = 0.05 level for
all of them. So, the difficulty of the four subsets of questions for each of these
aspects seems to be quite equivalent.

VIRTUAL SUBJECTS APPROACH As the process model used in experiment 2 is
so large that the high number of questions could not be asked entirely to single
subjects, the questions were divided into different subsets (see paragraph Experi-
ment Design) for later use of the virtual subjects approach (see Subsection 6.4.4).

In order to show that this approach is legitimate, Hypothesis 6.4 was tested:
Using the data on the aspects concurrency, exclusiveness and order from experi-
ment 1, the questions for each aspect were randomly divided into two halves of
the same size simulating two groups of questions which could be answered by
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Table 6.18: Correct given answers per question for the four aspects (Part 1 of 2).

(a) Aspect concurrency.

s lclp [ e |rfcul[ |3 [x]ou
A |l 83% | 80% | 86% | 95% | 89% | 84% | 81% | 90% 83% | 72% | 71%
B 90% | 89% | 76% | 86% | 100% | 83% | 76% 86% | 95% | 89%
C 84% | 95% | 90% | 83% | 96% | 90% 85% | 56% | 84%
D 100% | 90% | 83% | 92% | 95% 80% | 56% | 84%
E 95% | 80% | 94% | 80% 90% | 70% | 89%
F 84% | 86% | 100% | 94% | 88% | 81%
G 90% | 94% 88% | 95% | 95%
H 39% 80% | 86% | 90%
I 100% | 88% | 86%
] 95% | 83%
K 84%

(b) Aspect exclusiveness.

Il s lclo [ e | r |6 [u [ | [k [0

100% | 80% 72% 100% | 100% 925% 24% 926% 20% 70% 924%
92% | 100% 80% 924% 100% 920% 20% 78% 88% 100%
100% | 100% | 100% 95% 100% | 100% 88% 920% 100%
100% 926% 100% 25% 100% 84% 86% 925%
100% | 100% | 100% 925% 83% 922% 100%
75% 94% 92% 100% 920% 94%
922% 95% 100% | 100% 26%
67% 100% | 100% 926%
100% 925% 100%
92% 925%
80%

AT momEH gl w e

two different groups of subjects. In the next step, Spearman’s rank correlation
coefficient between the personal partial structural process model understandabil-
ity values from the two halves was computed. This was repeated 5,000 times for
each aspect.

The corresponding empirical cumulative distribution functions are depicted in
Figure 6.13. The medians were 0.714 (concurrency), 0.818 (exclusiness) and 0.933
(order). So, the approach seems to be legitimate.

The resulting virtual subjects are listed in Table 6.20.

In the remainder of this section, the resulting virtual personal structural process
model understandability values are denoted as U} (p, s), the virtual estimated
structural process model understandability values as ﬂz(p, S) and the virtual
estimated partial structural process model understandability as ﬂz(p, S,Qua)
(a €{c,e0,1}).

(VIRTUAL) PERSONAL STRUCTURAL PROCESS MODEL UNDERSTANDABILITY
The (virtual) personal structural process model understandability values of the
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Table 6.18: Correct given answers per question for the four aspects (Part 2 of 2).

(c) Aspect order.

lalefcloplelelclulrfyx]er
A 44% | 55% | 86% | 70% | 61% | 60% | 81% | 65% | 50% | 60% 81%
B 55% 67% | 60% | 71% | 65% | 61% | 60% | 71% | 65% | 61% 60%
C 62% | 55% 72% | 80% | 48% | 75% | 17% | 40% | 38% | 75% 83%
D || 50% | 67% | 75% 83% | 35% | 71% | 10% | 28% | 70% | 57% | 75%
E 50% | 45% | 62% | 65% 33% | 85% | 24% | 10% | 56% | 85% 62%
F 55% | 50% | 65% | 43% | 70% 6% 60% | 71% | 55% | 89% 20%
G 62% | 55% | 78% | 70% | 48% | 20% 50% | 55% | 43% | 85% | 100%
H || 55% | 62% | 65% | 44% | 65% | 71% | 40% 83% | 70% | 86% | 95%
I || 67% | 50% | 52% | 60% | 67% | 60% | 67% | 75% 33% | 85% | 86%
J 60% | 56% | 70% | 57% | 60% | 33% | 85% | 24% | 10% 24% 15%
K || 67% | 45% | 72% | 70% | 48% | 25% | 89% | 40% | 24% | 20% 33%
L 55% | 71% | 70% | 61% | 65% | 29% | 80% | 33% | 35% | 33% | 30%

(d) Aspect repetition.
Al B [ c] o ]e] e v [ 1[5 [ x|

93% | 100% | 93% | 93% | 93% | 93% | 87% | 100% | 93% | 100% | 87% | 100%

(virtual) subjects for the four aspects concurrency, exclusiveness, order and repetition
are depicted in Figure 6.14a.

In order to test the hypothesis that the personal structural process model un-
derstandability values are normally distributed for each aspect (Hypothesis 6.1),
a Shapiro-Wilk test for each of the four data sets was done. For concurrency, exclu-
siveness and repetition, the null-hypothesis that the data is normally distributed
had to be rejected (concurrency: p = 0.023; all others: p < 0.05). Only for order,
this null-hypothesis could not be rejected on the o = 0.05 level.

(VIRTUAL) ESTIMATED STRUCTURAL PROCESS MODEL UNDERSTANDABILITY
Based on the four data sets, the (virtual) estimated structural process model
understandability values (together with the standard deviations of the corre-
sponding (virtual) personal structural process model understandability values)
were computed (Table 6.21).

Additionally, also the 95% confidence intervals for the (virtual) estimated struc-
tural process model understandability values of the four aspects were computed.
For order, the method for estimating confidence intervals for means of normal
distributions was used. For the other three aspects, the bootstrap approach which
does not require normally distributed data was applied. The lower and upper
confidence interval bounds are also listed in Table 6.21.

The (virtual) estimated structural process model understandability values and
the 95% confidence intervals for the four aspects are also depicted graphically in
Figure 6.14b.
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Table 6.19: Estimated (partial) structural process model understandability values, standard deviations and 95% confidence intervals for the four

aspects and 13 data sets.

o1 02 03 04 c5 c6 c7 c8 e5 eb ey e8 r9
Qp:P S,Qq) or QL? S) 0.579 | 0.609 | 0.583 | 0.579 || 0.816 | 0.835 | 0.881 | 0.898 || 0.942 | 0.941 | 0.946 | 0.905 || 0.945
standard deviation 0.163 | 0.186 | 0.162 | 0.154 || 0.147 | 0.167 | 0.139 | 0.118 || 0.098 | 0.093 | 0.081 | 0.159 || 0.153
lower conf. interval bound || 0.498 | 0.521 | 0.513 | 0.506 || 0.747 | 0.769 | 0.818 | 0.844 || 0.893 | 0.900 | 0.907 | 0.830 || 0.861
upper conf. interval bound || 0.661 | 0.697 | 0.653 | 0.651 || 0.878 | 0.898 | 0.932 | 0.948 || 0.983 | 0.972 | 0.978 | 0.965 || 1.000
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(a) Aspect concurrency. (b) Aspect exclusiveness.
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(c) Aspect order. (d) Aspect repetition.

Figure 6.8: Histograms for rates of correct answers for the four aspects.

For testing the hypothesis that the structural process model understandability
values for the four aspects are different (Hypthesis 6.2), Wilcoxon rank-sum tests
for independent values were conducted. This test does not require normally dis-
tributed data. Only for the combination exclusiveness-repetition, the null-hypothesis
(data belongs to same distribution) could not be rejected on the o« = 0.05 level
(p =0.110).

(VIRTUAL) ESTIMATED PARTIAL STRUCTURAL PROCESS MODEL UNDER-
STANDABILITY In order to test the hypothesis about partial structural process
model understandability (Hypothesis 6.3), all (virtual) estimated partial structural
process model understandability values for the four aspects were computed. For
concurrency, exclusiveness and order, the data of the virtual subjects were used.
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Figure 6.9: Scatter plots with rates of correct answers for experiment 2.

e yrvTs
- ° °
° °
° A
°
°
A
o | [}
IS [}
(X} °
°
° ° e
L) o
° ° °
© L] (_J [ ]
e o o o® [ o0 o
L] ° [} o0
“, e o L) [} °
] ° ) °
o0 [ 1} (X}
< ° ° ° A
IS o0
° e o
°
°
° °
N
o
<
o
T T T T T
o1 02 03 o4 r9

aspect/group

Figure 6.10: Personal (partial) structural process model understandability values for the
aspects order and repetition.

The values depending on the coverage rate are depicted in Figure 6.15. The
dashed horizontal lines are the lower and upper 95% confidence interval bounds
for the (virtual) estimated structural process model understandability values of
the four aspects.



65 EXPERIMENTAL EVALUATION 153

e 4 X cme - o @em AN Al A A AAan
oo ° ° - AA A MAMA MAMA A A
e ° o0 oo A A AA A A A
© | @ ®e (X ) A A AA
s ® ° oo A A
e ® oo
A
© e o A A
S ° @0 N A
° ® °
-]
<~ | A
o
N
o
o
2
\ T T T T T T T
c5 c6 c7 c8 e5 e6 e7 e8

aspect/group

Figure 6.11: Personal partial structural process model understandability values for the
aspects concurrency and exclusiveness.
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Figure 6.12: Estimated (partial) structural process model understandability values and
95% confidence intervals for the 13 data sets.

Because of the “combinatoric explosion” (cf. Theorem 6.3)", a probabilistic al-
gorithm had to be used for these plots: For each analyzed coverage rate, 1,000,000
(for the aspects concurrency and exclusiveness) and 5,000,000 (for the aspect order)
subsets of questions were randomly selected, respectively. Exact values could
only be computed for very small and very large coverage rates as well as for the
aspect repetition.

In Table 6.22, the mean (virtual) estimated partial structural process model un-
derstandability, the standard deviation of the (virtual) estimated partial structural

1 The highest number of possible subsets exists for the aspect order and coverage rate 0.5. Here,
(]32) ~ 3.8 x 1038 different subsets exist
66/~ .
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(a) Aspect concurrency. (b) Aspect exclusiveness.
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(c) Aspect order.

Figure 6.13: Empirical cumulative distribution functions for Spearman’s rank correlation
coefficients between two halves of questions of experiment 1.

process model understandability values and the rate of values lower and higher
than the confidence interval bounds of the four aspects are listed for different

coverage rates.
Also for these tables, a probabilistic algorithm had to be used: For each analyzed

coverage rate, 100,000 subsets of questions were randomly selected. Exact values
could only be computed for very small and very large coverage rates as well as

for the aspect repetition.
The different values for the mean in Table 6.23a, 6.23¢c and 6.23d compared to

Table 6.21 are caused by rounding errors.
Table 6.22 and Figure 6.15 support the hypothesis—the aspect repetition having

the weakest effect: For the same coverage rate, many different (virtual) estimated
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Table 6.20: Construction of virtual subjects for experiment 2 (Part 1 of 3).

(a) Aspect concurrency.

)

o]

L

Q

=

wn

p—

(¢}

=

t

> | subject1 | subject2 | subject3 | subjects || UZ(p,s)
S01 5082 $101 $126 $159 0.58
$02 S096 $106 $140 S151 0.62
503 5089 $109 $124 162 0.65
S04 S081 $110 $128 S144 0.73
S05 S083 $116 $142 S147 0.74
S06 S080 $104 S127 S$156 0.80
So7 S086 $119 $139 S145 0.83
So8 S087 $108 8129 $153 0.86
S99 S094 $115 $130 $160 0.86
STO $090 S118 S136 $161 0.91
8] S092 107 $123 $163 0.94
2P S093 $102 $125 S146 0.97
S13 S095 $105 5131 $148 0.97
S S085 $112 $132 $149 0.98
S1s 5088 $113 $134 $150 0.98
STe S091 S114 $135 $152 0.98
s]7 S084 $120 $141 S154 1.00
Sig S097 $121 $143 $155 1.00

partial structural process model understandability values exist. The reason for this
is the different difficulty of the single questions as already shown in Table 6.18
and Figure 6.8. The smaller the coverage rate, the higher the standard deviation
and the number of values outside the confidence interval.

For the process model used in experiment 2, a coverage rate of 0.25 produces
less than 1% lower or upper outliers for all four aspects.

Validity Evaluation

Also for the second experiment, the necessary validity evaluation (see paragraph
Validity Evaluation in Subsection B.3.3) is carried out.



156 MEASURING STRUCTURAL PROCESS MODEL UNDERSTANDABILITY

Table 6.20: Construction of virtual subjects for experiment 2 (Part 2 of 3).

(b) Aspect exclusiveness.
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Q
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Q

]

wn
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(o]

]

-l;::

> || subject1 | subject2 | subject3 | subjects || Ui(p,s)
ST‘; $091 $109 $132 $159 0.58
350 5080 S114 8125 S147 0.76
$31 S085 $106 $135 $151 0.86
$3 5089 $110 $140 S149 0.89
$3 8083 S115 $123 S144 0.94
$34 S084 $118 $124 S154 0.94
$35 $093 $119 $128 $160 0.94
6 $097 $120 $129 $145 0.95
$37 S081 $121 $131 S146 0.97
Ss $082 $101 S136 S148 0.98
S0 S086 $102 $126 $150 1.00
$30 S087 $104 $127 $152 1.00
$31 S088 $105 $130 $153 1.00
$32 $090 $107 $134 $155 1.00
$33 S092 $108 $139 S$156 1.00
$34 $094 $112 S141 S161 1.00
S35 $095 $113 $142 $162 1.00
S36 S096 S116 $143 $163 1.00

INTERNAL VALIDITY Looking at the threats to internal validity mentioned in
Subsection B.3.3, one can make the following statements:

* History: As an online questionnaire was used, it is not known whether
strongly influencing events occurred for some of the subjects while they
answered the questions.

* Maturation: It was not measured how much time the subjects needed for
answering the online questionnaire. As the number of asked questions did
not differ that much between experiment 1 (20 or 25 questions per subject)
and experiment 2 (33 questions per subject), it is believed that factors as,
for example, fatigue, boredom or hunger had also no big influence for
experiment 2.
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Table 6.20: Construction of virtual subjects for experiment 2 (Part 3 of 3).

(c) Aspect order.
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wn
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> || subject1 | subject2 | subject3 | subjects || U%(p,s)
S37 S017 8029 S046 $073 0.30
S3g S007 023 S047 S061 0.35
S30 $010 8025 $055 8065 0.40
S10 S002 $020 8053 S063 0.45
Sa1 012 S036 $039 079 0.47
1) S014 S032 S041 S064 0.49
Sa3 $008 S034 S043 S074 0.53
Sas S011 019 S054 $075 0.55
Sa5 006 S028 S057 S068 0.57
Sac S013 $030 S058 $070 0.57
Si7 S004 S031 S048 S062 0.59
Sag S005 S024 S056 S066 0.63
S10 S003 S033 S045 So77 0.66
S5 So15 S021 $052 S071 0.68
S5 S016 8038 S051 072 0.70
S5, S001 S035 S042 S078 0.77
S53 009 026 $050 $060 0.80
S5q S018 022 8059 S076 0.89

Table 6.21: (Virtual) estimated structural process model understandability values, stan-

dard deviations and 95% confidence intervals for the four aspects.

concurrency | exclusiveness | order | repetition
Uz (p,S) or U,(p,S) 0.856 0.934 0.578 | 0.945
standard deviation 0.140 0.109 0.157 | 0.153
lower conf. interval bound 0.790 0.881 0499 | 0.861
upper conf. interval bound 0.915 0.974 0.656 | 1.000
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(a) (Virtual) personal structural process model
understandability values.

TR i
... . ;:: ;g %

aspect aspect

(b) (Virtual) estimated structural process
model understandability values and 95%
confidence intervals.

Figure 6.14: Visualizations of (virtual) structural process model understandability values

EXTERNAL VALIDITY

of experiment 2.

Instrumentation: There was no subjective influence of a human observer of
the experiment on the assessment whether a given answer was correct or
not.

Mortality: Some students started the online questionnaire without finishing
it. Their incomplete data was not used in the evaluation of the experi-
ment. In the text above, only the data of the 178 subjects who finished the
questionnaire is utilized.

Selection: As the subjects were randomly assigned to one of the nine ques-
tionnaire groups, possible personal differences should have been balanced.

Looking at the threats to external validity mentioned in

Subsection B.3.3, one can make the following statements:

Population validity: The same remarks on the students vs. professionals
“problem” as for experiment 1 have to be given here.

Ecological validity: The process model used in experiment 2 was quite
realistic and much larger than that of experiment 1. Nevertheless, the effects
observed in the second experiment are consistent with those of experiment 1.
So, it is most likely that other process models would produce similar results.

Temporal validity: Each participating student was able to answer the online
questionnaire at any time during a specified period of time he/she wanted
to. An influence of the time of the experiment (as long as the subjects are
not tired) is hardly imaginable.
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Figure 6.15: (Virtual) estimated partial structural process model understandability values
of the four aspects depending on coverage rate.

6.6 CONCLUSION

In this chapter, an approach for measuring structural process model understand-
ability was proposed and several hypotheses about effects which have to be
considered during measurement were postulated.

First, the importance of measuring process model understandability was mo-
tivated. It was distinguished between structural and semantic process model
understandability—only structural process model understandability was further
considered. Next, an overview of existing measures for structural process model
understandability was given. Looking at these measures, serious doubts about
their validity arised.
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Table 6.22: Data on (virtual) estimated partial structural process model understandability
values for the four aspects (Part 1 of 4).

(a) Aspect concurrency.

# questions | cov. rate | mean | s.d. | rate lower | rate higher
1 0.02 0.857 | 0.105 16.7% 27.3%
2 0.03 0.857 | 0.073 12.9% 25.1%
3 0.05 0.857 | 0.059 12.2% 11.4%
4 0.06 0.857 | 0.051 10.0% 11.4%
5 0.08 0.857 | 0.045 10.2% 5.4%
7 0.11 0.857 | 0.037 5.3% 2.6%

10 0.15 0.857 | 0.031 2.8% 1.2%
14 0.21 0.857 | 0.025 0.7% 0.2%
17 0.26 0.857 | 0.022 0.1% 0.1%
20 0.30 0.857 | 0.019 0.0% 0.0%
24 0.36 0.857 | 0.017 0.0% 0.0%
27 0.41 0.857 | 0.015 0.0% 0.0%
30 0.45 0.857 | 0.014 0.0% 0.0%
33 0.50 0.857 | 0.013 0.0% 0.0%
37 0.56 0.857 | 0.011 0.0% 0.0%
40 0.61 0.857 | 0.010 0.0% 0.0%
43 0.65 0.857 | 0.009 0.0% 0.0%
47 0.71 0.857 | 0.008 0.0% 0.0%
50 0.76 0.857 | 0.007 0.0% 0.0%
53 0.80 0.857 | 0.006 0.0% 0.0%
57 0.86 0.857 | 0.005 0.0% 0.0%
60 0.91 0.857 | 0.004 0.0% 0.0%
62 0.94 0.857 | 0.003 0.0% 0.0%
63 0.95 0.857 | 0.003 0.0% 0.0%
64 0.97 0.857 | 0.002 0.0% 0.0%
65 0.98 0.857 | 0.002 0.0% 0.0%
66 1.00 0.857 | — 0.0% 0.0%

Based on a framework for evaluating modeling technique understanding, con-
crete and detailed definitions for measuring structural process model understand-
ability were given. Using these definitions, hypotheses about effects of measuring
structural process model understandability were formulated which have to be
considered in the measuring process. Finally, two experiments (experiment 1:
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Table 6.22: Data on (virtual) estimated partial structural process model understandability
values for the four aspects (Part 2 of 4).

(b) Aspect exclusiveness.

# questions | cov. rate | mean | s.d. | rate lower | rate higher
1 0.02 0.934 | 0.082 16.7% 43.9%
2 0.03 0.934 | 0.057 14.7% 18.9%
3 0.05 0.934 | 0.046 12.7% 22.2%
4 0.06 0.934 | 0.040 10.7% 11.4%
5 0.08 0.934 | 0.035 8.9% 13.1%
7 0.11 0.934 | 0.029 5.9% 8.1%

10 0.15 0.934 | 0.024 2.0% 2.8%
14 0.21 0.934 | 0.019 0.7% 1.0%
17 0.26 0.934 | 0.017 0.1% 0.3%
20 0.30 0.934 | 0.015 0.0% 0.2%
24 0.36 0.934 | 0.013 0.0% 0.0%
27 0.41 0.934 | 0.012 0.0% 0.0%
30 0.45 0.934 | 0.011 0.0% 0.0%
33 0.50 0.934 | 0.010 0.0% 0.0%
37 0.56 0.934 | 0.009 0.0% 0.0%
40 0.61 0.934 | 0.008 0.0% 0.0%
43 0.65 0.934 | 0.007 0.0% 0.0%
47 0.71 0.934 | 0.006 0.0% 0.0%
50 0.76 0.934 | 0.006 0.0% 0.0%
53 0.80 0.934 | 0.005 0.0% 0.0%
57 0.86 0.934 | 0.004 0.0% 0.0%
60 0.91 0.934 | 0.003 0.0% 0.0%
62 0.94 0.934 | 0.003 0.0% 0.0%
63 0.95 0.934 | 0.002 0.0% 0.0%
64 0.97 0.934 | 0.002 0.0% 0.0%
65 0.98 0.934 | 0.001 0.0% 0.0%
66 1.00 0.934 | — 0.0% 0.0%

process model with five tasks, 18 subjects; experiment 2: process model with 12
tasks, 178 subjects) were conducted in order to examine these hypotheses. The
results of these experiments are quite consistent.

They support the hypothesis that different aspects of structural process model
understandability are of varying difficulty (only exclusiveness and repetition are
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Table 6.22: Data on (virtual) estimated partial structural process model understandability
values for the four aspects (Part 3 of 4).

(c) Aspect order.

# questions | cov. rate | mean | s.d. | rate lower | rate higher

1 0.01 0.577 | 0.210 28.8% 47.0%

2 0.02 0.577 | 0.147 26.2% 33.6%

3 0.02 0.577 | 0.120 23.3% 26.9%

4 0.03 0.577 | 0.103 20.7% 22.2%

7 0.05 0.577 | 0.077 14.9% 16.1%
14 0.11 0.577 | 0.053 7.2% 6.4%
20 0.15 0.577 | 0.043 3.7% 3.0%
27 0.20 0.577 | 0.036 1.6% 1.3%
33 0.25 0.578 | 0.032 0.7% 0.5%
40 0.30 0.578 | 0.028 0.3% 0.2%
47 0.36 0.578 | 0.025 0.1% 0.0%
53 0.40 0.577 | 0.022 0.0% 0.0%
60 0.45 0.577 | 0.020 0.0% 0.0%
66 0.50 0.578 | 0.018 0.0% 0.0%
73 0.55 0.577 | 0.016 0.0% 0.0%
80 0.61 0.577 | 0.015 0.0% 0.0%
86 0.65 0.577 | 0.013 0.0% 0.0%
923 0.70 0.577 | 0.012 0.0% 0.0%
929 0.75 0.577 | 0.011 0.0% 0.0%
106 0.80 0.577 | 0.009 0.0% 0.0%
113 0.86 0.577 | 0.007 0.0% 0.0%
119 0.90 0.577 | 0.006 0.0% 0.0%
126 0.95 0.577 | 0.004 0.0% 0.0%
128 0.97 0.577 | 0.003 0.0% 0.0%
129 0.98 0.577 | 0.003 0.0% 0.0%
130 0.98 0.577 | 0.002 0.0% 0.0%
131 0.99 0.577 | 0.002 0.0% 0.0%
132 1.00 0577 | — 0.0% 0.0%

quite similar in case of the second and larger process model). Thus, all different
aspects have to be measured in order to get a feeling of the “overall structural
process model understandability”.
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Table 6.22: Data on (virtual) estimated partial structural process model understandability
values for the four aspects (Part 4 of 4).

(d) Aspect repetition.

# questions | cov. rate | mean | s.d. | rate lower | rate higher
1 0.08 0.944 | 0.048 0.0% 0.0%
2 0.17 0.944 | 0.031 0.0% 0.0%
3 0.25 0.944 | 0.024 0.0% 0.0%
4 0.33 0.944 | 0.020 0.0% 0.0%
5 0.42 0.944 | 0.016 0.0% 0.0%
6 0.50 0.944 | 0.014 0.0% 0.0%
7 0.58 0.944 | 0.012 0.0% 0.0%
8 0.67 0.944 | 0.010 0.0% 0.0%
9 0.75 0.944 | 0.008 0.0% 0.0%

10 0.83 0.944 | 0.006 0.0% 0.0%
11 0.92 0.944 | 0.004 0.0% 0.0%
12 1.00 0.944 | — 0.0% 0.0%

Furthermore, the hypothesis that asking only a small part of the set of possible
questions for one aspect can cause values to differ substantially from the real
value was strongly confirmed. Consequently, the coverage rate of asked questions
should not be too small. With respect to the larger process model of experiment 2,
a coverage rate of 0.25 resulted in less than 1% outliers (higher or lower than 95%
confidence interval) for all four aspects. Finally, the asked questions should be
selected randomly in order to minimize the risk of choosing particularly easy or
difficult questions.

In both experiments, only the aspect order was normally distributed. This aspect
also had the lowest values of all examined aspects—what is not directly intuitive.
Arguably, concurrency and exclusiveness are more complicated matters than order.
This fact should be further examined in future work.

Another future issue is the selection of suitable coverage rates which minimize
the measuring effort and the differences from the real structural process model
understandability value. It should be investigated whether the ideal coverage rate
is indicated relative or absolute to the process model size and whether it depends
on other (structural) process model properties.

Furthermore, it should also be examined whether other aspects of structural
process model understandability exist.
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7.1 INTRODUCTION

The goal of the process measurement approach of Subsection 3.4.2 is to establish
a valid prediction system which can predict the values of an external attribute
depending on the values of one or more internal attribute(s). In this chapter, a
postulated—yet not validated—prediction system is experimentally evaluated.

During the design phase of a process model (see paragraph Business Process
Management Lifecycle in Subsection 2.1.2), choosing the adequate size of process
activities (process model granularity) is a well-known problem. Vanderfeesten et
al. have proposed a heuristic for this problem which is inspired by the concepts
of coupling and cohesion in software engineering [129, 168].

In this field of study, the influence of coupling and cohesion on structural
software complexity has been examined for some decades (see, for example, [34,
pp- 984-985] for a short literature review). The first ideas about coupling and
cohesion for the procedural programming paradigm were published in the 1970s
under the name “structured design” [149, 179]. Basic coupling and cohesion
metrics for the object-oriented paradigm can be found, for example, in the classic
Chidamber and Kemerer metrics suite [26]. Empirical evaluations showed the
influence of coupling and cohesion metrics on structural software complexity
(e.g., [34, 151]).

Motivated by these results from software engineering, Vanderfeesten et al.
introduced a process model granularity metric. This metric measures the ratio
between process model coupling and cohesion. Based on this metric, they sug-
gested a heuristic for selecting between different process model alternatives. It
prefers models with high cohesion and low coupling. Vanderfeesten et al. also
postulated the hypothesis that those process models are less error-prone during
process instance execution. As they do not give an empirical validation of their
heuristic and hypothesis, it is still no valid prediction system as explained in
Subsection 3.4.3.

In this chapter, an experimentation system for analyzing the hypothesis is
presented and the results of a conducted experiment with 165 students using this
experimentation system are reported. Additionally, an alternative error probability
model is suggested which can explain the results of the experiment.

Figure 7.1 shows where the chapter is visually located within the measurement
approach of Subsection 3.4.2.

The remainder of this chapter is organized as follows: In Section 7.2, a short
introduction into the process model granularity heuristic proposed by Vander-
feesten et al. is given. The experimentation system for analyzing a hypothesis
about error probability postulated by Vanderfeesten et al. is presented in Sec-
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Figure 7.1: Chapter visually located within the measurement approach of Subsec-
tion 3.4.2.

tion 7.3. The conducted experiment and its results are shown in Section 7.4. The
chapter closes with a conclusion (Section 7.5).

7.2 PROCESS MODEL GRANULARITY HEURISTIC

In this section, the process model granularity heuristic, which was introduced
by Vanderfeesten et al., is presented. In Subsection 7.2.1, the underlying process
model granularity metric is first explained. The actual heuristic is presented in
Subsection 7.2.2.

7.2.1  Process Model Granularity Metric

In this chapter, the definitions from [168, pp. 426—429] are used with some
modifications:

e In [168], all definitions are based on so-called operations structures (see
Definition 1 in [168, p. 426]). This process modeling language is almost
equivalent to the PDMs of Definition 2.11 presented in Subsection 2.3.2. The
operations of a operations structure correspond to the production rules of a
PDM. As PDMs are more frequently used, the original definitions of [168]
are adapted to PDMs in this chapter.

e In [168], references to resource classes or roles which are able to execute the
operations and activities are given. As they are not relevant for the analysis
here, they are omitted in this chapter.

Based on a PDM, the contained data elements and production rules are parti-
tioned into different activities.

Definition 7.1 (Activitiy) An activity T C F based on a PDM (D, C, pre, constr, cst,
flow) is a set of production rules.”

Remember: F is the set of production rules of a PDM (D, C, pre, constr, cst, flow) (see Defini-
tion 2.11).
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As a shorthand, the notation T := U(p,cs)eT({p} U cs) for the data elements
processed in an activity T is introduced.

The different activities can be combined to a process model which processes
and computes the data elements of the PDM in a valid sequence. For details on
how to specify the control flow or how to check the correctness and soundness
of the process model, the reader is referred to [127]. For the purpose here, the
following definition is sufficient.

Definition 7.2 (Process model) A process model? based on a PDM (D, C, pre, constr,
cst, flow) is a set S of activities on this PDM.

Based on these notations, metrics for process model cohesion and coupling can be
defined.

Process model cohesion measures “to what extent operations3 ‘belong’ to each
other within one activity” [168, pp. 420—421]. It consists of two components.

The first one, activity relation cohesion, quantifies how much the production rules
of an activity are related. For that purpose, it measures the average overlap of
production rules. Two production rules overlap if they share input or output data
elements.

Definition 7.3 (Activity relation cohesion) For an activity T based ona PDM (D, C,
pre, constr, cst, flow), the activity relation cohesion A(T) is defined as

[T[-(ITI=T)
0 for |T| <1

(7.1)

{((p1.,c51),(p2,c52))€TXTI(({p1}Ucs1)N{p2)Ucs2))#@\p1#p2ll for T > 1
A(T) ==

The second cohesion component, activity information cohesion, measures which
fraction of data elements of an activity are used in more than one production
rule.

Definition 7.4 (Activity information cohesion) For an activity T based on a PDM
(D, C,pre, constr, cst, flow), the activity information cohesion w(T) is defined as

{aeDI3((pr.cs1),pa.esp ) ETTde(lfprlues INlipalesa ) Apr#pall - g 1§ 0
w(T) == Il .
0 for [T| =0

(7.2)

The total cohesion of an activity is simply the product of its relation and
information cohesion.

Definition 7.5 (Activity cohesion) For an activity T based on a PDM (D, C, pre,
constr, cst, flow), the activity cohesion c(T) is defined as

c(T) =A(T)- pn(T) . (7.3)

2 “Process model” in the nomenclature of this thesis instead of “process” in [168, p. 427].
3 “Production rules” in the nomenclature of this thesis.
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The overall cohesion of a process model is computed by the average activity
cohesion.

Definition 7.6 (Process model cohesion) For a process model with a set S of activi-
ties based on a PDM (D, C, pre, constr, cst, flow), the process model cohesion ch# is
defined as

.
ch:= % . (7-4)

Process model coupling quantifies how strong the activities of a process model
are connected to each other. Two activities are connected if they share at least one
data element. The coupling metric measures the fraction of connected activity
pairs.

Definition 7.7 (Process model coupling) For a process model with a set S of activi-
ties based on a PDM (D, C, pre, constr, cst, flow), the process model coupling cp’ is
defined as

ISI-(ISI=T)
0 for S| <1

(M T)eSxSMATADOR)20) g 5] 1
cp = (7.5)

Finally, Vanderfeesten et al. define a process model coupling/cohesion ratio
which serves as a process model granularity metric.

Definition 7.8 (Process model coupling/cohesion ratio) For a process model with
a set S of activities based on a PDM (D, C, pre, constr, cst, flow), the process model
coupling/cohesion ratio p® is defined as

cp
= — .6
p= (7.6)

7.2.2  Process Model Granularity Heuristic

According to Vanderfeesten and Reijers, an important issue in process model
design is “the proper size of the individual activities in a process? (the process
granularity®)” [129, p. 290]. The heuristic presented in [129, 168] is thought to
help designers “to select from several alternatives the process design® that is
strongly cohesive and weakly coupled” [168, p. 420].

4 “Process model cohesion” in the nomenclature of this thesis instead of “process cohesion” in [168,
p- 428].

5 “Process model coupling” in the nomenclature of this thesis instead of “process coupling” in [168,
p- 428].

6 “Process model coupling/cohesion ratio” in the nomenclature of this thesis instead of “process
coupling/cohesion ratio” in [168, pp. 428—429].

7 “Process model” in the nomenclature of this thesis.

8 “Process model granularity” in the nomenclature of this thesis.

9 “Process model” in the nomenclature of this thesis.



7.3 EXPERIMENTATION SYSTEM

Vanderfeesten et al. state that the proposed metrics and the heuristic are inspired
by software engineering “where an old design aphorism is to strive for strong
cohesion, and loose coupling” [168, p. 421].

Consequently, the statement of the heuristic is that a process model with a
smaller value of the process model granularity metric (process model coupling/
cohesion ratio) of Definition 7.8 is to be preferred over another one with a larger
value. Yet, it does not describe how different alternative process models can be
found. [168, p. 429]

Vanderfeesten et al. establish the following two hypotheses about the implica-
tions of their heuristic [168, pp. 425—426]:

Hypothesis 7.1 The smaller the value of the process model granularity metric of a
process model, the smaller the probability of run-time mistakes.

Hypothesis 7.2 The smaller the value of the process model granularity metric of a
process model, the larger the understandability and—consequently—the maintainability.

Instead of an empirical validation of these hypotheses, they only give some
arguments as a motivation [168, p. 426]:

* “A loose coupling of activities will result in few information elements'® that
need to be exchanged between activities [...], reducing the probability of
run-time mistakes.”

* “Highly cohesive activities [...] are likely to be understood and performed
better by people than large chunks of unrelated work being grouped to-
gether.”

7.3 EXPERIMENTATION SYSTEM

For testing Hypothesis 7.2, experiments in which subjects have to change ex-
isting process models (e.g., finding and correcting errors or realizing special
modification tasks) would have to be conducted. These experiments would be
very time-consuming for the participants and therefore making it hard to find
volunteers among students of a university. Consequently, only Hypothesis 7.1
(error probability) is looked at in this section.

For an appropriate experimentation system, three main requirements were
identified:

1. automatization of the experiments and the subsequent analysis,

2. comparability of different experiment runs with different process models
(consequently, special domain knowledge must not be a necessary require-
ment and the actual process goal has to be abstracted from—concentrating
only on process model structure and granularity) and

10 “Data elements” in the nomenclature of this thesis.
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3. cooperation of several subjects with different roles during process instance
execution.

A computer-based (cf. requirement 1) experimentation system was created
which is described in the remainder of this section.

In this system, very abstract PDMs are used (cf. requirement 2): Each data
element represents a single variable of type boolean, integer or double. The
production rules are functions with the variables corresponding to the production
rule’s input data elements as input parameters. According to the variable types,
these functions consist of addition, subtraction, multiplication or logical AND,
OR, XOR and negation. Activities consist of sets of corresponding functions
which can depend on each other in a non-cyclic manner. See Figure 7.4 for an
example of such abstract production rules.

The core of the experimentation system is a small web-based workflow engine
allowing several subjects to work together on a process instance execution (cf.
requirement 3). It is written in Java using Apache Tomcat and runs on a central
server. The subjects connect to that workflow engine using a standard web
browser.

The workflow engine controls the execution of process instances. Each subject is
assigned to a resource role''. When an activity becomes executable, it is delegated
in first-come, first-served order to the next free subject with the corresponding
role. The functions of that activity together with the values of the input parameters
of the basic functions™ are displayed in the web browser on the subject’s screen
(see Figure 7.2). The subject has to enter the computed values into special text
fields. By clicking a button, the computed values are sent to the workflow engine
for further processing. At XOR splits, the workflow engine automatically routes
by evaluating the boolean constraint expressions for the different branches.

During execution, the following data is logged:

e start and end time of each activity and each process instance,
e correct or incorrect activity execution'3 and

* correct or incorrect process instance execution'4.

7.4 EXPERIMENTAL EVALUATION

In order to test Hypothesis 7.1 (error probability), an experiment using the
experimentation system described in Section 7.3 was conducted.

Consequently, one needs at least as many subjects as resource roles in the executed process
instances.

Basic functions are functions for which the values of its input parameters are not computed by
other functions of the same activity.

The correctness of an activity execution is assessed based on the values of its input parameters. So,
if the values of the input parameters are incorrect—caused by an earlier activity—but the output
value of the function is correctly computed based on these input values, the activity execution is
assessed as correct.

A process instance execution is assessed as incorrect if at least one of its activities was executed
incorrectly.
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L=
Please perform the following task!

Your task

13 element 28 = element 24 + element 25
21 element 29 = element 25+ elernent 26
3 element 30 = element 28 - element 29

Input values

element 24 &
element 25: 4
element 26: 4

Your results

Remark: If you want to enter boolean values, please enter true for "true” and false for "false

element 28

element 29

element 30

Send results |

Figure 7.2: Screenshot of a subject’s web browser.

In Subsection 7.4.1, the experiment design is explained. The results are pre-
sented in Subsection 7.4.2. In Subsection 7.4.3, an alternative error probability
model which better explains the results of the experiment is proposed. The section
closes with the validity evaluation of the experiment (Subsection 7.4.4).

7.4.1  Experiment Design

OBJECT For this experiment, the PDM depicted in Figure 7.3, which is presented
as an example in [129, 168], was applied. It was used in the abstract fashion
described in Section 7.3. So, only the structural properties—and consequently
the process metric values—remained unchanged. The used production rules are
shown in Figure 7.4.

Based on the PDM, the three different process model alternatives (Figure 7.5)
already proposed in [129, 168] were used. The respective partition into activities
is shown in Figure 7.6.

MEASUREMENT INSTRUMENTATION A set of ten process instances was cre-
ated, which was used for all process model alternatives. All these process in-
stances were executable from the start of the experiment and were processed in
the same order for all alternatives. The instances had different values for its basic
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value(27) == false

42 |«

value(27) == true

value(31) == false value(34) == false

value(31) == true A

A

% value(34) == true

Figure 7.3: PDM used in the experiment [168, p. 422].

data elements'>. If they were correctly executed, the first and last instances of the
set were routed directly from activity C to G at the XOR split—the others had to
take the branch with all the other activities.

15 Basic data elements are data elements whose values are not computed by any production rule.
Instead, their values have to be given for each process instance before the execution.
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vi(18) = vi(12) +v;i(13)

vi(23) = vi(19) +vi(20)

vi(25) = vi(18) -1

v (27) = wvi(23) > [vi(21) +vi(22)]

vi(28) = wvi(24) +vi(25)

vi(29) = wv;(25) +v;(26)

vi(30) = vi(28) —v;i(29)

vp(31) == wp(27) A Dvi(22) # vi(30)]

vp(34) = vp(27) A\ [vi(22) # 0]

vi(35) = vi(18) +v;i(32)

vp(36) = vp(31) A[vi(30) > 20]

vi(38) = vi(18)+1

(39 i { vy (31) for vy(31) = FALSE
vp(36) V [vi(35) # 0] for vy(31) = TRUE

vp(40) = mp(27) A{[vi(18) +v;(32)] > v;i(33)}

vo(41) = Vp(34) for vy, (34
' vp(34) A [vi(37) > vi(38)] for vy (34

= FALSE

)
) = TRUE

ve(d42) = —vy(27) for vy, (27) = FALSE
° . Vb (39) Avp(40)] Vvp(41)  for v, (27) = TRUE

Figure 7.4: Production rules used in the experiment. v; (18) stands for the integer variable
representing data element 18, vy (27) for the boolean variable representing
data element 27.

For each process model alternative, several teams were used, which each
processed the same set of process instances which was mentioned above. Each
team got exactly as many subjects as there are activities in its process model
alternative. As the subjects executing activity AE in alternative 3 have much
more work than other subjects, two types of teams were used for this alternative
to analyze the effect of this possible bottleneck: The first got the “normal” six
subjects (number of activities in alternative 3)—the second got seven subjects
(two for the resource role of activity AE).

The web-based experimentation system presented in Section 7.3 was used for
the experiment. The subjects accessed the system via web browser from different
desktop computers (one computer per subject) which were located in a single
computer laboratory. As they did not know their other team members, they could
only “communicate”!® via the experimentation system.

As explained in Section 7.3, the subjects could only exchange variable values via the web-based
experimentation system. Communication via text messsages was impossible.
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value(27) == true @
i ) ) 4 8o ) ) ) o
value(27) == false @ T

(a) Process model alternative 1.

value(27) == true A2
() ) (o) (o)

value(27) == false

1

&) @

(b) Process model alternative 2.

value(27) =

= true
@ S

value(27) == false

(c) Process model alternative 3.

Figure 7.5: Three different process model alternatives used in experiment [168, pp. 423—
424].

Table 7.1: Metric values for the three process model alternatives.

cp ch p
alternative 1 || 0.714 | 0.183 | 3.9
alternative 2 || 0.611 | 0.105 | 5.8
alternative 3 || 0.8 0.114 | 7.0

FACTOR The process model granularity of the three different process model
alternatives acted as factor in the experiment.

ALTERNATIVES/LEVELS The process metric values for process model coupling
(cp), cohesion (ch) and granularity (p) of the process model alternatives are listed
in Table 7.1. So, there were three levels of the factor process model granularity:
3.9,5.8 and 7.0.

According to the heuristic, alternative 1 should be preferred as it has the
smallest value of p. Following Hypothesis 7.1, it should also have the smallest
error probability.

RESPONSE VARIABLES The number of incorrectly executed process instances
and the number of incorrectly executed activities were used as response variables.
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F

value(34) == false

value(34) == true

E

value(31) == false

value(31) == true

~(®)
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value(31) == false

AE

value(31) == false

value(31) == true

O

value(27) == true

value(27) == false

Figure 7.6: Partitioning of the PDM in smaller activities [168, pp. 423—425].

SUBJECTS

respectively, as well as five teams for alternative 2.
An overview of the experiment’s design is given in Table 7.2.

165 Business Engineering undergraduate students of the Universitiit
Karlsruhe (TH) participated in the experiment. Participation was voluntary—
participating students got bonus points for the admission to their final exam.
They had no special training in the area of workflows but had the necessary
mathematical knowledge for the used abstract functions (cf. Section 7.3). The
subjects were randomly assigned to the resource roles within the different teams
for the different process model alternatives. Finally, there were six teams for
alternative 1, alternative 3 with six subjects and alternative 3 with seven subjects,
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Table 7.2: Design of the experiment.

process model alternative || # subjects per team | # teams || # subjects

alternative 1 7 6 42
alternative 2 9 5 45
alternative 3a) 6 6 36
alternative 3b) 7 6 42
total number of subjects 165

7.4.2  Results

The number of incorrect process instances (over all teams) for the different process
model alternatives are shown in Table 7.3.

First, it was checked whether there is a significant difference between alterna-
tive 3 with six and seven subjects. For that purpose, Pearson’s chi-square test
[117, pp. 643—648] was used. The null-hypothesis that the numbers belong to the
same distribution could not be rejected on the « = 0.05 level. Consequently, both
cases were mixed together for the further analysis (row “sum alternative 3” in
Table 7.3).

Afterwards, the actual hypothesis was looked at. As one can see in Table 7.3,
alternative 1, which should be the best process model alternative according to
Hypothesis 7.1, has the highest ratio of incorrect process instances closely followed
by alternative 3, which should be the worst. Again, a chi-square test was done to
test the alternatives for significant differences. Only for the pair alternative 1 and
2, the null-hypothesis (no difference) could be rejected (p ~ 0.030). So, the results
of the experiment do not support Hypothesis 7.1.

Next, an analysis on the activity level was conducted. The results of pairwise
chi-square tests are shown in Table 7.4. Looking at Table 7.3, one sees that the error
probabilities of activities A—AE have exactly the opposite order than predicted
by Hypothesis 7.1—even though, there is only a significant difference between
alternatives 1 and 3. This was a motivation to further search for alternative factors
of influence.

In a next step, the possible influence of the number of data elements and
production rules (see Table 7.5) on the error probability of activities (see last row
of Table 7.3) was analyzed and depicted in Figure 7.7. For that purpose, both
Spearman’s rank correlation coefficient (see Section C.2) and Pearson’s product-
moment correlation coefficient (see Section C.1) were computed. For the number
of data elements, one gets 0.95 (Spearman) and 0.78 (Pearson) respectively—
as well as 0.97 (Spearman) and 0.85 (Pearson) respectively for the number of
production rules. So, roughly speaking, larger activities are more error-prone.

These results are interpreted as follows: Hypothesis 7.1, that process model
granularity (a global process model property) influences the error probability
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Table 7.4: Results of chi-square tests for error statistics on activity level (« = 0.05). For
cells marked with “+”, the null-hypothesis (no difference) was rejected.

activities A—AE

activity C
activity B
activity F
activity D
activity G

# alternative 1 vs. 2

+
1
1
1
1
1

# alternative 1 vs. 3 || + | - - -

—+
+

# alternative 2vs. 3 || - | - | + | - | + | -

Table 7.5: Number of data elements and production rules per activity.

— 9! o | < | [
O lm|lm | A0 | ||| |<C|<
Fnl Bl Bl Il Bl Bl Bl Bl Bl Il Bl e
Z|EIEIEIEIE|E|E|E|E|E|E
||| |]0C || |G| |oC|B |0
S|l ||| ||| ||| & | &

# data elements 6|4 |7 |5|5|6|93|3|6/|7]14

#productionrules | 2 | 2 |4 |1 |2 |3 |5 |1 1 |2]|4) 8

during process instance execution, might not be true. Instead, activity size seems
to have a big influence on the error probability of an activity. From a subject’s
point of view, the remaining process model is some kind of “black box”. He/she
only sees its own activity with the contained production rules. This fact motivates
the following alternative error probability model.

7.4.3 Alternative Error Probability Model

If the probabilities p; that activity 1 is executed erroneously for a process instance

are stochastically independent, then the probability P, that the process instance
is executed erroneously is

Perr = 1— H(] —pi) . (7.7)

i

If one further assumes, for the sake of simplicity, that all error probabilities p;
of the n activities of a process model are equal with value p, one gets

Perr = 1— ” —P)n . (7-8)
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Figure 7.7: Possible influences on error probability.

Comparing the error probabilities Per, and Perry of two alternative process
models, one gets the following theorem.

Theorem 7.1 Given are two alternative process models A and B with na and ng
activities, respectively, and the activity error probability pa and pg, respectively.
Then, process model A is more error-prone than process model B (Perr, > Perry) if

"B

1. pa >1—(1—pp)"a

2. MA >MNp -

In(1—pp)
n(1—pa)

or

Proof. Let pa,ps € (0,1) and na,ng € IN\{0}.

Regarding 1.)
PerrA > PerrB
(7.8)
& 1—(0—=pa)™ > T—(1—pg)"®
& —(0=pa)™ > —(1—pp)™
& (I—=pa)™ < (1—ps)"®
~—— —~—
0< <1 0< <1 .
< T—pa < (T—pp)™r
np
< —Ppa < =1+ —pg)ma
np
e pa > 1—(T—pp)™a
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Regarding 2.)
PerrA > PeTTB
B —pam > T—(1—pp)m [T
& —(=pa)™ > —(1—pg)"® |- (=1)
& (1—pa)™ < (1—pp)™® [ In(-)
—_——— —_——
>0 >0
& ma-In(1—pa) < ng-In(1—pp) |+In(1—p,)
0<-<1
i, <0
< "> e

If one applies Theorem 7.1 on the more special case that one process model
alternative has larger and more error-prone but less activities than the other one,
one gets the following corollary.

Corollary 7.1 Given are two alternative process models A and B. Alternative B has
larger and more error-prone (pa < pg) but less activities (np > ng) than alternative A.
Then, process model A is more error-prone than process model B (Perr, > Perry) if

np
1. 1—(1—ppg)"A <pa<pp or

In(1-pp)
In(1—pa)

2. A >Ny
Proof. Let pa < pp and na > ng with pa,pp € (0,1) and na,ng € IN\{0}.

Regarding 1.) The proposition follows from case 1 of Theorem 7.1 together with
the precondition pa < ps.

Regarding 2.) According to case 2 of Theorem 7.1,

In(1—pg)

AT T —pa)

(7.9)

holds.
As

PA,PB € (0,1) and pa < pB

= O<]—pB<]—pA<1

= In(1 —pB) < In(1 —pA) <0
In(1—pg)

= i)

the precondition na > ngp is already contained in (7.9). [
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Let us now look at the following example for Corollary 7.1: Alternative B
has larger and more error-prone but less activities than alternative A. So, while
alternative B has ng = n activities with error probability pg = 0.075, alternative A
has nay = 2n activities with error probability pa = 0.05. As one can easily check
using case 2 of Corollary 7.1, alternative B is less error-prone for all values of n.

Generally, one finds many parameters for this error probability model so that
the process model with the larger and more error-prone but less activities has a
smaller error probability than the alternative process model.

These findings on the error probability model are consistent with the inter-
pretation of the results of the experiment made above. Hypothesis 7.1 could be
wrong. Instead of process model granularity, the size (and consequently the error
probability) and the number of activities in a process model could be the main
reasons for different error probabilities of alternative process models.

7.4.4 Validity Evaluation

Finally, the necessary validity evaluation (see paragraph Validity Evaluation in
Subsection B.3.3) of the experiment has to be carried out.

INTERNAL VALIDITY Internal validity refers to the fact that the effects observed
in the experiment are not caused by a factor which one has no control of or has
not measured (see Definition B.9g).

Looking at the threats to internal validity mentioned in Subsection B.3.3, one
can make the following statements:

¢ History: During the experiment which lasted less than one hour, no events
occurred which were able to strongly influence the subjects.

* Maturation: The experiment was so short that factors as, for example,
fatigue, boredom or hunger had no big influence.

¢ Instrumentation: There was no subjective influence of a human observer of
the experiment on the assessment whether a given answer was correct or
not.

* Mortality: As all subjects finished the experiment, this threat played no role.

* Selection: As the subjects were randomly assigned to the resource roles,
teams and process model alternatives, possible personal differences should
have been balanced.

EXTERNAL VALIDITY External validity refers to the extent to which the re-
sults of an experiment can be generalized out of the scope of the study (see
Definition B.10).

Looking at the threats to external validity mentioned in Subsection B.3.3, one
can make the following statements:
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* Population validity: The subjects were students with the necessary math-
ematical knowledge for the used abstract functions—yet had no special
training in the area of BPM. As no domain knowledge was needed and even
knowledge about process modeling was unimportant, it is believed here to
be most likely that other subjects—including professionals in BPM—would
show the same effects. For process models with more realistic activities,
things could be quite different.

¢ Ecological validity: The process models used in the experiment had only
abstract production rules. So, no special domain knowledge was necessary
for the subjects. It is not clear, whether process models with more realistic
activities—requiring domain knowledge—would show similar results.

¢ Temporal validity: An influence of the time of the experiment (as long as
the subjects are not tired) is hardly imaginable.

7.5 CONCLUSION

In this chapter, a short introduction into the process model granularity heuristic
of Vanderfeesten et al. was given. This heuristic is aimed at giving a possible
solution to the process model granularity problem (finding the proper size of
activities in a process model) during the design phase. According to a hypothesis
postulated by Vanderfesten et al., process models with smaller process model
granularity metric values (high cohesion and low coupling) are less error-prone
during process instance execution.

An experimentation system consisting of a small web-based workflow system
for analyzing the hypothesis of Vanderfeesten et al. was presented. It uses abstract
production rules. Consequently, subjects do not need any domain knowledge.
Furthermore, it makes different experiments comparable.

The results of an experiment involving 165 students using the experimentation
system were reported. They do not support the hypothesis of Vanderfeesten et al.

Instead, an alternative error probability model was suggested which is able to
explain the results. According to this model, the error probability of a process
model depends on the size (number of data elements and number of production
rules) of its activities (larger activities have a higher error probability) and the
number of its activities.

The findings of the conducted experiment and the proposed alternative error
probability model should be further examined in future work. Furthermore, it
should also be tested whether process models with more realistic activities—even
if they require some domain knowledge—show the same results related to the
hypothesis of Vanderfeesten et al.
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Subsection 8.1 provides a conclusion of the results of this thesis. Possible future
work in the area of process measurement is presented in Subsection 8.2.

8.1 CONCLUSION

This thesis presented a theoretical framework for process measurement (Chap-
ter 3). It was used to search for open research questions in this field of study.
Afterwards, some of the identified questions were dealt with in the thesis (Chap-

ters 4-7).

¢ Chapter 3 (Process Measurement)

At the beginning of the thesis, an overview of publications on process
measurement was given. Many proposed process model metrics are adapted
from software metrics and are claimed to measure process model complexity,
quality and/or performance. It could be observed that there are no concrete
definitions of process model complexity and process model quality in the
literature. Often, both terms are even used as synonyms.

Thus, a discussion of these terms followed. It could be shown that there
does not exist a single formal definition of complexity. Instead, numerous
aspects of complexity were identified and are analyzed in different research
communities. Consequently, it is problematic to say that a process model
metric measures the complexity of a process model.

This discussion resulted in the introduced theoretical framework for process
measurement, in which the existing work can be integrated and which can
help to identify open research questions leading to new research directions
in process measurement.

For this, the more well-established concepts from software measurement
were adopted for process measurement: The result was a prediction system
measurement approach, which is based on measurement and prediction
systems. The measurement approach consists of process model metrics
measuring (structural) internal attributes and process model quality mea-
sures measuring external process model attributes. Through this, a concrete
definition of process model complexity can be avoided. Nevertheless, pro-
cess model complexity, quality and performance fit into this measurement
approach.

Furthermore, the necessity for a proper validation of measurement and
prediction systems was emphasized. Reliability and validity were identified
as important requirements for metrics and measures. Yet, both constructs
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have not received the necessary attention in process measurement literature
so far.

Chapter 4 (Analysis of Process Model Metric Properties)

In this chapter, an approach for reducing the experimental effort for the
validation of prediction systems was introduced.

Its main idea is to add an additional analysis step before the selection of
the prediction system which shall be validated. In this preceding step, the
behavior as well as important properties of process model metrics which
are part of the potential prediction systems which shall be validated are first
analyzed. Through this, unfavorable properties of process model metrics
(e. g., insufficient dispersion of metric values or strong correlation with
other process model metrics) can be identified before the high effort for an
experimental validation of the corresponding prediction system occurs.

The approach distinguishes between general properties which hold for all
process models because of their definition and process model collection
specific properties which are only true for the examined process model
collection.

The approach was tested with 33 EPC process model metrics and 515 process
models from the SAP Reference Model. During this test, some interesting
properties could be found.

As general properties, mathematical boundaries for the value pairs of some
“size metrics” could be identified. Furthermore, it could be shown, that
A(G) =~ ﬁ holds.

Even more process model collection specific properties could be discovered
for the SAP Reference Model:

— The metrics CFC and JC have some few extreme outliers. It is very
unlikely that there is a linear dependency between one of these metrics
and a process model quality measure. The existence of a threshold over
which a process model has some undesirable properties (e.g., high
error probability) is much more likely.

— 94.6% of all process models have a cyclicity metric (CYC) value of
O0—meaning that they do not contain any (directed) cycle.

— There are many linear or at least monotonic correlations between the
examined process model metrics. This was also confirmed by the result
of a PCA. There are three major clusters for the metrics: The first one
consists of almost all “size metrics”. The second cluster comprises
the metrics A, TT, Z, CP and CC and is clearly separated from the
first one. The third (not so cohesive) cluster contains the remaining
metrics. Consequently, some metrics do not provide much additional
information compared to others.

— The density metrics A and D have quite different behaviors. So, they
do not measure the same concept.
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— On the other hand, the metrics A and CP, which both measure some
sort of ratio between existing arcs and possible arcs, are highly corre-
lated. So, it seems that metric CP, which has a much more complicated
computation rule, has little additional benefit compared to metric A.

¢ Chapter 5 (Visualization and Clustering of Process Model Collections)

In this chapter, an approach for visualization and clustering of high-dimen-
sional process model metric data of process model collections was proposed.

First, different visualization techniques were examined for their suitability
for visualizing many high-dimensional data points. Next, basic clustering
methods were presented.

The approach comprises
1. a compact heatmap visualization of the metric data,
2. a 3D scatter plot visualization of the outcome of a PCA of the data and

3. a clustered heatmap visualization where the metric data is clustered for
(structurally) similar process models within a process model collection.

The approach was successfully applied to the same EPC process model
metrics and process models as in Chapter 4.

It could be demonstrated that the visualization of 33 process model metric
values for 515 process models using heatmaps is possible and still clear for
a human observer. Furthermore, the findings on the correlations between
process model metrics and on their value ranges which could be gained
visually are also consistent with the statistical results of Chapter 4.

Using the results of a PCA of the process model metric data, it was possi-
ble to visualize the data within the three-dimensional coordinate system
induced by the first three components of the PCA (comprising more than
71% of the total data variance).

In contrast, the three clusters of structurally similar process models which
were found were not that “spectacular”.

Chapter 6 (Measuring Structural Process Model Understandability)

In this chapter, an approach for measuring structural process model under-
standability was proposed and several hypotheses about effects which have
to be considered during measurement were postulated.

First, the importance of measuring process model understandability was
motivated. It was distinguished between structural and semantic process
model understandability—only structural process model understandabil-
ity was further considered. Next, an overview of existing measures for
structural process model understandability was given. Looking at these
measures, serious doubts about their validity arised.

Based on a framework for evaluating modeling technique understanding,
concrete and detailed definitions for measuring structural process model
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understandability were given. Using these definitions, hypotheses about
effects of measuring structural process model understandability were for-
mulated which have to be considered in the measuring process. Finally,
two experiments (experiment 1: process model with five tasks, 18 subjects;
experiment 2: process model with 12 tasks, 178 subjects) were conducted
in order to examine these hypotheses. The results of these experiments are
quite consistent.

They support the hypothesis that different aspects of structural process
model understandability are of varying difficulty (only exclusiveness and
repetition are quite similar in case of the second and larger process model).
Thus, all different aspects have to be measured in order to get a feeling of
the “overall structural process model understandability”.

Furthermore, the hypothesis that asking only a small part of the set of
possible questions for one aspect can cause values to differ substantially
from the real value was strongly confirmed. Consequently, the coverage
rate of asked questions should not be too small. With respect to the larger
process model of experiment 2, a coverage rate of 0.25 resulted in less
than 1% outliers (higher or lower than 95% confidence interval) for all four
aspects. Finally, the asked questions should be selected randomly in order
to minimize the risk of choosing particularly easy or difficult questions.

In both experiments, only the aspect order was normally distributed. This as-
pect also had the lowest values of all examined aspects—what is not directly
intuitive. Arguably, concurrency and exclusiveness are more complicated
matters than order.

Chapter 7 (Effects of Process Model Granularity)

In this chapter, a short introduction into the process model granularity
heuristic of Vanderfeesten et al. was given. This heuristic is aimed at giving
a possible solution to the process model granularity problem (finding
the proper size of activities in a process model) during the design phase.
According to a hypothesis postulated by Vanderfesten et al., process models
with smaller process model granularity metric values (high cohesion and
low coupling) are less error-prone during process instance execution.

An experimentation system consisting of a small web-based workflow sys-
tem for analyzing the hypothesis of Vanderfeesten et al. was presented. It
uses abstract production rules. Consequently, subjects do not need any do-
main knowledge. Furthermore, it makes different experiments comparable.

The results of an experiment involving 165 students using the experimenta-
tion system were reported. They do not support the hypothesis of Vander-
feesten et al.

Instead, an alternative error probability model was suggested which is able
to explain the results. According to this model, the error probability of a
process model depends on the size (number of data elements and number
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of production rules) of its activities (larger activities have a higher error
probability) and the number of its activities.

8.2 OUTLOOK

Within the thesis, the following open research questions were identified:

¢ Chapter 4 (Analysis of Process Model Metric Properties)

As future work, it should be examined whether the identified process
model collection specific properties also hold for other collections of process
models. Furthermore, the approach could also be applied to other process
modeling languages than EPC.

The results of this chapter may be helpful for planning future validation
experiments for prediction systems. Maybe, it can contribute to decrease
the lack of validation in this way.

¢ Chapter 5 (Visualization and Clustering of Process Model Collections)

As a result of the clustering, three clusters of structurally similar process
models were found—yet, they were not that “spectacular”. It should be
examined in future work whether other process model collections have
more interesting clusterings.

¢ Chapter 6 (Measuring Structural Process Model Understandability)

In both experiments, only the aspect order was normally distributed. This
aspect also had the lowest values of all examined aspects—what is not
directly intuitive. Arguably, concurrency and exclusiveness are more compli-
cated matters than order. This fact should be further examined in future
work.

Another future issue is the selection of suitable coverage rates which mini-
mize the measuring effort and the differences from the real structural process
model understandability value. It should be investigated whether the ideal
coverage rate is indicated relative or absolute to the process model size and
whether it depends on other (structural) process model properties.

Furthermore, it should also be examined whether other aspects of structural
process model understandability exist.

¢ Chapter 7 (Effects of Process Model Granularity)

The findings of the conducted experiment and the proposed alternative
error probability model should be further examined in future work. Further-
more, it should also be tested whether process models with more realistic
activities—even if they require some domain knowledge—show the same
results related to the hypothesis of Vanderfeesten et al.
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For Torgerson, the principal objectives of science are the description of empirical
phenomena and the establishment of laws and theories which are able to explain
observed phenomena and even predict future behavior. Measurement is an
essential tool for this process. [153, p. 1]

Also in practice, measurement is important to analyze, compare and eventually
optimize things. DeMarco, for example, states: “You can’t control what you can’t
measure.” [37, p. 3]

In this thesis, the measurement of properties of processes plays an important
role. Chapter 3 deals with process measurement in general. In Chapter 4, proposed
process model metrics are presented and their (statistical) properties are analyzed.
The measurement of structural process model understandability is the topic of
Chapter 6.

This chapter introduces the necessary theoretical fundamentals.

A.1 DEFINITIONS

According to Roberts, a “major difference between a ‘well-developed” science
such as physics and some of the less ‘well-developed’ sciences such as psychology
or sociology is the degree to which things are measured” [130, p. 1].

Furthermore, he states that even though measurement in physics is usually
based on powerful and well-established theories, many practicing physicists take
measurement for granted. He points out that putting measurement on a firm
foundation is not considered as a terribly important activity in the modern-day
physical sciences. [130, p. 3]

In the social sciences, on the other hand, great effort has been put into the
establishment of scientific approaches of measuring also non-physical properties
such as the intelligence of a person. This area of research is called measurement
theory.

If one tries to find a definition of measurement, one comes across several
statements which partially differ in detail. In 1940, Campbell wrote [44, p. 340]:
“Measurement in its widest sense may be defined as the assignment of numerals
to things so as to represent facts or conventions about them.” Paraphrasing this
definition of Campbell, Stevens formulated in 1946 [148, p. 677]: “[M]easurement,
in the broadest sense, is defined as the assignment of numerals to objects or events
according to rules.” In 1958 [153, p. 14], Torgerson criticized Stevens’ definition
by pointing to the fact that not objects itself are measured but certain properties
of objects. For him “[m]easurement of a property [...] involves the assignment of
numbers to systems to represent that property”.

The following definition tries to summarize the statements above.
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Definition A.1 (Measurement) Measurement of an object’s (including living beings)
or an event’s property is the assignment of a (numerical) value according to a special rule
in such a way that this value represents the magnitude of that property compared to the
magnitudes of that property for other objects or events.

Looking at this definition, one notices that “measurement has something to
do with assigning numbers that correspond to or represent or ‘preserve’ certain
observed relations” [130, p. 50]. Roberts illustrates this with an example [130,
pp. 50-51]:

If A is a set of objects and the binary relation H(ay, az) holds if one judges a;
to be heavier than a,, one wants to assign a real number p(a) to each a € A such
that Va;,ay € A

H(ay, a2) & wlar) > pulaz) (A.1)

holds.

Furthermore, the “measure” shall be “additive” in the following manner: If
one “combines” two objects a; and a; (binary operation ), the function p on A
shall also “preserve” the binary operation e such that Va;,a; € A

wlay e az) & ulay) + ulaz) (A.2)

holds.

In order to express these requirements in a formal mathematical way, one needs
the following definitions.

First, the term “relational system” has to be defined [130, p. 51].

Definition A.2 (Relational system) A relational system A is an ordered (1+p + q)-
tuple A = (A,R1,Ry,...,Rp, @1, 8,,...,84) where A is a set, R, Ry, ..., Ry, are (not
necessarily binary) relations on A and e1,e,, ..., eq are (binary) operations on A.

The type of the relational system is a sequence (T1,72,...,7p; q) of length p + 1 where
ri = m if R is an m-ary relation.

For the purpose of measurement, two different relational systems are necessary:
an empirical relational system and a formal relational system.

The empirical relational system [130, p. 51] represents that part of reality which
one wants to measure. In the example above, the empirical relational system is
A = (A, H,e) of type (2;1) with binary relation H and (binary) operation e.

The formal relational system [180, p. 40] represents the system with which
the “magnitude” of the measured property is expressed. In the example above,
the formal relational system is B = (IR, >,+) of type (2;1). If the set R of real
numbers is part of the formal relational system, the term numerical relational
system is used [130, p. 51].

The function p which maps an object from an empirical relational system to an
object of a formal relational system (or a numerical value of a numerical relational
system) is called measure [180, p. 40].
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Definition A.3 (Measure) A measure | is a mapping w: A — B from an empirical
relational system A into a formal relational system B which yields for ever empirical
object a € A a formal object (measurement value) p(a) € B.

If one wants the measure to “preserve” the properties of the empirical relational
system, the “mapping may not be arbitrary” [180, p. 40]. Finally, this leads to the
definition of a scale [130, pp. 51-52, 54] [180, pp. 40—41].

Definition A.4 (Scale) Let A = (A,Ry,Ry,.. Rp, 01,02, ..., %q) be an empirical re-
lational system, B = (B, R;, R;, eel, Rr/,, o;, o;, .. ) a formal relational system of the
same type as A and p a measure from A into B.

The function u : A — B is called a homomorphism from A into B if Vay, ay,...,ar, €

ANie{l,...,p)

7%

Ri(ar, az,...,ar) < Ri(u(ar), ulay), ..., ulay,)) (A.3)
andVay,ay; € A,Vie{l,...,p}

n(ar et az) = plar) o p(ay) (A.4)
hold.
Then, the triple (A, B, u) is a scale.

So, the fundamental problem of measurement is to find a scale for each property
one wants to measure. Especially for non-physical properties, it is hard to find
scales in such a way that it is generally accepted that they “preserve” the original
properties of the empirical relational system.

Consequently, the term “scale” is only rarely used. Instead, one falls back to
the term “measure” (Definition A.3) whose requirements are not as strict as for
“scale”.

Even though the term “measure” would be correct, the term “metric” is (more)
often used in process measurement (e. g., [6, 19, 2124, 54, 97-100, 129, 165-168]).
Zuse already realized that for the area of software measurement [180, pp. 28-29].

Mathematically spoken, the term “metric” is incorrect in the context of process
measurement as it is used in mathematics to describe a kind of “distance measure”
between vectors of a more-dimensional space (see the following definition [170]).

Definition A.5 (Metric (mathematics)) Let X be an arbitrary set. A function d :
X x X = R is called a metric on X if for all x,y,z € X the following three conditions are
fulfilled:

dx,y) =0« x=y (identity of indiscernibles) (A.5)
d(x,y) = d(y,x) (symmetry) (A.6)
d(x,z) < d(x,y)+d(y,z) (triangle inequality) (A7)

Corollary A.1 Let d be a metric on set X. Then,
d(x,y) >0 (non-negativity) (A.8)
holds for all x,y € X.
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Proof. Let d be a metric on set X. For all x,y € X, it holds:

(A7) (A5)

2-d(xy) = dioy) +doy) B dxy) +dy,x) > dixx) 0= dixy) =0

In order to be consistent with the majority of publications in this area, the term
“metric” is used in this thesis for a measure of an internal (structural) attribute
(see Subsection 3.4.2) of a process model (cf. the metrics in Chapter 4, 5 and 7).
For external attributes (e. g., structural understandability in Chapter 6), the term
“measure” is used.

A.2 HIERARCHY OF SCALE TYPES

In [148], Stevens proposes a hierarchical classification system for (a subset of)
scales which is based on the definition of admissible transformations [130, p. 58].

Definition A.6 (Admissible transformation) Let (A, B, 1) be a scale, A the set un-
derlying A and B the set underlaying B. A function © : u(A) — B is called an
admissible transformation if and only if (A, B, ® o u) is also a scale.

Stevens’ five scale types are induced by five corresponding sets of admissible
transformations (see Table A.1). From top to bottom of the table, the requirements
for these transformations become harder. Thereby, the set of admissible transfor-
mations of a scale type is a subset of all sets of admissible transformations of
the scale types which are above in Table A.1. Consequently, scales of a special
scale type also have all scale types “higher” in the table. Furthermore, each scale
type has a set of basic empirical operations which can be used for comparing the
empirical property which is measured.

A nominal scale has the scale type with the weakest requirements. On such a
scale, only the (in)equality of the measured property of two or more objects can be
determined. According to Stevens [148, p. 678], two types of nominal assignment
can be distinguished: (1) numbering each object with a distinct number for
identification (e. g., shirt numbers in team sports) or (2) numbering each object
which is member of a class with the same number (e. g., sex—0 for male and 1
for female). Actually, the first case is a special case of the second one where each
class has exactly one member.

Using an ordinal scale, objects can be ordered according to the size of their
measured property. An example are the rank numbers in sports league tables.
The smaller the number, the better the team played in that season. Yet, there is no
information about the “distances” between the different ranks. So, the question
“Is the ‘distance’ between the teams on rank 1 and 2 as large as between rank 2
and 3?” cannot be answered with this scale type.

An interval scale provides this information about “distances”. Examples are
temperature measured in Celsius or Fahrenheit. Here, differences between scale
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values can be compared. So, one can say, for example, that the temperature
difference between 10 °C and 20 °C is as large as between 20 °C and 30 °C.

A ratio scale has a defined and meaningful zero point. So, also ratios of scale
values can be compared. An example is absolute temperature measured in Kelvin.
Here, the zero point is defined as the lowest physically possible temperature.

For an absolute scale, finally, only the identity function is allowed as admissible
transformation. Counting is an example for this scale type.

These scale types do not only allow to classify scales—they also imply which
statistical operations can legitimately be applied to empirical data [148, p. 677].

In order to discuss this in more detail, the following definition of meaningfulness
[130, p. 59] is necessary.

Definition A.7 (Meaningfulness) A statement involving (numerical) scales is mean-
ingful if and only if its truth or falsity is unchanged under admissible transformations of
all the scales in question.

According to Stevens, a statistical operation is appropriate for a scale type if it
is invariant (meaningful) under the admissible transformations of this scale type
[148, p. 678].

Table A.2 shows a fraction of the meaningful statistical operations of the
different scale types. Only those statistical operations are listed which are used in
this thesis (in Chapter 4). These are

* median [117, pp. 19-21], quantiles [117, pp. 25-26] and mean [117, pp. 16-17]
as measures of location,

* range [117, p. 22], interquartile range [156, p. 55], median absolute devia-
tion®, standard deviation [117, p. 22, 35-36] and coefficient of variation [117,
PP- 33—34] as measures of dispersion as well as

* Spearman’s rank correlation coefficient (see Section C.2) and Pearson’s
product-moment correlation coefficient (see Section C.1) as measures of
correlation.

The assignment of the statistical operations to the scale types according to
meaningfulness shall be illustrated using three examples given by Stevens [148,
p. 678].

The scale value at the median of a distribution maintains its position under
all transformations which preserve order. So, the statistical operation median is
meaningful for all scale types except nominal.

In contrast, a scale value at the mean of a distribution remains at the mean
position only for linear transformations. Consequently, computing the mean is
only meaningful for values measured at least on an interval scale.

The ratio expressed by the coefficient of variation only allows the admissible
transformations of at least a ratio scale.

median of the set of absolute values of the differences between the values and the median of
these values
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A.3 MEASUREMENT OF NON-PHYSICAL PROPERTIES

While defining generally accepted measures for physical properties (e. g., length,
mass, temperature, etc.) is relatively easy in physics, the same purpose is much
harder for non-physical properties as, for example, intelligence, religiosity, preju-
dice, etc. in psychology and sociology.

In Subsection A.3.1, the general procedure for finding adequate measures is
introduced. Subsection A.3.2 presents necessary properties which these measures
have to fulfill.

A.3.1  Conceptualization, Operationalization and Measurement

This subsection is based on parts of a textbook by Babbie [5, pp. 118-140]. There,
one can also find further details.

The fundamental problem when measuring non-physical properties (e. g., the
magnitude of prejudices of a person) is that these properties themselves do not
exist in reality. Instead, these terms represent mental images in the brains of
humans summarizing certain related observations and experiences which these
persons have made during their lives. The terms are then used to communicate
the corresponding mental constructs.

To illustrate this fact, one can think of the term “prejudice” as an example.
Presumably, everybody has made certain of the following observations and
experiences during his/her life or has—at least—heard about them:

* People saying nasty things about minority groups.

* People believing that women are inferior to men and that they should stay
at home, care for their children and do the housework instead of working
in a job.

* People beating foreigners.

Even if these observations and experiences differ in detail, they are somehow
related. Consequently, people get some mental image about the underlying
abstract construct in their brains and associate it with a corresponding term
which they learn by others (e.g., their parents). The technical term for those
mental images is conception [5, pp. 120, 122]

Definition A.8 (Conception) A conception is a person’s subjective mental image of a
non-physical property based on his/her observations and experiences.

As everybody has made different observations and experiences, conceptions
are individual and differ in detail. Communication between two persons is only
possible if their mental images (conceptions) behind a term overlap. For research
purposes about such a term, however, one needs an exact definition. [5, p. 121]

The process of defining the exact meaning of a term used during a research
study is called conceptualization [5, pp. 120, 122] with a concept [5, pp. 120, 122] as
its result.
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Definition A.9 (Conceptualization) Conceptualization is the process through which
the exact meaning of a non-physical property is specified for a specific study.

Definition A.10 (Concept) A concept is a construct derived by mutual agreement from
mental images (conceptions) during conceptualization. It specifies the meaning of the
non-physical property to be measured in the course of a specific study.

Thereby, it is important to understand that different researchers could come to
different “definitions” (concepts) for their studies for the same term.

During conceptualization, one can possibly identify different aspects of a
concept. The technical term is dimension [5, p. 123].

Definition A.11 (Dimension) A dimension is a specifiable aspect of a concept.

Once again, think of the example “prejudice”. Possible dimensions of the
concept “prejudice” are prejudices with regard to race, gender, religion and
sexual orientation [5, p. 125].

Conceptions and concepts are mental constructs—not existing in reality them-
selves [5, p. 122]. Thus, quantifiable “representations” of these mental constructs
have to be found in reality during conceptualization. These are called indicators

[5, p- 123].

Definition A.12 (Indicator) An indicator is an observable sign of the presence or
absence of the concept which is to be measured.

Coming back to the “prejudice” example, one could create a questionnaire
consisting of statements such as “Women are inferior to men.”, “There should
be no same-sex marriages.” and “Foreigners take away our jobs.” and ask the
subjects to specify whether they support these statements or not.

The last step for finding a measure for a non-physical property is called
operationalization [5, pp. 125, 132].

Definition A.13 (Operationalization) Operationalization is the process of defining
an exact research procedure (operations) for measuring a non-physical property based on
a concept for that property and indicators.

Operationalization provides a link between a concept as a mental construct not
existing in reality and observable and quantifiable things in reality (indicators) [5,
pp- 122, 132].

The operationalization for the “prejudice” example could look like this: After
having decided which dimensions of the concept “prejudice” one wants to mea-
sure, a questionnaire with different statements (indicators) as described above is
created. The subjects whose magnitudes of prejudices are to be measured specify
which statements they support. Afterwards, the sum of supported statements is
computed for every subject. This value is used as measure of the magnitude of a
person’s prejudices.

197



198

MEASUREMENT FUNDAMENTALS

The conceptualization and operationalization have to be undertaken at the
beginning of any study design before the study itself (e. g., using a questionnaire)
is conducted and analyzed. Otherwise, the results would not be interpretable
because important terms of the inquiry would not have been defined exactly. [5,
p- 126]

In order to summarize the procedure, one can state that the purpose of concep-
tualization and operationalization is the creation of an exact “working definition”
of a non-physical property in the context of a given study. As the definition is
absolutely specific and unambiguous, others can interpret the results—even if
they disagree with this definition. [5, pp. 125-126]

So, the inquiry is traceable and repeatable—an essential requisite of a scientific
approach.

A.3.2  Criteria of Measurement Quality

When measuring non-physical properties as described in the previous subsection,
there are two important criteria of measurement quality: reliability and validity.

Reliability

Babbie gives the following definition for reliability [5, p. 141].

Definition A.14 (Reliability) Reliability is that quality of a measurement method that
suggests that the same data would have been collected each time in repeated observations
of the same phenomenon.

The two subsequent examples shall help to explain the term. For easier under-
standability, the examples are taken from measuring physical properties.

Imagine, for example, that one is interested in a person’s weight. One possible
technique could be to ask two different people to estimate the person’s weight.
Presumably, these estimates would vary a lot. As an alternative, one could use
a bathroom scale for measuring the person’s weight. If the person steps on the
scale twice, it would likely report the same weight in both cases. So, the second
method is much more reliable than the first one. [5, p. 141]

Kan gives another good example [69, pp. 70—71]: If one wants to measure
the body height of a person, one gets more reliable values if one uses a precise
operationalization which specifies the time of the day to take the measurement,
the scale to use, who takes the measurement, whether the measurement should
be taken barefooted and so on.

Frequent threats to reliability are:

e impact of observer’s subjectivity is higher than that of observed situation
itself [5, pp. 141-142]

¢ influence of interviewer on answers given by respondents [5, p. 142]

* imprecise operationalization of measuring method (cf. body height example)
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Validity
Validity is defined by Babbie [5, p. 143] as follows:

Definition A.15 (Validity) Validity refers to the extent to which a measure adequately
reflects the real meaning of the concept under consideration.

As a concept is only a construct derived by mutual agreement (see Defini-
tion A.10), there is no actual “real meaning”. Consequently, the ultimate validity
of a measure can never be proven. It may only be agreed to its relative validity
on the basis of four “aspects” of validity: face, criterion-related, construct and
content validity. [5, p. 143]

Babbie gives the following definitions and examples [5, pp. 144-145]:

Definition A.16 (Face validity) Face validity is that quality of an indicator that makes
it seem a reasonable measure of some variable.

Even though one might discuss whether there exist better indicators or not, it
seems to make sense without a lot of explanation that the frequency of church
attendance is some indication of a person’s religiosity—the measure is valid “on
its face”.

Definition A.17 (Criterion-related validity) Criterion-related validity (also called
predictive validity) is the degree to which a measure relates to some external criterion.

The criterion-related validity of a written driver’s test is determined by the
relationship between the obtained test score and the subsequent driving ability.

Definition A.18 (Construct validity) Construct validity is the degree to which a mea-
sure relates to other variables as expected within a system of theoretical relationships.

Imagine one wants to study the influence of marital satisfaction on the proba-
bility of cheating the spouse. For that purpose, a measure for marital satisfaction
is developed whose validity has to be assessed. Furthermore, the hypothesis that
marital satisfaction decreases the probability of cheating the spouse is made. If
the measure relates to this expectation, that constitutes evidence for its construct
validity.

Definition A.19 (Content validity) Content validity is the degree to which a measure
covers the range of meanings included within a concept.

A test which wants to measure mathematical ability cannot be limited to addi-
tion. It also needs to cover subtraction, multiplication, division, etc. Otherwise, it
has a lack of content validity.

199



200

MEASUREMENT FUNDAMENTALS

(a) Reliable but not valid. (b) Valid but not reliable. (c) Reliable and valid.

Figure A.1: A graphical analogy of the difference between reliability and validity [5,
p- 145].

Graphical Analogy

Babbie gives a good graphical analogy of the difference between reliability and
validity (see Figure A.1) [5, p. 145]: He proposes to think of measurement as
analogous to repeatedly shooting at the bull’s-eye on a target. Then, reliability
looks like a tight pattern of shots somewhere on the target (see Figure A.1a)—
validity is a set of shots arranged around the bull’s-eye (see A.1b). A failure
of validity reveals itself as shots which are systematically off the mark (see
Figure A.1a)—a failure of reliability as randomly distributed shots around the
target (see Figure A.1b). Only reliable and valid metrics (see Figure A.1c) are
useful.
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In this thesis, controlled experiments are used twice for examining effects of
measuring structural process model understandability (Chapter 6) and effects of
process model granularity (Chapter 7). This chapter gives the necessary theoretical
background to the general need of empirical research and conducting controlled
experiments in particular. It is mainly based on textbooks by Juristo and Moreno
[68] as well as Wohlin et al. [178].

B.1 MOTIVATION

The area of BPM has developed and proposed a wide range of modeling lan-
guages (see Section 2.3), tools, methods and process model metrics. In many
publications, additional hypotheses about the alleged superiority of a special
modeling approach, a tool, etc. are being made. Often, the authors present some
motivation why the postulated hypothesis shall be correct—yet, a stringent
validation is often missing (see Section 3.6).

Juristo and Moreno emphasize the importance of validation in scientific re-
search [68, p. 24]: “For a body of knowledge to be considered scientific, its truth
and validity must be proven. A particular item of knowledge is considered to be
scientifically valid if it has been checked against reality. [...] Scientific research is
the antithesis of opinion. Ideally, researchers do not opine, they explain objective
results. Their studies are not based on subjective factors, like emotions, opinions
or tastes. Scientific investigations are objective studies, based on observations of
or experimentation with the real world and its measurable changes.”

As most aspects of BPM cannot be mathematically modeled, a mathematical
proof of a hypothesis is often not possible’.

Furthermore, one has to state that BPM is a human-intensive discipline. So,
it “can be considered as a social process in that the artifacts (methods/tools/
paradigms) to be used are affected by the experience, knowledge and capability
of the user”? [68, p. 26].

These facts show the need for empirical studies which “have traditionally been
used in social sciences and psychology, where we are unable to state any laws of
nature, as in physics” [178, p. 5].

There are exceptions: Some properties of process models (e. g., soundness, reachability, existence
or absence of deadlocks) are mathematically provable.

Originally, Juristo and Moreno write about software engineering. Yet, their statement is transfer-
able to BPM.
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B.2 EMPIRICAL APPROACHES

There are several empirical approaches—each with its special advantages and
disadvantages. Consequently, one has to select the adequate approach with regard
to the question which is to be examined.

In this section, three approaches (surveys, case studies and controlled experi-
ments) are presented in more detail. At the end of the section, these approaches
are compared according to their properties.

B.2.1 Surveys

Surveys are often done in retrospect, after having used a (new) technique for
some time in order to get “a snapshot of the situation to capture the current
status” [178, p. 10].

They consist of a set of questions which a group of persons—representatives
from the population to be studied—is asked to answer. Afterwards, it is tried to
generalize the results to the whole population.

Using surveys, one can collect data about subjective experiences, opinions,
attitudes, etc. Yet, it is not possible to get objective values as, for example, the
number of errors or the execution time of a process.

The questions of a survey can be asked either using (online) questionnaires
or by conducting interviews. The advantages of (online) questionnaires are that
the researcher is not needed while the respondents are answering the questions
and the time for answering can be chosen within a specific period of time.
Interviews (by telephone or face-to-face), on the other side, also have some
advantages: Typically, the response rates are higher for interviews than for (online)
questionnaires. Furthermore, the number of “do not know” and “no answer” are
lower as the interviewer can answer possible questions of the respondents. [178,
pp- 8, 10-12]

B.2.2 Case Studies

Case studies are conducted to investigate an attribute or phenomenon during
a specific period of time. They are observational studies done by observing an
on-going project or activity.

Due to this, they are especially suitable for industrial evaluations as these
investigations can be conducted as side actions of (commercial) projects running
anyway.

A big disadvantage is the lack of control: The exact circumstances of the project
are not arbitrarily manipulable. This fact makes it also difficult to compare the
effects of, for example, different techniques or tools as it is hard to conduct case
studies in several quite similar projects which mainly differ only in this desired
factor. [178, pp. 7-8, 12-14]
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B.2.3 Controlled Experiments

Controlled experiments are controlled studies—compared to case studies which
are “only” observed studies [178, p. 8]. They are used for analyzing the outcomes
of different treatments while all other factors remain unchanged, i. e., the objective
is to manipulate one or more variables and control all other variables at fixed
levels, measure the effect of the manipulation and finally analyze these results
with statistical methods.

Controlled experiments are usually done in a laboratory environment which
provides a high level of control. Specific experimentation systems are often
created for an experiment in order to produce the desired circumstances. The
participating subjects are randomly assigned to the different tested treatments.

[178, pp- 9, 14-15]
B.2.4 Comparison of the Approaches

Each approach has its advantages and disadvantages. So, the choice of the
empirical approach “depends on the prerequisites for the investigation, the
purpose of it, available resources and how we would like to analyze the collected
data” [178, p. 17].

The presented approaches can be compared using the following three factors
[120, p. 19] [178, pp. 16-17].

¢ Level of control

The main goals of empirical approaches are to gain insights into depen-
dencies, influencing factors and to examine proposed hypotheses. So, it
is necessary that “interesting” variables (i.e., variables which are poten-
tial influencing factors) are well adjustable to desired values and that the
whole investigation is controllable by the experimenter according to his/her
wishes.

¢ Level of replication

A very important requirement of empirical approaches is the possibility of
replication—either by the same experimenter or by other researchers. Only
this way, the confidence in the observed results can grow.

A necessary prerequisite for replication is that the investigation can be re-
peated under the same conditions. That means that all important conditions
of the first run are determinable and re-adjustable for further runs.

¢ Investigation costs

The investigation costs of an empirical approach are comprised of the
required time for preparation, execution and final evaluation of the investi-
gation and the required financial resources. These financial costs are mainly
caused by labor costs of the persons involved in the investigation. The labor
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Table B.1: Comparison of the empirical approaches [120, p. 19][178, p. 16].

factor survey | case study | controlled experiment
level of control high low high
level of replication | high low high
investigation costs low medium high

time and costs of the experimenter (for preparation and evaluation) are nor-
mally negligible compared to those of the participants of the investigation.
So, the main factor for the costs is the size of the investigation (i.e., the
number of participants and the amount of time they have to spend).

An overview of the evaluation of the approaches according to the above factors
is given in Table B.1—a detailed evaluation of each approach in the following
listing.

* Surveys

Surveys have a high level of control as the asked questions and response
options are definable in advance. Yet, “only” subjective values (e. g., personal
experiences, opinions and attitudes, etc.) are measurable.

A survey can be repeated with exactly the same set of questions and
response options—either with the same group of subjects or another. So,
this approach has a high level of replication.

Finally, the investigation costs are quite low even for large groups of sub-
jects: The effort for preparation is almost independent from the number of
subjects—the final evaluation of the given answers can be automated when
using online questionnaires. The subjects can choose when to answer the
questions within a specific period of time. The investigation is independent
from running projects in a company or expensive experimental setups.

Case studies

Case studies have a low level of control. They are always connected to—and
depending from—a running project. The development of the project over
time is not predictable in advance. So, it is hardly possible to get exactly
the desired constellation.

Consequently, also the level of replication is low as it is almost impossible
to run the case study under the same circumstances in another project.

The investigation costs are medium (between those of surveys and controlled
experiments).
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¢ Controlled experiments

For controlled experiments, special experimental designs with exactly the
desired circumstances can be used. So, they have a high level of control.

As these experimental designs allow to run an experiment several times
under equal circumstances (with different groups of subjects), this approach
has also a high level of replication.

A big drawback are the relative high investigation costs for controlled experi-
ments. They are caused by the laborious preparation for such an experiment
and mainly by the expenditure of time of the subjects. Participation in an
experiment may not only be very time-intensive for each participant (e. g.,
for experiments which simulate longer processes)—it also prevents him /her
from productive work at the same time in case of using employees of a
company as subjects.

As high levels of control and replication are essential for the empirical anal-
yses in this thesis, controlled experiments were selected among the presented
approaches. The high investigation costs of a controlled experiment—at least the
monetary costs—could be minimized by using students as subjects.

B.3 CONTROLLED EXPERIMENTS

In this section, controlled experiments, which have been chosen as empirical
approach in this thesis, are presented in more detail.

The section starts with the main idea of controlled experiments (Subsec-
tion B.3.1). Afterwards, Subsection B.3.2 introduces the basic terminology. Finally,
a description of the experiment process is given (Subsection B.3.3).

B.3.1 About Controlled Experiments

According to Wohlin et al. [178, p. 31], the starting point of a controlled ex-
periment is the idea of an existing relationship between a cause and an effect.
This relationship is expressible as a theory or—even more formally—it can be
formulated as a hypothesis.

In order to test this assumed relationship, one can conduct a controlled experi-
ment. It has the advantage of relative high control about the exact experimental
conditions.

In the design of the experiment, one uses several different values (so-called
levels) of the presumed influencing factor(s). During its execution, one observes
the outcome (so-called response variable(s)) of these different conditions.

If the controlled experiment is properly set up, conclusions about the assumed
relationship and/or hypothesis can be drawn after the analysis of the experiment.

Figure B.1 illustrates the general configuration of a controlled experiment. The
used technical terms are explained in Subsection B.3.2.
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Figure B.1: [llustration of a controlled experiment (based on [178, p. 34]).

B.3.2 Basic Terminology

In this subsection, the terminology is introduced which is necessary for the
remainder of this section as well as for describing the experiments conducted in
Chapter 6 and 7.

Definition B.1 (Subject) A subject is a person within a controlled experiment who is
exposed to the assumed influencing factor (e. g., method, technique, tool, workflow design)
to be examined [68, p. 58] [178, p. 34].

Contrary to natural sciences like, for example, chemistry or physics, subjects
have a much higher influence on the outcome of experiments in BPM. Conse-
quently, the proper selection of subjects for a controlled experiment in BPM has
to be addressed (see Subsection B.3.3).3 [68, pp. 58-59]

Definition B.2 (Object) An object is a thing (e. ., a process model) which is used (e. g.,
executed or analyzed) or created within a controlled experiment [178, p. 34].

Definition B.3 (Measurement instrumentation) The measurement instrumentation
of a controlled experiment is how the desired data is collected and possibly examined [178,

p. 631.

In case of a questionnaire, that comprises the selection and arrangement of the
questions as well as its later manual or automatic examination (cf. Chapter 6).

As in Chapter 7, measurement instrumentation can also mean the construction
of a computer-based experimentation environment (e.g., the experimentation
system described in Section 7.3).

The goal of a controlled experiment is the examination of a possible relationship
between a cause (independent variable) and an effect (response variable).

Definition B.4 (Independent variable) An independent variable is a variable whose
changing value is possibly influencing the outcome of a controlled experiment [178, p. 331.

There are two types of independent variables: factors and controlled variables.

Originally, Juristo and Moreno write about software engineering. Yet, their statement is transfer-
able to BPM.
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experiment idea expgnment - experlment - experlment - lanaly5|s alnd - presentation and
definition planning operation interpretation package

Figure B.2: Overview of the experiment process [178, p. 36].

Definition B.5 (Factor) A factor is an independent variable whose value is changed
throughout the experiment in order to examine its influence on the experiment’s outcome
[68, p. 60] [178, p. 33].

Definition B.6 (Controlled variable) A controlled variable (also called parameter)
is an independent variable whose value is kept constant throughout the experiment as
its possible influence on the experiment’s outcome shall be masked [68, pp. 59—60] [178,

p- 331

Definition B.7 (Response variable) A response variable (also called dependent vari-
able) measures the outcome of a controlled experiment—uwith it the possible influence of
the independent variables [68, p. 591 [178, p. 33].

14 “”

The terms “independent variable”, “factor”, “controlled variable” and “re-
sponse variable” as well as their relations are depicted in Figure B.1.

During a controlled experiment, several different values of a factor (so-called
alternatives or levels) are used in order to examine the factor’s possible influence.

Definition B.8 (Alternative/level) An alternative or level (sometimes also called treat-
ment) is a particular value of a factor used during a controlled experiment [68, pp. 60—61]

[178, p. 331
B.3.3 Experiment Process

According to Wohlin et al., the “starting point for an experiment is insight, and
the idea that an experiment would be a possible way of evaluating whatever
we are interested in. In other words, we have to realize that an experiment is
appropriate for the question we are going to investigate.” [178, p. 35]

An experiment is very time- and resource-intensive. Furthermore, many (com-
mon) mistakes can be made which may make the results useless. So, after the
decision for an experiment, it is necessary to carefully plan its realization. Wohlin
et al. propose an experiment process for how to perform experiments (see Fig-
ure B.2) which is explained in the rest of this subsection.

Definition
The first phase of the experiment process is the definition phase [178, pp. 37,

41—46]. In this phase, the foundation of the experiment is determined. All further
steps are then based on this foundation.
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Wholin et al. propose a goal definition template published in [16, pp. 255-256]
and [81, pp. 243—245] for that purpose. It comprises the aspects

* object of study,

* purpose,

quality focus,
* perspective and

® context.

OBJECT OF sTUDY The object of the study is the entity which is studied in the
experiment. It can be, for example, an approach, a process definition language, a
metric, a tool or a theory.

PURPOSE The purpose defines the intention of the experiment. A possible
example is the evaluation and comparison of two different techniques.

QUALITY FocUs The quality focus is the primary effect of interest in the
experiment. Examples are effectiveness, cost, reliability and maintainability.

PERSPECTIVE The perspective defines the viewpoint from which the exper-
iment’s results are interpreted. Possible perspectives are, for example, project
analyst, developer, user and researcher.

CONTEXT Finally, the context determines the “environment” in which the
experiment is run. It contains which persons are involved in the experiment
(subjects) and which artifacts (objects) are used.

Planning

The definition phase is followed by the planning phase [178, pp. 3738, 47-74].
While the definition phase defines why the experiment is conducted, the planning
phase determines how it is conducted [178, p. 47]. It can be divided into the steps

e context selection,

* hypothesis formulation,
e selection of variables,

¢ selection of subjects,

* experiment design,

* instrumentation and

¢ validity evaluation.



B3 CONTROLLED EXPERIMENTS

CONTEXT SELECTION In the context selection step [178, pp. 48—49], the “situa-
tion” of the experiment is determined.

In order to get the most general and realistic results, it would be best to run
an experiment in connection with a large real world project (“on-line”) with
professionals involved. Because of the high costs, the additional risks for the
project or simply a missing fitting project, one often has to switch to experiments
with students dealing with smaller “toy problems” which are not linked with a
real project (“off-line”).

Summing up, one can characterize the context of an experiment according to
the four dimensions

e off-line vs. on-line,
¢ student vs. professinal,
* toy vs. real problems and

* specific vs. general.

HYPOTHESIS FORMULATION An important element of a controlled experiment
is hypothesis testing using statistical methods. In the hypothesis formulation step
[178, pp. 49-50], the hypothesis which is to be tested during the experiment is
formally stated.

If, for example, an experiment is intended to compare a new process modeling
method with an existing one, the hypothesis could be that the average number of
errors made by subjects using the new modeling method is smaller than that for
the existing one.

The necessary statistical details about hypothesis testing are given in the
text about the analysis and interpretation phase (step “Hypothesis Testing” on

page 214).

SELECTION OF VARIABLES In this step [178, p. 51], the independent and re-
sponse variables are selected. Normally, these variables can be identified by
looking at the hypothesis formulated in the previous step. Thereby, the inde-
pendent variables measure the possible influencing values—while the response
variable(s) measure(s) the outcome. The identified independent variables have
to be further divided into factors (different variable values are used during the
experiment) and controlled variables (variable value is kept constant throughout
the experiment).

SELECTION OF SUBJECTS The next step [178, pp. 51—52] consists of the selec-
tion of the subjects for the experiment. Here, only an abstract decision is made.
Concrete individuals are not searched until the following operation phase.

The selected subjects can be seen as a sample of the overall population desired
for the experiment. In order to generalize the results, the sample has to be
representative for that population.
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The number of selected subjects (sample size) impacts the quality of the gen-
eralization of the results—the larger the sample, the lower the generalization
error. The desirable sample size depends on the properties of the used statistical
hypothesis test method and the variability of the overall population.

EXPERIMENT DESIGN In this step [178, pp. 52—62], the experiment design is
chosen.

A controlled experiment consists of applying several different levels of the
factor(s) to the subjects for later statistical analysis. Thereby, the experiment
design determines how this series of single tests is organized. A design consists
of the used factor levels, the order of the single tests and the assignment of the
subjects to these tests.

Depending on the number of factors in the experiment, one distinguishes
between designs with one or at least two factors. As only experiments with one
factor are used in this thesis, only information about these designs are given here.
Details about designs with at least two factors can be found, for example, in [178,
pp- 58-62] and [107].

Independent of the selected experiment design, there are two main principles:
randomization and balancing.

Most statistical methods which are used for later analysis of the collected
data require that the observations come from independent random variables.
Randomization is used to meet this requirement. It is applied on the allocation of
objects and subjects to the single tests as well as the test order. Furthermore, it
is used to assure the representativeness of the selected subjects for the overall
population. It works as it averages out other effects.

Balancing means the assignment of the same number of subjects to each factor
level of the experiment. Even if it is not absolutely necessary, it simplifies and
strengthens the statistical analysis of the data.

Experiment designs with one factor and two or more levels are normally
used to compare, for example, several tools, modeling methods, etc. Using a
completely randomized design, the subjects are randomly assigned to exactly one of
the different factor levels. In the case of a randomized complete block design, each
subject participates in every single test (every factor level). Only the order in
which a subject is exposed to the factor levels is randomly determined.

INSTRUMENTATION In the instrumentation step [178, pp. 62-63], the three
types of instruments (objects, guidelines and measurement instruments) are
chosen.

Possible objects are, for example, process models used in the experiment or the
textual description of a process which is to be modeled by the subjects.

Guidelines give the subjects the necessary information about what is required
from them in the experiment and how to do this. If, for example, two methods
are to be compared, the participants have to be provided with guidelines about
these methods. Additionally, they also need training in the applied methods.
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The measurement instruments are used for collecting data during the ex-
periment. Possible examples are (online) questionnaires (as in Chapter 6) and
computer-based experimentation environments (as in Chapter 7).

VALIDITY EVALUATION The last step in the planning phase is validity evalua-
tion [178, pp. 63—73].

It is important to deal with the question of validity already in the planning
phase in order to gain usable results. If possible problems are identified, it is still
possible to adjust the experiment before it is actually executed.

In the literature, two important aspects of validity are distinguished.

Definition B.g (Internal validity) Internal validity refers to the extent to which one
can accurately infer that the independent variable caused the effect observed on the
response variable and that it is not a result of a factor which one has no control of or has
not measured. [27, p. 217] [178, p. 64]

Wohlin et al. explain [178, p. 65]: “Threats to internal validity concern issues that
may indicate a causal relationship, although there is none. Factors that impact on
the internal validity are how the subjects are selected and divided into different
classes, how the subjects are treated and compensated during the experiment, if
special events occur during the experiment etc. All these factors can make the
experiment show a behavior that is not due to the treatment but to the disturbing
factor.”

Definition B.10 (External validity) External validity refers to the extent to which the
results of an experiment can be generalized out of the scope of the study—namely across
variations in people, settings, treatments, outcomes and times [27, p. 247] [178, p. 65].

Wohlin et al. illustrate [178, p. 65]: “Threats to external validity concern the
ability to generalize experiment results outside the experiment setting. External
validity is affected by the experiment design chosen, but also by the objects in the
experiment and the subjects chosen. There are three main risks: having wrong
participants as subjects, conducting the experiment in the wrong environment
and performing it with a timing that affects the results.”

In the subsequent lists, important threats to internal and external validity are
presented in more detail.

Important threats to internal validity:

¢ History

The history threat comprises events which occur between the beginning of
an experiment and the measurement of the response variable and could
possibly influence the subjects” behavior [27, pp. 219—220] [31, p. 51].

¢ Maturation

The maturation threat refers to changes in the internal conditions (both
biological and psychological processes) of a subject as a function of time
as, for example, age, learning, fatigue, boredom and hunger. These changes
could influence the subject’s behavior. [27, pp. 220—221] [31, p. 52]

211



212

BASICS OF EMPIRICAL RESEARCH

Instrumentation

This threat is caused by changes in the measurement of the response variable
over time. Automatic and physical measurements normally show no or only
small temporal changes. Yet, in cases in which a human observer measures
and evaluates the response variable, this could really become a problem
similar to that of maturation. [27, p. 221] [31, p. 52]

Testing

The testing threat refers to the fact that answers given to questions of a test
by a subject—and thereby the subject’s achieved score—can change (the
score often increases) for a second run of the test. This is caused as the
subject already has experience with the questions—even if he or she was
not given the correct answers before the second run. [27, p. 221] [31, p. 52]

Regression

The regression artifact refers to the fact that extreme scores in a particular
distribution will tend to move—or regress—toward the mean of the distri-
bution as a function of repeated testing. In other words: The scores of the
high groups may become lower and vice versa—without any change of the
experimental settings itself. [27, pp. 222—223] [31, pp. 52-53]

Mortality

The mortality threat (called “attrition” in [27, pp. 223-224]) refers to possible
problems caused by subjects dropping out of an experiment before it is
finished. This can destroy the representativeness of the remaining subjects
and lead to effects not caused by the different factor levels but by properties
of a subject which increase the possibility of leaving the experiment early.

[27, pp- 223-224] [31, p. 53]
Selection

The selection threat exists when different selection procedures are used
for assigning the subjects to the different groups of the experiment. This
could lead to inequalities between the groups according to properties as
intelligence, age and previous knowledge which also influence the outcome
besides the actual factor(s). The best method to prevent this threat is to
randomly choose the subjects from the overall population and to randomly
assign them to the different groups of the experiment. [27, p. 224] [31, . 53]

Important threats to external validity:

¢ Population validity

Population validity (called “interaction of selection and treatment” in [31,
p- 73] and [178, p. 73]) refers to the ability to generalize the results from
the subjects of an experiment (sample of the population) to the overall
population one is interested in. [27, pp. 248-250] [31, p. 73] [178, p. 73]
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Christensen explains the problem more detailed [27, p. 248]: For that sake, he
distinguishes between two kinds of populations. The target population is the
larger population one actually wants to generalize to (e. g., all persons with
BPM knowledge). The experimentally accessible population is that population
available to the researcher (e. g., students with BPM knowledge). The desired
generalization now consists of two steps. In the first step, one generalizes

from the sample of subjects to the experimentally accessible population.
If the sample is randomly selected and large enough, this is uncritical.

The second step requires to generalize from the experimentally accessible
population to the target population. This seldom can be made with any
degree of confidence as the experimentally accessible population is rarely
representative of the target population. In the example given above, one does
not know exactly how representative students with BPM knowledge are to
the population of all persons with BPM knowledge including professionals.

¢ Ecological validity

Ecological validity (called “interaction of setting and treatment” in [31,
p- 74] and [178, p. 73]) refers to the generalizability of the results of an
experiment across settings and environmental conditions. Examples are a
laboratory situation compared to a real project situation or a toy problem
compared to a real world process. [27, p. 251] [31, p. 74] [178, p. 73]

¢ Temporal validity

Temporal validity (called “interaction of history and treatment” in [31, p. 74]
and [178, p. 73]) refers to the extent to which the results of an experiment
can be generalized across time. The subjects” behavior could differ, for
example, between Mondays—returning from weekend—and Fridays—after
a hard work week—or between the end of a labor-intensive project and the
day returning from a recreative holiday. [27, pp. 251-252] [31, p. 74] [178,

p- 731
Operation

The next phase of the experiment process is operation [178, pp. 38, 75-80]. In this
phase, the different treatments of the subjects are actually conducted. It consists
of the three steps

® preparation,
e execution and

e data validation.

PREPARATION In the preparation step, concrete individuals have to be found
as subjects according to the abstract decision about subjects which was made in
the previous phase (step “Selection of Subjects” of phase “Planning” on page 209).
In order to keep the participants motivated throughout the experiment, their
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participation should be voluntary—a small incentive is also possible. Before
the experiment is started, the subjects have to be provided with the necessary
information about the procedure of the experiment—without informing them
about its actual goal as this could influence the experiment’s outcome.

Furthermore, the measurement instrumentation must be ready for the experi-
ment. Depending on the actual arrangement of the experiment, e. g., sufficient
copies of a questionnaire or computer workplaces (including user accounts) have
to be prepared.

EXECUTION In the following execution step, the actual experiment is conducted.
Depending on its concrete arrangement, the experiment can take place in a short
period of time with the experimenter being present all the time (e.g., paper
questionnaire or computer experiment) or it is spread over a larger period of time
(e.g., online questionnaire). Also, the actual data collection can vary between
tully automated (e. g., online questionnaire or computer experiment) and fully
manual (e. g., interview).

DATA VALIDATION The phase finishes with the data validation step. Here, the
collected data is checked for reasonability. In case of a questionnaire, for example,
it is checked whether the subjects have understood how to answer the questions
(not whether the answers are correct!) and whether the answers are serious?.
Otherwise, the answers of a subject are rejected.

Analysis and Interpretation

The operation phase is followed by the analysis and interpretation phase [178,
pp- 38, 81—113]. After the actual execution of the experiment, the obtained data
has to be analyzed in this phase with regard to the hypothesis in question and
the results have to be interpreted. The phase consists of the steps

¢ descriptive statistics and

* hypothesis testing.

DESCRIPTIVE STATISTICS A good first step is to apply descriptive statistics
(e.g., mean, variance, etc.) to the collected data [178, pp. 38, 82-88] and to use
visualization techniques (e. g., box plots, scatter plots, histograms and pie charts)
[178, pp. 38, 88—90] for getting a first impression about the outcomes of the
experiment.

HYPOTHESIS TESTING The second step is hypothesis testing [117, pp. 483—
496] [178, pp. 49-50, 92—95]. In this step, the “correctness” of the hypothesis
formulated in the planning phase is examined using the collected data and
statistical methods.

If a subject, for example, has chosen the same answer possibility for each question or the time
spent for answering an online questionnaire is extremely short, it is very likely that this subject’s
answers are not serious.
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Table B.2: Possible outcomes of hypothesis tests [117, p. 488] [156, p. 424].

decision
do not reject Hy reject Ho

. type I error
Hy true correct decision
P(type I error) = «

lit
reatty type II error -
H, false correct decision
P(type II error) = f3

In contrast to the proof of a mathematical theorem, the “correctness” of a
hypothesis cannot be proofed—it can only be shown to be true with a very large
probability. For that sake, the following statistical “trick” is used.

One formulates two hypotheses—namely the null hypothesis and the alterna-
tive hypothesis. The null hypothesis Hy is the opposite of the hypothesis which
one tries to “proof” during the experiment. It represents the possible fact that
the expected cause-effect relationship between independent variable(s) and re-
sponse variable(s) does not exist. The alternative hypothesis Hy—on the other
side—represents the fact that the expected relationship really exists. Initially, one
assumes that the null hypothesis Hy is true. Next, one tries to show that this
assumption is very unlikely looking at the collected data. In the words of Panik
[117, p. 486], “[...] the actual research objective is usually to obtain support for the
alternative hypothesis. That is, the null hypothesis is the proposition that we wish,
in a sense, to disprove.”

Imagine the following example which is used in the remainder of this para-
graph: In an experiment, one tries to show that a new technique causes less errors
than an existing one. Let . be the error probability of the existing technique
and p, that of the new one. Then, the null hypothesis Hy is that there is no
difference between the error probabilities of the two techniques (Hp : pn = pe).
The alternative hypothesis Hp, in contrast, states that Ha : un < pe.

The hypothesis testing approach, which was sketchily described above, can
produce four different outcomes which are depicted in Table B.2.

Panik exposes [117, p. 487]: “Note that the second option has been expressed
as do not reject Hy rather than accept Hy. This is because the null hypothesis is
regarded as valid unless the data dictates otherwise and thus, if the sample
evidence does not support the rejection of the null hypothesis, it only means that
the data has not made its case.”

Besides two cases with a correct decision, there are also two erroneous outcomes—
each with a special type of error:
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e Type I error

A type I error occurs if a true Hy is rejected. In other words, a non-existing
cause-effect relationship is expected to exist. The probability of this type of
error is

P(type I error) = P(reject Ho|Hp true) = o« . (B.1)
« is called the level of significance of a hypothesis test.

¢ Type II error

A type II error occurs if a false Hy is not rejected. In other words, an existing
cause-effect relationship is expected not to exist. The probability of this type
of error is

P(type II error) = P(do not reject Ho|H, false) =3 . (B.2)

Both types of errors cannot be eliminated. Furthermore, they are related in that
way that decreasing the probability of one error type increases the probability of
the other one. Normally, one tries to decrease the probability of type I errors—
minimizing the risk that a cause-effect relationship expected to exist is still not
existing [117, p. 491]. Typical values of « are 0.05 or less.

At this point, one needs a decision rule which tells whether or not to reject the
null hypothesis Hy according to the collected data in the experiment.

For that purpose, one selects a test statistic T or a random variable whose
sampling distribution is known under the assumption that Hy is true. Now, one
can compute the realization t of the test statistic T for the observed experiment
data.

The range of possible values of the test statistic T is partitioned into two
regions—the critical region (or region of rejection) R and the region of non-
rejection R. The critical region consists of those sample realizations of T for which
the null hypothesis Hy is rejected. The boundary between the critical region and
the region of non-rejection is called the critical value t.. In order to compute t.
and subsequently R, one can modify (B.1) into

P(type I error) = P(t € R|H true) =« . (B.3)

So, the location and size of the critical region depend on the null hypothesis, the
alternative hypothesis and the level of significance o.

In the above example, the so-called t-test [178, p. 99] can be used. In this case,
the test statistic T is a Student’s t-distributed t [117, pp. 357—-361] which is mainly
computed as the difference between the average error probabilities for both
techniques multiplied by some correction factors (including the sample variances
for both techniques). This test statistic is symmetric to the t value 0, its expected
value and maximum are both 0. A possible example of such a test statistic T is
depicted in Figure B.3. The critical region is at the lower tail of the distribution.
The critical value t; can be computed so that

P(type I error) = P(t € R|H true) = P(t < telpn = pe) = ¢ . (B.4)
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P(type | error) =

-V

te

T
critical region

Figure B.3: Critical region R = {t|t < t.} for a hypothesis test.

In the critical region, the average error probability for the new technique, which
was measured during the experiment, is significantly lower than that for the
existing technique on the significance level x. Consequently, the null hypothesis
(equal error probabilities) is rejected.

Beside the significance level «, there also exists the so-called p-value. While
o has to be chosen before an experiment is actually executed and influences the
position of the critical value t., the p-value is computed after the experiment
execution in the “opposite” direction: Here, the critical value t. is chosen so that
it is equal to the realization t of the test statistic T. Afterwards, p is computed as
the probability of a type I error using that critical region.

The general hypothesis test procedure is summarized by Panik as [117, pp. 495—

496]:

1. Formulate the null hypothesis Hy (assumed true) and the alternative hy-
pothesis Hx (it determines the location of the critical region X).

2. Specify the level of significance « (it determines the size of R).

3. Select an appropriate test statistic T whose sampling distribution is known
under the assumption that Hy is true.

4. Find R. This involves determining t, the critical value of T.

5. Compute the value t of the test statistic (according to the measured experi-
ment data).

6. If t is an element of R, then reject Hy.

Finally, the results of the hypothesis test have to be interpreted: If the null
hypothesis could be rejected, the assumed influence of the independent variable(s)
on the response variable(s) is most likely. Considering the external validity of
the experiment, general conclusions can be made for settings similar to those
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of the experiment. Furthermore, the results can cause decisions about future
applications of the analyzed tool, method, etc. in (commercial) projects and give
ideas for additional experiments. [178, pp. 38, 112-113]

No specific hypothesis tests are explained here. The used tests are presented
within the thesis at the place where they are used.

Presentation and Package

The last phase of the experiment process is presentation and package [178, pp. 39,
115-118].

The intention of this step is to document the outline and findings of the
experiment. So, it is also possible to inform others about the results. This can
be done, for example, as an article for a conference or a journal. Wohlin et al.
propose a template for such documents [178, pp. 116-118].

For enabling the assessment and interpretability of the experiment, all necessary
information about its motivation, goals, design and results must be provided.
This is also necessary for a possible replication.



MEASURING CORRELATIONS

Throughout this thesis, there is a need for examining the dependency of observed
value pairs (xi, yi) (e. g., values of two process model metrics for a collection of
process models as in Chapter 4).

There is a large variety of possible dependencies. Figure C.1 shows some
examples of observable value pairs depicted as scatter plots.

Knowing an exact functional dependency of the form y; = f(x;) or x; = g(y;)
would be best. Yet, this is often impossible—especially, due to measuring errors
which obscure the underlying dependency.

Here, the concept of correlation is a good alternative. Correlation indicates
the strength and direction of linear—or at least monotonic—dependencies. Yet,
it must be clearly stated that correlation says nothing about the existence—or
absence—of causality between the two considered quantities.

If one finds a high correlation between X and Y, there are at least three different
possible types of causality behind it (see Figure C.2):

o X influences Y.
* Y influences X.

¢ Neither X nor Y influences the other variable. Instead, an additional variable
(a so-called lurking variable) Z influences both X and Y.

Watkins et al. give an example for the last case [171, p. 142]: In a sample of
elementary school pupils, there is a strong correlation between shoe size and
scores on a test of mathematical abilities. Nevertheless, neither mathematical
skills cause feet to get bigger nor vice versa. In fact, the lurking variable age
influences both foot size and mathematical knowledge.

In the remaining chapter, two often used measures of correlation—Pearson’s
product-moment correlation coefficient for measuring linear dependencies (Sec-
tion C.1) and Spearman’s rank correlation coefficient for measuring monotonic
dependencies (Section C.2)—are introduced.

C.1 PEARSON’S PRODUCT-MOMENT CORRELATION COEFFICIENT

The first presented measure of correlation, Pearson’s product-moment correlation
coefficient, measures the strength and direction of linear dependencies.

Details about its historical development and different ways of interpretation
can be found in [131].

The basic “idea” behind the measure is (sample) covariance as defined in
Definition C.1 [122].
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Figure C.1: Pearson’s correlation/Spearman’s rank correlation for different sets of value
pairs (Part 1 of 2).

Definition C.1 ((Sample) covariance) The (sample) covariance cov of a set of ob-
served value pairs (xi,yi), 1 € {1,...,n}is defined as

covi= —— 3 (xi— %)y~ 7) (C)

with X and Y as means of the x; and y; respectively.

For value pairs with a positive linear dependency (the larger the x value, the
larger the y value), the (sample) covariance has a positive value—for pairs with a
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Figure C.1: Pearson’s correlation/Spearman’s rank correlation for different sets of value
pairs (Part 2 of 2).

)

(a) X influences Y. (b) Y influences X. (c) Lurking variable Z influ-

ences X and Y.

Figure C.2: Three different types of causality.

negative dependency (the larger the x value, the smaller the y value) a negative
one.

Yet, covariance has a critical disadvantage: the covariance values of different
sets of value pairs are not comparable. If one measures, for example, the same
set of value pairs with two different units of measurement (e. g., x{ := 2x; and
y; = 2y;), one gets two different values for the covariance. As the underlying
dependencies are the same in both cases, this effect is unsatisfying.

This problem can be solved by dividing the covariance by the product of the
standard deviations of the x; and yi;—resulting in the definition of Pearson’s
(sample) product-moment correlation coefficient [109].
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Definition C.2 (Pearson’s (sample) product-moment correlation coefficient)
Pearson’s (sample) product-moment correlation coefficient v of a set of observed value
pairs (xi,yi), 1 € {1,...,n} is defined as
_— > i (xi—X)(yi—7)
VI =X (v - 7)?

with X and Yy means of the x; and y; respectively.

(C.2)

As this measure has the following desired properties, its values are now
comparable for different sets of observed value pairs.

Theorem C.1 For the Pearson’s (sample) product-moment correlation coefficient r, the
properties

1. =1 <r < 1and
2. [r| =1 & There is a perfect linear dependency between the x; and y;

hold.

Proof. Let a;,b; € R, i €{1,...,n}. Then,

n 2 n n
(Z aibi) <> af) b (C3)
i=1

i=1 i=1

holds with equality if and only if there is a ¢ € R such that a; = rb; for all
i€ {l,...,n}. (Cauchy-Bunyakovsky-Schwarz inequality) [38, Theorem 2.1, p. 5]

REGARDING 1.) Let q;:=x;—X and b; :=y; —y. From (C.3) follows

n 2 n n
(Z(m—%)(m—g)) <Y (=% (yi—1)* . (C.4)

< JZ(XiY)ZZ(Uiﬁ)Z . (C5)

What can be transformed into

25 (xi — %) (yi — 1) < e
\/Z?:] (xi —X)? Z{l:] (Ui — g)z Ir| < . (C.6)




C.1 PEARSON’S PRODUCT-MOMENT CORRELATION COEFFICIENT 223

REGARDING 2.)

There is a perfect linear dependency between the x; and y;.
S yi=mxi+t ,meR\{0},teR

g:TlLZ{l:]yi:%Z{l:](mXi—i—t) :%Z?:]Xi“f’t:m%—i—t

Xi—X = %-m-(xi—i)

— 1
m
= !

(mx; — mXx)
—[(mx; 4+ t) — (mX + t)]
1 —
= wui—79)
Jdc e R\ {0} : x; —X = a; = cb; =c(yi — V)
21 e —%) (i)

& =Irl=1
VI %2 Y (yi—1)? i

¢

On the basis of Figure C.1, the general behavior of Pearson’s product-moment
correlation coefficient will be explained:

* For positive dependencies (the larger the x;, the larger the y;), Pearson’s
product-moment correlation coefficient is positive (see Figure C.1a, C.1b,
C.1d and C.1e)—for negative dependencies (the larger the x;, the smaller
the y;), it is negative (see Figure C.1j, C.1k, C.1m and C.1n).

¢ For perfect linear dependencies, the absolute value of Pearson’s product-
moment correlation coefficient is 1 (see Figure C.1a, C.1b, C.1m and C.1n).
Different slopes of the lines connecting the value pairs do not have any
influence (e. g., Figure C.1a compared to Figure C.1b).

¢ The less perfect the linear dependency is, the smaller the absolute value
of Pearson’s product-moment correlation coefficient (see Figure C.1d, C.1e,
C.1j and C.1k).

e [f the value pairs are nearly randomly distributed (no linear dependency at
all), Pearson’s product-moment correlation coefficient is approximately 0
(see Figure C.1g).

For determining Pearson’s product-moment correlation coefficient, the ob-
served value pairs must be measured on at least an interval scale (see Section A.2).
Otherwise, the necessary computation of means and standard deviations would
be impossible or at least meaningless.

Finally, it must be stated that although the existence of a linear dependency
implies a high Pearson’s product-moment correlation coefficient, the opposite
direction does not have to be true. Anscombe’s quartet (see Figure C.3), four data
sets constructed and published by Anscombe in [3], is a good counter-example.

The four data sets all have approximately the same relatively high Pearson’s
product-moment correlation coefficient of 0.816 (Figure C.3a—C.3c) and 0.817

1 If ¢ = 0, there would be a division by zero in the definition of r.
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(a) Data set 1.

20 0 5 10 15

(b) Data set 2.

20

000 0@ 0 00

(c) Data set 3.

20 0 5 10 15

(d) Data set 4.

20

Figure C.3: Anscombe’s quartet: Four data sets with Pearson’s product-moment correla-
tion coefficient of 0.816 (Figure C.3a—C.3¢) and 0.817 (Figure C.3d), respec-

tively [3].

(Figure C.3d). Nevertheless, it can be easily seen that some of them are not

linearly dependent.

So, when having found a high correlation coefficient, visually verifying the
actual existence of a linear dependency by depicting the values in a scatter plot is

a good idea.
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C.2 SPEARMAN’S RANK CORRELATION COEFFICIENT

For value pairs with a perfect monotonic—but not linear—dependency (as in
Figure C.1c and C.10), Pearson’s product-moment correlation coefficient does not
reach 1 or —1, respectively.

For values which are not measured on at least an interval scale (see Section A.2),
Pearson’s product-moment correlation coefficient is not applicable?.

For both cases, there is another measure of dependency—Spearman’s rank
correlation coefficient—which uses the concept of ranks and only needs values
on at least an ordinal scale (see Section A.2).

Definition C.3 (Ranking order) Let {x1,...,Xn} be a set of observations on an ordinal
scale. A permutation & :{1,...,n}— {1,...,n} constitutes a ranking order of the x; if
the condition

Xg—1 1) < Xg—1 (2) <...< Xg—1 (n—1) < Xg—1 () (C7)
is fulfilled.

If there are ties in the x; (i. e., there are several x; with the same value), multiple
valid ranking orders exist.
In a next step, the rank of an observation can be defined [144, p. 5].

Definition C.4 (Rank) Let {x1,...,xn} be a set of observations on an ordinal scale and
6:{1,...,n}—{1,...,n} be a permutation constituting a ranking order of the x;. The
function rank : {x;} — R defined as

5(1) i3 x =xj,1#]
rank(xi) == oy 30) . (C.8)
L otherwise
I =x; }
assigns each observation x; its rank.

Theorem C.2 The means of the ranks of the x; (ranky) and y; (ranky) of observed
value pairs (xi,yi), 1 €{1,...,n}are
n+1

ranky = ranky = 5 - (C.9)

Proof. It holds

) . (n+1)
ranky = 2 izt Tank{xi) = Lzt (1) = Lint = 2 _ ot (C.10)

n n n n 2

and
) . (n+1)

ranky = D rankly) _ Fsi &) Xt TH  ndl o

n n n n 2
[ |

For values on an ordinal scale (see Section A.2), Pearson’s product-moment correlation coefficient
would be computable. Yet, the resulting coefficient would be meaningless as there are no equal
distances on that scale what would be necessary for measuring a linear dependency between
value pairs.
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The definition of Spearman’s rank correlation coefficient is based on Pearson’s
product-moment correlation coefficient. Instead of using the x; and y; directly,
they are replaced by their ranks—resulting in Definition C.5 [110].

Definition C.5 (Spearman’s rank correlation coefficient) Spearman’s rank correla-
tion coefficient vs of a set of observed value pairs (xi,yi), 1 € {1,...,n} is defined
as

. > [rank(xi) —ranky [rank(yi) —ranky (C.12)
\/Z{Q [rank(x;) — ranky] 2 >ty [rank(yi) — ranky]z

> [rank(x) — “TH} [rank(y;) — “T“}

VIR [rank(x) — 517 1 frank(y) — 5]

Ts

(C.13)

2

EXAMPLE Using the values of Table C.1, the computation of the ranks and
Spearman’s rank correlation coefficient shall be demonstrated.

For the determination of the ranks, valid ranking orders for the x; and y; have
to be found. As one can easily see, both the x; and y; have ties. Consequently;,
all three x values of 2 get the rank 3 (as defined in the second alternative of
equation C.8) and the two y values of 8.7 get rank 6.5. The computation of the
other values’ ranks is “intuitive”.

According to Theorem C.2, the means of the ranks are rank, = ranky = % =
4.5.

Inserting the computed ranks and their means in (C.12) results in

n
Z [rank(x;) — rcmkx]2
i=1

=12254+225+225+225+0.25+225+6.25+12.25 =40

as well as

n
Z [rank(y;) — ranky]z
i=1

=225+025+4+1225+625+4+0.25+12.25 =415

and finally in a Spearman’s rank correlation coefficient 5 of

:5.25—0.75—3—5.25—1.25+3—1.25—12.25:_ 15.5 ~ 0380

" Vao-415 V1660

As already written above, Spearman’s rank correlation coefficient is also ap-
plicable for data measured on an ordinal scale. The reason is that the values are
replaced by their ranks. These ranks are subsequent increasing numbers with
distance 1 (except for observed values with ties). Consequently, the ranks, which
are used in the formula of Pearson’s product-moment correlation coefficient to
compute Spearman’s rank correlation coefficient, are on an interval scale instead
of an ordinal scale as the original values.
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For value pairs with a perfect monotonic—but not linear—dependency (as in
Figure C.1c and C.10), their ranks have a perfect linear dependency. Because of
that, Spearman’s rank correlation coefficient is 1 or —1, respectively. Pearson’s
product-moment correlation coefficient only reaches values with an absolute
value smaller than 1 for these cases as the value pairs itself are not linearly
dependent.

Value pairs with a Pearson’s product-moment correlation coefficient of 1 or —1
(perfect linear dependency) also have a Spearman’s rank correlation coefficient
of 1 or —1, respectively (perfect monotonic dependency)—as can be seen in
Figure C.1a, C.1b, C.1m and C.1n.

As one can see in Figure C.1h and C.1i, there are cases for which both Pearson’s
product-moment and Spearman’s rank correlation coefficient have very small
values even though the x; and y; are strongly dependent. Because of this, it is
always useful to additionally depict the observed value pairs using a scatter plot
in order to visually search for dependencies not “detectable” by the correlation
coefficients (neither linear nor monotonic).
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