
Neural Networks in
Action - Tarea 1

Alexandre Bergel
http://bergel.eu

23/09/2020

Outline

1. Performance of a neural network

2. Tarea 1

Outline

1. Performance of a neural network

2. Tarea 1

Epoch

 1 epoch = one forward pass and one backward pass
of all the training examples

4

0 0
0 1
1 0
1 1

AND gate:

Training of 4 the combinations to the network = 1 epoch

0
0
0
1

Performance of a Neural Network

 It is important to have indicators on how your network
is learning and performing

 Typically, such metrics are computed per epoch.

 Many metrics are available, depending on what your
neural network is supposed to do.

 Typically, you need to compute some metric values
after each epoch

5

Labeled dataset

 Assume you wish to train a neural network-based
model over a labeled dataset

 A labeled dataset is a dataset in which samples are
tagged with one or more labels

 Example: the Iris dataset

 https://archive.ics.uci.edu/ml/datasets/iris

Labels

Labels
Features

Training a network

 The dataset is said to be labeled because it contains
labels

 The Iris dataset contains three labels: Iris-setosa,
Iris-versicolor, Iris-virginica

 We are here considering using a neural network to
solve a classification task

 If you give a flower characteristic, e.g., 5.7,3.0,4.2,1.2

 Then you wish the network to find the right label,
which is Iris-versicolor. We call this a test.

Training a network

 Before testing a neural network, you need to train it

 An important aspect of the training and testing, is to
not test a network with the very same data it has learn

 Else, a simple dictionary is enough :-)

Dividing your dataset

 From the original dataset, you need to extract a
portion to train your network, and another portion to
test it

 A simple procedure (which is enough for Tarea 1), is
to take 80% of the dataset for training and 20% for
testing

 We call this procedure train/test split

Dividing your dataset

 Cross-validation is a statistical method used to
estimate performance of a machine learning models
(and not only neural network)

 Useful to test a model in presence of unseen data

 k-Fold Cross-Validation is a resampling procedure
with a unique parameter, k

 It is a very popular method because it is simple to
understand and result in less bias than in the train/test
split

k-Fold Cross-Validation

The general procedure is as follows:

1. Shuffle the dataset randomly.

2. Split the dataset into k groups

3. For each unique group:

1. Take the group as a hold out or test data set

2. Take the remaining groups as a training data set

3. Train a model on the training set

4. evaluate the model on the test set

5. Remember the evaluation score and discard the model

4. Summarize the skill of the model using the sample of model
evaluation scores (e.g., average or mean of the model score).
Could also be accompanied with standard deviation

k-Fold Cross-Validation example

Example with 6 (of the 150) shuffled samples of the Iris dataset
We use k = 3

k-Fold Cross-Validation example

Example with 6 (of the 150) shuffled samples of the Iris dataset
We use k = 3

Step 2 - Split the dataset into k groups (called folds)

Fold 1

Fold 2

Fold 3

k-Fold Cross-Validation example

Example with 6 (of the 150) shuffled samples of the Iris dataset
We use k = 3

Step 3 - For each Fold X, you need:
 1 - create a new neural network
 2 - train it with the folds Y, Y X
 3 - evaluate the model on Fold X
 4 - keep the score (e.g., precision and recall)

Fold 1

Fold 2

Fold 3

≠

k-Fold Cross-Validation example

Example with 6 (of the 150) shuffled samples of the Iris dataset
We use k = 3

Step 4 - Provide a summary of the result
 e.g., average, median, std precision, std error

Fold 1

Fold 2

Fold 3

k-Fold Cross-Validation

 Scikit-learn offer the class KFold()

 You can use it, if you wish, for your tarea / project

 Gentle introduction to k-fold cross-validation:

 https://machinelearningmastery.com/k-fold-cross-validation/

Precision and Recall

23

 Precision is easy to
compute. It is simply the
ratio between the correct
guesses and the number
of guesses

 Recall is the relation
between the correct
guesses and all the
possible good solutions

Precision and Recall

24

 Other metrics are
available, such as F1-
score, which is a
combination of precision
and recall

F1 = 2
precision . recall

precision + recall

Precision and Recall

25

 Precision and recall are
easy to compute in
presence of a binary-
class classification
problem

Work well for the blue
vs red dots, but not for
the iris dataset

Precision and Recall for multi-class
classification problem

The confusion matrix (also called error matrix) is useful to
visualize a performance of an algorithm, typically a
supervised learning one

Example of a confusion matrix:

Precision and Recall for multi-class
classification problem

The confusion matrix (also called error matrix) is useful to
visualize a performance of an algorithm, typically a
supervised learning one

Example of a confusion matrix:

Labels from the dataset

Precision and Recall for multi-class
classification problem

The above table assumes that you have 3 possible output labels: A, B & C.
The diagonals contain the true positives for each label (= TP_X).
The sum of a column would be total number of instances that should have label X
The sum of a row would be total number of instances predicted as a particular label X
Given all of this the precision of a label x is computed as:
TP_X/(TotalPredicted_X)
The recall of a label x is computed as:
TP_X/(TotalGoldLabel_X)

Neural-network only process
numbers

These tags are
not numbers

We therefore need to transform these textual tags into numbers

One-hot encoding

One hot encoding is a very simple process for which categorial
variables (e.g., flower name) is converted into numerical values

One-hot encoding

One hot encoding is a very simple process for which categorial
variables (e.g., flower name) is converted into numerical values

Here is a simple recipe:
• We have N labels
• Each tag is encoded into N numerical values
• Each numerical value is either 0 or 1

One hot encoding example

Iris-versicolor = [1,0,0]
Iris-virginica = [0,1,0]

Iris-setosa = [0,0,1]

As a consequence, a neural network to properly classify
Iris needs to have 4 inputs (each dataset row has 4 features)
and 3 outputs (because of the one-hot encoding)

Determining a one hot encoding is very simple. If you have an
ordered collection {versicolor, virginica, setosa}, then
encoding label L is a vector of [0, 0, 0] with 1 at the index of
L in the collection

Measuring error

 Previously we discuss about good and bad
classification

 A complementary metric is the mean squared error
(MSE)

 MSE is a number representing the error made by an
algorithm

n = number of examples
Y_i = prediction of the network
^Y_i = gold results (labels contained in the dataset)

Computing the error

 In the file NeuralNetwork.py

Normalization?

data := {{0 . 0 . 0} .
 {0 . 1 . 0} .
 {1 . 0 . 0} .
 {1 . 1 . 1}}.

n := NeuralNetwork new.
n configure: 2 numberOfHidden: 1 nbOfOutput: 2.
n train: data nbEpoch: 2000.
n

35

Example of training a network with the AND logical gate

Normalization?

data := {{0 . 0 . 0} .
 {0 . 50 . 0} .
 {50 . 0 . 0} .
 {50 . 50 . 1}}.

n := NeuralNetwork new.
n configure: 2 numberOfHidden: 1 nbOfOutput: 2.
n train: data nbEpoch: 2000.
n

36

Replacing each 1 in the input by 50

Normalization?

data := {{0 . 0 . 0} .
 {0 . 50 . 0} .
 {50 . 0 . 0} .
 {50 . 50 . 1}}.

n := NeuralNetwork new.
n configure: 2 numberOfHidden: 1 nbOfOutput: 2.
n train: data nbEpoch: 2000.
n

37

Replacing each 1 in the input by 50

Convergence to 0 is difficult

Need to normalize data

 The sigmoid function returns a value between 0 and 1

 Having the same range for the input improves the
learning performance.

 Each input should therefore be between 0 and 1

 The process of transforming data from an arbitrary
range to a restricted range is called normalization

38

Normalization

 A bit of maths (but nothing terrible)

39

f(x) normalizes a value x
The variable d represents the high and low values of the data
N represents the high and low normalization range desired

Normalization

 So, if a neuron input is between -10 and 10, then it
has to be transformed as:

 f(input) = (input - -10) (1 - 0) / (10 - -10) + 0

 = (input + 10) / 20

40

Denormalization

 When a neural network is used for regression,
returned values are normalized. We therefore need to
“denormalize” them

41

f(x) denormalizes a value x
The variable d represents the high and low values of the data
N represents the high and low normalization range desired

Prediction

 Traditional way is to have the number of outputs the
same size than the different class values

 Consider a network that consists in classifying
elements within N categories

 The network works better with N outputs. The
category corresponds to the output neuron with the
maximum value

42

Outline

1. Performance of a neural network

2. Tarea 1

Training a NN over a dataset

 To complete Tarea 1, you need:

 1 - Implement a way to chart the cost functions during the training

 2 - pick one dataset

 3 - Implement the normalization

 4 - Implement the one hot encoding transformation

 5 - Produce the confusion matrix to represent the model test result

 Bonuses

 - use the k-Fold Cross-Validation. You can pick k = 3, 5, or 10

 - have more than one dataset

 - try different configuration of your network by varying the number of neurons
in the hidden layer

 - have all this in a programming language that is not Python

Datasets

 You can pick the iris dataset, the seed dataset, or any
other dataset available on

 https://archive.ics.uci.edu/ml/datasets/seeds

 https://archive.ics.uci.edu/ml/datasets

Fecha de entrega

 Friday 9, October 2020

