
Genetic Programming

Alexandre Bergel
DCC - University of Chile

http://bergel.eu
30/11/2020

1

2

Goal of today

 Non trivial improvement of genetic algorithm to
cope with tree, called Genetic Programming

3

A bit of lecture

http://www.gp-field-guide.org.uk

4

Genetic Programming in a Nutshell

 Genetic programming (GP) is about evolving a
population of computer programs

 In GA, each individual represents a linear
sequence of genes

 In GP, each individual is a tree which represents
a computer program

5

Genetic Programming in a Nutshell

Initial population of
random program

Run programs and
evaluate their quality

Apply genetic
operations to produce
better programs

If (x > 10) {
 x * x + 2.45
} else {
 x / (x - 10)
}

6

Genetic Programming in a Nutshell

 In principle, genetic programming is very close
to genetic algorithm

 Fitness function takes as argument a computer
program and returns a numerical value

 Advanced GA techniques equally apply to GP
(e.g., elitism, multi-objective)

7

Genetic Programming in a Nutshell

 GP reasons about computer programs

 GP takes programs as input, and produces
better programs

 A program is meant to solve a particular problem

8

Program
 In GP, programs are usually expressed as Abstract Syntax Tree (AST)

 For example, consider the following short program

 max(x + x, x + 3 * y)

 This program can be represented as a tree:

10 2 Tree-based GP

together with certain other features of their structure, form the architecture
of the program. This is discussed in more detail in Section 6.1.

It is common in the GP literature to represent expressions in a prefix no-
tation similar to that used in Lisp or Scheme. For example, max(x+x,x+3*y)
becomes (max (+ x x) (+ x (* 3 y))). This notation often makes it eas-
ier to see the relationship between (sub)expressions and their corresponding
(sub)trees. Therefore, in the following, we will use trees and their corre-
sponding prefix-notation expressions interchangeably.

How one implements GP trees will obviously depend a great deal on
the programming languages and libraries being used. Languages that pro-
vide automatic garbage collection and dynamic lists as fundamental data
types make it easier to implement expression trees and the necessary GP
operations. Most traditional languages used in AI research (e.g., Lisp and
Prolog), many recent languages (e.g., Ruby and Python), and the languages
associated with several scientific programming tools (e.g., MATLAB1 and
Mathematica2) have these facilities. In other languages, one may have to
implement lists/trees or use libraries that provide such data structures.

In high performance environments, the tree-based representation of pro-
grams may be too ine�cient since it requires the storage and management
of numerous pointers. In some cases, it may be desirable to use GP primi-
tives which accept a variable number of arguments (a quantity we will call
arity). An example is the sequencing instruction progn, which accepts any
number of arguments, executes them one at a time and then returns the

x x

+ +

max

x

y3

∗

Figure 2.1: GP syntax tree representing max(x+x,x+3*y).

1MATLAB is a registered trademark of The MathWorks, Inc
2Mathematica is a registered trademark of Wolfram Research, Inc.

9

Program as a tree
 Each element of the tree is a
node

 Variables and constants (x, y, 3)
are leaves of the tree

 Internal nodes are called
functions

 functions + terminals =
primitive set of a GP system

10 2 Tree-based GP

together with certain other features of their structure, form the architecture
of the program. This is discussed in more detail in Section 6.1.

It is common in the GP literature to represent expressions in a prefix no-
tation similar to that used in Lisp or Scheme. For example, max(x+x,x+3*y)
becomes (max (+ x x) (+ x (* 3 y))). This notation often makes it eas-
ier to see the relationship between (sub)expressions and their corresponding
(sub)trees. Therefore, in the following, we will use trees and their corre-
sponding prefix-notation expressions interchangeably.

How one implements GP trees will obviously depend a great deal on
the programming languages and libraries being used. Languages that pro-
vide automatic garbage collection and dynamic lists as fundamental data
types make it easier to implement expression trees and the necessary GP
operations. Most traditional languages used in AI research (e.g., Lisp and
Prolog), many recent languages (e.g., Ruby and Python), and the languages
associated with several scientific programming tools (e.g., MATLAB1 and
Mathematica2) have these facilities. In other languages, one may have to
implement lists/trees or use libraries that provide such data structures.

In high performance environments, the tree-based representation of pro-
grams may be too ine�cient since it requires the storage and management
of numerous pointers. In some cases, it may be desirable to use GP primi-
tives which accept a variable number of arguments (a quantity we will call
arity). An example is the sequencing instruction progn, which accepts any
number of arguments, executes them one at a time and then returns the

x x

+ +

max

x

y3

∗

Figure 2.1: GP syntax tree representing max(x+x,x+3*y).

1MATLAB is a registered trademark of The MathWorks, Inc
2Mathematica is a registered trademark of Wolfram Research, Inc.

10

Program

 The notion of program in GP is more general to
what a Java or Python programmer will consider

 Program in GP are often not written with a general
purpose language (e.g., C, Java)

 Specific languages are used instead

 These languages are often very simple and are
designed to solve a particular problem

11

Abstract Syntax Tree

 An Abstract Syntax Tree is a representation of a
source code text, which is easy for the computer to
manipulate

 Note that the AST representation is essential to
many computing aspects:

 compilation: transforming AST intro virtual machine byte codes

 refactoring engine: transforming an AST into another AST

 quality rule engine: computing metrics over AST

12

Initializing the population

 The initial population is randomly generated (as in
GA)

 The initial individuals are generated so that they
do not exceed a user specified maximum depth

 The depth of a node is the number of edges that
need to be traversed to reach the root node

13

Initializing the population

1

2

3

Depth

10 2 Tree-based GP

together with certain other features of their structure, form the architecture
of the program. This is discussed in more detail in Section 6.1.

It is common in the GP literature to represent expressions in a prefix no-
tation similar to that used in Lisp or Scheme. For example, max(x+x,x+3*y)
becomes (max (+ x x) (+ x (* 3 y))). This notation often makes it eas-
ier to see the relationship between (sub)expressions and their corresponding
(sub)trees. Therefore, in the following, we will use trees and their corre-
sponding prefix-notation expressions interchangeably.

How one implements GP trees will obviously depend a great deal on
the programming languages and libraries being used. Languages that pro-
vide automatic garbage collection and dynamic lists as fundamental data
types make it easier to implement expression trees and the necessary GP
operations. Most traditional languages used in AI research (e.g., Lisp and
Prolog), many recent languages (e.g., Ruby and Python), and the languages
associated with several scientific programming tools (e.g., MATLAB1 and
Mathematica2) have these facilities. In other languages, one may have to
implement lists/trees or use libraries that provide such data structures.

In high performance environments, the tree-based representation of pro-
grams may be too ine�cient since it requires the storage and management
of numerous pointers. In some cases, it may be desirable to use GP primi-
tives which accept a variable number of arguments (a quantity we will call
arity). An example is the sequencing instruction progn, which accepts any
number of arguments, executes them one at a time and then returns the

x x

+ +

max

x

y3

∗

Figure 2.1: GP syntax tree representing max(x+x,x+3*y).

1MATLAB is a registered trademark of The MathWorks, Inc
2Mathematica is a registered trademark of Wolfram Research, Inc.

14

Genetic operations

 Crossover: the creation of a child program by
combining randomly chosen parts from two
selected parent programs

 Mutation: The creation of a new child program by
randomly altering a randomly chosen part of a
selected parent program

15

Genetic operations

 In GA, genetic operations are designed to
operate on a linear sequence of genes

 This is a relatively simple setting in which
All the individuals have the same length

Crossover and mutation operations are very simple

16

Trees

 In GP, each individual is a tree

 Each individual has its own tree shape
Depth of the tree

Number of functions and terminal nodes

17

Essential operations on trees

 To adequately performs the genetic operations and
evaluate the fitness function, it is essential to

Copy: tree must be duplicated when needed. A genetic
operation must produce a new individual, and must not modify
the existing individuals

Print: a tree must be printable. This is necessary to see the result

Evaluate: The fitness function is a function that receives a
program (i.e., a tree) as argument. A tree must be evaluated
therefore

18

Subtree crossover

 Given two parents, subtree crossover randomly and
independently selects a crossover point (a node) in
each parent tree

 Then, an offspring is created by

 (i) copying the first parent

 (ii) selecting a crossover point in that copy

 (iii) selecting a subtree in the second parent

 (iv) replace the subtree in the copy by a copy of the second subtree

19

Subtree crossover

 Copies are used to avoid affecting the original
individuals

 An individual may be multiply selected to be part
of the creation of multiple offspring programs

 Note that it is also possible to define a version of
crossover that returns two offsprings (as in GA)

20

Example16 2 Tree-based GP

3

1y

∗

+

yx

+

+

2x

/

Crossover
Point

Crossover
Point

3

+

2x

/

(x+y)+3

(y+1) (x/2)*

(x/2)+3

Parents Offspring

GARBAGE

Figure 2.5: Example of subtree crossover. Note that the trees on the left
are actually copies of the parents. So, their genetic material can freely be
used without altering the original individuals.

to crossover operations frequently exchanging only very small amounts of
genetic material (i.e., small subtrees); many crossovers may in fact reduce
to simply swapping two leaves. To counter this, Koza (1992) suggested the
widely used approach of choosing functions 90% of the time and leaves 10%
of the time. Many other types of crossover and mutation of GP trees are
possible. They will be described in Sections 5.2 and 5.3, pages 42–46.

The most commonly used form of mutation in GP (which we will call
subtree mutation) randomly selects a mutation point in a tree and substi-
tutes the subtree rooted there with a randomly generated subtree. This is
illustrated in Figure 2.6. Subtree mutation is sometimes implemented as
crossover between a program and a newly generated random program; this
operation is also known as “headless chicken” crossover (Angeline, 1997).

Another common form of mutation is point mutation, which is GP’s
rough equivalent of the bit-flip mutation used in genetic algorithms (Gold-
berg, 1989). In point mutation, a random node is selected and the primitive
stored there is replaced with a di↵erent random primitive of the same arity
taken from the primitive set. If no other primitives with that arity ex-
ist, nothing happens to that node (but other nodes may still be mutated).
When subtree mutation is applied, this involves the modification of exactly
one subtree. Point mutation, on the other hand, is typically applied on a

21

Example16 2 Tree-based GP

3

1y

∗

+

yx

+

+

2x

/

Crossover
Point

Crossover
Point

3

+

2x

/

(x+y)+3

(y+1) (x/2)*

(x/2)+3

Parents Offspring

GARBAGE

Figure 2.5: Example of subtree crossover. Note that the trees on the left
are actually copies of the parents. So, their genetic material can freely be
used without altering the original individuals.

to crossover operations frequently exchanging only very small amounts of
genetic material (i.e., small subtrees); many crossovers may in fact reduce
to simply swapping two leaves. To counter this, Koza (1992) suggested the
widely used approach of choosing functions 90% of the time and leaves 10%
of the time. Many other types of crossover and mutation of GP trees are
possible. They will be described in Sections 5.2 and 5.3, pages 42–46.

The most commonly used form of mutation in GP (which we will call
subtree mutation) randomly selects a mutation point in a tree and substi-
tutes the subtree rooted there with a randomly generated subtree. This is
illustrated in Figure 2.6. Subtree mutation is sometimes implemented as
crossover between a program and a newly generated random program; this
operation is also known as “headless chicken” crossover (Angeline, 1997).

Another common form of mutation is point mutation, which is GP’s
rough equivalent of the bit-flip mutation used in genetic algorithms (Gold-
berg, 1989). In point mutation, a random node is selected and the primitive
stored there is replaced with a di↵erent random primitive of the same arity
taken from the primitive set. If no other primitives with that arity ex-
ist, nothing happens to that node (but other nodes may still be mutated).
When subtree mutation is applied, this involves the modification of exactly
one subtree. Point mutation, on the other hand, is typically applied on a

Copy of the parents.
Their genetic material
can be used again in
the future

22

Subtree mutation

 Randomly selects a mutation point in a tree, and
substitutes the subtree with a randomly generated
subtree

 Subtree mutation may be implemented as a
crossover between a program and a newly
generated random program

23

Subtree mutation2.4 Recombination and Mutation 17

3

yx

+

+

Mutation
Point

Randomly Generated
Sub-tree

y

∗

2x

/

yx

+

+

Mutation
Point

y

∗

2x

/

Parents Offspring

Figure 2.6: Example of subtree mutation.

per-node basis. That is, each node is considered in turn and, with a certain
probability, it is altered as explained above. This allows multiple nodes to
be mutated independently in one application of point mutation.

The choice of which of the operators described above should be used
to create an o↵spring is probabilistic. Operators in GP are normally mu-
tually exclusive (unlike other evolutionary algorithms where o↵spring are
sometimes obtained via a composition of operators). Their probability of
application are called operator rates. Typically, crossover is applied with the
highest probability, the crossover rate often being 90% or higher. On the
contrary, the mutation rate is much smaller, typically being in the region of
1%.

When the rates of crossover and mutation add up to a value p which is
less than 100%, an operator called reproduction is also used, with a rate of
1� p. Reproduction simply involves the selection of an individual based on
fitness and the insertion of a copy of it in the next generation.

24

Running Genetic Programming

 In order to apply genetic programming to solve a
problem, a number of essential steps need to be
carefully thought

1. What is the terminal set?

2. What is the function set?

3. What is the fitness measure?

4. What parameters are used to control the execution?

5. What is the termination criterion and what is the result of the
run?

25

Step 1: Terminal set

 Genetic Programming (GP) is about making
programs evolve

 GP is not typically used to evolve programs in the
familiar Turing-complete languages used in
software development

 Instead, it is common to evolve programs (or
expressions or formulae) in a more constrained
way

26

Step 1: Terminal set

 The terminal set may consist of

 Constants, which can be pre-specified, and randomly generated
as part of the creation process, or created by mutation

 The program’s external inputs such as variable names (e.g., x, y)

 Function with no arguments, for example, a function
dist_to_wall() that returns the distance to an obstacle. Note that
functions may do side effects (i.e., changing global state of the
program).

27

Step 1 and Step 2

 Domain-specific language are often employed

 Step 1 and Step 2 defines such a language

 Together, these two steps define the ingredients to
create new computer programs

 These two steps will also define the search space
GP will explore. This includes all the programs that
can be constructed by composing the primitives in
all possible ways

28

Step 2

 The function set is driven by the nature of the
problem to solve

 In a simple numeric problem, function may be
arithmetic functions (+, -, *, /)

 All sorts of other functions and constructs may be
employed.

29

Step 3: define the fitness function

 Steps 1 & 2 defines our search space

 Saying which elements or regions of this search space are
good is the focus of Step 3

 I.e., which regions include programs that solve, or approximately solve,
the specified problem

 Fitness can be measured in many ways, e.g.,
 in terms of the number of errors between the produced output and the
desired output

 the amount of resources (e.g., time, fuel, money) to bring a system to a
desired target

30

Step 4: GP parameters

 Many parameters are involved in a GP execution

 Population size

 Probability of performing the genetic operations

 Maximum size for programs (width and depth)

 There is no general optimal parameter values since
this depends very much on the problem to solve

 In general, there is no need to spend time on tuning
GP to work adequately

31

Step 4: GP parameters

 Having a ramped half-and-half with a depth range of 2 - 6

 Commonly, 90% of children are created by subtree
crossover

 Population size can be 500

 The number of generations is limited between 10 and 50

 the most productive search is usually performed in early
generations

32

Step 4: GP parameters as a table4.2 Step-by-Step Sample Run 31

Table 4.1: Parameters for example genetic programming run
Objective: Find program whose output matches x2 + x + 1 over the

range �1  x  +1.
Function set: +, �, % (protected division), and ⇥; all operating on floats
Terminal set: x, and constants chosen randomly between �5 and +5
Fitness: sum of absolute errors for x 2 {�1.0,�0.9, . . . 0.9, 1.0}
Selection: fitness proportionate (roulette wheel) non elitist
Initial pop: ramped half-and-half (depth 1 to 2. 50% of terminals are

constants)
Parameters: population size 4, 50% subtree crossover, 25% reproduction,

25% subtree mutation, no tree size limits
Termination: Individual with fitness better than 0.1 found

the crossover operation will be used twice (each time generating one indi-
vidual), which corresponds to a crossover rate of 50%, while the mutation
and reproduction operations will each be used to generate one individual.
These are therefore applied with a rate of 25% each. For simplicity, the
architecture-altering operations are not used for this problem.

In the fifth and final step we need to specify a termination condition. A
reasonable termination criterion for this problem is that the run will continue
from generation to generation until the fitness (or error) of some individual
is less than 0.1. In this contrived example, our example run will (atypically)
yield an algebraically perfect solution with a fitness of zero after just one
generation.

4.2 Step-by-Step Sample Run

Now that we have performed the five preparatory steps, the run of GP can
be launched. The GP setup is summarised in Table 4.1.

4.2.1 Initialisation

GP starts by randomly creating a population of four individual computer
programs. The four programs are shown in Figure 4.1 in the form of trees.

The first randomly constructed program tree (Figure 4.1a) is equivalent
to the expression x+1. The second program (Figure 4.1b) adds the constant
terminal 1 to the result of multiplying x by x and is equivalent to x 2+1. The
third program (Figure 4.1c) adds the constant terminal 2 to the constant
terminal 0 and is equivalent to the constant value 2. The fourth program
(Figure 4.1d) is equivalent to x.

33

Step 5: Termination and solution designation

 Identifying the termination criterion

 Typically, the best-so-far program is designated
as the result of the run

34

Example

“Des Chiffres et des Lettres” is a popular French TV show.
An equation of the numbers has to match or be close to the
expected result
((10 + 9) * (6 + 25)) = 589

35

Conclusion

 GP has many applications
Software program repair

Defining AI for video games

Solving numerical problems

Software patches

