
A Testing Framework
(Part 2/2)

Alexandre Bergel
Nancy Hitschfeld

05/10/2020

Last time…

 We implemented two classes: Money, MoneyBag, and
MoneyTest

 We had a falling test, which is

@Test public void mixedSimpleAdd() {
// [12 CHF] + [7 USD] == {[12 CHF][7 USD]}
Money[] bag = { f12CHF, f7USD };
MoneyBag expected = new MoneyBag(bag);
assertEquals(expected, f12CHF.add(f7USD));

}

Outline for today

1.Double dispatch - how to add different types of objects

2.Exercise: Catchipun

Outline for today

1.Double dispatch - how to add different types of objects

2.Exercise: Catchipun

Adding MoneyBags
 We would like to freely add together arbitrary Monies and
MoneyBags, and be sure that equals behave as equals:

 That implies that Money and MoneyBag should implement
a common interface ...

@Test public void mixedSimpleAdd() {
// [12 CHF] + [7 USD] == {[12 CHF][7 USD]}
Money[] bag = { f12CHF, f7USD };
MoneyBag expected = new MoneyBag(bag);
assertEquals(expected, f12CHF.add(f7USD));

}

Adding MoneyBags

 f12CHF.add(f7USD) “=> return a money bag”

 new MoneyBag().add(f12CHF) “=> return a money bag”

 f12CHF.add(f12CHF) “=> return a money”

 f12CHF.add(new MoneyBag()) “=> return a money bag”
 …

A possible solution
public class Money {
 public Object add(Object m) {
 if (m instanceof Money) { ... }
 if (m instanceof MoneyBag) { ... }
 // error here?
 }
}

public class MoneyBag {
 public Object add(Object m) {
 if (m instanceof Money) { ... }
 if (m instanceof MoneyBag) { ... }
 // error here?
 }
}

A possible solution
public class Money {
 public Object add(Object m) {
 if (m instanceof Money) { ... }
 if (m instanceof MoneyBag) { ... }
 // error here?
 }
}

public class MoneyBag {
 public Object add(Object m) {
 if (m instanceof Money) { ... }
 if (m instanceof MoneyBag) { ... }
 // error here?
 }
}

no no, we do not want
that!

The IMoney interface (I)

 Monies know how to be added to other Monies

 [NOTE: The diagram is incomplete, we will complete it later on]

Double Dispatch (I)

Problem: we want to add Monies
and MoneyBags without having
to check the types of the
arguments.

Solution: use double dispatch to
expose more of your own
interface.

10

Double Dispatch (II)

 How do we implement add() without breaking
encapsulation?

 “The idea behind double dispatch is to use an
additional call to discover the kind of argument we are
dealing with...”

class Money implements IMoney { ...
public IMoney add(IMoney m) {

return m.addMoney(this); // add me as a Money
} ...

}
class MoneyBag implements IMoney { ...

public IMoney add(IMoney m) {
return m.addMoneyBag(this); // add as a MoneyBag

} ...
}

11

Double Dispatch (III)

 The rest is then straightforward ...

 and MoneyBag takes care of the rest.

class Money implements IMoney { ...
public IMoney addMoney(Money m) {

if (m.currency().equals(currency())) {
return new Money(amount()+m.amount(),currency());

} else {
return new MoneyBag(this, m);

}
}
public IMoney addMoneyBag(MoneyBag s) {

return s.addMoney(this);
} ...

12

Double Dispatch (IV)

 Pros

 No violation of encapsulation (no downcasting)

 Smaller methods; easier to debug

 Easy to add a new type

 Cons

 No centralized control

 May lead to an explosion of helper methods

13

The IMoney interface (II)

 So, the common interface has to be:

 NB: addMoney() and addMoneyBag() are only needed
within the Money package.

public interface IMoney {
public IMoney add(IMoney aMoney);
IMoney addMoney(Money aMoney);
IMoney addMoneyBag(MoneyBag aMoneyBag);

}

14

A Failed test

This time we
are not so
lucky ...

15

The fix ...

 It seems we forgot to implement MoneyBag.equals()!

 We fix it:

 ... test it, and continue developing.

class MoneyBag implements IMoney { ...
public boolean equals(Object anObject) {

if (anObject instanceof MoneyBag) {
...

} else {
return false;

}
}

16

Outline for today

1.Double dispatch - how to add different types of objects

2.Exercise: Catchipun

Cachipun

 Though it looks simple, designing this small game is a
fantastic example of the double dispatch design pattern

 This pattern is particularly important since it is the base of
many other design patterns

Design

play(Hand)
playWithStone(Stone)
playWithScissor(Scissor)
playWithPaper(Paper)

Hand
<interface>

play(Hand)
playWithStone(Stone)
playWithScissor(Scissor)
playWithPaper(Paper)

Stone
play(Hand)
playWithStone(Stone)
playWithScissor(Scissor)
playWithPaper(Paper)

Paper
play(Hand)
playWithStone(Stone)
playWithScissor(Scissor)
playWithPaper(Paper)

Scissor

interface Hand {
// 1 win, 0 draw, -1 loose
int play (Hand v);
int playWithStone (Stone stone);
int playWithPaper (Paper paper);
int playWithScissor (Scissor scissor);

}

class Stone implements Hand {
 public int play(Hand v) {
 return v.playWithStone (this);
 }
 public int playWithStone (Stone v) {
 return 0;
 }
 public int playWithScissor (Scissor v) {
 return -1;
 }
 public int playWithPaper (Paper v) {
 return 1;
 }
}

class Paper implements Hand {
 public int play(Hand v) {
 return v.playWithPaper (this);
 }
 public int playWithStone (Stone v) {
 return -1;
 }
 public int playWithScissor (Scissor v) {
 return 1;
 }
 public int playWithPaper (Paper v) {
 return 0;
 }
}

class Scissor implements Hand {
 public int play(Hand v) {
 return v.playWithScissor (this);
 }
 public int playWithStone (Stone v) {
 return 1;
 }
 public int playWithScissor (Scissor v) {
 return 0;
 }
 public int playWithPaper (Paper v) {
 return -1;
 }
}

Benefit of using double dispatch
 Methods are shorts

 Methods do not contains “if” and “instanceof”

 This means that code is easier to test, thanks to double
dispatch

 Ideally, instanceof has to be used only in the equals
method

 The cost of adding a new type (e.g., spoke or) is very
low

What you should know

 How does the double dispatch pattern work?

 When should one apply this pattern?

 What are the benefits when using it?

Can you answer these questions?

 Can you give an example where the double dispatch is
successfully employed?

 Can the double dispatch be used to always get rid of the if
statements?

License

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
-Share: copy and redistribute the material in any medium or format
-Adapt: remix, transform, and build upon the material for any purpose, even
commercially

The licensor cannot revoke these freedoms as long as you follow the license terms

 Attribution: you must give appropriate credit

 ShareAlike: if you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original

Complete license: https://creativecommons.org/licenses/by-sa/4.0/

www.dcc.uchile.cl

