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Goal of today

 Non trivial improvement of genetic algorithm to 
cope with tree, called Genetic Programming
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A bit of lecture

http://www.gp-field-guide.org.uk



4

Genetic Programming in a Nutshell

 Genetic programming (GP) is about evolving a 
population of computer programs 

 In GA, each individual represents a linear 
sequence of genes 

 In GP, each individual is a tree which represents 
a computer program
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Genetic Programming in a Nutshell

Initial population of 
random program

Run programs and 
evaluate their quality

Apply genetic 
operations to produce 
better programs

If (x > 10) {
  x * x + 2.45
} else {
  x / (x - 10)
}
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Genetic Programming in a Nutshell

 In principle, genetic programming is very close 
to genetic algorithm 

 Fitness function takes as argument a computer 
program and returns a numerical value 

 Advanced GA techniques equally apply to GP 
(e.g., elitism, multi-objective)
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Genetic Programming in a Nutshell

 GP reasons about computer programs 

 GP takes programs as input, and produces 
better programs 

 A program is meant to solve a particular problem
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Program
 In GP, programs are usually expressed as Abstract Syntax Tree (AST) 

 For example, consider the following short program 

 max(x + x, x + 3 * y)

 This program can be represented as a tree:

10 2 Tree-based GP

together with certain other features of their structure, form the architecture
of the program. This is discussed in more detail in Section 6.1.

It is common in the GP literature to represent expressions in a prefix no-
tation similar to that used in Lisp or Scheme. For example, max(x+x,x+3*y)
becomes (max (+ x x) (+ x (* 3 y))). This notation often makes it eas-
ier to see the relationship between (sub)expressions and their corresponding
(sub)trees. Therefore, in the following, we will use trees and their corre-
sponding prefix-notation expressions interchangeably.

How one implements GP trees will obviously depend a great deal on
the programming languages and libraries being used. Languages that pro-
vide automatic garbage collection and dynamic lists as fundamental data
types make it easier to implement expression trees and the necessary GP
operations. Most traditional languages used in AI research (e.g., Lisp and
Prolog), many recent languages (e.g., Ruby and Python), and the languages
associated with several scientific programming tools (e.g., MATLAB1 and
Mathematica2) have these facilities. In other languages, one may have to
implement lists/trees or use libraries that provide such data structures.

In high performance environments, the tree-based representation of pro-
grams may be too ine�cient since it requires the storage and management
of numerous pointers. In some cases, it may be desirable to use GP primi-
tives which accept a variable number of arguments (a quantity we will call
arity). An example is the sequencing instruction progn, which accepts any
number of arguments, executes them one at a time and then returns the

x x

+ +
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x

y3

∗

Figure 2.1: GP syntax tree representing max(x+x,x+3*y).

1MATLAB is a registered trademark of The MathWorks, Inc
2Mathematica is a registered trademark of Wolfram Research, Inc.
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Program as a tree
 Each element of the tree is a 
node 

 Variables and constants (x, y, 3) 
are leaves of the tree 

 Internal nodes are called 
functions 

 functions + terminals = 
primitive set of a GP system

10 2 Tree-based GP
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Program

 The notion of program in GP is more general to 
what a Java or Python programmer will consider 

 Program in GP are often not written with a general 
purpose language (e.g., C, Java) 

 Specific languages are used instead 

 These languages are often very simple and are 
designed to solve a particular problem



11

Abstract Syntax Tree

 An Abstract Syntax Tree is a representation of a 
source code text, which is easy for the computer to 
manipulate 

 Note that the AST representation is essential to 
many computing aspects: 

 compilation: transforming AST intro virtual machine byte codes


 refactoring engine: transforming an AST into another AST


 quality rule engine: computing metrics over AST
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Initializing the population

 The initial population is randomly generated (as in 
GA) 

 The initial individuals are generated so that they 
do not exceed a user specified maximum depth 

 The depth of a node is the number of edges that 
need to be traversed to reach the root node
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Initializing the population

1

2

3

Depth
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Genetic operations

 Crossover: the creation of a child program by 
combining randomly chosen parts from two 
selected parent programs 

 Mutation: The creation of a new child program by 
randomly altering a randomly chosen part of a 
selected parent program
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Genetic operations

 In GA, genetic operations are designed to 
operate on a linear sequence of genes 

 This is a relatively simple setting in which 
All the individuals have the same length 

Crossover and mutation operations are very simple
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Trees

 In GP, each individual is a tree 

 Each individual has its own tree shape 
Depth of the tree 

Number of functions and terminal nodes 
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Essential operations on trees

 To adequately performs the genetic operations and 
evaluate the fitness function, it is essential to 

Copy: tree must be duplicated when needed. A genetic 
operation must produce a new individual, and must not modify 
the existing individuals 

Print: a tree must be printable. This is necessary to see the result 

Evaluate: The fitness function is a function that receives a 
program (i.e., a tree) as argument. A tree must be evaluated 
therefore
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Subtree crossover

 Given two parents, subtree crossover randomly and 
independently selects a crossover point (a node) in 
each parent tree 

 Then, an offspring is created by  

 (i) copying the first parent 


 (ii) selecting a crossover point in that copy


 (iii) selecting a subtree in the second parent


 (iv) replace the subtree in the copy by a copy of the second subtree
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Subtree crossover

 Copies are used to avoid affecting the original 
individuals 

 An individual may be multiply selected to be part 
of the creation of multiple offspring programs 

 Note that it is also possible to define a version of 
crossover that returns two offsprings (as in GA)
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Example16 2 Tree-based GP

3

1y

∗

+

yx

+

+

2x

/

Crossover
Point

Crossover
Point

3

+

2x

/

(x+y)+3

(y+1)  (x/2)*

(x/2)+3

Parents Offspring

GARBAGE

Figure 2.5: Example of subtree crossover. Note that the trees on the left
are actually copies of the parents. So, their genetic material can freely be
used without altering the original individuals.

to crossover operations frequently exchanging only very small amounts of
genetic material (i.e., small subtrees); many crossovers may in fact reduce
to simply swapping two leaves. To counter this, Koza (1992) suggested the
widely used approach of choosing functions 90% of the time and leaves 10%
of the time. Many other types of crossover and mutation of GP trees are
possible. They will be described in Sections 5.2 and 5.3, pages 42–46.

The most commonly used form of mutation in GP (which we will call
subtree mutation) randomly selects a mutation point in a tree and substi-
tutes the subtree rooted there with a randomly generated subtree. This is
illustrated in Figure 2.6. Subtree mutation is sometimes implemented as
crossover between a program and a newly generated random program; this
operation is also known as “headless chicken” crossover (Angeline, 1997).

Another common form of mutation is point mutation, which is GP’s
rough equivalent of the bit-flip mutation used in genetic algorithms (Gold-
berg, 1989). In point mutation, a random node is selected and the primitive
stored there is replaced with a di↵erent random primitive of the same arity
taken from the primitive set. If no other primitives with that arity ex-
ist, nothing happens to that node (but other nodes may still be mutated).
When subtree mutation is applied, this involves the modification of exactly
one subtree. Point mutation, on the other hand, is typically applied on a
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to crossover operations frequently exchanging only very small amounts of
genetic material (i.e., small subtrees); many crossovers may in fact reduce
to simply swapping two leaves. To counter this, Koza (1992) suggested the
widely used approach of choosing functions 90% of the time and leaves 10%
of the time. Many other types of crossover and mutation of GP trees are
possible. They will be described in Sections 5.2 and 5.3, pages 42–46.

The most commonly used form of mutation in GP (which we will call
subtree mutation) randomly selects a mutation point in a tree and substi-
tutes the subtree rooted there with a randomly generated subtree. This is
illustrated in Figure 2.6. Subtree mutation is sometimes implemented as
crossover between a program and a newly generated random program; this
operation is also known as “headless chicken” crossover (Angeline, 1997).

Another common form of mutation is point mutation, which is GP’s
rough equivalent of the bit-flip mutation used in genetic algorithms (Gold-
berg, 1989). In point mutation, a random node is selected and the primitive
stored there is replaced with a di↵erent random primitive of the same arity
taken from the primitive set. If no other primitives with that arity ex-
ist, nothing happens to that node (but other nodes may still be mutated).
When subtree mutation is applied, this involves the modification of exactly
one subtree. Point mutation, on the other hand, is typically applied on a

Copy of the parents. 
Their genetic material 
can be used again in 
the future
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Subtree mutation

 Randomly selects a mutation point in a tree, and 
substitutes the subtree with a randomly generated 
subtree 

 Subtree mutation may be implemented as a 
crossover between a program and a newly 
generated random program



23

Subtree mutation2.4 Recombination and Mutation 17
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Figure 2.6: Example of subtree mutation.

per-node basis. That is, each node is considered in turn and, with a certain
probability, it is altered as explained above. This allows multiple nodes to
be mutated independently in one application of point mutation.

The choice of which of the operators described above should be used
to create an o↵spring is probabilistic. Operators in GP are normally mu-
tually exclusive (unlike other evolutionary algorithms where o↵spring are
sometimes obtained via a composition of operators). Their probability of
application are called operator rates. Typically, crossover is applied with the
highest probability, the crossover rate often being 90% or higher. On the
contrary, the mutation rate is much smaller, typically being in the region of
1%.

When the rates of crossover and mutation add up to a value p which is
less than 100%, an operator called reproduction is also used, with a rate of
1� p. Reproduction simply involves the selection of an individual based on
fitness and the insertion of a copy of it in the next generation.
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Running Genetic Programming

 In order to apply genetic programming to solve a 
problem, a number of essential steps need to be 
carefully thought 

1. What is the terminal set?


2. What is the function set?


3. What is the fitness measure?


4. What parameters are used to control the execution?


5. What is the termination criterion and what is the result of the 
run?
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Step 1: Terminal set

 Genetic Programming (GP) is about making 
programs evolve 

 GP is not typically used to evolve programs in the 
familiar Turing-complete languages used in 
software development 

 Instead, it is common to evolve programs (or 
expressions or formulae) in a more constrained 
way
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Step 1: Terminal set

 The terminal set may consist of 

 Constants, which can be pre-specified, and randomly generated 
as part of the creation process, or created by mutation


 The program’s external inputs such as variable names (e.g., x, y)


 Function with no arguments, for example, a function 
dist_to_wall() that returns the distance to an obstacle. Note that 
functions may do side effects (i.e., changing global state of the 
program).
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Step 1 and Step 2

 Domain-specific language are often employed 

 Step 1 and Step 2 defines such a language 

 Together, these two steps define the ingredients to 
create new computer programs 

 These two steps will also define the search space 
GP will explore. This includes all the programs that 
can be constructed by composing the primitives in 
all possible ways
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Step 2

 The function set is driven by the nature of the 
problem to solve 

 In a simple numeric problem, function may be 
arithmetic functions (+, -, *, /) 

 All sorts of other functions and constructs may be 
employed.
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Step 3: define the fitness function

 Steps 1 & 2 defines our search space 

 Saying which elements or regions of this search space are 
good is the focus of Step 3 

 I.e., which regions include programs that solve, or approximately solve, 
the specified problem


 Fitness can be measured in many ways, e.g., 
 in terms of the number of errors between the produced output and the 
desired output


 the amount of resources (e.g., time, fuel, money) to bring a system to a 
desired target
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Step 4: GP parameters

 Many parameters are involved in a GP execution 

 Population size 

 Probability of performing the genetic operations 

 Maximum size for programs (width and depth) 

 There is no general optimal parameter values since 
this depends very much on the problem to solve 

 In general, there is no need to spend time on tuning 
GP to work adequately
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Step 4: GP parameters

 Having a ramped half-and-half with a depth range of 2 - 6 

 Commonly, 90% of children are created by subtree 
crossover 

 Population size can be 500 

 The number of generations is limited between 10 and 50 

 the most productive search is usually performed in early 
generations
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Step 4: GP parameters as a table4.2 Step-by-Step Sample Run 31

Table 4.1: Parameters for example genetic programming run
Objective: Find program whose output matches x2 + x + 1 over the

range �1  x  +1.
Function set: +, �, % (protected division), and ⇥; all operating on floats
Terminal set: x, and constants chosen randomly between �5 and +5
Fitness: sum of absolute errors for x 2 {�1.0,�0.9, . . . 0.9, 1.0}
Selection: fitness proportionate (roulette wheel) non elitist
Initial pop: ramped half-and-half (depth 1 to 2. 50% of terminals are

constants)
Parameters: population size 4, 50% subtree crossover, 25% reproduction,

25% subtree mutation, no tree size limits
Termination: Individual with fitness better than 0.1 found

the crossover operation will be used twice (each time generating one indi-
vidual), which corresponds to a crossover rate of 50%, while the mutation
and reproduction operations will each be used to generate one individual.
These are therefore applied with a rate of 25% each. For simplicity, the
architecture-altering operations are not used for this problem.

In the fifth and final step we need to specify a termination condition. A
reasonable termination criterion for this problem is that the run will continue
from generation to generation until the fitness (or error) of some individual
is less than 0.1. In this contrived example, our example run will (atypically)
yield an algebraically perfect solution with a fitness of zero after just one
generation.

4.2 Step-by-Step Sample Run

Now that we have performed the five preparatory steps, the run of GP can
be launched. The GP setup is summarised in Table 4.1.

4.2.1 Initialisation

GP starts by randomly creating a population of four individual computer
programs. The four programs are shown in Figure 4.1 in the form of trees.

The first randomly constructed program tree (Figure 4.1a) is equivalent
to the expression x+1. The second program (Figure 4.1b) adds the constant
terminal 1 to the result of multiplying x by x and is equivalent to x 2+1. The
third program (Figure 4.1c) adds the constant terminal 2 to the constant
terminal 0 and is equivalent to the constant value 2. The fourth program
(Figure 4.1d) is equivalent to x.
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Step 5: Termination and solution designation

 Identifying the termination criterion  

 Typically, the best-so-far program is designated 
as the result of the run
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Example

“Des Chiffres et des Lettres” is a popular French TV show.  
An equation of the numbers has to match or be close to the 
expected result 
((10 + 9) * (6 + 25)) = 589
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Conclusion

 GP has many applications 
Software program repair 

Defining AI for video games 

Solving numerical problems 

Software patches




