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Epoch

 1 epoch = one forward pass and one backward pass 
of all the training examples 
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Performance of a Neural Network

 It is important to have indicators on how your network 
is learning and performing 

 Typically, such metrics are computed per epoch. 

 Many metrics are available, depending on what your 
neural network is supposed to do. 

 Typically, you need to compute some metric values 
after each epoch
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Labeled dataset

 Assume you wish to train a neural network-based 
model over a labeled dataset 

 A labeled dataset is a dataset in which samples are 
tagged with one or more labels  

 Example: the Iris dataset  

 https://archive.ics.uci.edu/ml/datasets/iris
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Training a network

 The dataset is said to be labeled because it contains 
labels 

 The Iris dataset contains three labels: Iris-setosa, 
Iris-versicolor, Iris-virginica

 We are here considering using a neural network to 
solve a classification task 

 If you give a flower characteristic, e.g., 5.7,3.0,4.2,1.2 

 Then you wish the network to find the right label, 
which is Iris-versicolor. We call this a test. 

 



Training a network

 Before testing a neural network, you need to train it 

 An important aspect of the training and testing, is to 
not test a network with the very same data it has learn 

 Else, a simple dictionary is enough :-)



Dividing your dataset

 From the original dataset, you need to extract a 
portion to train your network, and another portion to 
test it 

 A simple procedure (which is enough for Tarea 1), is 
to take 80% of the dataset for training and 20% for 
testing 

 We call this procedure train/test split



Dividing your dataset

 Cross-validation is a statistical method used to 
estimate performance of a machine learning models 
(and not only neural network) 

 Useful to test a model in presence of unseen data 

 k-Fold Cross-Validation is a resampling procedure 
with a unique parameter, k 

 It is a very popular method because it is simple to 
understand and result in less bias than in the train/test 
split



k-Fold Cross-Validation

The general procedure is as follows:

1. Shuffle the dataset randomly.

2. Split the dataset into k groups

3. For each unique group:


1. Take the group as a hold out or test data set

2. Take the remaining groups as a training data set

3. Train a model on the training set 

4. evaluate the model on the test set

5. Remember the evaluation score and discard the model


4. Summarize the skill of the model using the sample of model 
evaluation scores (e.g., average or mean of the model score). 
Could also be accompanied with standard deviation



k-Fold Cross-Validation example

Example with 6 (of the 150) shuffled samples of the Iris dataset 
We use k = 3



k-Fold Cross-Validation example

Example with 6 (of the 150) shuffled samples of the Iris dataset 
We use k = 3

Step 2 - Split the dataset into k groups (called folds)

Fold 1

Fold 2

Fold 3



k-Fold Cross-Validation example

Example with 6 (of the 150) shuffled samples of the Iris dataset 
We use k = 3

Step 3 - For each Fold X, you need: 
 1 - create a new neural network 
 2 - train it with the folds Y,   Y    X 
 3 - evaluate the model on Fold X 
 4 - keep the score (e.g., precision and recall) 

 

Fold 1

Fold 2

Fold 3

≠



k-Fold Cross-Validation example

Example with 6 (of the 150) shuffled samples of the Iris dataset 
We use k = 3

Step 4 - Provide a summary of the result 
  e.g., average, median, std precision, std error  
 

Fold 1

Fold 2

Fold 3



k-Fold Cross-Validation

 Scikit-learn offer the class KFold()

 You can use it, if you wish, for your tarea / project 

 Gentle introduction to k-fold cross-validation: 

 https://machinelearningmastery.com/k-fold-cross-validation/



Precision and Recall
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 Precision is easy to 
compute. It is simply the 
ratio between the correct 
guesses and the number 
of guesses

 Recall is the relation 
between the correct 
guesses and all the 
possible good solutions



Precision and Recall
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 Other metrics are 
available, such as F1-
score, which is a 
combination of precision 
and recall

F1 = 2
precision . recall

precision + recall



Precision and Recall
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 Precision and recall are 
easy to compute in 
presence of a binary-
class classification 
problem

Work well for the blue 
vs red dots, but not for 
the iris dataset



Precision and Recall for multi-class 
classification problem

The confusion matrix (also called error matrix) is useful to 
visualize a performance of an algorithm, typically a 
supervised learning one 

Example of a confusion matrix:



Precision and Recall for multi-class 
classification problem

The confusion matrix (also called error matrix) is useful to 
visualize a performance of an algorithm, typically a 
supervised learning one 

Example of a confusion matrix:

Labels from the dataset



Precision and Recall for multi-class 
classification problem

The above table assumes that you have 3 possible output labels: A, B & C. 
The diagonals contain the true positives for each label (= TP_X). 
The sum of a column would be total number of instances that should have label X 
The sum of a row would be total number of instances predicted as a particular label X 
Given all of this the precision of a label x is computed as: 
TP_X/(TotalPredicted_X) 
The recall of a label x is computed as: 
TP_X/(TotalGoldLabel_X)



Neural-network only process 
numbers

These tags are 
not numbers

We therefore need to transform these textual tags into numbers



One-hot encoding

One hot encoding is a very simple process for which categorial 
variables (e.g., flower name) is converted into numerical values



One-hot encoding

One hot encoding is a very simple process for which categorial 
variables (e.g., flower name) is converted into numerical values

Here is a simple recipe: 
• We have N labels 
• Each tag is encoded into N numerical values 
• Each numerical value is either 0 or 1



One hot encoding example

Iris-versicolor = [1,0,0]
Iris-virginica = [0,1,0]

Iris-setosa = [0,0,1]

As a consequence, a neural network to properly classify  
Iris needs to have 4 inputs (each dataset row has 4 features)  
and 3 outputs (because of the one-hot encoding) 

Determining a one hot encoding is very simple. If you have an 
ordered collection {versicolor, virginica, setosa}, then 
encoding label L is a vector of [0, 0, 0] with 1 at the index of 
L in the collection



Measuring error

 Previously we discuss about good and bad 
classification 

 A complementary metric is the mean squared error 
(MSE)  

 MSE is a number representing the error made by an 
algorithm 

 
n = number of examples 
Y_i = prediction of the network 
^Y_i = gold results (labels contained in the dataset)



Computing the error

 In the file NeuralNetwork.py



Normalization?

data := {{0 . 0 . 0} . 
     {0 . 1 . 0} . 
     {1 . 0 . 0} . 
     {1 . 1 . 1}}.

n := NeuralNetwork new.
n configure: 2 numberOfHidden: 1 nbOfOutput: 2.
n train: data nbEpoch: 2000.
n
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Example of training a network with the AND logical gate



Normalization?

data := {{0 . 0 . 0} . 
     {0 . 50 . 0} . 
     {50 . 0 . 0} . 
     {50 . 50 . 1}}.

n := NeuralNetwork new.
n configure: 2 numberOfHidden: 1 nbOfOutput: 2.
n train: data nbEpoch: 2000.
n
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Replacing each 1 in the input by 50



Normalization?

data := {{0 . 0 . 0} . 
     {0 . 50 . 0} . 
     {50 . 0 . 0} . 
     {50 . 50 . 1}}.

n := NeuralNetwork new.
n configure: 2 numberOfHidden: 1 nbOfOutput: 2.
n train: data nbEpoch: 2000.
n
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Replacing each 1 in the input by 50

Convergence to 0 is difficult



Need to normalize data

 The sigmoid function returns a value between 0 and 1 

 Having the same range for the input improves the 
learning performance. 

 Each input should therefore be between 0 and 1 

 The process of transforming data from an arbitrary 
range to a restricted range is called normalization
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Normalization

 A bit of maths (but nothing terrible)
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f(x) normalizes a value x 
The variable d represents the high and low values of the data 
N represents the high and low normalization range desired



Normalization

 So, if a neuron input is between -10 and 10, then it 
has to be transformed as: 

 f(input) = (input - -10) (1 - 0) / (10 - -10)  + 0


             = (input + 10) / 20
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Denormalization

 When a neural network is used for regression, 
returned values are normalized. We therefore need to 
“denormalize” them
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f(x) denormalizes a value x 
The variable d represents the high and low values of the data 
N represents the high and low normalization range desired



Prediction

 Traditional way is to have the number of outputs the 
same size than the different class values 

 Consider a network that consists in classifying 
elements within N categories 

 The network works better with N outputs. The 
category corresponds to the output neuron with the 
maximum value
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Training a NN over a dataset

 To complete Tarea 1, you need: 

 1 - Implement a way to chart the cost functions during the training


 2 - pick one dataset


 3 - Implement the normalization


 4 - Implement the one hot encoding transformation


 5 - Produce the confusion matrix to represent the model test result


 Bonuses 

 - use the k-Fold Cross-Validation. You can pick k = 3, 5, or 10


 - have more than one dataset


 - try different configuration of your network by varying the number of neurons 
in the hidden layer


 - have all this in a programming language that is not Python



Datasets

 You can pick the iris dataset, the seed dataset, or any 
other dataset available on  

 https://archive.ics.uci.edu/ml/datasets/seeds


 https://archive.ics.uci.edu/ml/datasets
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