
Essential of Object
Oriented Programming

Alexandre Bergel
http://bergel.eu

02/09/2020

Goal of this lecture

This lecture will essentially be a Java introduction

Emphasis on what an object is

Highlight some important particularities of Java

2

Outline

1.Java by example
1.Small illustrative scenario with an artificial neuron

2.Extending Neuron into ReluNeuron

2.Class inheritance

3.Terminology

3

Outline

1.Java refresher
1.Small illustrative scenario with an artificial neuron

2.Extending Neuron into ReluNeuron

2.Class inheritance

3.Terminology

4

Defining a Neuron as a first
example...

 Deep learning is about network of artificial neurons

 We will model an artificial neuron as a first example

 In our model, a neuron is a simple machine that can
make decision

 Modeling a neuron is simply an entertaining example.
It does not contribute to the content of the lecture

5

Defining a Neuron as a first
example...

6

A neuron has many inputs.
We will only consider 2 inputs for now

x1

x2

w1

w2

ouputb

output = 0 if w1 * x1 + w2 * x2 + b ≤ 0
output = 1 if w1 * x1 + w2 * x2 + b > 0

Defining a Neuron as a first
example...

7

A neuron has many inputs.
We will only consider 2 inputs for now

x1

x2

w1

w2

ouputb

output = 0 if w1 * x1 + w2 * x2 + b ≤ 0
output = 1 if w1 * x1 + w2 * x2 + b > 0

We call this value z

Defining a Neuron as a first
example...

8

x1

x2

w1

w2

ouputb

 The class Neuron will therefore define 3 variables

Defining a Neuron as a first
example...

9

x1

x2

w1

w2

ouputb

 The class Neuron will therefore define 3 variables

 A neuron can answer 2 different messages

 computeZ: compute the intermediary Z value

 feed: which returns the output value

Definition of Neuron Class

package c3002.artificial.neuron;

public class Neuron {
 private double weight1, weight2;
 private double bias;
 …

10

Definition of Neuron Class

…
public Neuron(double w1, double w2, double b) {
 weight1 = w1;
 weight2 = w2;
 bias = b;
}
…

11

Definition of Neuron Class

…
public double computeZ(double input1, double input2) {
 return input1 * weight1 +

 input2 * weight2 + bias;
}
…

12

Definition of Neuron Class

…
 public double feed(double input1, double input2) {
 double z = this.computeZ(input1, input2);
 if(z <= 0)
 return 0;
 else
 return 1;
 }
}

13

Definition of NeuronExample

package c3002.artificial.neuron;

public class NeuronExample {
 public static void main(String[] args){
 Neuron or = new Neuron(1.0, 1.0, -0.5);
 System.out.println("0 OR 0 = " + or.feed(0, 0));
 System.out.println("1 OR 0 = " + or.feed(1, 0));
 }
}

14

Definition of NeuronExample

package c3002.artificial.neuron;

public class NeuronExample {
 public static void main(String[] args){
 Neuron or = new Neuron(1.0, 1.0, -0.5);
 System.out.println("0 OR 0 = " + or.feed(0, 0));
 System.out.println("1 OR 0 = " + or.feed(1, 0));
 }
}

15

Entry point of the program

Definition of NeuronExample

package c3002.artificial.neuron;

public class NeuronExample {
 public static void main(String[] args){
 Neuron or = new Neuron(1.0, 1.0, -0.5);
 System.out.println("0 OR 0 = " + or.feed(0, 0));
 System.out.println("1 OR 0 = " + or.feed(1, 0));
 }
}

16

Creation of a
Neuron object / instance

Definition of NeuronExample

package c3002.artificial.neuron;

public class NeuronExample {
 public static void main(String[] args){
 Neuron or = new Neuron(1.0, 1.0, -0.5);
 System.out.println("0 OR 0 = " + or.feed(0, 0));
 System.out.println("1 OR 0 = " + or.feed(1, 0));
 }
}

17

Compute the output of a
neuron

Definition of NeuronExample

package c3002.artificial.neuron;

public class NeuronExample {
 public static void main(String[] args){
 Neuron or = new Neuron(1.0, 1.0, -0.5);
 System.out.println("0 OR 0 = " + or.feed(0, 0));
 System.out.println("1 OR 0 = " + or.feed(1, 0));
 }
}

18

Convert the double into a
string, and concatenate

Running the example (using the
command line)

Running the example (using IntelliJ)

Some of the important parts that you
should not have missed! ...

 Neuron knows what or looks like and how it
behaves

 Neuron knows how to interpret the orders given to or

 The or object only knows

 the value of weight1, weight2, and bias

 who created it

21

Some of the important parts that you
should not have missed!

 NeuronExample sends to or some orders, defined
in term of messages

 NeuronExample cannot send a message to or that
is not understood

 In Python, JavaScript, or Ruby, one can send a message that is not
understood

 In Java or C#, messages are always understood

22

Java particularities

 Java is a class-based object-oriented language

 ... but not completely

 a class instantiation is not done through message sending, but with
an operator

 Java contains primitive types, which are not objects

 Static methods are not looked up

 only methods (or also called instance methods) that are not private
are looked up

 we will come back on that point in the future

 E.g., the main() method is called directly by the VM, without
instantiating the class NeuronExample

23

Defining a different kind of Neuron…

 A Relu Neuron is a different kind of neuron.

 The same Z value is computed, but the output is
slightly different

 Note that the ReluNeuron cannot be used to have
the or behavior we defined earlier

24

Defining a different kind of Neuron…

package c3002.artificial.neuron;

public class ReluNeuron extends Neuron {
 public ReluNeuron(double w1, double w2, double b) {
 super(w1, w2, b);
 }

 public double feed(double input1, double input2) {
 double z = this.computeZ(input1, input2);
 return (z > 0) ? z : 0;
 }
}

25

Outline

1.Java refresher
1.Small illustrative scenario with the class Point

2.Extending Point into PositivePoint

2.Class inheritance

3.Terminology

26

Class inheritance

27

+ Neuron(double weight1, double weight2, double bias)
+ computeZ(double input1, double input2): double
+ feed(double input1, double input2): double

- weight1: double
- weight2: double
- bias: double

Neuron

+ ReluNeuron(double weight1, double weight2, double
bias)
+ feed(double input1, double input2): double

ReluNeuron

Class inheritance

28

+ Neuron(double weight1, double weight2, double bias)
+ computeZ(double input1, double input2): double
+ feed(double input1, double input2): double

- weight1: double
- weight2: double
- bias: double

Neuron

+ ReluNeuron(double weight1, double weight2, double
bias)
+ feed(double input1, double input2): double

ReluNeuron

double z = this.computeZ(input1, input2);
if(z <= 0)
 return 0;
else
 return 1;

Class inheritance

29

+ Neuron(double weight1, double weight2, double bias)
+ computeZ(double input1, double input2): double
+ feed(double input1, double input2): double

- weight1: double
- weight2: double
- bias: double

Neuron

+ ReluNeuron(double weight1, double weight2, double
bias)
+ feed(double input1, double input2): double

ReluNeuron

double z = this.computeZ(input1,
input2);
return (z > 0) ? z : 0;

Class inheritance

30

+ Neuron(double weight1, double weight2, double bias)
+ computeZ(double input1, double input2): double
+ feed(double input1, double input2): double

- weight1: double
- weight2: double
- bias: double

Neuron

+ ReluNeuron(double weight1, double weight2, double
bias)
+ feed(double input1, double input2): double

ReluNeuron

Neuron n = new Neuron(1,1,-0.5);
n.feed(1,1)
=> execute Neuron.feed(…)

Class inheritance

31

+ Neuron(double weight1, double weight2, double bias)
+ computeZ(double input1, double input2): double
+ feed(double input1, double input2): double

- weight1: double
- weight2: double
- bias: double

Neuron

+ ReluNeuron(double weight1, double weight2, double
bias)
+ feed(double input1, double input2): double

ReluNeuron

ReluNeuron n = new ReluNeuron(1,1,-0.5);
n.feed(1,1)
=> execute ReluNeuron.feed(…)

Class inheritance

32

+ Neuron(double weight1, double weight2, double bias)
+ computeZ(double input1, double input2): double
+ feed(double input1, double input2): double

- weight1: double
- weight2: double
- bias: double

Neuron

+ ReluNeuron(double weight1, double weight2, double
bias)
+ feed(double input1, double input2): double

ReluNeuron

Neuron n = new ReluNeuron(1,1,-0.5);
n.computeZ(1,1)
=> execute Neuron.computeZ(…)

Class inheritance

33

+ Neuron(double weight1, double weight2, double bias)
+ computeZ(double input1, double input2): double
+ feed(double input1, double input2): double

- weight1: double
- weight2: double
- bias: double

Neuron

+ ReluNeuron(double weight1, double weight2, double
bias)
+ feed(double input1, double input2): double

ReluNeuron

Neuron n = new ReluNeuron(1,1,-0.5);
n.feed(1,1)
=> ??

Class inheritance

34

+ Neuron(double weight1, double weight2, double bias)
+ computeZ(double input1, double input2): double
+ feed(double input1, double input2): double

- weight1: double
- weight2: double
- bias: double

Neuron

+ ReluNeuron(double weight1, double weight2, double
bias)
+ feed(double input1, double input2): double

ReluNeuron

Neuron n = new ReluNeuron(1,1,-0.5);
n.feed(1,1)
=> execute ReluNeuron.feed(…)

Class inheritance

 During the first weeks of the semester we will explain
how inheritance works

 However, understand when to use inheritance is the
topic of the whole semester

 Class inheritance is highly powerful:

 It may bring fantastic property regarding extensibility in a software
system

 But it may be devastating if not properly used

35

Outline

1.Java refresher
1.Small illustrative scenario with the class Point

2.Extending Point into PositivePoint

2.Class inheritance

3.Terminology

36

Terminology

 Object

 “An object is a software machine allowing programs to access and
modify a collection of data” -- Class of Touch, Bertrand Meyer

 “Objects are not just simple bundles of logic and data. They are
responsible members of an object community” -- Object Design,
Rebecca Wirfs-Brock and Alan McKean

 An object has a unique position in memory, often assimilated as its
identity

 An object knows from which class it has been created from (for
class-based object-oriented programming languages like Java, C#,
Smalltalk)

 An object understands the messages for the methods inherited
and defined in its class

37

Terminology

 Class

 A class is primarily an object factory

 It is defined as a set of variable declarations and method
definitions

 Conceptually: class = name + variables + methods + superclass

 In Java: class = name + variables + methods + superclass +
interfaces + static methods + ...

38

Terminology

 Method

 Executable piece of code

 A method execution ends (i) when no more instruction has to be
executed; (ii) when a return statement is reached; (ii) when an
exception is raised

 The control flow is returned to its caller method when the method
return

 Can access to the this and super pseudo-variables (only in
instance method; cannot be used in a static method in Java)

39

Terminology

 Inheritance / subclasses

 relation of specialization between classes

 a subclass inherits attributes and behavior from its superclass

 it is considered bad programming style to use inheritance for code
reuse only

40

Terminology

 Polymorphism

 is the ability of one type A to appear as and be used like another
type B

 polymorphism plays a key difference between message sending
and function invocation

41

Neuron n = new ReluNeuron(1,1,-0.5);

What you should know!

 What is the difference between an object and class?

 What is the difference between class reuse and class
specialization?

 What is a constructor?

 The difference between function invocation and
sending messages

42

Can you answer these questions?

 Why do objects “send messages” instead of
“executing methods”?

 Can you imagine an object model in which a class is
also an object?

 Why polymorphism and class inheritance are so
tightly related in Java?

43

License

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
-Share: copy and redistribute the material in any medium or format
-Adapt: remix, transform, and build upon the material for any purpose, even
commercially

The licensor cannot revoke these freedoms as long as you follow the license terms

 Attribution: you must give appropriate credit

 ShareAlike: if you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original

Complete license: https://creativecommons.org/licenses/by-sa/4.0/

www.dcc.uchile.cl

