
Testing and Debugging
Alexandre Bergel
Nancy Hitschfeld

26/10/2020

Source

 I. Sommerville, Software Engineering, Addison-Wesley, 9th
Edn., 2015.

 www.eclipse.org

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

Unit testing: test individual (stand-alone) components

Module testing: test a collection of related components (a
module)

Sub-system
testing: test sub-system interface mismatches

System testing:
(i) test interactions between sub-systems, and
(ii) test that the complete systems fulfils
functional and non-functional requirements

Acceptance
testing (alpha/beta

testing):
test system with real rather than simulated
data.

Testing

Testing is always iterative!

Regression testing
 Regression testing means testing that everything that used
to work still works after changes are made to the system!

 tests must be deterministic and repeatable

 should test “all” functionalities

 every interface (black-box testing)

 all boundary situations

 every feature

 every line of code (white-box testing)

 everything that can conceivably go wrong!

Regression testing

 Writing tests costs extra work to define tests up front, but
they more than pay off in debugging & maintenance!

Caveat: Testing and Correctness

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

—Edsger Dijkstra, 1970

Testing and Correctness
 This has a number of serious consequences

 xUnit works well for testing your tareas and most industrial
projects

 However, critical software systems (e.g., medical, nuclear,
air industry), software drivers requires complementary or
different techniques

 Validation using Coq, FramaC, Esterel, …

 Mathematical proofs of a software, including theorem, offer guaranties
that unit tests cannot offer

 But such mathematical proofs are much harder to write!

StackInterface
 Interfaces let us abstract from concrete implementations:

 public interface StackInterface {
public boolean isEmpty();
public int size();
public void push(Object item);
public Object top() ;
public void pop();

}

How can clients accept multiple implementations
of an Abstract Data Type?

Make them depend only on an interface or an abstract class.

Interfaces in Java
 Interfaces reduce coupling between objects and their
clients:

 A class can implement multiple interfaces ... but can only extend one
parent class

 Clients should depend on an interface, not an implementation ... so
implementations do not need to extend a specific class

 Define an interface for any concept will have more than one
implementation

 As soon as different classes offer the same contract, then
using interface is necessary

Testing a Stack
We define a simple regression test that

exercises all StackInterface methods and checks
the boundary situations:

public class LinkStackTest {
protected StackInterface stack;

@Before public void setUp() {
stack = new LinkStack();

}

@Test public void empty() {
assertTrue(stack.isEmpty());
assertEquals(0, stack.size());

}
…

Build simple test cases
Construct a test case and check the obvious conditions:

@Test public void oneElement() {
stack.push("a");
assertFalse(stack.isEmpty());
assertEquals(1, stack.size());
stack.pop();
assertEquals(0, stack.size());

}

What other test cases do you need to fully exercise a Stack
implementation?

Check that failures are caught
How do we check that an assertion fails when it should?
With JUnit4, you need to write the following:

@Test(expected=AssertionError.class)
public void emptyTopFails() {

stack.top();
}

@Test(expected=AssertionError.class)
public void emptyRemoveFails() {

stack.pop();
}

Check that failures are caught
How do we check that an assertion fails when it should?
With JUnit5, you need to write the following:

@Test
public void emptyTopFails() {

 boolean shouldPass = false;
try {

 stack.top();
 }
 catch(AssertionError e) {
 shouldPass = true;
 }
 assertTrue(shouldPass);

}

@Test
public void emptyRemoveFails() {

 boolean shouldPass = false;
try {

 stack.pop();
 }
 catch(AssertionError e) {
 shouldPass = true;
 }
 assertTrue(shouldPass);

}

Check that failures are caught
How do we check that an assertion fails when it should?
Alternatively, with JUnit5, you can write the following:

@Test
public void emptyTopFails() {

 assertThrows(AssertionError.class,
 () -> stack.top());
 }

@Test
public void emptyRemoveFails() {

 assertThrows(AssertionError.class,
 () -> stack.pop());
 }

ArrayStack
We can also implement a (variable) Stack using a

(fixed-length) array to store its elements:
public class ArrayStack implements StackInterface {

private Object[] store;
private int capacity;
private int size;

public ArrayStack() {
store = null; // default value
capacity = 0; // available slots
size = 0; // used slots

}

What would be a suitable class invariant for ArrayStack?

Handling overflow
Whenever the array runs out of space, the Stack “grows” by

allocating a larger array, and copying elements to the new array.

public void push(Object item)
{

if (size == capacity) {
grow();

}
store[++size] = item; // NB: subtle error!

}

How would you implement the grow() method?

Making the Array grow

private void grow() {
 if(capacity == 0) {
 capacity = 1;
 store = new Object[1];
 return;
 }

 Object[] newStore = new Object[capacity * 2];
 for(int i = 0; i < capacity; i++)
 newStore[i] = store[i];
 store = newStore;
}

Checking pre-conditions
public boolean isEmpty() { return size == 0; }
public int size() { return size; }

public Object top() {
if(this.isEmpty())

throw new AssertionError("Cannot be empty”);
return store[size-1];

}
public void pop() {

if(this.isEmpty())
throw new AssertionError("Cannot be empty”);

size--;
}

NB: we only check pre-conditions in this version!

Checking pre-conditions
public boolean isEmpty() { return size == 0; }
public int size() { return size; }

public Object top() {
assert(!this.isEmpty());
return store[size-1];

}
public void pop() {

assert(!this.isEmpty());
size--;

}

Equivalent notation: assert(Boolean) is available only
with the proper compiler parameters

Enabling Assert on IntelliJ
 The keyword assert() is enabled per default.

 To manually enable it, you need to provide the
parameter -ea to the JVM when being run

Adapting the test case

We can easily adapt our test case by overriding
the setUp() method in a subclass.

public class ArrayStackTest extends LinkStackTest {
@Before public void setUp() {

stack = new ArrayStack();
}

}

All the test methods defined in
the superclass are inherited

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

Testing ArrayStack

When we test our ArrayStack, we get a surprise:

Testing ArrayStack
When we test our ArrayStack, we get a surprise:

The stack trace tells us exactly where the exception occurred ...

The Run-time Stack
The run-time stack is a fundamental data structure used to record
the context of a procedure that will be returned to at a later point in

time.

This context (AKA “stack frame”) stores the arguments to the
procedure and its local variables.

Practically all programming languages
use a run-time stack, in principle

The Run-time Stack

public static void main(String args[]) {
System.out.println("fact(3) = " + fact(3));

}
public static int fact(int n) {

if (n<=0) {
 return 1;
 } else {
 return n * fact(n - 1) ;
 }

}

The run-time stack in action ...

main …

fact(3)=? n=3; ...

fact(3)=? n=3;fact(2)=? n=2;fact(2) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(1) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(0)=? n=0;fact(0) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(0)=? return 1

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? return 1

fact(3)=? n=3;fact(2)=? return 2

fact(3)=? return 6

fact(3)=6

A stack frame is
pushed with each
procedure call ...

... and popped with
each return.

The Stack and the Heap
The Heap grows with

each new Object
created,

and shrinks
when

Objects are
garbage-
collected

Cleaning the heap

 A garbage collector is a form of automatic memory
management

 The basic principles of garbage collection are:

 Find data objects in a program that cannot be accessed in the future

 Reclaim the resources used by those objects

 Objects that are not referenced anymore are simply
removed from the memory

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

Debuggers

 A debugger is a tool that allows you to examine the state of
a running program:

 step through the program instruction by instruction

 view the source code of the executing program

 inspect (and modify) values of variables in various formats

 set and unset breakpoints anywhere in your program

 execute up to a specified breakpoint

 examine the state of an aborted program (in a “core file”)

Using Debuggers

 Interactive debuggers are available for most mature
programming languages and integrated in IDEs.

 Classical debuggers are line-oriented (e.g., jdb); most
modern ones are graphical.

 When should you use a debugger?

 When you are unsure why (or where) your program is not working

Debugging in IntelliJ

 We see that the error is (indirectly) caused by
oneElement()

 We could trace the execution (i.e., executing step by
step) starting from oneElement()

java.lang.ArrayIndexOutOfBoundsException: 1

at stackexample.ArrayStack.push(ArrayStack.java:19)
at stackexample.LinkStackTest.oneElement(LinkStackTest.java:22)

 …

 The stack indicating the error is:

Debugging in IntelliJ

Clicking next to the method insert a breakpoint.
A breakpoint is a location in the source code that
forces the runtime to suspend the execution when the
program execution reaches that particular point

Debugging in IntelliJ

 We can run again
our test, but in a
debug mode

Debugging in IntelliJ

Debugging in IntelliJ

The following
commands are useful

to steer the
execution

Debugging in IntelliJ

The state of the
application

can be inspected

Debugging Strategy: development time

 Develop tests as you program

 Develop unit tests to exercise all paths through your program

 You may apply Design by Contract to decorate classes with invariants and
pre- and post-conditions, using the assert() keyword

 Use assertions (not print statements) to probe the program state

 After every modification, do regression testing!

Debugging Strategy: when testing
 If errors arise during the unit tests execution

 Use the test results to track down and fix the bug:

 Test may be obsolete and need to be updated. The bug is therefore in the
tests.

 If the tests are right, the bug is therefore in the application.

 If you can’t tell where the bug is, then use a debugger to identify the faulty
code

 1 - identify and add any missing tests!

 2 - fix the bug

 All software bugs are a matter of false assumptions. If you make your
assumptions explicit, you will find and stamp out your bugs!

Debugging Strategy: when running the application

 If errors arise during the application execution

 You first need to understand what is the running scenario that caused the
bug

 It is essential to be sure we got the problematic scenario. Write a test that
reproduce the scenario

 Run this new test to be sure that it fails

 Fix the bug in the application

 Run the test again to be sure we have fixed the bug

Fixing our mistake
We erroneously used the incremented size as an index into the

store, instead of the new size of the stack - 1:

public void push(Object item) ... {
if (size == capacity) { grow(); }
store[size++] = item;
assert(this.top() == item);

}

store[this.topIndex()] = item;

1
0

NB: perhaps it would be clearer to write:

item

Wrapping Objects

 Wrapping is a fundamental programming technique
for systems integration.

 What do you do with an object whose interface
doesn’t fit your expectations?

 You wrap it

 What are possible disadvantages of wrapping?

client
wrapper

java.util.Stack
Java also provides a Stack implementation,
but it is not compatible with our interface:

public class Stack extends Vector {
public Stack();
public Object push(Object item);
public synchronized Object pop();
public synchronized Object peek();
public boolean empty();
public synchronized int search(Object o);

}

If we change our programs to work with the Java Stack,
we won’t be able to work with our own Stack implementations ...

A Wrapped Stack
A wrapper class implements a required interface, by delegating

requests to an instance of the wrapped class:

public class SimpleWrappedStack implements StackInterface {
private Stack stack;
public SimpleWrappedStack() { stack = new Stack(); }
public boolean isEmpty() { return stack.empty(); }
public int size() { return stack.size(); }
public void push(Object item) { stack.push(item); }
public Object top() { return stack.peek(); }
public void pop() { stack.pop(); }

}

Stack is a standard Java class, contained
in the package java.util

A contract mismatch
But running the test case yields:

java.lang.Exception: Unexpected exception,
expected<java.lang.AssertionError> but
was<java.util.EmptyStackException>

...
Caused by: java.util.EmptyStackException

at java.util.Stack.peek(Stack.java:79)
at cc3002.stack.SimpleWrappedStack.top(SimpleWrappedStack.java:32)
at cc3002.stack.LinkStackTest.emptyTopFails(LinkStackTest.java:28)
...

What went wrong?

Fixing the problem
Our tester expects an empty Stack to throw an exception
when it is popped, but java.util.Stack doesn’t do this —

so our wrapper should check its preconditions!

public class WrappedStack implements StackInterface {
public Object top() {

assert(!this.isEmpty());
return super.top();

}
public void pop() {

assert(!this.isEmpty());
super.pop();

}
…

}

What you should know!

 What is a regression test? Why is it important?

 What strategies should you apply to design a test?

 What are the run-time stack and heap?

 How can you adapt client/supplier interfaces that don’t
match?

Can you answer these questions?

 Why can’t you use tests to demonstrate absence of defects?

 How would you implement ArrayStack.grow()?

 Why doesn’t Java allocate objects on the run-time stack?

 What are the advantages and disadvantages of wrapping?

 What is a suitable class invariant for WrappedStack?

License

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
-Share: copy and redistribute the material in any medium or format
-Adapt: remix, transform, and build upon the material for any purpose, even
commercially

The licensor cannot revoke these freedoms as long as you follow the license terms

 Attribution: you must give appropriate credit

 ShareAlike: if you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original

Complete license: https://creativecommons.org/licenses/by-sa/4.0/

Original version of this lecture is from Prof. Oscar Nierstrasz

www.dcc.uchile.cl

