
Sigmoid Neuron &
Neural networks

Alexandre Bergel
http://bergel.eu

21/09/2020

Outline

1. Sigmoid Neuron

2. Neural Network

Outline

1. Sigmoid Neuron

2. Neural Network

What we have seen so far

 We have seen that the perceptron can (more or less
accurately) guess the side on which a point is located

What we have seen so far

 We can easily make our perceptron to represent the AND,
OR, NAND logical operations

What we have seen so far

 We can easily make our perceptron to represent the AND,
OR, NAND logical operations

This is very similar to the space & point problem.
It is all about having a line as a limit

Limitation of a perceptron

 With the XOR operation, you cannot have one unique line
that limit the range of true and false

Limitation of a perceptron

 A perceptron cannot express the XOR formulation. The
behavior exhibited by XOR is too complex for a single
perceptron.

 We therefore needs to put perceptron together, to form a
network

 But before looking at a network, we need to improve our
perceptron

Making a network learn

Making a network learn
 Suppose we are training a network to recognize hand
written digit

 => 504192

 If the network is mistakenly classifying an image as a “0”
when it should a “9”, then we should find a small change in
the weights and biases…

 … so the network gets a little closer to make the right
classification

 The network would be learning

What about a network of perceptrons?

 The problem, is that a network of perceptrons cannot learn
properly

 Because a small change in the weights or bias of any single
perceptron can sometimes cause the output of that
perceptrons to completely flip (0 to 1, or 1 to 0)

 That flip may then cause the behavior of the rest of the
network to completely change

 So, while the “0” can now be classified correctly, the
behavior on all the other images is likely to have changed

Sigmoid Neuron

 It is difficult using the perceptron to gradually modify the
weights and biases to get close to the desired behavior

 We will introduce a new type of artificial neuron, called a
sigmoid neuron

 A sigmoid neuron is similar to a perceptron, but:

 A small changes in its weight and bias cause only a small change in its
output

 That is a crucial fact which will allow a network of sigmoid
neurons to learn

Sigmoid Neuron

 Just like a perceptron, the sigmoid neuron has inputs

 Just like a perceptron, the sigmoid neuron has inputs, x1,
x2, …, xN

 But instead of being 0 and 1, inputs can take any value
between 0 and 1

Sigmoid Neuron

 A sigmoid neuron has a weight for each input and an
overall bias

 The sigmoid function is

 The output of the sigmoid neuron is

σ(z) =
1

1 + e−z

σ(w . x + b)

Sigmoid Neuron

 To summarize, the output of a sigmoid neuron is

 Well … that is different from a perceptron

1
1 + e−z

=
1

1 + e−∑j wjxj−b

Sigmoid neuron & perceptron

 To understand the similarity we have

 If z is large and > 0, then a sigmoid neuron is like a
perceptron

 If z is very negative, then the output is close to 0

 It is only when z is close to 0 that sigmoid neuron is
different from perceptron

z = w . x + b

σ(z) =
1

1 + e−z

Perceptron

Sigmoid neuron

Sigmoid neuron

The important point
of the

sigmoid function is
to be smooth: there

is no step

Sigmoid neuron

A small change
horizontally

produces a small
change vertically

Activation function

 Actually, the exact shape of does not really matter

 is called an activation function and many other functions
are available

 One important aspect of an activation function is the partial
derivative

 is commonly used in neural networks

σ(z)

σ

σ

Interpreting the output?

 How should we interpret the output of a sigmoid function?

 In perceptron, an output is either 0 or 1

 With a sigmoid neuron, output could be any number
between 0 and 1

 How to express things like: “the input image is a 9”

 Threshold is here again to the rescue

 E.g., If the output > 0.5, …

Exercise

 Implement a sigmoid neuron

 Can a sigmoid neuron represent AND, OR, NAND logical
gates?

 Can a sigmoid neuron be used for learning the 2D point
location example? What are the difference in terms of
learning (i.e., how does the sigmoid neuron behaves with the
perceptron learning algorithm)?

Outline

1. Sigmoid Neuron

2. Neural Network

Network of neuron

 A network has the following structure

Network of neuron

 A network has the following structure

Layers

Network of neuron

 A network has the following structure

Output layer
(This example shows only one output neuron,

but we could have many)

Network of neuron

 A network has the following structure

Hidden layers

Forward feeding network

 When you provide inputs, data flows from the input layer to
the output layer

 When training information flow from the output layer to the
input layer

 There is no loop

 Recurrent neural networks allow to have loop in the architecture. Output of
a layer may be used as input in an earlier layer

Feeding

 Operation that consists in providing a set of inputs to the
network, and obtain a set of outputs

 Consider L(n) the layer at position n

 Output of L(n-1) is provided to the input of L(n)

 The feeding process is often called as forward feeding

NeuralNetwork.py

The 4 training examples by columns
X = np.array([[0, 0, 1, 1],
 [0, 1, 0, 1]])

The outputs of the XOR for every example in X
Y = np.array([[0, 1, 1, 0]])

No. of training examples
m = X.shape[1]

NeuralNetwork.py

The 4 training examples by columns
X = np.array([[0, 0, 1, 1],
 [0, 1, 0, 1]])

The outputs of the XOR for every example in X
Y = np.array([[0, 1, 1, 0]])

No. of training examples
m = X.shape[1]

Input examples

Expected outputs

We have 4 examples

NeuralNetwork.py

Set the hyperparameters
n_x = 2 #No. of neurons in first layer
n_h = 4 #No. of neurons in hidden layer
n_y = 1 #No. of neurons in output layer

#The number of times the model has to learn the dataset
number_of_iterations = 10000
learning_rate = 0.01

define a model
trained_parameters = model(X, Y, n_x, n_h, n_y,
number_of_iterations, learning_rate)

NeuralNetwork.py

Set the hyperparameters
n_x = 2 #No. of neurons in first layer
n_h = 4 #No. of neurons in hidden layer
n_y = 1 #No. of neurons in output layer

#The number of times the model has to learn the dataset
number_of_iterations = 10000
learning_rate = 0.01

define a model
trained_parameters = model(X, Y, n_x, n_h, n_y,
number_of_iterations, learning_rate)

The variable trained_parameters is all you need to make a
prediction

NeuralNetwork.py

Test 2X1 vector to calculate the XOR of its elements.
You can try any of those: (0, 0), (0, 1), (1, 0), (1, 1)
X_test = np.array([[0], [1]])
y_predict = predict(X_test, trained_parameters)

Print the result
print('Neural Network prediction for example ({:d}, {:d}) is
{:d}'.format(
 X_test[0][0], X_test[1][0], y_predict))

Exercise

 In u-cursos the complete code to build and train a small
neural network is provided

 You need:

 1 - Run the code

 2 - The provided code train a neural network for the XOR behavior. Verify
that the network can learn the AND, OR

 3 - Verify it can learn the NOT

 4 - Produce a chart that indicates the cost vs iterations

License

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
-Share: copy and redistribute the material in any medium or format
-Adapt: remix, transform, and build upon the material for any purpose, even
commercially

The licensor cannot revoke these freedoms as long as you follow the license terms

 Attribution: you must give appropriate credit

 ShareAlike: if you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original

Complete license: https://creativecommons.org/licenses/by-sa/4.0/

www.dcc.uchile.cl

