
A Testing Framework
(Part 1/2)

Alexandre Bergel
Nancy Hitschfeld

28/09/2020

Goal of today

 Having a brief overview of UML class diagram

 Expressing requirements using unit test

2

A Testing Framework

 Source

 JUnit 4.0 documentation (from www.junit.org)

 Test-Driven Development, by Kent Beck

3

Roadmap

1.JUnit - a testing framework
1.testing practices

2.frameworks vs. libraries

3.JUnit 3.x vs. JUnit 4.x (annotations)

2.Money and MoneyBag - a testing case study

4

Roadmap

1.JUnit - a testing framework
1.testing practices

2.frameworks vs. libraries

3.JUnit 3.x vs. JUnit 4.x (annotations)

2.Money and MoneyBag - a testing case study

5

THE Problem

 Testing is often (especially by students) done in an ad-hoc
manner

 With a succession of code increment, and manual testing

manually testing
the change Acode change A

6

THE Problem

 Testing is often (especially by students) done in an ad-hoc
manner

 With a succession of code increment, and manual testing

manually testing
the change Acode change A

manually testing
the change Bcode change B

7

THE Problem

 Testing is often (especially by students) done in an ad-hoc
manner

 With a succession of code increment, and manual testing

manually testing
the change Acode change A

manually testing
the change Bcode change B

manually testing
the change Ccode change C

8

3 Testing Practices...

 1 - During Development

 When you need to add new functionality, write the tests first

 You will be done when the test runs

 2 - When you need to redesign your software to

 add new features, refactor in small steps, and run the (regression) tests
after each step

 Fix what’s broken before proceeding.

9

3 Testing Practices

 3 - During Debugging

 When someone discovers a defect in your code, first write a test that
demonstrates the defect

 Then debug until the test succeeds

 	 “Whenever you are tempted to type something into a
print statement or a debugger expression, write it as a test
instead.” -- Martin Fowler

10

JUnit - A Testing Framework

 JUnit is a simple framework to write repeatable tests. It is
an instance of the xUnit architecture for unit testing
frameworks written by Kent Beck and Erich Gamma

 For documentation of how to use JUnit:

 http://junit.sourceforge.net/doc/cookbook/cookbook.htm

11

Frameworks vs. Libraries
 In traditional application architectures, user code makes
use of library functionality in the form of procedures or
classes:

 A framework reverses the usual relationship between
generic and application code. Frameworks provide both
generic functionality and application architecture:

User application
main()

Library classes

User classesFramework
main()

12

Frameworks vs. Libraries

Essentially, a framework says: “Don’t call me — I’ll call you.”

13

JUnit 3.8...

 JUnit is a simple “testing framework” that provides:

 classes for writing Test Cases and Test Suites

 methods for setting up and cleaning up test data (“fixtures”)

 methods for making assertions

 textual and graphical tools for running tests

14

JUnit 3.8

 JUnit distinguishes between failures and errors:

 A failure is a failed assertion, i.e., an anticipated problem that you test.

 An error is a condition you didn’t check for, i.e., a runtime error.

15

The JUnit 3.x Framework: Class

16

Associations in UML
public class A {
 B b;
}

public class B{
} A B

public class A extends B {
}

public class B{
} A B

public class A implements B{
}

public interface B{
} A B

public class A{
 B b;
}

public class B{
 A a;
}

A B

public class A{
 ArrayList someBs;
}

public class B{
} A B

public class A{
 ArrayList someBs;
}

public class B{
 A a;
}

A B

A Testing Scenario: Sequence

The framework calls the test methods that you define for your test cases.

18

JUnit 3.x Example Code
import junit.framework.*;
public class MoneyTest extends TestCase {

private Money f12CHF; // fixtures
private Money f14CHF;

protected void setUp() { // create the test data
f12CHF = new Money(12, "CHF");
f14CHF = new Money(14, "CHF");

}
 public void testAdd() { // create the test data

Money expected = new Money(26, “CHF”);
assertEquals(“amount not equal”,

 expected, f12CHF.add(f14CHF));
}
...

}

19

In PHP
<?php
class MoneyTest extends PHPUnit_Framework_TestCase
{
 // ...

 public function testCanBeNegated()
 {
 // Arrange
 $a = new Money(1);

 // Act
 $b = $a->negate();

 // Assert
 $this->assertEquals(-1, $b->getAmount());
 }

 // ...
}

 PHPUnit is very close to

 JUnit 3.8

20

In Ruby
File: tc_simple_number2.rb

require_relative "simple_number"
require "test/unit"

class TestSimpleNumber < Test::Unit::TestCase

 def test_simple
 assert_equal(4, SimpleNumber.new(2).add(2))
 assert_equal(4, SimpleNumber.new(2).multiply(2))
 end

 def test_typecheck
 assert_raise(RuntimeError) { SimpleNumber.new('a') }
 end

 def test_failure
 assert_equal(3, SimpleNumber.new(2).add(2), "Adding doesn't work")
 end

end

 Same thing in Ruby

21

Annotations in J2SE 5

 J2SE 5 introduces the Metadata feature (data about data)

 Annotations allow you to add decorations to your code
(remember javadoc tags: @author)

 Annotations are used for code documentation, compiler
processing (@Deprecated), code generation, runtime
processing

 http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html

22

JUnit 4.x

 JUnit is a simple “testing framework” that provides:

 Annotations for marking methods as tests

 Annotations for marking methods that setting up and cleaning up test data
(“fixtures”)

 methods for making assertions

 textual and graphical tools for running tests

23

JUnit 4.x Example Code
import org.junit.*;
import static org.junit.Assert.*;
public class MoneyTest {

private Money f12CHF;
private Money f14CHF;

@Before public void setUp() { // create the test data
f12CHF = new Money(12, "CHF"); // - the fixture
f14CHF = new Money(14, "CHF");

}
@Test public void add() { // create the test data

Money expected = new Money(26, “CHF”);
assertEquals(“amount not equal”,

 expected,f12CHF.add(f14CHF));
}
...

}

24

In C#
[TestMethod]
public void Withdraw_ValidAmount_ChangesBalance()
{
 // arrange
 double currentBalance = 10.0;
 double withdrawal = 1.0;
 double expected = 9.0;
 var account = new CheckingAccount("JohnDoe", currentBalance);
 // act
 account.Withdraw(withdrawal);
 double actual = account.Balance;
 // assert
 Assert.AreEqual(expected, actual);
}

[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public void Withdraw_AmountMoreThanBalance_Throws()
{
 // arrange
 var account = new CheckingAccount("John Doe", 10.0);
 // act
 account.Withdraw(1.0);
 // assert is handled by the ExpectedException
}

 Unit testing in C# is similar

 to JUnit 4.X

25

Testing Style

 	 “The style here is to write a few lines of code, then a test
that should run, or even better, to write a test that won't run,
then write the code that will make it run.”

 write unit tests that thoroughly test a single class

 write tests as you develop (even before you implement)

 write tests for every new piece of functionality

“Developers should spend 25-50% of
their time developing tests.”

26

Roadmap

1.JUnit - a testing framework
1.testing practices

2.frameworks vs. libraries

3.JUnit 3.x vs. JUnit 4.x (annotations)

2.Money and MoneyBag - a testing case study

27

Representing multiple currencies

 The problem ...

 	 “The program we write will solve the problem of representing
arithmetic with multiple currencies. Arithmetic between single currencies is
trivial, you can just add the two amounts. ... Things get more interesting
once multiple currencies are involved.”

28

MoneyTest

 We start by defining a TestCase that exercises the interface
we would like our Money class to support:

import org.junit.*;
import static org.junit.Assert.*;
public class MoneyTest {

private Money f12CHF;
private Money f14CHF;

@Before public void setUp() { // create the test data
f12CHF = new Money(12, "CHF");
f14CHF = new Money(14, "CHF");

}
...

}

29

Some basic tests...

 We define methods to test what we expect to be true ...

@Test public void testEquals() {
assertEquals(f12CHF, f12CHF);
assertEquals(f12CHF, new Money(12, "CHF"));
assertFalse(f12CHF.equals(f14CHF));

}

@Test public void testSimpleAdd() {
Money expected = new Money(26, "CHF");
Money result = f12CHF.add(f14CHF);
assertEquals(expected, result);

}

30

Some basic tests

 NB: assertTrue, etc. are static imported methods of the
Assert class of the JUnit 4.x Framework and raise an
AssertionError if they fail.

Junit 3.x raises a JUnit AssertionFailedError (!)

31

Money
 We now implement a Money class that fills our first few
requirements:

public class Money {
...
public Money add(Money m) {

return new Money(...);
}
...

}

Note how the test case drives the design!
NB: The first version does not consider how to add different

currencies!
32

Money

 We now implement a Money class that fills our first few
requirements:
public class Money {

...
public Money add(Money m) {

return new Money(...);
}
...

}

What should the class invariant be?
(i.e., what are the conditions to have an

object Money well formed?)
33

Running tests from eclipse / IntelliJ
Right-click on the

class
(or package) to run

the tests

34

Testing MoneyBags (I)

 To handle multiple currencies, we introduce a MoneyBag
class that can hold several instances of Money:

import static org.junit.Assert.*;
public class MoneyTest {

...
@Before public void setUp() {

f12CHF = new Money(12, "CHF");
f14CHF = new Money(14, "CHF");
f7USD = new Money(7, "USD");
f21USD = new Money(21, "USD");
fMB1 = new MoneyBag(f12CHF, f7USD);
fMB2 = new MoneyBag(f14CHF, f21USD);

}

35

Testing MoneyBags (II)

 ... and define some new (obvious) tests ...

@Test public void testBagEquals() {
assertEquals(fMB1, fMB1);
assertFalse(fMB1.equals(f12CHF));
assertFalse(f12CHF.equals(fMB1));
assertFalse(fMB1.equals(fMB2));

}

36

MoneyBags
 We can use a HashTable to keep track of multiple Monies:

public class MoneyBag {
 private Hashtable<String, Money> monies = new Hashtable<>();

 public MoneyBag(Money m1, Money m2) {
 this(new Money[]{m1, m2});
 }

 public MoneyBag(Money[] bag) {
 for(Money m : bag)
 this.appendMoney(m);
 }

 private void appendMoney(Money aMoney) {
 Money m = monies.get(aMoney.getCurrency());
 if(m != null) { m = m.add(aMoney); }
 else { m = aMoney; }
 monies.put(aMoney.getCurrency(), m);
 }
}

37

Testing MoneyBags (III)

and we run the tests.

38

Adding MoneyBags

 We would like to freely add together arbitrary Monies and
MoneyBags, and be sure that equals behave as equals:

 This test fails. Next time we will see how to fix it!

@Test public void mixedSimpleAdd() {
// [12 CHF] + [7 USD] == {[12 CHF][7 USD]}
Money[] bag = { f12CHF, f7USD };
MoneyBag expected = new MoneyBag(bag);
assertEquals(expected, f12CHF.add(f7USD));

}

39

What you should know!

 How does a framework differ from a library?

 What is a unit test?

 What is an annotation?

 How does JUnit 3.x differ from JUnit 4.x?

 What is a test “fixture”?

 What should you test in a TestCase?

 How can testing drive design?

40

Can you answer these questions?

 How does implementing toString() help in debugging?

 How does the MoneyTest suite know which test methods
to run?

 How does the TestRunner invoke the right suite() method?

 Why doesn’t the Java compiler complain that
MoneyBag.equals() is used without being declared?

41

License

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
-Share: copy and redistribute the material in any medium or format
-Adapt: remix, transform, and build upon the material for any purpose, even
commercially

The licensor cannot revoke these freedoms as long as you follow the license terms

 Attribution: you must give appropriate credit

 ShareAlike: if you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original

Complete license: https://creativecommons.org/licenses/by-sa/4.0/

42

