

MA3701 - Optimización

Auxiliar 4 - Geometría y Símplex

Profesor: Vicente Acuña Auxiliares: Matías Muñoz y Diego Reyes

P1. Geometría

- a) Considere un poliedro P y suponga que para cada variable x_i se tiene ya sea la restricción $x_i \ge 0$ o la restricción $x_i \le 0^1$. ¿Es cierto que P tiene por lo menos una solución básica factible?
- b) Sean P y Q poliedros en \mathbb{R}^n . Definimos $P + Q = \{x + y | x \in P, y \in Q\}$.
 - Muestre que cada punto extremo de P+Q es la suma de un punto extremo de P y un punto extremo de Q.
- c) Considere la elipsoide $E = \{x \in \mathbb{R}^n | \sum_{i=1}^n \frac{x_i^2}{a_i^2} \le 1\}$, donde cada $a_i > 0$. Demuestre que la elipsoide es convexa a través del siguiente argumento alternativo:
 - Muestre que el conjunto $S = \{x \in \mathbb{R}^n | f(x) \le b\}$, donde f(x) es convexa, es un conjunto convexo.
 - Muestre que la función que define a la elipsoide E es convexa.
 - Concluya.

P2. Símplex + Geometría

Considere el problema de optimización lineal

min
$$x_1$$

s.a. $x_1 + x_2 \ge -1$
 $x_1 - x_2 \le -1$
 $x_1 - 2x_2 \ge -4$

- 1. Grafique el problema e indique la solución óptima.
- 2. Escriba el problema en formulación estándar. ¿Es el punto asociado a $(x_1, x_2) = (0, 1)$ en el problema de formulación estándar una solución básica factible? Justifique.
- 3. **SPOILER**: $(x_1, x_2) = (0, 1)$ es SBF. Encuentre una dirección a una SBF adyacente que tenga costo reducido negativo (¿por qué queremos movernos de punto?).
- 4. Haga una iteración de simplex. Muestre que el nuevo punto es una SBF. Comente si el punto es degenerado o no.

¹Esto no quiere decir que no haya más restricciones en P.

Geometría

Def: Un conjunto $P \subseteq \mathbb{R}^n$ se dice *poliedro* si se puede escribir de la forma $P = \{x \in \mathbb{R}^n : Ax \geq b\}$, donde $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ y $b \in \mathbb{R}^m$.

Def: Un conjunto $C \subseteq \mathbb{R}^n$ se dice *convexo* si $\forall x, y \in C$ y $\forall \lambda \in [0, 1], \lambda x + (1 - \lambda)y \in C$.

Def: Sea C un conjunto convexo. Un punto $x \in C$ se dice *punto extremo* si no existen dos puntos distintos $y, z \in C$ tales que $x = \lambda y + (1 - \lambda)z$ para algún $\lambda \in (0, 1)$.

Def: Sea $P \subseteq \mathbb{R}^n$ un poliedro. Un punto $x \in P$ se dice *vértice* si existe $c \in \mathbb{R}^n$ tal que $c^t x < c^t y$ para todo $y \in P \setminus \{x\}$.

Def: Sea $P \subseteq \mathbb{R}^n$ un poliedro. Un punto $x \in \mathbb{R}^n$ se dice solución básica si corresponde a la intersección de n restricciones linealmente independientes. Si además $x \in P$ (es decir, si satisface todas las restricciones), se dice que x es una solución básica factible.

Teo: Sea $P \subseteq \mathbb{R}^n$ un poliedro. Entonces, para $x \in P$ se tiene que:

x es un punto extremo $\Leftrightarrow x$ es un vértice $\Leftrightarrow x$ es una solución básica factible

Def: Se dice que un poliedro P está en forma estándar si es de la forma $P = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$, con $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ cuyas filas son linealmente independientes, y $b \in \mathbb{R}^m$.

Teo: Sea $P = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ un poliedro en forma estándar. Un vector $x \in \mathbb{R}^n$ es una solución básica de P si y sólo si Ax = b y existen índices $B(1), \ldots, B(m)$ tales que:

- Las columnas $A_{B(1)}, \ldots, A_{B(m)}$ son linealmente independientes.
- $x_i = 0 \text{ para } i \notin \{B(1), \dots, B(m)\}.$

Def: Una solución básica $x \in \mathbb{R}^n$ se dice degenerada si existen más de n restricciones l.i. que se activan en x. Para un poliedro en forma estándar, esta definición se traduce en que más de n-m componentes de x sean nulas.

Def: Dado un conjunto finito $X = \{x_1, \dots, x_m\} \subseteq \mathbb{R}^n$, se define su envoltura convexa como

$$conv(X) = \left\{ \sum_{i=1}^{m} \lambda_i x_i \mid \sum_{i=1}^{m} \lambda_i = 1, \lambda_1, \dots, \lambda_m \ge 0 \right\}.$$

Algoritmo Símplex

Dados $A \in \mathbb{R}^{m \times n}$ de rango $m, b \in \mathbb{R}^m$ y $c \in \mathbb{R}^n$, el algoritmo símplex resuelve el problema

$$\min_{x \in \mathbb{R}^n} c^t x$$
s.a. $Ax = b$

$$x \ge 0.$$

1. Inicialización:

Encontrar una base factible B, cuyas columnas denotaremos por $A_{B(1)}, \ldots, A_{B(m)}$. Definir índices básicos y no básicos: $\mathcal{B} := \{B(1), \ldots, B(m)\}, \quad \mathcal{N} := \{1, \ldots, n\} \setminus \mathcal{B}$. Calcular $B^{-1}, \quad x_B := B^{-1}b, \quad z := c_B^t x_B$.

2. Test de optimalidad:

Calcular los multiplicadores símplex: $p^t := c_B^t B^{-1}$. Calcular los costos reducidos: $\bar{c}_j := c_j - p^t A_j \ \forall j \in \mathcal{N}$. Si $\forall j \in \mathcal{N}, \ \bar{c}_j \geq 0$, terminar (estamos en el óptimo). Si no, sea $j \in \mathcal{N}$ tal que $\bar{c}_j < 0$.

3. Test de factibilidad:

Calcular $u := B^{-1}A_j$. Calcular $\mathcal{I} := \{i \in \{1, \dots, m\} \mid u_i > 0\}$. Si $\mathcal{I} = \emptyset$, terminar (el problema es no acotado). Si no, calcular $\theta^* := \min_{i \in \mathcal{I}} \frac{x_{B(i)}}{u_i}$ y $\ell \in \mathcal{I}$ tal que $\theta^* = \frac{x_{B(\ell)}}{u_\ell}$.

4. Actualizar:

Formar una nueva base B reemplazando $A_{B(\ell)}$ por A_j en la base anterior. $\mathcal{B} := \mathcal{B} \setminus \{B(\ell)\} \cup \{j\}, \quad \mathcal{N} := \mathcal{N} \setminus \{j\} \cup \{B(\ell)\}$ Decimos que x_j entra a la base y $x_{B(\ell)}$ sale de ella. $x_j := \theta^*, \quad x_{B(i)} := x_{B(i)} - \theta^* u_i$ para $i \neq \ell$.

 $z := z + \theta^* \bar{c}_j$. Calcular $B^{-1}(*)$. Ir a 2.